Science.gov

Sample records for resolved pyrometry cases

  1. Time- and space- resolved pyrometry of dense plasmas heated by laser accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Roycroft, Rebecca; McCary, Eddie; Wagner, Craig; Jiao, Xuejing; Kupfer, Rotem; Gauthier, D. Cort; Bang, Woosuk; Palaniyappan, Sasikumar; Bradley, Paul A.; Hamilton, Christopher; Santiago Cordoba, Miguel A.; Vold, Erik L.; Yin, Lin; Fernandez, Juan C.; Alibright, Brian J.; Ditmire, Todd; Hegelich, Bjorn Manuel

    2016-10-01

    Laser driven ion sources have a variety of possible applications, including the rapid heating of matter to dense plasma states of several eV. Recent experiments at LANL and The University of Texas have explored ion heating in the context of mixing at high-Z / low-Z plasma interfaces, using different laser-based ion acceleration schemes. Quasi-monoenergetic and highly directed Al ions from ultra-thin foils were used in one set of experiments, while TNSA accelerated protons from an F/40 focused petawatt laser were used in the other. Using spatially and temporally resolved streaked optical pyrometry we have gained insight into the degree and uniformity of heating from various configurations of ion source and sample target. Here we present data and analysis from three experimental runs along with hydrodynamic modeling of the heated targets and geometric considerations. This work was supported by NNSA cooperative agreement DE- NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-0.

  2. Pyrometry simulator (pyrosim) for diagnostic design.

    SciTech Connect

    Dolan, Daniel H., III

    2011-10-01

    Signal estimates are crucial to the design of time-resolved pyrometry measurements. These estimates affect fundamental design decisions, including the optical relay (fiber versus open beam), spectral range (visible or infrared), and amplification needs (possibly at the expense of time resolution). The pyrosim program makes such estimates, allowing the collected power, photon flux, and measured signal to be determined in a broad range of pyrometry measurements. Geometrical collection limits can be applied; sample emissivity, transfer efficiency, and detector sensitivity may also be specified, either as constants or functions of wavelength.

  3. Temperature determination using pyrometry

    DOEpatents

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  4. Fast optical pyrometry

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1988-01-01

    Design and operation of accurate millisecond and microsecond resolution optical pyrometers developed at the National Bureau of Standards during the last two decades are described. Results of tests are presented and estimates of uncertainties in temperature measurements are given. Calibration methods are discussed and examples of applications of fast pyrometry are given. Ongoing research in developing fast multiwavelength and spatial scanning pyrometers are summarized.

  5. Multiwavelength pyrometry to correct for reflected radiation

    NASA Technical Reports Server (NTRS)

    Ng, Daniel L. P.

    1990-01-01

    Computer curve fitting is used in multiwavelength pyrometry to measure the temperature of a surface in the presence of reflected radiation by decomposing its radiation spectrum. Computer-simulated spectra (at a surface temperature of 1000 K; in the wavelength region 0.3 to 20 microns; with a reflected radiation-source temperature of 700 to 2500 K; and reflector emissivity from 0.1 to 0.9) were generated and decomposed. This method of pyrometry determined the surface temperatures under these conditions to within 5 percent. The practicability of the method was further demonstrated by the successful analysis of a related problem--decomposition of the real spectrum of an infrared source containing two emitters to determine their temperatures.

  6. High-speed Digital Color Imaging Pyrometry

    DTIC Science & Technology

    2011-08-01

    and environment of the events. To overcome these challenges, we have characterized and calibrated a digital high-speed color camera that may be...correction) to determine their effect on the calculated temperature. Using this technique with a Phantom color camera , we measured the temperature of...constant value of approximately 1980~K. 15. SUBJECT TERMS Pyrometry, color camera 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  7. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  8. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  9. Application of heterodyne velocimetry and pyrometry as diagnostics for explosive characterisation

    NASA Astrophysics Data System (ADS)

    Ferguson, J. W.; Taylor, P.

    2014-05-01

    The results of four cylinder tests performed on two batches of the HMX based explosive EDC37 using a new suite of diagnostics are described. Heterodyne laser velocimetry (het-v) and pyrometry were fielded for the first time on cylinder tests within AWE. Pyrometry gave a measurement of the temperature of the detonating HE of 2600-3485 K. Sixteen channels of het-v were fielded and provided high fidelity expansion data at distances of up to 30 mm. High speed framing camera images were obtained and show no signs of cylinder break up or spallation until distances greater then 35 mm. The het-v expansion data made it possible to resolve up to 8 shock reverberations in the wall as it expands. The expansion of the cylinder wall was recorded both before and after steady state detonation was reached and the results compared. Het-v probes were fielded at different angles to the expanding cylinder wall allowing both the vertical and horizontal expansion velocity to be determined. The extra information that these cylinder tests yielded will allow for more accurate code validation and determination of the equation of state of the explosive products.

  10. Optical pyrometry measurement on oxidized Zircaloy-4 cladding

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Ramiandrisoa, L.; Cheymol, C.; Horny, N.; Duvaut, T.; Gallou, C.; Maskrot, H.; Destouches, C.; Ferry, L.; Gonnier, C.

    2016-09-01

    In order to improve the safety of nuclear power plant, loss-of-coolant accident experiments are implemented in research reactor. In this framework, we develop an optical pyrometry device to measure surface temperature (700-1200°C) of Zircaloy cladding without contact. The whole set-up of the simplified device (under air, without radiation) and the measurement procedure including data treatment based on bichromatic pyrometry are presented, as well as results for various temperature levels. Temperature retrieval based on the hypothesis of emissivity ratio equal to a constant, is scanned over a large wavelength range. A rather constant surface temperature is obtained on the spectral range of measurement, confirming the relevancy of emissivity hypothesis. Differences between this non-contact temperature measurement and a complementary thermocouple temperature measurement are also discussed.

  11. Measurements of the principal Hugoniots of dense gaseous deuterium-helium mixtures: Combined multi-channel optical pyrometry, velocity interferometry, and streak optical pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong

    2016-10-01

    The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.

  12. Thin-Filament Pyrometry Developed for Measuring Temperatures in Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.

    2004-01-01

    Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they

  13. Two-color pyrometry for low amplitude periodic heating

    NASA Astrophysics Data System (ADS)

    Bennett, T. D.; Silveira, V. B.; Valdes, R.

    2017-02-01

    Specimens subject to periodic heating must be probed for a calibrated temperature response if standard measurements of thermal diffusivity are to be extended to determine thermal conductivity. A variation on two-color pyrometry is developed to measure both the offset and harmonic amplitudes of temperature fluctuations caused by periodic heating. The requisite pyrometric formulae are derived for low amplitude heating using an expansion of the nonlinear thermal emission. Well-defined uncertainties in the temperature values are determined from experimental uncertainties in radiometric measurements. The accuracy demonstrated in this work is better than 2% for the temperature offset and 3%-8% for the fluctuating temperature amplitude.

  14. Rules of Emissivity Sample Choice in Multi-wavelength Pyrometry

    NASA Astrophysics Data System (ADS)

    Liang, M.; Sun, B.; Sun, X.; Xie, J.; Yu, C.

    2017-03-01

    Since the theory for emissivity sample (example) is not clear, there exists unavoidable blindness in the sample choice for the true temperature determination (create emissivity samples using an assumption to calculate the true temperature according to brightness temperature and wavelength) in multi-wavelength pyrometry, resulting in considerable computational complexity and slow computing speed. In this article, the rules of the emissivity sample were first discovered through the theoretical analysis of the relationship between brightness temperature and emissivity, which provide a theoretical basis for the emissivity sample choice. Furthermore, the rules can reduce the sample size (amount) and improve the calculation speed. The effectiveness of the proposed rules was verified by measuring the true temperature of a solid rocket engine plume, in which the rules were applied to effectively select emissivity samples. The experimental results demonstrate that the computing speed of the true temperature determination can be improved by 5.73% to 48.64%.

  15. Full-spectrum multiwavelength pyrometry for nongray surfaces

    NASA Astrophysics Data System (ADS)

    Ng, Daniel; Williams, W. D.

    1992-04-01

    A full-spectrum (encompassing radiation on both sides of the Wien displacement peak) multiwavelength pyrometer was developed. It measures the surface temperature of arbitrary nongray ceramics by curve fitting a spectrum in this spectral region to a Planck function of temperature T. This function of T is modified by the surface spectral emissivity. The emissivity function was derived experimentally from additional spectra that were obtained by using an auxiliary radiation source and from application of Kirchhoff's law. This emissivity was verified by results that were obtained independently by using electromagnetic and solid-state theories. In the presence of interfering reflected radiation this general pyrometry improves the accuracy of the measured temperature by measuring an additional spectrum that characterizes the interfering radiation source.

  16. Neutral beam interlock system on TFTR using infrared pyrometry

    SciTech Connect

    Medley, S.S.; Kugel, H.W.; Kozub, T.A.; Lowrance, J.L.; Mastrocola, V.; Renda, G.; Young, K.M.

    1986-06-01

    Although the region of the TFTR vacuum vessel wall which is susceptible to damage by neutral beam strike is armored with a mosaic of TiC-clad POCO graphite titles, at power deposition levels above 2.5 kW/cm/sup 2/ the armor surface temperature exceeds 1200/sup 0/C within 250 ms and itself becomes susceptible to damage. In order to protect the wall armor, a neutral beam interlock system based on infrared pyrometry measurement of the armor surface temperature was installed on TFTR. For each beamline, a three-fiber-optic telescope views three areas of approx.30 cm diameter centered on the armor hot spots for the three ion sources. Each signal is fiber-optic coupled to a remote 900 nm pyrometer which feeds analog signals to the neutral beam interrupt circuits. The pyrometer interlock system is designed to interrupt each of the twelve ion sources independently within 10 ms of the temperature exceeding a threshold settable in the range of 500 to 2300/sup 0/C. A description of the pyrometer interlock system and its performance will be presented.

  17. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  18. Design, Construction and Calibration of a Near-Infrared Four-Color Pyrometry System for Laser-Driven High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Ali, S. J.; Jeanloz, R.; Collins, G.; Spaulding, D. K.

    2010-12-01

    Current dynamic compression experiments, using both quasi-isentropic and shock-compression, allow access to pressure-temperature states both on and off the principle Hugoniot and over a wide range of conditions of direct relevance to planetary interiors. Such studies necessitate reliable temperature measurements below 4000-5000 K. Such relatively low temperature states are also of particular interest for materials such as methane and water that do not experience much heating under shock compression. In order to measure these temperatures as a function of time across the sample, a four-color, near-infrared pyrometry system is being developed for use at the Janus laser facility (LLNL) with channels at wavelengths of 932nm-1008nm, 1008nm-1108nm, 1108nm-1208nm, and 1208nm-1300nm. Each color band is fiber-coupled to an InGaAs PIN photodiode with a rise time of less than 60 ps, read using an 18 GHz oscilloscope in order to ensure time resolutions of under 200 ps. This will allow for high temporal resolution measurements of laser-driven shock compression experiments with total durations of 5-15 ns as well as correlation with simultaneous time-resolved velocity interferometry and visual-wavelength pyrometry. Calibration of the system is being accomplished using quartz targets, as the EOS for quartz is well known, along with a calibrated integrating sphere of known spectral radiance.

  19. Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling

    SciTech Connect

    Benedic, F.; Bruno, P.; Pigeat, Ph.

    2007-03-26

    A model combining multiple layer description and effective media approximation is developed for pyrometry in the case of thin film synthesis, in order to estimate the film property evolution along its thickness during the growth process in real time. The model is used to investigate optical properties of polycrystalline diamond film prepared by H{sub 2}/CH{sub 4}/N{sub 2} microwave plasma. It is shown that in the presence of nitrogen, the growth is strongly nonhomogeneous. The deposit, initially composed of large amounts of void and nondiamond phases, evolves rapidly towards highest quality dense film where the diamond phase is predominant.

  20. 28 CFR 0.196 - Procedures for resolving disagreements concerning mail or case assignments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Procedures for resolving disagreements concerning mail or case assignments. 0.196 Section 0.196 Judicial Administration DEPARTMENT OF JUSTICE... disagreements concerning mail or case assignments. When an assignment for the handling of mail or a case...

  1. 28 CFR 0.196 - Procedures for resolving disagreements concerning mail or case assignments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Procedures for resolving disagreements concerning mail or case assignments. 0.196 Section 0.196 Judicial Administration DEPARTMENT OF JUSTICE... disagreements concerning mail or case assignments. When an assignment for the handling of mail or a case...

  2. 28 CFR 0.196 - Procedures for resolving disagreements concerning mail or case assignments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Procedures for resolving disagreements concerning mail or case assignments. 0.196 Section 0.196 Judicial Administration DEPARTMENT OF JUSTICE... disagreements concerning mail or case assignments. When an assignment for the handling of mail or a case...

  3. 28 CFR 0.196 - Procedures for resolving disagreements concerning mail or case assignments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Procedures for resolving disagreements concerning mail or case assignments. 0.196 Section 0.196 Judicial Administration DEPARTMENT OF JUSTICE... disagreements concerning mail or case assignments. When an assignment for the handling of mail or a case...

  4. The GMOX science case: resolving galaxies through cosmic time

    NASA Astrophysics Data System (ADS)

    Gennaro, Mario; Robberto, Massimo; Heckman, Timothy; Smee, Stephen A.; Barkhouser, Robert; Ninkov, Zoran; Adamo, Angela; Becker, George; Bellini, Andrea; Bianchi, Luciana; Bik, Arjan; Bordoloi, Rongmon; Calamida, Annalisa; Calzetti, Daniela; De Rosa, Gisella; Deustua, Susana; Kalirai, Jason; Lotz, Jennifer; MacKenty, John; Manara, Carlo Felice; Meixner, Margaret; Pacifici, Camilla; Sabbi, Elena; Sahu, Kailash; Tumlinson, Jason

    2016-08-01

    We present the key scientific questions that can be addressed by GMOX, a Multi-Object Spectrograph selected for feasibility study as a 4th generation instrument for the Gemini telescopes. Using commercial digital micro-mirror devices (DMDs) as slit selection mechanisms, GMOX can observe hundreds of sources at R 5000 between the U and K band simultaneously. Exploiting the narrow PSF delivered by the Gemini South GeMS MCAO module, GMOX can synthesize slits as small as 40mas reaching extremely faint magnitude limits, and thus enabling a plethora of applications and innovative science. Our main scientific driver in developing GMOX has been Resolving galaxies through cosmic time: GMOX 40mas slit (at GeMS) corresponds to 300 pc at z 1:5, where the angular diameter distance reaches its maximum, and therefore to even smaller linear scales at any other redshift. This means that GMOX can take spectra of regions smaller than 300 pc in the whole observable Universe, allowing to probe the growth and evolution of galaxies with unprecedented detail. GMOXs multi-object capability and high angular resolution enable efficient studies of crowded fields, such as globular clusters, the Milky Way bulge, the Magellanic Clouds, Local Group galaxies and galaxy clusters. The wide-band simultaneous coverage and the very fast slit configuration mechanisms also make GMOX ideal for follow-up of LSST transients.

  5. The Phillip Becker Case Resolved: A Chance for Habilitation.

    ERIC Educational Resources Information Center

    Herr, Stanley S.

    1984-01-01

    The author reviews the human, ethical, political, legal, and professional issues involved in the case of a 16-year old institutionalized Down's Syndrome youth, Philip Becker, whose parents refused surgery to correct a heart defect. He reviews the advocacy role of the American Association on Mental Deficiency and suggests future directions. (CL)

  6. Colleges Sharpen Tactics for Resolving Academic-Integrity Cases

    ERIC Educational Resources Information Center

    Lipka, Sara

    2009-01-01

    Students have cheated for centuries, but the problem is knottier than it used to be. The Internet and its infinite dishonest shortcuts have made many cases more complex, and antiplagiarism software like Turnitin flags more potential offenses than could be caught before. At the same time, professors' and college presidents' run-ins with plagiarism…

  7. SNP Markers as Additional Information to Resolve Complex Kinship Cases

    PubMed Central

    Pontes, M. Lurdes; Fondevila, Manuel; Laréu, Maria Victoria; Medeiros, Rui

    2015-01-01

    Summary Background DNA profiling with sets of highly polymorphic autosomal short tandem repeat (STR) markers has been applied in various aspects of human identification in forensic casework for nearly 20 years. However, in some cases of complex kinship investigation, the information provided by the conventionally used STR markers is not enough, often resulting in low likelihood ratio (LR) calculations. In these cases, it becomes necessary to increment the number of loci under analysis to reach adequate LRs. Recently, it has been proposed that single nucleotide polymorphisms (SNPs) could be used as a supportive tool to STR typing, eventually even replacing the methods/markers now employed. Methods In this work, we describe the results obtained in 7 revised complex paternity cases when applying a battery of STRs, as well as 52 human identification SNPs (SNPforID 52plex identification panel) using a SNaPshot methodology followed by capillary electrophoresis. Results Our results show that the analysis of SNPs, as complement to STR typing in forensic casework applications, would at least increase by a factor of 4 total PI values and correspondent Essen-Möller's W value. Conclusions We demonstrated that SNP genotyping could be a key complement to STR information in challenging casework of disputed paternity, such as close relative individualization or complex pedigrees subject to endogamous relations. PMID:26733770

  8. Mystery of Sciatica Resolved - A Rare Case Report

    PubMed Central

    Gopal, Surendra; Sampath, Deepak

    2016-01-01

    Schwannomas are common, benign, slow growing tumours of peripheral nerve sheath arising from the schwann cells of the neuroectoderm. They do not transverse the nerve but remain within the sheath on top of the nerve. They rarely present in the sciatic nerve. Sciatic schwannomas may mimic symptoms of herniated disc, usually with radiation of pain to buttocks and thigh region with inability to walk for long distances and sometimes may present with claudication. In the absence of low back pain and with a normal Lumbo-Sacral MRI study, causes intrinsic to sciatic nerve needs to be thought off, which often delays the diagnosis. Rarity in our case-patient presented with tingling sensation and inability to squat on hard surface for more than 10 minutes with a normal x-ray and MRI study of lumbosacral spine. PMID:26894136

  9. Application of Pyrometry and IR-Thermography to High Surface Temperature Measurements

    DTIC Science & Technology

    2000-04-01

    Division in Cologne Porz-Wahnheide, Linder H6he D-51147 Cologne, Germany Summary d distance E energy In this document the non- intrusive temperature...interaction with the supersonic Some main parameters of the thermal radiation are flow, non- intrusive temperature measurement tech- defined below [1...ing a time duration dt into a hemisphere: well. S= dW / dt [W /m2]. (1) IR-thermography and pyrometry are two well de- veloped non- intrusive techniques

  10. 28 CFR 0.196 - Procedures for resolving disagreements concerning mail or case assignments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concerning mail or case assignments. 0.196 Section 0.196 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Jurisdictional Disagreements § 0.196 Procedures for resolving... been made through established procedures and the appropriate authorities in any organizational unit...

  11. Effect of radiometric errors on accuracy of temperature-profile measurement by spectral scanning using absorption-emission pyrometry

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1972-01-01

    The spectral-scanning method may be used to determine the temperature profile of a jet- or rocket-engine exhaust stream by measurements of gas radiation and transmittance, at two or more wavelengths. A single, fixed line of sight is used, using immobile radiators outside of the gas stream, and there is no interference with the flow. At least two sets of measurements are made, each set consisting of the conventional three radiometric measurements of absorption-emission pyrometry, but each set is taken over a different spectral interval that gives different weight to the radiation from a different portion of the optical path. Thereby, discrimination is obtained with respect to location along the path. A given radiometric error causes an error in computed temperatures. The ratio between temperature error and radiometric error depends on profile shape, path length, temperature level, and strength of line absorption, and the absorption coefficient and its temperature dependency. These influence the choice of wavelengths, for any given gas. Conditions for minimum temperature error are derived. Numerical results are presented for a two-wavelength measurement on a family of profiles that may be expected in a practical case of hydrogen-oxygen combustion. Under favorable conditions, the fractional error in temperature approximates the fractional error in radiant-flux measurement.

  12. Common but unappreciated sources of error in one, two, and multiple-color pyrometry

    NASA Technical Reports Server (NTRS)

    Spjut, R. Erik

    1988-01-01

    The most common sources of error in optical pyrometry are examined. They can be classified as either noise and uncertainty errors, stray radiation errors, or speed-of-response errors. Through judicious choice of detectors and optical wavelengths the effect of noise errors can be minimized, but one should strive to determine as many of the system properties as possible. Careful consideration of the optical-collection system can minimize stray radiation errors. Careful consideration must also be given to the slowest elements in a pyrometer when measuring rapid phenomena.

  13. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    SciTech Connect

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  14. High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.

    2014-01-01

    A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.

  15. A Case of Mania Presenting with Hypersexual Behavior and Gender Dysphoria that Resolved with Valproic Acid

    PubMed Central

    Heare, Michelle R.; Barsky, Maria; Faziola, Lawrence R.

    2016-01-01

    Hypersexuality and gender dysphoria have both been described in the literature as symptoms of mania. Hypersexuality is listed in the Diagnostic and Statistical Manual of Mental Disorders 5 as part of the diagnostic criteria for bipolar disorder. Gender dysphoria is less often described and its relation to mania remains unclear. This case report describes a young homosexual man presenting in a manic episode with co-morbid amphetamine abuse whose mania was marked by hypersexuality and the new onset desire to be a woman. Both of these symptoms resolved with the addition of valproic acid to antipsychotics. This case report presents the existing literature on hypersexuality and gender dysphoria in mania and describes a treatment option that has not been previously reported. PMID:27994833

  16. Multi-color pyrometry imaging system and method of operating the same

    DOEpatents

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  17. Super-resolving power and tunneling as cases of "weak measurement"

    NASA Astrophysics Data System (ADS)

    Cacciari, Ilaria; Mugnai, Daniela; Ranfagni, Anedio

    2017-01-01

    A way for transferring the results obtained with super-gain antennas to optical systems, in order to increase their resolving power, was proposed by Toraldo di Francia in 1952. Recent experimental work performed in the microwave range has confirmed the correctness of the theoretical predictions, which could even seem to be in contradiction with the uncertainty principle. Here we propose a simple way to overcome this contradiction based on the "weak measurement" theory. This theory was originally proposed for quantum-mechanical systems, and represents a powerful tool for interpreting even a variety of classical situations. We demonstrate that the results obtained by means of electromagnetic analysis are confirmed by a "weak measurement" interpretation. Moreover, even the case of tunneling in the microwave range has been considered in the light of such a theory.

  18. On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition

    SciTech Connect

    Sharapov, T F

    2014-10-31

    We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.

  19. Pyrometry in the Multianvil Press: New approach for temperature measurement in large volume press experiments

    NASA Astrophysics Data System (ADS)

    Sanehira, T.; Wang, Y.; Prakapenka, V.; Rivers, M. L.

    2008-12-01

    Temperature measurement in large volume press experiments has been based on thermocouple emf, which has well known problems: unknown pressure dependence of emf [e.g., 1], chemical reaction between thermocouple and other materials, deformation related texture development in the thermocouple wires [2], and so on. Thus, different techniques to measure temperatures in large volume press experiments other than thermocouples are required to measure accurate temperatures under high pressures. Here we report a new development using pyrometry in the multianvil press, where temperatures are derived on the basis of spectral radiometry. Several high pressure runs were conducted using the 1000 ton press with a DIA module installed at 13 ID-D GSECARS beamline at Advanced Photon Source (APS) [3]. The cubic pressure medium, 14 mm edge length, was made of soft-fired pyrophyllite with a graphite furnace. A moissanite (SiC) single crystal was built inside the pressure medium as a window for the thermal emission signal to go through. An MgO disk with 1.0 mm thickness was inserted in a gap between the top of the SiC crystal and thermocouple hot junction. The bottom of the window crystal was in direct contact with the tip of the anvil, which had a 1.5 mm diameter hole drilled all the way through the anvil axis. An optical fiber was inserted in this hole and the open end of fiber was in contact with the SiC crystal. Thermal spectral radiance from the inner cell assembly was obtained via the fiber and recorded by an Ocean Optics HP2000 spectrometer. The system response of spectrometer was calibrated by a tungsten ribbon ramp (OL550S, Optronic Laboratories, Inc.) with standard of spectral radiance. The cell assembly was compressed up to target value of 15 tons and then temperature was increased up to 1573 K. Radiation spectra were mainly obtained above 873 K and typical integration time was 1 ms or 10 ms. Data collection was done in the process of increase and decrease of temperature. In

  20. Multiwavelength pyrometry for nongray surfaces in the presence of interfering radiation

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1992-01-01

    A NASA developed multiwavelength pyrometry technique for nongray surfaces was extended to also measure surface temperature in the presence of interfering radiation. This radiation is produced by heat lamps used to raise the temperature of the surface. The necessary instruments are a spectral radiometer, an auxiliary radiation source, and a computer. Four radiation spectra are recorded: (1) the unobstructed spectrum characterizing an auxiliary radiation source; (2) the unobstructed spectrum characterizing the interfering radiation; (3) the radiation spectrum consisting of surface emission plus the interfering radiation; and (4) a spectrum consisting of the radiations of (3) plus the reflected radiation due to the incidence of the auxiliary radiation source on this surface. With these spectra, application of two variable, nonlinear, least squares, curve fitting computer software determines the surface temperature and the spectral emissivity. Use of the method to measure the surface temperature of silicon carbide under a simulated interference condition is shown at a low temperature just above ambient. The instrumentation necessary to extend the method to elevated temperatures is discussed.

  1. Studying the Equation of State of Isochorically Heated Al Using Streaked Optical Pyrometry

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Nilson, P. M.; Gregor, M. C.; Boehly, T. R.; Froula, D. H.

    2014-10-01

    The thermal equilibration rates of warm (few eV) dense (~1023 g/cm3) matter is important in high-energy-density physics. The OMEGA EP laser was used to isochorically heat a 20- μm-thick Al target using a short-pulse beam with 250 J in a 10-ps pulse. Twenty OMEGA beams were used to drive a Ti backlighter to radiograph the expansion of the foil using an x-ray framing camera (XRFC). The short duration of the heating laser pulse and the subsequent hot-electron energy deposition inside the target ensure minimal hydrodynamic expansion during the target heating phase. Streaked optical pyrometry (SOP) was used to measure the surface temperature of the foil. Together, these two measurements can be used to determine the equation of state along the release isentrope of the isochorically heated Al foil. Initial analysis of the SOP and XRFC data indicate the Al foil was heated to temperatures of tens of eV. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Three-dimensional combined pyrometric sizing and velocimetry of combusting coal particles. II: Pyrometry.

    PubMed

    Toth, Pal; Draper, Teri; Palotas, Arpad B; Ring, Terry A; Eddings, Eric G

    2015-05-20

    Knowledge of the in situ temperature, size, velocity, and number density of a population of burning coal particles yields insight into the chemical and aerodynamic behavior of a pulverized coal flame (e.g., through means of combustion model validation). Sophisticated and reasonably accurate methods are available for the simultaneous measurement of particle velocity and temperature; however, these methods typically produce single particle measurements in small analyzed volumes and require extensive instrumentation. We present a simple, inexpensive method for the simultaneous, in situ, three-dimensional (3D) measurement of particle velocity, number density, size, and temperature. The proposed method uses a combination of stereo imaging, 3D reconstruction, multicolor pyrometry, and digital image processing techniques. The details of theoretical and algorithmic backgrounds are presented, along with examples and validation experiments. Rigorous uncertainty quantification was performed using numerical simulations to estimate the accuracy of the method and explore how different parameters affect measurement uncertainty. This paper, Part II of two parts that discuss this method [Appl. Opt.54, 4049 (2015)], describes particle temperature and size measurement in overexposed emission images.

  3. Unusual case of non-resolving necrotizing pneumonia: A last resort measure for cure.

    PubMed

    Salahuddin, Naseem; Baig-Ansari, Naila; Fatimi, Saulat Hasnain

    2016-06-01

    To our knowledge, this is an unusual case of a community-acquired pneumonia (CAP) with sepsis secondary to Streptococcus pneumoniae that required lung resection for a non-resolving consolidation. A 74 year old previously healthy woman, presented with acute fever, chills and pleuritic chest pain in Emergency Department (ED). A diagnosis of CAP was established with a Pneumonia Severity Index CURB-65 score of 5/5. In the ER, she was promptly and appropriately managed with antibiotics and aggressive supportive therapy. She remained on ten days of intravenous antibiotics. However, 48 hours post antibiotic course, she returned to ER with fever and signs of sepsis. Despite timely and appropriate management, the consolidated lobe remained the focus of sepsis for over four weeks. The patient recovered after the offending lobe was resected. Histopathology of the lung tissue revealed acute and chronic inflammation. However, no malignancy, bacterial infection or broncho-pleural fistula was found. Eighteen months post-surgery, the patient remains well.

  4. Length of Time to Resolve Criminal Charges of Child Sexual Abuse: A Three-County Case Study.

    PubMed

    Walsh, Wendy A; Lippert, Tonya; Edelson, Meredyth Goldberg; Jones, Lisa M

    2015-08-01

    The present study sought to examine the court culture of three Oregon counties and their timelines for resolving felony child sexual abuse cases. Specifically, we examined (a) case outcomes, churning (i.e., the extent to which four court events were rescheduled), the length of time to reach a criminal case resolution, and how this length of time compared to that for felonies generally; (b) whether mandatory minimum sentences affected resolution timeliness; and (c) key stakeholders' perceptions about their local court culture. Data included retrospective case-file abstraction (N = 532) on all felony child sex crimes for a 2-year period and interviews with legal professionals (N = 23). Across all three counties, a minority of child sexual abuse cases (18% to 47%) were resolved within the target timeframe of 4 months. In contrast, most felonies (65% to 77%) were resolved within this timeframe. The rescheduling of trials and the requirement of mandatory minimum sentences for some felony child sexual abuse crimes increased the time until case resolution. Results suggest that court cultures that are hierarchical and cooperative may lead to longer case resolution times than court cultures that are self-managing or autonomous. Implications of these results and other results are discussed.

  5. Psychological Strategies for Resolving Interpersonal Conflicts among Administrators in Tertiary Institutions: A Case of Nnamdi Azikiwe University Awka, Nigeria

    ERIC Educational Resources Information Center

    Obi, Joy Sylvia C.; Obineli, Amaka S.

    2015-01-01

    The study was aimed at studying the psychological strategies for resolving interpersonal conflict among administrators in Tertiary Institutions with Nnamdi Azikiwe University as the case study. Gaining an understanding of these strategies may assist administrators of educational programs in handling interpersonal conflicts in more constructive and…

  6. Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry

    SciTech Connect

    Millot, Marius

    2016-01-15

    Ultrafast line-imaging velocity interferometer system for any reflector and streaked optical pyrometry are now commonly used to obtain high precision equation of state and electronic transport data under dynamic compression at major high energy density science facilities. We describe a simple way to improve distinguishing phase transformation signatures from other signals when monitoring decaying shock waves. The line-imaging capability of these optical diagnostics offers additional supporting evidence to the assignment of particular anomalies—such as plateaus or reversals—to the occurrence of a phase transition along the Hugoniot. We illustrate the discussion with two example datasets collected during laser driven shock compression of quartz and stishovite.

  7. RESOLVING NEIGHBORHOOD-SCALE AIR TOXICS MODELING: A CASE STUDY IN WILMINGTON, CALIFORNIA

    EPA Science Inventory

    Air quality modeling is useful for characterizing exposures to air pollutants. While models typically provide results on regional scales, there is a need for refined modeling approaches capable of resolving concentrations on the scale of tens of meters, across modeling domains 1...

  8. Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure

    SciTech Connect

    Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.

    2009-06-15

    Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 mum. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.

  9. Resolved Abdominal Aortic Aneurysms Following Stent Graft Treatment: A Report of Five Cases

    SciTech Connect

    Rimon, Uri; Garniek, Alexander; Golan, Gil; Bensaid, Paul; Galili, Yair; Schneiderman, Jacob; Morag, Benyamina

    2004-03-15

    Complete aneurysm resolution is the hallmark of successful endoluminal stent-graft treatment. We describe 5 patients in whom an abdominal aortic aneurysm (AAA) disappeared completely at mid-term follow-up after endovascular stent-graft placement. We reviewed 45 patients (43 men and 2 women) who underwent AAA repair using an endovascular technique, from April 1997 to December 2001. Mean AAA diameter was 58.3 mm. On 48-month follow-up, 12 aneurysms had not changed in size, 4 had grown, 16 had shrunk, and 5 had resolved completely. We describe these 5 patients in detail. The 5 patients were all men, mean age 68 years; their mean aneurysmal sac diameter was 54 mm. The only common finding in all of them was patency of lumbar and inferior mesenteric arteries at pre-procedure evaluation as well as at follow-up. Mean time to complete resolution was 18 months. No major complications were encountered. AAA may resolve completely after endovascular stent-graft implantation. Patent side branches may perhaps contribute to AAA disappearance by antegrade flow. A larger patient population should be reviewed, however, before any statistical conclusion can be drawn.

  10. A Real-Life Case Study of Audit Interactions--Resolving Messy, Complex Problems

    ERIC Educational Resources Information Center

    Beattie, Vivien; Fearnley, Stella; Hines, Tony

    2012-01-01

    Real-life accounting and auditing problems are often complex and messy, requiring the synthesis of technical knowledge in addition to the application of generic skills. To help students acquire the necessary skills to deal with these problems effectively, educators have called for the use of case-based methods. Cases based on real situations (such…

  11. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine

    SciTech Connect

    Musculus, Mark P.B.; Singh, Satbir; Reitz, Rolf D.

    2008-04-15

    Two-color soot optical pyrometry is a widely used technique for measuring soot temperature and volume fraction in many practical combustion devices, but line-of-sight soot temperature and volume fraction gradients can introduce significant uncertainties in the measurements. For diesel engines, these uncertainties usually can only be estimated based on assumptions about the soot property gradients along the line of sight, because full three-dimensional transient diesel soot distribution data are not available. Such information is available, however, from multidimensional computer model simulations, which are phenomenologically based, and have been validated against available in-cylinder soot measurements and diesel engine exhaust soot emissions. Using the model-predicted in-cylinder soot distributions, uncertainties in diesel two-color pyrometry data are assessed, both for a conventional high-sooting, high-temperature combustion (HTC) operating condition, and for a low-sooting, low-temperature combustion (LTC) condition. The simulation results confirm that the two-color soot measurements are strongly biased toward the properties of the hot soot. For the HTC condition, line-of-sight gradients in soot temperature span 600 K, causing relatively large errors. The two-color temperature is 200 K higher than the soot-mass-averaged value, while the two-color volume fraction is 50% lower. For the LTC condition, the two-color measurement errors are half as large as for the HTC condition, because the model-predicted soot temperature gradients along the line of sight are half as large. By contrast, soot temperature and volume fraction gradients across the field of view introduce much smaller errors of less than 50 K in temperature and 20% in volume fraction. (author)

  12. Analysis of multi-band pyrometry for emissivity and temperature measurements of gray surfaces at ambient temperature

    NASA Astrophysics Data System (ADS)

    Araújo, António

    2016-05-01

    A multi-band pyrometry model is developed to evaluate the potential of measuring temperature and emissivity of assumably gray target surfaces at 300 K. Twelve wavelength bands between 2 and 60 μm are selected to define the spectral characteristics of the pyrometers. The pyrometers are surrounded by an enclosure with known background temperature. Multi-band pyrometry modeling results in an overdetermined system of equations, in which the solution for temperature and emissivity is obtained through an optimization procedure that minimizes the sum of the squared residuals of each system equation. The Monte Carlo technique is applied to estimate the uncertainties of temperature and emissivity, resulting from the propagation of the uncertainties of the pyrometers. Maximum reduction in temperature uncertainty is obtained from dual-band to tri-band systems, a small reduction is obtained from tri-band to quad-band, with a negligible reduction above quad-band systems (a reduction between 6.5% and 12.9% is obtained from dual-band to quad-band systems). However, increasing the number of bands does not always reduce uncertainty, and uncertainty reduction depends on the specific band arrangement, indicating the importance of choosing the most appropriate multi-band spectral arrangement if uncertainty is to be reduced. A reduction in emissivity uncertainty is achieved when the number of spectral bands is increased (a reduction between 6.3% and 12.1% is obtained from dual-band to penta-band systems). Besides, emissivity uncertainty increases for pyrometers with high wavelength spectral arrangements. Temperature and emissivity uncertainties are strongly dependent on the difference between target and background temperatures: uncertainties are low when the background temperature is far from the target temperature, tending to very high values as the background temperature approaches the target temperature.

  13. Microscale Obstacle Resolving Air Quality Model Evaluation with the Michelstadt Case

    PubMed Central

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7. PMID:24027450

  14. Childhood onset vulvar lichen sclerosus does not resolve at puberty: a prospective case series.

    PubMed

    Smith, Saxon D; Fischer, Gayle

    2009-01-01

    When vulvar lichen sclerosus occurs in prepubertal children it is widely believed that it is likely to remit at puberty. However when it occurs in adult women it is accepted that remission is unlikely and that in addition untreated or inadequately treated disease may be complicated by significant disturbance of vulvar architecture and less commonly squamous cell carcinoma. Our database reveals 18 girls who developed lichen sclerosus prior to puberty who are now adolescents or young adults. Twelve have remained under surveillance and the other six patients have been lost to follow-up. We report a prospective series of these 12 patients. Three patients have achieved complete remission sustained for three or more years, all prior to menarche. Nine patients, or 75% of the cohort, who still had active lichen sclerosus at puberty continue to require maintenance therapy after menarche. Of the 12, six have had significant disturbance of vulvar architecture. The concept that prepubertal lichen sclerosus resolves at puberty would appear not to be true in the majority of patients. Even when diagnosed early and treated effectively, childhood onset lichen sclerosus may be complicated by distortion of vulvar architecture.

  15. Microscale obstacle resolving air quality model evaluation with the Michelstadt case.

    PubMed

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7.

  16. Case Study: Psychiatric Misdiagnosis of Non-24-Hours Sleep-Wake Schedule Disorder Resolved by Melatonin

    ERIC Educational Resources Information Center

    Dagan, Yaron; Ayalon, Liat

    2005-01-01

    This case study describes a 14-year-old male suffering from significant academic and personal difficulties, who has been diagnosed with depression, schizotypal personality disorder, and learning disabilities. Because of excessive sleepiness, assessment for a potential sleep disorder was performed. An overnight polysomnographic study revealed no…

  17. Artifacts in time-resolved NUS: A case study of NOE build-up curves from 2D NOESY

    NASA Astrophysics Data System (ADS)

    Dass, Rupashree; Kasprzak, Paweł; Koźmiński, Wiktor; Kazimierczuk, Krzysztof

    2016-04-01

    Multidimensional NMR spectroscopy requires time-consuming sampling of indirect dimensions and so is usually used to study stable samples. However, dynamically changing compounds or their mixtures commonly occur in problems of natural science. Monitoring them requires the use multidimensional NMR in a time-resolved manner - in other words, a series of quick spectra must be acquired at different points in time. Among the many solutions that have been proposed to achieve this goal, time-resolved non-uniform sampling (TR-NUS) is one of the simplest. In a TR-NUS experiment, the signal is sampled using a shuffled random schedule and then divided into overlapping subsets. These subsets are then processed using one of the NUS reconstruction methods, for example compressed sensing (CS). The resulting stack of spectra forms a temporal "pseudo-dimension" that shows the changes caused by the process occurring in the sample. CS enables the use of small subsets of data, which minimizes the averaging of the effects studied. Yet, even within these limited timeframes, the sample undergoes certain changes. In this paper we discuss the effect of varying signal amplitude in a TR-NUS experiment. Our theoretical calculations show that the variations within the subsets lead to t1 -noise, which is dependent on the rate of change of the signal amplitude. We verify these predictions experimentally. As a model case we choose a novel 2D TR-NOESY experiment in which mixing time is varied in parallel with shuffled NUS in the indirect dimension. The experiment, performed on a sample of strychnine, provides a near-continuous NOE build-up curve, whose shape closely reflects the t1 -noise level. 2D TR-NOESY reduces the measurement time compared to the conventional approach and makes it possible to verify the theoretical predictions about signal variations during TR-NUS.

  18. Determination of char combustion kinetics parameters: comparison of point detector and imaging-based particle-sizing pyrometry.

    PubMed

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  19. Comparisons of Gas-phase Temperature Measurements in a Flame Using Thin-Filament Pyrometry and Thermocouples

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Dietrich, Daniel; Valentine, Russell; Feier, Ioan

    2003-01-01

    Less-intrusive, fast-responding, and full-field temperature measurements have long been a desired tool for the research community. Recently, the emission of a silicon-carbide (SiC) fiber placed in a flowing hot (or reacting) gas has been used to measure the temperature profile along the length of the fiber. The relationship between the gas and fiber temperature comes from an energy balance on the fiber. In the present work, we compared single point flame temperature measurements using thin-filament pyrometry (TFP) and thermocouples. The data was from vertically traversing a thermocouple and a SiC fiber through a methanol/air diffusion flame of a porous-metal wick burner. The results showed that the gas temperature using the TFP technique agreed with the thermocouple measurements (25.4 m diameter wire) within 3.5% for temperatures above 1200 K. Additionally, we imaged the entire SiC fiber (with a spatial resolution of 0.14 mm) while it was in the flame using a high resolution CCD camera. The intensity level along the fiber length is a function of the temperature. This results in a one-dimensional temperature profiles at various heights above the burner wick. This temperature measurement technique, while having a precision of less than 1 K, showed data scatter as high as 38 K. Finally, we discuss the major sources of uncertainty in gas temperature measurement using TFP.

  20. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  1. The case for establishing a board of review for resolving environmental issues: The science court in Canada.

