Science.gov

Sample records for resolved synchrotron light

  1. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  2. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  3. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  4. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  5. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  6. Time resolved spectroscopy using synchrotron infrared pulses

    SciTech Connect

    Carr, G.L.; Lobo, R.P.S.M. |; Hirschmugl, C.J.; LaVeigne, J.; Reitze, D.H.; Tanner, D.B.

    1997-09-01

    Electron synchrotron storage rings, such as the VUV ring at the National Synchrotron Light Source (NSLS), produce short pulses of infrared (IR) radiation suitable for investigating the time-dependent phenomena in a variety of interesting experimental systems. In contrast to other pulses sources of IR, the synchrotron produces a continuum spectral output over the entire IR (and beyond), though at power levels typically below those obtained from laser systems. The infrared synchrotron radiation (IRSR) source is therefore well-suited as a probe using standard FTIR spectroscopic techniques. Here the authors describe the pump-probe spectroscopy facility being established at the NSLS and demonstrate the technique by measuring the photocarrier decay in a semiconductor.

  7. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  8. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  9. Synchrotron beam coherence: a spatially resolved measurement

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Peele, A. G.; Roberts, A.; Nugent, K. A.; Paterson, D.; McNulty, I.

    2005-01-01

    We report a precise and spatially resolved measurement of the complex degree of coherence of a one-dimensional 1.5-keV beam produced by a third-generation synchrotron source. The method of phase-space tomography is used, which requires only measurements of the x-ray intensity. We find that the field is statistically stationary to within experimental error, the correlations are very well approximated by a Gaussian distribution, and the measured coherence length is in excellent agreement with expectations.

  10. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  11. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  12. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    SciTech Connect

    Yu,P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure {alpha}-helices, {beta}-sheets, and others such as {beta}-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted {alpha}-helices, {beta}-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm{sup -1}, the results show that barley protein consisted of approximately 18-34% of {alpha}-helices, 14-25% of {beta}-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P < 0.05) proportions of {alpha}-helices (30-34%) than Dolly and Valier ({alpha}-helices 18-23%). Harrington was in between which was 25%. For protein {beta}-sheets, AC Metcalfe, and LP955 consisted of higher proportions (22-25%) than Dolly and Valier (13-17%). Different barley varieties contained different {alpha}-helix to {beta}-sheet ratios, ranging from 1.4 to 2.0, although the difference were

  13. The Brazilian Synchrotron Light Source

    SciTech Connect

    Brum, J. A.; Tavares, P. F.

    2007-01-19

    The Brazilian Synchrotron Light Laboratory has been operating the only light source in the southern hemisphere since July 1997. During this period, approximately 28000 hours of beam time were delivered reaching more than 1000 users per year from all over Brazil as well as from 10 other countries. In this paper, we briefly recall the history of the project and describe the present configuration of the machine and associated instrumentation, focusing on improvements and upgrades of the various light source subsystems and beamlines implemented in recent years. Finally, we report on the use of the facility by the national and international scientific communities, its impact on the scientific and technological scene in Brazil and present perspectives for future improvements of the machine.

  14. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  15. Remote Synchrotron Light Instrumentation Using Optical Fibers

    SciTech Connect

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  16. Ideas for future synchrotron light sources

    SciTech Connect

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ``generations,`` from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source.

  17. Ideas for future synchrotron light sources

    SciTech Connect

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source.

  18. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  19. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  20. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  1. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D. ); Jones, K.W.; Spanne, P.; Sweet, R.M. ); Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y. ); Singer, P.T.; Westbrook, E.M. )

    1992-01-01

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  2. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D.; Jones, K.W.; Spanne, P.; Sweet, R.M.; Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y.; Singer, P.T.; Westbrook, E.M.

    1992-12-31

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  3. Status of the National Synchrotron Light Source project

    SciTech Connect

    Heese, R.N.

    1981-01-01

    The National Synchrotron Light Source is in its final stages of construction, and as the turn-on time for the 700 MeV vuv storage ring draws near, an overview of the project is presented. Emphasis is placed on the linac and booster synchrotron performance and the status of major subsystems.

  4. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  5. Time-resolved materials science opportunities using synchrotron x-ray sources

    SciTech Connect

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by {approximately}tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities.

  6. Computerized microtomography using synchrotron radiation from the NSLS (National Synchrotron Light Source)

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1986-09-01

    Results of microtomography experiments that employ filtered radiation from the National Synchrotron Light Source X-26 Microprobe beam line are presented. These experiments have yielded images of a freeze-dried caterpillar with a spatial resolution of the order of 30 ..mu..m and show that the limit on the spatial resolution with the present apparatus will be 1 to 10 ..mu..m. Directions for improvement in synchrotron microtomography techniques and some possible applications are discussed. 14 refs., 3 figs.

  7. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  8. Midinfrared beamline at the National Synchrotron Light Source port U2B

    SciTech Connect

    Carr, G.L. ); Hanfland, M. ); Williams, G.P. )

    1995-02-01

    A new infrared beamline has been developed on a conventional dipole bending magnet port of the vacuum ultraviolet ring at the National Synchrotron Light Source. The port provides approximately 12 mrad horizontal and 8 mrad vertical aperture, which limits the useful spectral range to wavelengths less than 20 [mu]m. Though the total flux across the midinfrared is less than that from a globar source, the calculated brightness is at least two orders of magnitude greater. Also, the synchrotron source delivers light in subnanosecond pulses. The developing experimental programs include studies of hydrogen and other materials at extremely high pressures, and time-resolved studies of infrared sensor materials. The measurement results presented here, characterizing the actual brightness advantage and spectroscopic performance, demonstrate the synchrotron's remarkable advantage for microspectroscopic studies.

  9. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure.

    PubMed

    Bergeard, N; Silly, M G; Krizmancic, D; Chauvet, C; Guzzo, M; Ricaud, J P; Izquierdo, M; Stebel, L; Pittana, P; Sergo, R; Cautero, G; Dufour, G; Rochet, F; Sirotti, F

    2011-03-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. PMID:21335912

  10. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  11. In situ time resolved synchrotron powder diffraction study of thaumasite

    NASA Astrophysics Data System (ADS)

    Martucci, Annalisa; Cruciani, Giuseppe

    2006-12-01

    Structural changes during dehydration and subsequent decomposition in thaumasite Ca3Si(SO4)(CO3)(OH)6·12 H2O were studied by in situ synchrotron powder diffraction between 303 and 1,098 K. Evolution of the crystal structure was observed through 28 structure refinements, by full profile Rietveld analysis performed in the P63 space group, between 300 and 417 K, whereupon the thaumasite structure was observed to breakdown. Within this temperature range, the cell parameters of thaumasite increased as a function of temperature in a nearly linear fashion up to about 393 K, at which temperature, a slight slope change was observed. Above 400 K, the thermogravimetric analysis revealed that the dehydration process proceeded very rapidly while the refined occupancy of water molecules dropped below a critical level, leading to instability in the thaumasite structure. At a same time, a remarkable change in the unit cell parameters occurring at about 417 K indicated that the crystal structure of thaumasite collapsed on losing the crystallization water and it turned amorphous. This result indicated that the dehydration/decomposition of thaumasite was induced by the departure of the crystallization water. At about 950 K, anhydrite and cristobalite crystallized from the thaumasite glass.

  12. Research by industry at the National Synchrotron Light Source

    SciTech Connect

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  13. Brazilian Synchrotron Light Source: current results and future perspectives

    NASA Astrophysics Data System (ADS)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  14. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  15. A POSSIBLE SYNCHROTRON LIGHT BEAM PROFILE MONITOR IN RHIC.

    SciTech Connect

    TRBOJEVIC, D.

    1998-06-26

    This report examines the possibility of observing transverse beam profiles by using synchrotron light emission from the 100 GeV/nucleon heavy-ion gold beam in the Relativistic Heavy Ion Collider (RHIC). Synchrotron radiation experiences a shift towards higher photon energy when the magnetic field at the end of a dipole varies rapidly over a short distance. Synchrotron light signals from high energy (larger than 400 GeV) proton beams have already been routinely used to observe the transverse beam profiles at the SPS in CERN and at the TEVATRON at Fermilab. Because of the modest relativistic factor of the fully stripped stored gold ions in RHIC this ''push'' towards higher critical energy is not large enough to place the synchrotron light within the visible region of the spectrum. The critical wavelength remains within the infrared region. A 77K cooled infrared array detector with 160 elements, made of PbSe (Lead salt) could be used for beam profile detection. It would cover the wavelength range between 1 and 6 microns, with maximum sensitivity at a wavelength of 4.5 microns.

  16. Chemical Imaging of Biological Tissue with Synchrotron Infrared Light

    SciTech Connect

    Miller,L.; Dumas, P.

    2006-01-01

    Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-{mu}m pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

  17. DAFNE-Light INFN-LNF Synchrotron Radiation Facility

    SciTech Connect

    Balerna, A.; Cestelli-Guidi, M.; Cimino, R.; Commisso, M.; Grilli, A.; Pietropaoli, M.; Raco, A.; Sciarra, V.; Tullio, V.; Viviani, G.; De Sio, A.; Gambicorti, L.; Hampai, D.; Pace, E.

    2010-06-23

    DAFNE-Light is the Synchrotron Radiation Facility at the INFN-Frascati National Laboratory (Rome, Italy). Three beamlines are operational, using in parasitic and dedicated mode the intense photon emission of DAFNE, a 0.51 GeV storage ring with a routinely circulating electron current higher than 1 Ampere. Two of these beamlines--the soft x-ray (DXR1) and UV (DXR2)--use one of the DAFNE wiggler magnets as synchrotron radiation source, while the third beamline SINBAD (Synchrotron Infrared Beamline At DAFNE) collects the radiation from a bending magnet. New XUV bending magnet beamlines are nowadays under construction and the low energy one (35-200 eV) will be ready for commissioning by the end of 2009. A presentation of the facility will be given together with some recent scientific results achieved at SINBAD and DXR1 beamlines.

  18. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    SciTech Connect

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  19. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  20. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Semenov, A.; Hübers, H.-W.; Hoehl, A.; Ries, M.; Wüstefeld, G.; Ulm, G.; Ilin, K.; Thoma, P.; Siegel, M.

    2016-03-01

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  1. Time-Resolved Structural Analysis of Cation Exchange Reactions in Birnessite Using Synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Lopano, C. L.; Heaney, P. J.; Post, J. E.; Hanson, J. C.; Lee, Y.; Komarneni, S.

    2002-12-01

    Birnessite ((Na,Ca,Mn2+) Mn7O142.8H2O) is a layered Mn-oxide with a 7.2Å spacing between the Mn octahedral sheets. Since birnessite is an abundant phase in soils, desert varnishes, and ocean nodules, it plays a significant role in soil and groundwater chemistry. Experiments by Golden et al. (1986,1987) have demonstrated that Na-buserite (hydrated birnessite) readily exchanges Na+ for a variety of other cations, including K+, Mg2+, Ca2+, Ba2+, Ni2+, and Sr2+. In light of its high cation exchange capacity, birnessite is industrially important for ion and molecular sieves and cathodic materials. In addition, birnessite serves as a precursor in the synthesis of todorokite, which has a 3x3 tunnel structure and is used as an octahedral sieve. We monitored cation-exchange reactions in birnessite by time-resolved X-ray powder diffraction with a simple flow-through cell at the National Synchrotron Light Source. The flow-through cell was developed by Lee and Parise at SUNY-Stony Brook, and this work represents its first application to Mn oxides. A series of synthetic Na-birnessite samples were saturated with chloride solutions containing dissolved K+, Mg2+, and Ba2+, ranging from 0.1M to 0.001M. Powder X-ray diffraction patterns were collected every ~ 3 minutes. The synchrotron experiments revealed that complete cation exchange occurs within three hours, and significant modifications of the arrangements of interlayer cations and water molecules accompany the exchange. Specifically, the replacement of Na by Mg resulted in the continuous growth of a discrete buserite-like phase with a 10Å layer spacing, while replacement of Na by K and Ba retained the 7Å spacing. K replacement of Na resulted in gradually decreasing peak intensity and peak merging. The Ba exchange yielded an abrupt decrease in diffraction intensities followed by a more gradual lattice change over the last 2 hours. Rietveld analysis led to the first determination of the structure of Ba-birnessite in space

  2. Time Resolved Detection of Infrared Synchrotron Radiation at DAΦNE

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Guidi, M. Cestelli; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DAΦNE (Double Annular Φ-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DAΦNE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics.

  3. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  4. Synchrotron light sources: A powerful tool for science and technology

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia.

  5. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Weber, F. A.; Dewald, E. L.; Glenzer, S. H.; Landen, O. L.; Turner, R. E.; Waide, P. A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  6. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    NASA Astrophysics Data System (ADS)

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.

    1997-05-01

    This paper describes the mechanical design of the primary mirror that images the synchrotron light extracted from the High Energy Ring of the PEP-II B Factory. During operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm^2, and the imaging surface is plated with Electroless Nickel to improve its optical characteristics. Calculated mechanical distortions and stresses experienced by the mirror during off-axis and normal operation will be presented.

  7. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  8. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  9. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, William C.

    1996-01-01

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

  10. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, W.C.

    1996-04-30

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

  11. National Synchrotron Light Source medical personnel protection interlock

    SciTech Connect

    Buda, S.; Gmuer, N.F.; Larson, R.; Thomlinson, W.

    1998-11-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated. This MPPI report is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system. The general overview is presented in Section 1.0, MPPI Operational Mode and Procedures. The various MPPI components are described in detail in Section 2.0. Section 3.0 presents some simplified logic diagrams and accompanying text. This section was written to allow readers to become familiar with the logic system without having to work through the entire set of detailed engineering drawings listed in the Appendix. Detailed logic specifications are given in Section 4.0. The Appendix also contains copies of the current MPPI interlock test procedures for Setup and Patient Modes.

  12. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  13. Time Resolved Studies of ZnO(Eu) Nanostructure Luminescence Using Short Synchrotron Radiation Pulses

    SciTech Connect

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Murphy, M.; Ko, J.Y.P.; Lam, S.; Sham, T.K.; Regier, T.; Blyth, R.I.R.; Coulthard, I.; Zuin, L.; Hu, Y.-F.; Armelao, L.; Gordon, R.A.; Brewe, D.

    2008-10-06

    X-ray excited optical luminescence (XEOL) is a well established technique to study nano structured light emitting materials. XEOL bares the essential features necessary for the study of advanced nano structured materials like element specifity, good quantum efficiency, and easy approach for time resolution. Being sensitive to the geometry of the material on a nano-scale, luminescence gives insight into the phenomenologic correlation of structural, optical, and electronic properties. Besides structural aspects we study the time behavior of nanostructured ZnO (Eu) in a pump-probe like experiment, using the time structure of synchrotron radiation.

  14. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  15. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  16. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    SciTech Connect

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki; Okano, Tatsuo; Kishimoto, Shunji; Zhang, Xiaowei; Yoda, Yoshitaka

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  17. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    SciTech Connect

    Thomlinson, W.

    1992-01-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure.

  18. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    SciTech Connect

    Thomlinson, W.

    1992-10-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure.

  19. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  20. Shedding Synchrotron Light on a Puzzle of Glasses

    SciTech Connect

    Chumakov, Aleksandr

    2007-12-05

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  1. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2016-07-12

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  2. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  3. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  4. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-01

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  5. VUV photodynamics of free tholins nanoparticles investigated by imaging Angle-Resolved Photoemission with the Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Tigrine, Sarah; Nahon, Laurent; Carrasco, Nathalie; Garcia-Macias, Gustavo

    2016-06-01

    Thanks to the Cassini Huygens mission, it is now established that the aerosols appear from an altitude of 1,000 km in Titan's atmosphere. Once they are formed and through their descent towards the surface, those grains will still interact with persistent UV/VUV radiations, at different energies, that can reach lower atmospheric layers. This interaction has some impact, for example on the radiative transfer or on the ionization yield of the atmospheric compounds. Models are a good way to study those processes, but the lack of data on the refractive index or the absolute absorption/ionization cross subsections of the aerosols can be an obstacle. In order to shed some light and quantify those processes, we ionize analogs of aerosols produced with the PAMPRE experiment (LATMOS) on the SAPHIRS platform from the DESIRS VUV beamline at the synchrotron SOLEIL, equipped with an aerodynamic lens. The aerosols are injected directly under vacuum as isolated free nanoparticles and do not need to take the form of a film deposited on a substrate. The generated photoelectrons are then collected with a Velocity Map Imaging detector and their energetic and angular signatures are analyzed using the ARPES method (Angle-Resolved PhotoElectron Spectroscopy). Both the nanoparticles size distribution and the incident wavelength determine the parameters governing the photoemission process (intra-particles electron mean free path, photon penetration depth) as revealed by the angular distribution of the photoelectron showing in same cases a marked forward/backward asymmetry with respect to the photon axis. Those parameters may provide us with information on the optical behavior of the aerosols. In addition we can extract the ionization potential in direct connection with the absorption cross subsections of the aerosol, from which altitude dependent photodynamics can be unraveled. We will present here the experiments performed, at different VUV energies, on Titan's aerosol analogs with the

  6. Status of compact synchrotron light source work at TAC

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Huson, F. R.; Rocha, R.; Huang, Yunxiang

    A compact electron synchrotron for x ray lithography is a design project at the Texas Accelerator Center. The design is a four super-period symmetric cell lattice that is 18.8 meters in circumference. Numerical tracking results including edge fields affect the theoretical and mechanical design of the machine. An integrated magnet and lattice design algorithm is discussed. Structural design and measurement system parameters for a prototype superferric 3 Tesla 90 degs dipole are discussed. The prototype dipole magnet is currently under construction.

  7. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  8. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  9. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  10. National Synchrotron Light Source angiography personnel protection interlock

    SciTech Connect

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  11. A time resolved microfocus XEOL facility at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Mosselmans, J. F. W.; Taylor, R. P.; Quinn, P. D.; Finch, A. A.; Cibin, G.; Gianolio, D.; Sapelkin, A. V.

    2013-03-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  12. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  13. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    SciTech Connect

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  14. Spatial and temporal beam profiles for the LHC using synchrotron light

    NASA Astrophysics Data System (ADS)

    Jeff, A.; Bart Pedersen, S.; Boccardi, A.; Bravin, E.; Fisher, A. S.; Guerrero Ollacarizqueta, A.; Lefevre, T.; Rabiller, A.; Welsch, C. P.

    2010-04-01

    Synchrotron radiation is emitted whenever a beam of charged particles passes though a magnetic field. The power emitted is strongly dependent on the relativistic Lorentz factor of the particles, which itself is proportional to the beam energy and inversely proportional to the particle rest mass. Thus, synchrotron radiation is usually associated with electron accelerators, which are commonly used as light sources. However the largest proton machines reach sufficiently high energies to make synchrotron light useful for diagnostic purposes. The Large Hadron Collider at CERN will accelerate protons up to an energy of 7TeV. An optical arrangement has been made which focuses synchrotron light from two LHC magnets to image the cross-section of the beam. It is also planned to use this setup to produce a longitudinal profile of the beam by use of fast Single Photon Counting. This is complicated by the bunched nature of the beam which needs to be measured with a very large dynamic range. In this contribution we present early experimental data of the transverse LHC beam profile together with a scheme for measuring the longitudinal profile with a time resolution of 50 ps. It includes the use of a gating regime to increase the dynamic range of the photon counter and a three-stage correction algorithm to compensate for the detector's deadtime, afterpulsing and pile-up effects.

  15. Measurements of a prototype synchrotron radiation pumped absorber for future light sources

    SciTech Connect

    Chou, T.S.; Foerster, C.L.; Halama, H.; Lanni, C.

    1988-01-01

    In the new generation of advanced synchrotron light sources, the conventional concept of distributed pumping is no longer suitable for removing the gas load caused by photon stimulated desorption (PSD). A new concept using a combination of photon absorber and pumping station has been designed, constructed, and installed in the U1OB beam line at the VUV ring of the National Synchrotron Light Source. The system consists of an electrically insulated water cooled copper block, a titanium sublimation pump, calibrated BA gauges, a calibrated RGA, and a known conductance. A photon beam 10 milliradian wide and 3.26 milliradian high, having critical energy of 500 eV, is directed on the absorber. PSD yield is studied as a function of total beam dose and absorber surface preparation. The results from this experiment, pump characteristics, design of an absorber pump for future light sources, and the pressure improvement factors will be presented. 5 refs., 7 figs., 1 tab.

  16. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  17. Common characteristics of synchrotron radiation and light leaking from a bent optical fiber

    NASA Astrophysics Data System (ADS)

    Artru, X.; Ray, C.

    2016-07-01

    Light leaking from a bent optical fiber shares many properties with synchrotron radiation : in ray optics, both lights are emitted tangentially to a light cylinder; in wave optics, the emission mechanism involves a tunnel effect. The angular distributions of these two radiations are studied in parallel and found to be similar. The same is done for the impact parameter distributions. The latter show interference fringes of the Airy function type. The far field escaped from the fiber is calculated with the Volume Current Method. An optical system observing the impact parameter profile is proposed.

  18. Microchemical Structure of Soybean Seeds Revealed in Situ by Ultraspatially Resolved Synchrotron Fourier Transformed Infrared Microspectroscopy

    SciTech Connect

    Pietrzak,L.; Miller, S.

    2005-01-01

    The distribution of water in soybean seeds during imbibition varies with the chemical composition of the tissue. To understand the dynamics of imbibition, the proteins, lipids, and carbohydrates of the cotyledons and hilum region in mature soybean seeds were mapped using synchrotron Fourier transformed infrared microspectroscopy, based on characteristic peaks for each component: amide I at 1650 cm{sup -1} and amide II at 1550 cm{sup -1} for protein, lipid ester stretch at 1545 cm{sup -1}, and the region from 1200 to 900 cm{sup -1} for carbohydrates. The amount and configuration of the proteins varied across the cotyledon, as well as the amount of lipid and carbohydrate. It was found that protein distribution across the cotyledon is similar to water distribution during imbibition. The chemistry of the hilum region was also studied, as this is the point of water entry, and differences in the chemical composition of the tissues studied were observed.

  19. Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier transformed infrared microspectroscopy.

    PubMed

    Pietrzak, Lukasz N; Miller, S Shea

    2005-11-30

    The distribution of water in soybean seeds during imbibition varies with the chemical composition of the tissue. To understand the dynamics of imbibition, the proteins, lipids, and carbohydrates of the cotyledons and hilum region in mature soybean seeds were mapped using synchrotron Fourier transformed infrared microspectroscopy, based on characteristic peaks for each component: amide I at 1650 cm(-1) and amide II at 1550 cm(-1) for protein, lipid ester stretch at 1545 cm(-1), and the region from 1200 to 900 cm(-1) for carbohydrates. The amount and configuration of the proteins varied across the cotyledon, as well as the amount of lipid and carbohydrate. It was found that protein distribution across the cotyledon is similar to water distribution during imbibition. The chemistry of the hilum region was also studied, as this is the point of water entry, and differences in the chemical composition of the tissues studied were observed.

  20. Fringe Pattern of the PEP-II Synchrotron-Light Interferometers

    SciTech Connect

    Fisher, Alan; /SLAC

    2005-09-19

    Synchrotron-light interferometry is used to measure the vertical beam sizes in the high-energy and low-energy rings (HER and LER) of the PEP-II B Factory at SLAC. Light from a point in a dipole magnet is diffracted by two slits and then imaged onto a CCD camera. A curve fitting algorithm matches the measured interference fringes to a calculated pattern that includes the effect on the modulation depth of the fringes due to both the small but nonzero source size and the narrow bandpass of the optical filter. These formulas are derived here. Next, an additional focusing term from the primary mirror in the vacuum chamber is considered. The mirror needs extensive cooling due to the intense fan of synchrotron x-rays and is likely to have a slight stress-induced curvature, which must be considered to determine the true source size.

  1. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  2. Low-Level Radio Frequency System Development for the National Synchrotron Light Source II

    SciTech Connect

    Ma,H.; Rose, J.

    2009-05-04

    The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

  3. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  4. Kinetic Analyses of Cation Exchange Rates in Synthetic Birnessite Measured by Time- Resolved Synchrotron X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Lopano, C. L.; Heaney, P. J.; Post, J. E.; Bandstra, J.; Brantley, S. L.

    2006-05-01

    Birnessite is the most abundant and chemically important layer-structure Mn-oxide phase found in soils, desert varnishes, and ocean nodules. It also is industrially important for use in battery technology and octahedral sieves. Due to the poorly crystalline nature of natural birnessite, synthetic analogues typically have been employed in studies that explore the structural response of birnessite to variations in interlayer composition. For this work, we measured changes in unit-cell parameters over time to quantify the degree of cation exchange as a function of concentration. Aqueous K+, Cs+, and Ba2+ cations at varying concentrations at pH 7 were exchanged for interlayer Na+ in synthetic birnessite (Na0.58(Mn4+1.42,Mn3+0.58)O4·1.5H2O) using a simple flow- through cell, and the exchange products were monitored via time-resolved X-ray powder diffraction at the National Synchrotron Light Source. Powder X-ray diffraction patterns were collected every 2-3 minutes. Rietveld analyses of X-ray diffraction patterns for K- and Ba-exchanged birnessite revealed a decrease in unit- cell volume over time. In contrast, Cs+ substitution increased cell volume. For all three cations, the crystallographic data indicate that exchange occurred in two stages. A rapid and dramatic change in unit-cell volume was followed by a modest adjustment over longer timescales. Fourier electron difference syntheses revealed that the rapid, initial stage of exchange was marked by re-configuration of the interlayer species, whereas the second, protracted phase of substitution represented ordering into the newly established interlayer positions. For the first time, we have modeled the kinetics of interlayer substitution in Na-birnessite. For purposes of comparison, we have employed a simple one-stage reaction (i.e., Na-birnessite → K-birnessite) and a two stage reaction (i.e,. Na-birnessite → K-birnessitedisordered → K- birnessiteordered). For exchange with 0.01 M KCl solutions, the single

  5. Operating synchrotron light sources with a high gain free electron laser

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Cornacchia, M.

    2015-11-01

    Since the 1980s synchrotron light sources have been considered as drivers of a high repetition rate (RR), high gain free electron laser (FEL) inserted in a by-pass line or in the ring itself. As of today, the high peak current required by the laser is not deemed to be compatible with the standard multi-bunch filling pattern of synchrotrons, and in particular with the operation of insertion device (ID) beamlines. We show that this problem can be overcome by virtue of magnetic bunch length compression in a ring section, and that, after lasing, the beam returns to equilibrium conditions without beam quality disruption. Bunch length compression brings a double advantage: the high peak current stimulates a high gain FEL emission, while the large energy spread makes the beam less sensitive to the FEL heating and to the microwave instability in the ring. The beam’s large energy spread at the undulator is matched to the FEL energy bandwidth through a transverse gradient undulator. Feasibility of lasing at 25 nm is shown for the Elettra synchrotron light source at 1 GeV, and scaling to shorter wavelengths as a function of momentum compaction, beam energy and transverse emittance in higher energy, larger rings is discussed. For the Elettra case study, a low (100 Hz) and a high (463 kHz) FEL RR are considered, corresponding to an average FEL output power at the level of ∼1 W (∼1013 photons per pulse) and ∼300 W (∼1011 photons per pulse), respectively. We also find that, as a by-product of compression, the ∼5 W Renieri’s limit on the average FEL power can be overcome. Our conclusion is that existing and planned synchrotron light sources may be made compatible with this new hybrid IDs-plus-FEL operational mode, with little impact on the standard beamlines functionality.

  6. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  7. Time-resolved structural studies with serial crystallography: A new light on retinal proteins.