    PubMed

    Giesy, John P; Solomon, Keith R; Kacew, Sam; Mackay, Donald; Stobo, Gerald; Kennedy, Steven

    2016-07-01

    Technology and scientific advancements are accelerating changes in society at a pace that is challenging the abilities of government regulatory agencies and legal courts to understand the benefits and costs of these changes to humans, wildlife, and their environments. The social, economic, and political facets of concern, such as the potential effects of chemicals, complicate the preparation of regulatory standards and practices intended to safeguard the public. Court judges and attorneys and, in some cases, lay juries are tasked with interpreting the data and implications underlying these new advancements, often without the technical background necessary to understand complex subjects and subsequently make informed decisions. Here, we describe the scientific-quasi-judicial process adopted in Canada under the Canadian Environmental Protection Act, 1999, which could serve as a model for resolving conflicts between regulatory agencies and the regulated community. An example and process and lessons learned from the first Board of Review, which was for decamethylcyclopentasiloxane (D5; CAS# 541-02-06), are provided. Notable among these lessons are: 1) the need to apply state-of-the-science insights into the regulatory process, 2) to encourage agencies to continuously review and update their assessment processes, criteria, and models, and 3) provide these processes in guidance documents that are transparent and available to all stakeholders and generally foster closer cooperation between regulators, the academic community, industry, and nongovernment organizations (NGOs). Integr Environ Assess Manag 2016;12:572-579. © 2015 SETAC.

  2. Statin Intolerance Because of Myalgia, Myositis, Myopathy, or Myonecrosis Can in Most Cases be Safely Resolved by Vitamin D Supplementation

    PubMed Central

    Khayznikov, Maksim; Hemachrandra, Kallish; Pandit, Ramesh; Kumar, Ashwin; Wang, Ping; Glueck, Charles J

    2015-01-01

    D can be safely resolved by vitamin D supplementation (50,000-100,000 units /week) in most cases (88-95%). PMID:25838999

  3. Shock initiation of nano-Al/Teflon: High dynamic range pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Bassett, Will P.; Dlott, Dana D.

    2017-02-01

    Laser-launched flyer plates (25 μm thick Cu) were used to impact-initiate reactive materials consisting of 40 nm Al particles embedded in TeflonAF polymer (Al/Teflon) on sapphire substrates at a stoichiometric concentration (2.3:1 Teflon:Al), as well as one-half and one-fourth that concentration. A high dynamic range emission spectrometer was used to time and spectrally resolve the emitted light and to determine graybody temperature histories with nanosecond time resolution. At 0.5 km s-1, first light emission was observed from Teflon, but at 0.6 km s-1, the emission from Al/Teflon became much more intense, so we assigned the impact threshold for Al/Teflon reactions to be 0.6 (±0.1) km s-1. The flyer plates produced a 7 ns duration steady shock drive. Emission from shocked Al/Teflon above threshold consisted of two bursts. At the higher impact velocities, the first burst started 15 ns after impact, peaked at 25 ns, and persisted for 75 ns. The second burst started at a few hundred nanoseconds and lasted until 2 μs. The 15 ns start time was exactly the time the flyer plate velocity dropped to zero after impact with sapphire. The first burst was associated with shock-triggered reactions and the second, occurring at ambient pressure, was associated with combustion of leftover material that did not react during shock. The emission spectrum was found to be a good fit to a graybody at all times, allowing temperature histories to be extracted. At 25 ns, the temperature at 0.7 km s-1 and the one-fourth Al load was 3800 K. Those temperatures increased significantly with impact velocity, up to 4600 K, but did not increase as much with Al load. A steady combustion process at 2800 (±100) K was observed in the microsecond range. The minimal dependence on Al loading indicates that these peak temperatures arise primarily from Al nanoparticles reacting almost independently, since the presence of nearby heat sources had little influence on the peak temperatures.

  4. (U) Implementation and demonstration of a time-resolved pyrometry/spectroscopy capability in shock compression experiments on metal oxide powders

    SciTech Connect

    Goodwin, Peter Marvin; Lang, Jr., John Michael; Dattelbaum, Dana Mcgraw; Scharff, Robert Jason

    2015-04-08

    Temperature is notably the most difficult quantity to measure in shock compression experiments; however, it is critical for accurately constraining theoretical or tabular equations of state. Until now, the temperature achieved during the shock loading of porous materials could only be calculated. The technique presented in this report measures, for the first time, the shocked temperature of porous systems.

  5. Single-crystal sapphire tubes as economical probes for optical pyrometry in harsh environments

    SciTech Connect

    Ruzicka, Jakub; Houzvicka, Jindrich; Bok, Jiri; Praus, Petr; Mojzes, Peter

    2011-12-20

    One-end-sealed single-crystal sapphire tubes are presented as a simple, robust, and economical alternative for bulky lightpipe probes. Thermal radiation from a blackbody cavity created at the inner surface of the sealed end is gathered by a simple lens-based collecting system and transmitted via optical fiber to the remote detection unit. Simplicity and applicability of the concept are demonstrated by the combination of commercially available sapphire tubes with a common optical pyrometer. Radiation thermometers with sapphire tubes as invasive probes can be useful for applications requiring immunity to electromagnetic interference, resistance to harsh environments, simple replacement in the case of failure, and enhanced mechanical firmness, enabling wider range probe positioning inside the medium of interest.

  6. Resolving Earthquake Directivity with Relative Centroid Location : A Case Study for the 18 April 2008 Illinois Earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Ni, S.

    2014-12-01

    Earthquake rupture directivity is essential for studying seismic hazard and understanding seismogenic processes by resolving the ruptured fault. Point source approximation with centroid moment tensor (CMT) or fault plane solution only provides two nodal planes instead of specifying the physical rupture plane, thus leading to fault plane ambiguity. For mega-earthquakes (M7+), slip distribution can be resolved through finite fault modeling (Ji et al., 2002). For moderate earthquakes (M4~6), relative source time function (RSTF) can be obtained from deconvolving the empirical green's functions or forward modeling, and the rupture directivity can be determined from fitting RSTF of stations with small azimuth gap in a dense seismic network(Luo et al., 2010). But for sparse network, station azimuthal coverage is not sufficient for such studies.We propose a technique to determine the rupture plane via measuring the spatial difference between centroid location and hypocenter. The technique involves of waveform time shift difference of mainshock and refer events (smaller events with similar focal mechanism), which calibrates errors due to velocity heterogeneity and absolute location error. Relative hypocenter locations and relative centroid locations are resolved by relative location method of onset travel times and waveform cross-correlation respectively. The difference between onset travel times and waveform-derived centroid times against the azimuthal variations is then used to infer the mainshock rupture directivity.We apply the method to the 2008 Illinois Mw5.2 earthquake. Four M3.4+ aftershocks are chosen as refer events, we generate synthetics using focal mechanism from SLU earthquake center, and measure the time shift difference for stations. The resolved rupture plane strikes northwest-southeast, consistent with spatial distribution of relocated aftershocks using hypoDD (Hongfeng Yang et al., 2009). The method works for earthquakes of unilateral rupture, which

  7. Resolving Insurgencies

    DTIC Science & Technology

    2011-06-01

    Army, the Department of Defense, or the U.S. Government . Authors of Strategic Studies Institute (SSI) publica- tions enjoy full academic freedom...century, the author identifies four ways in which insurgencies have ended. Clear- cut victories for either the government or the insur- gents occurred...threatened government has resolved the conflict by co-opting the insurgents. After achieving a strategic stalemate and persuading the belligerents that

  8. [The costs of extreme values and case resolved in a public hospital from Iaşi, Romania].

    PubMed

    Bogdănici, Camelia; Bârliba, I

    2008-01-01

    For calculating the estimated costs for health care services in public hospitals from Romania case mixed index and mean of hospital duration are used especially. Medical insurance give for medical practice a fixed allowance based on a historical cost. For hospitals with severe cases there is necessary to introduce the term "extreme values, or cases" for improving the cost for intensive care units, for complicated cases.

  9. Combined x-ray scattering, radiography, and velocity interferometry/streaked optical pyrometry measurements of warm dense carbon using a novel technique of shock-and-releasea)

    NASA Astrophysics Data System (ADS)

    Falk, K.; Collins, L. A.; Gamboa, E. J.; Kagan, G.; Kress, J. D.; Montgomery, D. S.; Srinivasan, B.; Tzeferacos, P.; Benage, J. F.

    2014-05-01

    This work focused on a new application of the shock-and-release technique for equation of state (EOS) measurements. Warm dense matter states at near normal solid density and at temperatures close to 10 eV in diamond and graphite samples were created using a deep release from a laser-driven shock at the OMEGA laser facility. Independent temperature, density, and pressure measurements that do not depend on any theoretical models or simulations were obtained using imaging x-ray Thomson scattering, radiography, velocity interferometry, and streaked optical pyrometry. The experimental results were reproduced by the 2-D FLASH radiation hydrodynamics simulations finding a good agreement. The final EOS measurement was then compared with widely used SESAME EOS models as well as quantum molecular dynamics simulation results for carbon, which were very consistent with the experimental data.

  10. Combined x-ray scattering, radiography, and velocity interferometry/streaked optical pyrometry measurements of warm dense carbon using a novel technique of shock-and-release

    SciTech Connect

    Falk, K.; Collins, L. A.; Kagan, G.; Kress, J. D.; Montgomery, D. S.; Srinivasan, B.; Gamboa, E. J.; Tzeferacos, P.; Benage, J. F.

    2014-05-15

    This work focused on a new application of the shock-and-release technique for equation of state (EOS) measurements. Warm dense matter states at near normal solid density and at temperatures close to 10 eV in diamond and graphite samples were created using a deep release from a laser-driven shock at the OMEGA laser facility. Independent temperature, density, and pressure measurements that do not depend on any theoretical models or simulations were obtained using imaging x-ray Thomson scattering, radiography, velocity interferometry, and streaked optical pyrometry. The experimental results were reproduced by the 2-D FLASH radiation hydrodynamics simulations finding a good agreement. The final EOS measurement was then compared with widely used SESAME EOS models as well as quantum molecular dynamics simulation results for carbon, which were very consistent with the experimental data.

  11. Resolving Rupture Directivity of Moderate Strike-Slip Earthquakes in Sparse Network with Ambient Noise Location: A Case Study with the 2011 M5.6 Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Ni, S.

    2015-12-01

    Earthquake rupture directivity is essential for improving reliability of shakemap and understanding seismogenic processes by resolving the ruptured fault. Compared with field geological survey and InSAR technique, rupture directivity analysis based on seismological data provides rapid characterization of the rupture finiteness parameters or is almost the only way for resolving ruptured fault for earthquakes weaker than M5. In recent years, ambient seismic noise has been widely used in tomography and as well as earthquake location. Barmin et al. (2011) and Levshin et al. (2012) proposed to locate the epicenter by interpolating the estimated Green's functions (EGFs) determined by cross-correlation of ambient noise to arbitrary hypothetical event locations. This method does not rely on an earth model, but it requires a dense local array. Zhan et al. (2011) and Zeng et al. (2014) used the EGFs between a nearby station and remote stations as calibration for 3D velocity structure and then obtained the centroid location. In contrast, the hypocenter can be determined by P wave onsets. When assuming unilateral rupture, we can resolve the rupture directivity with relative location of the centroid location and hypocenter. We apply this method to the 2011 M5.6 Oklahoma earthquake. One M4.8 foreshock and one M4+ aftershock are chosen as reference event to calibrate the systematic bias of ambient noise location. The resolved rupture plane strikes southwest-northeast, consistent with the spatial distribution of aftershocks (McNamara et al., 2015) and finite fault inversion result (Sun et al., 2014). This method works for unilaterally ruptured strike-slip earthquakes, and more case studies are needed to test its effectiveness.

  12. Size-resolved cloud condensation nuclei concentration measurements in the Arctic: two case studies from the summer of 2008

    NASA Astrophysics Data System (ADS)

    Zábori, J.; Rastak, N.; Yoon, Y. J.; Riipinen, I.; Ström, J.

    2015-02-01

    The Arctic is one of the most vulnerable regions affected by climate change. Extensive measurement data are needed to understand the atmospheric processes governing this vulnerability. Among these, data describing cloud formation potential are of particular interest, since the indirect effect of aerosols on the climate system is still poorly understood. In this paper we present, for the first time, size-resolved cloud condensation nuclei (CCN) data obtained in the Arctic. The measurements were conducted during two periods in the summer of 2008: one in June, and one in August, at the Zeppelin research station (78°54' N, 11°53' E) in Svalbard. Trajectory analysis indicates that during the measurement period in June 2008, air masses predominantly originated from the Arctic, whereas the measurements from August 2008 were characteristic of mid-latitude air masses. CCN supersaturation (SS) spectra obtained on the 27 June, before size-resolved measurements were begun, and spectra from the 21 and 24 August, conducted before and after the measurement period, revealed similarities between the two months. From the ratio between CCN concentration and the total particle number concentration (CN) as a function of dry particle diameter (Dp) at a SS of 0.4%, the activation diameter (D50), corresponding to CCN / CN = 0.50, was estimated. D50 was found to be 60 and 67 nm for the examined periods in June and August 2008, respectively. Corresponding D50 hygroscopicity parameter (κ) values were estimated to be 0.4 and 0.3 for June and August 2008, respectively. These values can be compared to hygroscopicity values estimated from bulk chemical composition, where κ was calculated to be 0.5 for both June and August 2008. While the agreement between the two months is reasonable, the difference in κ between the different methods indicates a size-dependence in the particle composition, which is likely explained by a higher fraction of sea salt in the bulk aerosol samples.

  13. Size-resolved cloud condensation nuclei concentration measurements in the Arctic: two case studies from the summer of 2008

    NASA Astrophysics Data System (ADS)

    Zábori, J.; Rastak, N.; Yoon, Y. J.; Riipinen, I.; Ström, J.

    2015-12-01

    The Arctic is one of the most vulnerable regions affected by climate change. Extensive measurement data are needed to understand the atmospheric processes governing this vulnerability. Among these, data describing cloud formation potential are of particular interest, since the indirect effect of aerosols on the climate system is still poorly understood. In this paper we present, for the first time, size-resolved cloud condensation nuclei (CCN) data obtained in the Arctic. The measurements were conducted during two periods in the summer of 2008: one in June and one in August, at the Zeppelin research station (78°54´ N, 11°53´ E) in Svalbard. Trajectory analysis indicates that during the measurement period in June 2008, air masses predominantly originated from the Arctic, whereas the measurements from August 2008 were influenced by mid-latitude air masses. CCN supersaturation (SS) spectra obtained on the 27 June, before size-resolved measurements were begun, and spectra from the 21 and 24 August, conducted before and after the measurement period, revealed similarities between the 2 months. From the ratio between CCN concentration and the total particle number concentration (CN) as a function of dry particle diameter (Dp) at a SS of 0.4 %, the activation diameter (D50), corresponding to CCN / CN = 0.50, was estimated. D50 was found to be 60 and 67 nm for the examined periods in June and August 2008, respectively. Corresponding D50 hygroscopicity parameter (κ) values were estimated to be 0.4 and 0.3 for June and August 2008, respectively. These values can be compared to hygroscopicity values estimated from bulk chemical composition, where κ was calculated to be 0.5 for both June and August 2008. While the agreement between the 2 months is reasonable, the difference in κ between the different methods indicates a size dependence in the particle composition, which is likely explained by a higher fraction of inorganics in the bulk aerosol samples.

  14. A Case of a Spontaneous Self-resolving Retrobulbar Hemorrhage Following 3,4-Methylenedioxy-methamphetamine Use.

    PubMed

    Chervenkoff, Jordan V; Rajak, Saul N; Selva, Dinesh; Davis, Garry

    2016-10-20

    This case report discusses the case of a 23-year-old male patient who experienced retrobulbar pain, diplopia, proptosis, and mild lower eyelid bruising after consuming 3,4-methylenedioxy-methamphetamine. The symptoms settled over 10 days and vision returned to normal without intervention. The authors discuss the differential diagnosis relevant to the presenting complaints and propose several mechanisms linking 3,4-methylenedioxy-methamphetamine use to spontaneous nontraumatic intraorbital hematoma.

  15. Use of murine bioassay to resolve ovine transmissible spongiform encephalopathy cases showing a bovine spongiform encephalopathy molecular profile.

    PubMed

    Beck, Katy E; Sallis, Rosemary E; Lockey, Richard; Vickery, Christopher M; Béringue, Vincent; Laude, Hubert; Holder, Thomas M; Thorne, Leigh; Terry, Linda A; Tout, Anna C; Jayasena, Dhanushka; Griffiths, Peter C; Cawthraw, Saira; Ellis, Richard; Balkema-Buschmann, Anne; Groschup, Martin H; Simmons, Marion M; Spiropoulos, John

    2012-05-01

    Two cases of unusual transmissible spongiform encephalopathy (TSE) were diagnosed on the same farm in ARQ/ARQ PrP sheep showing attributes of both bovine spongiform encephalopathy (BSE) and scrapie. These cases, UK-1 and UK-2, were investigated further by transmissions to wild-type and ovine transgenic mice. Lesion profiles (LP) on primary isolation and subpassage, incubation period (IP) of disease, PrP(Sc) immunohistochemical (IHC) deposition pattern and Western blot profiles were used to characterize the prions causing disease in these sheep. Results showed that both cases were compatible with scrapie. The presence of BSE was contraindicated by the following: LP on primary isolation in RIII and/or MR (modified RIII) mice; IP and LP after serial passage in wild-type mice; PrP(Sc) deposition pattern in wild-type mice; and IP and Western blot data in transgenic mice. Furthermore, immunohistochemistry (IHC) revealed that each case generated two distinct PrP(Sc) deposition patterns in both wild-type and transgenic mice, suggesting that two scrapie strains coexisted in the ovine hosts. Critically, these data confirmed the original differential IHC categorization that these UK-1 and UK-2 cases were not compatible with BSE.

  16. Resolving the High-energy Universe with Strong Gravitational Lensing: The Case of PKS 1830-211

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan

    2015-08-01

    Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ˜1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.

  17. Resolving cognitive dissonance by acquisition of self-organizational skills may decrease drug-resistant seizures - A case report.

    PubMed

    Michaelis, Rosa; Andrews, Donna J; Reiter, Joel M; von Schoen-Angerer, Tido

    2014-01-01

    A recent review of psychobehavioral therapy for epilepsy recommends case reports as a research design to explore specific psychological mediators of psychobehavioral interventions for epilepsy that address the bidirectional relationship between psychological states and seizures. The report was prepared according to the consensus-based CARE guidelines for standardized clinical case reporting. This is a case of a 16-year-old male individual with a diagnosed seizure disorder and learning disability who continued to have daytime and nighttime seizures on a regular basis despite exhausting of available conventional treatment options. A psychological assessment led to the working hypothesis that cognitive dissonance between fear of failure and high expectations of self had led to a "broken" self-image and active avoidance of responsibility that resulted in intense emotional distress which correlated with the occurrence of seizures. This working hypothesis resulted in a treatment plan that employed the acquisition of self-organizational skills and relaxation techniques as the main therapeutic strategy. Motivational strategies were employed to facilitate the regulation of lifestyle-related seizure precipitants. In this case, the acquisition of self-organizational skills and the development of seizure interruption techniques correlated with a clinically significant decrease of seizures. Methodological limitations of the interpretation of the presented data are discussed.

  18. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  19. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  20. »Treatment Resistance« Enigma Resolved by Pharmacogenomics 3 A Case Study of Clozapine Therapy in Schizophrenia

    PubMed Central

    Marić, Nadja P.; Nikolić, Slobodanka Pejović; Buzadžić, Ivana; Jovičić, Milica; Andrić, Sanja; Mihaljević, Marina; Pavlović, Zorana

    2015-01-01

    Summary The introduction of antipsychotic medication in the 1950s forever changed the outlook on the treatment of schizophrenia, although there is still a large proportion of patients who do not reach functional recovery. At least 30% of patients do not respond to clozapine, the tricyclic dibenzodiazepine with complex pharmacological actions, which was proven to be more effective than any other antipsychotic in the treatment of schizophrenia. According to most of the therapeutic guidelines for schizophrenia, clozapine is the third line therapy for patients who did not respond to other antipsychotics. Large inter-individual variability exists for clozapine bioavailability and plasma steady-state concentrations and clearance. Clozapine is metabolized by the cytochrome P450 oxidase enzyme family (CYP450). Cytochrome P450 1A2 (CYP1A2), which is polymorphically expressed in humans, is the main enzyme of clozapine metabolism. This case report addresses the influence of CYP1A2*1F genetic polymorphism on clozapine metabolism, explains the primary non-response of a young patient with schizophrenia due to increased gene expression in homozygous genotype *1F/*1F (increased metabolism of clozapine) and underlies the importance of personalizing schizophrenia treatment by means of genetic and other molecular tools, at least in the cases of »treatment resistance«. PMID:28356835

  1. Stereotactic radiosurgery planning based on time-resolved CTA for arteriovenous malformation: a case report and review of the literature.

    PubMed

    Turner, Ryan C; Lucke-Wold, Brandon P; Josiah, Darnell; Gonzalez, Javier; Schmidt, Matthew; Tarabishy, Abdul Rahman; Bhatia, Sanjay

    2016-08-01

    Stereotactic radiosurgery has long been recognized as the optimal form of management for high-grade arteriovenous malformations not amenable to surgical resection. Radiosurgical plans have generally relied upon the integration of stereotactic magnetic resonance angiography (MRA), standard contrast-enhanced magnetic resonance imaging (MRI), or computed tomography angiography (CTA) with biplane digital subtraction angiography (DSA). Current options are disadvantageous in that catheter-based biplane DSA is an invasive test associated with a small risk of complications and perhaps more importantly, the two-dimensional nature of DSA is an inherent limitation in creating radiosurgical contours. The necessity of multiple scans to create DSA contours for radiosurgical planning puts patients at increased risk. Furthermore, the inability to import two-dimensional plans into some radiosurgery programs, such as Cyberknife TPS, limits treatment options for patients. Defining the nidus itself is sometimes difficult in any of the traditional modalities as all draining veins and feeding arteries are included in the images. This sometimes necessitates targeting a larger volume, than strictly necessary, with stereotactic radiosurgery for treatment of the AVM. In this case report, we show the ability to use a less-invasive and three-dimensional form of angiography based on time-lapsed CTA (4D-CTA) rather than traditional DSA for radiosurgical planning. 4D-CTA may allow generation of a series of images, which can show the flow of contrast through the AVM. A review of these series may allow the surgeon to pick and use a volume set that best outlines the nidus with least interference from feeding arteries or draining veins. In addition, 4D-CTA scans can be uploaded into radiosurgery programs and allow three-dimensional targeting. This is the first reported case demonstrating the use of a 4D CTA and an MRI to delineate the AVM nidus for Gamma Knife radiosurgery, with complete

  2. Smith-Magenis syndrome deletion: A case with equivocal cytogenetic findings resolved by fluorescence in situ hybridization

    SciTech Connect

    Juyal, R.C.; Patel, P.I.; Greenberg, F.

    1995-09-11

    The availability of markers for the 17p11.2 region has enabled the diagnosis of Smith-Magenis syndrome (SMS) by fluorescence in situ hybridization (FISH). SMS is typically associated with a discernible deletion of band 17p11.2 upon cytogenetic analysis at a resolution of 400-550 bands. We present a case that illustrates the importance of using FISH to confirm a cytogenetic diagnosis of del(17)(p11.2). Four independent cytogenetic analyses were performed with different conclusions. Results of low resolution analyses of amniocytes and peripheral blood lymphocytes were apparently normal, while high resolution analyses of peripheral blood samples in two laboratories indicated mosaicism for del(17)(p11.2). FISH clearly demonstrated a 17p deletion on one chromosome of all peripheral blood cells analyzed and ruled out mosaicism unambiguously. The deletion was undetectable by flow cytometric quantitation of chromosomal DNA content, suggesting that it is less than 2 Mb. We conclude that FISH should be used to detect the SMS deletion when routine chromosome analysis fails to detect it and to verify mosaicism. 23 refs., 3 figs., 1 tab.

  3. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    SciTech Connect

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M.; Brambrink, E.; Vogt, K.; Bagnoud, V.

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  4. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  5. Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes. Part 1; Validations with a PRE-STORM Case

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2004-01-01

    A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-11, 1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. The leading convective zone, the trailing stratiform region, the horizontal wind flow patterns, pressure perturbation associated with the storm dynamics, and the cool pool in front of the system all agree well with the observations. Both the observations and the bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that, the bulk and bin simulations have distinct differences, most notably in the stratiform region. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region are remnants of the previous stronger convections at the leading edge of the system. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Preliminary examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in convective zone simulated in the bulk model. Further quantitative analysis and sensitivity tests for this case using both the bulk and bin models will be presented in a companion paper.

  6. Approximate relationship between frequency-dependent skin depth resolved from geoelectromagnetic pedotransfer function and depth of investigation resolved from geoelectrical measurements: A case study of coastal formation, southern Nigeria

    NASA Astrophysics Data System (ADS)

    George, N. J.; Obiora, D. N.; Ekanem, A. M.; Akpan, A. E.

    2016-10-01

    The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.

  7. Optical characterisation of gold films for time-resolved reflectance thermometry measurements

    NASA Astrophysics Data System (ADS)

    Music, Jasmina; White, Thomas G.; Chapman, David J.; Eakins, Daniel E.

    2015-06-01

    The measurement of temperature represents a long-standing challenge within the field of high-pressure science. Recently, a promising time-resolved reflectance thermometry technique employing embedded gold films has been demonstrated. As an active diagnostic, reflectance thermometry is well suited for dynamic experiments generating temperatures below 1000K, where passive diagnostics such as pyrometry become infeasible due to the transient states created. A critical component of the reflectance thermometry technique is a robust optical characterisation of the gold films, decoupling the thermal and pressure contributions. Additionally, the optical properties of gold vary with both sample preparation and thermal history. With a view towards the development of a spatially-resolved reflectance thermometry technique for temperature measurement, we report the optical characterisation of a range of commercially available or deposited thin film gold samples. Reflectance spectroscopy was performed on the gold films as a function of temperature from ambient conditions to 400K, and as a function of pressure using a diamond anvil cell. The experimental data are fitted to a simple phenomenological Drude model paving the way for the calibrated films to be used during future dynamic experiments.

  8. Resolving boosted jets with XCone

    NASA Astrophysics Data System (ADS)

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm [1] smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  9. Resolving the Pericenter

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack

    2015-10-01

    The Wisdom-Holman mapping method and its variations have become a mainstay of research in solar system dynamics. But the method is not without its limitations. Rauch & Holman noted that at large eccentricities sufficiently small steps must be taken to resolve the pericenter. In this paper, I explore in more detail what it means to resolve the pericenter.

  10. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    NASA Astrophysics Data System (ADS)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  11. Time-Resolved Measurements of Carbon Nanotube and Nanohorn Growth

    NASA Astrophysics Data System (ADS)

    Geohegan, David

    2005-11-01

    Mechanisms for carbon nanotube growth have been investigated for both laser vaporization (LV) and chemical vapor deposition (CVD) synthesis techniques through the use of time-resolved, in situ laser-based diagnostics for the measurement of absolute growth rates. Optimization of both the production of loose single-wall carbon nanotubes (SWNTs) by LV and the sustained growth of mm-long, vertically-aligned carbon nanotube arrays (VANTAs) by CVD are described. For SWNT growth by laser co-vaporization of carbon and trace metal catalysts at high (1200 C) temperatures, nanotubes are found to grow at ˜ 1--5 microns/second to lengths of only several microns, as determined by gated-ICCD imaging and laser spectroscopy of the plume of ejected material. Efforts to scale the LV production of SWNTs utilizing an industrial Nd:YAG laser (600 W average power, 1-500 Hz repetition rate, 0.5-10ms pulse width) are described. In addition to vaporizing material at much higher rates, the high-power laser irradiation provides sufficient plasma plume density and temperature to enable the growth of novel single-wall carbon nanohorn (SWNH) structures without the need for metal catalysts in the target. Applications of these SWNH structures as metal catalyst supports will be discussed. Through the application of time-resolved reflectivity and direct imaging, CVD growth of VANTAs from hydrocarbon gases at sustained rates of 0.2 -- 0.5 microns/second have been directly measured over millimeters of length at lower (˜ 700 C) temperatures. Now, through a new laser-CVD setup at the ALPS (Advanced Laser Processing and Synthesis) facility at ORNL, high-power laser heating is being employed for the fast and position-controlled growth of carbon nanotubes on substrates. In situ fast optical pyrometry is employed to record the rapid thermal processing of metal-catalyst-prepared substrates to investigate the nucleation and early growth behavior of CVD-grown nanotubes. New nanotube growth and tunable Raman

  12. Combined Use of Morphological and Molecular Tools to Resolve Species Mis-Identifications in the Bivalvia The Case of Glycymeris glycymeris and G. pilosa

    PubMed Central

    Holmes, Anna; Bušelić, Ivana; Thébault, Julien; Featherstone, Amy

    2016-01-01

    Morphological and molecular tools were combined to resolve the misidentification between Glycymeris glycymeris and Glycymeris pilosa from Atlantic and Mediterranean populations. The ambiguous literature on the taxonomic status of these species requires this confirmation as a baseline to studies on their ecology and sclerochronology. We used classical and landmark-based morphometric approaches and performed bivariate and multivariate analyses to test for shell character interactions at the individual and population level. Both approaches generated complementary information. The former showed the shell width to length ratio and the valve asymmetry to be the main discriminant characters between Atlantic and Mediterranean populations. Additionally, the external microsculpture of additional and finer secondary ribs in G. glycymeris discriminates it from G. pilosa. Likewise, landmark-based geometric morphometrics revealed a stronger opisthogyrate beak and prosodetic ligament in G. pilosa than G. glycymeris. Our Bayesian and maximum likelihood phylogenetic analyses based on COI and ITS2 genes identified that G. glycymeris and G. pilosa form two separate monophyletic clades with mean interspecific divergence of 11% and 0.9% for COI and ITS2, respectively. The congruent patterns of morphometric analysis together with mitochondrial and nuclear phylogenetic reconstructions indicated the separation of the two coexisting species. The intraspecific divergence occurred during the Eocene and accelerated during the late Pliocene and Pleistocene. Glycymeris pilosa showed a high level of genetic diversity, appearing as a more robust species whose tolerance of environmental conditions allowed its expansion throughout the Mediterranean. PMID:27669452

  13. Deriving the intermediate spectra and photocycle kinetics from time-resolved difference spectra of bacteriorhodopsin. The simpler case of the recombinant D96N protein

    NASA Technical Reports Server (NTRS)

    Zimanyi, L.; Lanyi, J. K.

    1993-01-01

    The bacteriorhodopsin photocycle contains more than five spectrally distinct intermediates, and the complexity of their interconversions has precluded a rigorous solution of the kinetics. A representation of the photocycle of mutated D96N bacteriorhodopsin near neutral pH was given earlier (Varo, G., and J. K. Lanyi. 1991. Biochemistry. 30:5008-5015) as BRhv-->K<==>L<==>M1-->M2--> BR. Here we have reduced a set of time-resolved difference spectra for this simpler system to three base spectra, each assumed to consist of an unknown mixture of the pure K, L, and M difference spectra represented by a 3 x 3 matrix of concentration values between 0 and 1. After generating all allowed sets of spectra for K, L, and M (i.e., M1 + M2) at a 1:50 resolution of the matrix elements, invalid solutions were eliminated progressively in a search based on what is expected, empirically and from the theory of polyene excited states, for rhodopsin spectra. Significantly, the average matrix values changed little after the first and simplest of the search criteria that disallowed negative absorptions and more than one maximum for the M intermediate. We conclude from the statistics that during the search the solutions strongly converged into a narrow region of the multidimensional space of the concentration matrix. The data at three temperatures between 5 and 25 degrees C yielded a single set of spectra for K, L, and M; their fits are consistent with the earlier derived photocycle model for the D96N protein.

  14. Student Discipline Intervention Strategies: A Case Study of Two Institutions' Processes Utilized to Resolve Misconduct of Students Who Concomitantly Experience a Mental Health Crisis

    ERIC Educational Resources Information Center

    Dickstein, Gary G.

    2011-01-01

    This study contributes to the research regarding processes and procedures utilized by two institutions of higher education to respond to students who participate in inappropriate behavior and who are concomitantly experiencing a mental health crisis. A case study analysis of two institutions of higher education was used to examine this issue. The…

  15. A Case Study of Environmental, Health and Safety Issues Involving the Burlington, Massachusetts Public School System. "Tips, Suggestions, and Resources for Investigating and Resolving EHS Issues in Schools."

    ERIC Educational Resources Information Center

    Dresser, Todd H.

    An investigation was initiated concerning the environmental health within the Burlington, Massachusetts public school system to determine what specific environmental hazards were present and determine ways of eliminating them. This report presents 20 case studies that detail the environmental health issues involved, the approaches taken in…

  16. Case for the establishment of a code of ethics to govern the frivolous use of forensic biomechanical testimony to resolve legal issues involving alleged work-related musculoskeletal disorders.

    PubMed

    Schneck, Daniel J

    2007-01-01

    If the legal system is to be an effective means for resolving issues of medical causation, then it is imperative that scientific evidence be presented ethically, fairly, and objectively. This is especially true for cases involving alleged occupational illness and injury. In particular, for a number of years, the railroad industry has been plagued by such allegations, being forced to defend numerous baseless lawsuits claiming work-related musculoskeletal disorders (WMSDs). These cases are litigated pursuant to the Federal Employers' Liability Act-a congressional act passed in 1908, long before today's workers' compensation statutes were enacted. Because the FELA has no compensatory damages cap, plaintiffs' lawyers, relying on the testimony of their expert witnesses, often roll the dice with poorly substantiated (or even unsubstantiated) scientific hypotheses, in hopes of convincing juries to award significant damages. Although good science does not support these causation hypotheses, all too often the science itself is not argued properly; or even worse, it is argued unethically (using junk science), such that juries are either deliberately misled or are certainly not provided with the information they need to make the right decisions. That is to say, expert witnesses are knowingly and unethically giving false (or at least naive) testimony on issues related to medical causation; and juries are being influenced by such testimony because of misleading presumptions of guilt unless innocence can be proven. In turn, these presumptions are derived from rather convincing default settings that are not challenged effectively, either in depositions or at trial. Contributing to this dilemma is the conspicuous absence of an enforceable code of ethics to govern the frivolous use of forensic biomechanical testimony in resolving legal issues involving alleged WMSDs.

  17. Resolving writer's block.

    PubMed Central

    Huston, P.

    1998-01-01

    PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467

  18. Resolving Ambiguity in Nonmonotonic Inheritance Hierarchies

    DTIC Science & Technology

    1991-08-01

    this case, specificity cannot resolve the ambiguity w.r.t. platypus at mammal, and r 2 supports both of the assertions marked (***): that platypuses ...eoss jo~yer Figure 2: Is a platypus a mammal? Figure 3: A blue whale is an aquatic creature. eater does not defeat either the assertion that Joe is a...derived conclusion that platypuses are mammals is directly opposed by the (equally legitimate) conclusion that platypuses are not mammals. In this case

  19. Resource Prospector: The RESOLVE Payload

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Smith, J.; J., Captain; Paz, A.; Colaprete, A.; Elphic, R.; Zacny, K.

    2015-10-01

    NASA has been developing a lunar volatiles exploration payload named RESOLVE. Now the primary science payload on-board the Resource Prospector (RP) mission, RESOLVE, consists of several instruments that evaluate lunar volatiles.

  20. Dual Brushless Resolver Rate Sensor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor)

    1997-01-01

    A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.

  1. Brief resolved unexplained event

    PubMed Central

    Arane, Karen; Claudius, Ilene; Goldman, Ran D.

    2017-01-01

    Abstract Question For many years, the term apparent life-threatening event (ALTE) was associated with sudden infant death syndrome, and parents who described an acute event in their infants were sent to the hospital for admission. I understand that for infants new terminology is recommended. What is the current approach to a near-death experience of an infant? Answer A recent clinical practice guideline revised the name and definition of an ALTE to a brief resolved unexplained event (BRUE). The diagnosis of BRUE in infants younger than 1 year of age is made when infants experience 1 of the following BRUE symptoms: a brief episode (ie, less than 1 minute and usually less than 20 to 30 seconds) that is entirely resolved (infant is at baseline), which remains unexplained after the history and physical examination are completed, and includes an event characterized by cyanosis or pallor; absent, decreased, or irregular breathing; hypertonia or hypotonia; or altered responsiveness. Low-risk infants should not be admitted to the hospital and overtesting is discouraged. PMID:28115439

  2. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  3. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  4. Deciding to Change OpenURL Link Resolvers

    ERIC Educational Resources Information Center

    Johnson, Megan; Leonard, Andrea; Wiswell, John

    2015-01-01

    This article will be of interest to librarians, particularly those in consortia that are evaluating OpenURL link resolvers. This case study contrasts WebBridge (an Innovative Interface product) and LinkSource (EBSCO's product). This study assisted us in the decision-making process of choosing an OpenURL link resolver that was sustainable to…

  5. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent.

  6. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  7. RESOLVE and ECO: Survey Design

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Moffett, Amanda J.; Norris, Mark A.; Eckert, Kathleen D.; Stark, David; Berlind, Andreas A.; Snyder, Elaine M.; Norman, Dara J.; Hoversten, Erik A.; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of stellar, gas, and dynamical mass as well as star formation and galaxy interactions within >50,000 cubic Mpc of the nearby cosmic web, reaching down to dwarf galaxies of baryonic mass ~10^9 Msun and spanning multiple large-scale filaments, walls, and voids. RESOLVE is surrounded by the ~10x larger Environmental COntext (ECO) catalog, with matched custom photometry and environment metrics enabling analysis of cosmic variance with greater statistical power. For the ~1500 galaxies in its two equatorial footprints, RESOLVE goes beyond ECO in providing (i) deep 21cm data with adaptive sensitivity ensuring HI mass detections or upper limits <10% of the stellar mass and (ii) 3D optical spectroscopy including both high-resolution ionized gas or stellar kinematic data for each galaxy and broad 320-725nm spectroscopy spanning [OII] 3727, Halpha, and Hbeta. RESOLVE is designed to complement other radio and optical surveys in providing diverse, contiguous, and uniform local/global environment data as well as unusually high completeness extending into the gas-dominated dwarf galaxy regime. RESOLVE also offers superb reprocessed photometry including full, deep NUV coverage and synergy with other equatorial surveys as well as unique northern and southern facilities such as Arecibo, the GBT, and ALMA. The RESOLVE and ECO surveys have been supported by funding from NSF grants AST-0955368 and OCI-1156614.

  8. Resolving cosmological singularities

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Mukhanov, Viatcheslav

    2017-03-01

    We find a simple modification of the longitudinal mode in General Relativity which incorporates the idea of limiting curvature. In this case the singularities in contracting Friedmann and Kasner universes are avoided, and instead, the universe has a regular bounce which takes place during the time inversely proportional to the square root of the limiting curvature. Away from the bounce, corrections to General Relativity are negligible. In addition the non-singluar modification of General Relativity delivers for free a realistic candidate for Dark Matter.

  9. Resolving Lifshitz Horizons

    SciTech Connect

    Harrison, Sarah; Kachru, Shamit; Wang, Huajia; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-24

    Via the AdS/CFT correspondence, ground states of field theories at finite charge density are mapped to extremal black brane solutions. Studies of simple gravity + matter systems in this context have uncovered wide new classes of extremal geometries. The Lifshitz metrics characterizing field theories with non-trivial dynamical critical exponent z {ne} 1 emerge as one common endpoint in doped holographic toy models. However, the Lifshitz horizon exhibits mildly singular behaviour - while curvature invariants are finite, there are diverging tidal forces. Here we show that in some of the simplest contexts where Lifshitz metrics emerge, Einstein-Maxwell-dilaton theories, generic corrections lead to a replacement of the Lifshitz metric, in the deep infrared, by a re-emergent AdS{sub 2} x R{sup 2} geometry. Thus, at least in these cases, the Lifshitz scaling characterizes the physics over a wide range of energy scales, but the mild singularity is cured by quantum or stringy effects.

  10. Spatially resolved two-dimensional Fourier transform electron spin resonance

    NASA Astrophysics Data System (ADS)

    Ewert, Uwe; Crepeau, Richard H.; Lee, Sanghyuk; Dunnam, Curt R.; Xu, Dajiang; Freed, Jack H.

    1991-09-01

    Fourier transform ESR methods have been extended to permit spatially resolved two-dimensional (2D)-ESR experiments. This is illustrated for the case of 2D-electron-electron double resonance (2D-ELDOR) spectra of nitroxides in a liquid that exhibits appreciable cross-peaks due to Heisenberg spin exchange. The use of spin-echo decays in spatially resolved FT-ESR is also demonstrated.

  11. Texas Public School Finance: Resolving the Issue. A Report.

    ERIC Educational Resources Information Center

    Spurgin, N. David

    Published prior to the U.S. Supreme Court decision on the case, this report puts into perspective the questions and problems before the State of Texas in resolving the issue raised by Rodriguez vs San Antonio. The document reviews the key elements of the decision in the Rodriguez case and considers alternative approaches that comply with the…

  12. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  13. Wilson loops in warped resolved deformed conifolds

    SciTech Connect

    Bennett, Stephen

    2011-11-15

    We calculate quark-antiquark potentials using the relationship between the expectation value of the Wilson loop and the action of a probe string in the string dual. We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. In particular, we examine the possibility of there being a minimum separation for probe strings which do not penetrate close to the origin of the bulk space, and derive a condition which determines whether this is the case. We then apply these considerations to the flavoured resolved deformed conifold background of Gaillard et al. (2010) . We suggest that the unusual behaviour that we observe in this solution is likely to be related to the IR singularity which is not present in the unflavoured case. - Highlights: > We calculate quark-antiquark potentials using the Wilson loop and the action of a probe string in the string dual. > We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. > We look in particular at the flavoured resolved deformed conifold. > There appears to be unusual behaviour which seems likely to be related to the IR singularity introduced by flavours.

  14. Virginia Resolves, 1993-1994.

    ERIC Educational Resources Information Center

    Morrow, S. Rex, Ed.

    1994-01-01

    These two issues of "Virginia Resolves" provide articles of interest to the social studies reader and provides ideas for social studies instruction and curriculum. The fall issue features seven articles: (1) "Death and the Young Child" (Rosanne J. Marek); (2) "Simulations: Bibliography for the Middle and Elementary…

  15. Resolving Ethical Issues at School

    ERIC Educational Resources Information Center

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  16. Time-resolved vibrational spectroscopy

    SciTech Connect

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.; Nelson, Keith A.; Ziegler, Larry

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  17. Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: A case-study with the WRF-Hydro coupled modeling system for West Africa

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Wagner, Seven; Rummler, Thomas; Fersch, Benjamin; Bliefernicht, Jan; Andresen, Sabine; Kunstmann, Harald

    2016-04-01

    The analysis of land-atmosphere feedbacks requires detailed representation of land processes in atmospheric models. Our focus here is on runoff-infiltration partitioning and resolved overland flow. In the standard version of WRF, runoff-infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12800 km2) in West Africa and the study period March 2003 - February 2004. Our WRF setup includes an outer and inner domain at 10 and 2 km resolution covering the West African and Sissili region, respectively. In our WRF-Hydro setup the inner domain is coupled with a sub-grid at 500 m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, MTE evapotranspiration, CCI soil moisture, CRU temperature, and streamflow observation. The role of runoff infiltration partitioning and resolved overland flow on land-atmosphere feedbacks is addressed with a sensitivity analysis of WRF results to the runoff-infiltration partitioning parameter and a comparison between WRF and WRF-Hydro results, respectively. In the outer domain, precipitation is sensitive to runoff-infiltration partitioning at the scale of the Sissili area (~100x100 km2), but not of area A (500x2500 km2). In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. Our WRF-Hydro setup shows potential for joint atmospheric and terrestrial water balance studies, and reproduces observed daily discharge with a Nash-Sutcliffe model efficiency coefficient of 0.43.

  18. Resolving Phase Ambiguities In OQPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1991-01-01

    Improved design for modulator and demodulator in offset-quaternary-phase-key-shifting (OQPSK) communication system enables receiver to resolve ambiguity in estimated phase of received signal. Features include unique-code-word modulation and detection and digital implementation of Costas loop in carrier-recovery subsystem. Enchances performance of carrier-recovery subsystem, reduces complexity of receiver by removing redundant circuits from previous design, and eliminates dependence of timing in receiver upon parallel-to-serial-conversion clock.

  19. Resolved conifolds in supergravity solutions

    SciTech Connect

    Ghezelbash, A. M.

    2008-01-15

    We construct generalized 11D supergravity solutions of fully localized intersecting D2/D4 brane systems. These solutions are obtained by embedding six-dimensional resolved Eguchi-Hanson conifolds lifted to M-theory. We reduce these solutions to ten dimensions, obtaining new D-brane systems in type IIA supergravity. We discuss the limits in which the dynamics of the D2 brane decouples from the bulk for these solutions.

  20. Role of Runoff-Infiltration Partitioning and Resolved Overland Flow on Land-Atmosphere Feedbacks: A Case-Study with the WRF-Hydro Coupled Modeling System for West Africa

    NASA Astrophysics Data System (ADS)

    Arnault, J.; Wagner, S.; Rummler, T.; Fersch, B.; Bliefernicht, J.; Andresen, S.; Kunstmann, H.

    2015-12-01

    The analysis of land-atmosphere feedbacks requires detailed representation of land processes in atmospheric models. Our focus here is on runoff-infiltration partitioning and resolved overland flow. In the standard version of the Weather Research and Forecasting (WRF) model, coupled with the Noah Land Surface Model, runoff-infiltration partitioning is described as a purely vertical process. In the WRF-Hydro coupled modeling system, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12800 km2) in West Africa, and the period of investigation is March 2003 - February 2004. Our WRF setup includes an outer and inner domain at 10 and 2 km resolution, respectively. In our WRF-Hydro setup the inner domain is coupled with a sub-grid at 500 m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, MTE evapotranspiration, CCI soil moisture, CRU temperature, and streamflow observation. In the outer domain, a sensitivity analysis to runoff-infiltration partitioning gives a range of simulated annual precipitation of one sixth of the annual amount. In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. Our WRF-Hydro setup shows the potential of this fully coupled modeling system for joint atmospheric and terrestrial water balance studies, and reproduces observed daily discharge with a Nash-Sutcliffe model efficiency coefficient of 0.43.

  1. Time-resolved photon emission from layered turbid media

    SciTech Connect

    Hielscher, A.H.; Liu, H.; Chance, B.; Tittel, F.K.; Jacques, S.L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze {ital in} {ital vivo} measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain. {copyright} {ital 1996 Optical Society of America.}

  2. Spatially resolved solid-state MAS-NMR-spectroscopy.

    PubMed

    Scheler, U; Schauss, G; Blümich, B; Spiess, H W

    1996-07-01

    A comprehensive account of spatially resolved solid-state MAS NMR of 13C is given. A device generating field gradients rotating synchronously with the magic angle spinner is described. Spatial resolution and sensitivity are compared for phase and frequency encoding of spatial information. The suppression of spinning sidebands is demonstrated for both cases. Prior knowledge about the involved materials can be used for the reduction of data from spatially resolved spectra to map chemical structure. Indirect detection via 13C NMR gives access to the information about mobility from proton-wideline spectra. Two-dimensional solid-state spectroscopy with spatial resolution is demonstrated for a rotor synchronized MAS experiment which resolves molecular order as a function of space. By comparison of different experiments the factors affecting the spatial resolution are investigated.

  3. Resolving thermoelectric "paradox" in superconductors.

    PubMed

    Shelly, Connor D; Matrozova, Ekaterina A; Petrashov, Victor T

    2016-02-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing "paradox," and open prospects for exploration of novel thermoelectric phenomena predicted recently.

  4. Super-resolving interference without intensity-correlation measurement

    NASA Astrophysics Data System (ADS)

    Cao, De-Zhong; Xu, Bao-Long; Zhang, Su-Heng; Wang, Kaige

    2015-05-01

    The high-order intensity correlation function of N -photon interference with thermal light observed in a recent experiment [S. Oppel, T. Büttner, P. Kok, and J. von Zanthier, Phys. Rev. Lett. 109, 233603 (2012), 10.1103/PhysRevLett.109.233603] is analyzed. The terms in the expansion of the N th -order correlation function are put into three groups. One group contributes a homogeneous background. Both of the other two contribute (N -1 ) -fold super-resolving fringes. In principle they correspond to coherent and incoherent superpositions of classical optical fields, respectively. Therefore similar super-resolving fringes can be obtained without intensity-correlation measurements. We report the experimental results of the coherent and incoherent super-resolving diffraction fringes, which are observed directly in the intensity distribution. The N -1 sources in both the coherent and incoherent cases are set in certain definite positions. In the coherent case, moreover, the phase difference between two adjacent source fields is π . The fringe visibility is unity in the incoherent case, while it decreases as N increases in the incoherent case.

  5. Resolving the Issues with Flywheel Position Sensors

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.

    2004-01-01

    pieces: a flat middle section to monitor vertical motion, and an angled section around the circumference, which, when observed from above, produces a sine-wave displacement through the entire 360" revolution. My first job when I arrived this summer was to calibrate the sensors that would be mounted on the inside of the flywheel casing to monitor the position (angular and vertical) of the shaft. After calibration, I used the sensors to evaluate voltage outputs created by position differences between two pairs of sensors on the angled portion of the resolver for eight different angular positions, moving the resolver vertically and laterally through its entire potential range of motion. The results of these tests will be used to determine the rotor angular (and axial) position from the sensor readings once the new flywheel unit is assembled. The sensorless algorighm mentioned above consists of two operations: the signal injection method and the back electro-motive force (EMF). The signal injection is meant to work at low speeds, while the back EMF algorithm is meant to work at higher speeds. Both work together to determine the correct estimate of rotor position and speed based on the measured motor/generator current. It was determined that we wanted to know exactly how accurate our estimation methods were, and so a resolver (a commercially available mechanical sensor mounted to the motor/generator shaft to measure rotor position and speed) and a "Resolver to Digital" (R2D) circuit board was purchased to make the comparison to the existing estimation. My work related to the R2D board has included the following: creating two connector cables (one to power the circuit and one to get readable output off the board), writing Simulink code to process the board's output, and building a dSpace panel to control and monitor the circuit. The next step in the process will be to perform tests to compare the estimated rotor position and speed from the sensorless algorithm to the actual

  6. Resolving Seamounts in Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H.

    2006-12-01

    We have examined three factors influencing the use of satellite altimeter data to map seamounts and guyots in the deep ocean: (1) the resolution of seamount and guyot gravity anomalies by altimetry; (2) the non-linearity of the relationship between gravity and bathymetry; and (3) the homogeneity of the mass density within the seamount or guyot. When altimeter data are used to model the marine gravity anomaly field the result may have limited resolution due to noise levels in the altimeter data, track spacing of the satellite profiles, inclination angles of the orbits, and filters used to combine and interpolate the data (Sandwell and Smith, JGR, 1997). We compared the peak-to-trough amplitude of gravity anomalies in Sandwell and Smith`'s version 15.1 field to peak-to-trough amplitudes measured by gravimeters on board ships. The satellite gravity field amplitudes match ship measurements well over seamounts and guyots having volumes exceeding ~2000 km3. Over smaller volume seamounts, where the anomalies have most of their power at quite short wavelengths, the satellite field under-estimates the anomaly amplitude. If less filtering could be done, or a new mission with a lower noise level were flown, more of the anomalies associated with small seamounts might be resolved. Smith and Sandwell (Science, 1997) predicted seafloor topography from altimetric gravity assuming that the density of seafloor topography is nearly constant over ~100 km distances, and that the relationship between gravity and topography may be approximated by a liner filter over those distances. In fact, the true theoretical relationship is non-linear (Parker, Geophys. J. R. astr. Soc, 1972); it can be expressed as an N-th order expansion, with the N=1 term representing a linear filter and the N>1 terms accounting for higher-order corrections. We find that N=2 is a sufficient approximation at both seamounts and guyots. Constant density models of large volume guyots do not fit the observed gravity

  7. Goldfinger: a framework for resolving affect using ideomotor questioning.

    PubMed

    Walsh, B J

    1997-07-01

    The author presents a structured protocol for resolving repressed, suppressed or otherwise dated affect using ideomotor questioning. Essential to this model is a progressive ratification series which addresses affect, cognition and behavior. A questioning tree illustrates the method of affect inquiry and case examples demonstrate its application. This non-invasive, brief procedure is a useful adjunct to other treatment modalities and instrumental in clarifying the focus of treatment.

  8. Wave-Group Resolving vs Wave-Resolving Modeling of Surf and Swash Processes

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; McCall, R. T.; Mehvar, S.; Dastgheib, A.

    2014-12-01

    Numerical modeling of beach and dune erosion, overwashing and breaching has gained much from inclusion of wave-group related infragravity motions in models such as XBeach (Roelvink et al, 2009). The main assumption in this model is that on the upper beach the incident-band, short waves are to a large extent dissipated, whereas infragravity wave motions have more oomph and are the ones making it to the dune foot and even over it. It is then justified to resolve the variations in short-wave energy and resulting long-wave motions, while parameterizing the short wave motions. This model has been applied successfully in many cases, both lab and field, concerning sandy beaches and dunes. However, as the sand gets coarser and beaches steeper, more and more incident wave energy is found in the swash, and at some point the parameterizations and associated coefficients start dominating the process. For gravel beaches, McCall et al (2014) have made use of a wave-resolving mode of XBeach, which makes use of a one-layer, nonhydrostatic approach developed by Zijlema et al. (2011). They have included a groundwater model and have shown that both the infiltration-exfiltration processes and the incident-band swash are important in getting the swash hydrodynamics on gravel beaches right. This work is continuing with promising results for morphodynamic response during extreme events. At the same time, we are investigating the skill of both approaches for wave runup and overtopping and are testing the morphodynamic behavior of the wave-resolving model in comparison with data and the original XBeach. So far, at the sandy end of the spectrum, both approaches give good and very similar results. In our presentation we will highlight some of these results and will present a sensitivity study where both approaches will be run and compared for a range of coastal profiles, including hard end structures. This will allow us to give clear guidelines for when to use the (much more computer

  9. Regolith Volatile Characterization (RVC) in RESOLVE

    NASA Technical Reports Server (NTRS)

    Captain, Janine; Lueck, Dale; Gibson, Tracy; Levine, Lanfang

    2010-01-01

    used in the field demo for RESOLVE. The first modification was to decrease the weight associated with the GC, this included eliminating the explosion proof case (Figure 1) and replacing it with a lightweight case as well as using an on board COPV tank for the neon carrier gas. The next goal was to add a second oven for the molecular sieve column to allow for dual temperature control during GC operation; the separation of hydrogen and helium is optimum at lower temperatures while the water analysis required higher temperatures creating a competing design requirement. The second oven also allows a lower limit of detection for water quantification and avoids the possibility of water condensing in the GC which could ruin the column characteristics. The final goal was to modify the column arrangement to optimize the system for our specific application. Figure 2 shows the internal details of the module optimized optimized for our field application. The modifications and performance of the gas analysis system will be discussed in detail.

  10. Time-resolved Temperature Measurements in SSPX

    SciTech Connect

    Ludington, A R; Hill, D N; McLean, H S; Moller, J; Wood, R D

    2006-08-14

    We seek to measure time-resolved electron temperatures in the SSPX plasma using soft X-rays from free-free Bremsstrahlung radiation. To increase sensitivity to changes in temperature over the range 100-300 eV, we use two photodiode detectors sensitive to different soft X-ray energies. The detectors, one with a Zr/C coating and the other with a Ti/Pd coating, view the plasma along a common line of sight tangential to the magnetic axis of the spheromak, where the electron temperature is a maximum. The comparison of the signals, over a similar volume of plasma, should be a stronger function of temperature than a single detector in the range of Te< 300 eV. The success of using photodiodes to detect changing temperatures along a chord will make the case for designing an array of the detectors, which could provide a time changing temperature profile over a larger portion of the plasma.

  11. Resolving disputes over frozen embryos.

    PubMed

    Robertson, J A

    1989-01-01

    The relation between respect for family and reproductive choice and use of IVF technology is in dispute in recent legal cases on the disposition of frozen embryos. Couples in IVF programs should be encouraged to stipulate in advance binding instructions regarding the disposition of such embryos.

  12. Helping You Buy: Link Resolver Tools

    ERIC Educational Resources Information Center

    Singer, Ross

    2006-01-01

    To any library with an electronic collection of any significance, the OpenURL link resolver has (or should) become an indispensable service for helping its users retrieve full text from citations. Although they are a relatively new technology (in library terms, at any rate), link resolvers arguably have become as important as the OPAC; they locate…

  13. A unified approach to resolving the entropy production paradox

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Essex, Christopher; Prehl, Janett

    2012-12-01

    Bridging the regime between fully irreversible and fully reversible dynamics as represented by the two paradigmatic evolution equations for diffusion and wave propagation became possible by the use of fractional diffusion equations based on time- or space-fractional differential operators. These bridges are each characterized by a one-parameter family of distribution functions. In both cases one encounters a counter-intuitive behavior: the closer one gets to the reversible case, the larger the entropy production becomes. This feature is known as the entropy production paradox, and could be partly resolved for the time-fractional case by using the distribution mean as a way to characterize the internal quickness of the process, while for the space-fractional case a special location parameter was used. Here we are able to present a unified approach based on the distribution modes as the appropriate measure for the internal quickness of the processes.

  14. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    PubMed

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  15. High-resolving mass spectrographs and spectrometers

    NASA Astrophysics Data System (ADS)

    Wollnik, Hermann

    2015-11-01

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  16. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  17. Multipulse interferometric frequency-resolved optical gating

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Omenetto, F.G.; Taylor, A.J.

    1999-04-01

    The authors review multipulse interferometric frequency-resolved optical gating (MI-FROG) as a technique, uniquely suited for pump-probe coherent spectroscopy using amplified visible and near-infrared short-pulse systems and/or emissive targets, for time-resolving ultrafast phase shifts and intensity changes. Application of polarization-gate MI-FROG to the study of ultrafast ionization in gases is presented.

  18. Dirac cones, Floquet side bands, and theory of time-resolved angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Farrell, Aaron; Arsenault, A.; Pereg-Barnea, T.

    2016-10-01

    Pump-probe techniques with high temporal resolution allow one to drive a system of interest out of equilibrium and at the same time probe its properties. Recent advances in these techniques open the door to studying new, nonequilibrium phenomena such as Floquet topological insulators and superconductors. These advances also necessitate the development of theoretical tools for understanding the experimental findings and predicting new ones. In the present paper, we provide a theoretical foundation to understand the nonequilibrium behavior of a Dirac system. We present detailed numerical calculations and simple analytic results for the time evolution of a Dirac system irradiated by light. These results are framed by appealing to the recently revitalized notion of side bands [A. Farrell and T. Pereg-Barnea, Phys. Rev. Lett. 115, 106403 (2015), 10.1103/PhysRevLett.115.106403; Phys. Rev. B 93, 045121 (2016), 10.1103/PhysRevB.93.045121], extended to the case of nonperiodic drive where the fast oscillations are modified by an envelope function. We apply this formalism to the case of photocurrent generated by a second probe pulse. We find that, under the application of circularly polarized light, a Dirac point only ever splits into two copies of side bands. Meanwhile, the application of linearly polarized light leaves the Dirac point intact while producing side bands. In both cases the population of the side bands are time dependent through their nonlinear dependence on the envelope of the pump pulse. Our immediate interest in this work is in connection to time- and angle-resolved photoemission experiments, where we find excellent qualitative agreement between our results and those in the literature [Wang et al., Science 342, 453 (2013), 10.1126/science.1239834]. However, our results are general and may prove useful beyond this particular application and should be relevant to other pump-probe experiments.

  19. Resolving social conflict among females without overt aggression.

    PubMed

    Cant, Michael A; Young, Andrew J

    2013-01-01

    Members of animal societies compete over resources and reproduction, but the extent to which such conflicts of interest are resolved peacefully (without recourse to costly or wasteful acts of aggression) varies widely. Here, we describe two theoretical mechanisms that can help to understand variation in the incidence of overt behavioural conflict: (i) destruction competition and (ii) the use of threats. The two mechanisms make different assumptions about the degree to which competitors are socially sensitive (responsive to real-time changes in the behaviour of their social partners). In each case, we discuss how the model assumptions relate to biological reality and highlight the genetic, ecological and informational factors that are likely to promote peaceful conflict resolution, drawing on empirical examples. We suggest that, relative to males, reproductive conflict among females may be more frequently resolved peacefully through threats of punishment, rather than overt acts of punishment, because (i) offspring are more costly to produce for females and (ii) reproduction is more difficult to conceal. The main need now is for empirical work to test whether the mechanisms described here can indeed explain how social conflict can be resolved without overt aggression.

  20. Resolving social conflict among females without overt aggression

    PubMed Central

    Cant, Michael A.; Young, Andrew J.

    2013-01-01

    Members of animal societies compete over resources and reproduction, but the extent to which such conflicts of interest are resolved peacefully (without recourse to costly or wasteful acts of aggression) varies widely. Here, we describe two theoretical mechanisms that can help to understand variation in the incidence of overt behavioural conflict: (i) destruction competition and (ii) the use of threats. The two mechanisms make different assumptions about the degree to which competitors are socially sensitive (responsive to real-time changes in the behaviour of their social partners). In each case, we discuss how the model assumptions relate to biological reality and highlight the genetic, ecological and informational factors that are likely to promote peaceful conflict resolution, drawing on empirical examples. We suggest that, relative to males, reproductive conflict among females may be more frequently resolved peacefully through threats of punishment, rather than overt acts of punishment, because (i) offspring are more costly to produce for females and (ii) reproduction is more difficult to conceal. The main need now is for empirical work to test whether the mechanisms described here can indeed explain how social conflict can be resolved without overt aggression. PMID:24167306

  1. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  2. Lucas-Kanade fluid trajectories for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Yegavian, Robin; Leclaire, Benjamin; Champagnat, Frédéric; Illoul, Cédric; Losfeld, Gilles

    2016-08-01

    We introduce a new method for estimating fluid trajectories in time-resolved PIV. It relies on a Lucas-Kanade paradigm and consists in a simple and direct extension of a two-frame estimation with FOLKI-PIV (Champagnat et al 2011 Exp. Fluids 50 1169-82). The so-called Lucas-Kanade Fluid Trajectories (LKFT) are assumed to be polynomial in time, and are found as the minimizer of a global functional, in which displacements are sought so as to match the intensities of a series of images pairs in the sequence, in the least-squares sense. All pairs involve the central image, similar to other recent time-resolved approaches (FTC (Lynch and Scarano 2013 Meas. Sci. Technol. 24 035305) and FTEE (Jeon et al 2014 Exp. Fluids 55 1-16)). As switching from a two-frame to a time-resolved objective simply amounts to adding terms in a functional, no significant additional algorithmic element is required. Similar to FOLKI-PIV the method is very well suited for GPU acceleration, which is an important feature as computational complexity increases with the image sequence size. Tests on synthetic data exhibiting peak-locking show that increasing the image sequence size strongly reduces both associated bias and random error, and that LKFT has a remaining total error comparable to that of FTEE on this case. Results on case B of the third PIV challenge (Stanislas et al 2008 Exp. Fluids 45 27-71) also show its ability to drastically reduce the error in situations with low signal-to-noise ratio. These results are finally confirmed on experimental images acquired in the near-field of a low Reynolds number jet. Strong reductions in peak-locking, spatial and temporal noise compared to two-frame estimation are also observed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as vorticity and material acceleration.

  3. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  4. MMS establishes team to resolve royalty disputes

    SciTech Connect

    Not Available

    1992-06-22

    This paper reports that the U.S. Minerals Management Service has set up a permanent negotiating team to resolve royalty disputes with producers. MMS plans to use the team approach to negotiate multiple settlements in single, marathon negotiations covering issues such as production monitoring, production valuation, royalty reporting, and royalty payments.

  5. Angle-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Desjardins, Adrien Emmanuel

    Optical coherence tomography (OCT) has emerged as a powerful tool for probing the microstructure of biological tissue non-invasively at high-speed. OCT measures depth-resolved reflectance of infrared light, generating cross-sectional images non-invasively with micron-scale resolution. As with other imaging modalities that employ coherent detection, OCT images are confounded by speckle noise. Speckle imposes a grainy texture on images that reduces the signal-to-noise ratio to near unity values. As a result, it conceals subtle differences in scattering properties known to be crucial for differentiating normal from diseased tissue states. In this thesis, we developed a novel OCT modality called "Angle-Resolved OCT" in which depth scans (A-lines) are obtained simultaneously from a broad range of backscattering angles. We demonstrated that high levels of speckle reduction can be achieved by averaging the magnitudes of A-lines corresponding to the same transverse locations. With both experimental and analytic approaches, we demonstrated that this averaging method does not lead to a substantial loss in spatial resolution. We developed two different imaging systems for performing Angle-Resolved OCT. With the first system, angular data was acquired simultaneously; with the second, it was acquired sequentially. The first system had superior speckle-reduction capabilities but image quality degraded significantly with small sample movements. The second system allowed for in vivo imaging, as demonstrated with Resolved OCT systems, the speckle-reduced images showed hitherto unprecedented delineation of tissue microstructure.

  6. Resolvability and the Tetrahedral Configuration of Carbon.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1983-01-01

    Discusses evidence for the tetrahedral configuration of the carbon atom, indicating that three symmetrical configurations are theoretically possible for coordination number four. Includes table indicating that resolvability of compounds of type CR'R"R"'R"" is a necessary but not sufficient condition for proving tetrahedral…

  7. Resolving the percentage of component terrains within single resolution elements

    NASA Technical Reports Server (NTRS)

    Marsh, S. E.; Switzer, P.; Kowalik, W. S.; Lyon, R. J. P.

    1980-01-01

    An approximate maximum likelihood technique employing a widely available discriminant analysis program is discussed that has been developed for resolving the percentage of component terrains within single resolution elements. The method uses all four channels of Landsat data simultaneously and does not require prior knowledge of the percentage of components in mixed pixels. It was tested in five cases that were chosen to represent mixtures of outcrop, soil and vegetation which would typically be encountered in geologic studies with Landsat data. For all five cases, the method proved to be superior to single band weighted average and linear regression techniques and permitted an estimate of the total area occupied by component terrains to within plus or minus 6% of the true area covered. Its major drawback is a consistent overestimation of the pixel component percent of the darker materials (vegetation) and an underestimation of the pixel component percent of the brighter materials (sand).

  8. A systematic format for resolving ethical issues in clinical periodontics.

    PubMed

    Schloss, Alexander J

    2012-01-01

    Ethical dilemmas are becoming increasingly common in dentistry and periodontics. Clinicians, challenged with such dilemmas, may not know how to apply the appropriate moral reasoning needed to resolve these situations especially when any of the five fundamental principles of ethics that form the foundation of the American Dental Association Principles of Ethics and Code of Professional Conduct--patient autonomy, nonmaleficence, beneficence, justice, and veracity--come into conflict with each other. The author describes one clinical case that presented with an ethical dilemma. An analytic framework, used in medicine, is introduced and used to solve the clinical case on whether to proceed with periodontal surgery on a patient who is not aware of his terminal prognosis from metastatic prostate cancer. Upon using the analytic framework, recommendations are made on the ethically appropriate path for the periodontist to follow in providing care for the patient's periodontal problem consistent with the principles of patient autonomy, respect for persons, and veracity.

  9. Time- and space-resolved reflectance from multilayered turbid media

    NASA Astrophysics Data System (ADS)

    Gelebart, Bernard; Tualle, Jean-Michel; Tinet, Eric; Avrillier, Sigrid; Ollivier, Jean-Pierre

    1998-01-01

    Our purpose is to develop an optical technique for in-vivo and non-invasive diagnosis using backscattered light measurements. We have already demonstrated that optical coefficients of turbid media ((mu) a, (mu) s) can be derived from time and space-resolved reflectance in the case of semi-infinite geometry. This procedure was then applied to the investigation of multi-layered media: the upper layer was an aqueous solution of calibrated latex microspheres in water and the lower layer of the sample was a solid phantom. Two different types of phantoms were used. In the first set of experiments, we used an absorbing medium for under layer. In the second case, the lower layer was an absorbing and scattering phantom. Comparison with Monte-Carlo simulations were achieved for the resolution of the inverse problem.

  10. Fully resolved simulations of particle sedimentation

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam; Wang, Yayun; Prosperetti, Andrea

    2014-11-01

    Progress in computational capabilities - and specifically in the realm of massively parallel architectures - render possible the simulation of fully resolved fluid-particle systems. This development will drastically improve physical understanding and modelling of these systems when the particle size is not negligible and their concentration appreciable. Using a newly developed GPU-centric implementation of the Physalis method for the solution of the incompressible Navier-Stokes equations in the presence of finite-sized spheres, we carry out fully resolved simulations of more than one thousand sedimenting spheres. We discuss the results of these simulations focusing on statistical aspects such as particle velocity fluctuations, particle pair distribution function, microstructure, and others. Supported by NSF Grant CBET 1335965.

  11. Time resolved astronomy with the SALT

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Crawford, S.; Gulbis, A. A. S.; McPhate, J.; Nordsieck, K. H.; Potter, S. B.; O'Donoghue, D.; Siegmund, O. H. W.; Schellart, P.; Spark, M.; Welsh, B. Y.; Zietsman, E.

    2010-07-01

    While time resolved astronomical observations are not new, the extension of such studies to sub-second time resolution is and has resulted in the opening of a new observational frontier, High Time Resolution Astronomy (HTRA). HTRA studies are well suited to objects like compact binary stars (CVs and X-ray binaries) and pulsars, while asteroseismology of pulsating stars, occultations, transits and the study of transients, will all benefit from such HTRA studies. HTRA has been a SALT science driver from the outset and the first-light instruments, namely the UV-VIS imager, SALTICAM, and the multi-purpose Robert Stobie Spectrograph (RSS), both have high time resolution modes. These are described, together with some observational examples. We also discuss the commissioning observations with the photon counting Berkeley Visible Image Tube camera (BVIT) on SALT. Finally we describe the software tools, developed in Python, to reduce SALT time resolved observations.

  12. Time-resolved photoemission using attosecond streaking

    NASA Astrophysics Data System (ADS)

    Nagele, S.; Pazourek, R.; Wais, M.; Wachter, G.; Burgdörfer, J.

    2014-04-01

    We theoretically study time-resolved photoemission in atoms as probed by attosecond streaking. We review recent advances in the study of the photoelectric efect in the time domain and show that the experimentally accessible time shifts can be decomposed into distinct contributions that stem from the feld-free photoionization process itself and from probe-field induced corrections. We perform accurate quantum-mechanical as well as classical simulations of attosecond streaking for efective one-electron systems and determine all relevant contributions to the time delay with attosecond precision. In particular, we investigate the properties and limitations of attosecond streaking for the transition from short-ranged potentials (photodetachment) to long-ranged Coulomb potentials (photoionization). As an example for a more complex system, we study time-resolved photoionization for endohedral fullerenes A@C60 and discuss how streaking time shifts are modifed due to the interaction of the C60 cage with the probing infrared streaking field.

  13. Time resolved spectral behavior of bright BATSE precursors

    NASA Astrophysics Data System (ADS)

    Burlon, D.; Ghirlanda, G.; Ghisellini, G.; Greiner, J.; Celotti, A.

    2009-10-01

    Aims: Gamma ray bursts (GRBs) are sometimes preceded by dimmer emission episodes, called “precursors”, whose nature is still a puzzle: they could either have the same origin as the main emission episode or they could be due to another mechanism. We investigate if precursors have some spectral distinctive feature with respect to the main GRB episodes. Methods: To this aim we compare the spectral evolution of the precursor with that of the main GRB event. We also study if and how the spectral parameters, and in particular the peak of the ν Fν spectrum of time resolved spectra, correlates with the flux. This allows us to test if the spectra of the precursor and of the main event belong to the same correlation (if any). We searched GRBs with precursor activity in the complete sample of 2704 bursts detected by BATSE finding that 12% of GRBs have one or more precursors. Among these we considered the bursts with time resolved spectral analysis performed by Kaneko et al. ( 2006, ApJS, 166, 298), selecting those having at least two time resolved spectra for the precursor. Results: We find that precursors and main events have very similar spectral properties. The spectral evolution within precursors has similar trends as the spectral evolution observed in the subsequent peaks. Also the typical spectral parameters of the precursors are similar to those of the main GRB events. Moreover, in several cases we find that within the precursors the peak energy of the spectrum is correlated with the flux similarly to what happens in the main GRB event. This strongly favors models in which the precursor is due to the same fireball physics of the main emission episodes. Figures 8 to 41 are only available in electronic form at http://www.aanda.org

  14. Towards convection-resolving climate modeling

    NASA Astrophysics Data System (ADS)

    Schar, C.; Ban, N.; Fuhrer, O.; Keller, M.; Lapillonne, X.; Leutwyler, D.; Lüthi, D.; Schlemmer, L.; Schmidli, J.; Schulthess, T. C.

    2015-12-01

    Moist convection is a fundamental process in our climate system, but is usually parameterized in climate models. The underlying approximations introduce significant uncertainties and biases, and there is thus a general thrust towards the explicit representation of convection. For climate applications, convection-resolving simulations are still very expensive, but are increasingly becoming feasible. Here we present recent results pertaining to the development and exploitation of convection-resolving regional climate models. We discuss the potential and challenges of the approach, highlight validation using decade-long simulations, explore convection-resolving climate change scenarios, and provide an outlook on the use of next-generation supercomputing architectures. Detailed results will be presented using the COSMO model over two computational domains at a horizontal resolution of 2.2 km. The first covers an extended Alpine region from Northern Italy to Northern Germany. For this domain decade-long simulations have been conducted, driven by both reanalysis as well as CMIP5 model data. Results show that explicit convection leads to significant improvements in the representation of summer precipitation, and to substantial differences in climate projections in terms of precipitation statistics. The second domain covers European (with 1536x1536x60 grid points) and the respective simulations exploit heterogeneous many-core hardware architectures. Results demonstrate realistic mesoscale processes embedded in synoptic-scale features, such as line convection along cold frontal systems, or the triggering of moist convection by propagating cold-air pools. Currently a 10-year simulation using this set up is near completion. To efficiently use GPU-based high-performance computers, the model code underwent significant development, including a rewrite of the dynamical core in C++. It is argued that today's largest supercomputers would in principle be able to support - already

  15. Fast frequency-resolved terahertz imaging

    NASA Astrophysics Data System (ADS)

    Yasuda, Takashi; Kawada, Yoichi; Toyoda, Haruyoshi; Nakanishi, Atsushi; Akiyama, Koichiro; Takahashi, Hironori

    2011-03-01

    We propose a fast, frequency-resolved, real-time, terahertz imaging method. With our method, images at two specific terahertz frequencies can be acquired in 1 min. Three kinds of drugs (L-histidine, maltose, and CBZ3), which have absorption peaks in the terahertz region, were distinguished in 3 min by using our method. This technique can be used in industrial applications, such as nondestructive testing.

  16. Time-Resolved Measurements in Optoelectronic Microbioanalysis

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Kossakovski, Dmitri

    2003-01-01

    A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.

  17. Interleukin 6 blockage-induced neutropenia in a patient with rheumatoid arthritis and resolved hepatitis B.

    PubMed

    Chmielińska, Magdalena; Olesińska, Marzena; Felis-Giemza, Anna

    2015-01-01

    The authors present a case report of a 59-year-old woman with rheumatoid arthritis after documented recovery from hepatitis C (HCV) infection and with resolved HBV infection who has been undergoing successful tocilizumab treatment. The patient experienced moderate to severe neutropenia after consecutive tocilizumab administrations. However, no serious infections or HBV reactivation was recorded during that period.

  18. On types of the resolvent of a complete second order differential operator

    SciTech Connect

    Ospanov, Kordan Nauryzkhanovich

    2015-09-18

    In this work we consider the complete second order differential operator, the intermediate coefficient of which is growing rapidly. We find the conditions when its resolvent is compact or belongs to Schatten class, in particular, it is a nuclear operator. The most accurate results are obtained when the coefficient oscillates weakly. In this case we shown that the operator is separable.

  19. Interleukin 6 blockage-induced neutropenia in a patient with rheumatoid arthritis and resolved hepatitis B

    PubMed Central

    Olesińska, Marzena; Felis-Giemza, Anna

    2016-01-01

    The authors present a case report of a 59-year-old woman with rheumatoid arthritis after documented recovery from hepatitis C (HCV) infection and with resolved HBV infection who has been undergoing successful tocilizumab treatment. The patient experienced moderate to severe neutropenia after consecutive tocilizumab administrations. However, no serious infections or HBV reactivation was recorded during that period. PMID:27407267

  20. Nonadiabatic and Time-Resolved Photoelectron Spectroscopy for Molecular Systems.

    PubMed

    Flick, Johannes; Appel, Heiko; Rubio, Angel

    2014-04-08

    We quantify the nonadiabatic contributions to the vibronic sidebands of equilibrium and explicitly time-resolved nonequilibrium photoelectron spectra for a vibronic model system of trans-polyacetylene. Using exact diagonalization, we directly evaluate the sum-over-states expressions for the linear-response photocurrent. We show that spurious peaks appear in the Born-Oppenheimer approximation for the vibronic spectral function, which are not present in the exact spectral function of the system. The effect can be traced back to the factorized nature of the Born-Oppenheimer initial and final photoemission states and also persists when either only initial or final states are replaced by correlated vibronic states. Only when correlated initial and final vibronic states are taken into account are the spurious spectral weights of the Born-Oppenheimer approximation suppressed. In the nonequilibrium case, we illustrate for an initial Franck-Condon excitation and an explicit pump-pulse excitation how the vibronic wavepacket motion of the system can be traced in the time-resolved photoelectron spectra as a function of the pump-probe delay.

  1. Formulation for Time-resolved Aerodynamic Damping in Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Corke, Thomas; Bowles, Patrick; Coleman, Dusty; Thomas, Flint

    2012-11-01

    A new Hilbert transform formulation of the equation of motion for a pitching airfoil in a uniform stream yields a time resolved aerodynamic damping factor, Ξ (t) = (√{ (Cm2 (t) +C m2 } /αmax) sinψ (t) , where Cm (t) is the instantaneous pitch moment coefficient, and C m (t) is the Hilbert transform of Cm (t) , αmax is the pitching amplitude, and ψ (t) is the time-resolved phase difference between the aerodynamic pitch moment and the instantaneous angle of attack. A Ξ (t) < 0 indicates unstable pressure loading that can be considered a necessary condition to excite stall flutter in an elastic airfoil. This will be illustrated in experiments with conditions producing ``light'' dynamic stall for a range of Mach numbers from 0.3-0.6. These reveal large negative excursions of Ξ (t) during the pitch-up portion of the cycle that correlates with the formation and convection of the dynamic stall vortex. The fact that the cycle-integrated damping coefficient is positive in all these cases underscores how the traditional diagnostic masks much of the physics that underlies the destabilizing effect of the dynamic stall process. This new insight can explain instances of transient limit-cycle growth of helicopter rotor vibrations. Supported by Bell Helicopter.

  2. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    SciTech Connect

    Hsieh, S. H.; Chu, C. S.

    2016-01-18

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions.

  3. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser

  4. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map

  5. An optimal resolved rate law for kinematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.

  6. An optimal resolved rate law for kindematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution was found to cause large joint rates in some case. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to nonplanar manipulators.

  7. Achieving patient satisfaction: resolving patient complaints.

    PubMed

    Oxler, K F

    1997-07-01

    Patients demand to be active participants on and partners with the health care team to design their care regimen. Patients bring unique perceptions and expectations and use these to evaluate service quality and satisfaction. If customer satisfaction is not achieved and a patient complaint results, staff must have the skills to respond and launch a service recovery program. Service recovery, when done with style and panache, can retain loyal customers. Achieving patient satisfaction and resolving patient complaints require commitment from top leadership and commitment from providers to dedicate the time to understand their patients' needs.

  8. Resolving manipulator redundancy under inequality constraints

    SciTech Connect

    Cheng, F.T.; Chen, T.H.; Sun, Y.Y. . Dept. of Electrical Engineering)

    1994-02-01

    Due to hardware limitations, physical constraints such as joint rate bounds, joint angle limits, and joint torque constraints always exist. In this paper, these constraints are considered into the general formulation of the redundant inverse kinematic problem. To take these physical constraints into account, the computationally efficient Compact Quadratic Programming (QP) method is formed to resolve the constrained kinematic redundancy problem. In addition, the Compact-Inverse QP method is also formulated to remedy the unescapable singularity problem with inequality constraints. Two examples are given to demonstrate the generality and superiority of these two methods: to eliminate the drift phenomenon caused by self motion and to remedy saturation-type nonlinearity problem.

  9. Time Resolved Studies Of Adsorbed Species

    NASA Astrophysics Data System (ADS)

    Howard, J.; Nicol, J. M.

    1985-12-01

    A time-resolved Fourier transform IR study of ethyne adsorbed on ZnNaA zeolite yields results very different from those reported for related systems. Initially two species (A and B) are formed by the interaction of C2H2 with the cations. Whereas species A (π-bonded C2H2) was found to be removed immediately on evacuation, species B (probably Zn-acetylide) was not fully removed after 60 mins evacuation. In the presence of the gas phase, bands due to Species A decreased slowly in intensity as new bands due to adsorbed ethanal were observed.

  10. Resolving AGN with PanSTARRS transients

    NASA Astrophysics Data System (ADS)

    Lawrence, Andy

    2012-10-01

    With PanSTARRS we have discovered a new class of slow, blue nuclear transients which we believe to be rare examples of background AGN microlensed by stars in foreground galaxies, amplified by a factor of 10--100. The background AGN should be somewhat resolved by the foreground lens, providing a unique new diagnostic of AGN size and structure - the UV, optical, IR, BLR, and X-ray regions should have differing evolutions during the event. This proposal is a first step towards understanding the structure of the X-ray source : testing the microlensing hypothesis, characterising the SED, and establishing the first two epochs in an expected gradual decline.

  11. Resolving the question of color naming universals

    PubMed Central

    Kay, Paul; Regier, Terry

    2003-01-01

    The existence of cross-linguistic universals in color naming is currently contested. Early empirical studies, based principally on languages of industrialized societies, suggested that all languages may draw on a universally shared repertoire of color categories. Recent work, in contrast, based on languages from nonindustrialized societies, has suggested that color categories may not be universal. No comprehensive objective tests have yet been conducted to resolve this issue. We conduct such tests on color naming data from languages of both industrialized and nonindustrialized societies and show that strong universal tendencies in color naming exist across both sorts of language. PMID:12855768

  12. SOLVE and RESOLVE: automated structure solution, density modification and model building.

    PubMed

    Terwilliger, Thomas

    2004-01-01

    The software SOLVE and RESOLVE can carry out all the steps in macromolecular structure solution, from scaling and heavy-atom location through phasing, density modification and model-building in the MAD, SAD and MIR cases. SOLVE uses scoring scheme to convert the decision-making in macromolecular structure solution to an optimization problem. RESOLVE carries out the identification of NCS, density modification and automated model-building. The procedure is fully automated and can function at resolutions as low as 3 A.