    PubMed

    Panneels, Valérie; Wu, Wenting; Tsai, Ching-Ju; Nogly, Przemek; Rheinberger, Jan; Jaeger, Kathrin; Cicchetti, Gregor; Gati, Cornelius; Kick, Leonhard M; Sala, Leonardo; Capitani, Guido; Milne, Chris; Padeste, Celestino; Pedrini, Bill; Li, Xiao-Dan; Standfuss, Jörg; Abela, Rafael; Schertler, Gebhard

    2015-07-01

    Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination. PMID:26798817

  8. Time-resolved structural studies with serial crystallography: A new light on retinal proteins

    PubMed Central

    Panneels, Valérie; Wu, Wenting; Tsai, Ching-Ju; Nogly, Przemek; Rheinberger, Jan; Jaeger, Kathrin; Cicchetti, Gregor; Gati, Cornelius; Kick, Leonhard M.; Sala, Leonardo; Capitani, Guido; Milne, Chris; Padeste, Celestino; Pedrini, Bill; Li, Xiao-Dan; Standfuss, Jörg; Abela, Rafael; Schertler, Gebhard

    2015-01-01

    Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination. PMID:26798817

  9. Vacuum and magnetic field constraints in a H -/light ion synchrotron

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Martin, R. L.; Rossi, S.; Silari, M.

    1994-08-01

    Acceleration of H - ions in a synchrotron imposes severe restrictions on the level of residual pressure in the vacuum chamber and the maximum magnetic field in the magnets of the ring. Significant vacuum requirements are also imposed by the acceleration of ions. This paper discusses these two aspects of the design of a combined H -/light ion synchrotron for radiation therapy. The fractional loss of the accelerated beam induced by the two processes is evaluated on the basis of a general treatment of the physics of these phenomena. The values of the vacuum and magnetic field necessary for normal operation of the machine are specified and a discussion is given of the behaviour of the above quantities as a function of several parameters such as beam energy, composition and pressure of the residual gas in the vacuum chamber and beam extraction time.

  10. Magnetic properties of the ALS (Advanced Light Source) booster synchrotron engineering model magnets

    SciTech Connect

    Keller, R.; Green, M.I.; Hoyer, E.; Koo, Y.M.; Luchini, K.; Marks, S.; Milburn, J.; Nelson, D.H.

    1989-03-01

    The Advanced Light Source (ALS) at Lawrence Berkeley Laboratory is designed to be a third-generation electron storage ring producing high-brightness VUV and X-ray radiation from wiggler and undulator insertion devices. Engineering models of all lattice magnets that are to be installed in the storage ring and its booster synchrotron have been built and are being tested to verify their performance. This paper is concerned with the magnets that form the booster lattice: dipoles, quadrupoles, sextupoles, and corrector dipoles (steerers). After a brief outline of measurement techniques and equipment, the major design parameters of these magnets are listed. Measured effective lengths and multipole field errors are then given for each type. All engineering models meet the specifications, and tracking studies including the measured systematic field errors show acceptable performance of the booster synchrotron; hence the designs are qualified for production. 3 refs., 7 figs., 4 tabs.

  11. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  12. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  13. Time-resolved White-light Interferometry for Ultrafast Metrology

    NASA Astrophysics Data System (ADS)

    Mingareev, I.; Wortmann, D.; Brand, A.; Horn, A.

    2010-10-01

    The material modification in the volume of transparent dielectrics using tightly focused fs-laser radiation is an important topic for many research groups all over the world. A wide range of applications like the writing of waveguides, micro-structuring by material modification and subsequent etching, or the micro-welding of glass is based on the localized melting and quenching in a different state. Time-resolved white-light interferometry is adopted for the measurement of the optical phase changes in processed materials. A modified Mach-Zehnder interferometer setup combined with microscope objectives is used. The white light is generated by focusing ultrafast laser radiation (tp = 80 fs) in a sapphire crystal using a micro-lens array to minimize temporal and spatial fluctuations in the white-light continuum. Lateral and coaxial pump-probe measurements of the phase changes during material processing are performed using one or two coupled ultrafast laser sources at different repetition rates (frep = 1 kHz-1 MHz) or by adopting single pulses. The temporal delay between the pump and the probe can be adjusted in the range τ⩽1.8 μs in dependence on the repetition rate of the pump radiation. The optical phase shift and therefore the refractive index of the material is calculated from the interference images. The knowledge of the refractive index during the modification process with a temporal resolution in the ps-range and a spatial resolution of several microns leads to a better understanding of the initial processes for the permanent material modifications.

  14. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  15. Indium hydroxide to bixbyite-type indium oxide transition probed in situ by time resolved synchrotron radiation.

    PubMed

    Schlicker, L; Riedel, R; Gurlo, A

    2009-12-01

    The understanding of the transformation mechanism involved in the dehydroxylation reactions in the In-O-H system exhibits large controversy and discrepancy; it holds especially for the formation of the metastable nanosized intermediates as well as for the structural relation between corresponding phases. It was recently reported that indium oxohydroxide (InOOH) appears as an intermediate phase in the thermal dehydroxylation of nanoscaled In(OH)(3). Our in situ time resolved high energy synchrotron radiation experiments showed unambiguously that no intermediate crystalline or amorphous phases have been observed during the phase transition (dehydroxylation) from nanosized indium hydroxide to indium oxide. Under our experimental conditions, the c-In(OH)(3) to bixbyite-type In(2)O(3) transition was observed between 280 and 305 degrees C and the conversion completed around 305 degrees C without any observable intermediates. The formation of InOOH during the phase transition In(OH)(3)-->bixbyite-type In(2)O(3) can be ruled out. This finding is of high relevance and importance for the controllable synthesis of nanocrystalline In(2)O(3)-based materials.

  16. BioCARS: a synchrotron resource for time-resolved X-ray science

    PubMed Central

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-01-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684

  17. BioCARS: a synchrotron resource for time-resolved X-ray science

    SciTech Connect

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H.; Dashdorj, N.; Henning, R.W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Srajer, V.; Viccaro, P.J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-08-16

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beam to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.

  18. BioCARS: a synchrotron resource for time-resolved X-ray science.

    PubMed

    Graber, T; Anderson, S; Brewer, H; Chen, Y S; Cho, H S; Dashdorj, N; Henning, R W; Kosheleva, I; Macha, G; Meron, M; Pahl, R; Ren, Z; Ruan, S; Schotte, F; Srajer, V; Viccaro, P J; Westferro, F; Anfinrud, P; Moffat, K

    2011-07-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ~4 × 10(10) photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.

  19. Radiological implications of top-off operation at national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, P. K.; Casey, W. R.

    2011-08-01

    High current and low emittance have been specified to achieve ultra high brightness in the third generation medium energy Synchrotron Radiation Sources. This leads to the electron beam lifetime limited by Touschek scattering, and after commissioning may settle in at as low as ∼3 h. It may well be less in the early days of operation. At the same time, the intensity stability specified by the user community for the synchrotron beam is 1% or better. Given the anticipated lifetime of the beam, incremental filling called top-off injection at intervals on the order of ∼1 min will be required to maintain this beam stability. It is judged to be impractical to make these incremental fills by closing the beam shutters at each injection. In addition, closing the front end beam shutters during each injection will adversely affect the stability of beamline optics due to thermal cycling. Hence the radiological consequences of injection with front end beam shutters open must be evaluated. This paper summarizes results of radiological analysis carried out for the proposed top-off injection at National Synchrotron Light Source-II (NSLS-II) with beam shutters open.

  20. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    PubMed Central

    Collingwood, Joanna F.; Davidson, Mark R.

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis. PMID:25191270

  1. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  2. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  3. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  4. A SPATIALLY RESOLVED STUDY OF THE SYNCHROTRON EMISSION AND TITANIUM IN TYCHO’S SUPERNOVA REMNANT USING NuSTAR

    SciTech Connect

    Lopez, Laura A.; Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Stern, Daniel K.; Zhang, William W.

    2015-12-01

    We report results from deep observations (∼750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from {sup 44}Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity “stripes” associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of {sup 44}Ti, and we set limits on its presence and distribution within the SNR. These limits correspond to an upper-limit {sup 44}Ti mass of M{sub 44} < 2.4 × 10{sup −4} M{sub ⊙} for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  5. A spatially resolved study of the synchrotron emission and titanium in Tycho's supernova remnant using NuSTAR

    DOE PAGES

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; et al

    2015-11-30

    Here, we report results from deep observations (~750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. Furthermore,more » these limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We also find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.« less

  6. A spatially resolved study of the synchrotron emission and titanium in Tycho's supernova remnant using NuSTAR

    SciTech Connect

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Madsen, Kristin K.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas

    2015-11-30

    Here, we report results from deep observations (~750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. Furthermore, these limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We also find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  7. A Spatially Resolved Study of the Synchrotron Emission and Titanium in Tycho’s Supernova Remnant Using NuSTAR

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Madsen, Kristin K.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We report results from deep observations (˜750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity “stripes” associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. These limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  8. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  9. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    SciTech Connect

    Lee, D.H.; Johnson, B.M.; Jones, K.W.; Guardala, N.A.; Price, J.L.; Stumborg, M.F.; Glass, G.A.

    1992-09-26

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of {approximately} 3 %. The electrons were detected at both 90{degree} and 0{degree} with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs.

  10. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    SciTech Connect

    Lee, D.H.; Johnson, B.M.; Jones, K.W. ); Guardala, N.A.; Price, J.L.; Stumborg, M.F. . White Oak Lab.); Glass, G.A. . Dept. of Physics)

    1992-09-26

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of [approximately] 3 %. The electrons were detected at both 90[degree] and 0[degree] with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs.

  11. Analysis of Old Copper Synchrotron Light Absorbers from the Stanford Positron Electron Accelerating Ring

    SciTech Connect

    Marshall, S.R.; Scott, B.; /SLAC

    2005-12-15

    Synchrotron light absorbers intercept synchrotron radiation to protect chamber walls from excessive heat. When subjected to the high temperature of the beam, these absorbers undergo thermal stress. If the stress is too great or fatigues the material, the absorbers may fail. These absorbers are designed to last the lifetime of the machine. Any premature cracking could result in a leak and, consequently, loss of the ultra high vacuum environment. Using secondary and backscattered electron techniques, several sections of a used copper absorber were analyzed for material damage. Chemical analyses were performed on these samples as well. Comparing the unexposed sections to the sections exposed to the electron beam, few cracks were seen in the copper. However, the exposed samples showed heavy surface damage, in addition to crevices that could eventually result in material failure. Significant corrosion was also evident along the water cooling passage of the samples. These findings suggest that further investigation and periodic inspection of absorbers in SPEAR3 are necessary to control corrosion of the copper.

  12. Nondestructive Characterization by Advanced Synchrotron Light Techniques: Spectromicroscopy and Coherent Radiology

    PubMed Central

    Margaritondo, Giorgio; Hwu, Yeukuang; Je, Jung Ho

    2008-01-01

    The advanced characteristics of synchrotron light has led in recent years to the development of a series of new experimental techniques to investigate chemical and physical properties on a microscopic scale. Although originally developed for materials science and biomedical research, such techniques find increasing applications in other domains – and could be quite useful for the study and conservation of cultural heritage. Specifically, they can nondestructively provide detailed chemical composition information that can be useful for the identification of specimens, for the discovery of historical links based on the sources of chemical raw materials and on chemical processes, for the analysis of damage, their causes and remedies and for many other issues. Likewise, morphological and structural information on a microscopic scale is useful for the identification, study and preservation of many different cultural and historical specimens. We concentrate here on two classes of techniques: in the first case, photoemission spectromicroscopy. This is the result of the advanced evolution of photoemission techniques like ESCA (Electron Microscopy for Chemical Analysis). By combining high lateral resolution to spectroscopy, photoemission spectromicroscopy can deliver fine chemical information on a microscopic scale in a nondestructive fashion. The second class of techniques exploits the high lateral coherence of modern synchrotron sources, a byproduct of the quest for high brightness or brilliance. We will see that such techniques now push radiology into the submicron scale and the submillisecond time domain. Furthermore, they can be implemented in a tomographic mode, increasing the information and becoming potentially quite useful for the analysis of cultural heritage specimens.

  13. Synchrotrons: Taiwan unveils new synchrotron

    NASA Astrophysics Data System (ADS)

    Horiuchi, Noriaki

    2015-05-01

    Competitive activities around the globe to develop the world's brightest synchrotron light source have accelerated in recent years. Taiwanese scientists now aspire to be at the top of the list with the recently constructed Taiwan Photon Source.

  14. In-situ shearing interferometry of National Synchrotron Light Source mirrors

    SciTech Connect

    Qian, S.N.; Rarback, H.; Shu, D.; Takacs, P.Z.

    1987-01-01

    In situ mirror distortion measurements were made with a lateral shearing interferometer on three mirrors in beam line X17T at the National Syn203hrotron Light Source. Lateral shearing interference is insensitive to vibrational motion in five of the six degrees of freedom, so it is well-suited for investigations in the synchrotron radiation (SR) environment. No distortion was seen in an uncooled silicon carbide mirror and in a colled copper alloy mirror on X17TB, but a change in the radius of an uncooled electroless nickel-plated aluminium cylinder mirror of about 6.2% was observed on X17TA. Angular vibrations in the 2 to 3 arc second range were easily observed on one of the beam lines, as was an overall mirror rotation in the arc second range.

  15. Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light

    SciTech Connect

    Ozaki,S.

    2009-05-04

    The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

  16. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  17. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines.

    PubMed

    Miles, A J; Janes, Robert W; Brown, A; Clarke, D T; Sutherland, J C; Tao, Y; Wallace, B A; Hoffmann, S V

    2008-07-01

    New high-flux synchrotron radiation circular dichroism (SRCD) beamlines are providing important information for structural biology, but can potentially cause denaturation of the protein samples under investigation. This effect has been studied at the new CD1 dedicated SRCD beamline at ISA in Denmark, where radiation-induced thermal damage effects were observed, depending not only on the radiation flux but also on the focal spot size of the light. Comparisons with similar studies at other SRCD facilities worldwide has lead to the estimation of a flux density threshold under which SRCD beamlines should be operated when samples are to be exposed to low-wavelength vacuum ultraviolet radiation for extended periods of time.

  18. A microprobe-XRF Beamline on Indus-2 Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tiwari, M. K.; Kane, S. R.; Sinha, A. K.; Garg, C. K.; Singh, A. K.; Gupta, P.; Garg, S. R.; Lodha, G. S.; Deb, S. K.

    2013-03-01

    A microfocus x-ray fluorescence (XRF) beamline has been setup on Indus-2 synchrotron light source. The beamline works in the x-ray energy range of 4-20 keV. The optics of the beamline comprises of a Si(111) double crystal monochromator for energy tunability and a Kirkpatrick-Baez (KB) based grazing incidence focusing optics. Microprobe XRF scanning over a region of the sample is possible using a 5-axis sample scanning stage. The beamline provides an energy resolution ~ 10-3 -10-4 with a photon flux density of the order of ~ 108 ph/sec./mm2/100mA for the collimated unfocused beam. Measured performance, various attractive features and some initial commissioning results are presented.

  19. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  20. Synchrotron radiation shielding design for the Brockhouse sector at the Canadian light source

    NASA Astrophysics Data System (ADS)

    Bassey, Bassey; Moreno, Beatriz; Gomez, Ariel; Ahmed, Asm Sabbir; Ullrich, Doug; Chapman, Dean

    2014-05-01

    At the Canadian Light Source (CLS), the plans for the construction of three beamlines under the Brockhouse Project are underway. The beamlines, to be classified under the CLS Phase III beamlines, will comprise of a wiggler and an undulator, and will be dedicated to x-ray diffraction and scattering experiments. The energy range of these beamlines will be 7-22 keV (low energy wiggler beamline), 20-94 keV (high energy wiggler beamline), and 5-21 keV (undulator beamline). The beamlines will have a total of five hutches. Presented is the shielding design against target scattered white and monochromatic synchrotron radiations for these beamlines. The shielding design is based on: scatter target material-water, dose object-anthropomorphic phantom of the adult human (anteroposterior-AP geometry), and shielding thicknesses of steel and lead that will drop the radiation leakage from the hutches to below 0.5 μSv/h.

  1. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    SciTech Connect

    Fisher, Alan; /SLAC

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.

  2. A MODEL STUDY OF TRANSVERSE MODE COUPLING INSTABILITY AT NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II).

    SciTech Connect

    BLEDNYKH, A.; WANG, J.M.

    2005-05-15

    The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.

  3. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  4. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  5. Design of a multi-bend achromat lattice for 3 GeV synchrotron light source

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2016-03-01

    We present a lattice design for a low-emittance and high-brilliance 3 GeV synchrotron light source that has been widely investigated in the world. We show the design results for a MBA (Multi-Bend Achromat) lattice with an emittance of 1.3 nm and 282.4 m circumference. Each cell has 5 bending magnets that consist of outer two with bending angle of 4.5° and inner three with bending angle of 7°. The lattice is designed to be flexible and consists of 12 straight sections in which one straight section has a length of 5.9 m. We have studied the dynamic aperture in the lattice with machine errors. It is shown that the designed low-emittance lattice provides sufficient dynamic aperture after COD correction. We present the results of variations of emittance, energy spread and dynamic aperture due to in-vacuum undulators in the straight sections. We performed particle tracking after the beam injection to investigate the efficiency of the injection scheme. We show the designed results of an injection scheme that shows the space allocation in injection section and the particle motions of injected beam. Our designed lattice provides a good optimization in terms of the emittance and brilliance as a light source for 3 GeV energy and circumference of 28 m.

  6. SESAME -- A third generation synchrotron light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-03-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. Members of the Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority,Turkey) provide the operations budget. Voluntary contributions by several Council Members that could amount to over 20 million over 5 years are now being finalized. This, plus funds from other sources, will enable acquisition of the technical components of the new ring and the upgrading of beamline equipment donated by several European and US labs. All concrete shielding is complete. The 0.8 GeV BESSY I injector system, a gift from Germany, is now being installed. A training program has been underway since 2000. SESAME is on track to start operation with four day-one beam lines in 2015.

  7. Resolving enantiomers using the optical angular momentum of twisted light.

    PubMed

    Brullot, Ward; Vanbel, Maarten K; Swusten, Tom; Verbiest, Thierry

    2016-03-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy.

  8. Resolving enantiomers using the optical angular momentum of twisted light

    PubMed Central

    Brullot, Ward; Vanbel, Maarten K.; Swusten, Tom; Verbiest, Thierry

    2016-01-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials’ chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy. PMID:26998517

  9. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  10. Pose estimation using time-resolved inversion of diffuse light.

    PubMed

    Raviv, Dan; Barsi, Christopher; Naik, Nikhil; Feigin, Micha; Raskar, Ramesh

    2014-08-25

    We present a novel approach for evaluation of position and orientation of geometric shapes from scattered time-resolved data. Traditionally, imaging systems treat scattering as unwanted and are designed to mitigate the effects. Instead, we show here that scattering can be exploited by implementing a system based on a femtosecond laser and a streak camera. The result is accurate estimation of object pose, which is a fundamental tool in analysis of complex scenarios and plays an important role in our understanding of physical phenomena. Here, we experimentally show that for a given geometry, a single incident illumination point yields enough information for pose estimation and tracking after multiple scattering events. Our technique can be used for single-shot imaging behind walls or through turbid media.

  11. Synchrotron radiation

    SciTech Connect

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others.

  12. New Perspectives for Advanced Science at the Brazilian Synchrotron Light Laboratory

    SciTech Connect

    Tolentino, Helio C.N.

    2003-01-24

    The LNLS (Laboratorio Nacional de Luz Sincrotron) is a national laboratory in Brazil that operates a 1.37 GeV storage ring for synchrotron light users since July 1997. Eleven bending magnet beamlines are open to a wide range of possibilities for research in ultra-violet and X-ray spectroscopy, single crystal and powder diffraction, magnetic and anomalous scattering, protein crystallography, X-ray fluorescence, X-ray lithography and small angle X-ray scattering. The recent conclusion of the booster injector opened the way for insertion devices to be accommodated in the four straight sections available. A multipolar wiggler, for protein crystallography using the MAD technique, is the first planned to be installed during 2003. The construction of the first LNLS undulator, for the vaccum ultra-violet and soft X-ray domain, has already started and will expand the possibilities in atomic, molecular and surface physics, as well as in catalysis and magnetism. LNLS has expanded its infra-structure as an open multidisciplinary research laboratory into complementary areas, such as electron and scanning probe microscopy, nanostructure synthesis and molecular biology. Many technological and scientific achievements have been attained in these last five years. Some of them will be highlighted here, with emphasis in the area of nanostructured and magnetic materials.

  13. Operation of general purpose stepping motor controllers at the National Synchrotron Light Source

    SciTech Connect

    Stubblefield, F.W.

    1986-10-01

    A prototype and four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a sixth subsystem is nearing completion. The subsystems effect mechanical positioning by controlling a set of stepping motors and their associated position encoders. The units are general purpose in the sense that they receive commands over a standard 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem will be briefly reviewed. Short descriptions of the positioning apparatus actuated at each of the test and experiment stations employing a motor control unit are given. Additions and enhancements to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail.

  14. Operation of general purpose stepping motor controllers at the National Synchrotron Light Source

    SciTech Connect

    Stubblefield, F.W.

    1987-02-01

    A prototype and four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a sixth subsystem is nearing completion. The subsystems effect mechanical positioning by controlling a set of stepping motors and their associated position encoders. The units are general purpose in the sense that they receive commands over a standard 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Short descriptions of the positioning apparatus actuated at each of the test and experiment stations employing a motor control unit are given. Additions and enhancements to the sub-system made in response to problems indicated by actual operation of the four installed units are described in more detail.

  15. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    SciTech Connect

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  16. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  17. A scanning photoelectron microscope (SPEM) at the National Synchrotron Light Source (NSLS)

    SciTech Connect

    Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D. . Dept. of Physics; Brookhaven National Lab., Upton, NY; Lawrence Berkeley Lab., CA; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center)

    1989-01-01

    We are in the process of developing and commissioning a scanning photoelectron microscope (SPEM) at the X1A beamline of the National Synchrotron Light Source (NSLS). It is designed to make use of the Soft X-ray Undulator (SXU) at the NSLS. This high brightness source illuminates a Fresnel zone plate, which forms a focused probe, {<=} 0.2{mu}m in size, on the specimen surface. A grating monochromator selects the photon energy in the 400-800 eV range with an energy resolution of better than 1 eV. The expected flux in the focus is in the 5 {times} 10{sup 7} {minus} 10{sup 9} photons/s range. A single pass Cylindrical Mirror Analyzer (CMA) is used to record photoemission spectra, or to form an image within a fixed electron energy bandwidth as the specimen is mechanically scanned. As a first test, a 1000 mesh Au grid was successfully imaged with a resolution of about 1{mu}m and the CMA tuned to the Au 4 f photoelectron peak. Once it is commissioned, a program is planned which will utilize the microscope to study beam sensitive systems, such as thin oxide/sub-oxide films of alumina and silica, and ultimately various adsorbates on these films. 14 refs., 4 figs.

  18. Is photocleavage of DNA by YOYO-1 using a synchrotron radiation light source sequence dependent?

    PubMed

    Gilroy, Emma L; Hoffmann, Søren Vrønning; Jones, Nykola C; Rodger, Alison

    2011-10-01

    The photocleavage of double-stranded and single-stranded DNA by the fluorescent dye YOYO-1 was investigated in real time by using the synchrotron radiation light source ASTRID (ISA, Denmark) both to initiate the reaction and to monitor its progress using Couette flow linear dichroism (LD) throughout the irradiation period. The dependence of LD signals on DNA sequences and on time in the intense light beam was explored and quantified for single-stranded poly(dA), poly[(dA-dT)(2)], calf thymus DNA (ctDNA) and Micrococcus luteus DNA (mlDNA). The DNA and ligand regions of the spectrum showed different LD kinetic behaviors, and there was significant sequence dependence of the kinetics. However, in contrast to expectations from the literature, we found that poly(dA), mlDNA, low salt ctDNA and low salt poly[(dA-dT)(2)] all had significant populations of groove-bound YOYO. It seems that this mode was predominantly responsible for the catalysis of DNA cleavage. In homopolymeric DNAs, intercalated YOYO was unable to cleave DNA. In mixed-sequence DNAs the data suggest that YOYO in some but not all intercalated binding sites can cause cleavage. It is also likely that cleavage occurs at transient single-stranded regions. The reaction rates for a 100 mA beam current of 0.5-μW power varied from 0.6 h(-1) for single-stranded poly(dA) to essentially zero for low salt poly[(dG-dC)(2)] and high salt poly[(dA-dT)(2)]. At the conclusion of the experiments with each kind of DNA, uncleaved DNA with intercalated YOYO remained. PMID:21931957

  19. Quaternary structure of K[ssubscript ATP] channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering

    SciTech Connect

    Park, Sungjo; Terzic, Andre

    2010-05-25

    Heterodimeric nucleotide binding domains NBD1/NBD2 distinguish the ATP-binding cassette protein SUR2A, a recognized regulatory subunit of cardiac ATP-sensitive K{sup +} (K{sub ATP}) channels. The tandem function of these core domains ensures metabolism-dependent gating of the Kir6.2 channel pore, yet their structural arrangement has not been resolved. Here, purified monodisperse and interference-free recombinant particles were subjected to synchrotron radiation small-angle X-ray scattering (SAXS) in solution. Intensity function analysis of SAXS profiles resolved NBD1 and NBD2 as octamers. Implemented by ab initio simulated annealing, shape determination prioritized an oblong envelope wrapping NBD1 and NBD2 with respective dimensions of 168 x 80 x 37 {angstrom}{sup 3} and 175 x 81 x 37 {angstrom}{sup 3} based on symmetry constraints, validated by atomic force microscopy. Docking crystal structure homology models against SAXS data reconstructed the NBD ensemble surrounding an inner cleft suitable for Kir6.2 insertion. Human heart disease-associated mutations introduced in silico verified the criticality of the mapped protein-protein interface. The resolved quaternary structure delineates thereby a macromolecular arrangement of K{sub ATP} channel SUR2A regulatory domains.

  20. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  1. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  2. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  3. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  4. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium.

    PubMed

    Ni, Xiaohui; Alfano, R R

    2004-12-01

    Time-resolved backscattering profiles of circularly and linearly polarized light were measured from a turbid medium composed of small and large polystyrene sphere particles in water. It is shown that, based on the measurements of the time-resolved backscattered copolarized and cross-polarized components of the incident polarized light, either linearly or circularly polarized light can be used to effectively image an object that is deep inside a turbid medium composed of small particles, depending on the depolarization properties of the object itself. For large particles such as in tissue, fog, and clouds, the experimentally observed polarization memory effect on the backscattering temporal profiles suggests that a significant improvement in the image contrast can be achieved by use of circularly polarized light.

  5. Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection

    SciTech Connect

    Zhai, Yanhua E-mail: jfan@nist.gov; Fan, Jingyun E-mail: jfan@nist.gov; Migdall, Alan; Becerra, Francisco E.

    2014-09-08

    We examine thermal light diffracted through a double slit using photon-number-resolved detection to directly measure high-order spatial correlations, and we see sinusoidal modulations of those correlations. The fringe width can, in principal, be made arbitrarily small, and we have experimentally obtained fringe widths as small as 30 nm with 800 nm wavelength light. This extreme sub-wavelength resolution, along with this direct detection technique, offers potential for high precision measurement applications.

  6. Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection

    NASA Astrophysics Data System (ADS)

    Zhai, Yanhua; Becerra, Francisco E.; Fan, Jingyun; Migdall, Alan

    2014-09-01

    We examine thermal light diffracted through a double slit using photon-number-resolved detection to directly measure high-order spatial correlations, and we see sinusoidal modulations of those correlations. The fringe width can, in principal, be made arbitrarily small, and we have experimentally obtained fringe widths as small as 30 nm with 800 nm wavelength light. This extreme sub-wavelength resolution, along with this direct detection technique, offers potential for high precision measurement applications.