  13. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  14. REsolved Spectroscopy Of a Local VolumE: The RESOLVE Survey in Stripe 82

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Eckert, Kathleen; Norman, Dara; Norris, Mark; Hoversten, Erik; Stark, David; Moffett, Amanda; Baker, Ashley D.; Berlind, Andreas A.; Crawford, Steve; Damjanov, Ivana; Dell'Antonio, Ian; Gonzalez, Roberto; Hall, Kirsten; Khochfar, Sadegh; Leroy, Adam; Lu, Yu; Maraston, Claudia; McGaugh, Stacy; Naluminsa, Liz; Salzer, John J.; Sellwood, Jerry A.; Vaisanen, Petri; Watson, Linda

    2013-08-01

    We request 14 nights of gray/dark time with the Goodman Spectrograph on SOAR and 88 hours of gray/dark time with the GMOS IFU on Gemini over two semesters to complete Phase 1 of the RESOLVE survey, providing a volume-limited gas, stellar, and dynamical mass census in the exceptionally complete Stripe 82 legacy equatorial strip. RESOLVE spans diverse large-scale cosmic structures and probes mass scales down to ~10^9 Msun in the gas-rich dwarf galaxy regime. With the proposed census, RESOLVE will (1) provide the first direct, complete, and environment-dependent measurement of the velocity function, potentially uncovering crucial clues to puzzling discrepancies in the dwarf galaxy inventory, and (2) put a unique constraint on the location of the ``missing baryons,'' via a comprehensive census of multiple mass components in relation to star formation and dynamical mass in a cosmological volume.

  15. Correction-free pyrometry in radiant wall furnaces

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W. (Inventor)

    1994-01-01

    A specular, spherical, or near-spherical target is located within a furnace having inner walls and a viewing window. A pyrometer located outside the furnace 'views' the target through pyrometer optics and the window, and it is positioned so that its detector sees only the image of the viewing window on the target. Since this image is free of any image of the furnace walls, it is free from wall radiance, and correction-free target radiance is obtained. The pyrometer location is determined through a nonparaxial optical analysis employing differential optical ray tracing methods to derive a series of exact relations for the image location.

  16. Acoustic Pyrometry Applied to Gas Turbines and Jet Engines

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1999-01-01

    Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.

  17. Numerical simulations of altocumulus with a cloud resolving model

    SciTech Connect

    Liu, S.; Krueger, S.K.

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  18. Time-resolved RNA SHAPE chemistry.

    PubMed

    Mortimer, Stefanie A; Weeks, Kevin M

    2008-12-03

    Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry yields quantitative RNA secondary and tertiary structure information at single nucleotide resolution. SHAPE takes advantage of the discovery that the nucleophilic reactivity of the ribose 2'-hydroxyl group is modulated by local nucleotide flexibility in the RNA backbone. Flexible nucleotides are reactive toward hydroxyl-selective electrophiles, whereas constrained nucleotides are unreactive. Initial versions of SHAPE chemistry, which employ isatoic anhydride derivatives that react on the minute time scale, are emerging as the ideal technology for monitoring equilibrium structures of RNA in a wide variety of biological environments. Here, we extend SHAPE chemistry to a benzoyl cyanide scaffold to make possible facile time-resolved kinetic studies of RNA in approximately 1 s snapshots. We then use SHAPE chemistry to follow the time-dependent folding of an RNase P specificity domain RNA. Tertiary interactions form in two distinct steps with local tertiary contacts forming an order of magnitude faster than long-range interactions. Rate-determining tertiary folding requires minutes despite that no non-native interactions must be disrupted to form the native structure. Instead, overall folding is limited by simultaneous formation of interactions approximately 55 A distant in the RNA. Time-resolved SHAPE holds broad potential for understanding structural biogenesis and the conformational interconversions essential to the functions of complex RNA molecules at single nucleotide resolution.

  19. Time Resolved Deposition Measurements in NSTX

    SciTech Connect

    C.H. Skinner; H. Kugel; A.L. Roquemore; J. Hogan; W.R. Wampler; the NSTX team

    2004-08-03

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 {micro}g/cm{sup 2} of deposition, however surprisingly, 15.9 {micro}g/cm{sup 2} of material loss occurred at 7 discharges. The net deposited mass of 13.3 {micro}g/cm{sup 2} matched the mass of 13.5 {micro}g/cm{sup 2} measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition.

  20. Cycle-resolved LDV integral length scale

    SciTech Connect

    Fraser, R.A.; Bracco, F.V.

    1989-01-01

    Lateral integral length scales were measured directly using a two-point, single prove-volume, laser Doppler velocimetry system in a motored, ported, single-cylinder I.C. engine with a pancake-shaped chamber. The measurements were made on the mid-plane of the TDC clearance height form 43 degrees before TDC to 20 degrees after TDC. The engine was operated at 60 rpm with a swirl ratio at TDC of approximately 4. Both an ensemble and a cycle-resolved statistical analysis were performed. Three compression ratios (5.7, 7.6, and 11.4) were used. Isotropy of the lateral turbulence integral length scale (deduced from the cycle-resolved analysis) and of the lateral fluctuation integral length scale (deduced from the simple ensemble analysis) was investigated by measuring 3 of the 27 definable length scales. IN-CYLINDER MEASUREMENTS have concentrated mostly on the turbulence intensity, but the measurement of a second parameter, such as the turbulence length scale, is necessary even for the characterization of homogeneous, isotropic turbulence. In the absence of combustion, many in-cylinder measurements of turbulence or fluctuation intensities have been made with hot-wire anemometry (HWA) and laser Doppler velocimetry (LDV).

  1. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  2. RESOLVING THE MOTH AT MILLIMETER WAVELENGTHS

    SciTech Connect

    Ricarte, Angelo; Moldvai, Noel; Hughes, A. Meredith; Duchene, Gaspard; Williams, Jonathan P.; Andrews, Sean M.; Wilner, David J.

    2013-09-01

    HD 61005, also known as ''The Moth'', is one of only a handful of debris disks that exhibit swept-back ''wings'' thought to be caused by interaction with the ambient interstellar medium (ISM). We present 1.3 mm Submillimeter Array observations of the debris disk around HD 61005 at a spatial resolution of 1.''9 that resolve the emission from large grains for the first time. The disk exhibits a double-peaked morphology at millimeter wavelengths, consistent with an optically thin ring viewed close to edge-on. To investigate the disk structure and the properties of the dust grains we simultaneously model the spatially resolved 1.3 mm visibilities and the unresolved spectral energy distribution (SED). The temperatures indicated by the SED are consistent with expected temperatures for grains close to the blowout size located at radii commensurate with the millimeter and scattered light data. We also perform a visibility-domain analysis of the spatial distribution of millimeter-wavelength flux, incorporating constraints on the disk geometry from scattered light imaging, and find suggestive evidence of wavelength-dependent structure. The millimeter-wavelength emission apparently originates predominantly from the thin ring component rather than tracing the ''wings'' observed in scattered light. The implied segregation of large dust grains in the ring is consistent with an ISM-driven origin for the scattered light wings.

  3. Resolving the Azimuthal Ambiguity in Vector Magnetogram Data with the Divergence-Free Condition: Theoretical Examination

    NASA Technical Reports Server (NTRS)

    Crouch, A.; Barnes, G.

    2008-01-01

    We demonstrate that the azimuthal ambiguity that is present in solar vector magnetogram data can be resolved with line-of-sight and horizontal heliographic derivative information by using the divergence-free property of magnetic fields without additional assumptions. We discuss the specific derivative information that is sufficient to resolve the ambiguity away from disk center, with particular emphasis on the line-of-sight derivative of the various components of the magnetic field. Conversely, we also show cases where ambiguity resolution fails because sufficient line-of-sight derivative information is not available. For example, knowledge of only the line-of-sight derivative of the line-of-sight component of the field is not sufficient to resolve the ambiguity away from disk center.

  4. Tachometer Derived From Brushless Shaft-Angle Resolver

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.

    1995-01-01

    Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.

  5. The RESOLVE Survey: REsolved Spectroscopy Of a Local VolumE

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Norris, M. A.; Eckert, K. D.; Moffett, A. J.; Stark, D. V.; Haynes, M. P.; Giovanelli, R.; Berlind, A. A.; Wei, L. H.; Baker, A. J.; Vogel, S. N.; Hendel, D. A.; RESOLVE Team

    2011-01-01

    The RESOLVE Survey is a volume-limited census of stellar, gas, and dynamical mass as well as merging and star formation within 53,000 cubic Mpc of the nearby cosmic web in two long equatorial strips. The survey's primary science drivers include relating the galaxy velocity and mass functions to environment, constraining the "missing baryons" problem from a complete accounting perspective, and understanding galaxy disk building in large-scale context. RESOLVE's unique data product is high-resolution multiple-longslit spectroscopy, targeting all 1500 galaxies with baryonic (stellar + cold gas) mass > 109 Msun in the volume. Combined with a complete redshift survey, this spectroscopy will enable an unprecedented high dynamic-range view of how kinematically estimated mass is distributed on scales from dwarf galaxies to clusters. To trace stellar and gas mass, RESOLVE is drawing on deep public surveys at UV, optical, IR, and radio wavelengths, most notably the 21cm ALFALFA Survey. Here we present early results: (1) statistics of our efforts to recover galaxies missed by RESOLVE's parent survey, the SDSS; (2) calibration of indirect atomic and molecular gas estimators to supplement direct observations; (3) progress toward optimizing stellar mass and environment measures; and (4) a first installment of kinematic data focusing on S0 galaxies. This work is supported by the National Science Foundation under CAREER award 0955368.

  6. Angle-resolved photoemission extended fine structure

    SciTech Connect

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  7. Resolved CCD Photometry of Pluto and Charon

    SciTech Connect

    Jones, J.H.; Waddell, P.; Christian, C.A.

    1988-04-01

    Highly resolved CCD images of Pluto and Charon near maximum separation are measured with point spread function fitting techniques to determine independent magnitudes and an accurate separation for Pluto and Charon. A measured separation of 0.923 + or - 0.005 arcsec at a position angle of 173.3 + or - 0.3 deg on June 18, 1987 UT produced a value of 19558.0 + or - 153.0 km for the radius of Charon's orbit. An apparent B magnitude of 14.877 + or - 0.009 and (B-I) color of 1.770 + or - 0.015 are determined for Pluto, while Charon is fainter with B = 18.826 + or - 0.011 and slightly bluer with (B-I) = 1.632 + or - 0.018. 18 references.

  8. Resolvent-Techniques for Multiple Exercise Problems

    SciTech Connect

    Christensen, Sören; Lempa, Jukka

    2015-02-15

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristics of the problems can be identified more explicitly. We illustrate the main results with explicit examples.

  9. Spatially resolved spectral-imaging device

    SciTech Connect

    Bloom, Joshua Simon; Tyson, John Anthony

    2016-02-09

    A spatially resolved spectral device comprising a dispersive array to receive an incident light comprising a principal ray. The dispersive array comprising a plurality of dichroic layers, each of the plurality of dichroic layers disposed in a path of a direction of the principal ray. Each of the plurality of dichroic layers configured to at least one of reflect or transmit a different wavelength range of the incident light. The device further comprising a detection array operatively coupled with the dispersive array. The detection array comprising a photosensitive component including a plurality of detection pixels, each of the plurality of detection pixels having a light-receiving surface disposed parallel to the direction of the principal ray to detect a respective one of the different wavelength ranges of incident light reflected from a corresponding one of the plurality of dichroic layers.

  10. Rotationally resolved electronic spectroscopy of 5-methoxyindole.

    PubMed

    Brand, Christian; Oeltermann, Olivia; Pratt, David; Weinkauf, Rainer; Meerts, W Leo; van der Zande, Wim; Kleinermanns, Karl; Schmitt, Michael

    2010-07-14

    Rotationally resolved electronic spectra of the vibrationless origin and of eight vibronic bands of 5-methoxyindole (5MOI) have been measured and analyzed using an evolutionary strategy approach. The experimental results are compared to the results of ab initio calculations. All vibronic bands can be explained by absorption of a single conformer, which unambiguously has been shown to be the anti-conformer from its rotational constants and excitation energy. For both anti- and syn-conformers, a (1)L(a)/(1)L(b) gap larger than 4000 cm(-1) is calculated, making the vibronic coupling between both states very small, thereby explaining why the spectrum of 5MOI is very different from that of the parent molecule, indole.

  11. Resolving thermoelectric “paradox” in superconductors

    PubMed Central

    Shelly, Connor D.; Matrozova, Ekaterina A.; Petrashov, Victor T.

    2016-01-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing “paradox,” and open prospects for exploration of novel thermoelectric phenomena predicted recently. PMID:26933688

  12. Resolving coastal conflicts using marine spatial planning.

    PubMed

    Tuda, Arthur O; Stevens, Tim F; Rodwell, Lynda D

    2014-01-15

    We applied marine spatial planning (MSP) to manage conflicts in a multi-use coastal area of Kenya. MSP involves several steps which were supported by using geographical information systems (GISs), multi-criteria decision analysis (MCDA) and optimization. GIS was used in identifying overlapping coastal uses and mapping conflict hotspots. MCDA was used to incorporate the preferences of user groups and managers into a formal decision analysis procedure. Optimization was applied in generating optimal allocation alternatives to competing uses. Through this analysis three important objectives that build a foundation for future planning of Kenya's coastal waters were achieved: 1) engaging competing stakeholders; 2) illustrating how MSP can be adapted to aid decision-making in multi-use coastal regions; and 3) developing a draft coastal use allocation plan. The successful application of MSP to resolve conflicts in coastal regions depends on the level of stakeholder involvement, data availability and the existing knowledge base.

  13. Superlubricity: A Paradox about Confined Fluids Resolved

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxi; Granick, Steve

    2004-08-01

    Using the method of Frantz and Salmeron to cleave mica [

    Tribol. Lett.TRLEFS1023-8883 5, 151 (1998)10.1023/A:1019149910047
    ] we investigate alkane fluids in a surface forces apparatus and confirm several predictions of molecular dynamics (MD) simulation. An oscillatory force-distance profile is observed for the methyl-branched alkane, squalane. Boundary slip is inferred from the frictional sliding of molecularly thin fluids and also from the hydrodynamic flow of thicker films. These findings resolve the paradox that prior experiments disagreed with these aspects of MD predictions, and demonstrate that exceptionally low energy dissipation is possible when fluids move past solid surfaces that are sufficiently smooth.

  14. Resolving the relationships of Paleocene placental mammals.

    PubMed

    Halliday, Thomas J D; Upchurch, Paul; Goswami, Anjali

    2017-02-01

    The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.

  15. Resolving local ambiguity using semantics of shape.

    SciTech Connect

    Diegert, Carl F.

    2010-05-01

    We demonstrate a new semantic method for automatic analysis of wide-area, high-resolution overhead imagery to tip and cue human intelligence analysts to human activity. In the open demonstration, we find and trace cars and rooftops. Our methodology, extended to analysis of voxels, may be applicable to understanding morphology and to automatic tracing of neurons in large-scale, serial-section TEM datasets. We defined an algorithm and software implementation that efficiently finds all combinations of image blobs that satisfy given shape semantics, where image blobs are formed as a general-purpose, first step that 'oversegments' image pixels into blobs of similar pixels. We will demonstrate the remarkable power (ROC) of this combinatorial-based work flow for automatically tracing any automobiles in a scene by applying semantics that require a subset of image blobs to fill out a rectangular shape, with width and height in given intervals. In most applications we find that the new combinatorial-based work flow produces alternative (overlapping) tracings of possible objects (e.g. cars) in a scene. To force an estimation (tracing) of a consistent collection of objects (cars), a quick-and-simple greedy algorithm is often sufficient. We will demonstrate a more powerful resolution method: we produce a weighted graph from the conflicts in all of our enumerated hypotheses, and then solve a maximal independent vertex set problem on this graph to resolve conflicting hypotheses. This graph computation is almost certain to be necessary to adequately resolve multiple, conflicting neuron topologies into a set that is most consistent with a TEM dataset.

  16. Gradenigo syndrome: a case report.

    PubMed

    Tutuncuoglu, S; Uran, N; Kavas, I; Ozgur, T

    1993-01-01

    The case is presented of a 13-year-old boy with recurrent episodes of otitis media who developed Gradenigo syndrome. Mastoid and petrous bone involvement were demonstrated by CT. Symptoms resolved with antibiotic treatment.

  17. Resolved line profiles of PNe in NGC6822.

    NASA Astrophysics Data System (ADS)

    Flores-Duran, S.; Peña, M.; Hernández-Martínez, L.; García-Rojas, J.; Ruiz, M. T.

    2014-04-01

    "Using high resolution spectroscopic data obtained with Magellan Inamori Kyocera Echelle (MIKE) at the Magellan telescope at Las Campanas Observatory it was possible to resolve the emission line profiles of [OIII] 5007, Ha and [NII] 6583 in two planetary nebulae belonging to the Local Group galaxy NGC 6822 (Flores-Durán et al. submitted). The two PNe, called PN4 and PN7 were identified after Leisy et al. (2005, A&A, x436, 437). In the case of PN4, it presents wide lines that show a structure with three components. The [NII] 6583 line profile clearly shows a central component surrounded by what appears to be a shell with an expantion velocity of 25 km s-1. For PN7, the [OIII] emission lines present two very close components differing in velocity by about 15 km s-1 and, in the [N II] 6583 profile a faint very-wide component is apparent. This latter component represents a sort of bipolar outflow at high velocities (about 140 km s-1) as the case of the galactic M1-32, M3-15 and others (Medina et al. 2006, RMAA, 42, 53; Akras & López 2012, MNRAS, 425, 2197; Rechy-García et al., this meeting)."

  18. Gingival Enlargement Induced by Felodipine Resolves with a Conventional Periodontal Treatment and Drug Modification

    PubMed Central

    Bailey, David; Yie, Helen S.

    2016-01-01

    We present a case of a 47-year-old male who suffered from GE around his lower anterior teeth as soon as he started treatment with Felodipine 400 mg. We show that oral hygiene measures, antibiotics, and conventional periodontal treatment (scaling and root planing SRP) were all not sufficient to resolve the drug induced GE, which will persist and/or recur provided that systemic effect of the offending medication is still present. The condition immediately resolved after switching to a different medication. The mechanism of GE is complex and not fully understood yet. It is mainly due to overexpression of a number of growth factors due to high concentrations of calcium ions (Ca2+). This affects fibroblasts proliferation and DNA synthesis and leads to a heavy chronic inflammatory cell infiltrate. Our case was managed according to the suggested protocols in previous case studies. The unique features in our case were the immediate onset of the adverse effect after starting the medication and the absence of any underlying medical condition apart from high blood pressure. Improving the oral hygiene together with SRP and cessation of the medication resolves drug induced GE. PMID:27034854

  19. Resolving mantle structure beneath the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Darold, A. P.; Humphreys, E.; Schmandt, B.; Gao, H.

    2011-12-01

    Cenozoic tectonics of the Pacific Northwest (PNW) and the associated mantle structures are remarkable, the latter revealed only recently by EarthScope seismic data. Over the last ~66 Ma this region experienced a wide range of tectonic and magmatic conditions: Laramide compression, ~75-53 Ma, involving Farallon flat-slab subduction, regional uplift, and magmatic quiescence. With the ~53 Ma accretion of Siletzia ocean lithosphere within the Columbia Embayment, westward migration of subduction beginning Cascadia, along with initiation of the Cascade volcanic arc. Within the continental interior the Laramide orogeny was quickly followed by a period of extension involving metamorphic core complexes and the associated initial ignimbrite flare-up (both in northern Washington, Idaho, and western Montana); interior magmo-tectonic activity is attributed to flat-slab removal and (to the south) slab rollback. Rotation of Siletzia created new crust on SE Oregon and, at ~16 Ma, the Columbia River Flood Basalt (CRB) eruptions renewed vigorous magmatism. We have united several EarthScope studies in the Pacific Northwest and have focused on better resolving the major mantle structures that have been discovered. We have tomographically modeled the body waves with teleseismic, finite-frequency code under the constraints of ambient noise tomography and teleseismic receiver function models of Gao et al. (2011), and teleseismic anisotropy models of Long et al. (2009) in order to resolve structures continuously from the surface to the base of the upper mantle. We now have clear imaging of two episodes of subduction: Juan De Fuca slab deeper than ~250 km is absent across much of the PNW, and it has an E-W tear located beneath northern Oregon; Farallon slab (the "Siletzia curtain") is still present, hanging vertically just inboard of the core complexes, and with a basal tear causing the structure to extend deeper (~600 km) beneath north-central Idaho than beneath south-central Idaho and

  20. Imaging dental sections with polarization-resolved SHG and time-resolved autofluorescence

    NASA Astrophysics Data System (ADS)

    Chen, Jun Huang; Lin, Po-Yen; Hsu, Stephen C. Y.; Kao, Fu-Jen

    2009-02-01

    In this study, we are using two-photon (2-p) excited autofluorescence and second harmonic (SH) as imaging modalities to investigate dental sections that contains the enamel and the dentin. The use of near-infrared wavelengths for multiphoton excitation greatly facilitates the observation of these sections due to the hard tissue's larger index of refraction and highly scattering nature. Clear imaging can be achieved without feature altering preparation procedures of the samples. Specifically, we perform polarization resolving on SH and lifetime analysis on autofluorescence. Polarization resolved SH reflects the preferred orientation of collagen while very different autofluorescence lifetimes are observed from the dentin and the enamel. The origin of 2-p autofluorescence and SH signals are attributed to hydroxyapatite crystals and collagen fibrils, respectively. Hydroxyapatite is found to be present throughout the sections while collagen fibrils exist only in the dentin and dentinoenamel junctions.

  1. Stacking-Dependent Electronic Structure of Trilayer Graphene Resolved by Nanospot Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Bao, Changhua; Yao, Wei; Wang, Eryin; Chen, Chaoyu; Avila, José; Asensio, Maria C; Zhou, Shuyun

    2017-03-08

    The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic structure. In trilayer graphene, rhombohedral stacking (ABC) is particularly intriguing, exhibiting a flat band with an electric-field tunable band gap. Such electronic structure is distinct from simple hexagonal stacking (AAA) or typical Bernal stacking (ABA) and is promising for nanoscale electronics and optoelectronics applications. So far clean experimental electronic spectra on the first two stackings are missing because the samples are usually too small in size (μm or nm scale) to be resolved by conventional angle-resolved photoemission spectroscopy (ARPES). Here, by using ARPES with a nanospot beam size (NanoARPES), we provide direct experimental evidence for the coexistence of three different stackings of trilayer graphene and reveal their distinctive electronic structures directly. By fitting the experimental data, we provide important experimental band parameters for describing the electronic structure of trilayer graphene with different stackings.

  2. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  3. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra

    NASA Astrophysics Data System (ADS)

    Perfetto, E.; Sangalli, D.; Marini, A.; Stefanucci, G.

    2016-12-01

    In this work we put forward a first-principles approach and propose an accurate diagrammatic approximation to calculate the time-resolved (TR) and angle-resolved photoemission spectrum of systems with excitons. We also derive an alternative formula to the TR photocurrent which involves a single time-integral of the lesser Green's function. The diagrammatic approximation applies to the relaxed regime characterized by the presence of quasistationary excitons and vanishing polarization. The nonequilibrium self-energy diagrams are evaluated using excited Green's functions; since this is not standard, the analytic derivation is presented in detail. The final result is an expression for the lesser Green's function in terms of quantities that can all be calculated in a first-principles manner. The validity of the proposed theory is illustrated in a one-dimensional model system with a direct gap. We discuss possible scenarios and highlight some universal features of the exciton peaks. Our results indicate that the exciton dispersion can be observed in TR and angle-resolved photoemission.

  4. Building an OpenURL Resolver in Your Own Workshop

    ERIC Educational Resources Information Center

    Dahl, Mark

    2004-01-01

    OpenURL resolver is the next big thing for libraries. An OpenURL resolver is simply a piece of software that sucks in attached data and serves up a Web page that tells one where he or she can get the book or article represented by it. In this article, the author describes how he designed an OpenURL resolver for his library, the Lewis & Clark…

  5. Revealing carrier-envelope phase through frequency mixing and interference in frequency resolved optical gating.

    PubMed

    Snedden, E W; Walsh, D A; Jamison, S P

    2015-04-06

    We demonstrate that full temporal characterisation of few-cycle electromagnetic pulses, including retrieval of the carrier envelope phase (CEP), can be directly obtained from Frequency Resolved Optical Gating (FROG) techniques in which the interference between non-linear frequency mixing processes is resolved. We derive a framework for this scheme, defined Real Domain FROG (ReD-FROG), for the cases of interference between sum and difference frequency components and between fundamental and sum / difference frequency components. A successful numerical demonstration of ReD-FROG as applied to the case of a self-referenced measurement is provided. A proof-of-principle experiment is performed in which the CEP of a single-cycle THz pulse is accurately obtained and demonstrates the possibility for THz detection beyond optical probe duration limitations inherent to electro-optic sampling.

  6. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)

    1995-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  7. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Astrophysics Data System (ADS)

    Barrett, Paul

    2005-09-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  8. Feature-based attention resolves depth ambiguity.

    PubMed

    Yu, D; Levinthal, B; Franconeri, S L

    2016-09-07

    Perceiving the world around us requires that we resolve ambiguity. This process is often studied in the lab using ambiguous figures whose structures can be interpreted in multiple ways. One class of figures contains ambiguity in its depth relations, such that either of two surfaces could be seen as being the "front" of an object. Previous research suggests that selectively attending to a given location on such objects can bias the perception of that region as the front. This study asks whether selectively attending to a distributed feature can also bias that region toward the front. Participants viewed a structure-from-motion display of a rotating cylinder that could be perceived as rotating clockwise or counterclockwise (as imagined viewing from the top), depending on whether a set of red or green moving dots were seen as being in the front. A secondary task encouraged observers to globally attend to either red or green. Results from both Experiment 1 and 2 showed that the dots on the cylinder that shared the attended feature, and its corresponding surface, were more likely to be seen as being in the front, as measured by participants' clockwise versus counterclockwise percept reports. Feature-based attention, like location-based attention, is capable of biasing competition among potential interpretations of figures with ambiguous structure in depth.

  9. A Cell-type-resolved Liver Proteome*

    PubMed Central

    Ding, Chen; Li, Yanyan; Guo, Feifei; Jiang, Ying; Ying, Wantao; Li, Dong; Yang, Dong; Xia, Xia; Liu, Wanlin; Zhao, Yan; He, Yangzhige; Li, Xianyu; Sun, Wei; Liu, Qiongming; Song, Lei; Zhen, Bei; Zhang, Pumin; Qian, Xiaohong; Qin, Jun; He, Fuchu

    2016-01-01

    Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level. PMID:27562671

  10. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  11. Angle resolved photoemission spectroscopy and surface states

    NASA Astrophysics Data System (ADS)

    Kar, Nikhiles

    2016-10-01

    Angle Resolved Photo Emission Spectroscopy (ARPES) has been a very effective tool to study the electronic states of solids, from simple metals to complex systems like cuprate superconductors. For photon energy in the range of 10 - 100 eV, it is a surface sensitive process as the free path of the photo emitted electrons is of the order of a few lattice parameters. However to interpret the experimental data one needs to have a theoretical foundation for the photoemission process. From the theory of photoemission it may be seen that one can get information about the state from which the electron has been excited. As the translational periodicity is broken normal to the surface, a new type of electron state in the forbidden energy gap can exist localized in the surface region. ARPES can reveal the existence and the property of such surface states. We shall also discuss briefly how the electromagnetic field of the photons are influenced by the presence of the surface and how one can try to take that into account in photoemission theory.

  12. Resolving Microlensing Events with Triggered VLBI

    NASA Astrophysics Data System (ADS)

    Karami, Mansour; Broderick, Avery E.; Rahvar, Sohrab; Reid, Mark

    2016-12-01

    Microlensing events provide a unique capacity to study the stellar remnant population of the Galaxy. Optical microlensing suffers from a near-complete degeneracy between mass, velocity, and distance. However, a subpopulation of lensed stars, Mira variable stars, are also radio-bright, exhibiting strong SiO masers. These are sufficiently bright and compact to permit direct imaging using existing very long baseline interferometers such as the Very Long Baseline Array (VLBA). We show that these events are relatively common, occurring at a rate of ≈ 2 {{yr}}-1 of which 0.1 {{yr}}-1 are associated with Galactic black holes. Features in the associated images, e.g., the Einstein ring, are sufficiently well resolved to fully reconstruct the lens properties, enabling the measurement of mass, distance, and tangential velocity of the lensing object to a precision better than 15%. Future radio microlensing surveys conducted with upcoming radio telescopes combined with modest improvements in the VLBA could increase the rate of Galactic black hole events to roughly 10 {{yr}}-1, sufficient to double the number of known stellar mass black holes in a couple of years, and permitting the construction of distribution functions of stellar mass black hole properties.

  13. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Technical Reports Server (NTRS)

    Barrett, Paul

    2005-01-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  14. Comment on "Resolving the wave vector and the refractive index from the coefficient of reflectance".

    PubMed

    Perez-Molina, Manuel; Carretero, Luis

    2008-08-15

    In a recent Letter, the reflectance coefficient was used to resolve the sign choice of the wave vector and refractive index in active media. We argue that such a coefficient loses its physical meaning for active media (at real frequencies) when the field amplification is limited only by gain saturation. In this case, the amplitude reflectance coefficient leads to fictitious noncausal reflected fields when the backward Fourier transform is used.

  15. Position-resolved Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2013-06-01

    A new method which allows for position-resolved positron lifetime spectroscopy studies in extended volume samples is presented. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) which delivers electron bunches of less than 10 ps temporal width and an adjustable bunch separation of multiples of 38 ns, average beam currents of 1 mA, and energies up to 40 MeV. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for positron annihilation lifetime studies with high timing resolutions and high signal to background ratios due to the coincident detection of two annihilation photons. Two commercially available detectors from a high-resolution medial positron-emission tomography system are being employed with 169 individual Lu2SiO5:Ce scintillation crystals, each. In first experiments, a positron-lifetime gated image of a planar Si/SiO2 (pieces of 12.5 mm × 25 mm size) sample and a 3-D structured metal in Teflon target could be obtained proving the feasibility of a three dimensional lifetime-gated tomographic system.

  16. Resolved multifrequency radio observations of GG Tau

    SciTech Connect

    Andrews, Sean M.; Birnstiel, T.; Rosenfeld, K. A.; Wilner, D. J.; Chandler, Claire J.; Pérez, L. M.; Isella, Andrea; Ricci, L.; Carpenter, J. M.; Calvet, N.; Corder, S. A.; Deller, A. T.; Dullemond, C. P.; Greaves, J. S.; Harris, R. J.; Henning, Th.; Linz, H.; Kwon, W.; Lazio, J.; Mundy, L. G.; and others

    2014-06-01

    We present subarcsecond resolution observations of continuum emission associated with the GG Tau quadruple star system at wavelengths of 1.3, 2.8, 7.3, and 50 mm. These data confirm that the GG Tau A binary is encircled by a circumbinary ring at a radius of 235 AU with a FWHM width of ∼60 AU. We find no clear evidence for a radial gradient in the spectral shape of the ring, suggesting that the particle size distribution is spatially homogeneous on angular scales ≳0.''1. A central point source, likely associated with the primary component (GG Tau Aa), exhibits a composite spectrum from dust and free-free emission. Faint emission at 7.3 mm is observed toward the low-mass star GG Tau Ba, although its origin remains uncertain. Using these measurements of the resolved, multifrequency emission structure of the GG Tau A system, models of the far-infrared to radio spectrum are developed to place constraints on the grain size distribution and dust mass in the circumbinary ring. The non-negligible curvature present in the ring spectrum implies a maximum particle size of 1-10 mm, although we are unable to place strong constraints on the distribution shape. The corresponding dust mass is 30-300 M {sub ⊕}, at a temperature of 20-30 K. We discuss how this significant concentration of relatively large particles in a narrow ring at a large radius might be produced in a local region of higher gas pressures (i.e., a particle 'trap') located near the inner edge of the circumbinary disk.

  17. Confronting and resolving competing values behind conservation objectives.

    PubMed

    Karp, Daniel S; Mendenhall, Chase D; Callaway, Elizabeth; Frishkoff, Luke O; Kareiva, Peter M; Ehrlich, Paul R; Daily, Gretchen C

    2015-09-01

    Diverse motivations for preserving nature both inspire and hinder its conservation. Optimal conservation strategies may differ radically depending on the objective. For example, creating nature reserves may prevent extinctions through protecting severely threatened species, whereas incentivizing farmland hedgerows may benefit people through bolstering pest-eating or pollinating species. Win-win interventions that satisfy multiple objectives are alluring, but can also be elusive. To achieve better outcomes, we developed and implemented a practical typology of nature conservation framed around seven common conservation objectives. Using an intensively studied bird assemblage in southern Costa Rica as a case study, we applied the typology in the context of biodiversity's most pervasive threat: habitat conversion. We found that rural habitats in a varied tropical landscape, comprising small farms, villages, forest fragments, and forest reserves, provided biodiversity-driven processes that benefit people, such as pollination, seed dispersal, and pest consumption. However, species valued for their rarity, endemism, and evolutionary distinctness declined in farmland. Conserving tropical forest on farmland increased species that international tourists value, but not species discussed in Costa Rican newspapers. Despite these observed trade-offs, our analyses also revealed promising synergies. For example, we found that maintaining forest cover surrounding farms in our study region would likely enhance most conservation objectives at minimal expense to others. Overall, our typology provides a framework for resolving the competing objectives of modern conservation.

  18. Bayesian Super-Resolved Surface Reconstruction From Multiple Images

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Cheesman, P.; Maluf, D. A.; Morris, R. D.; Swanson, Keith (Technical Monitor)

    1999-01-01

    Bayesian inference has been wed successfully for many problems where the aim is to infer the parameters of a model of interest. In this paper we formulate the three dimensional reconstruction problem as the problem of inferring the parameters of a surface model from image data, and show how Bayesian methods can be used to estimate the parameters of this model given the image data. Thus we recover the three dimensional description of the scene. This approach also gives great flexibility. We can specify the geometrical properties of the model to suit our purpose, and can also use different models for how the surface reflects the light incident upon it. In common with other Bayesian inference problems, the estimation methodology requires that we can simulate the data that would have been recoded for any values of the model parameters. In this application this means that if we have image data we must be able to render the surface model. However it also means that we can infer the parameters of a model whose resolution can be chosen irrespective of the resolution of the images, and may be super-resolved. We present results of the inference of surface models from simulated aerial photographs for the case of super-resolution, where many surface elements project into a single pixel in the low-resolution images.

  19. Resolving the Formation of Protogalaxies. II.Central Gravitational Collapse

    SciTech Connect

    Wise, John H.; Turk, Matthew J.; Abel, Tom

    2007-10-15

    Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial gas cooling, gravity and hydrodynamics. Using initial conditions appropriate for the concordance cosmological model of structure formation, we perform two adaptive mesh refinement simulations of {approx} 10{sup 8} M{sub {circle_dot}} galaxies at high redshift. The calculations resolve the Jeans length at all times with more than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense, 10{sup 5} solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site of fragmentation during the collapse. However, rotational secular bar instabilities transport angular momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an important role in theories that form supermassive black holes from gaseous collapse.

  20. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    SciTech Connect

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.

  1. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    DOE PAGES

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less

  2. Super-resolved Parallel MRI by Spatiotemporal Encoding

    PubMed Central

    Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio

    2016-01-01

    Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293

  3. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-01

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.

  4. Time-resolved neurite mechanics by thermal fluctuation assessments.

    PubMed

    Gárate, Fernanda; Betz, Timo; Pertusa, María; Bernal, Roberto

    2015-12-30

    In the absence of simple noninvasive measurements, the knowledge of temporal and spatial variations of axons mechanics remains scarce. By extending thermal fluctuation spectroscopy (TFS) to long protrusions, we determine the transverse amplitude thermal fluctuation spectra that allow direct and simultaneous access to three key mechanics parameters: axial tension, bending flexural rigidity and plasma membrane tension. To test our model, we use PC12 cell protrusions-a well-know biophysical model of axons-in order to simplify the biological system under scope. For instance, axial and plasma membrane tension are found in the range of nano Newton and tens of pico Newtons per micron respectively. Furthermore, our results shows that the TFS technique is capable to distinguish quasi-identical protrusions. Another advantage of our approach is the time resolved nature of the measurements. Indeed, in the case of long term experiments on PC12 protrusions, TFS has revealed large temporal, correlated variations of the protrusion mechanics, displaying extraordinary feedback control over the axial tension in order to maintain a constant tension value.

  5. Time-resolved local strain tracking microscopy for cell mechanics

    NASA Astrophysics Data System (ADS)

    Aydin, O.; Aksoy, B.; Akalin, O. B.; Bayraktar, H.; Alaca, B. E.

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.

  6. Confronting and resolving competing values behind conservation objectives

    PubMed Central

    Karp, Daniel S.; Mendenhall, Chase D.; Callaway, Elizabeth; Frishkoff, Luke O.; Kareiva, Peter M.; Ehrlich, Paul R.; Daily, Gretchen C.

    2015-01-01

    Diverse motivations for preserving nature both inspire and hinder its conservation. Optimal conservation strategies may differ radically depending on the objective. For example, creating nature reserves may prevent extinctions through protecting severely threatened species, whereas incentivizing farmland hedgerows may benefit people through bolstering pest-eating or pollinating species. Win-win interventions that satisfy multiple objectives are alluring, but can also be elusive. To achieve better outcomes, we developed and implemented a practical typology of nature conservation framed around seven common conservation objectives. Using an intensively studied bird assemblage in southern Costa Rica as a case study, we applied the typology in the context of biodiversity’s most pervasive threat: habitat conversion. We found that rural habitats in a varied tropical landscape, comprising small farms, villages, forest fragments, and forest reserves, provided biodiversity-driven processes that benefit people, such as pollination, seed dispersal, and pest consumption. However, species valued for their rarity, endemism, and evolutionary distinctness declined in farmland. Conserving tropical forest on farmland increased species that international tourists value, but not species discussed in Costa Rican newspapers. Despite these observed trade-offs, our analyses also revealed promising synergies. For example, we found that maintaining forest cover surrounding farms in our study region would likely enhance most conservation objectives at minimal expense to others. Overall, our typology provides a framework for resolving the competing objectives of modern conservation. PMID:26283400

  7. 12 CFR 205.11 - Procedures for resolving errors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Procedures for resolving errors. 205.11 Section 205.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.11 Procedures for resolving errors. (a) Definition of...

  8. 12 CFR 205.11 - Procedures for resolving errors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Procedures for resolving errors. 205.11 Section 205.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.11 Procedures for resolving errors. (a) Definition of...

  9. 12 CFR 205.11 - Procedures for resolving errors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Procedures for resolving errors. 205.11 Section 205.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.11 Procedures for resolving errors. (a) Definition of...

  10. 12 CFR 205.11 - Procedures for resolving errors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Procedures for resolving errors. 205.11 Section 205.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.11 Procedures for resolving errors. (a) Definition of...

  11. 12 CFR 205.11 - Procedures for resolving errors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Procedures for resolving errors. 205.11 Section 205.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.11 Procedures for resolving errors. (a) Definition of...

  12. 48 CFR 229.101 - Resolving tax problems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Resolving tax problems..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS TAXES General 229.101 Resolving tax problems. (a... information on fuel excise taxes, see PGI 229.101(b). (c) For guidance on directing a contractor to...

  13. 48 CFR 629.101 - Resolving tax problems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Resolving tax problems... REQUIREMENTS TAXES General 629.101 Resolving tax problems. In certain instances, acquisitions by posts are exempt from various taxes in foreign countries. Contracting officers shall ascertain such exemptions...

  14. 48 CFR 629.101 - Resolving tax problems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Resolving tax problems... REQUIREMENTS TAXES General 629.101 Resolving tax problems. In certain instances, acquisitions by posts are exempt from various taxes in foreign countries. Contracting officers shall ascertain such exemptions...

  15. 48 CFR 2929.101 - Resolving tax problems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Resolving tax problems. 2929.101 Section 2929.101 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS TAXES General 2929.101 Resolving tax problems. Contract tax problems or...

  16. 48 CFR 229.101 - Resolving tax problems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Resolving tax problems..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS TAXES General 229.101 Resolving tax problems. (a... information on fuel excise taxes, see PGI 229.101(b). (c) For guidance on directing a contractor to...

  17. 48 CFR 1329.101 - Resolving tax problems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Resolving tax problems. 1329.101 Section 1329.101 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE GENERAL CONTRACTING REQUIREMENTS TAXES General 1329.101 Resolving tax problems. Legal questions relating to tax...

  18. 48 CFR 229.101 - Resolving tax problems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Resolving tax problems..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS TAXES General 229.101 Resolving tax problems. (a... information on fuel excise taxes, see PGI 229.101(b). (c) For guidance on directing a contractor to...

  19. 48 CFR 229.101 - Resolving tax problems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Resolving tax problems..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS TAXES General 229.101 Resolving tax problems. (a... information on fuel excise taxes, see PGI 229.101(b). (c) For guidance on directing a contractor to...

  20. 48 CFR 2929.101 - Resolving tax problems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Resolving tax problems. 2929.101 Section 2929.101 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS TAXES General 2929.101 Resolving tax problems. Contract tax problems or...

  1. 48 CFR 629.101 - Resolving tax problems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Resolving tax problems... REQUIREMENTS TAXES General 629.101 Resolving tax problems. In certain instances, acquisitions by posts are exempt from various taxes in foreign countries. Contracting officers shall ascertain such exemptions...

  2. 48 CFR 629.101 - Resolving tax problems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Resolving tax problems... REQUIREMENTS TAXES General 629.101 Resolving tax problems. In certain instances, acquisitions by posts are exempt from various taxes in foreign countries. Contracting officers shall ascertain such exemptions...

  3. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis.

    PubMed

    Hashimoto, Hideki; Sugisaki, Mitsuru; Yoshizawa, Masayuki

    2015-01-01

    This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.

  4. 40 CFR 310.21 - How does EPA resolve disputes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false How does EPA resolve disputes? 310.21... HAZARDOUS SUBSTANCE RELEASES Provisions How to Get Reimbursed § 310.21 How does EPA resolve disputes? (a) The EPA reimbursement official's decision is final EPA action unless you file a request for review...

  5. Time-resolved pulsed EPR: microwave and optical detection

    SciTech Connect

    Trifunac, A.D.; Smith, J.P.

    1981-01-01

    Time-resolved pulsed EPR spectrometers are described. EPR spectra, kinetic profiles, and relaxation studies are used to illustrate some capabilities of the pulsed EPR experiment. Optical detection of time-resolved EPR spectra of radical ion pairs is used to study radical-ion recombination kinetics, recombination pathways, and the structure of radical anions and cations. 17 figures.

  6. 36 CFR 800.7 - Failure to resolve adverse effects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effects. 800.7 Section 800.7 Parks, Forests, and Public Property ADVISORY COUNCIL ON HISTORIC PRESERVATION PROTECTION OF HISTORIC PROPERTIES The section 106 Process § 800.7 Failure to resolve adverse effects. (a) Termination of consultation. After consulting to resolve adverse effects pursuant to § 800.6(b)(2), the...

  7. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ν6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ν6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ν3 and ν4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (ν6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ν6 perturbation-induced dipole moment is estimated to be 33 ± 3

  8. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  9. What We've Learned From Doing Usability Testing on OpenURL Resolvers and Federated Search Engines

    ERIC Educational Resources Information Center

    Cervone, Frank

    2005-01-01

    OpenURL resolvers and federated search engines are important new services in the library field. For some librarians, these services may seem "old hat" by now, but for the majority these services are still in the early stages of implementation or planning. In many cases, these two services are offered as a seamlessly integrated whole.…

  10. Pseudothrombocytopenia observed with ethylene diamine tetra acetate and citrate anticoagulants, resolved using 37°C incubation and Kanamycin.

    PubMed

    Kamath, Vandana; Sarda, Parimal; Chacko, Mary Purna; Sitaram, Usha

    2013-01-01

    Pseudothrombocytopenia (PTP) is defined by falsely low platelet counts on automated analyzers caused by in vitro phenomena including large platelet aggregates in blood samples. Diagnosis and resolution of PTP is crucial as it can lead to unwarranted interventions. We discuss a case of PTP in a pre-surgical setting, which was resolved using 37°C incubation and Kanamycin.

  11. Negotiation techniques to resolve western water disputes

    USGS Publications Warehouse

    Lamb, Berton L.; Taylor, Jonathan G.

    1990-01-01

    There is a growing literature on the resolution of natural resources conflicts. Much of it is practical, focusing on guidelines for hands-on negotiation. This literature can be a guide in water conflicts. This is especially true for negotiations over new environmental values such as instream flow. The concepts of competitive, cooperative, and integrative styles of conflict resolution are applied to three cases of water resource bargaining. Lessons for the effective use of these ideas include: break a large number of parties into small working groups, approach value differences in small steps, be cautious in the presence of an attentive public, keeps decisions at the local level, and understand the opponent's interests.

  12. Characteristic of gravity waves resolved in ECMWF

    NASA Astrophysics Data System (ADS)

    Preusse, Peter; Eckermann, Stephen; Ern, Manfred; Riese, Martin

    Gravity waves (GWs) influence the circulation of the atmosphere on global scale. Because of insufficient measurements and the difficulty to involve all relevant scales in a single model run, they are one of the chief uncertainties in climate and weather prediction. More information, in particular on global scale, is required. Can we employ global models such as the ECMWF high-resolution GCM to infer quantities of resolved GWs? Does this give us insight for the characteristics and relative importance of real GW sources? And can we use such data safely for, e.g., planning measurement campaigns on GWs? Also trajectory studies of cloud formation (cirrus in the UTLS, PSCs) and related dehydration and denitrification rely heavily on realistic temperature structures due to GWs. We here apply techniques developed for an ESA study proving the scientifc break-through which could be reached by a novel infrared limb imager. The 3D temperature structure of mesoscale GWs is exploited to determine amplitudes and 3D wave vectors of GWs at different levels (25km, 35km and 45km altitude) in the stratosphere. Similar to real observations, GW momentum flux is largest in the winter polar vortex and exhibits a second maximum in the summer subtropics. Based on the 3D wavevectors backward ray-tracing is employed to characterize specific sources. For instance, we find for the northern winter strong GW momentum flux (GWMF) associated with mountain waves from Norway and Greenland as well as waves emitted in the lower troposphere from a storm approaching Norway. Waves from these sources spread up to several thousand km in the stratosphere. Together these three events form a burst in the total hemispheric GWMF of a factor of 3. Strong mountain wave events are also found e.g. at Tierra del Fuego and the Antarctic Peninsula, regions which are in the focus of observational and modeling studies for a decade. Gravity waves in the tropical region are associated with deep convection in the upper

  13. Non-invasive high resolving power quantum microscope

    NASA Astrophysics Data System (ADS)

    Karmakar, Sanjit; Meyers, Ronald; Shih, Yanhua

    2013-09-01

    The development of a non-invasive high resolving power quantum microscope would further advance progress in research and development in biomedical and biosciences as well as the field of medical technology. Longer wavelengths, i.e visible or near-infrared, provide less invasive impact. On the other hand shorter wavelengths, i.e. UV, can provide better resolving power. That is why the development of a non-invasive high resolving power quantum microscope is critical. In this article, we propose such a microscope by using two-color entangled photon ghost imaging technology.

  14. Osteopathic manipulative treatment to resolve head and neck pain after tooth extraction.

    PubMed

    Meyer, Patricia M; Gustowski, Sharon M

    2012-07-01

    Pain is a common occurrence after tooth extraction and is usually localized to the extraction site. However, clinical experience shows that patients may also have pain in the head or neck in the weeks after this procedure. The authors present a case representative of these findings. In the case, cranial and cervical somatic dysfunction in a patient who had undergone tooth extraction was resolved through the use of osteopathic manipulative treatment. This case emphasizes the need to include a dental history when evaluating head and neck pain as part of comprehensive osteopathic medical care. The case can also serve as a foundation for a detailed discussion regarding how to effectively incorporate osteopathic manipulative treatment into primary care practice for patients who present with head or neck pain after tooth extraction.

  15. Asteroids (21) Lutetia: global and spatially resolved photometric properties

    NASA Astrophysics Data System (ADS)

    Faury, G.; Lamy, P.; Vernazza, P.; Jorda, L.; Toth, I.

    2011-10-01

    Asteroids (21) Lutetia has recently been visited by the Rosetta spacecraft of the European Space Agency and imaged by its Rosetta narrow (NAC) and wide (WAC) angle cameras. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appears as either slighlty defocused images offset from the primary images or large round or elliptical halos. The appearance, the location and the radiance of each individual ghost depends upon the optical configuration (selected filters) and on the image itself so that no general model can be proposed. Consequently, a case-by-case approach must be adopted which requires a long and tedious work where each ghost is individually parametrized according to its specific geometry (defocused offset image or halo) and iteratively fitted to the original image. The procedure has been successfully applied to all NAC and WAC images and works extremely well with residuals and sometime artifacts at insignificant levels. Both NAC and WAC have further been recalibrated using the most recent observations of stellar calibrators VEGA and the solar analog 16 Cyg B allowing to correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters). We will present results on the global photometric properties of (21) Lutetia, albedo, phase function and spectral reflectivity as well as spatially resolved properties based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins (Spjuth et al. 2011) has the advantage of automatically tracking the same

  16. [Spontaneous liver rupture in a patient with choledocholithiasis resolved by ERCP].

    PubMed

    Bahena-Aponte, Jesús A; Ramírez de Aguilar, Guillermo; Torres Carrillo, Juan Carlos; Espino Urbina, Luis; Sánchez González, Jesús A

    2016-01-01

    We present the case of a 34 years old female patient who presents with abdominal pain and elevated total and direct bilirrubins, so she underwent ERCP Reporting: a) successful sphincterotomy without complications, b) choledocholithias is endoscopically resolved, c) secondary cholangitis. She developed significant abdominal pain at 72 h, with hypovolemic shock and peritoneal irritation. She was taken to the surgery, finding a grade III liver laceration. This one was resolved with liver raffia and packing, during the same operative time cholecystectomy was performed. A second look was performed at 24 h, achieving adequate control of bleeding after placing hemostatic (Nexstat®). The patient developed a subdiaphragmatic abscess which needed drainage by another laparotomy. After which the patient had a satisfactory evolution, so she was discharged.

  17. Resolved gravity duals of N=4 quiver field theories in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Cottrell, William; Hashimoto, Akikazu

    2016-10-01

    We generalize the construction by Aharony, Hashimoto, Hirano, and Ouyang of N=4 quiver gauge theory with gauge group U( N + M) × U( N), k fundamentals charged under U( N ) and bi-fundamentals, to the case with gauge group {{prod}_{i=1}^{widehat{k}}U({N}_i)} with k i fundamentals charged under U( N i ). This construction is facilitated by considering the resolved AL{E}_{widehat{k}}× T{N}_k background in M-theory including non-trivial fluxes through the resolved 4-cycles in the geometry. We also describe the M-theory lift of the IIA Page charge quantization condition. Finally, we clarify the role of string corrections in various regimes of parameter space.

  18. Highly-resolved Imaging in aggregated soils

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S.; Lazik, D.

    2009-04-01

    Dissolved oxygen is the primary electron acceptor in soil, and the concentration undergoes consumption reactions. Oxygen transition zones results from combined effect of soil structures, water flow, oxygen transport limitations and oxygen consuming reactions. In case of higher water saturation such oxygen transition zones will result from metabolic activity, but will in turn limit or enhance such activities. A prerequisite to precisely quantify the distribution of dissolved oxygen mass is to know the water content distribution, which is an important property affecting biogeochemical soil processes. We aim not only for detecting interfaces between fully-aerobic and oxygen-deficit regions with high spatial resolution, but even for determining the dissolved oxygen concentrations in the areas of the gradient and of oxygen depletion. Our approach to visualize and quantify water content and oxygen transition zones in soils is applying non-destructive imaging techniques to avoid the destruction of samples, which allows observations of temporal developments. The methodology is based on a combination of recently developed imaging approaches. The first is the possibility to detect dissolved oxygen concentrations via fluorescence of specific, dissolved photoluminescent molecules that act as oxygen probes when excited with UV light. Additionally we use the sodium fluorescein for imaging water content. In both setups the fluorescence light is detected with a camera, allowing for visualization of rapid changes. X-ray radiography, light transmission, and in some cases the highly sensitive and selective neutron radiography imaging, are possible alternatives to visualize water content. We are testing our set-up to estimate water content via fluorescence intensities (as shown by Bridge et al., 2007) and it was partly possible with a modulated imaging setup to visualize oxygen distributions in glass bead packs and sands.

  19. SQL level global query resolving for web based GIS

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Fengru; Huang, Zhou; Sun, Yumei; Fang, Yu

    2007-06-01

    This paper introduced a SQL level approach to resolve global spatial query in Web based heterogeneous distributed spatial database environment. The main prohibit of this SQL level approach was its widespread compatibility and standardization. Firstly, a SQL based Equivalent Distributed Program (EDP) was introduced to express distributed spatial processing transactions. Then global resource directories for virtual global view describing were discussed to organize information that resolving need. The contents of global resource directories included data storage directory, hosts directory and working status directory. With these mechanisms, relational algebra expression equivalence principles were utilized to resolve global spatial queries to EDPs. Finally, several samples were presented to show the process of resolving. This approach was suitable to all sorts of distributed computing environments either centralized such as CORBA or decentralized such as P2P computing platforms.

  20. Time resolved fluorescence of naproxen in organogel medium

    NASA Astrophysics Data System (ADS)

    Burguete, M. Isabel; Izquierdo, M. Angeles; Galindo, Francisco; Luis, Santiago V.

    2008-07-01

    The interaction between non-steroidal anti-inflammatory drug naproxen and the self assembled fibrillar network created by a low molecular weight organogelator has been probed by means of time resolved fluorescence spectroscopy.

  1. Frequency-resolved optical grating using third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; Delong, K.W.

    1995-12-01

    We demonstrate the first frequency-resolved optical gating measurement of an laser oscillator without the time ambiguity using third-harmonic generation. The experiment agrees well with the phase-retrieved spectrograms.

  2. Material separation in x-ray CT with energy resolved photon-counting detectors

    PubMed Central

    Wang, Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-01-01

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  3. Exclusions for resolving urban badger damage problems: outcomes and consequences

    PubMed Central

    Finney, Jason K.; Beatham, Sarah E.; Delahay, Richard J.; Robertson, Peter A.; Cowan, David P.

    2016-01-01

    Increasing urbanisation and growth of many wild animal populations can result in a greater frequency of human-wildlife conflicts. However, traditional lethal methods of wildlife control are becoming less favoured than non-lethal approaches, particularly when problems involve charismatic species in urban areas. Eurasian badgers (Meles meles) excavate subterranean burrow systems (setts), which can become large and complex. Larger setts within which breeding takes place and that are in constant use are known as main setts. Smaller, less frequently occupied setts may also exist within the social group’s range. When setts are excavated in urban environments they can undermine built structures and can limit or prevent safe use of the area by people. The most common approach to resolving these problems in the UK is to exclude badgers from the problem sett, but exclusions suffer a variable success rate. We studied 32 lawful cases of badger exclusions using one-way gates throughout England to evaluate conditions under which attempts to exclude badgers from their setts in urban environments were successful. We aimed to identify ways of modifying practices to improve the chances of success. Twenty of the 32 exclusion attempts were successful, but success was significantly less likely if a main sett was to be excluded in comparison with another type of sett and if vegetation was not completely removed from the sett surface prior to exclusion attempts. We recommend that during exclusions all vegetation is removed from the site, regardless of what type of sett is involved, and that successful exclusion of badgers from a main sett might require substantially more effort than other types of sett. PMID:27761352

  4. RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS

    SciTech Connect

    Andrews, Sean M.; Wilner, David J.; Espaillat, Catherine; Qi Chunhua; Brown, J. M.; Hughes, A. M.; Dullemond, C. P.; McClure, M. K.

    2011-05-01

    Circumstellar disks are thought to experience a rapid 'transition' phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (0.''3 {approx} 40-75 AU) Submillimeter Array (SMA) observations of the 880 {mu}m (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R{sub cav} = 15-73 AU) and substantially depleted of small ({approx}{mu}m-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and {>=}26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions-very young

  5. Level 5 leadership. The triumph of humility and fierce resolve.

    PubMed

    Collins, J

    2001-01-01

    Boards of directors typically believe that transforming a company from merely good to truly great requires a larger-than-life personality--an egocentric chief to lead the corporate charge. Think "Chainsaw" Al Dunlap or Lee Iacocca. In fact, that's not the case, says author and leadership expert Jim Collins. The essential ingredient for taking a company to greatness is having a "Level 5" leader at the helm--an executive in whom extreme personal humility blends paradoxically with intense professional will. Collins paints a compelling and counter-intuitive portrait of the skills and personality traits necessary for effective leadership. He identifies the characteristics common to Level 5 leaders: humility, will, ferocious resolve, and the tendency to give credit to others while assigning blame to themselves. Collins fleshes out his Level 5 theory by telling colorful tales about 11 such leaders from recent business history. He contrasts the turnaround successes of outwardly humble, even shy, executives like Gillette's Colman M. Mockler and Kimberly-Clark's Darwin E. Smith with those of larger-than-life business leaders like Dunlap and Iacocca, who courted personal celebrity. The jury is still out on how to cultivate Level 5 leaders and whether it's even possible to do so, Collins admits. Some leaders have the Level 5 seed within; some don't. But Collins suggests using the findings from his research to strive for Level 5--for instance, getting the right people on board and creating a culture of discipline. "Our own lives and all that we touch will be better for the effort," he concludes.

  6. Time resolved studies of bond activation by organometallic complexes

    SciTech Connect

    Wilkens, Matthew J.

    1998-05-01

    In 1971, Jetz and Graham discovered that the silicon-hydrogen bond in silanes could be broken under mild photochemical conditions in the presence of certain transition metal carbonyls. Such reactions fall within the class of oxidative addition. A decade later, similar reactivity was discovered in alkanes. In these cases a C-H bond in non-functionalized alkanes was broken through the oxidative addition of Cp*Ir(H)2L (Cp* = (CH3)5C5, L = PPh3, Ph = C6H5) to form Cp*ML(R)(H) or of Cp*Ir(CO)2 to form Cp*Ir(CO)(R)(H). These discoveries opened an entirely new field of research, one which naturally included mechanistic studies aimed at elucidating the various paths involved in these and related reactions. Much was learned from these experiments but they shared the disadvantage of studying under highly non-standard conditions a system which is of interest largely because of its characteristics under standard conditions. Ultrafast time-resolved IR spectroscopy provides an ideal solution to this problem; because it allows the resolution of chemical events taking place on the femto-through picosecond time scale, it is possible to study this important class of reactions under the ambient conditions which are most of interest to the practicing synthetic chemist. Certain of the molecules in question are particularly well-suited to study using the ultrafast IR spectrophotometer described in the experimental section because they contain one or more carbonyl ligands.

  7. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    DTIC Science & Technology

    2011-06-24

    Resolved Atomic Interaction Sidebands in an Optical Clock Transition M. Bishof,1 Y. Lin,1 M.D. Swallows,1 A.V. Gorshkov,2 J. Ye,1 and A.M. Rey1 1JILA...Institute of Technology, Pasadena, California 91125, USA (Received 4 February 2011; published 22 June 2011) We report the observation of resolved atomic ...interaction sidebands (ISB) in the 87Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice

  8. Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

    PubMed Central

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V.; Yamane, Dawit G.; Miller, Jeffrey T.; Kumar, Challa S.S.R.

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  9. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  10. (Second) Quantised resolvents and regularised traces

    NASA Astrophysics Data System (ADS)

    Paycha, Sylvie

    2007-04-01

    Regularised traces on classical pseudodifferential operators are extended to tensor products of classical pseudodifferential operators via a (second) quantisation procedure. Whereas ordinary ζ-regularised traces are not generally expected to be local, using techniques borrowed from Connes and Moscovici [A. Connes, H. Moscovici, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (2) (1995) 174-243], Higson [N. Higson, The residue index theorem of Connes and Moscovici, in: Clay Mathematics Proceedings, 2004, http://www.math.psu.edu/higson/ResearchPapers.html], we show that if Q has scalar leading symbol, higher quantisedζ- regularised traces are local since they can be expressed as a finite linear combination of noncommutative residues. Just as ordinary ζ-regularised traces, they present anomalies (Hochschild coboundary, dependence on the weight Q), which for quantised ζ-regularised traces of level n, are roughly speaking finite linear combinations of quantised regularised traces of level n+1. As a result, anomalies are local for any non negative n, which yields back as a particular case the fact that ordinary ζ-regularised traces present local anomalies. This work is partially based on [S. Paycha, Weighted trace cochains; A geometric setup for anomalies, Max Planck Institute, 2005. Preprint] although we use other conventions here which lead to slightly different definitions.

  11. MARTINI bead form factors for the analysis of time-resolved X-ray scattering of proteins.

    PubMed

    Niebling, Stephan; Björling, Alexander; Westenhoff, Sebastian

    2014-08-01

    Time-resolved small- and wide-angle X-ray scattering (SAXS and WAXS) methods probe the structural dynamics of proteins in solution. Although technologically advanced, these methods are in many cases limited by data interpretation. The calculation of X-ray scattering profiles is computationally demanding and poses a bottleneck for all SAXS/WAXS-assisted structural refinement and, in particular, for the analysis of time-resolved data. A way of speeding up these calculations is to represent biomolecules as collections of coarse-grained scatterers. Here, such coarse-graining schemes are presented and discussed and their accuracies examined. It is demonstrated that scattering factors coincident with the popular MARTINI coarse-graining scheme produce reliable difference scattering in the range 0 < q < 0.75 Å(-1). The findings are promising for future attempts at X-ray scattering data analysis, and may help to bridge the gap between time-resolved experiments and their interpretation.

  12. Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph

    2016-09-01

    The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Using horizontal grid spacings of O(1km), convection-resolving weather and climate models allows one to explicitly resolve deep convection. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in supercomputing have led to new hybrid node designs, mixing conventional multi-core hardware and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to these architectures is the COSMO (Consortium for Small-scale Modeling) model.Here we present the convection-resolving COSMO model on continental scales using a version of the model capable of using GPU accelerators. The verification of a week-long simulation containing winter storm Kyrill shows that, for this case, convection-parameterizing simulations and convection-resolving simulations agree well. Furthermore, we demonstrate the applicability of the approach to longer simulations by conducting a 3-month-long simulation of the summer season 2006. Its results corroborate the findings found on smaller domains such as more credible representation of the diurnal cycle of precipitation in convection-resolving models and a tendency to produce more intensive hourly precipitation events. Both simulations also show how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. This includes the formation of sharp cold frontal structures, convection embedded in fronts and small eddies, or the formation and organization of propagating cold pools. Finally, we assess the performance gain from using heterogeneous hardware equipped with GPUs relative to multi-core hardware. With the COSMO model, we now use a weather and climate model that

  13. Concept of proton radiography using energy resolved dose measurement.

    PubMed

    Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-21

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  14. Concept of proton radiography using energy resolved dose measurement

    NASA Astrophysics Data System (ADS)

    Bentefour, El H.; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-01

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams ‘proton imaging field’ are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  15. Towards Realtime Assimilation of Doppler Radar Observations for Cloud-Resolving Hurricane Prediction

    NASA Astrophysics Data System (ADS)

    Weng, Y.; Zhang, F.; Gamache, J. F.; Marks, F. D.

    2008-12-01

    This study explores the feasibility and impacts of on-demand, real-time assimilation of Doppler radar observations straight from the planes with an ensemble Kalman filter (EnKF) to initialize a cloud-resolving hurricane prediction model. The NOAA P3 aircrafts have being flying into tropical cyclones to gather radar observations since 1994. These observations are significant in investigating and anglicizing hurricane's intensity, eye-wall structure and intensity changes, but the radar data has never been ingested into hurricane prediction models in real-time. Likely reasons are (1) insufficient model resolution due to inadequate computing resources for ingesting convective-scale details observed by the radar, (2) inadequacy of existing data assimilation method for operational models, and (3) lack of sufficient bandwidth in transmitting huge volume radar data to the ground in realtime. This work is built on our recent case studies of predicting the rapid formation and intensification of past hurricanes in assimilating both ground-base and/or airborne radial velocity into a cloud-resolving mesoscale model with EnKF. Under the auspices of NOAA Hurricane Forecasting Improvement Project (HFIP), we have access to the NSF-sponsored high-performance computing facility TACC at University of Texas at Austin that makes realtime cloud-resolving hurricane data assimilation and forecasting possible. We alleviate the requirement of large volume data transfer from the aircraft through developing a radar radial velocity data quality and thinning procedure (namely to produce superobervations or SOs) to significantly reduce the data size before being transferred. We have first conducted near realtime testing of the cloud-resolving data assimilation and forecasting with Weather Research and Forecast (WRF) model using 40.5, 13.5, 4.5 and 1.5 km grid spacings and movable nested grids for Hurricanes Dolly and Fay (2008). As of today, we have successfully demonstrated the feasibility, data

  16. On power series expansions of the S-resolvent operator and the Taylor formula

    NASA Astrophysics Data System (ADS)

    Colombo, Fabrizio; Gantner, Jonathan

    2016-12-01

    The S-functional calculus is based on the theory of slice hyperholomorphic functions and it defines functions of n-tuples of not necessarily commuting operators or of quaternionic operators. This calculus relays on the notion of S-spectrum and of S-resolvent operator. Since most of the properties that hold for the Riesz-Dunford functional calculus extend to the S-functional calculus, it can be considered its non commutative version. In this paper we show that the Taylor formula of the Riesz-Dunford functional calculus can be generalized to the S-functional calculus. The proof is not a trivial extension of the classical case because there are several obstructions due to the non commutativity of the setting in which we work that have to be overcome. To prove the Taylor formula we need to introduce a new series expansion of the S-resolvent operators associated to the sum of two n-tuples of operators. This result is a crucial step in the proof of our main results, but it is also of independent interest because it gives a new series expansion for the S-resolvent operators. This paper is addressed to researchers working in operator theory and in hypercomplex analysis.

  17. Four-Dimensional Respiratory Motion-Resolved Whole Heart Coronary MR Angiography

    PubMed Central

    Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P.; Schwitter, Juerg; Sodickson, Daniel K.; Otazo, Ricardo; Stuber, Matthias

    2016-01-01

    Purpose Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Methods Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Results Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. Conclusion XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. PMID:27052418

  18. Probing the limitations of Sigmund's model of spatially resolved sputtering using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard; Bradley, R. Mark; Urbassek, Herbert M.

    2016-05-01

    Sigmund's model of spatially resolved sputtering is the underpinning of many models of nanoscale pattern formation induced by ion bombardment. It is based on three assumptions: (i) the number of sputtered atoms is proportional to the nuclear energy deposition (NED) near the surface, (ii) the NED distribution is independent of the orientation and shape of the solid surface and is identical to the one in an infinite medium, and (iii) the NED distribution in an infinite medium can be approximated by a Gaussian. We test the validity of these assumptions using Monte Carlo simulations of He, Ar, and Xe impacts on Si at energies of 2, 20, and 200 keV with incidence angles from perpendicular to grazing. We find that for the more commonly-employed beam parameters (Ar and Xe ions at 2 and 20 keV and nongrazing incidence), the Sigmund model's predictions are within a factor of 2 of the Monte Carlo results for the total sputter yield and the first two moments of the spatially resolved sputter yield. This is partly due to a compensation of errors introduced by assumptions (i) and (ii). The Sigmund model, however, does not describe the skewness of the spatially resolved sputter yield, which is almost always significant. The approximation is much poorer for He ions and/or high energies (200 keV). All three of Sigmund's assumptions break down at grazing incidence angles. In all cases, we discuss the origin of the deviations from Sigmund's model.

  19. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating.

    PubMed

    Delong, K W; Ladera, C L; Trebino, R; Kohler, B; Wilson, K R

    1995-03-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms.

  20. First photon detection in time-resolved transillumination imaging: a theoretical evaluation.

    PubMed

    Behin-Ain, S; van Doorn, T; Patterson, J R

    2004-09-07

    First photon detection, as a special case of time-resolved transillumination imaging, is studied through the derivation of the temporal probability density function (pdf) for the first arriving photon. The pdf for different laser intensities, media and second and later arriving photons were generated. The arrival time of the first detected photon reduced as the laser power increased and also when the scattering and absorption coefficients decreased. The pdf for an imbedded totally absorbing 3 mm inhomogeneity may be distinguished from the pdf of a homogeneous turbid medium similar to that of human breast in dimensions and optical properties.

  1. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    SciTech Connect

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-03-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms.

  2. Electron self-energy of high temperature superconductors as revealed by angle-resolved photoemission.

    SciTech Connect

    Ding, H.; Norman, M. R.; Randeria, M.

    1997-12-05

    In this paper, we review some of the work our group has done in the past few years to obtain the electron self-energy of high temperature superconductors by analysis of angle-resolved photoemission data. We focus on three examples which have revealed: (1) a d-wave superconducting gap, (2) a collective mode in the superconducting state, and (3) pairing correlations in the pseudogap phase. In each case, although a novel result is obtained which captures the essence of the data, the conventional physics used leads to an incomplete picture. This indicates that new physics needs to be developed to obtain a proper understanding of these materials.

  3. ALMA resolves SN 1987A's dust factory and particle accelerator

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; SN1987A ALMA Cycle 0 Team

    2014-01-01

    SN1987A in the Large Magellanic Cloud is the closest supernova to earth to be observed since 1604, making it a unique laboratory to study supernova physics in real time. Among SN87A's remarkable properties are a very large mass of new dust forming in the supernova ejecta. This dust was inferred from Herschel data, but its location not proven since Herschel could not resolve the 1.8" diameter remnant. Another mystery is whether the explosion left behind a neutron star - neither pulsar nor pulsar wind nebula has been detected so far. Excess emission from a PWN should be easiest to detect at millimeter wavelengths, if it can be spatially resolved from the synchrotron-emitting supernova shock. We present the first spatially resolved images of SN1987A at 450um, 870um, and 1.4mm, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). ALMA resolves emission from the newly formed dust, unambiguously locating it within the ejecta, interior to the reverse shock. The shocked ring is also well-resolved, and separated spatially from the ejecta. The ring shows no spectral break compared to centimeter wavelengths, and no free-free or PWN emission is required to explain the data. We discuss physical properties of the components of the remnant determined from these high resolution ALMA images.

  4. Resolving heterogeneity on the single molecular level with the photon-counting histogram.

    PubMed Central

    Müller, J D; Chen, Y; Gratton, E

    2000-01-01

    The diffusion of fluorescent particles through a small, illuminated observation volume gives rise to intensity fluctuations caused by particle number fluctuations in the open observation volume and the inhomogeneous excitation-beam profile. The intensity distribution of these fluorescence fluctuations is experimentally captured by the photon-counting histogram (PCH). We recently introduced the theory of the PCH for diffusing particles (Chen et al., Biophys. J., 77:553-567), where we showed that we can uniquely describe the distribution of photon counts with only two parameters for each species: the molecular brightness of the particle and the average number of particles within the observation volume. The PCH is sensitive to the molecular brightness and thus offers the possibility to separate a mixture of fluorescent species into its constituents, based on a difference in their molecular brightness alone. This analysis is complementary to the autocorrelation function, traditionally used in fluorescence fluctuation spectroscopy, which separates a mixture of species by a difference in their diffusion coefficient. The PCH of each individual species is convoluted successively to yield the PCH of the mixture. Successful resolution of the histogram into its components is largely a matter of the signal statistics. Here, we discuss the case of two species in detail and show that a concentration for each species exists, where the signal statistics is optimal. We also discuss the influence of the absolute molecular brightness and the brightness contrast between two species on the resolvability of two species. A binary dye mixture serves as a model system to demonstrate that the molecular brightness and the concentration of each species can be resolved experimentally from a single or from several histograms. We extend our study to biomolecules, where we label proteins with a fluorescent dye and show that a brightness ratio of two can be resolved. The ability to resolve a

  5. Multi-stage IT project evaluation: The flexibility value obtained by implementing and resolving Berk, Green and Naik (2004) model

    NASA Astrophysics Data System (ADS)

    Abid, Fathi; Guermazi, Dorra

    2009-11-01

    In this paper, we evaluate a multi-stage information technology investment project, by implementing and resolving Berk, Green and Naik's (2004) model, which takes into account specific features of IT projects and considers the real option to suspend investment at each stage. We present a particular case of the model where the project value is the solution of an optimal control problem with a single state variable. In this case, the model is more intuitive and tractable. The case study confirms the practical potential of the model and highlights the importance of the real-option approach compared to classical discounted cash flow techniques in the valuation of IT projects.

  6. Self consistent, absolute calibration technique for photon number resolving detectors.

    PubMed

    Avella, A; Brida, G; Degiovanni, I P; Genovese, M; Gramegna, M; Lolli, L; Monticone, E; Portesi, C; Rajteri, M; Rastello, M L; Taralli, E; Traina, P; White, M

    2011-11-07

    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.

  7. Angle- and spin-resolved photoemission from ferromagnets

    NASA Astrophysics Data System (ADS)

    Cherepkov, N. A.; Kuznetsov, V. V.

    1996-07-01

    Equations for angle- and spin-resolved photoemission from core levels of ferromagnets are derived using the atomic model. They are applied to the n p subshells and to the particular geometries of experiment with the photoemission normal to the surface, which have been used already in several experiments. It is shown that for these geometries the spin-resolved spectra obtained with linearly polarized light are especially simple and contain the contribution of only one or two magnetic sublevels of the 0953-8984/8/27/008/img5 state, and of only one sublevel of the 0953-8984/8/27/008/img6 state, which allow one to resolve the magnetic splitting of core levels. The use of circularly polarized or unpolarized light gives a less transparent picture.

  8. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    NASA Technical Reports Server (NTRS)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  9. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single

  10. The role of mediation in resolving workplace relationship conflict.

    PubMed

    McKenzie, Donna Margaret

    2015-01-01

    Stress triggered by workplace-based interpersonal conflict can result in damaged relationships, loss of productivity, diminished job satisfaction and increasingly, workers' compensation claims for psychological injury. This paper examined the literature on the role and effectiveness of mediation, as the most common method of Alternative Dispute Resolution, in resolving workplace relationship conflict. Available evidence suggests that mediation is most effective when supported by organisational commitment to ADR strategies, policies and processes, and conducted by independent, experienced and qualified mediators. The United States Postal Service program REDRESS™ is described as an illustration of the successful use of mediation to resolve conflict in the workplace.

  11. Time-resolved x-ray crystallography of heme proteins

    PubMed Central

    Royer, William E.

    2012-01-01

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third generation synchrotrons provide 100ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have permitted observing allosteric transitions in real time for a cooperative dimeric hemoglobin. PMID:18433638

  12. RESOLVE OVEN Field Demonstration Unit for Lunar Resource Extraction

    NASA Technical Reports Server (NTRS)

    Paz, Aaron; Oryshchyn, Lara; Jensen, Scott; Sanders, Gerald B.; Lee, Kris; Reddington, Mike

    2013-01-01

    The Oxygen and Volatile Extraction Node (OVEN) is a subsystem within the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project. The purpose of the OVEN subsystem is to release volatiles from lunar regolith and extract oxygen by means of a hydrogen reduction reaction. The complete process includes receiving, weighing, sealing, heating, and disposing of core sample segments while transferring all gaseous contents to the Lunar Advanced Volatile Analysis (LAVA) subsystem. This document will discuss the design and performance of the OVEN Field Demonstration Unit (FDU), which participated in the 2012 RESOLVE field demonstration.

  13. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    SciTech Connect

    Bishof, M.; Lin, Y.; Swallows, M. D.; Ye, J.; Rey, A. M.; Gorshkov, A. V.

    2011-06-24

    We report the observation of resolved atomic interaction sidebands (ISB) in the {sup 87}Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.

  14. Time-Resolved X-Ray Crystallography of Heme Proteins

    SciTech Connect

    Srajer, Vukica; Royer, Jr., William E.

    2008-04-29

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third-generation synchrotrons provide 100-ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have recently permitted observing for the first time allosteric transitions in real time for a cooperative dimeric hemoglobin.

  15. Validating under-resolved turbulence intensities for PIV experiments in canonical wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kevin; Monty, J. P.; Hutchins, N.

    2016-08-01

    The discrepancy between measured turbulence intensity obtained from experiments in wall-bounded turbulence and the fully resolved reference results (usually from DNS datasets) are often attributed to spatial resolution issues, especially in PIV measurements due to the presence of spatial averaging within the interrogation region/volume. In many cases, in particular at high Reynolds numbers (where there is a lack of DNS data), there is no attempt to verify that this is the case. There is a risk that attributing unexpected PIV statistics to spatial resolution, without careful checks, could mask wider problems with the experimental setup or test facility. Here, we propose a robust technique to validate the under-resolved PIV obtained turbulence intensity profiles for canonical wall-bounded turbulence. This validation scheme is independent of Reynolds number and does not rely on empirical functions. It is based on arguments that (1) the viscous-scaled small-scale turbulence energy is invariant with Reynolds number and that (2) the spatially under-resolved measurement is sufficient to capture the large-scale energy. This then suggests that we can estimate the missing energy from volume-filtered DNS data at much lower Reynolds numbers. Good agreement is found between the experimental results and estimation profiles for all three velocity components, demonstrating that the estimation tool successfully computes the missing energy for given spatial resolutions over a wide range of Reynolds numbers. A database for a canonical turbulent boundary layer and associated MATLAB function are provided that enable this missing energy to be calculated across a range of interrogation volume sizes, so that users do not require access to raw DNS data. This methodology and tool will provide PIV practitioners, investigating canonical wall-bounded turbulent flow with a convenient check of the effects of spatial resolution on a given experiment.

  16. Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2009-05-05

    The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contribute to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in internally-mixed sectional or modal aerosol models.

  17. Music Education Preservice Teachers' Confidence in Resolving Behavior Problems

    ERIC Educational Resources Information Center

    Hedden, Debra G.

    2015-01-01

    The purpose of this study was to investigate whether there would be a change in preservice teachers' (a) confidence concerning the resolution of behavior problems, (b) tactics for resolving them, (c) anticipation of problems, (d) fears about management issues, and (e) confidence in methodology and pedagogy over the time period of a one-semester…

  18. 47 CFR 301.200 - Requests to resolve disputes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Requests to resolve disputes. 301.200 Section 301.200 Telecommunication NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION, DEPARTMENT OF COMMERCE RELOCATION OF AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS Dispute Resolution Boards §...

  19. 47 CFR 301.200 - Requests to resolve disputes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Requests to resolve disputes. 301.200 Section 301.200 Telecommunication NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION, DEPARTMENT OF COMMERCE RELOCATION OF AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS Dispute Resolution Boards. §...

  20. Development of an Integrated RVC-LWRD System for RESOLVE

    NASA Technical Reports Server (NTRS)

    Captain, Janine; Lueck, Dale; Kolody, Mark; Whitten, Mary

    2007-01-01

    Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) incorporates 5 modules: (1) EBRC (Excavation and Bulk Regolith Characterization) (2) ERPC (Environment and Regolith Physical Characterization) ROE (Regolith Oxygen Extraction) (3) RVC (Regolith Volatile Characterization) (5) LWRD (Lunar Water Resource Demonstration). The goal of this work is to identify and quantify volatiles, demonstrate ISRU, engage the public interest in 'living off the land' technology

  1. Modeling Mechanisms of Persisting and Resolving Delay in Language Development

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Knowland, V. C. P.

    2014-01-01

    Purpose: In this study, the authors used neural network modeling to investigate the possible mechanistic basis of developmental language delay and to test the viability of the hypothesis that persisting delay and resolving delay lie on a mechanistic continuum with normal development. Method: The authors used a population modeling approach to study…

  2. Time-resolved imaging of cavitation effects during laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Siano, Salvatore; Pini, Roberto; Salimbeni, Renzo; Vannini, Matteo

    1995-01-01

    We devised a diagnostic technique based on a pump-and-probe scheme that provided time- resolved imaging of photofragmentation effects during laser lithotripsy. The evolution of the cavitation bubble induced on kidney stone samples by underwater irradiation with a XeCl excimer laser is presented and analyzed.

  3. Mechanisms for Resolving Collective Bargaining Impasses in Public Education.

    ERIC Educational Resources Information Center

    Becker, Harry A.

    In the field of education, the impasses that have occurred in collective bargaining for a contract have been resolved sooner or later--in one way or another. If a due process for settling the impasse has not been provided, both legal and illegal actions will take place in the attempt to force a more favorable settlement. Mediation, fact finding,…

  4. OVEN & LAVA Subsystems in the RESOLVE Payload for Resource Prospector

    NASA Technical Reports Server (NTRS)

    Captain, Janine E.

    2015-01-01

    A short briefing in Power Point of the status of the OVEN subsystem and the LAVA subsystems of the RESOLVE payload being developed under the Resource Prospector mission. The purpose of the mission is to sample and analyze volatile ices embedded in the lunar soil at the poles of the Moon and is expected to be conducted in the 2020 time frame.

  5. Children's Use of Gesture to Resolve Lexical Ambiguity

    ERIC Educational Resources Information Center

    Kidd, Evan; Holler, Judith

    2009-01-01

    We report on a study investigating 3-5-year-old children's use of gesture to resolve lexical ambiguity. Children were told three short stories that contained two homonym senses; for example, "bat" (flying mammal) and "bat" (sports equipment). They were then asked to re-tell these stories to a second experimenter. The data were coded for the means…

  6. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  7. 13 CFR 120.314 - Resolving doubts about creditworthiness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... repayment ability. Personal guarantees of Associates are not required for purposes of DAL-1 financial... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Resolving doubts about creditworthiness. 120.314 Section 120.314 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION...

  8. 13 CFR 120.314 - Resolving doubts about creditworthiness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... repayment ability. Personal guarantees of Associates are not required for purposes of DAL-1 financial... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Resolving doubts about creditworthiness. 120.314 Section 120.314 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION...

  9. The Resolving Conflict Creatively Program: How We Know It Works

    ERIC Educational Resources Information Center

    Selfridge, Jennifer

    2004-01-01

    The Resolving Conflict Creatively Program (RCCP) is a K-12 program characterized by a comprehensive, multi-year strategy for preventing violence and creating caring and peaceable communities of learning that improve school success for all children. First developed as an initiative of the New York City Public Schools and the Educators for Social…

  10. Resolving Semantic Interference during Word Production Requires Central Attention

    ERIC Educational Resources Information Center

    Kleinman, Daniel

    2013-01-01

    The semantic picture-word interference task has been used to diagnose how speakers resolve competition while selecting words for production. The attentional demands of this resolution process were assessed in 2 dual-task experiments (tone classification followed by picture naming). In Experiment 1, when pictures and distractor words were presented…

  11. 30 CFR 706.19 - Resolving prohibited interests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certified true copy of the employee's statement and any other information pertinent to the Director... INTERIOR GENERAL RESTRICTION ON FINANCIAL INTERESTS OF FEDERAL EMPLOYEES § 706.19 Resolving prohibited interests. Actions to be taken by the Director, the heads of other Federal agencies, and the heads of...