  7. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    SciTech Connect

    Liu, N.; Yu, P

    2010-01-01

    information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.

  8. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry.

    PubMed

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T; So, Peter T C

    2014-10-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively.

  9. Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillman, Timothy R.; Alexandrov, Sergey A.; Gutzler, Thomas; Sampson, David D.

    2006-11-01

    We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.

  10. Angular and spectrally resolved investigations of yeast cells by light scattering microscopy and goniometric measurements

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Müller, Dennis; Nothelfer, Steffen; Kienle, Alwin

    2015-07-01

    Spectrally and angular resolved light scattering from yeast cells was studied with a scattering microscope and a goniometer. Different cell models were investigated with help of analytical solutions of Maxwell's equations. It was found that extraction of precise morphological and optical cellular properties from the measured scattering patterns and phase functions requires more sophisticated cell models than standard Mie theory.

  11. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Yun, Di; Miao, Yinbin; Xu, Ruqing; Mei, Zhigang; Mo, Kun; Mohamed, Walid; Ye, Bei; Pellin, Michael J.; Yacout, Abdellatif M.

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 μm, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performed to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations.

  12. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    SciTech Connect

    Hsiao, Benjamin S

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  13. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  14. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  15. NSLS 2005 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2005).

    SciTech Connect

    MILLER, L.

    2006-05-01

    efforts on NSLS-II, the world-leading third-generation synchrotron planned for construction at BNL. NSLS-II passed a critical milestone in 2005 with the approval by the Department of Energy of CD-0. BNL has established the NSLS-II Project Organization within the Light Sources Directorate to put in place the management systems and infrastructure necessary to execute this complex undertaking. I will serve as NSLS-II Project Director and also retain my position as Associate Laboratory Director for Light Sources, with the NSLS reporting to me. Another exciting development is the planned establishment of the Joint Photon Sciences Institute (JPSI). JPSI will be devoted to cultivating and fostering collaborative, interdisciplinary R&D in areas of the physical sciences, engineering, and the life sciences that are united in employing synchrotron-based methods. JPSI will also develop new methods and applications that exploit the unique capabilities of NSLS-II and will serve as a gateway for NSLS-II users. JPSI will be a partnership between the Department of Energy and New York State, and I am delighted that New York State Governor George Pataki has pledged $30 million for the construction of the JPSI building. The building will be located adjacent to NSLS-II and will contain offices, meeting rooms, and specialized laboratories. The operating expenses of JPSI and funding for its research programs will be provided by the federal government. Until a permanent NSLS Director is selected, NSLS User Science Division Associate Chair Chi-Chang Kao will serve as the Interim NSLS Director. I couldn't be leaving the facility in more capable hands. Chi-Chang will lead NSLS staff and users this year in the development of a five-year strategic plan for the NSLS, scheduled for completion by the end of summer 2006. The plan will outline the course for the future operation and development of the NSLS, and will help ensure that the future of the NSLS remains as bright as its past.

  16. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed. PMID:25577254

  17. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  18. ZAP AND ITS APPLICATION TO THE OPTIMIZATION OF SYNCHROTRON LIGHT SOURCE PARAMETERS

    SciTech Connect

    Zisman, M.S.

    1987-10-01

    A new computer code, ZAP, has been written to study the influence of various collective effects on the performance of electron storage rings. In particular, the code can evaluate the equilibrium emittance of a ring including the effects of intrabeam scattering. Examples are presented of utilizing the code to optimize the design of storage rings for the purposes of a third-generation synchrotron radiation source and a high-gain free-electron laser. In addition, the importance of the intrabeam scattering emittance blowup to the issue of low energy injection is discussed. Such considerations will be necessary to optimize the design of compact synchrotrons now being studied for use in x-ray lithography. To verify predictions of the code, comparisons are made with experimental measurements of low energy beam emittance taken from the Aladdin storage ring; reasonable agreement is obtained.

  19. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  20. THE WISE LIGHT CURVES OF Z CAMELOPARDALIS DURING OUTBURST: EVIDENCE FOR SYNCHROTRON EMISSION?

    SciTech Connect

    Harrison, Thomas E.

    2014-08-10

    The WISE mission happened to observe the cataclysmic variable Z Cam at the peak of an outburst. The WISE single exposure data shows that Z Cam was highly variable at 12 μm, but only marginally so at shorter wavelengths. The rapid variability at 12 μm, and the fact that these observations occurred close to visual maximum suggests that, like SS Cyg, Z Cam is a synchrotron source.

  1. Water-induced morphology changes in BaO/γ-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron XRD study

    SciTech Connect

    Szanyi, Janos; Kwak, Ja Hun; Kim, Do Heui; Wang, Xianqin; Chimentao, Ricardo J.; Hanson, Jonathan; Epling, William S.; Peden, Charles HF

    2007-03-29

    The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. This process is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials.

  2. Water-Induced Morphology Changes in BaO/gamma-Al2O3 NOx Storage Materials: an FTIR, TPD, and Time-Resolved Synchrotron XRD Study

    SciTech Connect

    Szanyi,J.; Kwak, J.; Kim, D.; Wang, X.; Chimentao, R.; Hanson, J.; Epling, W.; Peden, C.

    2007-01-01

    The effect of water on the morphology of BaO/Al{sub 2}O{sub 3}-based NO{sub x} storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multispectroscopy study reveal that in the presence of water surface Ba-nitrates convert to bulk nitrates and water facilitates the formation of large Ba(NO{sub 3}){sub 2} particles. The conversion of surface to bulk Ba-nitrates is completely reversible (i.e., after the removal of water from the storage material a significant fraction of the bulk nitrates reconverts to surface nitrates). NO{sub 2} exposure of a H{sub 2}O-containing (wet) BaO/Al{sub 2}O{sub 3} sample results in the formation of nitrites and bulk nitrates exclusively (i.e., no surface nitrates form). After further exposure to NO{sub 2}, the nitrites completely convert to bulk nitrates. The amount of NO{sub x} taken up by the storage material, however, is essentially unaffected by the presence of water regardless of whether the water was dosed prior to or after NO{sub 2} exposure. On the basis of the results of this study, we are now able to explain most of the observations reported in the literature on the effect of water on NO{sub x} uptake on similar storage materials.

  3. Study for a proposed Phase I Energy Recovery Linac (ERL) Synchrotron Light Source at Cornell University

    SciTech Connect

    Sol M. Gruner and Maury Tigner, eds.; Ivan Bazarov; Sergey Belomestnykh; Don Bilderback; Ken Finkelstein; Ernie Fontes; Steve Gray; Sol M. Gruner; Geoff Krafft; Lia Merminga; Hasan Padamsee; Ray Helmke; Qun Shen; Joe Rogers; Charles Sinclair; Richard Talman; Maury Tigner

    2001-07-01

    Synchrotron radiation (SR) has become an essential and rapidly growing tool across the sciences and engineering. World-wide, about 70 SR sources are in various stages of operation, construction, or planning, representing a cumulative investment on many billions of dollars and serving a growing research community well in excess of 10,000 scientists. To date, all major SR x-ray facilities are based on electron (or positron) storage rings. Given the expected continued growth, importance and expense of SR sources, it is important to ask if there are alternatives to the storage ring SR source which offer advantages of capability or cost. A step in this direction is being taken by the SR community with the proposed developments of linac-based x-ray free-electron lasers (XFELs) utilizing the self-amplified spontaneous emission process (SASE). However, the versatility of modern developments in accelerator physics, as applied to synchrotron radiation, is not limited to storage rings or XFELs. New developments in laser driven photoinjectors and superconducting linac technology open new and exciting possibilities for novel SR-generating machines which offer extraordinary capabilities and promise to catalyze whole new areas of SR-based science.

  4. Polymer research at synchrotron radiation sources: symposium proceedings

    SciTech Connect

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  5. Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light.

    PubMed

    Naik, Nikhil; Barsi, Christopher; Velten, Andreas; Raskar, Ramesh

    2014-05-01

    Imaging through complex media is a well-known challenge, as scattering distorts a signal and invalidates imaging equations. For coherent imaging, the input field can be reconstructed using phase conjugation or knowledge of the complex transmission matrix. However, for incoherent light, wave interference methods are limited to small viewing angles. On the other hand, time-resolved methods do not rely on signal or object phase correlations, making them suitable for reconstructing wide-angle, larger-scale objects. Previously, a time-resolved technique was demonstrated for uniformly reflecting objects. Here, we generalize the technique to reconstruct the spatially varying reflectance of shapes hidden by angle-dependent diffuse layers. The technique is a noninvasive method of imaging three-dimensional objects without relying on coherence. For a given diffuser, ultrafast measurements are used in a convex optimization program to reconstruct a wide-angle, three-dimensional reflectance function. The method has potential use for biological imaging and material characterization.

  6. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  7. Moisture-insensitive optical fingerprint scanner based on polarization resolved in-finger scattered light.

    PubMed

    Back, Seon-Woo; Lee, Yong-Geon; Lee, Sang-Shin; Son, Geun-Sik

    2016-08-22

    A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated. PMID:27557199

  8. Moisture-insensitive optical fingerprint scanner based on polarization resolved in-finger scattered light.

    PubMed

    Back, Seon-Woo; Lee, Yong-Geon; Lee, Sang-Shin; Son, Geun-Sik

    2016-08-22

    A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated.

  9. Operation of a general purpose stepping motor-encoder positioning subsystem at the National Synchrotron Light Source

    SciTech Connect

    Stubblefield, F.W.

    1985-11-01

    Four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a fifth subsystem unit is nearing completion. The subsystems affect mechanical positioning by controlling a set of stepping motor-encoder pairs. The units are general purpose in the sense that they receive commands over a 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Additions to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail.

  10. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.

    2011-08-01

    Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.

  11. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  12. Measurements and modeling of coherent synchrotron radiation and its impact on the Linac Coherent Light Source electron beam

    NASA Astrophysics Data System (ADS)

    Bane, K. L. F.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; Wu, J.

    2009-03-01

    In order to reach the high peak current required for an x-ray free electron laser, two separate magnetic dipole chicanes are used in the Linac Coherent Light Source accelerator to compress the electron bunch length in stages. In these bunch compressors, coherent synchrotron radiation (CSR) can be emitted either by a short electron bunch or by any longitudinal density modulation that may be on the bunch. In this paper, we report detailed measurements of the CSR-induced energy loss and transverse emittance growth in these compressors. Good agreement is found between the experimental results and multiparticle tracking studies. We also describe direct observations of CSR at optical wavelengths and compare with analytical models based on beam microbunching.

  13. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice

    PubMed Central

    Wang, Peng; Menzies, Neal W.; Lombi, Enzo; McKenna, Brigid A.; James, Simon; Tang, Caixian; Kopittke, Peter M.

    2015-01-01

    Knowledge of the distribution of selenium (Se) species within plant tissues will assist in understanding the mechanisms of Se uptake and translocation, but in situ analysis of fresh and highly hydrated plant tissues is challenging. Using synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide laterally resolved data, the speciation of Se in fresh roots and leaves of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) supplied with 1 μM of either selenate or selenite was investigated. For plant roots exposed to selenate, the majority of the Se was efficiently converted to C-Se-C compounds (i.e. methylselenocysteine or selenomethionine) as selenate was transported radially through the root cylinder. Indeed, even in the rhizodermis which is exposed directly to the bulk solution, only 12–31% of the Se was present as uncomplexed selenate. The C-Se-C compounds were probably sequestered within the roots, whilst much of the remaining uncomplexed Se was translocated to the leaves—selenate accounting for 52–56% of the total Se in the leaves. In a similar manner, for plants exposed to selenite, the Se was efficiently converted to C-Se-C compounds within the roots, with only a small proportion of uncomplexed selenite observed within the outer root tissues. This resulted in a substantial decrease in translocation of Se from the roots to leaves of selenite-exposed plants. This study provides important information for understanding the mechanisms responsible for the uptake and subsequent transformation of Se in plants. PMID:26019258

  14. Anhydrate to hydrate solid-state transformations of carbamazepine and nitrofurantoin in biorelevant media studied in situ using time-resolved synchrotron X-ray diffraction.

    PubMed

    Boetker, Johan P; Rantanen, Jukka; Arnfast, Lærke; Doreth, Maria; Raijada, Dhara; Loebmann, Korbinian; Madsen, Cecilie; Khan, Jamal; Rades, Thomas; Müllertz, Anette; Hawley, Adrian; Thomas, Diana; Boyd, Ben J

    2016-03-01

    Transformation of the solid-state form of a drug compound in the lumen of the gastrointestinal tract may alter the drug bioavailability and in extreme cases result in patient fatalities. The solution-mediated anhydrate-to-hydrate phase transformation was examined using an in vitro model with different biorelevant media, simulated fasted and fed state intestinal fluids containing bile salt and dioleoylphosphatidylcholine (DOPC) micelles, DOPC/sodium dodecyl sulfate (SDS) mixture, bile salt solution and water. Two anhydrate compounds (carbamazepine, CBZ and nitrofurantoin, NF) with different overall transformation time into hydrate form were used as model compounds. The transformations were monitored using direct structural information from time-resolved synchrotron X-ray diffraction. The kinetics of these transformations were estimated using multivariate data analysis (principal component analysis, PCA) and compared to those for nitrofurantoin (NF). The study showed that the solution-mediated phase transformation of CBZ anhydrate was remarkably faster in the DOPC/SDS medium compared to transformation in all the other aqueous dispersion media. The conversion time for CBZ anhydrate in water was shorter than for DOPC/SDS but still faster than the conversion seen in fed and fasted state micellar media. The conversion of CBZ anhydrate to hydrate was the slowest in the solution containing bile salt alone. In contrast, the solution-mediated phase transformations of NF did only show limited kinetic dependence on the dispersion media used, indicating the complexity of the nucleation process. Furthermore, when the CBZ and NF material was compacted into tablets the transformation times were remarkably slower. Results suggest that variations in the composition of the contents of the stomach/gut may affect the recrystallization kinetics, especially when investigating compounds with relatively fast overall transformation time, such as CBZ.

  15. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice.

    PubMed

    Wang, Peng; Menzies, Neal W; Lombi, Enzo; McKenna, Brigid A; James, Simon; Tang, Caixian; Kopittke, Peter M

    2015-08-01

    Knowledge of the distribution of selenium (Se) species within plant tissues will assist in understanding the mechanisms of Se uptake and translocation, but in situ analysis of fresh and highly hydrated plant tissues is challenging. Using synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide laterally resolved data, the speciation of Se in fresh roots and leaves of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) supplied with 1 μM of either selenate or selenite was investigated. For plant roots exposed to selenate, the majority of the Se was efficiently converted to C-Se-C compounds (i.e. methylselenocysteine or selenomethionine) as selenate was transported radially through the root cylinder. Indeed, even in the rhizodermis which is exposed directly to the bulk solution, only 12-31% of the Se was present as uncomplexed selenate. The C-Se-C compounds were probably sequestered within the roots, whilst much of the remaining uncomplexed Se was translocated to the leaves-selenate accounting for 52-56% of the total Se in the leaves. In a similar manner, for plants exposed to selenite, the Se was efficiently converted to C-Se-C compounds within the roots, with only a small proportion of uncomplexed selenite observed within the outer root tissues. This resulted in a substantial decrease in translocation of Se from the roots to leaves of selenite-exposed plants. This study provides important information for understanding the mechanisms responsible for the uptake and subsequent transformation of Se in plants.

  16. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-01

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  17. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    SciTech Connect

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-03

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  18. An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.

    PubMed

    Neumann, T; Schneider, T; Serga, A A; Hillebrands, B

    2009-05-01

    Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured. PMID:19485518

  19. Visualization and measurement of multiphase flow in porous media using light transmission and synchrotron x-rays.

    PubMed

    Darnault, Christophe J G; Dicarlo, David A; Bauters, Tim W J; Steenhuis, Tammo S; Parlange, J-Yves; Montemagno, Carlo D; Baveye, Philippe

    2002-10-01

    Non-aqueous phase liquids enter the vadose zone as a result of spills or leaking underground storage facilities, thus contaminating groundwater resources. Measuring the contaminant concentrations is important in assessing the risk to human health and the environment and to develop effective remediation. This research presents the development and application of the light transmission method (LTM) for three-phase flow systems, aimed at investigating unstable fingered flow in a soil-air-oil-water system. The LTM uses the hue and intensity of light transmitted through a slab chamber to measure fluid content, since total liquid content is a function of both hue and light intensity. Evaluation of the LTM is obtained by comparing experiments with LTM and synchrotron X-rays. The LTM captures the spatial resolution of the fluid contents and can provide new insights into rapidly changing, two-phase and three-phase flow systems. Application of the LTM as a visualization technique for environmental and physical phenomena is noted. Visualization by LTM of groundwater remediation by surfactants as well as visualization of model cluster growth and fractal dimensions was also explored.

  20. Investigation of oxygen vacancies in CeO2/Pt system with synchrotron light techniques

    NASA Astrophysics Data System (ADS)

    Braglia, L.; Bugaev, A. L.; Lomachenko, K. A.; Soldatov, A. V.; Lamberti, C.; Guda, A. A.

    2016-05-01

    A peculiar property of ceria is the ease to form oxygen vacancies, producing reactive sites or facilitating ionic diffusion. For these reasons ceria promotes catalytic activities for a number of important reactions when it is used as a support for transition metals. In our work we study the temporal evolution of oxygen vacancies formation by time-resolved XANES at Ce K- edge and XRD measurements on CeO2/Pt nanoparticles, successfully monitoring the reaction of CO oxidation.

  1. Time-resolved diffuse optical tomography with patterned-light illumination and detection.

    PubMed

    Chen, Jin; Venugopal, Vivek; Lesage, Frederic; Intes, Xavier

    2010-07-01

    This investigation explores the feasibility of performing diffuse optical tomography based on time-domain wide-field illumination and detection strategies. Wide-field patterned excitation and detection schemes are investigated in transmittance geometry with time-gated detection channels. A Monte Carlo forward model is employed to compute the time-resolved Jacobians for rigorous light propagation modeling. We demonstrate both in silico and experimentally that reconstructions of absorption structures based on wide-field patterned-light strategies are feasible and outperform classical point excitation schemes for similar data set sizes. Moreover, we demonstrate that time-domain information is retained even though large spatial areas are illuminated. The enhanced time-domain data set allows for quantitative three-dimensional imaging in thick tissue based on relatively small data sets associated with much shorter acquisition times.

  2. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  3. Developing EnviroSuite Resources at the National Synchrotron Light Source

    SciTech Connect

    Paul Northrup; Jeffrey Fitts; Mark Fuhrmann; Paul Kalb

    2006-06-01

    The objective of Brookhaven National Laboratory's EnviroSuite Initiative is to develop the facilities, user support infrastructure, and techniques necessary to conduct world-class molecular environmental science research at the NSLS. This is intended to benefit the research of ERSD-supported scientists, both through direct access and assistance and through the indirect benefits of a broader network of environmental scientists as collaborators and users. Much of the EnviroSuite research involves close collaboration with members of the Center for Environmental Molecular Science (CEMS), an EMSI based at BNL and nearby Stony Brook University and jointly supported by ERSD (Project 1023761, P. Kalb) and NSF. This offers unique opportunities to benefit from both national laboratory facilities and university resources. Other collaborators, from around the US and the world, investigate various aspects of the underlying molecular-scale processes in complex natural systems. In general, synchrotron techniques are ideal for studying the molecular-scale structures, chemical/physical interactions, and transformations that govern the macroscopic properties and processes (e.g. transport, bioavailability) of contaminants in the environment. These techniques are element-specific, non-destructive, and sensitive to the very low concentrations found in real-world samples.

  4. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems.

  5. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  6. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. PMID:25497037

  7. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  8. Assessment of murine bone ultrastructure using synchrotron light: towards nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Voide, Romain; Stauber, Martin; Stampanoni, Marco; Donahue, Leah Rae; Wyss, Peter; Sennhauser, Urs; Müller, Ralph

    2006-08-01

    To describe the different aspects of bone quality, we follow a hierarchical approach and assess bone tissue properties in different regimes of spatial resolution, beginning at the organ level and going down to cellular dimensions. For these purposes we developed different synchrotron radiation (SR) based computed-tomography (CT) methods to assess murine bone ultrastructure. In a first step, a tubular system and the osteocyte lacunar system within murine cortical bone have been established as novel ultrastructural quantitative traits. Results in two mouse strains showed that morphometry of these quantitative traits was dependent on strain and partially on gender, and that their scaling behavior with bone size was fundamentally different. In a second step, we explored bone competence on an ultrastructural level and related our findings to the two ultrastructural quantitative traits introduced before. We showed that SR CT imaging is a powerful tool to investigate the initiation and propagation of microcracks, which may alter bone quality and may lead to increased fracture risk by means of microdamage accumulation. In summary, investigation of ultrastructural bone tissue properties will eventually lead to a better understanding of bone quality and its relative contribution to bone competence.

  9. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  10. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  11. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  12. Angle-resolved second harmonic light scattering from colloidal suspensions and second harmonic particle microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ningping

    2001-08-01

    We have carried out two nonlinear optical experiments with colloidal particles. Our first nonlinear optical experiment studied Second-Harmonic Generation (SHG) light scattering from colloidal suspension. In particular, we measured the angle-resolved second-harmonic generation light scattering from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering angular profiles differ qualitatively from the linear light scattering angular profiles of the same particles. We have investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optical effect from other bulk nonlinear optical effects in suspension. Our second nonlinear optical experiment studied the Second-Harmonic Generation (SHG) from single micron-size particles. We built a nonlinear optical microscope for this purpose. We report experimental observations of second harmonic generation from single micron-size polystyrene (PS), silica, and PolyMethylMethAcrylate (PMMA) spheres on flat substrates by SHG microscopy. At low input light intensities the SH signals depend quadratically on the intensity of the excitation beam, but at larger input intensities some of the SH signals increase exponentially with increasing input intensity. This exponential enhancement depends on particle size and sphere composition. We describe the experiments, report the observations and provide an approximate analytical framework for understanding our measurements.

  13. THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II

    SciTech Connect

    Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

  14. Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements

    NASA Astrophysics Data System (ADS)

    Shao, Bing; Jaffe, Jules S.; Chachisvilis, Mirianas; Esener, Sadik C.

    2006-12-01

    In order to assess the capability to optically identify small marine microbes, both simulations and experiments of angular resolved light scattering (ARLS) were performed. After calibration with 30-nm vesicles characterized by a nearly constant scattering distribution for vertically polarized light (azimuthal angle=90°), ARLS from suspensions of three types of marine picoplankton (two prokaryotes and one eukaryote) in seawater was measured with a scattering device that consisted of an elliptical mirror, a rotating aperture, and a PMT. Scattered light was recorded with adequate signal-to-noise in the 40-140°. Simulations modeled the cells as prolate spheroids with independently measured dimensions. For the prokaryotes, approximated as homogeneous spheroids, simulations were performed using the RM (Rayleigh-Mie) - I method, a hybrid of the Rayleigh-Debye approximation and the generalized Lorentz-Mie theory. For the picoeukaryote, an extended RM - I method was developed for a coated spheroid with different shell thickness distributions. The picoeukaryote was then modeled as a coated sphere with a spherical core. Good overall agreements were obtained between simulations and experiments. The distinctive scattering patterns of the different species hold promise for an identification system based on ARLS.

  15. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    SciTech Connect

    Gubbiotti, G.; Tacchi, S.; Madami, M.; Carlotti, G.; Ding, J.; Adeyeye, A. O.

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  16. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    SciTech Connect

    MILLER, L.

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget

  17. Time- and space-resolved light emission and spectroscopic research of the flashover plasma

    SciTech Connect

    Gleizer, J. Z.; Krasik, Ya. E.; Leopold, J.

    2015-02-21

    The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV, respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.

  18. Synchrotron radiation from protons

    SciTech Connect

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature.

  19. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.

  20. Soft-x-ray and vacuum-ultraviolet beamlines at the National Synchrotron Light Source 700-MeV storage ring

    SciTech Connect

    Williams, G.P.; Howells, M.R.

    1982-01-01

    We summarize the characteristics of the first beamlines which are being installed and commissioned at the National Synchrotron Light Source (NSLS) 700 MeV storage ring at Brookhaven National Laboratory. We also give a progress report as of July 1982 on the early stages of beamline alignment and operation in which particular attention is paid to the 5 beamlines which NSLS has developed. The report describes in detail a novel method for beamline alignment which is of general application.

  1. VLT Spectra "Resolve" a Stellar Disk at 25,000 Light-Years Distance

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Unique Observations of a Microlensing Event Summary Like our Sun, stars are large gaseous spheres. However, while we are able to perceive the Sun's disk, all other stars are so far away that they normally appear as points of light . Only specialized observing techniques, like interferometry [1], are able to "resolve" the images of nearby stars and to show them as extended balls of fire. But opportunities may sometimes arise that allow amazing observational feats in this field . Indeed, an international team of astronomers [2] has just "resolved" a single, normal star some 25,000 light years away , or about 1.6 billion times more distant than the Sun [3], by taking advantage of a multiple microlensing event . During such a rare event, the light from the remote star is amplified by the gravity of a faint object that passes in front of it, as seen from the Earth . In fact, this gravitational lens acts as a magnifying glass that focusses different parts of the star's image at different times. Using the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope on Paranal during a microlensing event, the team was able to obtain detailed spectra of the different parts of the remote star. In doing so, they managed to probe its gaseous atmosphere at different depths. This is the first time that it has been possible to obtain detailed, spatially resolved spectra across the full face of a normal star other than the Sun [4]. PR Photo 16a/01 : The light-curve of Microlensing Event EROS-BLG-2000-5 . PR Photo 16b/01 : The sky area of EROS-BLG-2000-5. PR Photo 16c/01 : A VLT spectrum of EROS-BLG-2000-5. PR Photo 16d/01 : The observed change of the H-alpha line strength of EROS-BLG-2000-5. A many-faceted success story The following story is about a most unusual astronomical observation and also shows how modern astrophysics works . It combines the study of stellar atmospheres with the intricate optical effects produced by the gravitational field of a binary star in the Milky Way

  2. ACE-Asia: Size/Time/Compositionally Resolved Aerosols During ACE-Asia Using Continuously Sampling DRUM Technology and Synchrotron-XRF Analysis

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Cliff, S. S.; Jimenez-Cruz, M.; Perry, K. D.