  12. 30 CFR 705.19 - Resolving prohibited interests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the employee's statement and any other information pertinent to the Director's determination... INTERIOR GENERAL RESTRICTION ON FINANCIAL INTERESTS OF STATE EMPLOYEES § 705.19 Resolving prohibited... effect resolution. If an employee has a prohibited financial interest, the Head of the State...

  13. RESOLVE and ECO: Galaxy Refueling Transitions in Environmental Context

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Moffett, A. J.; Eckert, K. D.; Stark, D.; Norris, M. A.; Berlind, A. A.; the RESOLVE Team

    2014-01-01

    Recent work has demonstrated that galaxies undergo two key transitions in refueling. Below the threshold mass (baryonic mass Mbar 10^10 Msun or 125 km/s), gas-dominated late-type galaxies and blue, disk-building E/S0 galaxies become abundant, reflecting an increase in accretion-dominated states. Between the threshold mass and the bimodality mass (Mbar 10^10.6 Msun or 200 km/s), "normal" intermediate gas content bulged spiral galaxies like our Milky Way become most common, reflecting reduced accretion, while at higher masses quenched E/S0s start to dominate. Notwithstanding these results, the high scatter in gas and long-term star formation trends as a function of galaxy mass implies that mass is a secondary driver of refueling, motivating an inquiry into the role of environment. We present two surveys designed to meet this need: the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey and the Environmental COntext (ECO) catalog encompassing it. Initially selected from the SDSS, both surveys offer enhanced redshift completeness and custom reprocessed NUV+ugriz+JHK photometry. RESOLVE comprises >1500 galaxies down to baryonic mass ~10^9 Msun, for which we are building a comprehensive census of stellar, gas, and dynamical mass as well as star formation and environment data. The RESOLVE database includes spatially resolved optical spectroscopy from SOAR, SALT, and Gemini in both high-resolution kinematic mode and low-resolution stellar population mode, as well as deep 21cm observations from the GBT and Arecibo aimed at detecting HI down to 5%-10% of each galaxy's stellar mass. ECO has nearly ten times larger volume than RESOLVE, with matched environment and stellar mass metrics as well as shallower HI data inherited from the 21cm ALFALFA survey, but only SDSS spectroscopy. Here we use the first wave of gas, star formation, and environment data for RESOLVE and ECO to explore the halo mass dependence of refueling, finding that both gas-dominated galaxies and blue

  14. Static and time-resolved spectroscopic studies of low-symmetry Ru(II) polypyridyl complexes

    SciTech Connect

    Curtright, A.E.; McCusker, J.K.

    1999-09-02

    The spectroscopic and electrochemical properties of a series of four Ru{sup II} polypyridyl complexes are reported. Compounds of the form [Ru(dmb){sub x}(dea){sub 3{minus}x}]{sup 2+} (x = 0--3), where dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine and dea is 4,4{prime}-bis(diethylamino)-2,2{prime}-bipyridine, have been prepared and studied using static and time-resolved electronic and vibrational spectroscopies as a prelude to femtosecond spectroscopic studies of excited-state dynamics. Static electronic spectra in CH{sub 3}CN solution reveal a systematic shift of the MLCT absorption envelope from a maximum of 458 nm in the case of [Ru(dmb){sub 3}]{sup 2+} to 518 nm for [Ru(dea){sub 3}]{sup 2+} with successive substitutions of dea for dmb, suggesting a dea-based chromophore as the lowest-energy species. However, analysis of static and time-resolved emission data indicates an energy gap ordering of [Ru(dmb){sub 3}]{sup 2+} > [Ru(dmb){sub 2}(dea)]{sup 2+} > [Ru(dea){sub 3}]{sup 2+} > [Ru(dmb)(DEA){sub 2}]{sup 2+}, at variance with the electronic structures inferred from the absorption spectra. Nanosecond time-resolved electronic absorption and time-resolved step-scan infrared data are used to resolve this apparent conflict and confirm localization of the long-lived {sup 3}MLCT state on dmb in all three complexes where this ligand is present, thus making the dea-based excited state unique to [Ru(dea){sub 3}]{sup 2+}. Electrochemical studies further reveal the origin of this result, where a strong influence of the dea ligand on the oxidative Ru{sup II/III} couple, due to {pi} donation from the diethylamino substituent, is observed. The electronic absorption spectra are then reexamined in light of the now well-determined excited-state electronic structure. The results serve to underscore the importance of complete characterization of the electronic structures of transition metal complexes before embarking on ultrafast studies of their excited-state properties.

  15. Drug/protein interactions studied by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gustavsson, Thomas; Markovitsi, Dimitra; Vayá, Ignacio; Bonancía, Paula; Jiménez, M. C.; Miranda, Miguel A.

    2014-09-01

    We report here on a recent time-resolved fluorescence study [1] of the interaction between flurbiprofen (FBP), a chiral non-steroidal anti-inflammatory drug, and human serum albumin (HSA), the main transport protein in the human body. We compare the results obtained for the drug-protein complex with those of various covalently linked flurbiprofentryptophan dyads having well-defined geometries. In all cases stereoselective dynamic fluorescence quenching is observed, varying greatly from one system to another. In addition, the fluorescence anisotropy decays also display a clear stereoselectivity. For the drug-protein complexes, this can be interpreted in terms of the protein microenvironment playing a significant role in the conformational relaxation of FBP, which is more restricted in the case of the (R)- enantiomer.

  16. A phylogenomic approach to resolve the arthropod tree of life.

    PubMed

    Meusemann, Karen; von Reumont, Björn M; Simon, Sabrina; Roeding, Falko; Strauss, Sascha; Kück, Patrick; Ebersberger, Ingo; Walzl, Manfred; Pass, Günther; Breuers, Sebastian; Achter, Viktor; von Haeseler, Arndt; Burmester, Thorsten; Hadrys, Heike; Wägele, J Wolfgang; Misof, Bernhard

    2010-11-01

    Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.

  17. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay.

    PubMed

    Zhang, Zhaowei; Tang, Xiaoqian; Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia

    2015-01-01

    Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.

  18. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-05-01

    The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences.

  19. In situ, spatially resolved biosignature detection at the microbial scale

    NASA Astrophysics Data System (ADS)

    Williford, K. H.; Eigenbrode, J. L.; Hallmann, C.; Kitajima, K.; Kozdon, R.; Summons, R. E.; Kudryavstev, A.; Lepot, K.; Schopf, J.; Spicuzza, M.; Sugitani, K.; Ushikubo, T.; van Kranendonk, M.; Valley, J. W.

    2013-12-01

    Whether life has ever existed beyond Earth is one of the great human questions. The Science Definition Team (SDT) for the proposed NASA Mars 2020 rover mission recently announced a suggested approach for NASA to 'demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth' in part 'to investigate whether Mars was ever inhabited by microbial life.' The SDT further recommended a per-sample volume of 8 cm3 [1] (e.g., a core with a diameter of 1 cm and length of 10 cm). Such samples would be the first available for scientific inquiry with the potential to definitively answer the fundamental question of astrobiology, and their small volume would necessitate analysis with non- or minimally destructive techniques. Potential biosignatures include 'chemical, isotopic, mineralogical, and morphological features that can be created by life and also appear to be inconsistent with nonbiological processes'[1]. Guidelines for biosignature detection in extraterrestrial samples derive in part from the search for evidence of life in the most ancient sedimentary rocks on Earth, wherein the most compelling case for biogenicity is made when these 'chemical, isotopic, mineralogical, and morphological features' occur in association. Sedimentary rocks deposited on Earth prior to ~3.5 billion years ago (i.e., when persistent surface water [e.g., 2] likely supported habitable environments on Mars) have only very rarely escaped severe alteration by metamorphism and metasomatism. Understanding how these processes have operated on Earth through strategic interrogation of biosignature alteration records in (meta)sedimentary rocks is thus a critical task in the search for extraterrestrial life. Here we present techniques for and results of in situ, spatially resolved, non- or minimally destructive detection of morphological, elemental, molecular, and light stable isotopic biosignatures, as well as records of alteration, in

  20. De novo assembly of a haplotype-resolved human genome.

    PubMed

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  1. Spatially resolved argon microplasma diagnostics by diode laser absorption

    SciTech Connect

    Miura, Naoto; Hopwood, Jeffrey

    2011-01-01

    Microplasmas were diagnosed by spatially resolved diode laser absorption using the Ar 801.4 nm transition (1s{sub 5}-2p{sub 8}). A 900 MHz microstrip split ring resonator was used to excite the microplasma which was operated between 100-760 Torr (13-101 kPa). The gas temperatures and the Ar 1s{sub 5} line-integrated densities were obtained from the atomic absorption lineshape. Spatially resolved data were obtained by focusing the laser to a 30 {mu}m spot and translating the laser path through the plasma with an xyz microdrive. At 1 atm, the microplasma has a warm core (850 K) that spans 0.2 mm and a steep gradient to room temperature at the edge of the discharge. At lower pressure, the gas temperature decreases and the spatial profiles become more diffuse.

  2. Benchtop time-resolved magneto-optical Kerr magnetometer.

    PubMed

    Barman, Anjan; Kimura, T; Otani, Y; Fukuma, Y; Akahane, K; Meguro, S

    2008-12-01

    We present here the construction and application of a compact benchtop time-resolved Kerr magnetometer to measure the magnetization precession in magnetic thin films and lithographically patterned elements. As opposed to very expensive femtosecond lasers this system is built upon a picosecond pulsed injection diode laser and electronic pulse and delay generators. The precession is triggered by the electronic pulses of controlled duration and shape, which is launched onto the sample by a microstrip line. We used polarized optical pulses synchronous to the electronic pulses to measure the magneto-optical Kerr rotation. The system is integrated in a conventional upright microscope configuration with separate illumination, imaging, and magneto-optical probe paths. The system offers high stability, relative ease of alignment, sample changing, and a long range of time delay. We demonstrate the measurements of time-resolved dynamics of a Permalloy microwire and microdot using this system, which showed dynamics at two different time scales.

  3. Rotationally resolved near-infrared spectrum of HCBr

    SciTech Connect

    Chang, Bor-Chen; Sears, T.J.

    1996-12-31

    The rotationally resolved spectrum of bromomethylene (HCBr) in the vicinity of 12800 cm{sup -1} was obtained at Doppler-limited resolution using a transient frequency-modulation absorption technique. In contrast to the better studied halo-methylenes (HCF and HCCl), the number of experimental investigations on HCBr is very limited. Xu et al. reported the spectrum at visible wavelengths, but no rotational structure was resolved. Gilles et al. have used photoelectron spectroscopy to determine the singlet-triplet separation to be 2.6{+-}2.2 kcal/mol. Based upon previous studies, the authors tentatively assign the observed band to be the A{sup 1}A{double_prime}(0,2,0){r_arrow}x{sup 1}A{prime}(0,0,0) transition. The analysis of the observed spectrum will be discussed.

  4. Resolving the Shock Wave Profile in Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Jordan, Kenneth; Borg, John

    2011-06-01

    Capturing and modeling shock wave profiles has a long history in computational analysis. Often artificial irreversibilities and/or smearing schemes are implemented in order to stabilize and resolve the shock. This work presents a direct numeric simulation of the full Navier-Stokes equations where the shock profile is completely resolved without the use of artificial viscosity or shock smearing techniques. Several viscosity models are employed to study the role of viscosity on this second order accurate finite difference scheme. The results are compared to an analytic solutions and experimental results. The results indicated that the shock front thickness and entropy production are in good agreement with simple analytic solutions and experimental results. The extension of this technique to solid and granular materials will be discussed.

  5. The Wind Acceleration Region of Betelgeuse: Resolved at Centimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    O'Gorman, E.; Harper, G. M.; Brown, A.

    2015-08-01

    We present multi-epoch spatially resolved radio continuum observations of Betelgeuse (α Ori) at various combinations of wavelengths between 0.7 and 6.1 cm. We used the Very Large Array in the A configuration with the Pie Town antenna to spatially resolve its atmosphere at 0.7, 1.3, 2.0, and 6.1 cm at all epochs. Our findings are similar to those of Lim et al. (1998) in that Betelgeuse's opaque atmosphere extends from 2 to 6 R* between 0.7 and 6.1 cm with temperatures decreasing from ˜3000 to 1800 K, respectively. We find no evidence of radio hotspots at any epochs even though we have sufficient spatial resolution and sensitivity at 0.7 and 1.3 cm to detect the hotspots recently reported with e-MERLIN at 5.2 cm.

  6. The Spatially Resolved Star Formation History of NGC 300

    NASA Astrophysics Data System (ADS)

    Gogarten, S. M.; Dalcanton, J. J.; Williams, B. F.

    2009-01-01

    We present the star formation histories (SFH) of two regions in NGC 300 from the ACS Nearby Galaxies Survey Treasury (ANGST). ANGST is using the Hubble Space Telescope (HST) to determine the star formation histories of a volume-limited sample of nearby galaxies. We demonstrate that even small regions within a galaxy contain enough stars to derive the SFH by comparing color-magnitude diagrams (CMDs) of the resolved stellar populations to synthetic CMDs from stellar evolution models. Of the two regions selected, one can be identified as star-forming from its UV, Hα, and dust emission. The SFH of this region shows significant star formation over the past 10 Myr, unlike a non-star-forming region of the same size. These preliminary results will form the basis of a larger study of spatially-resolved star formation in nearby spirals.

  7. Resolving high energy emission of jets using strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna

    2014-11-01

    Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.

  8. Time resolved optical tomography of the human forearm

    NASA Astrophysics Data System (ADS)

    Hillman, Elizabeth M. C.; Hebden, Jeremy C.; Schweiger, Martin; Dehghani, Hamid; Schmidt, Florian E. W.; Delpy, David T.; Arridge, Simon R.

    2001-04-01

    A 32-channel time-resolved optical imaging instrument has been developed principally to study functional parameters of the new-born infant brain. As a prelude to studies on infants, the device and image reconstruction methodology have been evaluated on the adult human forearm. Cross-sectional images were generated using time-resolved measurements of transmitted light at two wavelengths. All data were acquired using a fully automated computer-controlled protocol. Images representing the internal scattering and absorbing properties of the arm are presented, as well as images that reveal physiological changes during a simple finger flexion exercise. The results presented in this paper represent the first simultaneous tomographic reconstruction of the internal scattering and absorbing properties of a clinical subject using purely temporal data, with additional co-registered difference images showing repeatable absorption changes at two wavelengths in response to exercise.

  9. Time resolved optical tomography of the human forearm.

    PubMed

    Hillman, E M; Hebden, J C; Schweiger, M; Dehghani, H; Schmidt, F E; Delpy, D T; Arridge, S R

    2001-04-01

    A 32-channel time-resolved optical imaging instrument has been developed principally to study functional parameters of the new-born infant brain. As a prelude to studies on infants, the device and image reconstruction methodology have been evaluated on the adult human forearm. Cross-sectional images were generated using time-resolved measurements of transmitted light at two wavelengths. All data were acquired using a fully automated computer-controlled protocol. Images representing the internal scattering and absorbing properties of the arm are presented, as well as images that reveal physiological changes during a simple finger flexion exercise. The results presented in this paper represent the first simultaneous tomographic reconstruction of the internal scattering and absorbing properties of a clinical subject using purely temporal data, with additional co-registered difference images showing repeatable absorption changes at two wavelengths in response to exercise.

  10. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  11. Resolving conflicts in water sharing: A systemic approach

    NASA Astrophysics Data System (ADS)

    Nandalal, K. D. W.; Simonovic, S. P.

    2003-12-01

    With industrial development and economic growth, conflicts over use and allocation of water have been increasing. Though diverse efforts have been made toward resolving conflicts through computer-based models, its clear understanding is prerequisite for models to be effective. A systems view illuminates how people think and consequences of their thoughts and actions on results and thus helps to achieve sustainable solutions. This paper presents a systemic approach to assist stakeholders in two different jurisdictions in a hypothetical water resource system to resolve a potential water-sharing conflict. A causal loop diagram developed provides an understanding of the conflict dynamics and feedback nature. A system dynamics simulation model developed fitting the causal diagram offers a significant opportunity to explore conflict's behavior and resolution with respect to final water allocations and time necessary to reach an agreement. The impact of initial aspiration, influence on system and struggle of stakeholders is discussed in detail.

  12. Resolving fundamental limits of adhesive bonding in microfabrication.

    SciTech Connect

    Hall, Jessica S.; Frischknecht, Amalie Lucile; Emerson, John Allen; Adkins, Douglas Ray; Kent, Michael Stuart; Read, Douglas H.; Giunta, Rachel Knudsen; Lamppa, Kerry P.; Kawaguchi, Stacie; Holmes, Melissa A.

    2004-04-01

    As electronic and optical components reach the micro- and nanoscales, efficient assembly and packaging require the use of adhesive bonds. This work focuses on resolving several fundamental issues in the transition from macro- to micro- to nanobonding. A primary issue is that, as bondline thicknesses decrease, knowledge of the stability and dewetting dynamics of thin adhesive films is important to obtain robust, void-free adhesive bonds. While researchers have studied dewetting dynamics of thin films of model, non-polar polymers, little experimental work has been done regarding dewetting dynamics of thin adhesive films, which exhibit much more complex behaviors. In this work, the areas of dispensing small volumes of viscous materials, capillary fluid flow, surface energetics, and wetting have all been investigated. By resolving these adhesive-bonding issues, we are allowing significantly smaller devices to be designed and fabricated. Simultaneously, we are increasing the manufacturability and reliability of these devices.

  13. Digital resolver for helicopter model blade motion analysis

    NASA Technical Reports Server (NTRS)

    Daniels, T. S.; Berry, J. D.; Park, S.

    1992-01-01

    The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.

  14. Depth-resolved fluorescence of human ectocervical tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-04-01

    The depth-resolved autofluorescence of normal and dysplastic human ectocervical tissue within 120um depth were investigated utilizing a portable confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of all ectocervical tissue samples, strong keratin fluorescence with the spectral characteristics similar to collagen was observed, which created serious interference in seeking the correlation between tissue fluorescence and tissue pathology. While from the underlying non-keratinizing epithelial layer, the measured NADH fluorescence induced by 355nm excitation and FAD fluorescence induced by 457nm excitation were strongly correlated to the tissue pathology. The ratios between NADH over FAD fluorescence increased statistically in the CIN epithelial relative to the normal and HPV epithelia, which indicated increased metabolic activity in precancerous tissue. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  15. Resolving Rapid Variation in Energy for Particle Transport

    SciTech Connect

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra; Till, Andrew Thomas; Lowrie, Robert Byron

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  16. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  17. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    SciTech Connect

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  18. Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes

    NASA Astrophysics Data System (ADS)

    Eastham, Sebastian D.; Jacob, Daniel J.

    2017-02-01

    Quasi-horizontal chemical plumes in the free troposphere can preserve their concentrated structure for over a week, enabling transport on intercontinental scales with important environmental impacts. Global Eulerian chemical transport models (CTMs) fail to preserve these plumes due to fast numerical dissipation. We examine the causes of this dissipation and how it can be cured. Goddard Earth Observing System (GEOS-5) meteorological data at 0.25° × 0.3125° horizontal resolution and ˜ 0.5 km vertical resolution in the free troposphere are used to drive a worldwide ensemble of GEOS-Chem CTM plumes at resolutions from 0.25° × 0.3125° to 4° × 5°, in both 2-D (horizontal) and 3-D. Two-dimensional simulations enable examination of the sensitivity of numerical dissipation to grid resolution. We show that plume decay is driven by flow divergence and shear, filamenting the plumes until GEOS-Chem's high-order advection scheme cannot resolve gradients and fast numerical diffusion ensues. This divergence can be measured by the Lyapunov exponent (λ) of the flow. Dissipation of plumes is much faster at extratropical latitudes than in the tropics and this can be explained by stronger divergence. The plume decay constant (α) is linearly related to λ, and increasing grid resolution provides only modest benefits toward plume preservation. Three-dimensional simulations show near-complete dissipation of plumes within a few days, independent of horizontal grid resolution and even in the tropics. This is because vertical grid resolution is inadequate in all cases to properly resolve plume gradients. We suggest that finer vertical grid resolution in the free troposphere is essential for models to resolve intercontinental plumes, while current horizontal resolution in these models (˜ 1°) is sufficient.

  19. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  20. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  1. Resolving Conflicts between Agriculture and the Natural Environment.

    PubMed

    Tanentzap, Andrew J; Lamb, Anthony; Walker, Susan; Farmer, Andrew

    2015-01-01

    Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future.

  2. Resolving Conflicts between Agriculture and the Natural Environment

    PubMed Central

    Tanentzap, Andrew J.; Lamb, Anthony; Walker, Susan; Farmer, Andrew

    2015-01-01

    Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future. PMID:26351851

  3. Momentum Resolved Radio Frequency Spectroscopy in Trapped Fermi Gases

    SciTech Connect

    Chen Qijin; Levin, K.

    2009-05-15

    We address recent momentum-resolved radio frequency (rf) spectroscopy experiments, showing how they yield more stringent tests than other comparisons with theory, associated with the ultracold Fermi gases. We demonstrate that, by providing a clear dispersion signature of pairing, they remove the ambiguity plaguing the interpretation of previous rf experiments. Our calculated spectral intensities are in semiquantitative agreement with the data. Even in the presence of a trap, the spectra are predicted to exhibit two BCS-like branches.

  4. Microsecond-resolved SDR-based cavity ring down ellipsometry.

    PubMed

    Sofikitis, D; Spiliotis, A K; Stamataki, K; Katsoprinakis, G E; Bougas, L; Samartzis, P C; Loppinet, B; Rakitzis, T P; Surligas, M; Papadakis, S

    2015-06-20

    We present an experimental apparatus that allows microsecond-resolved ellipsometric and absorption measurements. The apparatus is based on an optical cavity containing a Dove prism, in which light undergoes total internal reflection (TIR), while the data acquisition is based on software defined radio technology and custom-built drivers. We demonstrate the ability to sense rapid variations in the refractive index above the TIR interface for arbitrarily long times with a temporal resolution of at least 2 μs.

  5. The dynamics of spatially-resolved laser eigenstates

    SciTech Connect

    Bretenaker, F.; LeFloch, A. )

    1990-09-01

    The existence of partially spatially-resolved laser eigenstates is proven, using the polarization walkoff provided by an uniaxial birefringent crystal. The coupling between the ordinary and extraordinary eigenstates is shown to depend drastically on the relative positions of the different elements in the cavity, leading to different eigenstates dynamics. Rotation and inhibition vectorial bistability and vectorial simultaneity are successively isolated, the removal of the transversal degeneracy of the two eigenstates allowing a simple eigenstate selection.

  6. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  7. Refinement of thermal imager minimum resolvable temperature difference calculating method

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Mykytenko, V. I.

    2015-11-01

    Calculating methods, which accurately predict minimum resolvable temperature difference (MRTD), are of significant interest for many years. The article deals with improvement the accuracy of determining the thermal imaging system MRTD by elaboration the visual perception model. We suggest MRTD calculating algorithm, which is based on a reliable approximation of the human visual system modulation transfer function (MTF) proposed by N. Nill. There was obtained a new expression for the bandwidth evaluation, which is independent of angular size of the Foucault bar target.

  8. Studying the Stereochemistry of Naproxen Using Rotationally Resolved Electronic Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2009-06-01

    Many biochemical processes are stereospecific. An example is the physiological response to a drug that depends on its enantiomeric form. Naproxen is a drug which shows this stereo-specific physiological response. To better understand the stereo specificity of chiral substances, we observed the S_1←S_0 transitions of R- and S-naproxen in the gas phase using rotationally resolved electronic spectroscopy. The results will be discussed.

  9. Resolvent estimates for perturbations by large magnetic potentials

    SciTech Connect

    Cardoso, Fernando Cuevas, Claudio; Vodev, Georgi

    2014-02-15

    We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form G = −Δ + ib(x) · ∇ + i∇ · b(x) + V(x) on L{sup 2}(R{sup n}), n ⩾ 3, where b(x) and V(x) are large magnetic and electric potentials, respectively. No continuity of the magnetic potential is assumed.

  10. Rotationally resolved fluorescence as a probe of molecular photoionization dynamics

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-11-01

    We present rotationally resolved data for the v'=0 and v'=1 levels of N2+(B 2Σu+) produced via 2σu-1 photoionization of N2. The data are obtained over a broad photon energy range (19≤hνexc≤35 eV). This is made possible by using synchrotron radiation excitation in conjunction with dispersed fluorescence detection. The results exhibit both resonant and nonresonant effects.

  11. Identification of Novel Chondroprotective Mediators in Resolving Inflammatory Exudates.

    PubMed

    Kaneva, Magdalena K; Greco, Karin V; Headland, Sarah E; Montero-Melendez, Trinidad; Mori, Prashant; Greenslade, Kevin; Pitzalis, Costantino; Moore, Adrian; Perretti, Mauro

    2017-04-01

    We hypothesized that exudates collected at the beginning of the resolution phase of inflammation might be enriched for tissue protective molecules; thus an integrated cellular and molecular approach was applied to identify novel chondroprotective bioactions. Exudates were collected 6 h (inflammatory) and 24 h (resolving) following carrageenan-induced pleurisy in rats. The resolving exudate was subjected to gel filtration chromatography followed by proteomics, identifying 61 proteins. Fractions were added to C28/I2 chondrocytes, grown in micromasses, ions with or without IL-1β or osteoarthritic synovial fluids for 48 h. Three proteins were selected from the proteomic analysis, α1-antitrypsin (AAT), hemopexin (HX), and gelsolin (GSN), and tested against catabolic stimulation for their effects on glycosaminoglycan deposition as assessed by Alcian blue staining, and gene expression of key anabolic proteins by real-time PCR. In an in vivo model of inflammatory arthritis, cartilage integrity was determined histologically 48 h after intra-articular injection of AAT or GSN. The resolving exudate displayed protective activities on chondrocytes, using multiple readouts: these effects were retained in low m.w. fractions of the exudate (46.7% increase in glycosaminoglycan deposition; ∼20% upregulation of COL2A1 and aggrecan mRNA expression), which reversed the effect of IL-1β. Exogenous administration of HX, GSN, or AAT abrogated the effects of IL-1β and osteoarthritic synovial fluids on anabolic gene expression and increased glycosaminoglycan deposition. Intra-articular injection of AAT or GSN protected cartilage integrity in mice with inflammatory arthritis. In summary, the strategy for identification of novel chondroprotective activities in resolving exudates identified HX, GSN and AAT as potential leads for new drug discovery programs.

  12. Spectral angle resolved scattering of thin film coatings.

    PubMed

    Schröder, Sven; Unglaub, David; Trost, Marcus; Cheng, Xinbin; Zhang, Jinlong; Duparré, Angela

    2014-02-01

    The light scattering of interference coatings is strongly dependent on the wavelength. In addition to the general strong increase of scattering as the wavelengths get shorter, dramatic scatter effects in and around the resonance regions can occur. This is discussed in detail for highly reflective and chirped mirrors. A new instrument is presented which enables spectral angle resolved scatter measurements of high-quality optical components to be performed between 250 and 1500 nm.

  13. ATTACK WARNING: Better Management Required to Resolve NORAD Integration Deficiencies

    DTIC Science & Technology

    1989-07-01

    WAHNGO D.C.9’𔄃- 2030-710 Accession Number: 1923 Publication Date: Jul 07, 1989 Title: Attack Warning : Better Management Required to Resolve NORAD...Office, GAO, Washington, DC 20548 Report Number: GAO/IMTEC-89- 26 Descriptors, Keywords: Surveillance Warning Communication Attack Methodology Evaluation...Integrated Tactical Warning and Attack Assessment System’s data processing and communications capabilities. Our review focused on the Air Force’s

  14. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  15. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  16. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  17. Time Resolved Measurements and Reactive Pathways of Hypergolic Bipropellant Combustion

    DTIC Science & Technology

    2006-03-31

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...0704-0188,) Washington, DC 20503. 1 . AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE 5...Standard Form 298 (Rev.2-89) Prescribed by ANSI Std. 239-18 298-102 Enclosure 1 03/31/06 Final Report 01 Aug 02 - 31 Dec 05 TIME RESOLVED

  18. A Spatially - Resolved Study of the GRB 020903 Host Complex

    NASA Astrophysics Data System (ADS)

    Thorp, Mallory; Levesque, Emily M.

    2017-01-01

    The host complex of GRB 020903 is one of only a few long-duration gamma ray burst (GRB) environments where spatially-resolved observations are possible. It may also be the only known GRB host consisting of multiple interacting components, as well as an active galactic nucleus. We were granted 4.5 hours of observing time on the Gemini Multi-Object Spectrograph (South) to obtain spatially resolved spectra of the GRB 020903 host complex. Using long-slit observations at two different position angles we were able to obtain optical spectra of the four main regions of the GRB host, with a spectral range of 3600 - 9000 Å. From this data we discern the redshift of each region to confirm that they comprise a single interacting system at an approximate redshift of z ~ 0.251. We also measure the metallicity, star formation rate, and young stellar population age of each region to create a spatially-resolved map of these parameters for the larger host complex. Based on the distribution of these characteristics we determine whether the localized GRB explosion site is representative of the host complex as a whole, or localized in a metal-poor or strongly star-forming region. Lastly, we consider the dynamics and past interactions of the host complex, studying the strongest emission lines for signs of potential inflows or outflows through each region.

  19. Sub pixel location identification using super resolved multilooking CHRIS data

    NASA Astrophysics Data System (ADS)

    Sahithi, V. S.; Agrawal, S.

    2014-11-01

    CHRIS /Proba is a multiviewing hyperspectral sensor that monitors the earth in five different zenith angles +55°, +36°, nadir, -36° and -55° with a spatial resolution of 17 m and within a spectral range of 400-1050 nm in mode 3. These multiviewing images are suitable for constructing a super resolved high resolution image that can reveal the mixed pixel of the hyperspectral image. In the present work, an attempt is made to find the location of various features constituted within the 17m mixed pixel of the CHRIS image using various super resolution reconstruction techniques. Four different super resolution reconstruction techniques namely interpolation, iterative back projection, projection on to convex sets (POCS) and robust super resolution were tried on the -36, nadir and +36 images to construct a super resolved high resolution 5.6 m image. The results of super resolution reconstruction were compared with the scaled nadir image and bicubic convoluted image for comparision of the spatial and spectral property preservance. A support vector machine classification of the best super resolved high resolution image was performed to analyse the location of the sub pixel features. Validation of the obtained results was performed using the spectral unmixing fraction images and the 5.6 m classified LISS IV image.

  20. Phase-resolved acoustic radiation force optical coherence elastography.

    PubMed

    Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping

    2012-11-01

    Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.

  1. Time-resolved Raman spectroscopy for in situ planetary mineralogy.

    PubMed

    Blacksberg, Jordana; Rossman, George R; Gleckler, Anthony

    2010-09-10

    Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach.

  2. Angle-resolved effective potentials for disk-shaped molecules

    SciTech Connect

    Heinemann, Thomas Klapp, Sabine H. L.; Palczynski, Karol Dzubiella, Joachim

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  3. Angle-resolved effective potentials for disk-shaped molecules.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  4. Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC).

    PubMed

    Huang, Yining; Nie, Yongxin; Boyes, Barry; Orlando, Ron

    2016-09-01

    The ability to resolve glycans while attached to tryptic peptides would greatly facilitate glycoproteomics, as this would enable site-specific glycan characterization. Peptide/glycopeptide separations are typically performed using reversed-phase liquid chromatography (RPLC), where retention is driven by hydrophobic interaction. As the hydrophilic glycans do not interact significantly with the RPLC stationary phase, it is difficult to resolve glycopeptides that differ only in their glycan structure, even when these differences are large. Alternatively, glycans interact extensively with the stationary phases used in hydrophilic interaction chromatography (HILIC), and consequently, differences in glycan structure have profound chromatographic shifts in this chromatographic mode. Here, we evaluate HILIC for the separation of isomeric glycopeptide mixtures that have the same peptide backbone but isomeric glycans. Hydrophilic functional groups on both the peptide and the glycan interact with the HILIC stationary phase, and thus, changes to either of these moieties can alter the chromatographic behavior of a glycopeptide. The interactive processes permit glycopeptides to be resolved from each other based on differences in their amino acid sequences and/or their attached glycans. The separations of glycans in HILIC are sufficient to permit resolution of isomeric N-glycan structures, such as sialylated N-glycan isomers differing in α2-3 and α2-6 linkages, while these glycans remain attached to peptides.

  5. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  6. Lensless single-exposure super-resolved interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Granero, Luis; Ferreira, Carlos; García, Javier; Micó, Vicente

    2013-04-01

    Single Exposure Super Resolved Interferometric Microscopy (SESRIM) has been recently proposed as a way to achieve one dimensional super resolved imaging in digital holographic microscopy. SESRIM uses Red-Green-Blue (RGB) multiplexing for illuminating the sample having different propagation angles for each one of the three illumination wavelengths and it has been experimentally validated considering color (A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, "Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing," Opt. Lett. 36, 885-887, 2011) and monochrome (A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, "Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor," J. Opt. Soc. Am. A 28, 2346-2358, 2011) digital sensors for holographic recording. In this contribution, we will first review some of the characteristics of the previously reported SESRIM approaches and second, we will present preliminary results for the extension of SESRIM to the field of lensless holographic microscopy. Experimental results are reported validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).

  7. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    PubMed Central

    Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311

  8. Time-resolved single dopant charge dynamics in silicon

    PubMed Central

    Rashidi, Mohammad; Burgess, Jacob A. J.; Taucer, Marco; Achal, Roshan; Pitters, Jason L.; Loth, Sebastian; Wolkow, Robert A.

    2016-01-01

    As the ultimate miniaturization of semiconductor devices approaches, it is imperative that the effects of single dopants be clarified. Beyond providing insight into functions and limitations of conventional devices, such information enables identification of new device concepts. Investigating single dopants requires sub-nanometre spatial resolution, making scanning tunnelling microscopy an ideal tool. However, dopant dynamics involve processes occurring at nanosecond timescales, posing a significant challenge to experiment. Here we use time-resolved scanning tunnelling microscopy and spectroscopy to probe and study transport through a dangling bond on silicon before the system relaxes or adjusts to accommodate an applied electric field. Atomically resolved, electronic pump-probe scanning tunnelling microscopy permits unprecedented, quantitative measurement of time-resolved single dopant ionization dynamics. Tunnelling through the surface dangling bond makes measurement of a signal that would otherwise be too weak to detect feasible. Distinct ionization and neutralization rates of a single dopant are measured and the physical process controlling those are identified. PMID:27782125

  9. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  10. Angle-resolved effective potentials for disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2014-12-01

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  11. Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

    SciTech Connect

    Alam, Todd M.

    2015-09-01

    This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~μm length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

  12. Anti-Inflammatory and Pro-Resolving Lipid Mediators

    PubMed Central

    Serhan, Charles N.; Yacoubian, Stephanie; Yang, Rong

    2009-01-01

    The popular view that all lipid mediators are pro-inflammatory arises largely from the finding that non-steroidal anti-inflammatory drugs block the biosynthesis of prostaglandins. The resolution of inflammation was widely held to be a passive event until recently, with the characterization of novel biochemical pathways and lipid-derived mediators that are actively turned on in resolution possessing potent anti-inflammatory and pro-resolving actions. A lipid mediator informatics approach was employed to systematically identify new families of endogenous local-acting mediators from omega-3-polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) in resolving exudates in addition to the lipoxins and aspirin-triggered lipoxins generated from arachidonic acid. These new chemical mediator families were coined resolvins and protectins, given their potent bioactions. In this annual review, we present recent advances on the biosynthesis and stereospecific actions of these new pro-resolving mediators, which have also proven to be organ protective and anti-fibrotic. PMID:18233953

  13. Spectrally resolved bioluminescence tomography using the reciprocity approach

    PubMed Central

    Dehghani, Hamid; Davis, Scott C.; Pogue, Brian W.

    2008-01-01

    Spectrally resolved bioluminescence optical tomography is an approach to recover images of, for example, Luciferase activity within a volume using multiwavelength emission data from internal bioluminescence sources. The underlying problem of uniqueness associated with nonspectrally resolved intensity-based bioluminescence tomography is demonstrated and it is shown that using a non-negative constraint inverse algorithm, an accurate solution for the source distribution can be calculated from the measured data. Reconstructed images of bioluminescence are presented using both simulated complex and heterogeneous small animal models as well as real multiwavelength data from a tissue-simulating phantom. The location of the internal bioluminescence source using experimental data is obtained with 0.5 mm accuracy and it is shown that small (2.5 mm diameter) sources of up to 12.5 mm deep, within a complex mouse model, can be resolved accurately using a single view data collection strategy. Finally, using the reciprocity approach for image reconstruction, a dramatic improvement in computational time is shown without loss to image accuracy with both experimental and simulated data, potentially reducing computing time from 402 to 3.75 h. PMID:19070220

  14. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  15. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    SciTech Connect

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons; Boye, Pit; Schroer, Christian G.; Glatzel, Pieter; Borca, Camelia N.; Beckmann, Felix

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data

  16. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    SciTech Connect

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  17. Resolving two beams in beam splitters with a beam position monitor

    SciTech Connect

    Kurennoy, S.

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  18. Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Katika, Kamal M.; Pilon, Laurent

    2007-06-01

    The goal of this study is to test the feasibility of using an embedded time-resolved fluorescence sensor for monitoring glucose concentration. Skin is modeled as a multilayer medium with each layer having its own optical properties and fluorophore absorption coefficients, lifetimes, and quantum yields obtained from the literature. It is assumed that the two main fluorophores contributing to the fluorescence at these excitation and emission wavelengths are nicotinamide adenine dinucleotide (NAD)H and collagen. The intensity distributions of excitation and fluorescent light in skin are determined by solving the transient radiative transfer equation by using the modified method of characteristics. The fluorophore lifetimes are then recovered from the simulated fluorescence decays and compared with the actual lifetimes used in the simulations. Furthermore, the effect of adding Poissonian noise to the simulated decays on recovering the lifetimes was studied. For all cases, it was found that the fluorescence lifetime of NADH could not be recovered because of its negligible contribution to the overall fluorescence signal. The other lifetimes could be recovered to within 1.3% of input values. Finally, the glucose concentrations within the skin were recovered to within 13.5% of their actual values, indicating a possibility of measuring glucose concentrations by using a time-resolved fluorescence sensor.

  19. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    NASA Astrophysics Data System (ADS)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  20. On the roles of baroclinic modes in eddy-resolving midlatitude ocean dynamics

    NASA Astrophysics Data System (ADS)

    Shevchenko, Igor; Berloff, Pavel

    2017-03-01

    This work concerns how different baroclinic modes interact and influence solutions of the midlatitude ocean dynamics described by the eddy-resolving quasi-geostrophic model of wind-driven gyres. We developed multi-modal energetics analysis to illuminate dynamical roles of the vertical modes, carried out a systematic analysis of modal energetics and found that the eddy-resolving dynamics of the eastward jet extension of the western boundary currents, such as the Gulf Stream or Kuroshio, is dominated by the barotropic, and the first and second baroclinic modes, which become more energized with smaller eddy viscosity. In the absence of high baroclinic modes, the energy input from the wind is more efficiently focused onto the lower modes, therefore, the eddy backscatter maintaining the eastward jet and its adjacent recirculation zones is the strongest and overestimated with respect to cases including higher baroclinic modes. In the presence of high baroclinic modes, the eddy backscatter effect on the eastward jet is much weaker. Thus, the higher baroclinic modes play effectively the inhibiting role in the backscatter, which is opposite to what has been previously thought. The higher baroclinic modes are less energetic and have progressively decreasing effect on the flow dynamics; nevertheless, they still play important roles in inter-mode energy transfers (by injecting energy into the region of the most intensive eddy forcing, in the neighborhood of the eastward jet) that have to be taken into account for correct representation of the backscatter and, thus, for determining the eastward jet extension.

  1. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; Geiger, James V.

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  2. Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

    PubMed Central

    Bazrafkan, Sh; Kazemi, K

    2014-01-01

    Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue. Methods: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. Each method is introduced and discussed. Then, the optimized model is prepared for numerical simulations. In this paper, the finite element method is used for solving the diffusion equation numerically. Results: Diffusion equation was solved for realistic human head model using finite element approach for a point light source and time resolved case. The photon intensity distribution in different head layers has been shown and the intensity orientation via the CSF layer has been illustrated. Conclusion: Simulating the photon transformation inside the tissue is essential for investigating the NIRS imaging technique. The finite element approach is a fast and accurate method for simulating this fact. The time resolved approach of this technique could illustrate the photon migration and intensity orientation in the tissue for time dependent light sources in tissues. PMID:25505770

  3. Laurent expansion for the determinant of the matrix of scalar resolvents

    NASA Astrophysics Data System (ADS)

    Savchenko, S. V.

    2005-06-01

    Let A be an arbitrary square matrix, \\lambda an eigenvalue of it, \\{\\xi_{1},\\dots,\\xi_{r}\\} and \\{\\eta_{1},\\dots,\\eta_{r}\\} two systems of linearly independent vectors. A representation of the matrix of scalar resolvents, with ijth entry equal by definition to (\\xi_{i},(zE-A)^{-1}\\eta_{j}), in the form of the product of three matrices \\Xi,\\Delta(z), and \\Psi^{T} is obtained, only one of which, \\Delta(z), depends on z and is a rational function of z. On the basis of this factorization and the Binet-Cauchy formula a method for finding the principal part of the Laurent series at the point z=\\lambda for the determinant of the matrix of scalar resolvents is put forward and the first two coefficients of the series are found. In the case when at least one of them is distinct from zero, the change after the transition from A to A+B of the part of the Jordan normal form corresponding to \\lambda is determined, where B=\\sum_{i=1}^{r}(\\,\\cdot\\,,\\xi_{i})\\eta_{i} is the operator of rank r associated with the systems of vectors \\{\\xi_{1},\\dots,\\xi_{r}\\} and \\{\\eta_{1},\\dots,\\eta_{r}\\}; and the Jordan basis for the corresponding root subspace of A+B is constructed from Jordan chains of A.

  4. Time-resolved microscopy studies of laser damage dynamics at 0.5-1ps, 1030nm

    NASA Astrophysics Data System (ADS)

    Gallais, L.; Ollé, A.; Sozet, M.; Berthelot, J.; Monneret, S.; Néauport, J.; Lamaignère, L.

    2016-12-01

    Based on an experimental system that can be used for simultaneous laser damage testing and time-resolved acquisition of intensity and phase images, we describe different experiments related to the study of laser damage process in the sub-picosecond regime. We report firstly on quantitative measurement of the Kerr effect in a fused silica substrate at fluences closed to the Laser Induced Damage Threshold. Then we study the damage initiation process in optical coatings, linked to intrinsic properties of the materials, and the dynamics of free electron generation and relaxation. At last, damage growth sequences are analyzed with time-resolved microscopy in order to understand laser damage growth in the case of High Reflective mirrors.

  5. RESOLVE: Bridge between early lunar ISRU and science objectives

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    and make direct measurements. With this in mind, NASA initiated development of a payload named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the lunar poles and answer the questions surrounding the hydrogen: what's its form? how much is there? how deep or distributed is it? To do this, RESOLVE will use a drill to take a 1-2 meter core sample, crush and heat sample segments of the core in an oven and monitor the amount and type of volatile gases that evolve with a gas chromatograph (GC). RESOLVE will also selectively capture both hydrogen gas and water as a secondary method of quantification. A specialized camera that is coupled with a Raman spectrometer will allow core samples to be microscopically examined while also determining its mineral composition and possible water content before heating. Because RESOLVE is aimed at demonstrating capabilities and techniques that might be later used for ISRU, a multi-use oven is utilized with the ability to produce oxygen using the hydrogen reduction method. SCIENCE BENEFITS: In the process of answering the hydrogen question, the RESOLVE instrument suite will provide data that can address a number of other scientific questions and debate issues, especially the sources of volatiles and reactions that might take place in cold traps. It should be noted that the original instrument suite for RESOLVE was selected to accomplish the largest number of ISRU and science objectives as possible within the limited funding available. Complementary instruments are noted when additional science objectives can be accomplished. Incorporation of these new instruments into RESOLVE and potential partnerships is an area of near-term interest. Sources of Volatiles: The main proposed sources are episodic comet impacts, moreor- less continuous micrometeorite (both comet and asteroidal) impacts, solar wind bombardment, occasional volcanic emissions from the interior, and episodic delivery of

  6. Intussusception in gestational choriocarcinoma (not histologically proven), resolving spontaneously with chemotherapy.

    PubMed

    Ramessur, Anisha; Openshaw, Mark; Sarwar, Naveed

    2015-09-29

    We present a rare case of advanced gestational choriocarcinoma with small bowel metastatic involvement and intussusception, which presented acutely as a lower gastrointestinal bleed with symptomatic anaemia and haemoglobin 3.8 g/dL in a young woman. A diagnosis of gestational choriocarcinoma was made without biopsy, using a combination of clinical history, isolated elevated human chorionic gonadotropin markers of 77,000 IU/mL and radiological findings. Surgical intervention was too high risk due to the presence of active bleeding and increased vascularity surrounding the intussusception. Owing to the highly responsive nature of gestational choriocarcinoma to chemotherapy, frontline chemotherapy alone was used to reduce the size of the metastatic small bowel deposits, with subsequent resolution of the bleeding and intussusception. This is the first time chemotherapy alone has been used to successfully resolve small bowel intussusception secondary to metastatic choriocarcinoma that has been documented according to PubMed searches.

  7. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  8. Rotationally-resolved excitation spectroscopy of the alkoxy and alkylthio radicals in a supersonic jet

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Zhu, Xinming; Bryant, Hosie L.; Kamal, Mohammed M.

    1993-01-01

    Rotationally-resolved laser excitation spectra have been obtained for the alkoxy radicals (CH3O, C2H5O, i-C3H7O) and the alkylthio radicals (CH3S, C2H5S, i-C3H7S) in a supersonic jet expansion. Low resolution (0.2/cm) excitation spectra have helped identify several vibronic bands belonging to the A-X electronic system for these jet-cooled free radicals. High resolution (0.07/cm) laser-induced fluorescence excitation spectra have aided the unraveling of the associated rotational structure and in certain cases (CH3O and CH3S, for example) enabled explicit rotational (J,K) assignments of the transitions.

  9. Sensitivity studies of developing convection in a cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Petch, J. C.

    2006-01-01

    Cloud-resolving models (CRMs) remain an important tool for providing detailed process information about convection. In this short paper I focus on the development of deep convection and consider what can be considered a minimum expense benchmark simulation for comparison with a numerical weather-prediction model. To decide this a range of sensitivity studies are presented to aspects of the experimental set-up which strongly impact the computational expense. Many of the sensitivities shown in these CRM experiments are quite different to those seen in previous papers which have tended to focus more on deep active convection. Here it is shown that for the case-study presented a minimum expense benchmark simulation must be a 3D simulation. A 200 m horizontal grid length and a domain of 25 km are also required to capture the most important processes.

  10. Preparation and Testing of Ice-Enriched Lunar Regolith Simulant for RESOLVE OVEN

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie; Paz, Aaron; Smith, Matt

    2011-01-01

    The RESOLVE (Regolith and Environment Science and Oxygen and Lunar Volatile Extraction) project seeks to deploy a robotic ISRU lander at the lunar south pole to determine the accessibility of frozen ice and the resource potential at various locations. The OVEN (Oxygen and Volatiles Extraction Node) component will be used to heat samples to 150 C or higher in order to drive off ice and other volatiles, which will then be identified and measured. An ice volatilization system has been developed to specifically collect data on the extraction of water vapor from a sample. Testing of the system was begun in April of this year. This report addresses our current work to test the system in a relevant environment in this case, using simulants with up to 10wt% water ice at 76K, in reduced atmosphere.

  11. Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art

    NASA Astrophysics Data System (ADS)

    Weber, N. B.; Escher, M.; Merkel, M.; Oelsner, A.; Schönhense, G.

    2008-03-01

    Two novel methods of spectroscopic surface imaging are discussed, both based on photoemission electron microscopy PEEM. They are characterised by a simple electron-optical set up retaining a linear column. An imaging high-pass energy filter has been developed on the basis of lithographically-fabricated microgrids. Owing to a mesh size of only 7μm, no image distortions occur. The present energy resolution is 70 meV. The second approach employs time-of-flight energy dispersion and time-resolved detection using a Delayline Detector. In this case, the drift energy and the time resolution of the detector determine the energy resolution. The present time resolution is 180 ps, giving rise to an energy resolution in the 100 meV range.

  12. Investigation of microstructure within metal welds by energy resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Kockelmann, W.; Paradowska, A. M.; Zhang, Shu-Yan; Korsunsky, A. M.; Shinohara, T.; Feller, W. B.; Lehmann, E. H.

    2016-09-01

    The recent development of bright pulsed neutron sources and high resolution neutron counting detectors enables simultaneous acquisition of a neutron transmission spectrum for each pixel of the image. These spectra can be used to reconstruct microstructure parameters within welds, such as strain, texture and phase composition through Bragg edge analysis, and in some cases elemental composition through resonance absorption analysis. In this paper we demonstrate the potential of energy-resolved neutron imaging to study the microstructures of two steel welds, where the spatial distribution of residual strain within the welds, as well as some information on the texture, are obtained with sub-mm spatial resolution. A friction stir weld of two steel plates and a conventional weld of two steel pipes were studied at pulsed neutron facilities, where a Δλ/λ resolution as low as 0.2% can be attained over a wide range of neutron wavelengths ranging from 0.5 Å to 8 Å.

  13. Simulations on time-resolved structure determination of uncrystallized biomolecules in the presence of shot noise

    PubMed Central

    Pande, K.; Schmidt, M.; Schwander, P.; Saldin, D. K.

    2015-01-01

    Determination of fast structural changes of biomolecules is usually performed on crystalline samples in a time-resolved pump-probe experiment. Changes in the structure are found by the difference Fourier method using phases of a known reference structure. As we showed recently, such changes can also be determined from diffraction of uncrystallized molecules in random orientations. In this case, the difference in the angular correlations of the diffraction patterns is used to find structural changes. Similar to the difference Fourier method, there is no need for iterative phasing. We validated this approach previously with simulations in the absence of noise. In this paper, we show that the effects of noise can be adequately suppressed by averaging over a sufficiently large ensemble as they can be obtained using an X-ray free electron laser. PMID:26798791

  14. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  15. Time-resolved photoluminescence and photostability of single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2013-12-01

    Time-resolved photoluminescence (TRPL) and photostability were studied for several core/shell-type semiconductor quantum dots (QDs) of CdTe/CdS, In(Zn)P/ZnS and CdZnS/ZnS using a TRPL microscopy at a single QD level, of which results were compared to that of CdSe/ZnS QD. The CdTe/CdS and In(Zn)P/ZnS QDs show unstable PL at a single QD level on both bare and polymer-coated glass coverslips, so that they mostly lose emissions within a few seconds. The CdZnS/ZnS QD shows better emission stability than those of the former two QDs, but still less stable than the case of the CdSe/ZnS.

  16. Magnetopause reconnection diffusion regions resolved by the NASA Magnetospheric Multiscale mission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Jen

    2016-07-01

    Our understanding of how magnetic reconnection occurs in collisionless plasmas depends highly on our ability to resolve structures of the diffusion region. Unraveling the physical processes in the diffusion region is the primary goal of the NASA mission Magnetospheric Multiscale (MMS). With its first science phase began in September, 2015, the four MMS satellites have encountered both ion and electron diffusion regions during magnetopause reconnection. We will discuss a few diffusion region events including cases with negligible and finite guide fields, and compare the results with particle-in-cell (PIC) simulations. In particular, a close comparison between particle distribution functions observed by MMS and those predicted by PIC will be made to highlight how the unprecedented high-resolution MMS measurements advance the current state-of-knowledge on collisionless reconnection.

  17. Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Rothfischer, Ramona; Grosenick, Dirk; Macdonald, Rainer

    2015-07-01

    We discuss the determination of optical properties of thick scattering media from measurements of time-resolved transmittance by diffusion theory using Monte Carlo simulations as a gold standard to model photon migration. Our theoretical and experimental investigations reveal differences between calculated distributions of times of flight (DTOFs) of photons from both models which result in an overestimation of the absorption and the reduced scattering coefficient by diffusion theory which becomes larger for small scattering coefficients. By introducing a temporal shift in the DTOFs obtained with the diffusion model as additional fit parameter, the deviation in the absorption coefficient can be compensated almost completely. If the scattering medium is additionally covered by transparent layers (e.g. glass plates) the deviation between the DTOFs from both models is even larger which mainly effects the determination of the reduced scattering coefficient by diffusion theory. A temporal shift improves the accuracy of the optical properties derived by diffusion theory in this case as well.

  18. Resolving the agriculture-petroleum conflict: the experience of cacao smallholders in Mexico

    SciTech Connect

    Scherr, S.J.

    1983-01-01

    In 1972, PEMEX, the Mexican national oil company, discovered huge reserves of oil and natural gas along the Gulf Coast, and began intensive exploitation in Tabasco and northern Chiapas states. Severe conflict between PEMEX and the agricultural economy of Tabasco seemed certain. But despite problems of labor scarcity, inflation, migration, pollution, agricultural production 1974 to 1979 increased for the state's major products - cacao, coconut, beef, and bananas. This study analyzes how agriculture-petroleum conflicts have been resolved in Tabasco, and how relevant its experience is to other agricultural areas undergoing rapid large-scale industrial development. Cacao farming was chosen as a case study. Detailed farm budget, family employment, and technical production data were used to document farm production strategies. Research results suggest that resolution of agriculture-petroleum conflicts depends on: demographic conditions, employment conditions, agricultural prices, petroleum company flexibility, government development policy, and farmer political strength. Support for the campesino sector is critical.

  19. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  20. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    NASA Astrophysics Data System (ADS)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  1. Observing Resolved Stellar Populations with the JWST Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Gilbert, K. M.; Beck, T. L.; Karakla, D. M.

    2016-10-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy (MOS) mode through the Micro-Shutter Array (MSA). Each MSA quadrant is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST's sensitivity and superb resolution in the infrared and NIRSpec's full wavelength coverage over 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario of spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. This use case and others, including a deep galaxy survey and observations of Galactic HII regions, are guiding development of the NIRSpec user interfaces including proposal planning and pipeline calibrations.

  2. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept.

    PubMed

    Dannberg, Juliane; Sobolev, Stephan V

    2015-04-24

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  3. Parameterization of Frontal Symmetric Instabilities. I: Theory for Resolved Fronts

    NASA Astrophysics Data System (ADS)

    Bachman, S. D.; Fox-Kemper, B.; Taylor, J. R.; Thomas, L. N.

    2017-01-01

    A parameterization is proposed for the effects of symmetric instability (SI) on a resolved front. The parameterization is dependent on external forcing by surface buoyancy loss and/or down-front winds, which reduce potential vorticity (PV) and lead to conditions favorable for SI. The parameterization consists of three parts. The first part is a specification for the vertical eddy viscosity, which is derived from a specified ageostrophic circulation resulting from the balance of the Coriolis force and a Reynolds momentum flux (a turbulent Ekman balance), with a previously proposed vertical structure function for the geostrophic shear production. The vertical structure of the eddy viscosity is constructed to extract the mean kinetic energy of the front at a rate consistent with resolved SI. The second part of the parameterization represents a near-surface convective layer whose depth is determined by a previously proposed polynomial equation. The third part of the parameterization represents diffusive tracer mixing through small-scale shear instabilities and SI. The diabatic, vertical component of this diffusivity is set to be proportional to the eddy viscosity using a turbulent Prandtl number, and the along-isopycnal tracer mixing is represented by an anisotropic diffusivity tensor. Preliminary testing of the parameterization using a set of idealized models shows that the extraction of total energy of the front is consistent with that from SI-resolving LES, while yielding mixed layer stratification, momentum, and potential vorticity profiles that compare favorably to those from an extant boundary layer parameterization (Large et al., 1994). The new parameterization is also shown to improve the vertical mixing of a passive tracer in the LES.

  4. Noncontact depth-resolved micro-scale corneal elastography

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Larin, Kirill V.

    2015-03-01

    Noninvasive high-resolution depth-resolved measurement of corneal biomechanics is of great clinical significance for improving the diagnosis and optimizing the treatment of various degenerated ocular diseases. Here, we report a micro-scale optical coherence elastography (OCE) method that enables noncontact assessment of the depthwise elasticity distribution in the cornea. The OCE system combines a focused air-puff device with phase-sensitive optical coherence tomography (OCT). Low-pressure short-duration air stream is used to load the cornea with the localized displacement at micron level. The phase-resolved OCT detection with nano-scale sensitivity probes the induced corneal deformation at various locations within a scanning line, providing the ultra-fast imaging of the corneal lamb wave propagation. With spectral analysis, the amplitude spectra and the phase spectra are available for the estimation of the frequency range of the lamb wave and the quantification of the wave propagation, respectively. Curved propagation paths following the top and bottom corneal boundaries are selected inside the cornea for measuring the phase velocity of the lamb wave at the major frequency components over the whole depths. Our pilot experiments on ex vivo rabbit eyes indicate the distinct stiffness of different layers in the cornea, including the epithelium, the anterior stroma, the posterior stroma, and the innermost region, which demonstrates the feasibility of this micro-scale OCE method for noncontact depth-resolved corneal elastography. Also, the quantification of the lamb wave dispersion in the cornea could lead to the measurement of the elastic modulus, suggesting the potential of this method for quantitative monitoring of the corneal biomechanics.

  5. Resolving the evolutionary relationships of molluscs with phylogenomic tools.

    PubMed

    Smith, Stephen A; Wilson, Nerida G; Goetz, Freya E; Feehery, Caitlin; Andrade, Sónia C S; Rouse, Greg W; Giribet, Gonzalo; Dunn, Casey W

    2011-10-26

    Molluscs (snails, octopuses, clams and their relatives) have a great disparity of body plans and, among the animals, only arthropods surpass them in species number. This diversity has made Mollusca one of the best-studied groups of animals, yet their evolutionary relationships remain poorly resolved. Open questions have important implications for the origin of Mollusca and for morphological evolution within the group. These questions include whether the shell-less, vermiform aplacophoran molluscs diverged before the origin of the shelled molluscs (Conchifera) or lost their shells secondarily. Monoplacophorans were not included in molecular studies until recently, when it was proposed that they constitute a clade named Serialia together with Polyplacophora (chitons), reflecting the serial repetition of body organs in both groups. Attempts to understand the early evolution of molluscs become even more complex when considering the large diversity of Cambrian fossils. These can have multiple dorsal shell plates and sclerites or can be shell-less but with a typical molluscan radula and serially repeated gills. To better resolve the relationships among molluscs, we generated transcriptome data for 15 species that, in combination with existing data, represent for the first time all major molluscan groups. We analysed multiple data sets containing up to 216,402 sites and 1,185 gene regions using multiple models and methods. Our results support the clade Aculifera, containing the three molluscan groups with spicules but without true shells, and they support the monophyly of Conchifera. Monoplacophora is not the sister group to other Conchifera but to Cephalopoda. Strong support is found for a clade that comprises Scaphopoda (tusk shells), Gastropoda and Bivalvia, with most analyses placing Scaphopoda and Gastropoda as sister groups. This well-resolved tree will constitute a framework for further studies of mollusc evolution, development and anatomy.

  6. Resolving flows around black holes: numerical technique and applications

    NASA Astrophysics Data System (ADS)

    Curtis, Michael; Sijacki, Debora

    2015-12-01

    Black holes are believed to be one of the key ingredients of galaxy formation models, but it has been notoriously challenging to simulate them due to the very complex physics and large dynamical range of spatial scales involved. Here we address a significant shortcoming of a Bondi-Hoyle-like prescription commonly invoked to estimate black hole accretion in cosmological hydrodynamic simulations of galaxy formation, namely that the Bondi-Hoyle radius is frequently unresolved. We describe and implement a novel super-Lagrangian refinement scheme to increase, adaptively and `on the fly', the mass and spatial resolution in targeted regions around the accreting black holes at limited computational cost. While our refinement scheme is generically applicable and flexible, for the purpose of this paper we select the smallest resolvable scales to match black holes' instantaneous Bondi radii, thus effectively resolving Bondi-Hoyle-like accretion in full galaxy formation simulations. This permits us to not only estimate gas properties close to the Bondi radius much more accurately, but also allows us to improve black hole accretion and feedback implementations. We thus devise a more generic feedback model where accretion and feedback depend on the geometry of the local gas distribution and where mass, energy and momentum loading are followed simultaneously. We present a series of tests of our refinement and feedback methods and apply them to models of isolated disc galaxies. Our simulations demonstrate that resolving gas properties in the vicinity of black holes is necessary to follow black hole accretion and feedback with a higher level of realism and that doing so allows us to incorporate important physical processes so far neglected in cosmological simulations.

  7. Wall-Resolved Large-Eddy Simulation of Flow Separation Over NASA Wall-Mounted Hump

    NASA Technical Reports Server (NTRS)

    Uzun, Ali; Malik, Mujeeb R.

    2017-01-01

    This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.

  8. Imaging the cellular response to transient shear stress using time-resolved digital holography

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-02-01

    Shear stress has been recognized as one of the biophysical methods by which to permeabilize plasma membranes of cells. In particular, high pressure transient hydrodynamic flows created by laser-induced cavitation have been shown to lead to the uptake of fluorophores and plasmid DNA. While the mechanism and dynamics of cavitation have been extensively studied using a variety of time-resolved imaging techniques, the cellular response to the cavitation bubble and cavitation induced transient hydrodynamic flows has never been shown in detail. We use time-resolved quantitative phase microscopy to study cellular response to laser-induced cavitation bubbles. Laser-induced breakdown of an optically trapped polystyrene nanoparticle (500nm in diameter) irradiated with a single nanosecond laser pulse at 532nm creates transient shear stress to surrounding cells without causing cell lysis. A bi-directional transient displacement of cytoplasm is observed during expansion and collapse of the cavitation bubble. In some cases, cell deformation is only observable at the microsecond time scale without any permanent change in cell shape or optical thickness. On a time scale of seconds, the cellular response to shear stress and cytoplasm deformation typically leads to retraction of the cellular edge most exposed to the flow, rounding of the cell body and, in some cases, loss of cellular dry mass. These results give a new insight into the cellular response to laser-induced shear stress and related plasma membrane permeabilization. This study also demonstrates that laser-induced breakdown of an optically trapped nanoparticle offers localized cavitation (70 μm in diameter), which interacts with a single cell.

  9. Resolving Controlled Vocabulary in DITA Markup: A Case Example in Agroforestry

    ERIC Educational Resources Information Center

    Zschocke, Thomas

    2012-01-01

    Purpose: This paper aims to address the issue of matching controlled vocabulary on agroforestry from knowledge organization systems (KOS) and incorporating these terms in DITA markup. The paper has been selected for an extended version from MTSR'11. Design/methodology/approach: After a general description of the steps taken to harmonize controlled…

  10. The Dark Energy Survey: Prospects for resolved stellar populations

    SciTech Connect

    Rossetto, Bruno M.; Santiago, Basílio X.; Girardi, Léo; Camargo, Julio I. B.; Balbinot, Eduardo; da Costa, Luiz N.; Yanny, Brian; Maia, Marcio A. G.; Makler, Martin; Ogando, Ricardo L. C.; Pellegrini, Paulo S.; Ramos, Beatriz; de Simoni, Fernando; Armstrong, R.; Bertin, E.; Desai, S.; Kuropatkin, N.; Lin, H.; Mohr, J. J.; Tucker, D. L.

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  11. Time Resolved Phonon Spectroscopy, Version 1.0

    SciTech Connect

    Goett, Johnny; Zhu, Brian

    2016-12-22

    TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.

  12. A compact electron gun for time-resolved electron diffraction

    SciTech Connect

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2015-01-15

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.

  13. Becoming homeless, being homeless, and resolving homelessness among women.

    PubMed

    Finfgeld-Connett, Deborah

    2010-07-01

    The purpose of this investigation was to more comprehensively articulate the experiences of homeless women and make evidence-based inferences regarding optimal social services. This study was conducted using qualitative meta-synthesis methods. As youth, homeless women experience challenging circumstances that leave them ill-prepared to prevent and resolve homelessness in adulthood. Resolution of homelessness occurs in iterative stages: crisis, assessment, and sustained action. To enhance forward progression through these stages, nurses are encouraged to promote empowerment in concordance with the Transtheoretical and Harm Reduction Models. Services that are highly valued include physical and mental health care and child care assistance.

  14. Development of a temporally and spatially resolved grazing incidence spectrometer

    SciTech Connect

    Dietrich, D.D.; Fortner, R.J.; Price, D.F.; Stewart, R.E.; Gilman, C.; Helava, H.

    1980-01-01

    The design considerations are presented for a grazing incidence spectrometer which will resolve both temporally and spatially the emission from a wide variety of plasmas. The basis of the design involves use of microchannel plates (MCPs) which are curved to conform to the Rowland circle of the spectrometer. The spectra are obtained when the anode is properly biased. The use of multiple anodes allows gating and with appropriate delays results in sequential time resolution of a few nanoseconds. Simultaneous gating of the anodes with spatial resolution of < 100..mu.. for any given time frame can also be obtained. The efficiency of this spectrometer is also compared with conventional grazing incidence spectrometers.

  15. Time-resolved Hyperspectral Fluorescence Spectroscopy using Frequency Modulated Excitation

    SciTech Connect

    ,; Neill, M

    2012-07-01

    An intensity-modulated excitation light source is used together with a micro channel plate intensified CCD (ICCD) detector gated at a slightly different frequency to generate a beat frequency from a fluorescent sample. The addition of a spectrograph produces a hyperspectral time-resolved data product where the resulting beat frequency is detected with a low frame rate camera. Measuring the beat frequency of the spectrum as a function of time allows separation of the excited fluorescence from ambient constant light sources. The excitation and detector repetition rates are varied over a range of discrete frequencies, and the phase shift of the beat wave maps out the emission decay rate(s).

  16. Sounding of the Ion Energization Region: Resolving Ambiguities

    NASA Technical Reports Server (NTRS)

    LaBelle, James

    2003-01-01

    Dartmouth College provided a single-channel high-frequency wave receiver to the Sounding of the Ion Energization Region: Resolving Ambiguities (SIERRA) rocket experiment launched from Poker Flat, Alaska, in January 2002. The receiver used signals from booms, probes, preamplifiers, and differential amplifiers provided by Cornell University coinvestigators. Output was to a dedicated 5 MHz telemetry link provided by WFF, with a small amount of additional Pulse Code Modulation (PCM) telemetry required for the receiver gain information. We also performed preliminary analysis of the data. The work completed is outlined below, in chronological order.

  17. Shell-resolved melting kinetics of icosahedral cluster.

    PubMed

    Liu, Hong H; Jiang, En Y; Bai, Hai L; Wu, Ping; Li, Zhiqing; Sun, Chang Q

    2009-03-01

    Molecular dynamics calculations of the fluctuation of bond vibration revealed the shell-resolved mode of surface melting of the a closed-shell cluster containing 147 atoms with Lennard-Jones type interaction. It is found that the surface melting is imitated by the migrating of the vertex atoms. Although the melting process of the LJ147 cluster could be divided into discrete stages of surface shell-by-shell melting in general, there is still a continuous process of melting from the surface shell to the core interior.

  18. Sensing wavefronts on resolved sources with pyramids on ELTs

    NASA Astrophysics Data System (ADS)

    Feldt, Markus; Hippler, Stefan; Obereder, Andreas; Stuik, Remko; Bertram, Thomas

    2016-07-01

    Pyramid wavefront sensors (PWFS) have been agreed to provide a superior faint-end performance with respect to Shack-Hartmann systems (SHS) quite some time ago. However, much of the advantage relies on the fact that PWFSs exploit the full resolution limit of the telescope. ELTs will thus confront PWFSs with an unprecedented number of resolved targets. To analyze the behavior of PWFS on extended targets in detail observationally is difficult. We will present the result of simulations representing the Single-Conjugated Adaptive Optics (SCAO) system of METIS on the European ELT (E-ELT).

  19. Time-resolved FRET for single-nucleotide polymorphism genotyping

    NASA Astrophysics Data System (ADS)

    Andreoni, Alessandra; Nardo, Luca; Bondani, Maria

    2009-05-01

    By tens-of-picosecond resolved fluorescence detection (TCSPC, time-correlated single-photon counting) we study Förster resonance energy transfer between a donor and a black-hole-quencher acceptor bound at the 5'- and 3'-positions of a synthetic DNA oligonucleotide. This dual labelled oligonucleotide is annealed with either the complementary sequence or with sequences that mimic single-nucleotide polymorphic gene sequences: they differ in one nucleotide at positions near either the ends or the center of the oligonucleotide. We find donor fluorescence decay times whose values are definitely distinct and discuss the feasibility of single nucleotide polymorphism genotyping by this method.

  20. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  1. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  2. Full-Circle Resolver-to-Linear-Analog Converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Smith, Dennis A.; Howard, David E.

    2005-01-01

    A circuit generates sinusoidal excitation signals for a shaft-angle resolver and, like the arctangent circuit described in the preceding article, generates an analog voltage proportional to the shaft angle. The disadvantages of the circuit described in the preceding article arise from the fact that it must be made from precise analog subcircuits, including a functional block capable of implementing some trigonometric identities; this circuitry tends to be expensive, sensitive to noise, and susceptible to errors caused by temperature-induced drifts and imprecise matching of gains and phases. These disadvantages are overcome by the design of the present circuit. The present circuit (see figure) includes an excitation circuit, which generates signals Ksin(Omega(t)) and Kcos(Omega(t)) [where K is an amplitude, Omega denotes 2(pi)x a carrier frequency (the design value of which is 10 kHz), and t denotes time]. These signals are applied to the excitation terminals of a shaft-angle resolver, causing the resolver to put out signals C sin(Omega(t)-Theta) and C cos(Omega(t)-Theta). The cosine excitation signal and the cosine resolver output signal are processed through inverting comparator circuits, which are configured to function as inverting squarers, to obtain logic-level or square-wave signals .-LL[cos(Omega(t)] and -LL[cos(Omega(t)-Theta)], respectively. These signals are fed as inputs to a block containing digital logic circuits that effectively measure the phase difference (which equals Theta between the two logic-level signals). The output of this block is a pulse-width-modulated signal, PWM(Theta), the time-averaged value of which ranges from 0 to 5 VDC as Theta ranges from .180 to +180deg. PWM(Theta) is fed to a block of amplifying and level-shifting circuitry, which converts the input PWM waveform to an output waveform that switches between precise reference voltage levels of +10 and -10 V. This waveform is processed by a two-pole, low-pass filter, which removes

  3. Time-Resolved Conformational Dynamics in Hydrocarbon Chains

    SciTech Connect

    Minitti, Michael P.; Weber, Peter M.

    2007-06-22

    Internal rotation about carbon-carbon bonds allows N,N-dimethyl-2-butanamine (DM2BA) and N,N-dimethyl-3-hexanamine (DM3HA) to assume multiple conformeric structures. We explore the equilibrium composition and dynamics between such conformeric structures using Rydberg fingerprint spectroscopy. Time constants for conformeric interconversion of DM2BA (at 1.79 eV of internal energy) are 19 and 66 ps, and for DM3HA (1.78 eV) 23 and 41 ps. For the first time, a time-resolved and quantitative view of conformational dynamics of flexible hydrocarbon molecules at high temperatures is revealed.

  4. Continuity waves in fully resolved simulations of settling particles

    NASA Astrophysics Data System (ADS)

    Willen, Daniel; Sierakowski, Adam; Prosperetti, Andrea

    2016-11-01

    Fully resolved simulations of 500 to 2,000 particles settling in a fluid have been conducted with the Physalis method. A new approach to the reconstruction of pseudo-continuum fields is described and is used to examine the results with the purpose of identifying concentration waves. The velocity of concentration waves is successfully deduced from the simulations. A comparison of the results with continuity wave theory shows good agreement. Several new insights about the particle microstructure conditionally averaged on volume fraction and velocity are also described. This work is supported by NSF award CBET1335965.

  5. Fully resolved simulations of 2,000 fluidized particles

    NASA Astrophysics Data System (ADS)

    Willen, Daniel; Sierakowski, Adam; Prosperetti, Andrea

    2015-11-01

    Computational capabilities have matured sufficiently to render possible the dynamic simulation of thousands of resolved particles in fluid flows, generating an unprecendented amount of data. In this work we present a simulation of 2,000 fluidized particles generated with the Physalis method, and focus on probing the data with tools from statistical physics. In particular, the study of particle triads and tetrads has been used to study the dispersion of passive scalars in turbulence. Knowledge of the average shape and size of these structures over time provides insight into particle diffusion and the persistence of clusters. Supported by NSF award No CBET 1335965.

  6. Femtosecond time-resolved electronic relaxation dynamics in tetrathiafulvalene

    SciTech Connect

    Staedter, D.; Polizzi, L.; Thiré, N.; Mairesse, Y.; Mayer, P.; Blanchet, V.

    2015-05-21

    In the present paper, the ultrafast electronic relaxation of tetrathiafulvalene (TTF) initiated around 4 eV is studied by femtosecond time-resolved velocity-map imaging. The goal is to investigate the broad double structure observed in the absorption spectrum at this energy. By monitoring the transients of the parent cation and its fragments and by varying the pump and the probe wavelengths, two internal conversions and intramolecular vibrational relaxation are detected both on the order of a few hundred of femtoseconds. Photoelectron images permit the assignment of a dark electronic state involved in the relaxation. In addition, the formation of the dimer of TTF has been observed.

  7. Vibrationally resolved shape resonant photoionization of N2O

    NASA Astrophysics Data System (ADS)

    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.

    1989-02-01

    A vibrationally resolved dispersed fluorescence study of 7sigma exp -1 shape resonant photoionization in N2O is presented. It is shown that the lower energy shape resonance results in non-Franck-Condon vibrational branching ratios over a wide range. It is found that the cross section curves for alternative vibrational modes behave differently and that the resonance behavior is influenced more by symmetric stretch than by the asymmetric stretching vibration. Spectroscopic data on the ionic potential surfaces and ratios of Franck-Condon factors for N2O(+) (A to X) transitions are obtained.

  8. Depth resolved detection of lipid using spectroscopic optical coherence tomography

    PubMed Central

    Fleming, Christine P.; Eckert, Jocelyn; Halpern, Elkan F.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images. PMID:24009991

  9. A new approach to highly resolved measurements of turbulent flow

    NASA Astrophysics Data System (ADS)

    Puczylowski, J.; Hölling, A.; Peinke, J.; Bhiladvala, R.; Hölling, M.

    2015-05-01

    In this paper we present the design and principle of a new anemometer, namely the 2d-Laser Cantilever Anemometer (2d-LCA), which has been developed for highly resolved flow speed measurements of two components (2d) under laboratory conditions. We will explain the working principle and demonstrate the sensor’s performance by means of comparison measurements of wake turbulence with a commercial X-wire. In the past we have shown that the 2d-LCA is capable of being applied in liquid and particle-laden domains, but we also believe that other challenging areas of operation such as near-wall flows can become accessible.

  10. Sensitive, time-resolved, broadband spectroscopy of single transient processes

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Baev, Ivan; Hellmig, Ortwin; Sengstock, Klaus; Baev, Valery M.

    2015-09-01

    Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

  11. Spatially: resolved heterogeneous dynamics in a strong colloidal gel

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto

    2015-05-01

    We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.

  12. The Spin- and Angel-Resolved Photelectron Spectrometer

    SciTech Connect

    Mankey, G J; Morton, S A; Tobin, J G; Yu, S W; Waddill, G D

    2007-05-08

    A spin- and angle-resolved x-ray photoelectron spectrometer for the study of magnetic materials will be discussed. It consists of a turntable with electron lenses connected to a large hemispherical analyzer. A mini-Mott spin detector is fitted to the output of the hemispherical analyzer. This system, when coupled to a synchrotron radiation source will allow determination of a complete set of quantum numbers of a photoelectron. This instrument will be used to study ferromagnetic, antiferromagnetic and nonmagnetic materials. Some prototypical materials systems to be studied with this instrument system will be proposed.

  13. On the feasibility of resolving the organ shortage.

    PubMed

    Kaserman, David L

    2006-01-01

    Debates concerning the feasibility of resolving the organ shortage from the potential pool of deceased donors have suffered from both conceptual and empirical problems. Conceptually, several authors mistakenly have viewed recipient waiting lists as a measure of the magnitude of the shortage. And empirically, the number of deaths that would qualify for potential organ donation has proven difficult to estimate. While the latter problem appears to have been substantially lessened by recent work, the former, definitional, problem remains. This paper offers the economically correct definition of a shortage and applies that definition to the new data on potential supply.

  14. Can Holo NMR Chemical Shifts be Directly Used to Resolve RNA-Ligand Poses?

    PubMed

    Frank, Aaron T

    2016-02-22

    Using a set of machine learning based predictors that are capable of predicting ligand-induced shielding effects on (1)H and (13)C nonexchangeable nuclei, it was discovered that holo NMR chemical shifts can be used to resolve RNA-ligand poses. This was accomplished by quantitatively comparing measured and predicted holo chemical shifts in conformationally diverse "decoy" pools for three test cases and then, for each, comparing the native pose to the pose in the decoy pool that exhibited the lowest error. For three test cases, the poses in the decoy pools that exhibited the best agreement between measured and predicted holo chemical shifts were within 0.28, 1.12, and 2.38 Å of the native poses. Interestingly, the predictors used in this study were trained on a database containing, only, apo RNA data. The agreement between the chemical shift-selected poses and the native NMR poses suggests that the predictors used in this study were able to "learn" general chemical shift-structure relationships from apo RNA data that could be used to account for ligand-induced shielding effects on RNA nuclei for the test cases studied.

  15. Improvement of spectrally resolved interferometry without direction ambiguity and dead zone

    NASA Astrophysics Data System (ADS)

    Yun, Young Ho; Joo, Ki-Nam

    2016-08-01

    Spectrally-resolved interferometry (SRI) is a very useful technique to measure distances and surface profiles based on the analysis of the spectral interferogram. The most attractive feature of SRI is to obtain the spectral phase to extract the measuring distance at once without any scanning mechanism opposed to the low coherence scanning interferometry although phase shifting techniques can be involved in SRI to improve the measurement accuracy in some cases. However, the measurement range of SRI is relatively small because of the fundamental measuring range limitations such as the maximum measurable range and the minimum measurable range. Moreover, the important issue in SRI is the direction ambiguity because it always provides the positive values, regardless of the direction. In case of measuring optical path difference (OPD) when the reference path is longer than the measurement path, the measurement result of SRI is the same as the distance in the opposite case. Then, SRI only uses one direction to measure distances or surface profiles for the linearity of the measurement results due to these fundamental characteristics although its whole measuring range is two times longer. In this investigation, we propose a very simple and effective technique to eliminate the direction ambiguity and the dead zone, which limit the measurable range in SRI. By using a dispersive material, the nonlinear spectral phase caused by the dispersion can provide useful information and determine the direction of measuring distances. In addition, the dead zone can be successfully removed by two complementary measurement results in dichroic SRI.

  16. Allocating Damage Compensation in a Federalist System: Lessons from Spatially Resolved Air Emissions in the Marcellus.

    PubMed

    Behrer, A Patrick; Mauter, Meagan S

    2017-04-04

    The benefits and impacts of unconventional natural gas development are realized at different spatial scales, calling into question the appropriate jurisdictional level at which to set and enforce environmental policy. This paper evaluates impact fee allocation under Pennsylvania Act 13, which authorizes Commonwealth payments to Pennsylvania counties to offset damages from unconventional natural gas extraction in exchange for consolidated state-level regulatory authority. We evaluate the adequacy of damage compensation allocation for impacts that are spatially and temporally removed from the well site, using the air emissions associated with natural gas wastewater transport as a case study. Wastewater transport from wells eligible for 2011 impact fee disbursement calculations generated an estimated $11.6 million in air emission damages from 2004 to 2013, with 35% of damages occurring out-of-state and an average of 94% of damages occurring out-of-county. We find that compensatory payments from Pennsylvania Act 13, which are based upon the number of wells drilled in a county in a single year, inadequately account for spatially and temporally distributed impacts from wastewater transport. This case study of Pennsylvania Act 13 highlights potential issues associated with central regulators using compensatory payments as a means of resolving jurisdictional conflict. In cases where the central regulator benefits from the polluting activity, we argue that there is incentive to focus compensation on local damages and undervalue regional and spatially distributed damages in compensation algorithms.

  17. 48 CFR 30.606 - Resolving cost impacts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contract cost ceilings or target costs on flexibly-priced contracts. In such cases, the CFAO shall limit... costs on flexibly-priced contracts. In such cases, the CFAO shall limit any upward contract price...-priced contracts. In such cases, the CFAO shall limit any upward contract price adjustments to...

  18. Ocean wavenumber estimation from wave-resolving time series imagery

    USGS Publications Warehouse

    Plant, N.G.; Holland, K.T.; Haller, M.C.

    2008-01-01

    We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.

  19. Time-resolved pump-probe experiments at the LCLS

    SciTech Connect

    Glownia, James; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.L.; Bostedt, C.; Bozek, J.; DiMauro, L.F.; Fang, L.; Frisch, J.; Gessner, O.; Guhr, M.; Hajdu, J.; Hertlein, M.P.; Hoener, M.; Huang, G.; Kornilov, O.; Marangos, J.P.; March, A.M.; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  20. Time-resolved pump-probe experiments at the LCLS.

    PubMed

    Glownia, James M; Cryan, J; Andreasson, J; Belkacem, A; Berrah, N; Blaga, C I; Bostedt, C; Bozek, J; DiMauro, L F; Fang, L; Frisch, J; Gessner, O; Gühr, M; Hajdu, J; Hertlein, M P; Hoener, M; Huang, G; Kornilov, O; Marangos, J P; March, A M; McFarland, B K; Merdji, H; Petrovic, V S; Raman, C; Ray, D; Reis, D A; Trigo, M; White, J L; White, W; Wilcox, R; Young, L; Coffee, R N; Bucksbaum, P H

    2010-08-16

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  1. Recent advances in component resolved diagnosis in food allergy.

    PubMed

    Borres, Magnus P; Maruyama, Nobuyuki; Sato, Sakura; Ebisawa, Motohiro

    2016-10-01

    Due to the high prevalence of food allergic diseases globally there are increasing demands in clinical practice for managing IgE-mediated conditions. During the last decade, component resolved diagnostics has been introduced into the field of clinical allergology, providing information that cannot be obtained from extract-based tests. Component resolved data facilitate more precise diagnosis of allergic diseases and identify sensitizations attributable to cross-reactivity. Furthermore it assists risk assessment in clinical practice as sensitization to some allergenic molecules is related to persistence of clinical symptoms and systemic rather than local reactions. The information may also aid the clinician in prescription of oral immunotherapy (OIT) in patients with severe symptoms, and in giving advice on food allergen avoidance or on the need to perform food challenges. The use of allergen components is rapidly evolving and increases our possibility to treat food allergic patients with a more individual approach. Using molecular allergology, we can already now better diagnose, prognose and grade the food allergy. In summary, daily routine molecular allergy diagnostics offers a number of benefits that give us a higher diagnostic precision and allow for better management of the patient.

  2. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  3. A framework for resolving the transboundary water allocation conflict conundrum.