    2001-12-01

    The adaptation of focused beam technology to continuously sampling drum impactors (DRUMs) has allowed for an unprecedented number of size/time/compositional analyses of aerosols during the Spring, 2001 ACE-Asia study and a summer follow-on. While continuously sampling and sizing inertial drum impactors have been available for aerosol monitoring and research for the past 30 years, cost and sensitivity considerations have generally limited their use, even in research studies. These constraints have been greatly relaxed by our application of synchrotron X-ray fluorescence (S-XRF) analysis for elemental analysis of aerosols, both increasing sensitivity and decreasing cost. The intense polarized x-ray beams of the Lawrence Berkeley National Laboratory's Advanced Light Source (ALS) allows us to eliminate 99% of all the background normally present in x-ray analysis while matching the x-ray beam spot to the 0.2 mm "footprint" of our DRUM impactors. This combination allows non-destructive analyses of elements from sodium to uranium (with some minor elements masked by interferences) with a time resolution set during analysis, not during sampling. The DELTA Group and its many collaborators executed a 21 site network of continuously sampling 3 and 8 stage DRUM impactors for the 6 weeks of ACE-Asia. Fewer than 5% of the potential 80,000 samples were lost due to sampling problems. During S-XRF analysis, a nominal time resolution of 6 hrs was chosen, with 2 hrs available as needed during aerosol episodes. The 168 mm drum strips were mounted in frames and exposed to the "white" polarized x-ray beam of ALS Beam Line 10.3.1 for 30 seconds, yielding quantitative elemental determinations from sodium through molybdenum plus heavy elements, certified by 80 analytical standards and NIST SRMs. Minimum detectable limits ranged from 0.1 ng/m3 for sulfur to 0.005 ng/m3 for transition metals such as zinc, allowing scores of positive elemental determinations in each spectrum. During ACE

  3. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  4. White-light continuum probed femtosecond time-resolved absorption spectroscopic measurement of β-carotene under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Long; Zheng, Zhi-Ren; Zhang, Jian-Ping; Wu, Wen-Zhi; Li, Ai-Hua; Zhang, Wei; Huo, Ming-Ming; Liu, Zhi-Guo; Zhu, Rui-Bin; Zhao, Lian-Cheng; Su, Wen-Hui

    2012-04-01

    We have performed a femtosecond time-resolved absorption spectroscopic experiment of β-carotene in n-hexane solution under high pressure up to ˜1.0 GPa. Using white-light continuum in the visible spectral region as probe light, we found that the energy level of S1 state descends, whereas its lifetime becomes longer with the rising pressure. We ascribe this tendency deviating from the energy gap law to the viscosity effects on the Cdbnd C stretching vibrations, which is fully consistent with the microviscosity theory. This Letter may provide some insights on the light harvesting and photoprotection functions of carotenoids in photosynthetic organisms.

  5. Synchrotron polarization in blazars

    SciTech Connect

    Zhang, Haocheng; Böttcher, Markus; Chen, Xuhui

    2014-07-01

    We present a detailed analysis of time- and energy-dependent synchrotron polarization signatures in a shock-in-jet model for γ-ray blazars. Our calculations employ a full three-dimensional radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are handled with the two-dimensional Monte-Carlo/Fokker-Planck (MCFP) code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + synchrotron-self-Compton flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large polarization angle rotations by ≳ 180°, as observed in connection with γ-ray flares in several blazars, without the need for bent or helical jet trajectories or other nonaxisymmetric jet features.

  6. VLT Spectra "Resolve" a Stellar Disk at 25,000 Light-Years Distance

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Unique Observations of a Microlensing Event Summary Like our Sun, stars are large gaseous spheres. However, while we are able to perceive the Sun's disk, all other stars are so far away that they normally appear as points of light . Only specialized observing techniques, like interferometry [1], are able to "resolve" the images of nearby stars and to show them as extended balls of fire. But opportunities may sometimes arise that allow amazing observational feats in this field . Indeed, an international team of astronomers [2] has just "resolved" a single, normal star some 25,000 light years away , or about 1.6 billion times more distant than the Sun [3], by taking advantage of a multiple microlensing event . During such a rare event, the light from the remote star is amplified by the gravity of a faint object that passes in front of it, as seen from the Earth . In fact, this gravitational lens acts as a magnifying glass that focusses different parts of the star's image at different times. Using the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope on Paranal during a microlensing event, the team was able to obtain detailed spectra of the different parts of the remote star. In doing so, they managed to probe its gaseous atmosphere at different depths. This is the first time that it has been possible to obtain detailed, spatially resolved spectra across the full face of a normal star other than the Sun [4]. PR Photo 16a/01 : The light-curve of Microlensing Event EROS-BLG-2000-5 . PR Photo 16b/01 : The sky area of EROS-BLG-2000-5. PR Photo 16c/01 : A VLT spectrum of EROS-BLG-2000-5. PR Photo 16d/01 : The observed change of the H-alpha line strength of EROS-BLG-2000-5. A many-faceted success story The following story is about a most unusual astronomical observation and also shows how modern astrophysics works . It combines the study of stellar atmospheres with the intricate optical effects produced by the gravitational field of a binary star in the Milky Way

  7. Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Dela Rosa, Alfredo; Sarma, Anupama V.; Le, Charles Q.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    It is necessary to minimize peripheral thermal damage during laser irradiation, since thermal damage to collagen and mineral compromises the bond strength to restorative materials in dentin and inhibits healing and osteointegration in bone. The overall objective of this study was to test the hypothesis that lasers resonant to the specific absorption of water, collagen, and hydroxyapatite with pulse durations less than the thermal relaxation times at each respective laser wavelength will efficiently remove dentin with minimal peripheral thermal damage. Precise incisions were produced in 3 x 3 mm2 blocks of human dentin using CO2 (9.6 μm), Er:YSGG (2.79 μm), and Nd:YAG (355 nm) lasers with and without a computer controlled water spray. Polarization-sensitive optical coherence tomography was used to obtain optical cross-sections of each incision to determine the rate and efficiency of ablation. The peripheral thermal damage zone around each incision was analyzed using polarized light microscopy (PLM) and Synchrotron-Radiation Fourier Transform Infrared Spectro-microscopy (SR-FTIR). Thermally induced chemical changes to both mineral and the collagen matrix was observed with SR-FTIR with a 10-μm spatial resolution and those changes were correlated with optical changes observed with PLM. Minimal (<10-μm) thermal damage was observed for pulse durations less than the thermal relaxation time (Tr ) of the deposited laser energy, with and without applied water at 9.6 um and only with applied water at 2.79 μm. For pulse durations greater than Tr, significantly greater peripheral thermal damage was observed for both IR laser wavelengths with and without the water spray. There was minimal thermal damage for 355-nm laser pulses, however extensive mechanical damage (cracks) was observed. High resolution SR-FTIR is well suited for characterization of the chemical changes that occur due to thermal damage peripheral to laser incisions in proteinaceous hard tissues. Sub

  8. Spatially resolved electroluminescence of InGaN-MQW-LEDs[Multiple Quantum Wells-Light Emitting Diodes

    SciTech Connect

    Schwegler, V.; Seyboth, M.; Kirchner, C.; Scherer, M.; Kamp, M.; Fischer, P.; Christen, J.; Zacharias, M.

    2000-07-01

    Electroluminescence (EL) is the most significant measure for light-emitting diodes since it probes the most relevant properties of the fully processed device during operation. In addition to the information gained by conventional spectrally resolved EL, scanning micro-EL provides spatially resolved information. The devices under investigation are InGaN/GaN-LEDs with single peak band-band emission at about 400 nm grown by MOVPE on sapphire substrates. The {mu}-EL-characterization is performed as a function of injection current densities and the emission is investigated from the epitaxial layer as well as from substrate side. Spatially resolved wavelength images reveal emission peaks between 406 nm and 417 nm, corresponding either to In fluctuations of 1--1.5% or local fluctuations of piezo electric fields. Beside the information on the emission wavelength fluctuations {mu}-EL is used to determine the temperature distribution in the LEDs and to investigate transparent contacts.

  9. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    PubMed

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known. PMID:27464179

  10. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2016-07-12

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  11. Introducing Synchrotrons Into the Classroom

    SciTech Connect

    2011-05-20

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  12. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation.

    PubMed

    Plötzing, M; Adam, R; Weier, C; Plucinski, L; Eich, S; Emmerich, S; Rollinger, M; Aeschlimann, M; Mathias, S; Schneider, C M

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  13. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light.

    PubMed

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7(∘) angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV. PMID:27250396

  14. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light.

    PubMed

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7(∘) angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  15. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  16. Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface

    SciTech Connect

    Ren, Jin-Li; Wang, Bo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2015-09-14

    We theoretically and experimentally demonstrate that it is possible to directly observe the resolvable spin separation in the spin Hall effect of light at an air-glass interface by choosing optimal parameters. When a P-polarized light with a beam waist of 10 μm is incident around Brewster's angle, the two spin components of the reflected beam can be completely separated by eliminating the influence of the in-plane wavevector spread. This not only obviously reveals the strong impacts of the polarization state, the incident angle, the beam waist, and the in-plane wavevector spread, but also intuitively visualizes the observation of the spin Hall effect of light.

  17. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron x-ray diffraction.

    SciTech Connect

    Sun, Y.; Ren, Y.; Haeffner, D. R.; Almer, J. D.; Wang, L.; Yang, W.; Truong, T. T.

    2010-09-01

    Real-time evolution of nanoparticles grown at the semiconductor/electrolyte interface formed between a single crystalline n-type GaAs wafer and an aqueous solution of AgNO{sub 3} has been studied by using high-energy synchrotron X-ray diffraction. The results reveal the distinct nucleation and growth steps involved in the growth of anisotropic Ag nanoplates on the surface of the GaAs wafer. For the first time, a quick transit stage is observed to be responsible for the structural transformation of the nuclei to form structurally stable seeds that are critical for guiding their anisotropic growth into nanoplates. Reaction between a GaAs wafer and AgNO{sub 3} solution at room temperature primarily produces Ag nanoplates on the surface of the GaAs wafer in the dark and at room temperature. In contrast, X-ray irradiation can induce charge separation in the GaAs wafer to drive the growth of nanoparticles made of silver oxy salt (Ag{sub 7}NO{sub 11}) and silver arsenate (Ag{sub 3}AsO{sub 4}) at the semiconductor/electrolyte interface if the GaAs wafer is illuminated by the X-ray and reaction time is long enough.

  18. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron X-ray diffraction.

    PubMed

    Sun, Yugang; Ren, Yang; Haeffner, Dean R; Almer, Jonathan D; Wang, Lin; Yang, Wenge; Truong, Tu T

    2010-09-01

    Real-time evolution of nanoparticles grown at the semiconductor/electrolyte interface formed between a single crystalline n-type GaAs wafer and an aqueous solution of AgNO(3) has been studied by using high-energy synchrotron X-ray diffraction. The results reveal the distinct nucleation and growth steps involved in the growth of anisotropic Ag nanoplates on the surface of the GaAs wafer. For the first time, a quick transit stage is observed to be responsible for the structural transformation of the nuclei to form structurally stable seeds that are critical for guiding their anisotropic growth into nanoplates. Reaction between a GaAs wafer and AgNO(3) solution at room temperature primarily produces Ag nanoplates on the surface of the GaAs wafer in the dark and at room temperature. In contrast, X-ray irradiation can induce charge separation in the GaAs wafer to drive the growth of nanoparticles made of silver oxy salt (Ag(7)NO(11)) and silver arsenate (Ag(3)AsO(4)) at the semiconductor/electrolyte interface if the GaAs wafer is illuminated by the X-ray and reaction time is long enough.

  19. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz M.; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A.; Blankenship, Robert E.

    2011-10-08

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N = 11) and spirilloxanthin (N = 13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N = 13) to play the role of the direct quencher of the excited singlet state of BChl.

  20. Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Akimoto, Seiji; Yokono, Makio; Yokono, Erina; Aikawa, Shimpei; Kondo, Akihiko

    2014-08-01

    In photosynthetic organisms, the interactions among pigment-protein complexes change in response to light conditions. In the present study, we analyzed the transfer of excitation energy from the phycobilisome (PBS) and photosystem (PS) II to PSI in the cyanobacterium Synechocystis sp. PCC 6803. After 20 min of dark adaptation, Synechocystis cells were illuminated for 5 min with strong light with different spectral profiles, blue, green, two kinds of red, and white light. After illumination, the energy-transfer characteristics were evaluated using steady-state fluorescence and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra, followed by spectral component analysis. Under illumination with strong light, the contribution of the energy transfer from the PSII to PSI (spillover) became greater, and that of the energy transfer from the PBS to PSI decreased; the former change was larger than the latter. The energy transfer pathway to PSI was sensitive to red light. We discuss the short-term adaptation of energy-transfer processes in Synechocystis under strong-light conditions.

  1. Time-resolved synchrotron x-ray diffraction studies of the crystallization of amorphous Co(80-x)FexB₂₀

    SciTech Connect

    Simmons, L. M.; Greig, D.; Lucas, C. A.; Kilcoyne, S. H.

    2014-09-28

    This paper addresses the time-dependent crystallization process occurring in “bulk” amorphous Co(80-x)FexB₂₀ (x = 20, 40) metallic ribbons by means of synchrotron x-ray diffraction (SXRD) and transmission electron microscopy. Metallic ribbons, produced via melt-spinning technique, were annealed in-situ, with SXRD patterns collected every 60 s. SXRD reveals that Co₄₀Fe₄₀B₂₀ alloys crystallize from an amorphous structure to a primary bcc α-(Co,Fe) phase, whereas Co₆₀Fe₂₀B₂₀ initially crystallizes into the same bcc α-(Co,Fe) but exhibits cooperative growth of both stable and metastable boride phases later into the hold. Johnson-Mehl-Avrami-Kolmogorov statistics was used on post annealed samples to determine the mechanisms of growth and the activation energy (Ea) of the α-(Co,Fe) phase. Results indicate that the growth mechanisms are similar for both alloy compositions for all annealing temperatures, with the Avrami exponent of n = 1.51(1) and 2.02(6) for x = 20 and 40, respectively, suggesting one-dimensional growth, with a decreasing nucleation rate. Activation energy for α-(Co,Fe) was determined to be 2.7(1) eV and 2.4(3) eV in x = 20 and 40, respectively, suggesting that those alloys with a lower Co content have a stronger resistance to crystallization. Based on these results, fabrication of CoFeB magnetic tunnel junctions via depositing amorphous layers and subsequently annealing to induce lattice matching presents itself as a viable and efficient method, for increasing the giant magnetoresistance in magnetic tunnel junctions.

  2. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stoica, Mihai; Scudino, Sergio; Bednarčik, Jozef; Kaban, Ivan; Eckert, Jürgen

    2014-02-01

    By adding 0.5 at. % Cu to the strong but brittle [(Fe0.5Co0.5)0.75Si0.05B0.20]96Nb4 bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs.

  3. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    SciTech Connect

    CARR,G.L.; LAVEIGNE,J.D.; LOBO,R.P.S.M.; REITZE,D.H.; TANNER,D.B.

    1999-07-19

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor.

  4. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias; Plivelic, Tomas S.; Torriani, Iris L.; Mantovani, Gerson L.

    2009-01-29

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  5. Cell growth characteristics from angle- and polarization-resolved light scattering: Prospects for two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Herran Cuspinera, Roxana M.; Hore, Dennis K.

    2016-11-01

    We highlight the potential of generalized two-dimensional correlation analysis for the fingerprinting of cell growth in solution monitored by light scattering, where the synchronous and asynchronous responses serve as a sensitive marker for the effect of growth conditions on the distribution of cell morphologies. The polarization of the scattered light varies according to the cell size distribution, and so the changes in the polarization over time are an excellent indicator of the dynamic growth conditions. However, direct comparison of the polarization-, time-, and angle-resolved signals between different experiments is hindered by the subtle changes in the data, and the inability to easily adapt models to account for these differences. Using Mie scattering simulations of different growth conditions, and some preliminary experimental data for a single set of conditions, we illustrate that correlation analysis provides rapid and sensitive qualitative markers of growth characteristics.

  6. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  7. ULTRA DEEP AKARI OBSERVATIONS OF ABELL 2218: RESOLVING THE 15 {mu}m EXTRAGALACTIC BACKGROUND LIGHT

    SciTech Connect

    Hopwood, R.; Serjeant, S.; Negrello, M.; Pearson, C.; Egami, E.; Im, M.; Ko, J.; Lee, H. M.; Lee, M. G.; Kneib, J.-P.; Matsuhara, H.; Nakagawa, T.; Takagi, T.; Smail, I.

    2010-06-10

    We present extragalactic number counts and a lower limit estimate for the cosmic infrared background (CIRB) at 15 {mu}m from AKARI ultra deep mapping of the gravitational lensing cluster Abell 2218. These data are the deepest taken by any facility at this wavelength and uniquely sample the normal galaxy population. We have de-blended our sources, to resolve photometric confusion, and de-lensed our photometry to probe beyond AKARI's blank-field sensitivity. We estimate a de-blended 5{sigma} sensitivity of 28.7 {mu}Jy. The resulting 15 {mu}m galaxy number counts are a factor of 3 fainter than previous results, extending to a depth of {approx} 0.01 mJy and providing a stronger lower limit constraint on the CIRB at 15 {mu}m of 1.9 {+-} 0.5 nW m{sup -2} sr{sup -1}.

  8. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    PubMed

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature. PMID:26832591

  9. How Electron Spectroscopy with Synchrotron Light Can Help Us Understand High-Tc Superconductivity and Other Complex States of Matter

    SciTech Connect

    Campuzano, Juan Carlos

    2012-03-07

    All the physical, chemical, and mechanical properties of materials are controlled by electrons that occupy the highest energy levels in solids, those near the Fermi energy. Many techniques were developed to study those electrons, leading to the great successes of condensed matter physics. Newer and complex materials, such as the high-temperature superconductors, tend to exhibit very large anisotropies in their physical properties, requiring a more detailed knowledge of the behavior of electrons not only as a function of their energy, but also their momentum. Angle-resolved photoemission can contribute to our understanding by providing a great deal of information on many of the momentum-dependent properties of electrons and their interactions. In this talk, I will present a brief overview of how a long-term and focused collaboration between scientists at Argonne and other institutions has contributed to making angle-resolved photoemissions a most useful tool in the study of complex states of matter.

  10. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24.

    PubMed

    Pascarelli, S; Mathon, O; Mairs, T; Kantor, I; Agostini, G; Strohm, C; Pasternak, S; Perrin, F; Berruyer, G; Chappelet, P; Clavel, C; Dominguez, M C

    2016-01-01

    The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy--TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 10(14) photons s(-1) on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth's interior and in laser-shocked matter are given.

  11. Resolving the depth of fluorescent light by structured illumination and shearing interferometry

    NASA Astrophysics Data System (ADS)

    Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang

    2016-03-01

    A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.

  12. Dynamics of phase transformations and microstructure evolution in carbon-manganese steel arc welds using time-resolved synchrotron X-ray diffraction.

    PubMed

    Wong, Joe; Ressler, Thorsten; Elmer, John W

    2003-03-01

    Phase transformations that occur in both the heat-affected zone (HAZ) and the fusion zone (FZ) of a carbon-manganese steel spot weld have been investigated using time-resolved X-ray diffraction (TRXRD) with time resolutions down to 50 ms. It is found that in both zones the gamma(f.c.c.) --> alpha(b.c.c.) transformation on cooling is twice as fast as the forward transformation of alpha --> gamma on heating. Profile analysis of the major Bragg reflections recorded in the TRXRD patterns reveals similarities and differences in the microstructural evolution with time in the HAZ and in the FZ. The latter undergoes melting and solidification in addition to solid-state transformations. With increasing temperature, the (110) d-spacing of the alpha phase prior to and during the alpha --> gamma transformation and the (111) d-spacing of the gamma phase just after the same transformation exhibit a decrease. The observed (and unusual) lattice contraction with temperature rise may be attributed to chemical effects, such as carbide precipitation in the alpha matrix, and/or mechanical effects due to stress relief. In the FZ, the gamma-Fe that forms has a preferential (200) texture on solidification of the liquid, whereas, on cooling in the HAZ, the gamma-Fe retains largely a (111) texture that is induced in the alpha --> gamma transformation on heating. On cooling in the HAZ, the width of the gamma(111) reflection increases initially, which is indicative of microstrain developing in the f.c.c. lattice, but decreases as expected, with a reduction of thermal disorder, on further cooling until the completion of the gamma --> alpha transformation. In the FZ, however, the microstrain in the gamma phase increases steadily on solidification and more rapidly for the duration of the gamma --> alpha transformation on further cooling. The final microstructure of the FZ is likely to consist of a single alpha phase dispersed in two morphological entities, whereas in the HAZ the alpha phase

  13. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  14. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  15. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems.

    PubMed

    Johnston, Mark D; Oliver, Bryan V; Droemer, Darryl W; Frogget, Brent; Crain, Marlon D; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm(2)/steradian/nm). Error analysis shows this method to be accurate to within +∕- 20%, which represents a high level of accuracy for this type of measurement. PMID:22938275

  16. Temporally Resolved Emissivity and Temperature Measurements of Quartz on a Light Gas Gun

    NASA Astrophysics Data System (ADS)

    Akin, Minta; Chau, Ricky; Nguyen, Jeffrey; Patterson, J. Reed; Ambrose, W. Pat; Holmes, Neil

    2015-06-01

    Emissivity has long been neglected in pyrometric measurements on shocked samples. We have built and tested a broad spectrum apparatus and developed a new target design to dynamically measure reflectance and calculate emissivity on a two stage light gas gun. Using this system, we have measured the emission of Quartz and Fused silica near melt. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    NASA Astrophysics Data System (ADS)

    Zensen, C.; Villadsen, N.; Winterer, F.; Keiding, S. R.; Lohmüller, T.

    2016-05-01

    Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  18. Intense Pulsed Light Pulse Configuration Manipulation Can Resolve the Classic Conflict Between Safety and Efficacy.

    PubMed

    Belenky, Inna; Tagger, Cruzy; Bingham, Andrea

    2015-11-01

    The widely used intense pulse light (IPL) technology was first commercially launched to the medical market in 1994 and similar to lasers, is based on the basic principle of selective photothermolysis. The main conflict during treatments with light-based technologies is between safety and efficacy of the treatment. The aim of this study was to evaluate new IPL technology, which integrates three different pulse configurations, with specific attention on the safety and efficacy of the treatment. 101 volunteers (with Fitzpatrick skin types I-VI) were treated as follows: 9 patients underwent 8 bi-weekly acne clearance treatments, 51 patients underwent 6-12 hair removal treatments, 11 patients were treated for general skin rejuvenation, 15 patients were treated for pigmentation lesions, and 15 patients were treated for vascular lesions. No serious adverse events were recorded. All patients that were treated for hair removal achieved significant hair clearance. The patients with facial rosacea responded the fastest to the treatment. Eight of nine patients that were treated for acne clearance achieved significant reduction in acne appearance. The results represented in this study support the approach that when taking into consideration both efficacy of the treatment and safety of the patients, the system should be "flexible" enough to allow exact treatment settings profile for each patient, according to their skin type and the symptom's biophysical characteristics. < PMID:26580874

  19. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating.

    PubMed

    Uribe-Patarroyo, Néstor; Bouma, Brett E

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  20. Velocity gradients in spatially-resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    PubMed Central

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-01-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially-resolved velocity field in three dimensions. It has been thought that spatially-resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, non-turbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  1. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating.

    PubMed

    Uribe-Patarroyo, Néstor; Bouma, Brett E

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  2. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    NASA Astrophysics Data System (ADS)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  3. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  4. Light-induced switching of HAMP domain conformation and dynamics revealed by time-resolved EPR spectroscopy.

    PubMed

    Klose, Daniel; Voskoboynikova, Natalia; Orban-Glass, Ioan; Rickert, Christian; Engelhard, Martin; Klare, Johann P; Steinhoff, Heinz-Jürgen

    2014-11-01

    HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain's dynamics into the current model.

  5. Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light

    NASA Astrophysics Data System (ADS)

    Moon, J. A.; Battle, P. R.; Bashkansky, M.; Mahon, R.; Duncan, M. D.; Reintjes, J.

    1996-01-01

    We describe theoretically and measure experimentally the best achievable time-dependent point-spread-function of light in the presence of strong turbidity. We employ the rescaled isotropic-scattering solution to the time-dependent radiative transfer equation to examine three mathematically distinct limits of photonic transport: the ballistic, quasidiffuse, and diffuse limits. In all cases we follow the constraint that a minimum fractional number of launched photons must be received before the time-integrating detector is turned off. We show how the achievable ballistic resolution maps into the diffusion-limited achievable resolution, and verify this behavior experimentally by using a coherently amplified Raman polarization gate imaging system. We are able to quantitatively fit the measured best achievable resolution by empirically rescaling the scattering length in the model.

  6. a Far Infrared Synchrotron-Based Investigation of 3-OXETANONE

    NASA Astrophysics Data System (ADS)

    Chen, Ziqiu; Wijngaarden, Jennifer Van

    2011-06-01

    The four membered ester ring 3-oxetanone is a precursor for adding oxetane subunits into pharmaceuticals which then block metabolically exposed sites in the bioactive molecule without increasing its lipophilicity. The high resolution (0.00096 cmCm-1) rovibrational spectrum of 3-oxetanone was recorded for the first time using far infrared radiation from the Canadian Light Source (CLS) synchrotron facility coupled to a Bruker IFS125HR FTIR spectrometer. A total of six rotationally-resolved vibrational bands were observed between 360 and 1150 cmCm-1 at room temperature. The assignment of the dense spectrum is currently underway and the progress will be discussed in this talk.

  7. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  8. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  9. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer

    NASA Astrophysics Data System (ADS)

    Mathias, S.; Miaja-Avila, L.; Murnane, M. M.; Kapteyn, H.; Aeschlimann, M.; Bauer, M.

    2007-08-01

    An experimental setup for time- and angle-resolved photoemission spectroscopy using a femtosecond 1kHz high harmonic light source and a two-dimensional electron analyzer for parallel energy and momentum detection is presented. A selection of the 27th harmonic (41.85eV) from the harmonic spectrum of the light source is achieved with a multilayer Mo /Si double mirror monochromator. The extinction efficiency of the monochromator in selecting this harmonic is shown to be better than 7:1, while the transmitted bandwidth of the selected harmonic is capable of supporting temporal pulse widths as short as 3fs. The recorded E(k ) photoelectron spectrum from a Cu(111) surface demonstrates an angular resolution of better than 0.6° (=0.03Å-1 at Ekin ,e=36eV). Used in a pump-probe configuration, the described experimental setup represents a powerful experimental tool for studying the femtosecond dynamics of ultrafast surface processes in real time.

  10. Sub-nanosecond time resolved light emission study for diffuse discharges in air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Tardiveau, P.; Magne, L.; Marode, E.; Ouaras, K.; Jeanney, P.; Bournonville, B.

    2016-10-01

    Pin-to-plane discharges in centimetre air gaps and standard conditions of pressure and temperature are generated under very high positive nanosecond scale voltage pulses. The experimental study is based on recordings of sub-nanosecond time resolved and Abel-processed light emission profiles and their complete correlation to electrical current waveforms. The effects of the voltage pulse features (amplitude between 20 and 90 kV, rise time between 2 and 5.2 ns, and time rate between 4 and 40 kV · ns‑1) and the electrode configuration (gap distance between 10 and 30 mm, pin radius between 10 and 200 µm, copper, molybdenum or tungsten pin material) are described. A three time period development can be found: a glow-like structure with monotonic light profiles during the first 1.5 ns whose size depends on time voltage rate, a shell-like structure with bimodal profiles whose duration and extension in space depends on rise time, and either diffuse or multi-channel regime for the connection to the cathode plane according to gap distance. The transition of the light from monotonic to bimodal patterns reveals the relative effects and dynamics of streamer space charge and external laplacian field. A classical 2D-fluid model for streamer propagation has been used and adapted for very high and steep voltage pulses. It shows the formation of a strong space charge (streamer) very close to the pin, but also a continuity of emission between the pin and the streamer, and electric fields higher than the critical ionization field (28 kV · cm‑1 in air) almost in the whole gap and very early in the discharge propagation.

  11. Aggregation dynamics of laminin-1 in a physiological solution: A time-resolved static light scattering study

    NASA Astrophysics Data System (ADS)

    Onuma, Kazuo; Kanzaki, Noriko

    2005-11-01

    The aggregation of laminin-1 in a physiological solution was observed using time-resolved static light scattering. In a solution containing 150 mM of NaCl and 1 mM of CaCl 2, with a pH of 7.2 buffered by 50 mM Tris, and maintained at 25 °C, the weight-averaged mass (molecular weight) Mw, and radius of gyration Rg, of the aggregate were measured at 10 s intervals. The aggregation kinetics changed from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) over time. The fractal dimension estimated in the DLCA regime was 1.71 from the M˜Rgd relationship, which is consistent with the df of 1.75 obtained from an R˜t plot. Direct calculation of df using the scattering intensity and scattering vector revealed that df gradually increased over time in the DLCA regime, suggesting that spontaneous restructuring of the aggregate had occurred. This restructuring would have been caused by hydrophobic contact in the aggregate. The form factor of the aggregate was well fitted by a linear random coil model and not by a simple spherical model.

  12. A model-based approach for the calibration and traceability of the angle resolved scattering light sensor

    NASA Astrophysics Data System (ADS)

    Seewig, Jörg; Eifler, Matthias; Schneider, Frank; Kirsch, Benjamin; Aurich, Jan C.

    2016-06-01

    Within the field of geometric product specification there is a growing need for the application of inline measurement systems. The use of inline measurement requires robust and fast measurement principles. A very robust optical measurement principle is the angle resolved scattering light (ARS) sensor. The ARS sensor provides high precision and high resolution measurement data of technical surfaces because the surface angles are measured as an intensity distribution on a detector instead of measuring a series of discrete height values. However, until now, there were no specific measurement standards for the calibration of the ARS sensor and no traceability was ensured. In this paper, new strategies for the calibration of an ARS sensor are proposed. A new mathematical model for the ARS sensor is introduced. Based on this, two new measurement standards for the calibration of the sensor parameters are derived. These standards are designed with a model-based approach and can calibrate sensor-specific properties of the ARS sensor. The manufacturing of the standards is described and measurement results are provided.

  13. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    SciTech Connect

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.; Zhong, Z.

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  14. Synchrotron radiation and biomedical imaging

    SciTech Connect

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs.

  15. Experimental study of the phase-shift miscalibration error in phase-shifting interferometry: use of a spectrally resolved white-light interferometer.

    PubMed

    Debnath, Sanjit K; Kothiyal, Mahendra P

    2007-08-01

    The white-light interferogram in a spectrally resolved white-light interferometer is decomposed in its constituent spectral components by a spectrometer and displayed along its chromaticity axis. A piezoelectric transducer phase shifter in such an interferometer can give a desired phase shift of pi/2 only at one wavelength. The phase shift varies continuously at all other wavelengths along the chromaticity axis. This situation is ideal for an experimental study of the phase error due to the phase-shift error in the phase-shifting technique, as it will be shown in this paper.

  16. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-12-01

    Light absorbing organic carbon, often called brown carbon, has the potential to significantly contribute to the visible light-absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon, are poorly understood. With this in mind size-resolved direct measurements of brown carbon were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a representative urban site and a road-side site adjacent to a main highway. Fine particle absorption was measured with a multi-angle absorption photometer (MAAP) and seven-wavelength Aethalometer, and brown carbon absorption was estimated based on Mie calculations using direct size-resolved measurements of chromophores in solvents. Size-resolved samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light-absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with the highest contributions at the rural site where organic to elemental carbon ratios were

  17. Mircobeam X-ray total scattering experiments at the high-pressure beamline X17B3 at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2013-12-01

    Structure of minerals under extreme conditions of high pressure and temperature is very important in Geosciences. The total scattering pair distribution function (PDF) technique using high energy X-ray microbeam to access a large range of scattering vector, e.g. 20Å-1-40Å-1, is an emerging structural analysis method in high pressure research, which allows simultaneous probing of local, intermediate and long-range structure in crystalline, amorphous or complex materials[1-3]. Using high-energy X-rays of 80 keV at X17B3 beamline, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, PDF measurements has been carried out by users from multiple disciplines [4]. At this AGU meeting, we will present the current status of high-pressure total scattering pair distribution function (PDF) measurements and recent achievements on the availability of high energy X-ray microbeam at X17B3 beamline, NSLS. Accurate X-ray energy calibration is indispensable for X-ray energy-sensitive scattering and diffraction experiments, but there is still a lack of effective methods to precisely calibrate the high energy X-ray beam, because precise energy calibration XAS is problematic due to the lack of suitable X-ray absorption edges at the desired high energy. We have recently proposed an iterative method [5] for a precise and fast X-ray energy calibration over a wide range, including high energy X-ray beam for PDF measurements. Some PDF measurements on the geophysical important materials, such as GeO2 and SiO2 materials, under ambient and high-pressure using diamond anvil cell will be presented. References: 1. Billinge, S.J.L., The atomic pair distribution function: past and present. Zeitschrift für Kristallographie, 2004. 219(3-2004): p. 117-121. 2. Billinge, S.J. and I. Levin, The problem with determining atomic structure at the nanoscale. Science, 2007. 316(5824): p. 561-5. 3. Billinge, S.J.L., et al., Characterisation of amorphous and nanocrystalline molecular

  18. 6 GeV synchrotron x-ray source: Conceptual design report. Supplement B - conceptual design of proposed beam lines for the 6 GeV light source

    SciTech Connect

    1996-03-01

    In this document, preliminary conceptual designs are presented for ten sample beamlines for the 6 GeV Light Source. These beamlines will accommodate investigations in solid-state physics, materials science, materials technology, chemical technology, and biological and medical sciences. In future, the designs will be altered to include new developments in x-ray optics and hardware technologies. The research areas addressed by the samples beamlines are as follows: Topography and Radiography/Tomography (section 2); Inelastic Scattering with Ultrahigh Energy Resolution (Section 3); Surface and Bulk Studies Using High Momentum Resolution (Section 4); Inelastic Scattering from Charge and Spin (Section 5); Advanced X-Ray Photoelectron Spectroscopy Studies (Section 6); Small Angle X-Ray Scattering Studies (Section 7); General Purpose Scattering for Materials Studies (Section 8); Multiple-Energy Anomalous-Dispersion Studies of Proteins (Section 9); Protein Crystallography (Section 10); Time- and Space-resolved X-Ray Spectroscopy (Section 11); Medical Diagnostic Facility (Section 12); and Transuranium Research Facility (Section 13). The computer systems to be used on the beamlines are also discussed in Section 14 of this document.

  19. Future Synchrotron Radiation Sources

    SciTech Connect

    Winick, Herman

    2003-07-09

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, microfabrication, archaeometry and medical diagnostics. These rings span electron energies from a few hundred MeV to 8 GeV. Several facilities serve 2000 or more users on 30-60 simultaneously operational experimental stations. The largest rings are more than 1 km in circumference, cost about US$1B to build and have annual budgets of about US$100M. This growth is due to the remarkable properties of synchrotron radiation, including its high intensity, brightness and stability; wide spectral range extending from the infra-red to hard x-rays; variable polarization; pulsed time structure; and high vacuum environment. The ever-expanding user community and the increasing number of applications are fueling a continued growth in the number of facilities around the world. In the past few years new types of light sources have been proposed based on linear accelerators. Linac-based sources now being pursued include the free-electron laser (FEL) and energy recovery linac (ERL

  20. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  1. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-07-01

    Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied

  2. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  3. Synchrotron radiation as an infrared source.

    PubMed

    Stevenson, J R; Ellis, H; Bartlett, R

    1973-12-01

    The increasing availability of synchrotron radiation sources in a number of geographical regions of the world has motivated an evaluation of the radiation from electron accelerators and storage rings as a possible source for ir spectroscopy. As synchrotron radiation can be analytically described, a direct comparison is made with blackbody radiation for typical solid state spectroscopy. Both existing and proposed synchrotron radiation sources are found to be attractive in the ir. The ultrahigh vacuum environment of the source is compatible with clean surface investigations, the analytical description of the radiation is appropriate for calibration studies, and the continuous nature is suitable for Fourier spectroscopy or whenever a white light source is desirable.

  4. COMPRES X-ray beamlines (X17B3 and X17C) for the diamond anvil cell at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Chen, Z.; Sengupta, A.; Goncharov, A. F.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2011-12-01

    The laser heated diamond anvil cell technique can readily achieve the pressure and temperature domain of Earth from upper mantle to outer core. The laser heating diamond anvil cell X-ray facilities (X17-DAC), consists of X17B3 and X17C stations on a superconducting wiggler beamline and a sample preparation/spectroscopy laboratory at the National Synchrotron Light Source). As the first dedicated high-pressure (HP) beamline in the world, X17-DAC has been a workhorse for HP research for two decades, and has led the way in many developments, Here we report current capabilities and recent developments at X17-DAC beamlines including a new double-side laser heating system . At the X17B3 station, high-temperature high-pressure X-ray diffraction experiments can be carried out either with monochromatic beam (~30 keV or ~80 keV), or with white beam for energy dispersive x-ray diffraction. In-situ laser heating system will be available for users in Geosciences starting from September, 2011. With a monochromatic beam at 30 keV, the X-ray beam can be focused to a beam size of ~10 μm. By combing with the laser heating technique, we can support in-situ X-ray diffraction experiments at the domain of temperature and pressure up to Earth's outer core. With high energy at 80 keV, total scattering pair distribution function (PDF) measurements are performed. Originally, this method was used to study amorphous and highly disordered materials, but more recently, it has been used for the analysis of crystalline and nanostructured materials. This novel technique provides useful information about the long- and short-range ordering of the atoms in the materials. It is promising to combine laser heating and total scattering PDF measurements so as to probe phase transitions and phase relations for geophysical important materials at X17B3 station. At X17C, we conduct angle and energy dispersive x-ray diffraction on polycrystalline samples in either axial or radial geometry. Energy dispersive

  5. Time-resolved tracking of interprotein signal transduction: Synechocystis PixD-PixE complex as a sensor of light intensity.

    PubMed

    Tanaka, Keisuke; Nakasone, Yusuke; Okajima, Koji; Ikeuchi, Masahiko; Tokutomi, Satoru; Terazima, Masahide

    2012-05-23

    PixD (Slr1694) is a blue light receptor that contains a BLUF (blue light sensors using a flavin chromophore) domain. A protein-protein interaction between PixD and a response regulator PixE (Slr1693) is essential to achieve light signal transduction for phototaxis of the species. Although the initial photochemical reaction of PixD, the red shift of the flavin absorption spectrum, has been investigated, the subsequent reaction dynamics remain largely unresolved. Only the disassembly of the PixD(10)-PixE(5) dark complex has been characterized by static size exclusion chromatography. In this report, interprotein reaction dynamics were examined using time-resolved transient grating spectroscopy. The dissociation process was clearly observed as the light-induced diffusion coefficient change in the time domain, and the kinetics was determined. More strikingly, disassembly was found to take place only after photoactivation of two PixD subunits in the complex. This result suggests that the biological response of PixD does not follow a linear correlation with the light intensity but appears to be light-intensity-dependent.

  6. Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Akimoto, Seiji; Yokono, Makio; Aikawa, Shimpei; Kondo, Akihiko

    2013-11-01

    In cyanobacteria, the interactions among pigment-protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions. PMID:23605291

  7. Synchrotron radiation and industrial research

    NASA Astrophysics Data System (ADS)

    Townsend, Rodney P.

    1995-05-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described.

  8. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    SciTech Connect

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  9. A direct temperature-resolved tandem mass spectrometry study of cholesterol oxidation products in light-aged egg tempera paints with examples from works of art

    NASA Astrophysics Data System (ADS)

    van den Brink, Oscar F.; Ferreira, Ester S. B.; van der Horst, Jerre; Boon, Jaap J.

    2009-07-01

    Cholesterol (1) constitutes approximately 5% of the lipid fraction of eggs. The compound is therefore abundant in fresh egg tempera paints. The fate of cholesterol upon light ageing of egg tempera paint binding medium was investigated by direct temperature resolved mass spectrometry (DTMS) and tandem mass spectrometry (DTMSMS). Cholesterol oxidation products (COPs) such as 5,6-epoxycholestan-3-ol (2) and 3-hydroxycholest-5-en-7-one (3) were positively identified in light-aged egg binding medium. Given the fast rate of oxidation of cholesterol, the corresponding oxidation products are better markers for egg tempera than the cholesterol molecule itself. Cholesterol and COPs were discovered in paints on German baroque altar pieces from the 16th and 18th C and in a 20th C glaze on a Mark Rothko Seagram Mural painting at Tate by DTMS fingerprinting analysis of paint microsamples.

  10. Time-resolved crystallography and protein design: signalling photoreceptors and optogenetics.

    PubMed

    Moffat, Keith

    2014-07-17

    Time-resolved X-ray crystallography and solution scattering have been successfully conducted on proteins on time-scales down to around 100 ps, set by the duration of the hard X-ray pulses emitted by synchrotron sources. The advent of hard X-ray free-electron lasers (FELs), which emit extremely intense, very brief, coherent X-ray pulses, opens the exciting possibility of time-resolved experiments with femtosecond time resolution on macromolecular structure, in both single crystals and solution. The X-ray pulses emitted by an FEL differ greatly in many properties from those emitted by a synchrotron, in ways that at first glance make time-resolved measurements of X-ray scattering with the required accuracy extremely challenging. This opens up several questions which I consider in this brief overview. Are there likely to be chemically and biologically interesting structural changes to be revealed on the femtosecond time-scale? How shall time-resolved experiments best be designed and conducted to exploit the properties of FELs and overcome challenges that they pose? To date, fast time-resolved reactions have been initiated by a brief laser pulse, which obviously requires that the system under study be light-sensitive. Although this is true for proteins of the visual system and for signalling photoreceptors, it is not naturally the case for most interesting biological systems. To generate more biological targets for time-resolved study, can this limitation be overcome by optogenetic, chemical or other means?

  11. Depth-resolved confocal micro-Raman spectroscopy for characterizing GaN-based light emitting diode structures

    SciTech Connect

    Chen, Wei-Liang; Lee, Yu-Yang; Chang, Yu-Ming; Chang, Chiao-Yun; Huang, Huei-Min; Lu, Tien-Chang

    2013-11-15

    In this work, we demonstrate that depth-resolved confocal micro-Raman spectroscopy can be used to characterize the active layer of GaN-based LEDs. By taking the depth compression effect due to refraction index mismatch into account, the axial profiles of Raman peak intensities from the GaN capping layer toward the sapphire substrate can correctly match the LED structural dimension and allow the identification of unique Raman feature originated from the 0.3 μm thick active layer of the studied LED. The strain variation in different sample depths can also be quantified by measuring the Raman shift of GaN A{sub 1}(LO) and E{sub 2}(high) phonon peaks. The capability of identifying the phonon structure of buried LED active layer and depth-resolving the strain distribution of LED structure makes this technique a potential optical and remote tool for in operando investigation of the electronic and structural properties of nitride-based LEDs.

  12. Depth-resolved confocal micro-Raman spectroscopy for characterizing GaN-based light emitting diode structures.

    PubMed

    Chen, Wei-Liang; Lee, Yu-Yang; Chang, Chiao-Yun; Huang, Huei-Min; Lu, Tien-Chang; Chang, Yu-Ming

    2013-11-01

    In this work, we demonstrate that depth-resolved confocal micro-Raman spectroscopy can be used to characterize the active layer of GaN-based LEDs. By taking the depth compression effect due to refraction index mismatch into account, the axial profiles of Raman peak intensities from the GaN capping layer toward the sapphire substrate can correctly match the LED structural dimension and allow the identification of unique Raman feature originated from the 0.3 μm thick active layer of the studied LED. The strain variation in different sample depths can also be quantified by measuring the Raman shift of GaN A1(LO) and E2(high) phonon peaks. The capability of identifying the phonon structure of buried LED active layer and depth-resolving the strain distribution of LED structure makes this technique a potential optical and remote tool for in operando investigation of the electronic and structural properties of nitride-based LEDs. PMID:24289389

  13. Infrared microspectroscopy with synchrotron radiation

    SciTech Connect

    Carr, G.L.; Williams, G.P.

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  14. Far Infrared Synchrotron Spectrum of Trimethlyene Oxide

    NASA Astrophysics Data System (ADS)

    Mahassneh, Omar; van Wijngaarden, Jennifer

    2016-06-01

    Rotationally-resolved vibrational spectra of trimethlyene oxide (c-C3H6O) from 650 through 1200 wn were recorded using far infrared synchrotron radiation at the Canadian Light Source with better than 0.001 wn resolution. The observed bands correspond to at least eight different fundamental vibrations in this region. Due to the low frequency ring puckering motion, the observed rovibrational pattern of each band is congested with hot-combination bands that originate in the first two excited ring puckering states (52.9 wn, 142.6 wn). The ongoing analysis of the strong b-type bands corresponding to asymmetric in-plane CO stretching (ν10:1008 wn) will be discussed along with the identification of allowed Coriolis interactions arising from nearby energy levels related to in-plane CC stretching (ν9: 940 wn, ν3: 1033 wn). G. Moruzzi et al., J. Mol. Spectrosc. 219, 152 (2003). Bánhegyi et al. Spectrochim. Acta. 39A, 761 (1983).

  15. High-resolution angle-resolved measurements of light scattered at small angles by red blood cells in suspension.

    PubMed

    Turcu, Ioan; Pop, Cristian V L; Neamtu, Silvia

    2006-03-20

    Red blood cells (RBCs) scatter light mainly in the forward direction, where the scattering phase function has a narrow peak. We performed an experimental investigation into the angular distribution of light scattered by blood in the small-angle domain. A highly diluted suspension of RBCs (hematocrits in the range 5 x 10(-5)-10(-2)) was illuminated with a He-Ne laser with 633 nm wavelength. We focused our research on two main topics: the scattering efficiency of the RBCs given by the mean scattering cross section and the scattering anisotropy obtained from the angular distribution of the scattered photons. The collimated beam transmission and the angular distribution of scattered light were measured and compared with the predictions of the effective phase function model. The RBCs' mean scattering cross section and scattering anisotropy were obtained by fitting of the experimental data. PMID:16579566

  16. Symmetry and light stuffing of H o2T i2O7 , E r2T i2O7 , and Y b2T i2O7 characterized by synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.; Gaudet, Jonathan; Cava, R. J.

    2015-07-01

    The H o2T i2O7 , E r2T i2O7 , and Y b2T i2O7 pyrochlores were studied by synchrotron x-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group F d -3 m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from F d -3 m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and nonstoichiometric powders and a crushed floating zone crystal of H o2T i2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30 000 of the strongest x-ray diffraction peak. This indicates to high sensitivity that the space group of the crystal structure of these rare earth titanate pyrochlores is F d -3 m , and that, thus, the (002) peak observed in the neutron scattering experiments has a nonstructural origin. The cell parameters and internal strain for lightly stuffed H o2 +xT i2 -xO7 are also presented.

  17. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  18. Time- and locally resolved photoluminescence of semipolar GaInN /GaN facet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wunderer, Thomas; Brückner, Peter; Hertkorn, Joachim; Scholz, Ferdinand; Beirne, Gareth J.; Jetter, Michael; Michler, Peter; Feneberg, Martin; Thonke, Klaus

    2007-04-01

    The authors investigate the carrier lifetime and photoluminescence (PL) intensity of a semipolar GaInN /GaN sample which was realized by growing five GaInN /GaN quantum wells on the {11¯01} side facets of selectively grown n-GaN stripes that have a triangular shape running along the ⟨112¯0⟩ direction. Time- and locally resolved PL measurements show drastically reduced lifetimes for the semipolar sample of only 650ps at 4K whereas lifetimes exceeding 50ns were found for a polar reference sample. Furthermore, more than a doubling of the luminescence intensity and a significantly reduced blueshift of the PL peak wavelength with increasing excitation power density provide further evidence for the presence of reduced piezoelectric fields in the semipolar sample.

  19. The light curve shapes as a key to resolving the origin of long secondary periods in red giant stars

    SciTech Connect

    Soszyński, I.; Udalski, A. E-mail: udalski@astrouw.edu.pl

    2014-06-10

    We present a study of Optical Gravitational Lensing Experiment light curves of red giant stars exhibiting long secondary periods (LSPs)—an enigmatic phenomenon commonly observed in stars on the upper red giant branch and asymptotic giant branch. We show that the light curves of LSP stars are essentially identical to those of the spotted variables with one dark spot on their photospheres. Such behavior can be explained by the presence of a dusty cloud orbiting the red giant together with a low-mass companion in a close, circular orbit. We argue that the binary scenario is in agreement with most of the observational properties of LSP variables, including non-sinusoidal shapes of their radial velocity curves.

  20. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines

    NASA Astrophysics Data System (ADS)

    Hoffman, David S.; Nehrir, Amin R.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2007-05-01

    An imaging lidar instrument with the capability of measuring the frequency response of a backscattered return signal up to 3.6 kHz is demonstrated. The instrument uses a commercial microchip frequency-doubled pulsed Nd:YAG laser with a 7.2 kHz pulse repetition rate, a pulse duration of less than 1 ns, and a pulse energy of greater than 10 μJ. A 15.2 cm commercial telescope is used to collect the backscattered signal, and a photomultiplier tube is used to monitor the scattered light. This instrument is designed for range- and angle-resolved optical detection of honeybees for explosives and land-mine detection. The instrument is capable of distinguishing between the scattered light from honeybees and other sources through the frequency content of the return signal caused by the wing-beat modulation of the backscattered light. Detection of honeybees near a bee hive and spatial mapping of honeybee densities near feeders are demonstrated.

  1. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines.

    PubMed

    Hoffman, David S; Nehrir, Amin R; Repasky, Kevin S; Shaw, Joseph A; Carlsten, John L

    2007-05-20

    An imaging lidar instrument with the capability of measuring the frequency response of a backscattered return signal up to 3.6 kHz is demonstrated. The instrument uses a commercial microchip frequency-doubled pulsed Nd:YAG laser with a 7.2 kHz pulse repetition rate, a pulse duration of less than 1 ns, and a pulse energy of greater than 10 microJ. A 15.2 cm commercial telescope is used to collect the backscattered signal, and a photomultiplier tube is used to monitor the scattered light. This instrument is designed for range- and angle-resolved optical detection of honeybees for explosives and land-mine detection. The instrument is capable of distinguishing between the scattered light from honeybees and other sources through the frequency content of the return signal caused by the wing-beat modulation of the backscattered light. Detection of honeybees near a bee hive and spatial mapping of honeybee densities near feeders are demonstrated. PMID:17514251

  2. 3 GeV Booster Synchrotron Conceptual Design Report

    SciTech Connect

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  3. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    SciTech Connect

    Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao; Kousa, Yuka; Kondoh, Hiroshi; Tanaka, Yoshihito

    2012-02-15

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  4. FIRST-LIGHT LBT NULLING INTERFEROMETRIC OBSERVATIONS: WARM EXOZODIACAL DUST RESOLVED WITHIN A FEW AU OF η Crv

    SciTech Connect

    Defrère, D.; Hinz, P. M.; Skemer, A. J.; Bailey, V. P.; Hoffmann, W. F.; Arbo, P.; Brusa, G.; Downey, E. C.; Durney, O.; Gaspar, A.; Grenz, P.; Kennedy, G. M.; Mennesson, B.; Bryden, G.; Millan-Gabet, R.; Beichman, C.; Danchi, W. C.; Absil, O.; Esposito, S.; Haniff, C.; and others

    2015-01-20

    We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (∼2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ∼23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (∼3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU)

  5. SPATIALLY RESOLVING THE HK Tau B EDGE-ON DISK FROM 1.2 TO 4.7 {mu}m: A UNIQUE SCATTERED LIGHT DISK

    SciTech Connect

    McCabe, C.; Duchene, G.; Pinte, C.; Menard, F.; Ghez, A. M. E-mail: Gaspard.Duchene@obs.ujf-grenoble.fr E-mail: Francois.Menard@obs.ujf-grenoble.fr

    2011-02-01

    We present spatially resolved scattered light images of the circumstellar disk around HK Tau B at 3.8 and 4.7 {mu}m taken with the Keck Telescope Laser Guide Star Adaptive Optics (AO) system, and 1.6-2.12 {mu}m images taken with the Very Large Telescope/NACO AO system. Combined with previously published optical Hubble Space Telescope data, we investigate the spatially resolved scattered light properties of this edge-on circumstellar disk and probe for the presence of large grains. The 0.6-3.8 {mu}m scattered light observations reveal strong, and in some cases, unusual, wavelength dependencies in the observed disk morphology. The separation between the two scattered light nebulae, which is directly proportional to the disk-mass-opacity product, decreases by 30% between 0.6 and 3.8 {mu}m. Over the same wavelength range, the FWHM of the disk nebulosity declines by a factor of two, while the flux ratio between the two nebulae increases by a factor of {approx}8. No other disk known to date shows a flux ratio that increases with wavelength. Both the FWHM and nebula flux ratio are affected by the scattering phase function and the observed behavior can most readily be explained by a phase function that becomes more forward throwing with wavelength. The multi-wavelength scattered light observations also confirm the asymmetric nature of the disk and show that the level of asymmetry is a function of wavelength. We use the MCFOST radiative transfer code to model the disk at four wavelengths, corresponding to the I, H, Ks, and L' bandpasses. A single power-law grain size distribution can recreate the observed disk properties simultaneously at all four wavelengths. Bayesian analysis of the dust parameters finds a 99% probability that the maximum grain size is 5.5 {mu}m or larger. We also find that the grain size distribution is steep, with a 99% probability of a power-law index of 4.2 or larger, suggesting that these large grains are a small fraction of the overall dust

  6. Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence

    NASA Astrophysics Data System (ADS)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-03-01

    We developed a direct experimental approach for investigating the correlation between efficiency droop and recombination rate variation under current injection conditions by using time-resolved electroluminescence (EL) technique. We applied this approach to understand the droop phenomenon of GaN-based light-emitting diodes grown on patterned sapphire substrates (LED-on-PAT) and planar sapphire substrates (LED-on-PLA). Because of lower dislocation density and current leakage in LED-on-PAT compared to LED-on-PLA, it was found that the effective carrier density injected into quantum wells (QWs) in LED-on-PAT was higher than that of the LED-on-PLA under the same current injection conditions, based on the analysis of spectral broadening of EL spectra with varying current injection and photoluminescence experiments under resonant and non-resonant excitation conditions. The efficiency droop in LED-on-PAT was found to be much more severe than that of LED-on-PLA, despite the higher overall quantum efficiency of LED-on-PAT. From the time-resolved EL analysis, we could separate radiative and non-radiative recombination contributions and directly observe (i) the decrease and saturation of radiative recombination time and (ii) the increase and following decrease in behavior of non-radiative recombination time with increasing current injection level, showing a strong correlation between efficiency droop and recombination rate variation.

  7. Conformational States of the Rapana thomasiana Hemocyanin and Its Substructures Studied by Dynamic Light Scattering and Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    Georgieva, Dessislava; Schwark, Daniel; Nikolov, Peter; Idakieva, Krassimira; Parvanova, Katja; Dierks, Karsten; Genov, Nicolay; Betzel, Christian

    2005-01-01

    Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another. PMID:15533921

  8. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  9. Resolving the challenge of measuring ligand binding to membrane proteins by combining analytical ultracentrifugation and light scattering photometry.

    PubMed

    Doran, J D; Mohanty, A K; Fox, T

    2012-01-01

    Membrane proteins are attractive therapeutic targets, however the presence of detergents complicates biophysical binding measurements. Difficulties in determining quantitative dissociation constants for problematic membrane proteins were addressed by combining analytical ultracentrifugation and classical light scattering techniques. Validation of the algorithm used to calculate dissociation constants from sedimentation equilibrium experiments was demonstrated by analyzing binding data of the inhibitor Y-27632 to rho-kinase (ROCK). Kd's of 1.3 ± 0.7 and 52 ± 27 µM were calculated for ROCK constructs (S6-R415) and (M71-E379) respectively, consistent with previously published Ki's of 1.4 ± 0.1 and > 30 µM. Extension of the algorithm to membrane proteins required the collection of light scattering data to determine the partial specific volume, ν, for the membrane protein-detergent complex. Vitamin B12 binding to the bacterial protein btuB in octyl β-D-glucopyranoside (β-OG) illustrates the applicability of the method. A ν of 0.781 ml/g was determined for the btuB-β-OG complex. Incorporating this value into the algorithm generated a Kd of 7.0 ± 1.5 µM for the vitamin B12-btuB affinity. A Kd of 9.7 ± 2.7 µM was determined by equilibrium dialysis under similar experimental conditions. Successfully applying AUC to quantifying small-molecule ligand affinities to membrane proteins represents a significant advance to the field.

  10. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  11. Shedding new light on the molecular architecture of oocytes using a combination of synchrotron Fourier transform-infrared and Raman spectroscopic mapping.

    PubMed

    Wood, Bayden R; Chernenko, Tatyana; Matthäus, Christian; Diem, Max; Chong, Connie; Bernhard, Uditha; Jene, Cassandra; Brandli, Alice A; McNaughton, Don; Tobin, Mark J; Trounson, Alan; Lacham-Kaplan, Orly

    2008-12-01

    Synchrotron Fourier transform-infrared (FT-IR) and Raman microspectroscopy were applied to investigate changes in the molecular architecture of mouse oocytes and demonstrate the overall morphology of the maturing oocyte. Here we show that differences were identified between immature mouse oocytes at the germinal vesicle (GV) and mature metaphase II (MII) stage when using this technology, without the introduction of any extrinsic markers, labels, or dyes. GV mouse oocytes were found to have a small, centrally located lipid deposit and another larger polar deposit of similar composition. MII oocytes have very large, centrally located lipid deposits. Each lipid deposit for both cell types contains an inner and outer lipid environment that differs in composition. To assess interoocyte variability, line scans were recorded across the diameter of the oocytes and compared from three independent trials (GV, n = 91; MII, n = 172), and the data were analyzed with principal component analysis (PCA). The average spectra and PCA loading plots show distinct and reproducible changes in the CH stretching region that can be used as molecular maturation markers. The method paves the way for developing an independent assay to assess oocyte status during maturation providing new insights into lipid distribution at the single cell level.

  12. Measurement methods for surface oxides on SUS 316L in simulated light water reactor coolant environments using synchrotron XRD and XRF

    NASA Astrophysics Data System (ADS)

    Watanabe, Masashi; Yonezawa, Toshio; Shobu, Takahisa; Shoji, Tetsuo

    2013-03-01

    Synchrotron X-ray diffraction (XRD) and X-ray fluorescent (XRF) measurement techniques have been used for non-destructive characterization of surface oxide films on Type 316L austenitic stainless steels that were exposed to simulated primary water environments of pressurized water reactors (PWR) and boiling water reactors (BWR). The layer structures of the surface spinel oxides were revealed ex situ after oxidation by measurements made as a function of depth. The layer structure of spinel oxides formed in simulated PWR primary water should normally be different from that formed in simulated BWR water. After oxidation in the simulated BWR environment, the spinel oxide was observed to contain NiFe2O4 at shallow depths, and FeCr2O4 and Fe3O4 at deeper depths. By contrast, after oxidation in the simulated PWR primary water environment, a Fe3O4 type spinel was observed near the surface and FeCr2O4 type spinel near the interface with the metal substrate. Furthermore, by in situ measurements during oxidation in the simulated BWR environment, it was also demonstrated that the ratio between spinel and hematite Fe2O3 can be changed depending on the water condition such as BWR normal water chemistry or BWR hydrogen water chemistry.

  13. Introduction to nuclear resonant scattering with synchrotron radiation

    SciTech Connect

    Sturhahn, W.; Alp, E.E.; Toellner, T.S.; Hession, P.; Hu, M.; Sutter, J.

    1997-08-01

    In recent years, the use of synchrotron radiation has enjoyed increasing interest in applications to topics of Moessbauer spectroscopy. The development was initiated by the pioneering experimental work of Gerdau et al. following the original proposal of Ruby to use synchrotron radiation for the excitation of low energy nuclear resonances. From the early experiments it was clear that synchrotron radiation experiments with nuclear resonances would only succeed if familiar energy resolved measurements were replaced with a new time resolved technique. During the last decade, the authors experienced the refinement of this novel method for obtaining hyperfine parameters. This exciting development-materialized because of more intense synchrotron radiation sources at the European Synchrotron Radiation Facility (ESRF) and at the Advanced Photon Source (APS), powerful new avalanche photo diode detectors, and improved high energy resolution monochromators. Simultaneously the tools for evaluation of the novel time spectra were created, e.g., Sturhahn and Gerdau developed extensive computer codes based on the theoretical descriptions of Hannon and Trammel. Many beautiful demonstrations of the basic features of the coherent elastic scattering channel using Bragg- and Laue-reflections from single crystals deepened the understanding of nuclear resonant scattering. The concepts leading to the application of synchrotron radiation to elastic and inelastic nuclear resonant scattering are discussed. The resulting new experimental techniques are compared to conventional Moessbauer spectroscopy. A survey of situations that favor experiments with synchrotron radiation is offered.

  14. Fragmentation of mercury compounds under ultraviolet light irradiation

    SciTech Connect

    Kokkonen, E.; Hautala, L.; Jänkälä, K.; Huttula, M.; Löytynoja, T.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  15. Time-resolved imaging of the microbunching instability and energy spread at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Ratner, D.; Behrens, C.; Ding, Y.; Huang, Z.; Marinelli, A.; Maxwell, T.; Zhou, F.

    2015-03-01

    The microbunching instability (MBI) is a well-known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam's slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete a comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high-brightness accelerators.

  16. SYNCHROTRON RADIATION MONITOR FOR NSLS BOOSTER.

    SciTech Connect

    PINAYEV, I.; SHAFTAN, T.

    2005-11-04

    NSLS booster diagnostics consisted of tune measurement system, system for turn-by-turn measurement on the electron beam, and beam intensity monitor, which is not absolutely calibrated. We present design and implementation of synchrotron light monitor for the booster, which expands diagnostics capabilities. The system allows to measure an orbit, beam sizes and coupling of the electron beam along the ramp.

  17. Overview of United States synchrotron radiation facilities

    SciTech Connect

    Watson, R.E.

    1983-01-01

    There has been considerable activity within the past year involving the creation of new and the improvement of existing capabilities for research with synchrotron light. The purpose of this review is to summarize what has happened within the United States. Being a status report, some of the information necessarily has a date attached to it - the date, in this case, being early September 1983.

  18. Current crowding impact at spatially and temporarily resolved thermal characters of large-area AlGaInP light emitting diodes operating in dimming/flashing modes

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Podoltsev, A. D.; Malyutenko, O. Yu.

    2015-10-01

    By exploring spatially (μm-scale) and temporarily (ms-scale) resolved light and 8-12 μm thermal imaging analyses, we demonstrate how current crowding alternates the thermal parameters of light emitting diodes (LEDs) operating in dimming/flashing mode. For example, in AlGaInP/GaAs high-current (I ≥ 1 A) large-area (≥1 mm2) LEDs, we measured the thermal time constant (2.5 ms), heat diffusion length (110 μm), current crowding length (≤75 μm), thermal diffusivity (0.08 cm2/s) of GaAs substrate, and current-dependent thermal patterns taken from the front and sidewall facet of chips. We discovered that even at I = 100 mA emitting ships are already divided by two regions with different temperatures, small area high-temperature central regions (effective volumes) with high current density and larger area lower-temperature peripheral regions with much lower current density. The experiments evidence that the simplified computer simulations of dimming mode based on mean chip temperature, mean thermal resistance, and average current density, as well as temperature-independent ABC-modeling must be regarded with skepticism.

  19. Systematic studies of La2-xSrxCuO4 in direct synchrotron light: on the role of compressive against tensile strain

    NASA Astrophysics Data System (ADS)

    Cloetta, D.; Ariosa, D.; Abrecht, M.; Cancellieri, C.; Mitrovic, S.; Papagno, M.; Pavuna, D.

    2005-08-01

    We systematically study the structural and electronic properties of very thin cuprate films. Our direct angle resolved photoemission spectroscopy (ARPES) measurements on the low binding energy electronic structure of La2-xSrxCuO4 (LSCO) films confirmed that the Fermi surface evolves with doping, but changes even more significantly with growth-induced compressive strain. For a given doping, the in-plane compressive strain enhances TC's and modifies the 2-dimensional hole-like Fermi surface as to appear more electron-like. In contrast, the in-plane tensile strain reduces TC (suppressing superconductivity for huge tensile strain) and shows 3-dimensional ARPES dispersion with a corresponding 3-dimensional Fermi surface. To account for these striking changes in electronic structure and superconductivity, the out-of-plane states should be taken into account, as well as some subtle changes in the associated atomic distances.

  20. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamlinefor photoelectron spectro-microscopies

    SciTech Connect

    Reininger R.; Hulbert L.; Johnson P.D.; Sadowski, J.T.; Starr, D.E.; Chubar, O.; Valla, T.; Vescovo, E.

    2012-02-13

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({micro}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {micro}m for ARPES and 0.5 {micro}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  1. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies

    SciTech Connect

    Reininger, R.; Hulbert, S. L.; Chubar, O.; Vescovo, E.; Johnson, P. D.; Valla, T.; Sadowski, J. T.; Starr, D. E.

    2012-02-15

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({mu}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {mu}m for ARPES and 0.5 {mu}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  2. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  3. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  4. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    PubMed Central

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.

    2015-01-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825

  5. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.

    PubMed

    Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J

    2015-09-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825

  6. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  7. Activation of Endothelial Pro-resolving Anti-Inflammatory Pathways by Circulating Microvesicles from Non-muscular Myosin Light Chain Kinase-Deficient Mice

    PubMed Central

    Gaceb, Abderahim; Vergori, Luisa; Martinez, M. C.; Andriantsitohaina, Ramaroson

    2016-01-01

    Microvesicles, small membrane vesicles released from cells, have beneficial and/or deleterious effects in sepsis. We previously reported that non-muscle myosin light chain kinase (nmMLCK) deletion protects mice against endotoxic shock by reducing inflammation. Here, we have evaluated the consequences of nmMLCK deletion on microvesicle phenotypes and their effects on mouse aortic endothelial cells in association with vascular inflammation and endothelial dysfunction during endotoxic shock induced by lipopolysaccharide in mice. Treatment with lipopolysaccharide induced an increase in levels of circulating microvesicles in wild type but not in nmMLCK-deficient mice. Microvesicles from nmMLCK-deficient mice (MVsnmMLCK-/-) prevented the inflammatory effects of lipopolysaccharide with concomitant increase of anti- inflammatory and reduction of pro-inflammatory secretome in mouse aortic endothelial cells. In addition, MVsnmMLCK-/- reduced the efficacy of lipopolysaccharide to increase aortic oxidative and nitrosative stresses as well as macrophage infiltration in the aorta. Moreover, MVsnmMLCK-/- prevented ex vivo endothelial dysfunction, vascular hyporeactivity, and in vivo overproduction of nitric oxide in heart and liver in response to lipopolysaccharide. Altogether, these findings provide evidence that nmMLCK deletion generates circulating microvesicles displaying protective effects by activating endothelial pro-resolving anti-inflammatory pathways allowing the effective down-regulation of oxidative and nitrative stresses associated with endotoxic shock. Thus, nmMLCK plays a pivotal role in susceptibility to sepsis via the control of cellular activation and release of circulating microvesicles. PMID:27708581

  8. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source.

    PubMed

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods. PMID:27036819

  9. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source.

    PubMed

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  10. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  11. Surface Reactions Studied by Synchrotron Based Photoelectron Spectroscopy

    SciTech Connect

    Hrbek, J.

    1998-11-03

    The goal of this article is to illustrate the use of synchrotron radiation for investigating surface chemical reactions by photoelectron spectroscopy. A brief introduction and background information is followed by examples of layer resolved spectroscopy, oxidation and sulfidation of metallic, semiconducting and oxide surfaces.

  12. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    SciTech Connect

    Ajemian, R.C.

    1995-12-31

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  13. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    achievable emittance in the synchrotron light sources for short bunches.

  14. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    SciTech Connect

    Wei, Jingsong; Wang, Rui

    2014-03-28

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thin film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.

  15. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  16. Time-resolved crystallography and protein design: signalling photoreceptors and optogenetics

    PubMed Central

    Moffat, Keith

    2014-01-01

    Time-resolved X-ray crystallography and solution scattering have been successfully conducted on proteins on time-scales down to around 100 ps, set by the duration of the hard X-ray pulses emitted by synchrotron sources. The advent of hard X-ray free-electron lasers (FELs), which emit extremely intense, very brief, coherent X-ray pulses, opens the exciting possibility of time-resolved experiments with femtosecond time resolution on macromolecular structure, in both single crystals and solution. The X-ray pulses emitted by an FEL differ greatly in many properties from those emitted by a synchrotron, in ways that at first glance make time-resolved measurements of X-ray scattering with the required accuracy extremely challenging. This opens up several questions which I consider in this brief overview. Are there likely to be chemically and biologically interesting structural changes to be revealed on the femtosecond time-scale? How shall time-resolved experiments best be designed and conducted to exploit the properties of FELs and overcome challenges that they pose? To date, fast time-resolved reactions have been initiated by a brief laser pulse, which obviously requires that the system under study be light-sensitive. Although this is true for proteins of the visual system and for signalling photoreceptors, it is not naturally the case for most interesting biological systems. To generate more biological targets for time-resolved study, can this limitation be overcome by optogenetic, chemical or other means? PMID:24914168

  17. Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Long, Marshall B.

    2014-10-01

    Soot characterization using multiple techniques has been performed in a series of nitrogen-diluted ethylene coflow laminar diffusion flames. Soot aggregate sizes have been measured in two dimensions, as opposed to traditional point measurements, by a newly developed two-dimensional multi-angle light scattering technique where image processing was applied to align images for Guinier analysis. Extinction measurements have also been performed using spectrally resolved line-of-sight attenuation with an imaging spectrometer. Spectrally and spatially resolved extinction measurements have been obtained as well. Combined with previously obtained time-resolved laser-induced incandescence measurements of primary particle diameters, the scattering and absorption components of extinction can be estimated. The so-called dispersion exponent that describes the wavelength dependence of spectral emissivity was determined in two dimensions and found to improve the accuracy of soot color-ratio pyrometry measurements.

  18. Synchrotron radiation sources and research

    SciTech Connect

    Teng, L.C.

    1995-12-31

    This is an introduction and a review of Synchrotron Radiation sources and the research performed using synchrotron radiation. I will begin with a brief discussion of the two principal uses of particle storage rings: for colliding beams (Collider) and for synchrotron radiation (Radiator). Then I will concentrate on discussions of synchrotron radiation topics, starting with a historical account, followed by descriptions of the features of the storage ring and the features of the radiation from the simplest source -- the bending magnet. I will then discuss the special insertion device sources -- wigglers and undulators -- and their radiations, and end with a brief general account of the research and other applications of synchrotron radiation.

  19. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  20. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  1. Assessing noise sources at synchrotron infrared ports.

    PubMed

    Lerch, Ph; Dumas, P; Schilcher, T; Nadji, A; Luedeke, A; Hubert, N; Cassinari, L; Boege, M; Denard, J-C; Stingelin, L; Nadolski, L; Garvey, T; Albert, S; Gough, Ch; Quack, M; Wambach, J; Dehler, M; Filhol, J-M

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors.

  2. A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source

    SciTech Connect

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1982-09-01

    This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present

  3. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  4. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  5. Synchrotron Radiation Workshop (SRW)

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations inmore » steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  6. Synchrotron Radiation Workshop (SRW)

    SciTech Connect

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.

  7. Recent developments in photoelectron dynamics using synchrotron radiation

    SciTech Connect

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum.

  8. National Synchrotron Light Source. Annual report 1992

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  9. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  10. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  11. On the implementation of computed laminography using synchrotron radiation

    SciTech Connect

    Helfen, L.; Pernot, P.; Elyyan, M.; Myagotin, A.; Mikulik, P.; Voropaev, A.; Di Michiel, M.; Baruchel, J.; Baumbach, T.

    2011-06-15

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  12. Application of Synchrotron-XRF to Quantitative Elemental Aerosol Analysis

    NASA Astrophysics Data System (ADS)

    Cliff, S. S.; Perry, K. D.; Jimenez-Cruz, M. P.; Cahill, T. A.

    2001-12-01

    Recent advances in synchrotron x-ray fluorescence (s-XRF) analysis of atmospheric particulate matter have improved elemental sensitivity, quantification and time-resolution. Analysis of both filter and impactor based aerosol samples have yielded quantitative data for elements Na-U, if present, in ambient aerosols. The increased sensitivity allows higher time resolution through either smaller spatial analysis of time-resolved impactor samples or shorter sample time-integration using filter-based samplers. Of particular interest is the application of s-XRF to aerodynamically sized rotating substrate impactor samples. These samplers, 8- and 3-stage DRUM's, have the ability to aerodynamically size-classify particles in either 8 or 3 categories, respectively. In addition, the rotating substrate allows time-resolved analysis of samples with little or no loss in elemental sensitivity. The s-XRF analyses are performed on Beamline 10.3.1 at the Advanced Light Source-Lawrence Berkeley Laboratory (ALS-LBL). Beamline 10.3.1, originally designed for materials analysis, has been supplemented with aerosol analysis capability from several substrate options. Typical analysis involves Teflon filters or Mylar impaction substrates. The newly formed Participating Research Team (PRT) for beamline 10.3.1 encompasses both global climate and material science research. The s-XRF capabilities of beamline 10.3.1 are now available for PRT researchers and independent investigators through a proposal process to the ALS. The technology, application to aerosol research and monitoring, and availability of the facility to the aerosol research community will be presented.

  13. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  14. The Potential of Expanded Arbitration in Resolving Title VII Claims in Light of Alexander v. Gardner-Denver and New Equal Employment Opportunity Commission Policy

    ERIC Educational Resources Information Center

    Boyer, Laura G.

    1976-01-01

    Potential Title VII financial liability, not only for lawyer's fees and court costs, but also for back pay awards, should provide the needed stimulus for union and management to accept altered arbitration as a method of resolving employment discrimination claims. Altered arbitration would be an effective way to limit their financial liability.…

  15. Nonthermal Synchrotron and Synchrotron Self-Compton Emission from GRBs: Predictions for Swift and GLAST

    SciTech Connect

    Finke, Justin D.; Boettcher, Markus

    2008-05-22

    Results of a leptonic jet model for the prompt emission and early afterglows of GRBs are presented. The synchrotron component is modeled with the canonical Band spectrum and the synchrotron self-Compton component is calculated from the implied synchrotron-emitting electron spectrum in a relativistic plasma blob. In the comoving frame the magnetic field is assumed to be tangled and the electron and photon distributions are assumed to be isotropic. The Compton-scattered spectrum is calculated using the full Compton cross-section in the Thomson through Klein-Nishina using the Jones formula. Pair production photoabsorption, both from ambient radiation in the jet and from the extragalactic background light (EBL), is taken into account. Results are presented as a function of a small set of parameters: the Doppler factor, the observed variability timescale, the comoving magnetic field, the peak synchrotron flux, and the redshift of the burst. Model predictions will be tested by multiwavelength observations, including the Swift and GLAST satellites, which will provide unprecedented coverage of GRBs.

  16. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  17. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  18. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    SciTech Connect

    de Boer, J.F.; Milner, T.E.; Nelson, J.S.

    1999-03-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and {ital inthinspthinspvivo} rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals. {copyright} {ital 1999} {ital Optical Society of America}

  19. Mapping prehistoric ghosts in the synchrotron

    NASA Astrophysics Data System (ADS)

    Edwards, N. P.; Wogelius, R. A.; Bergmann, U.; Larson, P.; Sellers, W. I.; Manning, P. L.

    2013-04-01

    The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples.

  20. Synchrotron studies of narrow band materials

    SciTech Connect

    Allen, J.W.

    1993-01-01

    Objective was to determine the single-particle electronic structure of selected narrow band materials in order to understand the relation between their electronic structures and novel low energy properties, such as mixed valence, heavy Fermions, Kondo effect, insulator-metal transitions, non-Fermi liquid behavior, and high-temperature superconductivity. This program supports photoemission spectroscopy (PES) at various synchrotrons. The progress is reported under the following section titles: ZSA (Zaanen-Sawatzky-Allen) systematics and I-M transitions in 3d transition metal oxides, insulator-metal transitions in superconducting cuprates, Fermi liquid and non-Fermi liquid behavior in angular resolved PES lineshapes, heavy-Fermion and non-Fermi liquid 5f electron systems, and Kondo insulators.

  1. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  2. A vacuum ultraviolet filtering monochromator for synchrotron-based spectroscopy

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Marin, Timothy W.

    2013-01-01

    We describe the design, characterization, and implementation of a vacuum ultraviolet (VUV) monochromator for use in filtering stray and scattered light from the principal monochromator output of the Stainless Steel Seya VUV synchrotron beam line at the Synchrotron Radiation Center, University of Wisconsin-Madison. We demonstrate a reduction of three orders of magnitude of stray and scattered light over the wavelength range 1400-2000 Å with minimal loss of light intensity, allowing for over six orders of magnitude of dynamic range in light detection. We suggest that a similar filtering scheme can be utilized in any variety of spectroscopic applications where a large dynamic range and low amount of background signal are of import, such as in transmittance experiments with very high optical density.

  3. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  4. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  5. High-speed detector for time-resolved diffraction studies

    PubMed Central

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-01-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 µm, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline. PMID:24489595

  6. High-speed detector for time-resolved diffraction studies

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-03-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 um, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline.

  7. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  8. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  9. Single-bunch synchrotron shutter

    SciTech Connect

    Norris, J.R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, M.

    1991-12-31

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4 {times} {pi} {times} r {times} such that a single pulse is selected for transmission through an open position of the shutter.

  10. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  11. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  12. Potential applications of synchrotron computed microtomography to soil science

    SciTech Connect

    Spanne, P.; Jones, K.W. ); Prunty, L.D. ); Anderson, S.H. )

    1993-01-01

    Synchrotron x-ray computed microtomography (CMT) can be used to make non-destructive tomographic sections with spatial resolutions of a few [mu]m. This resolution presents possibilities for study of soil-fluid interactions on a spatial scale hitherto unreachable. Details of a CMT apparatus in operation at the Brookhaven National Synchrotron Light Source X26 beam line are presented and prospects for future investigations of test systems have been made and results for wet and dry samples of glass beads and sand samples are given to show the power of the system.

  13. Potential applications of synchrotron computed microtomography to soil science

    SciTech Connect

    Spanne, P.; Jones, K.W.; Prunty, L.D.; Anderson, S.H.

    1993-01-01

    Synchrotron x-ray computed microtomography (CMT) can be used to make non-destructive tomographic sections with spatial resolutions of a few {mu}m. This resolution presents possibilities for study of soil-fluid interactions on a spatial scale hitherto unreachable. Details of a CMT apparatus in operation at the Brookhaven National Synchrotron Light Source X26 beam line are presented and prospects for future investigations of test systems have been made and results for wet and dry samples of glass beads and sand samples are given to show the power of the system.

  14. High intensity proton synchrotrons

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.

    1986-10-01

    Strong initiatives are being pursued in a number of countries for the construction of ``kaon factory'' synchrotrons capable of producing 100 times more intense proton beams than those available now from machines such as the Brookhaven AGS and CERN PS. Such machines would yield equivalent increases in the fluxes of secondary particles (kaons, pions, muons, antiprotons, hyperons and neutrinos of all varieties)—or cleaner beams for a smaller increase in flux—opening new avenues to various fundamental questions in both particle and nuclear physics. Major areas of investigation would be rare decay modes, CP violation, meson and hadron spectroscopy, antinucleon interactions, neutrino scattering and oscillations, and hypernuclear properties. Experience with the pion factories has already shown how high beam intensities make it possible to explore the ``precision frontier'' with results complementary to those achievable at the ``energy frontier''. This paper will describe proposals for upgrading and AGS and for building kaon factories in Canada, Europe, Japan and the United States, emphasizing the novel aspects of accelerator design required to achieve the desired performance (typically 100 μA at 30 GeV).

  15. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  16. Laser-synchrotron hybrid experiments: A photon to tickle, a photon to poke

    NASA Astrophysics Data System (ADS)

    Ederer, D. L.; Rubensson, J. E.; Mueller, D. R.; Shuker, R.; Obrien, W. L.; Jai, J.; Dong, Q. Y.; Callcott, T. A.; Carr, G. L.; Williams, G. P.

    1991-07-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  17. Laser-synchrotron hybrid experiments A photon to tickle - A photon to poke

    NASA Astrophysics Data System (ADS)

    Ederer, D. L.; Rubensson, J. E.; Mueller, D. R.; Shuker, R.; O'Brien, W. L.; Jai, J.; Dong, Q. Y.; Callcott, T. A.; Carr, G. L.; Williams, G. P.; Hirschmugl, C. J.; Etemad, S.; Inam, A.; Tanner, D. B.

    1992-08-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked Nd-YAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  18. Laser-synchrotron hybrid experiments: A photon to tickle, a photon to poke''

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R. ); Shuker, R. ); O'Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A. ); Carr, G.L. . Corporate Research Center); Williams, G.P.; Hirschmugl, C.J

    1991-01-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  19. Laser-synchrotron hybrid experiments: ``A photon to tickle, a photon to poke``

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R.; Shuker, R.; O`Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A.; Carr, G.L.; Williams, G.P.; Hirschmugl, C.J.; Etemad, S.; Inam, A.; Tanner, D.B.

    1991-12-31

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  20. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  1. Transvenous coronary angiography in humans with synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  2. Photon Science at Modern Light Sources

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2009-12-01

    More than 50 large x-ray and UV light sources based on high-energy electron accelerators are in operation around the world, serving a scientific community numbering in the tens of thousands. These sources generate synchrotron radiation from accelerated electrons or positrons. The development of synchrotron light sources over the last 40 years has fueled an exponential increase in x-ray source brightness of more than 10 orders of magnitude. The next large advance in source potential is now underway, with the commissioning of the first x-ray Free-Electron Laser (FEL) sources. Using high-energy electron linear accelerators, these facilities produce sub-picosecond pulses of hard x-rays with peak brightness more than 10 orders of magnitude greater than current synchrotron facilities. FEL x-ray facilities will soon be operational in the US, Japan, and Germany. Research at modern light sources makes use of a wide range of experimental techniques. Many experiments are designed to study the structure of matter at the atomic scale using elastic x-ray scattering. This technique has been particularly effective for determining the structures of biological molecules, such as proteins, viruses, and drugs. Inelastic x-ray scattering, or x-ray absorption followed by emission of electrons or photons, can give information about the electronic structures of atoms, which can be used to deduce local environment information such as atomic species, bonding state, geometry of neighboring atoms, or magnetic state. For some techniques involving x-ray emission from a sample, cryogenic detectors with energy resolution at the ˜10 eV level or better would be very helpful. Shifts in electron energy levels associated with bonding states and magnetic states are typically several eV, while the energy structure associated with Compton inelastic scattering is typically in the range of a few tens of eV. Current energy-resolving detectors used at synchrotron light sources are hampered by either poor

  3. Shedding Light on the Photochemistry of Coinage-Metal Phosphorescent Materials: A Time-Resolved Laue Diffraction Study of an AgI–CuI Tetranuclear Complex

    PubMed Central

    Jarzembska, Katarzyna N.; Kamiński, Radosław; Fournier, Bertrand; Trzop, Elżbieta; Sokolow, Jesse D.; Henning, Robert; Chen, Yang; Coppens, Philip

    2015-01-01

    The triplet excited state of a new crystalline form of a tetranuclear coordination d10–d10-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing AgI and CuI metal centers has been explored using the Laue pump–probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 μs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies. PMID:25238405

  4. A novel molecular synchrotron for cold collision and EDM experiments.

    PubMed

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-09-07

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles.

  5. A novel molecular synchrotron for cold collision and EDM experiments

    NASA Astrophysics Data System (ADS)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-09-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles.

  6. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  7. A novel molecular synchrotron for cold collision and EDM experiments.

    PubMed

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  8. SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Tamura, Yoichi; Kohno, Kotaro; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Ishii, Shun; Ivison, Rob J.; Izumi, Takuma; Kawabe, Ryohei; Kodama, Tadayuki; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Ohta, Kouji; Rujopakarn, Wiphu; Tadaki, Ken-ichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2016-08-01

    We present a multiwavelength analysis of five submillimeter sources (S1.1mm = 0.54-2.02 mJy) that were detected during our 1.1 mm deep continuum survey in the Subaru/XMM-Newton Deep Survey Field (SXDF)-UDS-CANDELS field (2 arcmin2, 1σ = 0.055 mJy beam-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ˜ 4.1^{+5.4}_{-3.0}Jy deg-2, which corresponds to ˜ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multiwavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR˜eq 1× 10^{12} L_{⊙} or SFR ≃ 100 M⊙ yr-1). By fitting the spectral energy distributions at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (zphoto) and stellar masses (M*): zphoto ≃ 1.3-2.5, M* ≃ (3.5-9.5) × 1010 M⊙. We also derived their star formation rates (SFRs) and specific SFRs as ≃30-200 M⊙ yr-1 and ≃0.8-2 Gyr-1, respectively. These values imply that they are main sequence star-forming galaxies.

  9. SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Tamura, Yoichi; Kohno, Kotaro; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Ishii, Shun; Ivison, Rob J.; Izumi, Takuma; Kawabe, Ryohei; Kodama, Tadayuki; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Ohta, Kouji; Rujopakarn, Wiphu; Tadaki, Ken-ichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2016-10-01

    We present a multiwavelength analysis of five submillimeter sources (S1.1mm = 0.54-2.02 mJy) that were detected during our 1.1 mm deep continuum survey in the Subaru/XMM-Newton Deep Survey Field (SXDF)-UDS-CANDELS field (2 arcmin2, 1σ = 0.055 mJy beam-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ˜ 4.1^{+5.4}_{-3.0}Jy deg-2, which corresponds to ˜ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multiwavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR˜eq 1× 10^{12} L_{⊙} or SFR ≃ 100 M⊙ yr-1). By fitting the spectral energy distributions at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (zphoto) and stellar masses (M*): zphoto ≃ 1.3-2.5, M* ≃ (3.5-9.5) × 1010 M⊙. We also derived their star formation rates (SFRs) and specific SFRs as ≃30-200 M⊙ yr-1 and ≃0.8-2 Gyr-1, respectively. These values imply that they are main sequence star-forming galaxies.

  10. SAMRAI: A novel variably polarized angle-resolved photoemission beamline in the VUV region at UVSOR-II

    SciTech Connect

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito; Katoh, Masahiro; Sakai, Masahiro; Nakamura, Eiken; Kondo, Naonori; Horigome, Toshio; Hayashi, Kenji; Goto, Tomohiro; Ejima, Takeo; Soda, Kazuo

    2010-05-15

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directly led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.

  11. Bystander Effects During Synchrotron Imaging Procedures?

    SciTech Connect

    Schueltke, Elisabeth; Nikkhah, Guido; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean

    2010-07-23

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP.Materials and Methods: Culture flasks containing either gold-loaded or naieve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source.Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  12. Bystander Effects During Synchrotron Imaging Procedures?

    NASA Astrophysics Data System (ADS)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  13. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    SciTech Connect

    Debreczeny, M.P.

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  14. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  15. Time Resolved X-Ray Diffraction of Reactive Solids Under Dynamic Loadings

    NASA Astrophysics Data System (ADS)

    Yoo, Choong-Shik

    2015-06-01

    We present novel time-resolved (TR) x-ray diffraction and TR Raman spectroscopy capable of probing structural and chemical evolutions of solids undergoing chemical and phase transformations. These methods are applicable to a wide range of dynamic experiments to study both single event phenomena of solids under thermal, electric or mechanical impact conditions and non-single event phenomena under dynamic-diamond anvil cell (d-DAC) and high frequency pulse (or ramp) laser-heated DAC. In this talk, relevant technology developments are described with several examples of our recent studies on reactive metals and dense molecular systems, which are synergistic to many proposed activities to develop dynamic synchrotron x-ray diffraction capabilities centered at advanced third and fourth generation light sources.

  16. Contact microscopy with synchrotron radiation

    SciTech Connect

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  17. Synchrotron Origin of the Typical GRB Band Function

    NASA Astrophysics Data System (ADS)

    Zhang, Binbin

    2016-07-01

    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm & Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Band parameter values can indeed be explained by synchrotron radiation.

  18. Impact system for ultrafast synchrotron experiments

    SciTech Connect

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-15

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 {+-} 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  19. Three energy computed tomography with synchrotron radiation

    SciTech Connect

    Menk, R.H.; Thomlinson, W.; Zhong, Z.; Charvet, A.M.; Arfelli, F. |; Chapman, L.

    1997-09-01

    Preliminary experiments for digital subtraction computed tomography (CT) at the K-edge of iodine (33.1 keV) were carried out at SMERF (Synchrotron Medical Research Facility X17B2) at the National Synchrotron Light Source, Brookhaven National Laboratory. The major goal was to evaluate the availability of this kind of imaging for in vivo neurological studies. Using the transvenous coronary angiography system, CT images of various samples and phantoms were taken simultaneously at two slightly different energies bracketing the K-absorption edge of iodine. The logarithmic subtraction of the two images resulted in the contrast enhancement of iodine filled structures. An additional CT image was taken at 99.57 keV (second harmonic of the fundamental wave). The third energy allowed the calculation of absolute iodine, tissue and bone images by means of a matrix inversion. A spatial resolution of 0.8 LP/mm was measured in single energy images and iodine concentrations down to 0.082 mg/ml in a 1/4 diameter detail were visible in the reconstructed subtraction image.

  20. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  1. A high sensitivity time-resolved microfluorimeter for real-time cell biology

    NASA Astrophysics Data System (ADS)

    Martin-Fernandez, M. L.; Tobin, M. J.; Clarke, D. T.; Gregory, C. M.; Jones, G. R.

    1996-10-01

    We describe an instrument based on the novel combination of synchrotron radiation, a high sensitivity time-resolved microfluorimeter, and a multiframe single photon counting data acquisition system. This instrument has been designed specifically to measure kinetic events in live cells using fluorescence resonance energy transfer, and is capable of rapidly collecting multiple consecutive decay profiles from a small number of fluorophores. The low irradiance on the samples (<10 mW/cm2) greatly reduces probe photobleaching and specimen photodamage during prolonged exposures. The Daresbury Synchrotron Radiation Source provides fully wavelength tunable light pulses that have a full width half-maximum of 160 ps at a repetition rate of 3.125 MHz, with the high temporal stability required for continuous measurements over periods of hours. A very low limit of detection (<104 molecules/mW/cm2) is accomplished by combining a high-gain single photon counting detection system with a low fluorescence background optical layout. The latter is achieved by the inclusion of collimating optics, a reflecting objective, and a specially designed beam stop situated in the epi-fluorescence light-path. A typical irradiance of 8 mW/cm2 on a sample of ˜105 fluorescein molecules gives, in under 20 s, a fluorescence decay profile with a peak height of 104 counts, over 400 channels, and a signal to background ratio better than 40. The data acquisition system has been developed to have a real-time time-resolved fluorescence collection capability (denoted as TR2) so that fluorescence lifetime data can be continually collected throughout a changing process. To illustrate the potential of this instrument, we present the results of a TR2 experiment in which lifetime measurements of fluorescence resonance energy transfer are used to monitor the degree of clustering of epidermal growth factor receptors during endocytosis, over a period of about 1 h, with a 5 s resolution.

  2. Characterization of minority-carrier hole transport in nitride-based light-emitting diodes with optical and electrical time-resolved techniques.

    SciTech Connect

    Koleske, Daniel David; Kaplar, Robert James; Crawford, Mary Hagerott; Kurtz, Steven R.; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-01-01

    Forward-to-reverse bias step-recovery measurements were performed on In.07Ga.93N/GaN and Al.36Ga.64N/Al.46Ga.54N quantum-well (QW) light-emitting diodes grown on sapphire. With the QW sampling the minority-carrier hole density at a single position, distinctive two-phase optical decay curves were observed. Using diffusion equation solutions to self-consistently model both the electrical and optical responses, hole transport parameters tp = 758 {+-} 44 ns, Lp = 588 {+-} 45 nm, and up = 0.18 {+-} 0.02 cm2/Vs were obtained for GaN. The mobility was thermally activated with an activation energy of 52 meV, suggesting trap-modulated transport. Optical measurements of sub-bandgap peaks exhibited slow responses approaching the bulk lifetime. For Al.46Ga.54N, a longer lifetime of tp = 3.0 us was observed, and the diffusion length was shorter, Lp = 280 nm. Mobility was an order of magnitude smaller than in GaN, up = 10-2 cm2/Vs, and was insensitive to temperature, suggesting hole transport through a network of defects.

  3. Energy migration in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum studied by time-resolved excitation annihilation at 77 K.

    PubMed Central

    Valkunas, L; Akesson, E; Pullerits, T; Sundström, V

    1996-01-01

    The intensity dependence of picosecond kinetics in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum is studied at 77 K. By changing either the average excitation intensity or the pulse intensity we have been able to discriminate singlet-singlet and singlet-triplet annihilation. It is shown that the kinetics of both annihilation types are well characterized by the concept of percolative excitation dynamics leading to the time-dependent annihilation rates. The time dependence of these two types of annihilation rates is qualitatively different, whereas the dependencies can be related through the same adjustable parameter-a spectral dimension of fractal-like structures. The theoretical dependencies give a good fit to the experimental kinetics if the spectral dimension is equal to 1.5 and the overall singlet-singlet annihilation rate is close to the value obtained at room temperature. The percolative transfer is a consequence of spectral inhomogeneous broadening. The effect is more pronounced at lower temperatures because of the narrowing of homogeneous spectra. PMID:9172762

  4. Electronic structure near the Fermi level in the ferromagnetic semiconductor GaMnAs studied by ultrafast time-resolved light-induced reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Ishii, Tomoaki; Kawazoe, Tadashi; Hashimoto, Yusuke; Terada, Hiroshi; Muneta, Iriya; Ohtsu, Motoichi; Tanaka, Masaaki; Ohya, Shinobu

    The determination of the Fermi level (EF) position is important to understand the origin of the ferromagnetism in ferromagnetic semiconductor GaMnAs. The recent transient reflectivity (TR) spectroscopy measurement, which is potentially sensitive to the absorption edges, indicated that the EF exists in the valence band. However, the pump fluence in this study is rather high, and the accumulation of photo-carriers can shift the absorption edges. Thus, the definition of both the band gap and EF is obscure. Here, we have performed TR spectroscopy measurements on GaMnAs films with the pump fluence carefully controlled to suppress the accumulation of photo-carriers. The energy resolution of the TR spectrum was improved to 0.5 meV. The data shows light-induced change in the reflectivity spectra which is attributed to the band-gap renormalization and band filling. We have reproduced the observed TR spectra using the Kramers-Kronig relation and found the Mn-induced electronic states near the EF in the band gap. This work was partially supported by Grants-in-Aids for Scientific Research including Specially Promoted Research and Project for Developing Innovation Systems of MEXT.

  5. The Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D.; Gotthelf, E.; Halpern, J.

    2000-10-01

    We present high-resolution Chandra X-ray observations of PSR0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations of the pulsar separated by one month to search for morphological changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a morphology remarkably similar to the torus-like structure observed in the Crab Nebula, along with an axial Crab-like jet. The flux from the pulsar is found to be steady to within 0.75 %; the 3 sigma limit on the fractional increase in the pulsar's X-ray flux is <10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer torus; if associated with the glitch, the inferred propogation velocity is ~0.5c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright, arc-shaped X-ray wisps are the shocked termination of a relativistic equatorial pulsar wind which is contained within the surrounding kidney-bean shaped synchrotron nebula which comprises the post-shock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter of the Vela pulsar wind is required to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B ~ 4 x 10-4G.

  6. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2015-03-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Although South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give thousands of African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several sub-Saharan African countries. An interim Steering Committee has been formed. SESAME, now nearing completion in Jordan as a collaboration of 9 countries in the Middle East (www.sesame.org.jo) may be the example followed. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions''. It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  7. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Evans-Lutterodt, Kenneth; Mtingwa, Sekazi; Wague, Ahmadou; Tessema, Guebre; Winick, Herman

    2015-04-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Even though South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give many more African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several African countries. An interim Steering Committee has been formed, with a mandate to plan a conference. SESAME, now nearing completion in Jordan, is a collaboration of 9 countries in the Middle East (www.sesame.org.jo) is an example to follow. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions.'' It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  8. Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Gotthelf, E. V.; Halpern, J. P.

    2001-07-01

    We present high-resolution Chandra X-ray observations of PSR B0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations separated by 1 month to search for changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a toroidal morphology remarkably similar to that observed in the Crab Nebula, along with an axial Crab-like jet. Between the two observations, taken ~3×105 s and ~3×106 s after the glitch, the flux from the pulsar is found to be steady to within 0.75% the 3 σ limit on the fractional increase in the pulsar's X-ray flux is <~10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer arc; if associated with the glitch, the inferred propagation velocity is >~0.7c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright X-ray arcs are the shocked termination of a relativistic equatorial pulsar wind that is contained within the surrounding kidney-bean shaped synchrotron nebula comprising the postshock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter σ of the Vela pulsar wind is allowed to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B<=4×10-4 G. The inclination angle of the axis of the equatorial torus with respect to the line of sight is identical to that of the rotation axis of the pulsar as previously measured from the polarization of the radio pulse. The projection of the rotation axis on the sky may also be close to the direction of proper motion of the pulsar if previous radio measurements were confused by

  9. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  10. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  11. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-01-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  12. Optical systems for synchrotron radiation

    SciTech Connect

    Howells, M.R.

    1985-12-01

    Various fundamental topics which underlie the design and use of optical systems for synchrotron radiation are considered from the viewpoint of linear system theory. These topics include the damped harmonic oscillator, free space propagation of an optical field, electromagnetic theory of optical properties of materials, theory of dispersion, and the Kramers-Kronig relations. 32 refs., 5 figs. (LEW)

  13. Exploration of synchrotron Mossbauer micrscopy with micrometer resolution: forward and a new backscattering modality on natural samples

    SciTech Connect

    Yan, L.; Zhao, J.; Toellner, T.S.; Divan, R.; Xu, S.; Cai, Z.; Boesenberg, J.S.; Freidrich, J.M.; Cramer, S.P.; Alp, E.E.

    2012-01-01

    New aspects of synchrotron Moessbauer microscopy are presented. A 5 {micro}m spatial resolution is achieved, and sub-micrometer resolution is envisioned. Two distinct and unique methods, synchrotron Moessbauer imaging and nuclear resonant incoherent X-ray imaging, are used to resolve spatial distribution of species that are chemically and magnetically distinct from one another. Proof-of-principle experiments were performed on enriched {sup 57}Fe phantoms, and on samples with natural isotopic abundance, such as meteorites.

  14. Putting synchrotron radiation to work for technology: Analytic methods

    SciTech Connect

    Not Available

    1992-02-01

    This report contains viewgraphs on: Advanced Light Source; Ultra-ESCA: Advanced Capabilities of XPS with High-Brightness Synchrotron Radiation; High-Resolution (20 nm) XPS and XANES with the ALS; Photoelectron Spectroscopy in Industry: Current Capabilities, Needs, and Possible Roles for the ALS; Materials Analysis by Photoemission: Is This Practical at ALS?; Applications of Long-Wavelength X-Ray Fluorescence Spectrometry and X-Ray Powder Diffractometry.

  15. Putting synchrotron radiation to work for technology: Analytic methods

    SciTech Connect

    Not Available

    1992-02-01

    This report contains viewgraphs on: Advanced Light Source; Ultra-ESCA: Advanced Capabilities of XPS with High-Brightness Synchrotron Radiation; High-Resolution (20 nm) XPS and XANES with the ALS; Photoelectron Spectroscopy in Industry: Current Capabilities, Needs, and Possible Roles for the ALS; Materials Analysis by Photoemission: Is This Practical at ALS ; Applications of Long-Wavelength X-Ray Fluorescence Spectrometry and X-Ray Powder Diffractometry.

  16. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE PAGES

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; et al

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  17. Color changes in modern and fossil teeth induced by synchrotron microtomography.

    PubMed

    Richards, Gary D; Jabbour, Rebecca S; Horton, Caroline F; Ibarra, Caitlin L; MacDowell, Alastair A

    2012-10-01

    Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.

  18. Medical applications of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thomlinson, W.

    1992-08-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotheraphy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatc needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  19. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  20. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  1. Synchrotron Radiation in Life Sciences

    SciTech Connect

    Stojanoff, Vivian; Northrup, Paul; Pietri, Ruth; Zhong, Zhong

    2012-05-01

    Synchrotron Radiation (SR) presents itself as a “play-ground” with a large range of methods and techniques suitable to unveil the mysteries of life. Here we attempt to present a few of these methods that complement those employed in the home laboratory. SR diffraction, spectroscopy and imaging methods relevant to the atomic structure determination and characterization of the properties and function of chemical compounds and macromolecules of biological relevance, are introduced.

  2. Breast tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pani, Silvia; Arfelli, Fulvia; Dreossi, Diego; Montanari, Francesco; Longo, Renata; Olivo, Alessandro; Poropat, Paolo; Zanconati, Fabrizio; Palma, Ludovico D.; Castelli, Edoardo

    2002-05-01

    A feasibility study of breast CT with synchrotron radiation is currently being carried on at Elettra, the Trieste synchrotron radiation facility. Breast CT cannot be implemented easily with conventional radiographic tubes, due to the high dose that would be delivered to the breast by a polychromatic X-ray spectrum. The possibility of tuning the beam energy, available at a synchrotron radiation beamline, allows a significant reduction in the delivered dose, and at the same time the use of monochromatic beams avoids beam hardening artifacts on the reconstructed image. Images of in vitro breast tissue samples have been acquired by means of a high efficiency linear array detector coupled to a VLSI single photon counting readout electronics. The pixel width, determining the pixel size of the reconstructed image, is 200 micrometers , while the pixel height, determining the CT slice thickness, is 300 micrometers . Tomograms have been reconstructed by means of standard filtered backprojection algorithms. Images of normal and pathologic breast tissue samples show a good visibility of glandular structure. The delivered dose was in all cases comparable to the one delivered in clinical planar mammography. Due to the promising results we obtained, in vivo studies are under evaluation.

  3. Cross-correlation frequency-resolved optical gating of white-light continuum (500-900 nm) generated in bulk media by 1053 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Imran, T.; Hussain, M.; Figueira, G.

    2016-06-01

    We have efficiently characterized the white-light continuum (WLC) generation covering 500-900 nm in a bulk sapphire plate using 280 fs pulse duration, 1053 nm center-wavelength seed laser pulses. We have acquired the well-optimized smoother region of the WLC spectrum successfully by using an FGS-900 color glass filter (Edmund Optics, Inc.). We have suppressed the spectral components below 500 nm and over 900 nm including an intense 1053 nm residual seed laser peak of the WLC spectrum. The experimental artifacts have been avoided by suppressing the intense 1053 nm seed laser. We employed the sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) technique for characterization. The XFROG measurement was carried out by introducing the crystal dithering method up to 10° in 2° intervals to obtain the phase matching effectively over the filtered and smoother region of the WLC spectrum. This well-optimized WLC region covering 500-900 nm has significant importance for use as a seed pulse in an optical parametric chirped pulse amplification (OPCPA) system.

  4. Cross-correlation frequency-resolved optical gating of white-light continuum (500–900 nm) generated in bulk media by 1053 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Imran, T.; Hussain, M.; Figueira, G.

    2016-06-01

    We have efficiently characterized the white-light continuum (WLC) generation covering 500–900 nm in a bulk sapphire plate using 280 fs pulse duration, 1053 nm center-wavelength seed laser pulses. We have acquired the well-optimized smoother region of the WLC spectrum successfully by using an FGS-900 color glass filter (Edmund Optics, Inc.). We have suppressed the spectral components below 500 nm and over 900 nm including an intense 1053 nm residual seed laser peak of the WLC spectrum. The experimental artifacts have been avoided by suppressing the intense 1053 nm seed laser. We employed the sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) technique for characterization. The XFROG measurement was carried out by introducing the crystal dithering method up to 10° in 2° intervals to obtain the phase matching effectively over the filtered and smoother region of the WLC spectrum. This well-optimized WLC region covering 500–900 nm has significant importance for use as a seed pulse in an optical parametric chirped pulse amplification (OPCPA) system.

  5. Lighting Turns On Learning

    ERIC Educational Resources Information Center

    Modern Schools, 1974

    1974-01-01

    Attempts to resolve the two factors instrumental in ineffectively lighted new classrooms: planning without taking newer design techniques into consideration and confusion regarding the lighting objectives in the classroom. (Author/EA)

  6. Inner-shell photoemission from atoms and molecules using synchrotron radiation

    SciTech Connect

    Lindle, D.W.

    1983-12-01

    Photoelectron spectroscopy, in conjunction with synchrotron radiation, has been used to study inner-shell photoemission from atoms and molecules. The time structure of the synchrotron radiation permits the measurements of time-of-flight (TOF) spectra of Auger and photoelectrons, thereby increasing the electron collection efficiency. The double-angle TOF method yielded angle-resolved photoelectron intensities, which were used to determine photoionization cross sections and photoelectron angular distributions in several cases. Comparison to theoretical calculations has been made where possible to help explain observed phenomena in terms of the electronic structure and photoionization dynamics of the systems studied. 154 references, 23 figures, 7 tables.

  7. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS.

  8. Insights into the evolution of symbiotic recurrent novae from radio synchrotron emission: V745 Scorpii and RS Ophiuchi

    NASA Astrophysics Data System (ADS)

    Kantharia, N. G.; Dutta, Prasun; Roy, Nirupam; Anupama, G. C.; Ishwara-Chandra, C. H.; Chitale, A.; Prabhu, T. P.; Banerjee, D. P. K.; Ashok, N. M.

    2016-02-01

    We present observations at 610 and 235 MHz using the Giant Metrewave Radio Telescope (GMRT) of the recurrent nova V745 Scorpii which recorded its last outburst on 2014 February 6. This is the second symbiotic recurrent nova whose light curve at low frequencies has been followed in detail, the first being RS Ophiuchi in 2006. We fitted the 610 MHz light curve by a model of synchrotron emission from an expanding shell being modified by radiative transfer effects due to local absorbing gas consisting of a uniformly distributed and a clumpy component. Using our model parameters, we find that the emission at 235 MHz peaked around day 35 which is consistent with our GMRT observations. The two main results of our study are (1) The radio emission at a given frequency is visible sooner after the outburst in successive outbursts of both V745 Scorpii and RS Ophiuchi. The earlier detection of radio emission is interpreted to be caused by decreasing foreground densities. (2) The clumpy material, if exists, is close to the white dwarf and can be interpreted as being due to the material from the hot accretion disc. The uniform density gas is widespread and attributed to the winds blown by the white dwarf. We present implications of these results on the evolution of both novae. Such studies along with theoretical understanding have the potential of resolving several outstanding issues such as why all recurrent novae are not detectable in synchrotron radio and whether recurrent novae are progenitor systems of Type 1a supernova.

  9. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies

    SciTech Connect

    Jo, Wonhyuk; Lee, Sooheyong; Eom, Intae; Landahl, Eric C.

    2014-12-15

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  10. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies

    NASA Astrophysics Data System (ADS)

    Jo, Wonhyuk; Lee, Sooheyong; Eom, Intae; Landahl, Eric C.

    2014-12-01

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  11. Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequencies.

    PubMed

    Jo, Wonhyuk; Lee, Sooheyong; Eom, Intae; Landahl, Eric C

    2014-12-01

    The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.

  12. Synchrotron Environmental Science-I Workshop Report.

    SciTech Connect

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  13. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  14. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    SciTech Connect

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  15. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  16. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    SciTech Connect

    Fiorito, R. B.; Zhang, H. D.; Corbett, W. J.; Fisher, A. S.; Mok, W. Y.; Tian, K.; Douglas, D.; Wilson, F. G.; Zhang, S.; Mitsuhashi, T. M.; Shkvarunets, A. G.

    2012-11-01

    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  17. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM). PMID:27250401

  18. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  19. Spin-Orbit Effects in Spin-Resolved L2,3 Core Level Photoemission of 3d Ferromagnetic Thin Films

    SciTech Connect

    Komesu, T; Waddill, G D; Yu, S W; Butterfield, M; Tobin, J G

    2007-10-02

    We present spin-resolved 2p core level photoemission for the 3d transition metal films of Fe and Co grown on Cu(100). We observe clear spin asymmetry in the main 2p core level photoemission peaks of Fe and Co films consistent with trends in the bulk magnetic moments. The spin polarization can be strongly enhanced, by variation of the experimental geometry, when the photoemission is undertaken with circularly polarized light, indicating that spin-orbit interaction can have a profound in spin polarized photoemission. Further spin polarized photoemission studies using variable circularly polarized light at high photon energies, high flux are indicated, underscoring the value of synchrotron measurements at facilities with increased beam stability.

  20. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  1. Time-Resolved X-Ray Crystallography of Heme Proteins

    SciTech Connect

    Srajer, Vukica; Royer, Jr., William E.

    2008-04-29

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third-generation synchrotrons provide 100-ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have recently permitted observing for the first time allosteric transitions in real time for a cooperative dimeric hemoglobin.

  2. Time-resolved x-ray crystallography of heme proteins

    PubMed Central

    Royer, William E.

    2012-01-01

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third generation synchrotrons provide 100ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have permitted observing allosteric transitions in real time for a cooperative dimeric hemoglobin. PMID:18433638

  3. Barrier rf systems in synchrotrons

    SciTech Connect

    Chandra M. Bhat

    2004-06-28

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications.

  4. Transverse beam size measurement system using visible synchrotron radiation at HLS II

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Sun, Bao-Gen; Yang, Yong-Liang; Lu, Ping; Tang, Lei-Lei; Wu, Fang-Fang; Cheng, Chao-Cai; Zheng, Jia-Jun; Li, Hao

    2016-09-01

    An interferometer system and an imaging system using visible synchrotron radiation (SR) have been installed in the Hefei Light Source (HLS) II storage ring. Simulations of these two systems are given using Synchrotron Radiation Workshop (SRW) code. With these two systems, the beam energy spread and the beam emittance can be measured. A detailed description of these two systems and the measurement method is given in this paper. The measurement results of beam size, emittance and energy spread are given at the end. Supported by National Natural Science Foundation of China (11105141, 11175173) and Upgrade Project of Hefei Light Source

  5. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  6. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  7. Computed tomography using synchrotron radiation

    SciTech Connect

    Thompson, A.C.; Llacer, J.; Finman, L.C.; Hughes, E.B.; Otis, J.N.; Wilson, S.; Zeman, H.D.

    1983-09-01

    X-ray computed tomography (CT) is a widely used method of obtaining cross-sectional views of objects. The high intensity, natural collimation, monochromaticity and energy tunability of synchrotron x-ray sources could potentially be used to provide CT images of improved quality. The advantages of these systems would be that images could be produced more rapidly with better spatial resolution and reduced beam artifacts. In addition, images, in some cases, could be acquired with elemental sensitivity. As a demonstration of the capability of such a system, CT images were obtained of four slices of an excised pig heart in which the arteries and the cardiac chambers were filled with an iodinated medium. Images were taken with incident x-rays tuned successively to energies just above and below the iodine K edge. Iodine specific images were obtained by logarithmically subtracting the low energy image data from the high energy data and then reconstructing the image. CT imaging using synchrotron radiation may become a convenient and non-destructive method of imaging samples difficult to study by other methods.

  8. Nuclear dynamical diffraction using synchrotron radiation

    SciTech Connect

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of {sup 57}Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2{plus_minus}0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1{1/2} natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  9. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  10. Imaging using synchrotron radiation for forensic science

    NASA Astrophysics Data System (ADS)

    Cervelli, F.; Carrato, S.; Mattei, A.; Jerian, M.; Benevoli, L.; Mancini, L.; Zanini, F.; Vaccari, L.; Perucchi, A.; Aquilanti, G.

    2011-03-01

    Forensic science is already taking benefits from synchrotron radiation (SR) sources in trace evidence analysis. In this contribution we show a multi-technique approach to study fingerprints from the morphological and chemical point of view using SR based techniques such as Fourier transform infrared microspectroscopy (FTIRMS), X-ray fluorescence (XRF), X-ray absorption structure (XAS), and phase contrast microradiography. Both uncontaminated and gunshot residue contaminated human fingerprints were deposited on lightly doped silicon wafers and on poly-ethylene-terephthalate foils. For the uncontaminated fingerprints an univariate approach of functional groups mapping to model FT-IRMS data was used to get the morphology and the organic compounds map. For the gunshot residue contaminated fingerprints, after a preliminary elemental analysis using XRF, microradiography just below and above the absorption edge of the elements of interest has been used to map the contaminants within the fingerprint. Finally, XAS allowed us to determine the chemical state of the different elements. The next step will be fusing the above information in order to produce an exhaustive and easily understandable evidence.

  11. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  12. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    SciTech Connect

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Miller, R. J. Dwayne

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  13. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  14. Reveal Protein Molecular Structural-Chemical Differrences Between Two Types of Winterfat (Forage) Seeds with Physiological Differences in Low Temperature Tolerance Using Synchrotron-Based Fourier Transform Infrared Microspectroscopy

    SciTech Connect

    Yu,P.; Wang, R.; Bai, Y.

    2005-01-01

    Winterfat (Krascheninnikovia lanata) (forage seed) is a long-lived native shrub with superior forage quality for livestock and wildlife. The objectives of this study were to use advanced synchrotron technology [S-Fourier transform infrared microspectroscopy (FTIR)] as a novel approach to reveal protein molecular structural-chemical differences in terms of protein secondary structures between the two types of winterfat (forage) seeds, which show physiological differences in low-temperature tolerances. This experiment was performed at beamline U10B at the National Synchrotron Light Source NSLS in Brookhaven National Laboratory BNL, U.S. Department of Energy (NSLS-BNL, New York). The results showed that with the synchrotron analytical technique (S-FTIR), the molecular structural-chemical makeup and characteristics of the winterfat seed tissues could be imaged and revealed. The protein secondary structures differed between the large and the small seed tissues. By using the multicomponent peaks modeling method, the results show that the large seeds contained no significant differences (P > 0.05) in percentage of {beta}-sheet (average 37.0%) and {alpha}-helix (average 24.1%). However, the large seeds contained a lower (P < 0.05) percentage of {beta}-turns (18.1 vs. 20.1%) and a lower (P < 0.05) ratio of {beta}-turns to {alpha}-helices (0.8 vs. 0.9) and {beta}-turns to {beta}-sheets (0.5 vs. 0.6). Our results demonstrate the potential of highly spatially resolved synchrotron-based FTIR microspectroscopy to reveal differences of structural molecular chemistry and protein secondary structures, which are associated with seed size variation and may affect germination behaviors.

  15. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  16. High heat load synchrotron optics

    SciTech Connect

    Mills, D.M.

    1992-08-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density these high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development.

  17. Emittance Adapter for a Diffraction Limited Synchrotron Radiation Source

    SciTech Connect

    Chao, Alexander Wu; Raimondi, Pantaleo; /Frascati

    2012-03-01

    We investigate the possibility of reaching very small horizontal and vertical emittances inside an undulator in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid in a dedicated insertion line in the storage ring. The insertion leaves the ring parameters and its optical properties unaffected. This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source. The lattice derivation and design is described.

  18. 3D imaging of fetus vertebra by synchrotron radiation microtomography

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter

    1997-10-01

    A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.

  19. Electron correlation explored through electron spectrometry using synchrotron radiation

    SciTech Connect

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G. . Dept. of Physics); Krause, M.O. )

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs.

  20. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    SciTech Connect

    Huff, W R.A.

    1996-02-01

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5{degree} off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

  1. More on the catalysis of internal conversion in chlorophyll a by an adjacent carotenoid in light-harvesting complex (Chl a/ b LHCII) of higher plants: time-resolved triplet-minus-singlet spectra of detergent-perturbed complexes

    NASA Astrophysics Data System (ADS)

    Naqvi, K. Razi; Jávorfi, Tamás; Melø, T. B.; Garab, Gyözö

    1998-12-01

    Wavelength-selective photo-excitation of samples containing a detergent and LHCII (the main light-harvesting complex pertaining to photosystem II of green plants) is used for recording time-resolved triplet-minus-singlet (TmS) difference spectra, with a view to probing interactions between chlorophyll a (Chl a) and chlorophyll b (Chl b), and between Chl a and lutein (Lut). Once the detergent concentration ( CD) exceeds a threshold, C©, the TmS spectrum becomes sensitive to λ⊗, the wavelength of excitation, and to t, the delay between excitation and observation. Each increment in CD brings about a diminution in the efficiency of a†→ x† transfer (triplet-triplet transfer from Chl a to Lut) and a rise in both the triplet formation yield and the fluorescence yield of Chl a. What is more, b*→ a* transfer (singlet-singlet transfer from Chl b to Chl a) slackens to such an extent that Chl b*→Chl b† intersystem crossing, negligible when CD is below C©, begins to vie with transfer, for the deactivation of Chl b* (in the foregoing an asterisk/dagger denotes singlet/triplet excitation). The reduction in the efficiencies of the two transfers is easily understood by: (i) invoking the Kühlbrandt-Wang-Fujiyoshi model of LHCII, which posits each Chl b in contact with a Chl a and each Chl a in contact with a Lut, and (ii) assuming that the detergent severs contact between adjacent chromophores. That a growth in the triplet yield of Chl a* accompanies the detergent-induced decrease in the efficiency of a†→ x† transfer becomes intelligible if one assumes, further, that internal conversion in Chla* is faster than that in overlineChla * , where under or over lining betokens the presence or absence of a carotenoid neighbour. When CD is close to C©, most Chl a molecules are adjacent to a Lut, internal conversion dominates, and the overall triplet yield is low. As CD is gradually raised the Chla → overlineChla transformation sets in, causing concomitant drops in

  2. Spin- and angle-resolved spectroscopy of S 2p photoionization in the hydrogen sulfide molecule

    SciTech Connect

    Turri, G.; Snell, G.; Canton, S.E.; Bilodeau, R.C.; Langer, B.; Martins, M.; Kukk, E.; Cherepkov, N.; Bozek, J.D.; Kilcoyne, A.L.; Berrah, N.

    2004-08-01

    Angle- and spin-resolved photoelectron spectroscopy with circularly and linearly polarized synchrotron radiation were used to study the electronic structure of the hydrogen sulfide molecule. A strong effect of the molecular environment appears in the spin-resolved measurements and, although less clearly, in the angular distribution of the sulfur 2p photoelectrons. The anisotropy and spin parameters of the three main spectral components have been obtained. The validity of simple atomic models in explaining the results is discussed.

  3. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  4. Characterization of a Pt mirror to be used to deflect synchrotron radiation beam onto Langmuir monolayers.

    PubMed

    Vieira, Carlos E P; Gasperini, Antonio A M; Freitas, Pedro P S; Oliveira, Rafael G; Cavalcanti, Leide P

    2015-05-01

    A homemade mirror for X-rays has been built to prepare a diffraction beamline for liquid surface diffraction and scattering measurements. This simple approach is in operation at the XRD2 bending-magnet beamline at the Brazilian Synchrotron Light Laboratory.

  5. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  6. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  7. Experimental Demonstration of the Induction Synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Arakida, Yoshio; Dixit, Tanuja; Iwashita, Taiki; Kono, Tadaaki; Nakamura, Eiji; Otsuka, Kazunori; Shimosaki, Yoshito; Torikai, Kota; Wake, Masayoshi

    2007-02-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

  8. Experimental demonstration of the induction synchrotron.

    PubMed

    Takayama, Ken; Arakida, Yoshio; Dixit, Tanuja; Iwashita, Taiki; Kono, Tadaaki; Nakamura, Eiji; Otsuka, Kazunori; Shimosaki, Yoshito; Torikai, Kota; Wake, Masayoshi

    2007-02-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

  9. Transition crossing in proton synchrotrons using a flattened rf wave

    NASA Astrophysics Data System (ADS)

    Bhat, C. M.; Griffin, J.; MacLachlan, J.; Martens, M.; Meisner, K.; Ng, K. Y.

    1997-01-01

    The problems of beam loss and emittance growth during transition crossing in a proton synchrotron have been major issues for many years. Recently we have developed a scheme that resolves some of these problems by eliminating rf focusing during transition crossing. The technique uses a flattened (nonsinusoidal) rf wave form which delivers the correct acceleration to all particles in the beam. This scheme has been tested in the Fermilab Main Ring accelerator by the addition of 13% of a third harmonic rf voltage to the fundamental accelerating rf voltage during the nonadiabatic period near the transition energy. Beam loss was completely eliminated, and longitudinal emittance dilution after transition remained below 15%. Simulations of longitudinal beam dynamics reproduce the data well.

  10. Experimental setup for high energy photoemission using synchrotron radiation

    SciTech Connect

    Torelli, P.; Sacchi, M.; Cautero, G.; Cautero, M.; Krastanov, B.; Lacovig, P.; Pittana, P.; Sergo, R.; Tommasini, R.; Fondacaro, A.; Offi, F.; Paolicelli, G.; Stefani, G.; Grioni, M.; Verbeni, R.; Monaco, G.; Panaccione, G.

    2005-02-01

    The instrument VOLPE (volume photoemission from solids) is an experimental setup dedicated to high energy photoemission (PE) experiments. The instrument is equipped with an electrostatic hemispherical spectrometer especially designed to analyze high energy electrons (up to 10 keV) with high resolving power. In order to attain an energy resolution of a few tens of millielectron volts, we designed and constructed a dedicated input lens system, high stability power supplies, and a low dark-count detector and readout electronics. The system has been tested and is now operational on the ID16 beamline at European Synchrotron Radiation Facility, where an optical layout has been developed to perform high energy, high resolution PE experiments. First results show an overall energy resolution (electron + photon) of 71{+-}7 meV at 5934 eV. The effective attenuation length of the photoelectrons is estimated to be 5{+-}0.5 nm at a kinetic energy of 5 keV.

  11. First operation of SOLEIL, a third generation synchrotron radiation source in France and prospects for ARC-EN-CIEL, a LINAC based fourth generation source

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Filhol, J. M.; Benabderhammane, C.; Berteaud, P.; Besson, J. C.; Briquez, F.; Brunelle, P.; Bruni, C.; Chubar, O.; Denard, J. C.; Girault, M.; Godefroy, J. M.; Herbaux, C.; Lebasque, P.; Le Roux, V.; Level, M. P.; Lestrade, A.; Loulergue, A.; Marchand, P.; Marcouille, O.; Marteau, F.; Massal, M.; Nadji, A.; Nadolski, L.; Nagaoka, R.; Paulin, F.; Pottin, B.; Tordeux, M. A.; Valleau, M.; Vétéran, J.; Carré, B.; Garzella, D.; Labat, M.; Lambert, G.; Monot, P.; Jablonka, M.; Méot, F.; Mosnier, A.; Marquès, J. R.; Ortéga, J. M.

    2007-05-01

    The first results of commissioning for the French Synchrotron Radiation Facility SOLEIL at 2.75 GeV are presented. Perspectives for the fourth generation light source based on the ARC-EN-CIEL project are described.

  12. Protein-ligand interactions probed by time-resolved crystallography

    SciTech Connect

    Schmidt, M.; Ihee, H.; Pahl, R.; Srajer, V.

    2005-03-09

    Time-resolved (TR) crystallography is a unique method for determining the structures of intermediates in biomolecular reactions. The technique reached its mature stage with the development of the powerful third-generation synchrotron X-ray sources, and the advances in data processing and analysis of time-resolved Laue crystallographic data. A time resolution of 100 ps has been achieved and relatively small structural changes can be detected even from only partial reaction initiation. The remaining challenge facing the application of this technique to a broad range of biological systems is to find an efficient and rapid, system-specific method for the reaction initiation in the crystal. Other frontiers for the technique involve the continued improvement in time resolution and further advances in methods for determining intermediate structures and reaction mechanisms. The time-resolved technique, combined with trapping methods and computational approaches, holds the promise for a complete structure-based description of biomolecular reactions.

  13. Synchrotron Infrared Confocal Microspectroscopic Spatial Resolution or a Customized Synchrotron/focal Plane Array System Enhances Chemical Imaging of Biological Tissue or Cells

    SciTech Connect

    D Wetzel; M Nasse; =

    2011-12-31

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 {mu} with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  14. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  15. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  16. Simulation of synchrotron motion with rf noise

    SciTech Connect

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

  17. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  18. POLARIZATION STUDIES OF CdZnTe DETECTORS USING SYNCHROTRON X-RAY RADIATION.

    SciTech Connect

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; JAMES, R.B.

    2007-07-01

    New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported.

  19. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  20. National Institute of Standards and Technology Synchrotron Radiation Facilities for Materials Science

    PubMed Central

    Long, Gabrielle G.; Allen, Andrew J.; Black, David R.; Burdette, Harold E.; Fischer, Daniel A.; Spal, Richard D.; Woicik, Joseph C.

    2001-01-01

    Synchrotron Radiation Facilities, supported by the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, include beam stations at the National Synchrotron Light Source at Brookhaven National Laboratory and at the Advanced Photon Source at Argonne National Laboratory. The emphasis is on materials characterization at the microstructural and at the atomic and molecular levels, where NIST scientists, and researchers from industry, universities and government laboratories perform state-of-the-art x-ray measurements on a broad range of materials. PMID:27500070

  1. Simulations of synchrotron loss in hotspots

    NASA Astrophysics Data System (ADS)

    Matthews, Alan P.

    Simulations of the radio emission and polarization of hot spots are presented in which synchrotron losses have been taken into account. The hot spots were modeled on the basis of simulations of an axisymetric nonrelativistic jet into which a passive, initial randomly oriented magnetic field is introduced. The magnetic field configuration is then distorted by the flow. The simulations illustrate that synchrotron loss takes its toll not only in old parts of a source, but also in regions of enhanced magnetic fields.

  2. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  3. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  4. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  5. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  6. Exploration of synchrotron Mössbauer microscopy with micrometer resolution: forward and a new backscattering modality on natural samples

    PubMed Central

    Yan, Lifen; Zhao, Jiyong; Toellner, Thomas S.; Divan, Ralu; Xu, Shenglan; Cai, Zhonghou; Boesenberg, Joseph S.; Friedrich, Jon M.; Cramer, Stephen P.; Alp, Esen E.

    2012-01-01

    New aspects of synchrotron Mössbauer microscopy are presented. A 5 µm spatial resolution is achieved, and sub-micrometer resolution is envisioned. Two distinct and unique methods, synchrotron Mössbauer imaging and nuclear resonant incoherent X-ray imaging, are used to resolve spatial distribution of species that are chemically and magnetically distinct from one another. Proof-of-principle experiments were performed on enriched 57Fe phantoms, and on samples with natural isotopic abundance, such as meteorites. PMID:22898962

  7. Exploration of synchrotron Mössbauer microscopy with micrometer resolution: forward and a new backscattering modality on natural samples.

    PubMed

    Yan, Lifen; Zhao, Jiyong; Toellner, Thomas S; Divan, Ralu; Xu, Shenglan; Cai, Zhonghou; Boesenberg, Joseph S; Friedrich, Jon M; Cramer, Stephen P; Alp, Esen E

    2012-09-01

    New aspects of synchrotron Mössbauer microscopy are presented. A 5 µm spatial resolution is achieved, and sub-micrometer resolution is envisioned. Two distinct and unique methods, synchrotron Mössbauer imaging and nuclear resonant incoherent X-ray imaging, are used to resolve spatial distribution of species that are chemically and magnetically distinct from one another. Proof-of-principle experiments were performed on enriched (57)Fe phantoms, and on samples with natural isotopic abundance, such as meteorites. PMID:22898962

  8. On-line control of the nonlinear dynamics for synchrotrons

    NASA Astrophysics Data System (ADS)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  9. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  10. A 1200 element detector system for synchrotron-based coronary angiography

    SciTech Connect

    Thompson, A.C.; Lavender, W.M.; Rubenstein, E.; Giacomini, J.C.; Rosso, V.; Schulze, C.; Chapman, D.; Thomlinson, W.

    1993-08-23

    A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long {times} 11 mm high {times} 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. A Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.

  11. Installation of a Synchrotron Radiation Beamline Facility at the J. Bennett Johnston Center. Final Report

    SciTech Connect

    Gooden, R.

    2000-03-21

    The Johnston Center presents a unique opportunity for scientists and engineers at southern institutions to initiate and carry out original research using synchrotron radiation ranging from visible light to hard x-rays. The Science and Engineering Alliance proposes to carry out a comprehensive new synchrotron radiation research initiative at CAMD in carefully phased steps of increasing risks. (1) materials research on existing CAMD beam lines and end stations; (2) design, construction and installation of end stations on existing CAMD beam lines, and research with this new instrumentation; (3) design, construction and operation of dedicated synchrotron radiation beam lines that covers the full spectral range of the CAMD storage ring and expanded research in the new facility.

  12. Nitride-MBE system for in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Ishikawa, Fumitaro; Yamaguchi, Tomohiro; Takahasi, Masamitu

    2016-05-01

    A molecular beam epitaxy (MBE) chamber dedicated to nitride growth was developed at the synchrotron radiation facility SPring-8. This chamber has two beryllium windows for incident and outgoing X-rays, and is directly connected to an X-ray diffractometer, enabling in situ synchrotron X-ray measurements during the nitride growth. Experimental results on initial growth dynamics in GaN/SiC, AlN/SiC, and InN/GaN heteroepitaxy were presented. We achieved high-speed and high-sensitivity reciprocal space mapping with a thickness resolution of atomic-layer scale. This in situ measurement using the high-brilliance synchrotron light source will be useful for evaluating structural variations in the initial growth stage of nitride semiconductors.

  13. Fullerene-Encapsulated Atoms in the Light of Synchrotron Radiation

    SciTech Connect

    Mueller, A.; Schippers, S.; Esteves, D.; Habibi, M.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Aguilar, A.; Dunsch, L.

    2009-12-03

    Mass-selected beams of endohedral fullerene Ce-C{sub 82}{sup +} ions, of atomic Ce{sup q+} ions (q = 2, 3, 4), and of empty fullerene-cage C{sub 82}{sup +} ions were employed to study photoionization of fullerene-encapsulated and free cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce-C{sub 82}{sup +} fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to Ce 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength is apparently diverted to additional decay channels of the Ce-C{sub 82}{sup +} complex.

  14. Undulator based scanning microscope at the National Synchrotron Light Source

    SciTech Connect

    Rarback, H.; Shu, D.; Ade, H.; Jacobsen, C.; Kirz, J.; McNulty, I.; Rosser, R.

    1986-01-01

    A second generation scanning soft x-ray microscope is under construction, designed to utilize the dramatic increase in source bightness available at the soft x-ray undulator. The new instrument is expected to reduce image acquisition time by a factor of about 100, and to improve resolution, stability, and reproducibility.

  15. SUNY beam line X3, National Synchrotron Light Source

    SciTech Connect

    Not Available

    1991-01-01

    This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP).

  16. Fast ferrite tuner for the BNL synchrotron light source

    SciTech Connect

    Pivit, E. ); Hanna, S.M.; Keane, J. )

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs.

  17. The tomography beamline at the National Synchrotron Light Source

    SciTech Connect

    Dilmanian, F.A.; Wu, X.Y.; Parsons, E.C.

    1996-12-31

    We compared the image contrast of a monochromatic CT, Multiple Energy Computed Tomography (MECT), and conventional CT scanner using phantoms. The experimental results indicate that monochromatic CT, with beam energy tuned just above the iodine K-edge, has about a 3 fold advantage in iodine contrast over conventional CT with a 120 kVp beam. Modeling using the same beams at a 3 rad dose and 3 mm slice height on an 18 cm diameter acrylic phantom, the simulations show a noise of 1.2 HU for MECT and 1.9 HU for CCT. Furthermore, despite the Cupping-effect corrections the bone contrast is lower in CCT and varies by 24 HU moving from the phantom`s center to the edge; this indicates an advantage for MECT in detecting and quantifying lesions differing from surrounding tissue by their mean atomic number.

  18. BNL National Synchrotron Light Source activity report 1997

    SciTech Connect

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  19. The Properties of Light

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.

    The mystery of light has formed the core of creation stories in every culture, and attracted the earnest attentions of philosophers since at least the fifth century BCE. Their questions have ranged from how and what we see, to the interaction of light with material bodies, and finally to the nature of light itself. This chapter begins with a brief intellectual history of light from ancient Greece to the end of the 19th century. After introducing the physical parameterization of light in terms of standard units, three concepts of light are introduced: light as a wave, light as a quantum particle, and light as a quantum field. After highlighting the distinctive characteristics of light beams from various sources - thermal radiation, luminescence from atoms and molecules, and synchrotron light sources - the distinctive physical characteristics of light beams are examined in some detail. The chapter concludes with a survey of the statistical and quantum-mechanical properties of light beams. In the appropriate limits, this treatment not only recovers the classical description of light waves and the semiclassical view of light as a stream of quanta, but also forms a consistent description of quantum phenomena - such as interference phenomena generated by single photons - that have no classical analogs.

  20. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  1. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  2. Synchrotron based spallation neutron source concepts

    SciTech Connect

    Cho, Y.

    1998-07-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required {approx} 1 {micro}s. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources.

  3. Time-resolved optical diffusion tomography

    NASA Astrophysics Data System (ADS)

    Appledorn, C. Robert; Kruger, Robert A.; Liu, Pingyu

    1994-05-01

    A mathematical model is proposed describing time-resolved output measurements obtained on the surface of a diffusely scattering body due to an input pulse of near-IR light at a different location also on the surface. Such measurements can be obtained using a pulsed near-IR laser coupled with a CCD streak camera. The scattering body is assumed to exhibit homogenous scattering and spatially varying absorption. Using this model, an iterative algorithm is derived using maximum likelihood methods that allows the reconstruction of the spatial absorption pattern from a set of time-resolved tomographic measurements. The methodology places no restrictions upon the time-of-arrival of the detected photons, thus permitting the entire time-resolved signal to be used in the reconstruction process. The reconstruction algorithm is easily initialized and preliminary results indicate that stable reconstructions can be performed.

  4. The Spin- and Angel-Resolved Photelectron Spectrometer

    SciTech Connect

    Mankey, G J; Morton, S A; Tobin, J G; Yu, S W; Waddill, G D

    2007-05-08

    A spin- and angle-resolved x-ray photoelectron spectrometer for the study of magnetic materials will be discussed. It consists of a turntable with electron lenses connected to a large hemispherical analyzer. A mini-Mott spin detector is fitted to the output of the hemispherical analyzer. This system, when coupled to a synchrotron radiation source will allow determination of a complete set of quantum numbers of a photoelectron. This instrument will be used to study ferromagnetic, antiferromagnetic and nonmagnetic materials. Some prototypical materials systems to be studied with this instrument system will be proposed.

  5. Space-charge calculations in synchrotrons

    SciTech Connect

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  6. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  7. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  8. A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Xiao, X.; Schrank, C.; De Carlo, F.

    2014-08-01

    This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.

  9. Angle resolved photoemission study of the c(2 × 2)Si overlayer on Fe(100)

    NASA Astrophysics Data System (ADS)

    Egert, B.; Grabke, H. J.; Sakisaka, Y.; Rhodin, T. N.

    1984-06-01

    Angle resolved photoemission experiments utilizing polarized synchrotron radiation were performed to study the electronic structure of valence levels of Si segregated in a c(2 × 2) overlayer on the α-Fe(100) surface. The spectra were taken at varying photon energies (14 ⩽ ω ⩽ 40 eV), in dependence on the polarization of the incoming light, and as a function of the photoelectron emission angle in the symmetry directions T¯M¯' and T¯X¯' of the surface Brillouin zone. Evaluation of the photoemission data shows that the Si 3p levels form energy bands for the ordered c(2 × 2) overlayer on Fe(100). The initial state energy of the Si 3p states depends on k∥ being measured. At T¯ a bonding Si 3p z state (a 1 symmetry) and an antibonding Si 3p xp y state (e symmetry) is analyzed, which are separated by 0.8 eV in binding energy. In going from T¯ to M¯' the Si 3p z induced level disperses ~ 0.8 eV to lower initial state energies. In the T¯X¯' direction the overall Si 3p band width is approximate 1.3 eV. Though the interaction between silicon and iron surface atoms are relatively weak compared to Fe(100)-c(2 × 2)S, modifications in the Fe derived valence band states occur, including the formation of a hybridization state located 1.4 eV below EF.

  10. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  11. X-ray diffraction microtomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Barroso, R. C.; Lopes, R. T.; de Jesus, E. F. O.; Oliveira, L. F.

    2001-09-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtained diffraction patterns form the basis of a selective tomography technique. Preliminary images are presented.

  12. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  13. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  14. Resolving writer's block.

    PubMed Central

    Huston, P.

    1998-01-01

    PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467

  15. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  16. Synchrotron characterization of functional tin dioxide nanowires

    SciTech Connect

    Domashevskaya, E. P. Chuvenkova, O. A.; Turishchev, S. Yu.

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  17. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    SciTech Connect

    Lee, Peter L; Rhyne, James J

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  18. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  19. High-energy thermal synchrotron emission

    NASA Astrophysics Data System (ADS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-09-01

    The authors compute thermal synchrotron spectra for which the photon energy is comparable to the mean electron thermal energy. In this regime it is necessary to include the restriction that a photon receives no more energy than the kinetic energy of the radiating electron. The derived spectra fall off more rapidly at high energies than was previously estimated. It is found that the thermal synchrotron mechanism can still provide satisfactory fits to the very hard γ-ray burst spectra for sufficiently high temperatures and low magnetic fields. As example, data for the γ-ray burst of 1982 January 25 are discussed.

  20. Synchrotron ultrafast techniques for photoactive transition metal complexes.

    PubMed

    Borfecchia, Elisa; Garino, Claudio; Salassa, Luca; Lamberti, Carlo

    2013-07-28

    In the last decade, the use of time-resolved X-ray techniques has revealed the structure of light-generated transient species for a wide range of samples, from small organic molecules to proteins. Time resolutions of the order of 100 ps are typically reached, allowing one to monitor thermally equilibrated excited states and capture their structure as a function of time. This review aims at providing a general overview of the application of time-resolved X-ray solution scattering (TR-XSS) and time-resolved X-ray absorption spectroscopy (TR-XAS), the two techniques prevalently employed in the investigation of light-triggered structural changes of transition metal complexes. In particular, we herein describe the fundamental physical principles for static XSS and XAS and illustrate the theory of time-resolved XSS and XAS together with data acquisition and analysis strategies. Selected pioneering examples of photoactive transition metal complexes studied by TR-XSS and TR-XAS are discussed in depth.