    PubMed

    Rowland, Marty

    2005-01-01

    This paper describes a methodology for resolving transboundary water disputes that arise when people/states/nations sharing a resource that crosses legal/political jurisdictions disagree about the use of the resource. Laws and treaties written in an attempt to settle disputes are frequently neither enforced nor effective, and disagreements continue. Crises, arising through resource overuse or shortages, worsen the conflict and typically result in further discord, lawsuits, depletion of the resource, and even open-armed hostility. Many water management experts call for either private/market-based or state/command-and-control resource management systems, but these eventually break down during crisis. The crises therefore necessitate the adoption of a more effective institutional arrangement to address and resolve present and future problems. A better alternative to management by private or state entities and the resolution of conflicts by the mere application of law is a cooperative approach. The Rowland-Ostrom Framework, introduced in this paper, incorporates Ostrom's eight design principles for sustainable common pool resource management within the context of crisis that involves an urgent threat to the quantity or quality of a resource such as water, as described by the author. This paper demonstrates that although established 15 years ago, Ostrom's design principles remain applicable today for effective, sustainable transboundary water management, and the Rowland-Ostrom Framework is a model for the equitable use of shared water resources throughout the world.

  4. Super Resolved Harmonic Structure Function for Space Applications

    NASA Astrophysics Data System (ADS)

    Dikeman, R.; Stanko, E.; Reagan, J.

    Lockheed Martin Hawaii presents the application of the combination of two novel signal processing algorithm for non-resolved object characterization. We introduce the Super Resolved Harmonic Structure Function (SR-HSF) and demonstrate its utility in providing "fingerprints" for space based objects. The work presented here is making a major impact in the Missile Defense Agency's Project Hercules group but the results presented here are shown in an unclassified form. First, the SR-HSF algorithm is detailed. The SR-HSF is shown to pull out key space situational awareness fingerprints from a minimal set of observations. Next, the mathematical definition of the SR-HSF is detailed. SR-HSF is shown to be both optimal, and also applicable in the real-time sense. Then, applications to both simulations and unclassified data collected at AMOS of space based bodies are used for analysis. The SR-HSF is then used to analyze these fidelity simulations. It is shown that the SR-HSF is capable of "tagging" an object with a minimal set of observations - a previously impossible result. This analysis yield important considerations for sensor developers, SSA systems, and operators.

  5. CCD time-resolved photometry of faint cataclysmic variables. II

    SciTech Connect

    Szkody, P.; Howell, S.B.; Mateo, M.; Kreidl, T.J. Planetary Science Institute, Tucson, AZ Mount Wilson and Las Campanas Observatories, Pasadena, CA Lowell Observatory, Flagstaff, AZ )

    1989-10-01

    Time-resolved optical broad-band light curves obtained from differential photometry on sequential CCD frames of the known or suspected cataclysmic variable FO And, EH Aqr, WX Cet, XX Cet, AL Com, V503 Cyg, AH Eri, CP Eri, IR Gem, RW UMi, PG0134+070, and US 3215 are presented. The analysis of the light curves with coverage of greater than 2 hrs shows repeatable periodicity in five objects. PG0134+070 exhibits eclipses of 1.3-1.8 mag depth with a period of 313 min. V503 Cyg has a 0.7-1.0 mag peak-to-peak modulation with a period of 109 min. IR Gem shows a large modulation at the orbital period of 99 min, and comparison with previous data indicates that this modulation may have an amplitude dependent on outburst phase. AH Eri reveals a 0.1-0.3 mag modulation, at a period of 42 min. Better time-resolved data on AL Com confirm the 0.4-mag variation reported by Howell and Szkody (1988) at a period of 42 min. These latter two short periods likely indicate magnetic systems. There is also some evidence of periodicity in RW UMi and WX Cet which must be confirmed with further data. 25 refs.

  6. Complex structure of spatially resolved high-order-harmonic spectra

    NASA Astrophysics Data System (ADS)

    Catoire, F.; Ferré, A.; Hort, O.; Dubrouil, A.; Quintard, L.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Mairesse, Y.; Constant, E.

    2016-12-01

    We investigate the spatiospectral coupling appearing in the spatially resolved high-order-harmonic spectra generated in gases. When ionization is weak, harmonic generation in the far field often exhibits rings surrounding a central spot centered on each odd harmonics in the spatiospectral domain. The nature of these structures is debated. They could stem from interferences between the emission of short and long trajectories, or could be the signature of the temporal and spatial dependence of the longitudinal phase matching of long trajectories (Maker fringes). We conducted spectrally and spatially resolved measurements of the harmonic spectra as a function of pressure, intensity, and ellipticity. In addition, we performed calculations where only a single emission plane is included (i.e., omitting deliberately the longitudinal phase matching), reproducing the features experimentally observed. This study has been completed by the spatiospectral coupling when strong ionization occurs leading to complex patterns which have been compared to calculations using the same model and also show good agreement. We conclude that many spatiospectral structures of the harmonic spectrum can be interpreted in terms of spatial and temporal transverse coherence of the emitting medium without resorting to longitudinal phase matching or quantum phase interference between short and long trajectories.

  7. Scrounging by foragers can resolve the paradox of enrichment

    PubMed Central

    2017-01-01

    Theoretical models of predator–prey systems predict that sufficient enrichment of prey can generate large amplitude limit cycles, paradoxically causing a high risk of extinction (the paradox of enrichment). Although real ecological communities contain many gregarious species, whose foraging behaviour should be influenced by socially transmitted information, few theoretical studies have examined the possibility that social foraging might resolve this paradox. I considered a predator population in which individuals play the producer–scrounger foraging game in one-prey-one-predator and two-prey-one-predator systems. I analysed the stability of a coexisting equilibrium point in the one-prey system and that of non-equilibrium dynamics in the two-prey system. The results revealed that social foraging could stabilize both systems, and thereby resolve the paradox of enrichment when scrounging behaviour (i.e. kleptoparasitism) is prevalent in predators. This suggests a previously neglected mechanism underlying a powerful effect of group-living animals on the sustainability of ecological communities.

  8. Time- and Site-Resolved Dynamics in a Topological Circuit

    NASA Astrophysics Data System (ADS)

    Ningyuan, Jia; Owens, Clai; Sommer, Ariel; Schuster, David; Simon, Jonathan

    2015-04-01

    From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ =π /2 . In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.

  9. Time-resolved luminescent lateral flow assay technology.

    PubMed

    Song, Xuedong; Knotts, Michael

    2008-09-26

    We here report a detection technology that integrates highly sensitive time-resolved luminescence technique into lateral flow assay platform to achieve excellent detection performance with low cost. We have developed very bright, surface-functionalized and mono-dispersed phosphorescent nanoparticles of long lifetime under ambient conditions. The phosphorescent nanoparticles have been used to conjugate with monoclonal antibody for C-reactive protein (CRP), an inflammatory biomarker. Lateral flow immunoassay devices have been developed using the conjugate for highly sensitive detection of CRP. The CRP assay can achieve a detection sensitivity of <0.2 ngmL(-1) in serum with a linear response from 0.2 to 200 ngmL(-1) CRP. We have also developed a low cost time-resolved luminescence reader for the lateral flow immunoassay (LFIA) devices. The reader does not use expensive band pass filter and still provide very low detection background and high detection sensitivity on solid substrates such as nitrocellulose membranes. The reader can detect less than 2.5 ng phosphorescent particles captured on a nitrocellulose membrane strip with more than three orders of magnitude linear detection dynamic range. The technology should find a number of applications, ranging from clinical diagnostics, detection of chemical and biological warfare agents, to food and environmental monitoring.

  10. Time-Resolved Hard X-Ray Spectrometer

    SciTech Connect

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-03-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  11. Shock Particle Interaction - Fully Resolved Simulations and Modeling

    NASA Astrophysics Data System (ADS)

    Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  12. Time-resolved quasielastic neutron scattering studies of native photosystems.

    PubMed

    Pieper, Jörg

    2010-01-01

    The internal molecular dynamics of proteins plays an important role in a number of functional processes in native photosystems. Prominent examples include the photocycle of bacteriorhodopsin and electron transfer in the reaction center of plant photosystem II. In this regard, the recently developed technique of time-resolved quasielastic neutron scattering with laser excitation opens up new perspectives for the study of protein/membrane dynamics in specific functional states of even complex systems. The first direct observation of a functionally modulated protein dynamics has just recently been reported for the model system bacteriorhodopsin (Pieper et al., Phys. Rev. Lett. 100, 2008, 228103.), where a transient softening of the protein was observed on a timescale of approximately 1 ms along with the large-scale structural change in the M-intermediate of bacteriorhodopsin. In contrast, photosystem II membrane fragments with inhibited electron transfer show a suppression of protein dynamics approximately 160 mus after the actinic laser flash (Pieper and Renger, Biochemistry 48, 2009, 6111). This effect may reflect aggregation-like conformational changes capable of dissipation of excess excitation energy to prevent photodamage in the absence of Q(A)-->Q(B) electron transfer. These findings indicate that proteins exhibit a remarkable flexibility to accommodate different functional processes. This contribution will discuss methodical aspects, challenges, and recent applications of laser-excited, time-resolved quasielastic neutron scattering.

  13. Pro-Resolving Molecules—New Approaches to Treat Sepsis?

    PubMed Central

    Buechler, Christa; Pohl, Rebekka; Aslanidis, Charalampos

    2017-01-01

    Inflammation is a complex response of the body to exogenous and endogenous insults. Chronic and systemic diseases are attributed to uncontrolled inflammation. Molecules involved in the initiation of inflammation are very well studied while pathways regulating its resolution are insufficiently investigated. Approaches to down-modulate mediators relevant for the onset and duration of inflammation are successful in some chronic diseases, while all of them have failed in sepsis patients. Inflammation and immune suppression characterize sepsis, indicating that anti-inflammatory strategies alone are inappropriate for its therapy. Heme oxygenase 1 is a sensitive marker for oxidative stress and is upregulated in inflammation. Carbon monoxide, which is produced by this enzyme, initiates multiple anti-inflammatory and pro-resolving activities with higher production of omega-3 fatty acid-derived lipid metabolites being one of its protective actions. Pro-resolving lipids named maresins, resolvins and protectins originate from the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid while lipoxins are derived from arachidonic acid. These endogenously produced lipids do not simply limit inflammation but actively contribute to its resolution, and thus provide an opportunity to combat chronic inflammatory diseases and eventually sepsis. PMID:28241480

  14. Rodent models for resolving extremes of exercise and health

    PubMed Central

    North, Kathryn N.; Koch, Lauren G.; Britton, Steven L.; Nogales-Gadea, Gisela; Lucia, Alejandro

    2015-01-01

    The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the “energy transfer hypothesis.” Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease. PMID:26395598

  15. Range-resolved gas concentration measurements using tunable semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lytkine, A.; Lau, B.; Lim, A.; Jäger, W.; Tulip, J.

    2008-02-01

    A method for range-resolved gas sensing using path-integrated optical systems is presented. The method involves dividing an absorption path into several measurement segments and extracting the gas concentration in each segment from two path-integrated measurements. We implemented the method with tunable lasers (a 1389-nm VCSEL and a 10.9-μm pulsed quantum cascade laser) and a group of retro reflectors (RRs) distributed along absorption paths. Using a rotating mirror with the VCSEL configuration, we could scan a group of seven tape RRs spaced by 10 cm in ˜ 9 ms to extract an H2O concentration profile. Reduced H2O concentrations were recorded in the segments purged with dry air. Hollow corner cube RRs were used in the quantum cascade laser configuration at distances up to 1.1 km from the laser. Two RRs placed at 66 m and 125 m from the laser allowed us to determine H2O concentrations in both segments. The RRs returns were separated due to the different round trip travel time of the 200-ns laser pulse. Novel instruments for range-resolved remote sensing in the atmosphere can be developed for a variety of applications, including monitoring the fluxes of atmospheric pollutants and controlling air quality in populated areas.

  16. Time Resolved FTIR Analysis of Tailpipe Exhaust for Several Automobiles

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Allen, James; Devasher, Rebecca B.

    2011-06-01

    The automotive catalytic converter reduces or eliminates the emission of various chemical species (e.g. CO, hydrocarbons, etc.) that are the products of combustion from automobile exhaust. However, these units are only effective once they have reached operating temperature. The design and placement of catalytic converters has changed in order to reduce both the quantity of emissions and the time that is required for the converter to be effective. In order to compare the effectiveness of catalytic converters, time-resolved measurements were performed on several vehicles, including a 2010 Toyota Prius, a 2010 Honda Fit, a 1994 Honda Civic, and a 1967 Oldsmobile 442 (which is not equipped with a catalytic converter but is used as a baseline). The newer vehicles demonstrate bot a reduced overall level of CO and hydrocarbon emissions but are also effective more quickly than older units. The time-resolved emissions will be discussed along with the impact of catalytic converter design and location on the measured emissions.

  17. RESOLVE Mission Architecture for Lunar Resource Prospecting and Utilization

    NASA Technical Reports Server (NTRS)

    George, J. A.; Mattes, G. W.; Rogers, K. N.; Magruder, D. F.; Paz, A. J.; Vaccaro, H. M.; Baird, R. S.; Sanders, G. B.; Smith, J. T.; Quinn, J. W.; Larson, W. E.; Colaprete, A.; Elphic, R. C.; Suaris, T. R.

    2012-01-01

    Design Reference Mission (DRM) evaluations were performed for The Regolith & Environment Science, and Oxygen & Lunar Volatile Extraction (RESOLVE) project to determine future flight mission feasibility and understand potential mission environment impacts on hardware requirements, science/resource assessment objectives, and mission planning. DRM version 2.2 (DRM 2.2) is presented for a notional flight of the RESOLVE payload for lunar resource ground truth and utilization (Figure 1) [1]. The rover/payload deploys on a 10 day surface mission to the Cabeus crater near the lunar south pole in May of 2016. A drill, four primary science instruments, and a high temperature chemical reactor will acquire and characterize water and other volatiles in the near sub-surface, and perform demonstrations of In-Situ Re-source Utilization (ISRU). DRM 2.2 is a reference point, and will be periodically revised to accommodate and incorporate changes to project approach or implementation, and to explore mission alternatives such as landing site or opportunity.

  18. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  19. Automatic calibration of resolver signals via state observers

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wu, Zhong

    2014-09-01

    Resolver sensors are utilized as absolute position transducers in many industrial applications. To get position information from resolvers, envelope detection and angle demodulation are required. Ideally, the signals after envelope detection are two sinusoidal orthogonal envelope signals. However, these sinusoidal envelope signals are often disturbed by unexpected actions such as DC offsets, amplitude deviation, and non-orthogonal phase shift. To overcome the influences of these factors and improve demodulation accuracy, an offline automatic calibration method for the two sinusoidal envelope signals is proposed. A state observer is introduced to estimate the amplitude and DC offsets of the envelope signals. To estimate the phase shift, a sinusoidal signal whose DC offset is a function of the phase shift of the envelope signals is constructed based on properties of triangle functions. Its offset could also be estimated by an observer. The simulation results revealed that the proposed method can converge to a single root accurately without complicated parameter selection. The validity and performance of the calibration method are verified in an experimental prototype.

  20. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  1. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  2. Rodent models for resolving extremes of exercise and health.

    PubMed

    Garton, Fleur C; North, Kathryn N; Koch, Lauren G; Britton, Steven L; Nogales-Gadea, Gisela; Lucia, Alejandro

    2016-02-01

    The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.

  3. Portable optical oxygen sensor based on time-resolved fluorescence.

    PubMed

    Chu, Cheng-Shane; Chu, Ssu-Wei

    2014-11-10

    A new, simple signal processing, low-cost technique for the fabrication of a portable oxygen sensor based on time-resolved fluorescence is described. The sensing film uses the oxygen sensing dye platinum meso-tetra (pentfluorophenyl) porphyrin (PtTFPP) embedded in a polymer matrix. The ratio τ0100 measures sensitivity of the sensing film, where τ0 and τ100 represent the detected fluorescence lifetimes from the sensing film exposed to 100% nitrogen and 100% oxygen, respectively. The experimental results reveal that the PtTFPP-doped oxygen sensor has a sensitivity of 2.2 in the 0%-100% range. A preparation procedure for coating the photodiodes with the oxygen sensor film that produces repetitive and reliable sensing devices is proposed. The developed time-resolved optical oxygen sensor is portable, low-cost, has simple signal processing, and lacks optical filter elements. It is a cost-effective alternative to traditional electrochemical-based oxygen sensors and provides a platform for other optical based sensors.

  4. Experimental Time Resolved Electron Beam Temperature Measurements Using Bremsstrahlung Diagnostics

    SciTech Connect

    Menge, P.R.; Maenchen, J.E.; Mazarakis, M.G.; Rosenthal, S.E.

    1999-06-25

    Electron beam temperature, {beta}{perpendicular} (= v{perpendicular}/v), is important to control for the development of high dose flash radiographic bremsstrahlung sources. At high voltage (> 5 MV) increasing electron beam temperature has a serious deleterious effect on dose production. The average and time resolved behavior of beam temperature was measured during radiographic experiments on the HERMES III accelerator (10 MV, 50 kA, 70 ns). A linear array of thermoluminescent dosimeters (TLDs) were used to estimate the time integrated average of beam temperature. On and off-axis photoconducting diamond (PCD) detectors were used to measure the time resolved bremsstrahlung dose rate, which is dependent on beam energy and temperature. The beam temperature can be determined by correlating PCD response with accelerator voltage and current and also by analyzing the ratio of PCD amplitudes on and off axis. This ratio is insensitive to voltage and current and thus, is more reliable than utilizing absolute dose rate. The data is unfolded using comparisons with Monte Carlo simulations to obtain absolute beam temperatures. The data taken on HERMES III show abrupt increases in {beta}{perpendicular} midway through the pulse indicating rapid onset of beam instability.

  5. Collision-energy resolved ion mobility characterization of isomeric mixtures.

    PubMed

    Pettit, Michael E; Harper, Brett; Brantley, Matthew R; Solouki, Touradj

    2015-10-21

    Existing instrumental resolving power limitations in ion mobility spectrometry (IMS) often restrict adequate characterization of unresolved or co-eluting chemical isomers. Recently, we introduced a novel chemometric deconvolution approach that utilized post-IM collision-induced dissociation (CID) mass spectrometry (MS) data to extract "pure" IM profiles and construct CID mass spectra of individual components from a mixture containing two IM-overlapped components [J. Am. Soc. Mass Spectrom., 2012, 23, 1873-1884]. In this manuscript we extend the capabilities of the IM-MS deconvolution methodology and demonstrate the utility of energy resolved IM deconvolution for successful characterization of ternary and quaternary isomer mixtures with overlapping IM profiles. Furthermore, we show that the success of IM-MS deconvolution is a collision-energy dependent process where different isomers can be identified at various ion fragmentation collision-energies. Details on how to identify a single collision-energy or suitable collision-energy ranges for successful characterization of isomer mixtures are discussed. To confirm the validity of the proposed approach, deconvoluted IM and MS spectra from IM overlapped analyte mixtures are compared to IM and MS data from individually run mixture components. Criteria for "successful" deconvolution of overlapping IM profiles and extraction of their corresponding pure mass spectra are discussed.

  6. Vibrationally resolved cross sections for the photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Stratmann, R. E.; Lucchese, Robert R.

    1994-12-01

    We have performed vibrationally resolved calculations of the excitation of the symmetric stretch in the photoionization of CS2 leading to the X 2Πg, A 2Πu, B 2Σ+u, and C 2Σ+g states of CS+2. Previous theoretical work has determined that the kπg shape resonance in the (5σu)-1 channel consists mainly of a linear combination of low lying virtual d orbitals on sulfur and is thus essentially atomic in nature. This conclusion was primarily based on the shape of the resonant wave function and the insensitivity of the energy of the resonance to bond stretching. Here, we have determined that the energies of the kπ shape resonances located well above threshold and the σ bound states just below threshold are insensitive to bond length. We have also found nearly constant vibrational branching ratios in all channels and polarization components. This is in qualitative agreement with experimental vibrationally resolved cross sections [S. Kakar, H. C. Choi, and E. D. Poliakoff, J. Chem. Phys. 97, 4690 (1992)] which show nearly constant vibrational branching ratios. Our present results indicate that caution must be exercised when using bond length sensitivity as an exclusive means to determine the existence of shape resonances.

  7. Quantum-State-Resolved Ion-Molecule Chemistry

    NASA Astrophysics Data System (ADS)

    Chen, Gary; Yang, Tiangang; Campbell, Wesley; Hudson, Eric

    2016-05-01

    We propose a method to achieve quantum-state-resolved ion-molecule chemistry by utilizing cryogenic buffer gas cooling techniques and a combination of ion imaging and mass spectrometry of targets in an RF Paul trap. Cold molecular species produced by a cryogenic buffer gas beam (CBGB) are introduced to target ion species in an linear quadrupole trap (LQT) where ion imaging techniques and time of flight mass spectrometry (ToF) are then used to observe the target ions and the charged reaction products [1,2]. By taking advantage of the large ion-neutral interaction cross sections and characteristically long ion trap lifetimes, we can utilize the precision control over quantum states allowed by an ion trap to resolve state-to-state quantum chemical reactions without high-density molecular sample production, well within proposed capabilities. The combination of these two very general cold species production techniques allows for production and observation of a broad range of ion-neutral reactions. We initially plan to study chemical reactions between sympathetically cooled carbon ions (via laser cooled beryllium ions) with buffer gas cooled water. This work is supported by the US Air Force Office of Scientific Research.

  8. DC and subcycle-resolved AC Stark shifts in Helium

    NASA Astrophysics Data System (ADS)

    Liu, Aihua; Thumm, Uwe

    2012-06-01

    We are developing a finite element discrete variable representation (FE-DVR) code to model the response of two-electron atoms to ultra-short pulses of EM radiation. Our first numerical results for the DC stark shift of helium deviate significantly from previous [1] single-active-electron (SAE), but are in close agreement with improved SAE calculations that include the effect of core polarization in the external field. For 3x10^14 W/cm^2 infra red fields, we calculate sub-IR-cycle- resolved instantaneous (AC) level shifts of low-lying bound He states that also strongly deviate from the SAE prediction [1]. We plan to apply our code to model recently measured subcycle time-resolved absorption spectra [2].[4pt] [1] F. He, C. Ruiz, A. Becker, and U. Thumm, J. Phys. B 44, 211001 (2011).[0pt] [2] H. Wang, M. Chini, S. Chen, C.-H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, and Z. Chang, Phys. Rev. Lett. 105, 143002 (2010); M. Chini, Z. Chang et al., to be published.

  9. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  10. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  11. Factors which affect spatial resolving power in large array biomagnetic sensors

    SciTech Connect

    Flynn, E.R. )

    1994-04-01

    A reduced chi-squared test has been used to evaluate factors that affect the spatial resolving power of large array biomagnetic sensors for the brain. Realistic array geometries are used and a classical description of spatial resolving power is applied to determine when two separate sources may be resolved. Array parameters such as sensor spacing, coil diameter, and gradiometer type are varied to determine their effect on spatial resolving power. The consequences of the number of sensors is considered and a comparison of existing systems is made. The effects of the vector nature of magnetic sources on spatial resolving power is also considered. It is shown that spatial resolving power is not strongly dependent upon individual sensor diameter, but that sensor spacing is important. It is also found that the instrumental spatial resolving power as a function of depth degrades much more quickly when planar gradiometers are used, as compared to axial gradiometers.

  12. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    SciTech Connect

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; Morowitz, Michael J.; Robert L. Hettich; Banfield, Jillian F.

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  13. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila.

    PubMed

    Gallach, Miguel; Chandrasekaran, Chitra; Betrán, Esther

    2010-01-01

    Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.

  14. Broadband Comb-Resolved Cavity Enhanced Spectrometer with Graphene Modulator

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mohr, Christian; Jiang, Jie; Fermann, Martin; Lee, Chien-Chung; Schibli, Thomas R.; Kowzan, Grzegorz; Maslowski, Piotr

    2015-06-01

    Optical cavities enhance sensitivity in absorption spectroscopy. While this is commonly done with single wavelengths, broad bandwidths can be coupled into the cavity using frequency combs. The combination of cavity enhancement and broad bandwidth allows simultaneous measurement of tens of transitions with high signal-to-noise for even weak near-infrared transitions. This removes the need for time-consuming sequencing acquisition or long-term averaging, so any systematic errors from long-term drifts of the experimental setup or slow changes of sample composition are minimized. Resolving comb lines provides a high accuracy, absolute frequency axis. This is of great importance for gas metrology and data acquisition for future molecular lines databases, and can be applied to simultaneous trace-gas detection of gas mixtures. Coupling of a frequency comb into a cavity can be complex, so we introduce and demonstrate a simplification. The Pound-Drever-Hall method for locking a cavity and a frequency comb together requires a phase modulation of the laser output. We use the graphene modulator that is already in the Tm fiber laser cavity for controlling the carrier envelope offset of the frequency comb, rather than adding a lossy external modulator. The graphene modulator can operate at frequencies of over 1~ MHz, which is sufficient for controlling the laser cavity length actuator which operates below 100~kHz. We match the laser cavity length to fast variations of the enhancement cavity length. Slow variations are stabilized by comparison of the pulse repetition rate to a GPS reference. The carrier envelope offset is locked to a constant value chosen to optimize the transmitted spectrum. The transmitted pulse train is a stable frequency comb suitable for long measurements, including the acquisition of comb-resolved Fourier transform spectra with a minimum absorption coefficient of about 2×10-7 wn. For our 38 cm long enhancement cavity, the comb spacing is 394~MHz. With our

  15. Size resolved fog water chemistry and its atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika

    2015-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via

  16. Physiological left ventricular hypertrophy or hypertrophic cardiomyopathy in an elite adolescent athlete: role of detraining in resolving the clinical dilemma

    PubMed Central

    Basavarajaiah, S; Wilson, M; Junagde, S; Jackson, G; Whyte, G; Sharma, S

    2006-01-01

    The differentiation of physiological left ventricular hypertrophy (LVH) from hypertrophic cardiomyopathy (HCM) can prove challenging for even the most experienced cardiologists. The case is presented of a 17 year old elite swimmer who had electrocardiographic and echocardiographic features that were highly suggestive of HCM. However, indices of diastolic function were normal and cardiopulmonary exercise testing revealed high peak oxygen consumption in keeping with physiological LVH. To resolve the diagnostic dilemma, the patient underwent detraining for eight weeks, after which, there was complete resolution of the changes seen on electrocardiogram and echocardiogram, indicating physiological LVH rather than HCM. PMID:16864569

  17. Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Lavrov, P. M.

    2016-05-01

    In the approach to geometric quantization based on the conversion of second-class constraints, we resolve the corresponding nonlinear zero-curvature conditions for the extended symplectic potential. From the zero-curvature conditions, we deduce new linear equations for the extended symplectic potential. We show that solutions of the new linear equations also satisfy the zero-curvature condition. We present a functional solution of these new linear equations and obtain the corresponding path integral representation. We investigate the general case of a phase superspace where boson and fermion coordinates are present on an equal basis.

  18. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  19. The role of aging in resolving the ferrocyanide safety issue

    SciTech Connect

    Babad, H.; Meacham, J.E.; Simpson, B.C.; Cash, R.J.

    1993-08-01

    A chemical process called aging, in which stored ferrocyanide waste could be dissolved and dispersed among waste tanks, or destroyed by radiolysis and hydrolysis, has been proposed at the Hanford Site. This paper summarizes the results of applied research, characterization, and modeling activities on Hanford Site ferrocyanide waste material that support the existence of a chemical aging mechanism. Test results from waste simulants and actual waste tank materials are presented and compared with theoretical estimates. Chemical and energetic behavior of the materials are the key indicators of destruction or dispersion. Screening experiments on vendor-prepared sodium nickel ferrocyanide and the initial results from core sampling support the concept that aging of ferrocyanide is taking place in the waste tanks at the Hanford Site. This report defines the concept of waste aging and explains the role that aging could play in resolving the Hanford Site ferrocyanide safety issue.

  20. Time-resolved measurements of equilibrium profiles in MST

    NASA Astrophysics Data System (ADS)

    Deng, B. H.; Brower, D. L.; Ding, W. X.; Yates, T. F.; Anderson, J. K.; Caspary, K.; McCollam, K. J.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Craig, D.

    2007-11-01

    Based on the high-speed, three-wave, far-infrared polarimeter-interferometer measurement of Bpol profiles and external coil measurements of Btave and Btw, a new method is developed to derive Btor and other equilibrium profiles (J// and q) with high time resolution. Using Faraday's law, the inductive electric field (E//) profile is also deduced from the temporal derivatives of the time-resolved magnetic field profiles. The derived B(0) values have excellent agreement with direct measurements using a Motional Stark Effect (MSE) diagnostic. Evolution of equilibrium profiles during single sawtooth events in MST, both the slow linear ramp and crash phases, are presented. Profile scaling with plasma current Ip and reversal parameter F is also explored. MHD stability is tested from the spatial gradients of the J// and q profiles, and correlation with fluctuation mode amplitude is investigated. Future improvements to equilibrium reconstruction are expected by measuring Btor(r,t) directly via Cotton-Mouton interferometry.

  1. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  2. Layer Resolved Imaging of Magnetic Domain Motion in Epitaxial Heterostructures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan; Choi, Yongseong; Love, David; Mansell, Rhodri; Barnes, Crispin; Keavney, David; Rosenberg, Richard

    We use X-ray Excited Luminescence Microscopy (XELM) to image the elemental and layer resolved magnetic domain structure of an epitaxial Fe/Cr wedge/Co heterostructure in the presence of large magnetic fields. The observed magnetic domains exhibit several unique behaviors that depend on the Cr thickness (tCr) modulated interlayer exchange coupling (IEC) strength. For Cr thickness tCr??1.5?nm, strongly coupled parallel Co-Fe reversal and weakly coupled layer independent reversal are observed, respectively. The transition between these two reversal mechanisms for 0.34?

  3. Time-resolved spectroscopy of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Murphy, Joseph R.

    This dissertation is a survey of ultrafast time-resolved optical measurements conducted on a variety of low-dimensional semiconductor systems to further the understanding of the dynamic behavior in the following systems: ZnMnTe/ZnSe quantum dots, ZnTe/ZnMnSe quantum dots, InGaAs quantum wells, CdMnSe colloidal quantum dots, multi-shell CdSe/CdMnS/CdS colloidal nanoplatelets, and graphene and graphene-related solutions and films. Using time-resolved photoluminescence to study epitaxially-grown ZnTe and ZnMnTe quantum dots in corresponding ZnMnSe and ZnSe matrices, the location dependence of manganese ions in respect to magnetic polaron formation is shown. The structure with manganese ions located in the matrix exhibited magnetic polaron behavior consistent with previous literature, whereas the structure with the magnetic ions located within the quantum dots exhibited unconventional magnetic polaron properties. These properties, including temperature and magnetic field insensitivity, were explained through the use of a model that predicted an increased internal magnetic field due to a decreased effective volume of the magnetic polaron and a higher effective temperature due to laser heating. Magneto-time-resolved photoluminescence measurements on a system of colloidal CdMnSe quantum dots show that the magnetic polaron properties differ significantly from the epitaxially grown quantum dots. First the timescales at which the magnetic polaron forms and the polarization saturates are different by more than an order of magnitude, and second, the magnetic polaron energy exhibited step-like behavior as the strength of the externally applied magnetic field is increased. The field dependent MP formation energy that is observed experimentally is explained as due to the breaking of the antiferromagnetic coupling of Mn dimers within the QDs. This model is further verified by the observation of quantized behavior in the Zeeman energy splitting. Through the use of magneto

  4. Expansion-loop enclosure resolves subsea line problems

    SciTech Connect

    Rich, S.K.; Alleyne, A.G.

    1998-08-03

    Recent design and construction of a Gulf of Mexico subsea pipeline illustrate the use of buried, enclosed expansion loops to resolve problems from expansion and upheaval buckling. Buried, subsea pipelines operating at high temperatures and pressures experience extreme compressive loads caused by the axial restraint of the soil. The high axial forces combined with imperfections in the seabed may overstress the pipeline or result in upheaval buckling. Typically, expansion loops, or doglegs, are installed to protect the pipeline risers from expansion and to alleviate axial forces. Buried expansion loops, however, are rendered virtually ineffective by the lateral restraint of the soil. Alternative methods to reduce expansion may increase the potential of upheaval buckling or overstressing the pipeline. Therefore, system design must consider expansion and upheaval buckling together. Discussed here are methods of prevention and control of expansion and upheaval buckling, evaluating the impact on the overall system.

  5. Resolvability of defect ensembles with positron annihilation studies

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1984-11-12

    Recent advances in the use of positron annihilation to study defect ensembles in and on the surfaces of metals, are pointing the way towards studies where particular positron-electron annihilation modes may be identified and studied in the presence of one another. Although a great deal is understood about the annihilation of positrons in ostensibly defect-free metals, much less is understood when the positron annihilates in complex defect systems such as liquid metals, amorphous solids, or at or near the vacuum-solid interface. In this paper the results of three experiments, all of which demonstrate means by which we can resolve various poistron annihilation channels from one another, are discussed.

  6. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    PubMed Central

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-01-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light. PMID:27762396

  7. Spatially resolved SO2 flux emissions from Mt Etna.

    PubMed

    D'Aleo, R; Bitetto, M; Delle Donne, D; Tamburello, G; Battaglia, A; Coltelli, M; Patanè, D; Prestifilippo, M; Sciotto, M; Aiuppa, A

    2016-07-28

    We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11-15 August.

  8. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    NASA Astrophysics Data System (ADS)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-10-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light.

  9. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  10. Spatially resolved optoelectronic characterization of perovskite lead iodide nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Peng, Xingyu; Hou, Yasen; Yu, Dong

    The high power conversion efficiency of organo-lead halide perovskite-based solar cells has attracted world-wide attention over the past few years. The high efficiency was believed to originate from the unusual properties including long carrier lifetimes and consequent long carrier diffusion lengths in these materials. Ion drift, ferroelectricity, and charge traps have been proposed to account for the efficient charge separation and photocurrent hysteresis. However, it remains unclear which mechanism is dominating. We fabricate field effect transistors (FETs) incorporating single nanoplates/nanowires of organic perovskite and perform scanning photocurrent microscopic (SPCM) measurements to extract carrier diffusion lengths as a function of gate voltage, source-drain bias. Spatially resolved optoelectronic investigations of single crystalline perovskite nanostructures provide valuable information and key evidence on distinguishing the dominating charge transport/separation mechanism.

  11. Spectrally resolved visualization of fluorescent dyes permeating into skin

    NASA Astrophysics Data System (ADS)

    Maeder, Ulf; Bergmann, Thorsten; Beer, Sebastian; Burg, Jan Michael; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin

    2012-03-01

    We present a spectrally resolved confocal imaging approach to qualitatively asses the overall uptake and the penetration depth of fluorescent dyes into biological tissue. We use a confocal microscope with a spectral resolution of 5 nm to measure porcine skin tissue after performing a Franz-Diffusion experiment with a submicron emulsion enriched with the fluorescent dye Nile Red. The evaluation uses linear unmixing of the dye and the tissue autofluorescence spectra. The results are combined with a manual segmentation of the skin's epidermis and dermis layers to assess the penetration behavior additionally to the overall uptake. The diffusion experiments, performed for 3h and 24h, show a 3-fold increased dye uptake in the epidermis and dermis for the 24h samples. As the method is based on spectral information it does not face the problem of superimposed dye and tissue spectra and therefore is more precise compared to intensity based evaluation methods.

  12. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    SciTech Connect

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  13. Towards time-resolved serial crystallography in a microfluidic device.

    PubMed

    Pawate, Ashtamurthy S; Šrajer, Vukica; Schieferstein, Jeremy; Guha, Sudipto; Henning, Robert; Kosheleva, Irina; Schmidt, Marius; Ren, Zhong; Kenis, Paul J A; Perry, Sarah L

    2015-07-01

    Serial methods for crystallography have the potential to enable dynamic structural studies of protein targets that have been resistant to single-crystal strategies. The use of serial data-collection strategies can circumvent challenges associated with radiation damage and repeated reaction initiation. This work utilizes a microfluidic crystallization platform for the serial time-resolved Laue diffraction analysis of macroscopic crystals of photoactive yellow protein (PYP). Reaction initiation was achieved via pulsed laser illumination, and the resultant electron-density difference maps clearly depict the expected pR(1)/pR(E46Q) and pR(2)/pR(CW) states at 10 µs and the pB1 intermediate at 1 ms. The strategies presented here have tremendous potential for extension to chemical triggering methods for reaction initiation and for extension to dynamic, multivariable analyses.

  14. Nanosecond-resolved temperature measurements using magnetic nanoparticles.

    PubMed

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  15. Phylogenomics resolves the timing and pattern of insect evolution.

    PubMed

    Misof, Bernhard; Liu, Shanlin; Meusemann, Karen; Peters, Ralph S; Donath, Alexander; Mayer, Christoph; Frandsen, Paul B; Ware, Jessica; Flouri, Tomáš; Beutel, Rolf G; Niehuis, Oliver; Petersen, Malte; Izquierdo-Carrasco, Fernando; Wappler, Torsten; Rust, Jes; Aberer, Andre J; Aspöck, Ulrike; Aspöck, Horst; Bartel, Daniela; Blanke, Alexander; Berger, Simon; Böhm, Alexander; Buckley, Thomas R; Calcott, Brett; Chen, Junqing; Friedrich, Frank; Fukui, Makiko; Fujita, Mari; Greve, Carola; Grobe, Peter; Gu, Shengchang; Huang, Ying; Jermiin, Lars S; Kawahara, Akito Y; Krogmann, Lars; Kubiak, Martin; Lanfear, Robert; Letsch, Harald; Li, Yiyuan; Li, Zhenyu; Li, Jiguang; Lu, Haorong; Machida, Ryuichiro; Mashimo, Yuta; Kapli, Pashalia; McKenna, Duane D; Meng, Guanliang; Nakagaki, Yasutaka; Navarrete-Heredia, José Luis; Ott, Michael; Ou, Yanxiang; Pass, Günther; Podsiadlowski, Lars; Pohl, Hans; von Reumont, Björn M; Schütte, Kai; Sekiya, Kaoru; Shimizu, Shota; Slipinski, Adam; Stamatakis, Alexandros; Song, Wenhui; Su, Xu; Szucsich, Nikolaus U; Tan, Meihua; Tan, Xuemei; Tang, Min; Tang, Jingbo; Timelthaler, Gerald; Tomizuka, Shigekazu; Trautwein, Michelle; Tong, Xiaoli; Uchifune, Toshiki; Walzl, Manfred G; Wiegmann, Brian M; Wilbrandt, Jeanne; Wipfler, Benjamin; Wong, Thomas K F; Wu, Qiong; Wu, Gengxiong; Xie, Yinlong; Yang, Shenzhou; Yang, Qing; Yeates, David K; Yoshizawa, Kazunori; Zhang, Qing; Zhang, Rui; Zhang, Wenwei; Zhang, Yunhui; Zhao, Jing; Zhou, Chengran; Zhou, Lili; Ziesmann, Tanja; Zou, Shijie; Li, Yingrui; Xu, Xun; Zhang, Yong; Yang, Huanming; Wang, Jian; Wang, Jun; Kjer, Karl M; Zhou, Xin

    2014-11-07

    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

  16. Nonselective and polarization effects in time-resolved optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhechev, D.; Steflekova, V.

    2016-02-01

    Three interfering effects in optogalvanic (OG) spectroscopy are identified in a hollow cathode discharge (HCD) - OG detector. The laser beam is found to generate two nonselective processes, namely photoelectron emission (PE) from the cathode surface with a sub-breakdown bias applied, and nonresonant space ionization. The convolution of these galvanic contributions was determined experimentally as an instrumental function and a deconvolution procedure to determine the actual OG signal was developed. Specific plasma conductance is detected dependent on the polarization of the laser beam irradiating. Linearly/circularly polarized light beam is found to induce OG signals differ in amplitude (and their shape parameters in the time-resolved OG signals (TROGS)). The phenomena coherence and specific conductance are found to be in causal relationship. The additional conductance due to coherent states of atoms manifests itself as an intrinsic instrumental property of OG detector.

  17. Time-resolve study of the photooxygenation of 3-hydroxyflavone

    SciTech Connect

    Studer, S.L.; Brewer, W.E.; Martinez, M.L.; Chou, Pi-Tai )

    1989-09-13

    3-hydroxyflavones are prototype molecules for studying the dynamics of the proton-transfer reaction in the excited state as well as in the ground state. Their lasing action has been reported with a high efficiency of laser gain. Unfortunately, a major obstruction to the practical application of 3-hydroxy-flavones as laser dyes is due to a photochemical reaction possibly involving molecular oxygen. In this communication we report a direct time-resolved study of the photooxygenation of 3-hydroxyflavone (3HF) in the normal state as well as in the tau-tomer state. Our results not only provide a detailed mechanism of the photooxygenation reaction but also give indirect evidence to support the role of the triplet state in the reverse proton-transfer reaction.

  18. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  19. Simultaneous time and frequency resolved fluorescence microscopy of single molecules.

    SciTech Connect

    Hayden, Carl C.; Gradinaru, Claudiu C.; Chandler, David W.; Luong, A. Khai

    2005-01-01

    Single molecule fluorophores were studied for the first time with a new confocal fluorescence microscope that allows the wavelength and emission time to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive detector. This detector records the wavelength and emission time of each detected photon relative to an excitation laser pulse. A histogram of many events for any selected spatial region or time interval can generate a full fluorescence spectrum and correlated decay plot for the given selection. At the single molecule level, this approach makes entirely new types of temporal and spectral correlation spectroscopy of possible. This report presents the results of simultaneous time- and frequency-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 embedded in thin films of polymethylmethacrylate (PMMA).

  20. Resolving the molecular mechanism of cadherin catch bond formation

    SciTech Connect

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi; Sivasankar, Sanjeevi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated