Science.gov

Sample records for resolved synchrotron light

  1. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  2. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  3. Synchrotron light

    SciTech Connect

    Craievich, A. )

    1990-01-01

    Several developed countries such as the USA, URSS, England, France, Italy, Sweden and Japan have one or more of these synchrotron light facilities operating or under construction. Some developing countries have constructed (China) or are building (Taiwan, India, Korea, Brazil) synchrotron light facilities. The construction of the Brazilian synchrotron source began in June, 1987. After two years of activities, the injector linac for the electron storage ring is in its final stage of construction. These Proceedings contain the Invited Lectures presented at the Workshop by specialists working on synchrotron light applications and related instrumentation and by members of LNLS regarding technical details of the Brazilian project. The II Workshop Synchrotron Light: Applications and Related Instrumentation was dedicated to oral presentations about applications of synchrotron light, most of which were not covered during the I Workshop, organized by LNLS in 1988, and the Proceedings of which were published by World Scientific. The II Workshop included discussions on the application possibilities for the newly designed LNLS 1.15 GeV storage ring, and on the modifications which would eventually be necessary for the work-station and instrumentation projects currently in progress at LNLS and at various external user laboratories.

  4. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.

    PubMed

    Sham, Tsun-Kong; Rosenberg, Richard A

    2007-12-21

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  5. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    SciTech Connect

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L. )

    2007-01-22

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10{sup 2} picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  6. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  7. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  8. Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*

    NASA Astrophysics Data System (ADS)

    Belak, J.; Ilavsky, J.; Hessler, J. P.

    2005-07-01

    Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  9. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  10. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  11. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  12. National Synchrotron Light Source II

    SciTech Connect

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-04-25

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  13. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-07-12

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  14. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  15. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  16. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    SciTech Connect

    Yu,P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure {alpha}-helices, {beta}-sheets, and others such as {beta}-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted {alpha}-helices, {beta}-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm{sup -1}, the results show that barley protein consisted of approximately 18-34% of {alpha}-helices, 14-25% of {beta}-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P < 0.05) proportions of {alpha}-helices (30-34%) than Dolly and Valier ({alpha}-helices 18-23%). Harrington was in between which was 25%. For protein {beta}-sheets, AC Metcalfe, and LP955 consisted of higher proportions (22-25%) than Dolly and Valier (13-17%). Different barley varieties contained different {alpha}-helix to {beta}-sheet ratios, ranging from 1.4 to 2.0, although the difference were

  17. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  18. Proposals for synchrotron light sources

    SciTech Connect

    Teng, L.C.

    1985-06-01

    Ever since it was first applied in the 1960's synchrotron radiation from an accelerating electron beam has been gaining popularity as a powerful tool for research and development in a wide variety of fields of science and technology. By now there are some 20 facilities operating either parasitically or dedicatedly for synchrotron radiation research in different parts of the world. In addition there are another 20 facilities either in construction or in various stages of proposal and design. The experiences gained from the operating facilities and the recent development of insertion devices such as wigglers and undulators as radiation sources led to a new set of requirements on the design of synchrotron radiation storage rings for optimum utility. The surprisingly uniform applicability and unanimous acceptance of these criteria give assurance that they are indeed valid criteria derived form mature considerations and experiences. Instead of describing the design of each of these new facilities it is, thus, more effective to discuss these desirable design features and indicate how they are incorporated in the design using machines listed as examples. 9 refs., 7 figs., 2 tabs.

  19. Remote Synchrotron Light Instrumentation Using Optical Fibers

    SciTech Connect

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  20. Third-generation synchrotron light sources

    SciTech Connect

    Schlachter, A.S.; Wuilleumier, F.J.

    1993-09-01

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world`s brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences.

  1. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  2. Chopper system for time resolved experiments with synchrotron radiation.

    PubMed

    Cammarata, Marco; Eybert, Laurent; Ewald, Friederike; Reichenbach, Wolfgang; Wulff, Michael; Anfinrud, Philip; Schotte, Friedrich; Plech, Anton; Kong, Qingyu; Lorenc, Maciej; Lindenau, Bernd; Räbiger, Jürgen; Polachowski, Stephan

    2009-01-01

    A chopper system for time resolved pump-probe experiments with x-ray beams from a synchrotron is described. The system has three parts: a water-cooled heatload chopper, a high-speed chopper, and a millisecond shutter. The chopper system, which is installed in beamline ID09B at the European Synchrotron Radiation Facility, provides short x-ray pulses for pump-probe experiments with ultrafast lasers. The chopper system can produce x-ray pulses as short as 200 ns in a continuous beam and repeat at frequencies from 0 to 3 kHz. For bunch filling patterns of the synchrotron with pulse separations greater than 100 ns, the high-speed chopper can isolate single 100 ps x-ray pulses that are used for the highest time resolution. A new rotor in the high-speed chopper is presented with a single pulse (100 ps) and long pulse (10 micros) option. In white beam experiments, the heatload of the (noncooled) high-speed chopper is lowered by a heatload chopper, which absorbs 95% of the incoming power without affecting the pulses selected by the high speed chopper.

  3. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  4. Status of SESAME Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tarawneh, Hamed

    2013-04-01

    During this presentation, I will talk about the current status of the SESAME synchrotron radiation source (SESAME: Synchrotron light for Experimental Science and Application in the Middle East). SESAME is an international research center located in Allan, Jordan and the accelerator complex consists of new storage ring of an energy of 2.5 GeV injected at 800 MeV and the injector is based on the upgraded 22.5 MeV Microtron and 800 MeV booster from the BESSY-I machine donated by Germany. The results of the design work and the optimizations of the beam optics for the SESAME storage ring and booster accelerators' lattices will be presented. I will also report on the status of the storage ring main sub-systems and the scientific case of the SESAME facility with the planned day-one beamlines.

  5. Synchrotron Light Interferometry at Jefferson Lab

    SciTech Connect

    Arne Freyberger; Pavel Chevtsov; Anthony Day; William Hicks

    2004-07-01

    The hyper-nuclear physics program at JLAB requires an upper limit on the RMS momentum spread of {delta}p/p < 3 x 10{sup -5}. The momentum spread is determined by measuring the beam width at a dispersive location (D {approx} 4m) in the transport line to the experimental halls. Ignoring the epsilon-beta contribution to the intrinsic beam size, this momentum spread corresponds to an upper bound on the beam width of {sigma}{sub beam} < 120 {micro}m. Typical techniques to measure and monitor the beam size are either invasive or do not have the resolution to measure such small beam sizes. Using interferometry of the synchrotron light produced in the dispersive bend, the resolution of the optical system can be made very small. The non-invasive nature of this measurement allows continuous monitoring of the momentum spread. Two synchrotron light interferometers have been built and installed at JLAB, one each in the Hall-A and Hall-C transport lines. The devices operate over a beam current range from 20 {micro}A to 120 {micro}A and have a spatial resolution of 10um. The structure of the interferometers, the experience gained during its installation, beam measurements and momentum spread stability are presented. The dependence of the measured momentum spread on beam current will be presented.

  6. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  7. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D.; Jones, K.W.; Spanne, P.; Sweet, R.M.; Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y.; Singer, P.T.; Westbrook, E.M.

    1992-12-31

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  8. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D. ); Jones, K.W.; Spanne, P.; Sweet, R.M. ); Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y. ); Singer, P.T.; Westbrook, E.M. )

    1992-01-01

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  9. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  10. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  11. Compact synchrotron light source of the HSRC.

    PubMed

    Yoshida, K; Takayama, T; Hori, T

    1998-05-01

    A 700 MeV synchrotron radiation source optimized in order to be incorporated in the university laboratory is under commissioning at Hiroshima University. The storage ring is of a racetrack type with two long straight sections for installing undulators. The bending field is as strong as 2.7 T, produced by normal-conducting magnet technology, and delivers synchrotron radiation with a critical wavelength of 1.42 nm. The strong magnetic field also enables a low-energy injection scheme to be employed owing to the fast radiation damping. A 150 MeV microtron has been adopted as the injector.

  12. National Synchrotron Light Source safety-analysis report

    SciTech Connect

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  13. Automated Image Quality Optimization for Synchrotron Light Interferometers

    SciTech Connect

    Pavel Chevtsov

    2005-10-10

    Jefferson Lab has been using Synchrotron Light Interferometers (SLI) for real time high resolution, non-invasive measurement of electron beam energy spread in two experimental halls for over two years. An SLI is a classic device, which generates synchrotron light interference patterns by means of a double slit. The beam energy spread is calculated on the basis of the visibility (contrast) of the interference pattern produced by the SLI. The results of the calculations are sensitive to the position of the double slit with respect to the synchrotron light beam illuminating it. Even small changes of the electron beam trajectory in the accelerator can significantly distort the shape of the interference pattern and decrease the reliability of these results. To improve this situation, we developed a state machine control application, which automatically adjusts the positions of the SLI double slits and the mirrors directing light on these slits. The paper describes the main ideas implemented in this application and its performance.

  14. Biological infrared microspectroscopy at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-06-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c.

  15. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure.

    PubMed

    Bergeard, N; Silly, M G; Krizmancic, D; Chauvet, C; Guzzo, M; Ricaud, J P; Izquierdo, M; Stebel, L; Pittana, P; Sergo, R; Cautero, G; Dufour, G; Rochet, F; Sirotti, F

    2011-03-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station.

  16. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  17. Brazilian Synchrotron Light Source: current results and future perspectives

    NASA Astrophysics Data System (ADS)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  18. Research by industry at the National Synchrotron Light Source

    SciTech Connect

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  19. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  20. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  1. Chemical Imaging of Biological Tissue with Synchrotron Infrared Light

    SciTech Connect

    Miller,L.; Dumas, P.

    2006-01-01

    Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-{mu}m pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

  2. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  3. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  4. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, this paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  5. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  6. Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center

    SciTech Connect

    Okuda, Taichi; Miyamaoto, Koji; Namatame, Hirofumi; Miyahara, Hirokazu; Kuroda, Kenta; Kimura, Akio; Taniguchi, Masaki

    2011-10-15

    Highly efficient spin- and angle-resolved photoelectron spectrometer named ESPRESSO (Efficient SPin REsolved SpectroScopy Observation) machine has been developed at the beamline BL-9B in Hiroshima Synchrotron Radiation Center. Combination of high-resolution hemispherical electron analyzer and the high-efficient spin detector based on very low energy electron diffraction by the ferromagnetic target makes the high-energy resolution and angular resolution compatible with spin- and angle-resolved photoemission (SARPES) measurement. 7.5 meV in energy and {+-}0.18 deg. in angular resolution have been achieved with spin resolution. The ESPRESSO machine, combination of quick energy-band dispersion measurement and Fermi surface mapping by two-dimensional electron detector for the spin integrated ARPES and the high-efficient spin analysis by the efficient spin detector realizes the comprehensive investigation of spin electronic structure of materials.

  7. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  8. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    SciTech Connect

    De Stasio, G. ); Giusti, A.M.; Parasassi, T.; Ravagnan, G. ); Sapora, O. )

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  9. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, W.C.

    1996-04-30

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

  10. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, William C.

    1996-01-01

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

  11. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    NASA Astrophysics Data System (ADS)

    Stebel, L.; Malvestuto, M.; Capogrosso, V.; Sigalotti, P.; Ressel, B.; Bondino, F.; Magnano, E.; Cautero, G.; Parmigiani, F.

    2011-12-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ˜500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  12. SESAME, a Synchrotron Light Source for the Middle East Region

    SciTech Connect

    Einfeld, D.; Sarraf, R.H.; Attal, M.; Tavakoli, K.; Hashemi, H.; Hassanzadegan, H.; Elsisi, A.; Amro, A.; Foudeh, D.; Kalantari, B.; Aladwan, A.; Varnasery, S.; Al-Dmour, E.; Tarawneh, H.

    2003-08-26

    Developed under the auspices of UNESCO, SESAME (Synchrotron light for Experimental Science and Application in the Middle East) will be a major international research centre in the Middle East / Mediterranean region. Most of the applications require hard x-rays up to 20 keV photons. SESAME will be a 2GeV 3rd Generation Ligth Source with an emittance of 17 nmrad and 13 places for the installation of insertion devices with a length around 3 meter. The circumference of the machine will be 120m. As injector the 800 MeVBooster Synchrotron will be used with small changes. Furthermore also the BESSY I quadrupoles and sextupoles can be used. In a later stage these new ones will be replaced in order to increase the length of the straight sections and to introduce mini beta sections for the reduction of the beam cross section. At SESAME around 35 % of the circumference can be used for the installation of insertion devices.

  13. Ozone production at the National Synchrotron Light Source

    SciTech Connect

    Weilandics, C.; Rohrig, N.; Gmur, N.F.

    1987-01-01

    Ozone production by synchrotron radiation as a function of power density in air was investigated using a white beam at the BNL National Synchrotron Light Source (NSLS) x-ray ring. Power densities were calculated from the energy spectrum at 2.52 GeV. Ozone concentrations in small beam pipes were measured for power densities between I = 10/sup 12/ and 10/sup 15/ eV . cm/sup -3/ . sec/sup -1/. The measured ozone half-life was 37 +- 2 min. The measured G-value was 2.69 +- 0.14 mol/100 eV and the ozone destruction factor k was less than 7 x 10/sup -19/ cm/sup 3/ . eV/sup -1/. The random uncertainties stated are approximately one standard error. The large departure of the values for G and k from previous values suggest that some undiscovered systematic error may exist in the experiment. Ozone concentration in excess of the 0.1 ppM ACGIH TLV can be generated in the experimental hutches but can readily be controlled. Industrial hygiene aspects of operation and possible control measures will be discussed. 19 refs., 7 figs., 3 tabs.

  14. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  15. The ORNL beamline at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Habenschuss, Anton; Ice, Gene E.; Sparks, Cullier J.; Neiser, Richard A.

    1988-04-01

    The Oak Ridge National Laboratory's (ORNL) beamline at the National Synchrotron Light Source (NSLS) incorporates several novel features, including X-ray optics based on sagittal focusing with crystals and a cantilevered mirror whose center becomes the pivot for all downstream optical elements. Crystal focusing accepts a much larger horizontal divergence of radiation than a mirror while maintaining excellent momentum transfer and energy resolution [C.J. Sparks, G.E. Ice, J. Wong and B.W. Batterman, Nucl. Instr. and Meth. 194 (1982) 73]. This sagitally bent crystal serves as the second element of a two-crystal, nondispersive monochromator. The cantilevered mirror provides a simple design for vertical focusing of the radiation. The beamline is suitable for both X-ray scattering and spectroscopy experiments requiring good energy resolution and high intensity in the energy range from 2.5 to 40 keV. This paper describes the optics of the ORNL beamline and reports its performance to date.

  16. Time Resolved Studies of ZnO(Eu) Nanostructure Luminescence Using Short Synchrotron Radiation Pulses

    SciTech Connect

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Murphy, M.; Ko, J.Y.P.; Lam, S.; Sham, T.K.; Regier, T.; Blyth, R.I.R.; Coulthard, I.; Zuin, L.; Hu, Y.-F.; Armelao, L.; Gordon, R.A.; Brewe, D.

    2008-10-06

    X-ray excited optical luminescence (XEOL) is a well established technique to study nano structured light emitting materials. XEOL bares the essential features necessary for the study of advanced nano structured materials like element specifity, good quantum efficiency, and easy approach for time resolution. Being sensitive to the geometry of the material on a nano-scale, luminescence gives insight into the phenomenologic correlation of structural, optical, and electronic properties. Besides structural aspects we study the time behavior of nanostructured ZnO (Eu) in a pump-probe like experiment, using the time structure of synchrotron radiation.

  17. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography

    NASA Astrophysics Data System (ADS)

    Shahraeeni, Ebrahim; Or, Dani

    2012-01-01

    Capillary processes greatly influence vapor mediated transport dynamics and associated changes in liquid phase content of porous media. Rapid x-ray synchrotron tomography measurements were used to resolve liquid-vapor interfacial dynamics during evaporation and condensation within submillimetric pores forming between sintered glass bead samples subjected to controlled ambient temperature and relative humidity. Evolution of gas-liquid interfacial shapes were in agreement with predictions based on our analytical model for interfacial dynamics in confined wedge-shaped pores. We also compared literature experimental data at the nanoscale to illustrate the capability of our model to describe early stages of condensation giving rise to the onset of capillary forces between rough surfaces. The study provides high resolution, synchrotron-based observations of capillary evaporation-condensation dynamics at the pore scale as the confirmation of the pore scale analytical model for capillary condensation in a pore and enables direct links with evolution of macroscopic vapor gradients within a sintered glass bead sample through their effect on configuration and evolution of the local interfaces. Rapid condensation processes play a critical role in the onset of capillary-induced friction affecting mechanical behavior of physical systems and industrial applications.

  18. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  19. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  20. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  1. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2016-07-12

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  2. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  3. Kinetic Analysis of Cation Exchange in Birnessite using Time-resolved Synchrotron X-ray Diffraction

    SciTech Connect

    C Lopano; P Heaney; J Bandstra; J Post; S Brantley

    2011-12-31

    In this study, we applied time-resolved synchrotron X-ray diffraction (TRXRD) to develop kinetic models that test a proposed two-stage reaction pathway for cation exchange in birnessite. These represent the first rate equations calculated for cation exchange in layered manganates. Our previous work has shown that the substitution of K, Cs, and Ba for interlayer Na in synthetic triclinic birnessite induces measurable changes in unit-cell parameters. New kinetic modeling of this crystallographic data supports our previously postulated two-stage reaction pathway for cation exchange, and we can correlate the kinetic steps with changes in crystal structure. In addition, the initial rates of cation exchange, R ({angstrom}{sup 3} min{sup -1}), were determined from changes in unit-cell volume to follow these rate laws: R = 1.75[K{sup +}{sub (aq)}]{sup 0.56}, R = 41.1[Cs{sup +}{sub (aq)}]{sup 1.10}, R = 1.15[Ba{sup 2+}{sub (aq)}]{sup 0.50}. Thus, the exchange rates for Na in triclinic birnessite decreased in the order: Cs >> K > Ba. These results are likely a function of hydration energy differences of the cations and the preference of the solution phase for the more readily hydrated cation.

  4. A fast mechanical shutter for submicrosecond time-resolved synchrotron experiments

    SciTech Connect

    Gembicky, Milan; Oss, Dan; Fuchs, Ryan; Coppens, Philip

    2010-07-19

    A new high-speed high-repetition-rate X-ray beam shutter for time-resolved photocrystallography at synchrotron sources has been developed and tested. The new design is based on a commercially existing DC servomotor and a frequency-lock control capable linear amplifier. Accurate speed control combined with an air bearing results in extremely low jitter in the motor rotation. Measured jitter at rotation speeds of 12,000 to 30,000 r min{sup -1} is less than 2 ns at a 6{sigma} confidence level. The chopper disc is interchangeable, allowing maximum flexibility. The chopper disc currently installed has 45 radial slots which allows synchronization from the 12th to the 20th subfrequencies of the orbit frequency of the Advanced Photon Source storage ring, corresponding to X-ray pulse frequencies of 13.6 to 22.6 kHz. At 30000 r min{sup -1} the opening time window with a 350 {micro}m slot size is 2.11 {micro}s, and correspondingly less with smaller openings, which may be compared with the 3.68 {micro}s orbit time of the Advanced Photon Source. The shutter provides high accuracy and efficient use of X-rays at a modest cost.

  5. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    SciTech Connect

    Gruner, Sol

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  6. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  7. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-07

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  8. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-10-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 X 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target.

  9. Super-resolved spatial light interference microscopy.

    PubMed

    Chu, Kaiqin; Smith, Zachary J; Wachsmann-Hogiu, Sebastian; Lane, Stephen

    2012-03-01

    We report a scheme to achieve resolution beyond the diffraction limit in spatial light interference microscopy (SLIM). By adding a grating to the optical path, the structured illumination technique can be used to improve the resolution by a factor of 2. We show that a direct application of the structured illumination technique, however, has proved to be unsuccessful. Through two crucial modifications, namely, one to the pupil plane of the objective and the other to the demodulation procedure, faithful phase information of the object is recovered and the resolution is improved by a factor of 2.

  10. VUV photodynamics of free tholins nanoparticles investigated by imaging Angle-Resolved Photoemission with the Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Tigrine, Sarah; Nahon, Laurent; Carrasco, Nathalie; Garcia-Macias, Gustavo

    2016-06-01

    Thanks to the Cassini Huygens mission, it is now established that the aerosols appear from an altitude of 1,000 km in Titan's atmosphere. Once they are formed and through their descent towards the surface, those grains will still interact with persistent UV/VUV radiations, at different energies, that can reach lower atmospheric layers. This interaction has some impact, for example on the radiative transfer or on the ionization yield of the atmospheric compounds. Models are a good way to study those processes, but the lack of data on the refractive index or the absolute absorption/ionization cross subsections of the aerosols can be an obstacle. In order to shed some light and quantify those processes, we ionize analogs of aerosols produced with the PAMPRE experiment (LATMOS) on the SAPHIRS platform from the DESIRS VUV beamline at the synchrotron SOLEIL, equipped with an aerodynamic lens. The aerosols are injected directly under vacuum as isolated free nanoparticles and do not need to take the form of a film deposited on a substrate. The generated photoelectrons are then collected with a Velocity Map Imaging detector and their energetic and angular signatures are analyzed using the ARPES method (Angle-Resolved PhotoElectron Spectroscopy). Both the nanoparticles size distribution and the incident wavelength determine the parameters governing the photoemission process (intra-particles electron mean free path, photon penetration depth) as revealed by the angular distribution of the photoelectron showing in same cases a marked forward/backward asymmetry with respect to the photon axis. Those parameters may provide us with information on the optical behavior of the aerosols. In addition we can extract the ionization potential in direct connection with the absorption cross subsections of the aerosol, from which altitude dependent photodynamics can be unraveled. We will present here the experiments performed, at different VUV energies, on Titan's aerosol analogs with the

  11. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  12. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  13. National Synchrotron Light Source angiography personnel protection interlock

    SciTech Connect

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  14. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  15. Application of electron linacs in medicine, food sterilization and synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Tran, Duc-Tien

    1989-04-01

    A review of the state of the art and new trends in electron linac technology is given with emphasis on three particular applications: radiotherapy, food sterilization and synchrotron light sources. The requirements on linac performances that these applications call for, namely energy variation flexibility, high power, high energy and low cost, will open linacs to new applications to come.

  16. Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models

    SciTech Connect

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Goldstein, A.; Bhat, P. N.; Paciesas, W. S.; Xiong, S.; Greiner, J.; Gruber, D.; Kienlin, A.; Rau, A.; Kouveliotou, C.; Meegan, C. A.; Axelsson, M.; Baring, M. G.; Dermer, C. D.; Iyyani, S.; Kocevski, D. E-mail: Rob.Preece@nasa.gov E-mail: baring@rice.edu; and others

    2014-03-20

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. The GRB spectrum is therefore modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. To produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. In addition, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.

  17. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    SciTech Connect

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  18. Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry

    PubMed Central

    Jamin, Nadège; Dumas, Paul; Moncuit, Janine; Fridman, Wolf-Herman; Teillaud, Jean-Luc; Carr, G. Lawrence; Williams, Gwyn P.

    1998-01-01

    Using synchrotron radiation as an ultra-bright infrared source, we have been able to map the distributions of functional groups such as proteins, lipids, and nucleic acids inside a single living cell with a spatial resolution of a few microns. In particular, we have mapped the changes in the lipid and protein distributions in both the final stages of cell division and also during necrosis. PMID:9560189

  19. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  20. A time resolved microfocus XEOL facility at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Mosselmans, J. F. W.; Taylor, R. P.; Quinn, P. D.; Finch, A. A.; Cibin, G.; Gianolio, D.; Sapelkin, A. V.

    2013-03-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  1. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    SciTech Connect

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-03-30

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters,i.e.instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real timeviasimultaneous imaging and diffraction.

  2. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    PubMed Central

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction. PMID:27140150

  3. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  4. Development of high-repetition-rate X-ray chopper system for time-resolved measurements with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Osawa, Hitoshi; Kudo, Togo; Kimura, Shigeru

    2017-04-01

    A high-repetition-rate X-ray chopper system has been developed for pump–probe time-resolved measurements with synchrotron radiation. This system has a rotating disc with 108 or 54 grooves (X-ray path on the disc) that provides an opening time of 1.17 or 0.52 µs with a rotating speed of 28,997 rpm. Also, this system could select single-pulse X-rays every 4 or 8 periods of the several-bunch structure operated at SPring-8, corresponding to an X-ray pulse frequency of 52.2 or 26.1 kHz, respectively, and is suitable for pump–probe studies of electronic devices such as next-generation memory devices.

  5. Solving the Structure of Reaction Intermediates by Time-Resolved Synchrotron X-ray Absorption Spectroscopy

    SciTech Connect

    Wang, Q.; Hanson, J; Frenkel, A

    2008-01-01

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed.

  6. Experiences from nonevaporable getter-coated vacuum chambers at the MAX II synchrotron light source

    SciTech Connect

    Hansson, A.; Wallen, E.; Berglund, M.; Kersevan, R.; Hahn, M.

    2010-03-15

    Vacuum chambers coated with nonevaporable getter (NEG) materials have been used in straight sections of synchrotron light sources for the past 10 years. The MAX II storage ring, where four NEG-coated insertion device vacuum chambers and three NEG-coated dipole vacuum chambers have been installed, is the first synchrotron light source to also use NEG-coated dipole vacuum chambers. In connection with the installation of the latest two NEG-coated dipole chambers in April 2009, the evolution of the pressure and lifetime-limiting effects in MAX II has been determined from measurements with movable scrapers. The results have been compared with results from scraper measurements done in 2003, before any NEG-coated vacuum chambers were installed in the storage ring. Less than three months after the installation of the latest dipole chambers the vacuum system in MAX II was performing well with a pressure already lower than the pressure measured in 2003.

  7. Low-Level Radio Frequency System Development for the National Synchrotron Light Source II

    SciTech Connect

    Ma,H.; Rose, J.

    2009-05-04

    The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

  8. Control system features of the argonne 6 GeV synchrotron light source

    SciTech Connect

    Knott, M.; Gunderson, G.; Lenkszus, F.; McDowell, W.

    1985-10-01

    The Argonne 6 GeV synchrotron light source design consists of an electron/positron linac, a fast-cycling 6 GeV synchrotron, and the storage ring itself. The design attributes are presented elsewhere in this conference. Three aspects of the overall design call for special attention in the control system design: First, the operation of a high energy positron accelerator in a fast cycling mode may demand high processing performance and high data throughput rates. Second, the high energy and small beam size projected (100 x 200 microns) will call for high resolution data processing and control precision in many areas. Finally, the necessity to provide independent, orthogonal control for each of up to 32 insertion device light beams both from the point of view of the experimental requirements and from the need to remove the effects of component vibration will require dedicated, high performance processors.

  9. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  10. Microchemical Structure of Soybean Seeds Revealed in Situ by Ultraspatially Resolved Synchrotron Fourier Transformed Infrared Microspectroscopy

    SciTech Connect

    Pietrzak,L.; Miller, S.

    2005-01-01

    The distribution of water in soybean seeds during imbibition varies with the chemical composition of the tissue. To understand the dynamics of imbibition, the proteins, lipids, and carbohydrates of the cotyledons and hilum region in mature soybean seeds were mapped using synchrotron Fourier transformed infrared microspectroscopy, based on characteristic peaks for each component: amide I at 1650 cm{sup -1} and amide II at 1550 cm{sup -1} for protein, lipid ester stretch at 1545 cm{sup -1}, and the region from 1200 to 900 cm{sup -1} for carbohydrates. The amount and configuration of the proteins varied across the cotyledon, as well as the amount of lipid and carbohydrate. It was found that protein distribution across the cotyledon is similar to water distribution during imbibition. The chemistry of the hilum region was also studied, as this is the point of water entry, and differences in the chemical composition of the tissues studied were observed.

  11. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  12. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  13. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  14. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  15. Magnetic properties of the ALS (Advanced Light Source) booster synchrotron engineering model magnets

    SciTech Connect

    Keller, R.; Green, M.I.; Hoyer, E.; Koo, Y.M.; Luchini, K.; Marks, S.; Milburn, J.; Nelson, D.H.

    1989-03-01

    The Advanced Light Source (ALS) at Lawrence Berkeley Laboratory is designed to be a third-generation electron storage ring producing high-brightness VUV and X-ray radiation from wiggler and undulator insertion devices. Engineering models of all lattice magnets that are to be installed in the storage ring and its booster synchrotron have been built and are being tested to verify their performance. This paper is concerned with the magnets that form the booster lattice: dipoles, quadrupoles, sextupoles, and corrector dipoles (steerers). After a brief outline of measurement techniques and equipment, the major design parameters of these magnets are listed. Measured effective lengths and multipole field errors are then given for each type. All engineering models meet the specifications, and tracking studies including the measured systematic field errors show acceptable performance of the booster synchrotron; hence the designs are qualified for production. 3 refs., 7 figs., 4 tabs.

  16. Fast mapping of terahertz bursting thresholds and characteristics at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Brosi, Miriam; Steinmann, Johannes L.; Blomley, Edmund; Bründermann, Erik; Caselle, Michele; Hiller, Nicole; Kehrer, Benjamin; Mathis, Yves-Laurent; Nasse, Michael J.; Rota, Lorenzo; Schedler, Manuel; Schönfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Weber, Marc; Müller, Anke-Susanne

    2016-11-01

    Dedicated optics with extremely short electron bunches enable synchrotron light sources to generate intense coherent THz radiation. The high degree of spatial compression in this so-called low-αc optics entails a complex longitudinal dynamics of the electron bunches, which can be probed studying the fluctuations in the emitted terahertz radiation caused by the microbunching instability ("bursting"). This article presents a "quasi-instantaneous" method for measuring the bursting characteristics by simultaneously collecting and evaluating the information from all bunches in a multibunch fill, reducing the measurement time from hours to seconds. This speed-up allows systematic studies of the bursting characteristics for various accelerator settings within a single fill of the machine, enabling a comprehensive comparison of the measured bursting thresholds with theoretical predictions by the bunched-beam theory. This paper introduces the method and presents first results obtained at the ANKA synchrotron radiation facility.

  17. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  18. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  19. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  20. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Å°lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  1. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  2. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    PubMed Central

    Collingwood, Joanna F.; Davidson, Mark R.

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis. PMID:25191270

  3. Single bunch and multi-bunch injection schemes for Iranian Light Source Facility booster synchrotron

    NASA Astrophysics Data System (ADS)

    Sadeghipanah, A.; Feghhi, S. A. H.; Rahighi, J.; Ghasem, H.

    2017-01-01

    In this paper, the design proposal for the Iranian Light Source Facility (ILSF) chopper is presented and the expected performance of both single bunch and multi-bunch modes of beam injection into the booster synchrotron is described. For the multi-bunch mode, a 100 MHz sub-harmonic pre-buncher is proposed to be employed next to the electron gun particularly to reduce the particle loss during the energy ramp of the booster. The results indicated significant improvement of the injection efficiency into the booster. The total particle loss rate for the multi-bunch injection is reduced from 35% to 4%.

  4. Diamond anvil cell radial x-ray diffraction program at the National Synchrotron Light Source.

    PubMed

    Hu, J Z; Mao, H K; Shu, J F; Guo, Q Z; Liu, H Z

    2006-06-28

    During the past decade, the radial x-ray diffraction method using a diamond anvil cell (DAC) has been developed at the X17C beamline of the National Synchrotron Light Source. The detailed experimental procedure used with energy dispersive x-ray diffraction is described. The advantages and limitations of using the energy dispersive method for DAC radial diffraction studies are also discussed. The results for FeO at 135 GPa and other radial diffraction experiments performed at X17C are discussed in this report.

  5. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  6. BioCARS: a synchrotron resource for time-resolved X-ray science

    SciTech Connect

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H.; Dashdorj, N.; Henning, R.W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Srajer, V.; Viccaro, P.J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-08-16

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beam to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.

  7. BioCARS: a synchrotron resource for time-resolved X-ray science

    PubMed Central

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-01-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684

  8. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  9. Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source.

    PubMed

    Schleede, Simone; Bech, Martin; Achterhold, Klaus; Potdevin, Guillaume; Gifford, Martin; Loewen, Rod; Limborg, Cecile; Ruth, Ronald; Pfeiffer, Franz

    2012-07-01

    The Compact Light Source is a miniature synchrotron producing X-rays at the interaction point of a counter-propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X-rays can be exploited in high-sensitivity differential phase-contrast imaging with a grating-based interferometer. Here, the first multimodal X-ray imaging experiments at the Compact Light Source at a clinically compatible X-ray energy of 21 keV are reported. Dose-compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark-field imaging over conventional attenuation-based projections.

  10. A SPATIALLY RESOLVED STUDY OF THE SYNCHROTRON EMISSION AND TITANIUM IN TYCHO’S SUPERNOVA REMNANT USING NuSTAR

    SciTech Connect

    Lopez, Laura A.; Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Stern, Daniel K.; Zhang, William W.

    2015-12-01

    We report results from deep observations (∼750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from {sup 44}Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity “stripes” associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of {sup 44}Ti, and we set limits on its presence and distribution within the SNR. These limits correspond to an upper-limit {sup 44}Ti mass of M{sub 44} < 2.4 × 10{sup −4} M{sub ⊙} for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  11. A spatially resolved study of the synchrotron emission and titanium in Tycho's supernova remnant using NuSTAR

    DOE PAGES

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; ...

    2015-11-30

    Here, we report results from deep observations (~750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. Furthermore,more » these limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We also find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.« less

  12. A spatially resolved study of the synchrotron emission and titanium in Tycho's supernova remnant using NuSTAR

    SciTech Connect

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Madsen, Kristin K.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas

    2015-11-30

    Here, we report results from deep observations (~750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. Furthermore, these limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We also find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  13. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  14. Pseudo-single-bunch with adjustable frequency: a new operation mode for synchrotron light sources.

    PubMed

    Sun, C; Portmann, G; Hertlein, M; Kirz, J; Robin, D S

    2012-12-28

    We present the concept and results of pseudo-single-bunch (PSB) operation--a new operational mode at the advanced light source--that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel "kick-and-cancel" scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  15. Pseudo-Single-Bunch with Adjustable Frequency: A New Operation Mode for Synchrotron Light Sources

    NASA Astrophysics Data System (ADS)

    Sun, C.; Portmann, G.; Hertlein, M.; Kirz, J.; Robin, D. S.

    2012-12-01

    We present the concept and results of pseudo-single-bunch (PSB) operation—a new operational mode at the advanced light source—that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel “kick-and-cancel” scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  16. In-situ shearing interferometry of National Synchrotron Light Source mirrors

    SciTech Connect

    Qian, S.N.; Rarback, H.; Shu, D.; Takacs, P.Z.

    1987-01-01

    In situ mirror distortion measurements were made with a lateral shearing interferometer on three mirrors in beam line X17T at the National Syn203hrotron Light Source. Lateral shearing interference is insensitive to vibrational motion in five of the six degrees of freedom, so it is well-suited for investigations in the synchrotron radiation (SR) environment. No distortion was seen in an uncooled silicon carbide mirror and in a colled copper alloy mirror on X17TB, but a change in the radius of an uncooled electroless nickel-plated aluminium cylinder mirror of about 6.2% was observed on X17TA. Angular vibrations in the 2 to 3 arc second range were easily observed on one of the beam lines, as was an overall mirror rotation in the arc second range.

  17. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  18. Synchrotron radiation shielding design for the Brockhouse sector at the Canadian light source

    NASA Astrophysics Data System (ADS)

    Bassey, Bassey; Moreno, Beatriz; Gomez, Ariel; Ahmed, Asm Sabbir; Ullrich, Doug; Chapman, Dean

    2014-05-01

    At the Canadian Light Source (CLS), the plans for the construction of three beamlines under the Brockhouse Project are underway. The beamlines, to be classified under the CLS Phase III beamlines, will comprise of a wiggler and an undulator, and will be dedicated to x-ray diffraction and scattering experiments. The energy range of these beamlines will be 7-22 keV (low energy wiggler beamline), 20-94 keV (high energy wiggler beamline), and 5-21 keV (undulator beamline). The beamlines will have a total of five hutches. Presented is the shielding design against target scattered white and monochromatic synchrotron radiations for these beamlines. The shielding design is based on: scatter target material-water, dose object-anthropomorphic phantom of the adult human (anteroposterior-AP geometry), and shielding thicknesses of steel and lead that will drop the radiation leakage from the hutches to below 0.5 μSv/h.

  19. Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light

    SciTech Connect

    Ozaki,S.

    2009-05-04

    The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

  20. X-RAY IRRADIATION OF H{sub 2}O + CO ICE MIXTURES WITH SYNCHROTRON LIGHT

    SciTech Connect

    Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.; Cecchi-Pestellini, C.; Chen, Y.-J.; Huang, C.-H. E-mail: ciarave@astropa.inaf.it E-mail: cecchi-pestellini@astropa.inaf.it E-mail: 101222023@cc.ncu.edu.tw

    2016-03-20

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  1. X-Ray Irradiation of H2O + CO Ice Mixtures with Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Jiménez-Escobar, A.; Chen, Y.-J.; Ciaravella, A.; Huang, C.-H.; Micela, G.; Cecchi-Pestellini, C.

    2016-03-01

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250-1200 eV) were employed. During the irradiation, the H2O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  2. A new synchrotron light source at Louisiana State University's Center for Advanced Microstructures and Devices

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Ajmera, Pratul; Poliakoff, Erwin D.; Craft, Ben C.; Saile, Volker

    1990-05-01

    A 1.2-GeV synchrotron light source is being constructed at the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The expressed purpose of the center, which has been funded by a grant from the US Department of Energy, is to develop X-ray lithography techniques for manufacturing microcircuits, although basic science programs are also being established. The storage ring will be optimized for the soft-X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnetic lattice is based on a design developed by Chasman and Green and will allow up to three insertion devices to be installed for higher-energy and higher-intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  3. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  4. Calcium Triggered Lα-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS

    PubMed Central

    Yaghmur, Anan; Laggner, Peter; Sartori, Barbara; Rappolt, Michael

    2008-01-01

    Background Awad et al. [1] reported on the Ca2+-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca2+ solutions. Methodology/Principal Findings Under static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of ∼140 Å (Lα-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca2+ ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca2+ ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca2+>2), Ca2+ ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H2). Our results reveal that a binding ratio of 1 Ca2+ per 8 DOPG is sufficient for the formation of the H2 phase. At 50°C a direct transition from the vesicles to the H2 phase was observed, whereas at ambient temperature (20°C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H2 phase was detected. Conclusions/Significance The strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles. PMID

  5. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    SciTech Connect

    Fisher, Alan; /SLAC

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.

  6. A MODEL STUDY OF TRANSVERSE MODE COUPLING INSTABILITY AT NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II).

    SciTech Connect

    BLEDNYKH, A.; WANG, J.M.

    2005-05-15

    The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.

  7. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  8. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  9. SESAME -- A third generation synchrotron light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-03-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. Members of the Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority,Turkey) provide the operations budget. Voluntary contributions by several Council Members that could amount to over 20 million over 5 years are now being finalized. This, plus funds from other sources, will enable acquisition of the technical components of the new ring and the upgrading of beamline equipment donated by several European and US labs. All concrete shielding is complete. The 0.8 GeV BESSY I injector system, a gift from Germany, is now being installed. A training program has been underway since 2000. SESAME is on track to start operation with four day-one beam lines in 2015.

  10. Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

    NASA Astrophysics Data System (ADS)

    Carlà, Michele; Benedetti, Gabriele; Günzel, Thomas; Iriso, Ubaldo; Martí, Zeus

    2016-12-01

    Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.

  11. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  12. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  13. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    SciTech Connect

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  14. Design of a fast electron beam scanning system for compact synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Lehr, H.

    1989-07-01

    The design of an electron beam scanning system for compact storage ring synchrotron light sources is described. The main features are a scan frequency of 100 Hz and an angular amplitude of ±5 mrad. Different configurations of scan dipoles permit confining the scan to one cell using four dipoles or to repeat the scan periodically along the whole circumference by means of two scan dipoles per cell. Combinations of these basic configurations are possible. The location of the nodes of the pivoting electron beam can be optimized with respect to the maximum scan angle by slightly unbalancing the field strength in different scan dipoles. The scan dipoles are H-shaped magnets made from laminated iron. Their gap width is 68 mm. They are powered by fast transistor-bridge supplies which are controlled by freely programmable function generators capable of realizing a triangular current waveform with a deviation of less than 0.1% except for a 1% neighborhood of the apex. Estimates of the influence of the scanning on both quantum and Coulomb lifetime indicate acceptable lifetime reductions provided the minimum distance between distorted closed orbit and aperture exceeds about six standard deviations of the spatial electron distribution.

  15. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  16. Industrial applications of micro/nanofabrication at Singapore Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Casse, B. D. F.; Heussler, S. P.; Kong, J. R.; Saw, B. T.; Mahmood, Shahrain bin; Moser, H. O.

    2006-04-01

    SSLS (Singapore Synchrotron Light Source) has set up a complete one-stop shop for micro/nanofabrication in the framework of the LIGA process. It is dubbed LiMiNT for Lithography for Micro and Nanotechnology and allows complete prototyping using the integral cycle of the LIGA process for producing micro/nanostructures from mask design/fabrication over X-ray lithography to electroplating in Ni, Cu, or Au, and, finally, hot embossing in a wide variety of plastics as one of the capabilities to cover a wide range of application fields and to go into higher volume production. The process chain also includes plasma cleaning and sputtering as well as substrate preparation processes including metal buffer layers, plating bases, and spin coating, polishing, and dicing. Furthermore, metrology using scanning electron microscopy (SEM), optical profilometry, and optical microscopy is available. LiMiNT is run as a research lab as well as a foundry. In this paper, several industrial applications will be presented, in which LiMiNT functions as a foundry to provide external customers the micro/nano fabrication services. These services include the fabrication of optical or X-ray masks, of micro/nano structures from polymers or from metals and of moulds for hot embossing or injection moulding.

  17. Computed tomography with monochromatic X rays from the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Dilmanian, F. A.; Garrett, R. F.; Thomlinson, W. C.; Berman, L. E.; Chapman, L. D.; Hastings, J. B.; Luke, P. N.; Oversluizen, T.; Siddons, D. P.; Slatkin, D. N.; Stojanoff, V.; Thompson, A. C.; Volkow, N. D.; Zeman, H. D.

    1991-05-01

    A multiple-energy computed tomography (MECT) system that employs monochromatic and tunable 33-100 keV X rays from a superconducting wiggler at the National Synchrotron Light Source is being developed at Brookhaven National Laboratory. The CT configuration is that of a fixed, horizontal fan-shape beam and a subject seated in a rotating chair. Two quantitative CT methods will be used: a) K-edge subtraction of intravenously administered iodine (or a heavier element) to image brain tumors, large blood vessels of the lower head and neck, and arteriovenous malformations; and b) dual photon absorptiometry to obtain two brain CT images that map the low- Z elements and the intermediate- Z elements (i.e. P, S, Cl, K, Ca, and Fe) separately. The system is expected to provide 0.5 mm spatial resolution, horizontally, with unprecedented image contrast and accuracy of quantification. The system will employ a two-crystal monochromator and a high-purity Ge linear array detector.

  18. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  19. Resolving enantiomers using the optical angular momentum of twisted light

    PubMed Central

    Brullot, Ward; Vanbel, Maarten K.; Swusten, Tom; Verbiest, Thierry

    2016-01-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials’ chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy. PMID:26998517

  20. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  1. Characterisation of the UFXC32k hybrid pixel detector for time-resolved pump-probe diffraction experiments at Synchrotron SOLEIL

    NASA Astrophysics Data System (ADS)

    Dawiec, A.; Maj, P.; Ciavardini, A.; Gryboś, P.; Laulhé, C.; Menneglier, C.; Szczygieł, R.

    2017-03-01

    The experimental set-up for time-resolved studies of ultra-fast photo-induced structural dynamics at the Synchrotron SOLEIL is based on a general pump-probe scheme that has been developed and implemented on the CRISTAL hard X-ray diffraction beamline [1,2]. In a so-called pump-probe cycle, the sample is excited with an ultra-short laser pulse of ≈40 fs duration (the pump), and induced changes in its atomic structure are studied by measuring, with a precisely controlled delay, a diffraction pattern from a single pulse of synchrotron radiation (the probe) with a 2-D pixel detector. An improvement to the classical scheme is proposed, where the sample's response is probed at two different delays after each laser excitation. The first measurement at short delays allows studying the photo-induced dynamics. The second one is a reference measurement taken after sample's relaxation, which permits detection of drifts in the experimental conditions (e.g. beam misalignment, sample degradation). A hybrid pixel detector with a very fast readout time, a high dynamic range and extended linearity was tested to achieve the experiment objectives. In this paper, the first results obtained with the UFXC32k single photon counting detector are presented.

  2. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    PubMed

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline.

  3. The advanced light source at Lawrence Berkeley Laboratory—A high-brightness soft x-ray synchrotron-radiation facility

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1990-12-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets.

  4. New resolving power for light microscopy: applications to neurobiology.

    PubMed

    Dani, Adish; Huang, Bo

    2010-10-01

    The recent invention of super-resolution fluorescence microscopy brings more than an order of magnitude gain in the spatial resolution of light microscopy. New opportunities keep emerging with the multicolor, three-dimensional, and live imaging functionalities gained in the past three years. The power of this technology has been demonstrated by imaging the organization of organelles and molecular complexes, with recent applications increasingly showing its potential in neurobiology. These developments are exemplified by the visualization of components inside dendritic spines to fine morphologies of neurons. In combination with correlative electron microscopy, functional imaging, and electrical/optogenetic stimulation tools, super-resolution fluorescence microscopy has the potential to provide further insights ranging from the molecular details of neurons up to the functional mechanisms of neuronal circuits.

  5. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    SciTech Connect

    Liu, N.; Yu, P

    2010-01-01

    information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.

  6. Comment [on “Synchrotron sheds new light on geophysical materials”

    NASA Astrophysics Data System (ADS)

    Charlie, Wayne; Dumford, Deanna

    Thank you for the excellent synchrotron article (Eos, February 11, 1997, pp. 61-62). However, the “first light” experiments at the Advanced Photon Source (APS) at Argonne National Laboratory on December 20, 1996, do not “mark the dawn of a new era of rock and mineral physics.” Third-generation synchrotron radiation sources have been used at the Cornell CHESS facility for geoscience research for many years. For example, we used this facility with Barnes Bierck and Tammo Steenhuis to study consolidation and flow in geophysical materials in 1994.

  7. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  8. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  9. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  10. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    SciTech Connect

    Hsiao, Benjamin S

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  11. Asymmetric Structural Features in Single Supported Lipid Bilayers Containing Cholesterol and GM1 Resolved with Synchrotron X-Ray Reflectivity

    PubMed Central

    Reich, Christian; Horton, Margaret R.; Krause, Bärbel; Gast, Alice P.; Rädler, Joachim O.; Nickel, Bert

    2008-01-01

    The cell membrane comprises numerous protein and lipid molecules capable of asymmetric organization between leaflets and liquid-liquid phase separation. We use single supported lipid bilayers (SLBs) to model cell membranes, and study how cholesterol and asymmetrically oriented ganglioside receptor GM1 affect membrane structure using synchrotron x-ray reflectivity. Using mixtures of cholesterol, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphocholine, we characterize the structure of liquid-ordered and liquid-disordered SLBs in terms of acyl-chain density, headgroup size, and leaflet thickness. SLBs modeling the liquid-ordered phase are 10 Å thicker and have a higher acyl-chain electron density (〈ρchain〉 = 0.33 e−/Å3) compared to SLBs modeling the liquid-disordered phase, or pure phosphatidylcholine SLBs (〈ρchain〉 = 0.28 e−/Å3). Incorporating GM1 into the distal bilayer leaflet results in membrane asymmetry and thickening of the leaflet of 4–9 Å. The structural effect of GM1 is more complex in SLBs of cholesterol/sphingomyelin/1,2-dioleoyl-sn-glycero-3-phosphocholine, where the distal chains show a high electron density (〈ρchain〉 = 0.33 e−/Å3) and the lipid diffusion constant is reduced by ∼50%, as measured by fluorescence microscopy. These results give quantitative information about the leaflet asymmetry and electron density changes induced by receptor molecules that penetrate a single lipid bilayer. PMID:18375517

  12. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    PubMed

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  13. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  14. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  15. Measurement of Photon Statistics of Wiggler Radiation from AN Electron Storage Ring at the National Synchrotron Light Source.

    NASA Astrophysics Data System (ADS)

    Tanabe, Toshiya

    1990-01-01

    The photon statistics of wiggler light from the vacuum ultraviolet (VUV) storage ring at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL) have been measured using an analog photon-counting technique. The linear wiggler produces fundamental wavelength light and the third harmonic light at 532 nm for ring energies ~650 MeV and 375 MeV, respectively. The average ring current was ~50 mA for one-electron-bunch operation. The bunch was ~480 psec long and the wiggler light was emitted every 170.2 nsec. The number of photons emitted by an electron bunch was repetitively measured for a given coherence volume. The photon counting distribution, which is the probability of finding n photons versus n, was obtained. The experimental results show that the wiggler radiation is consistent with multi-mode thermal radiation, whereas the bending magnet light gives rise to a distribution consistent with a Neyman Type-A distribution instead of Poisson when the light of large bandwith through a Pyrex window is collected. Near field and electron beam emittance effects have proven to have an important influence on the transverse coherence of the emitted radiation.

  16. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  17. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.

    PubMed

    Liu, Na; Yu, Peiqiang

    2010-07-14

    nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.

  18. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  19. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  20. Status of the High Brilliance Synchrotron Light Source BESSY-II

    NASA Astrophysics Data System (ADS)

    Jaeschke, E.

    1997-05-01

    The construction of BESSY-II at Berlin-Adlershof has entered the decisive phase: The injector complex comprising a 50 MeV racetrack microtron and a booster synchrotron with 10 Hz repetition rate and a final energy of 1.9 GeV has been set up ready for commissioning in the 2nd quarter of 1997. All major storage ring components are in house and the assembly of the 240 m DBA storage ring in 16-fold symmetry has started. Stored beam is expected for the 2nd quarter of 1998. The paper describes the status of the project.

  1. Water-Induced Morphology Changes in BaO/gamma-Al2O3 NOx Storage Materials: an FTIR, TPD, and Time-Resolved Synchrotron XRD Study

    SciTech Connect

    Szanyi,J.; Kwak, J.; Kim, D.; Wang, X.; Chimentao, R.; Hanson, J.; Epling, W.; Peden, C.

    2007-01-01

    The effect of water on the morphology of BaO/Al{sub 2}O{sub 3}-based NO{sub x} storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multispectroscopy study reveal that in the presence of water surface Ba-nitrates convert to bulk nitrates and water facilitates the formation of large Ba(NO{sub 3}){sub 2} particles. The conversion of surface to bulk Ba-nitrates is completely reversible (i.e., after the removal of water from the storage material a significant fraction of the bulk nitrates reconverts to surface nitrates). NO{sub 2} exposure of a H{sub 2}O-containing (wet) BaO/Al{sub 2}O{sub 3} sample results in the formation of nitrites and bulk nitrates exclusively (i.e., no surface nitrates form). After further exposure to NO{sub 2}, the nitrites completely convert to bulk nitrates. The amount of NO{sub x} taken up by the storage material, however, is essentially unaffected by the presence of water regardless of whether the water was dosed prior to or after NO{sub 2} exposure. On the basis of the results of this study, we are now able to explain most of the observations reported in the literature on the effect of water on NO{sub x} uptake on similar storage materials.

  2. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    PubMed

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  3. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  4. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  5. Polymer research at synchrotron radiation sources: symposium proceedings

    SciTech Connect

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  6. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  7. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  8. Investigation of oxygen vacancies in CeO2/Pt system with synchrotron light techniques

    NASA Astrophysics Data System (ADS)

    Braglia, L.; Bugaev, A. L.; Lomachenko, K. A.; Soldatov, A. V.; Lamberti, C.; Guda, A. A.

    2016-05-01

    A peculiar property of ceria is the ease to form oxygen vacancies, producing reactive sites or facilitating ionic diffusion. For these reasons ceria promotes catalytic activities for a number of important reactions when it is used as a support for transition metals. In our work we study the temporal evolution of oxygen vacancies formation by time-resolved XANES at Ce K- edge and XRD measurements on CeO2/Pt nanoparticles, successfully monitoring the reaction of CO oxidation.

  9. Considerations for the use of synchrotron radiation sources to measure sub-keV x-ray photoabsorption cross sections in transmission

    SciTech Connect

    Tirsell, K.G.; Del Grande, N.K.

    1988-02-01

    Sub-keV x-ray photoabsorption cross section measurements in transmission have been made using synchrotron radiation beam lines on the VUV storage ring at the National Synchrotron Light Source (NSLS) and on the SPEAR storage ring at Stanford. The experimental considerations associated with making absolute measurements are reviewed, along with techniques for resolving difficulties. Suggestions for future measurements are included.

  10. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  11. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems.

  12. Synchrotron radiation and high pressure: new light on materials under extreme conditions.

    PubMed

    Hemley, Russell J; Mao, Ho-kwang; Struzhkin, Viktor V

    2005-03-01

    With the steady development of static high-pressure techniques in recent years, it is now possible to probe in increasing detail the novel behavior of materials subjected to extreme conditions of multimegabar pressures (>300 GPa) and temperatures from cryogenic states to thousands of degrees. By and large, the growth in this area has been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in high-pressure powder and single-crystal diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. A brief overview of selected highlights in each of these classes of experiments is presented that illustrate both the state-of-the-art as well as current technical and scientific challenges. The experiments have been made possible by the development of a spectrum of new techniques at both third- and second-generation high-energy sources together with key advances in high-pressure technology. The results have implications for a variety of problems in physics, chemistry, materials science, geoscience, planetary science, and biology.

  13. Conceptual Design Report for a Phase 3 upgrade of the National Synchrotron Light Source

    SciTech Connect

    Foyt, W.; Krinsky, S.; Hastings, J.; Finlay, L.

    1994-03-01

    Considerable investment by both the Department of Energy and the facility`s Participating Research teams has permitted the NSLS to offer a national facility to a wide range of scientific pursuits. The purpose of the NSLS Phase III project is to maximize the scientific output of this premier 2nd generation synchrotron radiation facility through a number of distinct projects. Over the years the NSLS has made significant improvements in the area of beam reliability which has resulted in deliverable, reproducible beam during 98% and 97% of scheduled operations on the VUV and X-ray rings respectively. This project will focus on improving beam intensity and stability by upgrading the optics and detector systems on a number of beamlines as well as upgrading radio frequency (rf) and beam position monitoring systems in the storage rings. In addition, the project includes plans for the design and procurement of a utility isolation system that would guard against voltage transients that disrupt the facility`s electrical system. Also a new insertion device will be installed at beamline X25 and a 2nd floor will be constructed over the X6 -- X16 region which will provide sorely needed laboratory and office space for the user community. This project requests funding of 22.5 million dollars over a three year period: FY 1996 ($6.3M), FY 1997 ($13.4M) and FY 1998 ($2.8M).

  14. Beam stability in a 6 GeV synchrotron light source

    SciTech Connect

    Norem, J.; Knott, M.; Rauchas, A.

    1985-01-01

    Future synchrotron radiation sources designed to produce low emittance electron beams for wigglers and undulators will present beam position control problems essentially similar to those encountered by users of existing accelerators, however tolerances will be tighter due to: (1) the small emittance (7 x 10/sup -9/ mrad) proposed for the electron beam and the correspondingly small emittances (sizes) of secondary photon beams, (2) the sensitivity of the electron beam closed orbit to quadrupole motion and dipole roll, (3) the high power levels associated with undulator and wiggler beams which will permit (and probably require) high precision and stability of the photon beam position measurements, in addition, (4) the large number of users on the roughly sixty beam lines will demand beams capable of producing the best experimental results. For the present paper, we assume the accelerator control function, which would initially involve making and coordinating all changes, would eventually evolve to setting and verifying the limits of user control: within these limits the beam position would be controlled by users. This paper describes the effects of motion of beam components (quads, rf cavities and dipoles) on the beam and considers the properties of a compensation system from the perspective of users. The system departs from standard practice in considering active perturbation of the electron beam to verify beam corrections. The effects of local closed orbit perturbations to direct undulator beams at different experimental setups are also considered. 8 refs., 3 figs.

  15. Developing EnviroSuite Resources at the National Synchrotron Light Source

    SciTech Connect

    Paul Northrup; Jeffrey Fitts; Mark Fuhrmann; Paul Kalb

    2006-06-01

    The objective of Brookhaven National Laboratory's EnviroSuite Initiative is to develop the facilities, user support infrastructure, and techniques necessary to conduct world-class molecular environmental science research at the NSLS. This is intended to benefit the research of ERSD-supported scientists, both through direct access and assistance and through the indirect benefits of a broader network of environmental scientists as collaborators and users. Much of the EnviroSuite research involves close collaboration with members of the Center for Environmental Molecular Science (CEMS), an EMSI based at BNL and nearby Stony Brook University and jointly supported by ERSD (Project 1023761, P. Kalb) and NSF. This offers unique opportunities to benefit from both national laboratory facilities and university resources. Other collaborators, from around the US and the world, investigate various aspects of the underlying molecular-scale processes in complex natural systems. In general, synchrotron techniques are ideal for studying the molecular-scale structures, chemical/physical interactions, and transformations that govern the macroscopic properties and processes (e.g. transport, bioavailability) of contaminants in the environment. These techniques are element-specific, non-destructive, and sensitive to the very low concentrations found in real-world samples.

  16. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  17. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  18. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  19. Preparation of visible-light-excited europium biolabels for time-resolved luminescence cell imaging application.

    PubMed

    Zhang, Lin; Tian, Lu; Ye, Zhiqiang; Song, Bo; Yuan, Jingli

    2013-04-15

    By using a visible-light-excited ternary Eu(3+) complex, BHHBCB-Eu(3+)-BPT (BHHBCB: 1,2-bis[4'-(1",1",1",2",2",3",3"-heptafluoro-4″,6″-hexanedion-6″-yl)-benzyl]-4-chlorosulfobenzene; BPT: 2-(N,N-diethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), as a luminophore, two kinds of novel visible-light-excited europium materials, the silica-encapsulated BHHBCB-Eu(3+)-BPT (Eu@SiO2) nanoparticles and BHHBCB-Eu(3+)-BPT-conjugated bovine serum albumin (BSA-BHHBCB-Eu(3+)-BPT), were prepared for biolabeling and time-resolved luminescence cell imaging applications. The Eu@SiO2 nanoparticles, prepared by the copolymerization of 3-aminopropyl(triethoxy)silane-BHHBCB-Eu(3+)-BPT conjugate, free 3-aminopropyl(triethoxy) silane and tetraethyl orthosilicate in a water-in-oil reverse microemulsion, are monodispersed, spherical and uniform in size, and strongly luminescent with an excitation peak at ≈ 400 nm and a long luminescence lifetime of 346 μs. The BSA-BHHBCB-Eu(3+)-BPT, prepared by covalent binding of BHHBCB-Eu(3+)-BPT to BSA, shows also strong visible-light-excited luminescence with a excitation peak at ≈ 400 nm and a long luminescence lifetime of 402μs. The two materials were used for labeling transferrin and folic acid. Using the time-resolved luminescence imaging of living HeLa cells, the cell-surface receptors of transferrin and folic acid were successfully visualized by the prepared biolabels based on the ligand-receptor affinity binding interaction. The results demonstrated the feasibility of the new materials as visible-light-excited biolabels for the time-resolved luminescence cell imaging.

  20. Study of the interfacial structures and behavior of smectic liquid crystals using synchrotron light source

    NASA Astrophysics Data System (ADS)

    Hu, Yufei

    2003-10-01

    Grazing Incidence X-ray Scattering with a synchrotron X-ray source is used to study the depth dependence of the interfacial structure of smectic liquid crystal (8CB) hybrid films. The advancement and market potential of liquid crystal technologies lead to inventions of new materials and surface treatments. The knowledge of interfacial structures and behavior is very critical to these thin film devices such as Liquid Crystal Display. Photolithography in a clean room is adopted to make gratings on very thin glass, which offers better quality than conventional methods in terms of uniformity, reproducibility, reliability, and endurance. Liquid crystal thin films are bounded by a grated glass substrate and air, and have been studied as a function of both temperature and thickness. Experimental measurements indicate the existence of chevron, tilt, and bookshelf structure, as well as Twisted Grain Boundary (TGB) structure that has not previously been observed by X-ray in non-chiral smectic liquid crystals. These structures are a result of liquid crystal anchoring at two dissimilar competing confining surfaces, air-smectics and smectics-grating substrate. With deeper grating, smectic liquid crystals are more constrained in structure and more resilient to temperature change. The smectic phase also persisted at a higher temperature above the smectic-nematic transition point on a deeper grating substrate. When the thickness of liquid crystal samples is beyond a certain point, the smectic liquid crystal begins to form different layers. Chevron structures appear in most situations, which is consistent with previous research A TGB structure is not tamable in a thicker sample where liquid crystals tend to realign themselves in a more stable structure.

  1. Moisture-insensitive optical fingerprint scanner based on polarization resolved in-finger scattered light.

    PubMed

    Back, Seon-Woo; Lee, Yong-Geon; Lee, Sang-Shin; Son, Geun-Sik

    2016-08-22

    A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated.

  2. Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

    PubMed Central

    Bazrafkan, Sh; Kazemi, K

    2014-01-01

    Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue. Methods: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. Each method is introduced and discussed. Then, the optimized model is prepared for numerical simulations. In this paper, the finite element method is used for solving the diffusion equation numerically. Results: Diffusion equation was solved for realistic human head model using finite element approach for a point light source and time resolved case. The photon intensity distribution in different head layers has been shown and the intensity orientation via the CSF layer has been illustrated. Conclusion: Simulating the photon transformation inside the tissue is essential for investigating the NIRS imaging technique. The finite element approach is a fast and accurate method for simulating this fact. The time resolved approach of this technique could illustrate the photon migration and intensity orientation in the tissue for time dependent light sources in tissues. PMID:25505770

  3. Frequency-resolved nonlinear interferometry with incoherent light and applications to coherent Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Stimson, Michael Jay

    1997-12-01

    Demonstrations of several frequency resolved incoherent field non-linear interferometric spectroscopies are presented with emphasis on applications to coherent Raman scattering (two incoherent field actions- I(2)CRS). The properties of the incoherent (noisy) laser sources used for time resolution of ultrafast dynamics are explored in detail theoretically and experimentally. A new technique for the measurement of noisy light correlation functions (I(2)FROG-two incoherent field actions in frequency resolved optical gating) is developed theoretically and used for experimental explorations of the nature of noisy optical fields and their relation to coherent short pulsed optical fields. I(2)FROG and I(2)CRS signals are frequency dispersed and multichannel detected, which when combined with interferometric time resolution allows the creation of two-dimensional representations of these signals (spectrally resolved interferograms, or spectrograms). Spectrograms offer a large redundancy in the sampling of signals, thus allowing great precision in the measurement of observable parameters. In I(2)FROG, the observable parameters characterize the noisy light in the form of the intensity and phase of cross correlation functions between beams of broadband light. In I(2)CRS, the observable parameters quantify material properties such as lineshape parameters, transition frequencies and ratios of resonant to non-resonant contributions to molecular hyperpolarizability tensor elements. Algorithms for the recovery of the observable parameters are developed and applied to the spectrograms derived from many condensed phase materials. Systems explored via spectrogram representation include pure substances and non-reactive mixtures. A novel modification of the original I(2)CRS experiment is presented in which spectrally tailored fields are used to control the properties of the I(2)CRS signals. Newly predicted fifth order signals (I(3)FOOCRS-three incoherent field actions in fifth order

  4. Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography

    PubMed Central

    Huang, Brendan K.; Choma, Michael A.

    2014-01-01

    Dynamic Light Scattering-based Optical Coherence Tomography approaches have been successfully implemented to measure total transverse (xy) flow speed, but are unable to resolve directionality. We propose a method to extract directional velocity in the transverse plane by introducing a variable scan bias to our system. Our velocity estimation, which yields the directional velocity component along the scan axis, is also independent of any point spread function calibration. By combining our approach with Doppler velocimetry, we show three-component velocimetry that is appropriately dependent on latitudinal and longitudinal angle. PMID:24487855

  5. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    SciTech Connect

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-03

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  6. Atlas of Light Curves and Photometric Monitoring of The Non-Resolved Space Objects

    NASA Astrophysics Data System (ADS)

    Koshkin, N.; Shakun, L.; Korobeinikova, E.; Strakhova, S.; Melikiants, S.; Dragomiretsky, V.; Ryabov, A.

    2013-09-01

    Photometric monitoring is a tool for remote diagnostics of the satellite rotation around its center of mass. This information is important in many cases. For example, in case of abnormal mode of the satellite functioning. And also to take into account the orientation of non-spherical body (eg, space debris) in the numerical integration of its motion when it is expected to close approach with the another spacecraft. This paper presents the results of long-term (since 1980) photometric monitoring of both operational satellites, and large bodies of space debris in low-Earth orbit (LEO). The light curves of the non-resolved cosmic objects (CO), which are recorded prior to 2004, were obtained using electrophotometer (PMT with multialkaline cathode) in the visible wavelength range without using a filter. The light curves, which are recorded after 2004, were obtained using a TV CCD-camera also without the use of filters. For tracking low-orbit satellites was used telescope KT-50 on alt-azimuth mounting, which allows one to tracking the objects moving at a high angular velocity. The diameter of main mirror is 0.5 m, focal length is 3 m. For any ?O is given his international (COSPAR) number and NORAD catalog number, and provides information about its form and initial orbital elements. The brightness of satellite presented in magnitudes. He reduced with considering the atmosphere's light extinction and is related to a distance of 1000 km. For each passage and light curve is pointed the date and UTC. The light curves of stabilized CO have only small light variations and they show the dependence from the phase angle. Rotating CO have periodic light curves. The type (kind) and the periods of the light curves change with the time.

  7. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  8. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    SciTech Connect

    MILLER, L.

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget

  9. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    SciTech Connect

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light.

  10. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  11. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.

  12. Time-resolved soft X-ray core-level photoemission spectroscopy at 880 °C using the pulsed laser and synchrotron radiation and the pulse heating current

    NASA Astrophysics Data System (ADS)

    Abukawa, T.; Yamamoto, S.; Yukawa, R.; Kanzaki, S.; Mukojima, K.; Matsuda, I.

    2017-02-01

    We developed a time-resolved photoemission spectroscopy system for tracking the temporal variation in an electronic state of a heated sample. Our pump-probe method used laser and synchrotron radiation pulses on a silicon surface that was heated by a synchronized pulse current that did not interfere with the measurements. The transient surface photovoltage effect on the Si 2p core spectra was measured from room temperature to 880 °C and was found to be consistent with the thermal carrier distributions in silicon crystals at the corresponding temperatures. This versatile technique may have applications studying molecular dynamics on high temperature surfaces such as in catalytic reactions.

  13. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    SciTech Connect

    Gubbiotti, G.; Tacchi, S.; Madami, M.; Carlotti, G.; Ding, J.; Adeyeye, A. O.

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  14. Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry

    SciTech Connect

    Debnath, Sanjit Kumar; Kothiyal, Mahendra Prasad

    2006-09-20

    In spectrally resolved white-light interferometry (SRWLI), the white-light interferogram is decomposed into its monochromatic constituent. The phase of the monochromatic constituents can be determined using a phase-shifting technique over a range of wavelengths. These phase value shave fringe order ambiguity. However, the variation of the phase with respect to the wavenumber is linear and its slope gives the absolute value of the optical-path difference. Since the path difference is related to the height of the test object at a point, a line profile can be determined without ambiguity. The slope value, though less precise helps us determine the fringe order. The fringe order combined with the monochromatic phase value gives the absolute profile, which has the precision of phase-shifting interferometry. The presence of noise in the phase may lead to the misidentification of fringe order, which in turn gives unnecessary jumps in the precise profile. The experimental details of measurement on standard samples with SRWLI are discussed in this paper.

  15. Time- and space-resolved light emission and spectroscopic research of the flashover plasma

    SciTech Connect

    Gleizer, J. Z.; Krasik, Ya. E.; Leopold, J.

    2015-02-21

    The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV, respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.

  16. Complete time-resolved polarimetry of scattered light at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Turnbull, David; Ayers, Shannon; Bell, Perry; Chow, Robert; Frieders, Gene; Hibbard, Robin L.; Michel, Pierre; Ralph, Joseph E.; Ross, James S.; Stanley, Joel R.; Vickers, James L.; Zeid, Ziad M.; Moody, John D.

    2015-08-01

    The 3ω scattered light polarimetry diagnostic in the 30° incidence cone backscatter diagnostic at the National Ignition Facility (NIF) is being upgraded to measure the full time-resolved Stokes vector. Previously, the diagnostic had a single channel capable of diagnosing the time-integrated balance of the horizontal and vertical polarizations. Two additional channels were added - one that measures the balance of the 45° and 135° projections, and another that measures the right- and left-circular polarizations - and together the three complete the Stokes vector measurement. A division-of-aperture scheme is employed in which three nearby portions of the near field are sampled simultaneously. Time resolution is obtained by relaying an image of the measured regions onto a set of fibers coupled to diodes. The new diagnostic will be capable of measuring scattered light signals <≍ .1GW with ≍ 120ps time resolution. This will allow more rigorous evaluation of earlier indications that backscatter polarization can serve as a quantitative diagnostic of crossed-beam energy transfer in indirect-drive inertial confinement fusion experiments. It will also be used to diagnose Faraday rotation induced by magnetic fields in collisionless shock and turbulent dynamo experiments later this year.

  17. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  18. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    PubMed

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds.

  19. Fluorescence dynamics of biological systems using synchrotron radiation

    SciTech Connect

    Gratton, E.; Mantulin, W.W.; Weber, G.; Royer, C.A.; Jameson, D.M.; Reininger, R.; Hansen, R.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes that can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}

  20. Time-Resolved Chemical Mapping in Light-Emitting Electrochemical Cells.

    PubMed

    Jafari, Mohammad Javad; Liu, Jiang; Engquist, Isak; Ederth, Thomas

    2017-01-25

    An understanding of the doping and ion distributions in light-emitting electrochemical cells (LECs) is required to approach a realistic conduction model which can precisely explain the electrochemical reactions, p-n junction formation, and ion dynamics in the active layer and to provide relevant information about LECs for systematic improvement of function and manufacture. Here, Fourier-transform infrared (FTIR) microscopy is used to monitor anion density profile and polymer structure in situ and for time-resolved mapping of electrochemical doping in an LEC under bias. The results are in very good agreement with the electrochemical doping model with respect to ion redistribution and formation of a dynamic p-n junction in the active layer. We also physically slow ions by decreasing the working temperature and study frozen-junction formation and immobilization of ions in a fixed-junction LEC device by FTIR imaging. The obtained results show irreversibility of the ion redistribution and polymer doping in a fixed-junction device. In addition, we demonstrate that infrared microscopy is a useful tool for in situ characterization of electroactive organic materials.

  1. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2016-07-12

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  2. White-light continuum probed femtosecond time-resolved absorption spectroscopic measurement of β-carotene under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Long; Zheng, Zhi-Ren; Zhang, Jian-Ping; Wu, Wen-Zhi; Li, Ai-Hua; Zhang, Wei; Huo, Ming-Ming; Liu, Zhi-Guo; Zhu, Rui-Bin; Zhao, Lian-Cheng; Su, Wen-Hui

    2012-04-01

    We have performed a femtosecond time-resolved absorption spectroscopic experiment of β-carotene in n-hexane solution under high pressure up to ˜1.0 GPa. Using white-light continuum in the visible spectral region as probe light, we found that the energy level of S1 state descends, whereas its lifetime becomes longer with the rising pressure. We ascribe this tendency deviating from the energy gap law to the viscosity effects on the Cdbnd C stretching vibrations, which is fully consistent with the microviscosity theory. This Letter may provide some insights on the light harvesting and photoprotection functions of carotenoids in photosynthetic organisms.

  3. Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current

    NASA Astrophysics Data System (ADS)

    Buonassisi, T.; Istratov, A. A.; Pickett, M. D.; Marcus, M. A.; Hahn, G.; Riepe, S.; Isenberg, J.; Warta, W.; Willeke, G.; Ciszek, T. F.; Weber, E. R.

    2005-07-01

    Synchrotron-based, spectrally resolved x-ray beam-induced current (SR-XBIC) is introduced as a technique to locally measure the minority carrier diffusion length in semiconductor devices. Equivalence with well-established diffusion length measurement techniques is demonstrated. The strength of SR-XBIC is that it can be combined in situ with other synchrotron-based analytical techniques, such as x-ray fluorescence microscopy (μ-XRF) and x-ray absorption microspectroscopy (μ-XAS), yielding information about the distribution, elemental composition, chemical nature, and effect on minority carrier diffusion length of individual transition metal species in multicrystalline silicon. SR-XBIC, μ-XRF, and μ-XAS measurements were performed on intentionally contaminated multicrystalline silicon, revealing a strong correlation between local concentrations of copper and nickel silicide precipitates and a decrease of minority carrier diffusion length. In addition, the reduction of minority carrier diffusion length due to submicron-sized Cu3Si and NiSi2 precipitates could be decoupled from the influence of homogeneously distributed nanoprecipitates and point defects.

  4. VLT Spectra "Resolve" a Stellar Disk at 25,000 Light-Years Distance

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Unique Observations of a Microlensing Event Summary Like our Sun, stars are large gaseous spheres. However, while we are able to perceive the Sun's disk, all other stars are so far away that they normally appear as points of light . Only specialized observing techniques, like interferometry [1], are able to "resolve" the images of nearby stars and to show them as extended balls of fire. But opportunities may sometimes arise that allow amazing observational feats in this field . Indeed, an international team of astronomers [2] has just "resolved" a single, normal star some 25,000 light years away , or about 1.6 billion times more distant than the Sun [3], by taking advantage of a multiple microlensing event . During such a rare event, the light from the remote star is amplified by the gravity of a faint object that passes in front of it, as seen from the Earth . In fact, this gravitational lens acts as a magnifying glass that focusses different parts of the star's image at different times. Using the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope on Paranal during a microlensing event, the team was able to obtain detailed spectra of the different parts of the remote star. In doing so, they managed to probe its gaseous atmosphere at different depths. This is the first time that it has been possible to obtain detailed, spatially resolved spectra across the full face of a normal star other than the Sun [4]. PR Photo 16a/01 : The light-curve of Microlensing Event EROS-BLG-2000-5 . PR Photo 16b/01 : The sky area of EROS-BLG-2000-5. PR Photo 16c/01 : A VLT spectrum of EROS-BLG-2000-5. PR Photo 16d/01 : The observed change of the H-alpha line strength of EROS-BLG-2000-5. A many-faceted success story The following story is about a most unusual astronomical observation and also shows how modern astrophysics works . It combines the study of stellar atmospheres with the intricate optical effects produced by the gravitational field of a binary star in the Milky Way

  5. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    PubMed

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.

  6. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium.

    PubMed

    Choi, Youngwoon; Hillman, Timothy R; Choi, Wonjun; Lue, Niyom; Dasari, Ramachandra R; So, Peter T C; Choi, Wonshik; Yaqoob, Zahid

    2013-12-13

    Multiple scatterings occurring in a turbid medium attenuate the intensity of propagating waves. Here, we propose a method to efficiently deliver light energy to the desired target depth in a scattering medium. We measure the time-resolved reflection matrix of a scattering medium using coherent time-gated detection. From this matrix, we derive and experimentally implement an incident wave pattern that optimizes the detected signal corresponding to a specific arrival time. This leads to enhanced light delivery at the target depth. The proposed method will lay a foundation for efficient phototherapy and deep-tissue in vivo imaging in the near future.

  7. Dynamic tensile deformation and damage of B4C-reinforced Al composites: Time-resolved imaging with synchrotron x-rays

    DOE PAGES

    Bie, B. X.; Huang, J. Y.; Su, B.; ...

    2016-03-30

    Dynamic tensile experiments are conducted on 15% and 30% in weight percentage B4C/Al composites with a split Hopkinson tension bar, along with high-speed synchrotron x-ray digital image correlation (XDIC) to map strain fields at μ m and μ s scales. As manifested by bulk-scale stress – strain curves, a higher particle content leads to a higher yield strength but lower ductility. Strain field mapping by XDIC demonstrates that tension deformation and tensile fracture, as opposed to shear and shear failure, dominate deformation and failure of the composites. The fractographs of recovered samples show consistent features. The particle-matrix interfaces are nucleationmore » sites for strain localizations, and their propagation and coalescence are diffused by the Al matrix. The reduced spacing between strain localization sites with increasing particle content, facilitates their coalescence and leads to decreased ductility. Furthermore, designing a particle-reinforced, metallic-matrix composite with balanced strength and ductility should consider optimizing the inter-particle distance as a key par« less

  8. Dynamic tensile deformation and damage of B4C-reinforced Al composites: Time-resolved imaging with synchrotron x-rays

    SciTech Connect

    Bie, B. X.; Huang, J. Y.; Su, B.; Lu, L.; Fan, D.; E, J. C.; Sun, T.; Fezzaa, K.; Qi, M. L.; Luo, S. N.

    2016-03-30

    Dynamic tensile experiments are conducted on 15% and 30% in weight percentage B4C/Al composites with a split Hopkinson tension bar, along with high-speed synchrotron x-ray digital image correlation (XDIC) to map strain fields at μ m and μ s scales. As manifested by bulk-scale stress – strain curves, a higher particle content leads to a higher yield strength but lower ductility. Strain field mapping by XDIC demonstrates that tension deformation and tensile fracture, as opposed to shear and shear failure, dominate deformation and failure of the composites. The fractographs of recovered samples show consistent features. The particle-matrix interfaces are nucleation sites for strain localizations, and their propagation and coalescence are diffused by the Al matrix. The reduced spacing between strain localization sites with increasing particle content, facilitates their coalescence and leads to decreased ductility. Furthermore, designing a particle-reinforced, metallic-matrix composite with balanced strength and ductility should consider optimizing the inter-particle distance as a key par

  9. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization-Conf Abstract

    EPA Science Inventory

    Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light attenuation. Similarly, percent surface irradiance (% SI) at Zc is a measure of seagrass light requirements with applications in seagrass ecology and management. Methods for ...

  10. Time-resolved synchrotron x-ray diffraction studies of the crystallization of amorphous Co(80-x)FexB20

    NASA Astrophysics Data System (ADS)

    Simmons, L. M.; Greig, D.; Lucas, C. A.; Kilcoyne, S. H.

    2014-09-01

    This paper addresses the time-dependent crystallization process occurring in "bulk" amorphous Co80-xFexB20 (x = 20, 40) metallic ribbons by means of synchrotron x-ray diffraction (SXRD) and transmission electron microscopy. Metallic ribbons, produced via melt-spinning technique, were annealed in-situ, with SXRD patterns collected every 60 s. SXRD reveals that Co40Fe40B20 alloys crystallize from an amorphous structure to a primary bcc α-(Co,Fe) phase, whereas Co60Fe20B20 initially crystallizes into the same bcc α-(Co,Fe) but exhibits cooperative growth of both stable and metastable boride phases later into the hold. Johnson-Mehl-Avrami-Kolmogorov statistics was used on post annealed samples to determine the mechanisms of growth and the activation energy (Ea) of the α-(Co,Fe) phase. Results indicate that the growth mechanisms are similar for both alloy compositions for all annealing temperatures, with the Avrami exponent of n = 1.51(1) and 2.02(6) for x = 20 and 40, respectively, suggesting one-dimensional growth, with a decreasing nucleation rate. Activation energy for α-(Co,Fe) was determined to be 2.7(1) eV and 2.4(3) eV in x = 20 and 40, respectively, suggesting that those alloys with a lower Co content have a stronger resistance to crystallization. Based on these results, fabrication of CoFeB magnetic tunnel junctions via depositing amorphous layers and subsequently annealing to induce lattice matching presents itself as a viable and efficient method, for increasing the giant magnetoresistance in magnetic tunnel junctions.

  11. Time-resolved synchrotron x-ray diffraction studies of the crystallization of amorphous Co(80-x)FexB₂₀

    SciTech Connect

    Simmons, L. M.; Greig, D.; Lucas, C. A.; Kilcoyne, S. H.

    2014-09-28

    This paper addresses the time-dependent crystallization process occurring in “bulk” amorphous Co(80-x)FexB₂₀ (x = 20, 40) metallic ribbons by means of synchrotron x-ray diffraction (SXRD) and transmission electron microscopy. Metallic ribbons, produced via melt-spinning technique, were annealed in-situ, with SXRD patterns collected every 60 s. SXRD reveals that Co₄₀Fe₄₀B₂₀ alloys crystallize from an amorphous structure to a primary bcc α-(Co,Fe) phase, whereas Co₆₀Fe₂₀B₂₀ initially crystallizes into the same bcc α-(Co,Fe) but exhibits cooperative growth of both stable and metastable boride phases later into the hold. Johnson-Mehl-Avrami-Kolmogorov statistics was used on post annealed samples to determine the mechanisms of growth and the activation energy (Ea) of the α-(Co,Fe) phase. Results indicate that the growth mechanisms are similar for both alloy compositions for all annealing temperatures, with the Avrami exponent of n = 1.51(1) and 2.02(6) for x = 20 and 40, respectively, suggesting one-dimensional growth, with a decreasing nucleation rate. Activation energy for α-(Co,Fe) was determined to be 2.7(1) eV and 2.4(3) eV in x = 20 and 40, respectively, suggesting that those alloys with a lower Co content have a stronger resistance to crystallization. Based on these results, fabrication of CoFeB magnetic tunnel junctions via depositing amorphous layers and subsequently annealing to induce lattice matching presents itself as a viable and efficient method, for increasing the giant magnetoresistance in magnetic tunnel junctions.

  12. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    SciTech Connect

    Stoica, Mihai Scudino, Sergio; Bednarčik, Jozef; Kaban, Ivan; Eckert, Jürgen

    2014-02-07

    By adding 0.5 at. % Cu to the strong but brittle [(Fe{sub 0.5}Co{sub 0.5}){sub 0.75}Si{sub 0.05}B{sub 0.20}]{sub 96}Nb{sub 4} bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs.

  13. Induction synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Kishiro, Junichi

    2000-08-01

    A novel proton synchrotron employing induction cells instead of radio frequency cavities is proposed. The major feature of the barrier bucket acceleration, where acceleration and longitudinal focusing are independently achieved is theoretically discussed with the help of multi-particle simulations. It is proved that barrier bucket acceleration allows ultimate use of longitudinal phase-space and is quite effective to substantially increase the beam intensity in synchrotrons. Engineering aspects of key devices to realize the novel synchrotron, a ferri/ferro-magnetic material loaded induction cell and a modulator being rapidly switched in synchronization with beam acceleration are described in detail. The idea is applied to an existing machine (the KEK 12 GeV-PS) and high-intensity proton rings such as JHF, ESS, and SNS and their predicted improvement in machine performance is given with numerical values for each case.

  14. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  15. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light.

    PubMed

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7(∘) angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  16. The advanced photon source X-ray transmitting beam-position-monitor tests at the national synchrotron light source X-25 beamline

    NASA Astrophysics Data System (ADS)

    Shu, D.; Collins, J. T.; Barraza, J.; Kuzay, T. M.

    1994-08-01

    A synthetic-diamond-based X-ray transmitting beam-position monitor has been studied using focused white beam at the National Synchrotron Light Source X-25 wiggler beamline. Of particular interest are the possibilities to design an integral window and filter/photon beam-position monitor for the Advanced Photon Source high-heat-flux insertion-device beamlines. The preliminary measurements were taken using two synthetic-diamond blade samples with different thicknesses and cooling configurations. The monitor (consisting of a vacuum vessel, an ion pump, a water-cooling base, a blade mounting block, and electric feedthroughs) was mounted on a three-dimensional ( x, y, φ) stepping-motor-driven stage with a 0.064-μm stepping size and a 0.1-μm linear encoder resolution. An infrared camera system was used to monitor and record the diamond blade surface temperature field through a sapphire window and test results are presented.

  17. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias; Plivelic, Tomas S.; Torriani, Iris L.; Mantovani, Gerson L.

    2009-01-29

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  18. Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface

    SciTech Connect

    Ren, Jin-Li; Wang, Bo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2015-09-14

    We theoretically and experimentally demonstrate that it is possible to directly observe the resolvable spin separation in the spin Hall effect of light at an air-glass interface by choosing optimal parameters. When a P-polarized light with a beam waist of 10 μm is incident around Brewster's angle, the two spin components of the reflected beam can be completely separated by eliminating the influence of the in-plane wavevector spread. This not only obviously reveals the strong impacts of the polarization state, the incident angle, the beam waist, and the in-plane wavevector spread, but also intuitively visualizes the observation of the spin Hall effect of light.

  19. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz M.; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A.; Blankenship, Robert E.

    2011-10-08

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N = 11) and spirilloxanthin (N = 13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N = 13) to play the role of the direct quencher of the excited singlet state of BChl.

  20. How Electron Spectroscopy with Synchrotron Light Can Help Us Understand High-Tc Superconductivity and Other Complex States of Matter

    SciTech Connect

    Campuzano, Juan Carlos

    2012-03-07

    All the physical, chemical, and mechanical properties of materials are controlled by electrons that occupy the highest energy levels in solids, those near the Fermi energy. Many techniques were developed to study those electrons, leading to the great successes of condensed matter physics. Newer and complex materials, such as the high-temperature superconductors, tend to exhibit very large anisotropies in their physical properties, requiring a more detailed knowledge of the behavior of electrons not only as a function of their energy, but also their momentum. Angle-resolved photoemission can contribute to our understanding by providing a great deal of information on many of the momentum-dependent properties of electrons and their interactions. In this talk, I will present a brief overview of how a long-term and focused collaboration between scientists at Argonne and other institutions has contributed to making angle-resolved photoemissions a most useful tool in the study of complex states of matter.

  1. Photocycles of bacteriorhodopsin in light- and dark-adapted purple membrane studied by time-resolved absorption spectroscopy.

    PubMed Central

    Hofrichter, J; Henry, E R; Lozier, R H

    1989-01-01

    Nanosecond time-resolved absorption spectra have been measured throughout the photocycle of bacteriorhodopsin in both light-adapted and dark-adapted purple membrane (PM). The data from dark-adapted samples are interpretable as the superposition of two photocycles arising independently from the all-trans and 13-cis retinal isomers that coexist in the dark-adapted state. The presence of a photocycle in dark-adapted PM which is indistinguishable from that observed for light-adapted PM under the same experimental conditions is demonstrated by the observation of the same five relaxation rates associated with essentially identical changes in the photoproduct spectra. This cycle is attributed to the all-trans component. The cycle of the 13-cis component is revealed by scaling the data measured for the light-adapted sample and subtracting it from the data on the dark-adapted mixture. At times less than 1 ms, the resulting difference spectra are nearly time-independent. The peak of the difference spectrum is near 600 nm, although there appears to be a slight (approximately 2 nm) blue-shift in the first few microseconds. Subsequently the amplitude of this spectrum decays and the peak of the difference spectrum shifts in two relaxations. Most of the amplitude of the photoproduct difference spectrum (approximately 80%) decays in a single relaxation having a time constant of approximately 35 ms. The difference spectrum remaining after this relaxation peaks at approximately 590 nm and is indistinguishable from the classical light-dark difference spectrum, which we find, in experiments performed on a much longer time scale, to peak at 588 nm. The decay of this remaining photo-product is not resolvable in the nanosecond kinetic experiments, but dark adaptation of a completely light-adapted sample is found to occur exponentially with a relaxation time of approximately 2,000 s under the conditions of our experiments. PMID:2819234

  2. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  3. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24

    PubMed Central

    Pascarelli, S.; Mathon, O.; Mairs, T.; Kantor, I.; Agostini, G.; Strohm, C.; Pasternak, S.; Perrin, F.; Berruyer, G.; Chappelet, P.; Clavel, C.; Dominguez, M. C.

    2016-01-01

    The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy – TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 1014 photons s−1 on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth’s interior and in laser-shocked matter are given. PMID:26698085

  4. Dynamics of phase transformations and microstructure evolution in carbon-manganese steel arc welds using time-resolved synchrotron X-ray diffraction.

    PubMed

    Wong, Joe; Ressler, Thorsten; Elmer, John W

    2003-03-01

    Phase transformations that occur in both the heat-affected zone (HAZ) and the fusion zone (FZ) of a carbon-manganese steel spot weld have been investigated using time-resolved X-ray diffraction (TRXRD) with time resolutions down to 50 ms. It is found that in both zones the gamma(f.c.c.) --> alpha(b.c.c.) transformation on cooling is twice as fast as the forward transformation of alpha --> gamma on heating. Profile analysis of the major Bragg reflections recorded in the TRXRD patterns reveals similarities and differences in the microstructural evolution with time in the HAZ and in the FZ. The latter undergoes melting and solidification in addition to solid-state transformations. With increasing temperature, the (110) d-spacing of the alpha phase prior to and during the alpha --> gamma transformation and the (111) d-spacing of the gamma phase just after the same transformation exhibit a decrease. The observed (and unusual) lattice contraction with temperature rise may be attributed to chemical effects, such as carbide precipitation in the alpha matrix, and/or mechanical effects due to stress relief. In the FZ, the gamma-Fe that forms has a preferential (200) texture on solidification of the liquid, whereas, on cooling in the HAZ, the gamma-Fe retains largely a (111) texture that is induced in the alpha --> gamma transformation on heating. On cooling in the HAZ, the width of the gamma(111) reflection increases initially, which is indicative of microstrain developing in the f.c.c. lattice, but decreases as expected, with a reduction of thermal disorder, on further cooling until the completion of the gamma --> alpha transformation. In the FZ, however, the microstrain in the gamma phase increases steadily on solidification and more rapidly for the duration of the gamma --> alpha transformation on further cooling. The final microstructure of the FZ is likely to consist of a single alpha phase dispersed in two morphological entities, whereas in the HAZ the alpha phase

  5. Cell growth characteristics from angle- and polarization-resolved light scattering: Prospects for two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Herran Cuspinera, Roxana M.; Hore, Dennis K.

    2016-11-01

    We highlight the potential of generalized two-dimensional correlation analysis for the fingerprinting of cell growth in solution monitored by light scattering, where the synchronous and asynchronous responses serve as a sensitive marker for the effect of growth conditions on the distribution of cell morphologies. The polarization of the scattered light varies according to the cell size distribution, and so the changes in the polarization over time are an excellent indicator of the dynamic growth conditions. However, direct comparison of the polarization-, time-, and angle-resolved signals between different experiments is hindered by the subtle changes in the data, and the inability to easily adapt models to account for these differences. Using Mie scattering simulations of different growth conditions, and some preliminary experimental data for a single set of conditions, we illustrate that correlation analysis provides rapid and sensitive qualitative markers of growth characteristics.

  6. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  7. Time-resolved electroluminescence studies of III-nitride ultraviolet photonic-crystal light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Lin, J. Y.; Jiang, H. X.

    2004-09-01

    Transient responses of III-nitride photonic-crystal (PC) ultraviolet (UV) light-emitting diodes (LEDs) were measured by picosecond time-resolved electroluminescence (EL) spectroscopy. Triangular arrays of PCs with different diameters/periodicities were fabricated on 333nmUV LEDs for enhancing light extraction efficiency using electron-beam lithography and inductively coupled-plasma dry etching. With the incorporation of PCs on LEDs, the EL decay time constant τ decreases systematically with the increase of the etched sidewall area indicating the strong effect of the surface recombination. The surface recombination velocities on the p-type epitaxial surface and on the sidewall of etched holes on LEDs were determined to be 1.73×104cm /s and 1.48×105cm/s, respectively. The angular distribution of light emission from LEDs with PCs shows slight narrowing in far-field pattern. Because of the increased transient response along with enhanced light extraction, the incorporation of PCs in UV LEDs provide an effective method to control the modulation speed of UV LEDs, which could be very useful for many applications.

  8. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  9. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    PubMed

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

  10. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  11. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.

    PubMed

    Guo, Xinxin; Wood, Michael F G; Ghosh, Nirmalya; Vitkin, I Alex

    2010-01-10

    Details of light depolarization in turbid media were investigated using polarization-sensitive Monte Carlo simulations. The surviving linear and circular polarization fractions of photons undergoing a particular number of scattering events were studied for different optical properties of the turbid media. It was found that the threshold number of photon scattering interactions that fully randomize the incident polarization (defined here as <1% surviving polarization fraction) is not a constant, but varies with the photon detection angle. Larger detection angles, close to backscattering direction, show lower full depolarization threshold number for a given set of sample's optical properties. The Monte Carlo simulations also confirm that depolarization is not only controlled by the number of scattering events and detection geometry, but is also strongly influenced by other factors such as anisotropy g, medium linear birefringence, and the polarization state of the incident light.

  12. Resolving the depth of fluorescent light by structured illumination and shearing interferometry

    NASA Astrophysics Data System (ADS)

    Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang

    2016-03-01

    A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.

  13. Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Patterson, Michael S.; Moulton, John D.; Wilson, Brian C.; Chance, Britton

    1990-07-01

    Since biological response to photodynamic therapy (PDT) depends on the light fluence distribution and photosensitizer concentration in the tissue, these two variables should ideally be measured noninvasively in individual cases. This can be reduced to determining the optical absorption and transport scattering coefficients of the tissue because, if these two parameters are known, the fluence distribution can be calculated and the photosensitizer concentration can be deduced from its characteristic contribution to the absorption spectrum. The temporal spreading of a picosecond laser pulse as it propagates through tissue carries infonnation about both the scattering and absorption properties of the tissue. A mathematical model is presented which allows derivation of the interaction coefficients from the pulse shape, and preliminary experiments are reported which demonstrate the potential of these techniques in PDT dosimetry. Equivalent information can be obtained in the frequency domain by using modulated light sources andmeasuring thephase and modulation of the detected light. Analytical expressions are developed for these observable quantities in terms ofthe optical interaction coefficients. Particular auention is drawn to the potential oflow (less than 200 MHz) frequency measurements as these can be made with relatively simple instrumentation.

  14. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light.

    PubMed

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-28

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs(2) and 5000 fs(2) are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances.This article is part of the themed issue 'New horizons for nanophotonics'.

  15. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  16. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems.

    PubMed

    Johnston, Mark D; Oliver, Bryan V; Droemer, Darryl W; Frogget, Brent; Crain, Marlon D; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm(2)/steradian/nm). Error analysis shows this method to be accurate to within +∕- 20%, which represents a high level of accuracy for this type of measurement.

  17. Diffraction-free light droplets for axially-resolved volume imaging.

    PubMed

    Antonacci, G; Domenico, G Di; Silvestri, S; DelRe, E; Ruocco, G

    2017-12-01

    An ideal direct imaging system entails a method to illuminate on command a single diffraction-limited region in a generally thick and turbid volume. The best approximation to this is the use of large-aperture lenses that focus light into a spot. This strategy fails for regions that are embedded deep into the sample, where diffraction and scattering prevail. Airy beams and Bessel beams are solutions of the Helmholtz Equation that are both non-diffracting and self-healing, features that make them naturally able to outdo the effects of distance into the volume but intrinsically do not allow resolution along the propagation axis. Here, we demonstrate diffraction-free self-healing three-dimensional monochromatic light spots able to penetrate deep into the volume of a sample, resist against deflection in turbid environments, and offer axial resolution comparable to that of Gaussian beams. The fields, formed from coherent mixtures of Bessel beams, manifest a more than ten-fold increase in their undistorted penetration, even in turbid milk solutions, compared to diffraction-limited beams. In a fluorescence imaging scheme, we find a ten-fold increase in image contrast compared to diffraction-limited illuminations, and a constant axial resolution even after four Rayleigh lengths. Results pave the way to new opportunities in three-dimensional microscopy.

  18. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    NASA Astrophysics Data System (ADS)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  19. Velocity gradients in spatially-resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    PubMed Central

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-01-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially-resolved velocity field in three dimensions. It has been thought that spatially-resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, non-turbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  20. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  1. Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study

    PubMed Central

    Saldanha, Oliva; Huber, Klaus; Köster, Sarah

    2016-01-01

    Vimentin intermediate filaments (IFs) are part of a family of proteins that constitute one of the three filament systems in the cytoskeleton, a major contributor to cell mechanics. One property that distinguishes IFs from the other cytoskeletal filament types, actin filaments and microtubules, is their highly hierarchical assembly pathway, where a lateral association step is followed by elongation. Here we present an innovative technique to follow the elongation reaction in solution and in situ by time-resolved static and dynamic light scattering, thereby precisely capturing the relevant time and length scales of seconds to minutes and 60–600 nm, respectively. We apply a quantitative model to our data and succeed in consistently describing the entire set of data, including particle mass, radius of gyration, and hydrodynamic radius during longitudinal association. PMID:27655889

  2. A simple method for correcting spatially resolved solar intensity oscillation observations for variations in scattered light

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Duvall, T. L., Jr.

    1991-01-01

    A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.

  3. Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Cecilia, A.; Gerstl, S.; Glamann, N.; Grau, A. W.; Holubek, T.; Meuter, C.; de Jauregui, D. Saez; Voutta, R.; Boffo, C.; Gerhard, Th.; Turenne, M.; Walter, W.

    2016-11-01

    A new cryogen-free full scale (1.5 m long) superconducting undulator with a period length of 15 mm (SCU15) has been successfully tested in the ANKA storage ring. This represents a very important milestone in the development of superconducting undulators for third and fourth generation light sources carried on by the collaboration between the Karlsruhe Institute of Technology and the industrial partner Babcock Noell GmbH. SCU15 is the first full length device worldwide that with beam reaches a higher peak field than what expected with the same geometry (vacuum gap and period length) with an ideal cryogenic permanent magnet undulator built with the best material available PrFeB. After a summary on the design and main parameters of the device, we present here the characterization in terms of spectral properties and the long term operation of the SCU15 in the ANKA storage ring.

  4. Static light scattering resolves colloid structure in index-matched porous media.

    PubMed

    Mays, David C; Cannon, Orion T; Kanold, Adam W; Harris, Kevin J; Lei, Tim C; Gilbert, Benjamin

    2011-11-01

    Colloidal phenomena play an important role in natural porous media, where they influence soil structuring, contaminant migration, filtration, and clogging. Several methods are available to measure pore space geometry within porous media, but these methods have limited applicability when the relevant physical, chemical, or biological processes are dominated by dynamic colloidal phenomena. Here we report a new technique to quantify colloid aggregate structure as a fractal dimension using static light scattering within index-matched porous media (granular Nafion). We validate the method by obtaining consistent results for scattering in suspensions and in porous media, and verify that multiple scattering at environmentally relevant colloid concentrations does not affect the determination of fractal dimension. We also observe restructuring of aggregates during homogenization in the porous media, indicated by an apparent increase in fractal dimension, which can be explained by an analysis of the fluid shear stress caused by repeated inversions of test tubes either containing or not containing granular media. This technique will permit progress in obtaining fundamental descriptions of colloidal phenomena in porous media.

  5. Design and project status of the National Synchrotron Light Source; storage rings (2. 5 GeV, 0. 7 GeV) for the generation of bright synchrotron radiation sources

    SciTech Connect

    van Steenbergen, A

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given.

  6. Exploring the effect of vibronic contributions on light harvesting efficiency of NKX-2587 derivatives through vibrationally resolved electronic spectra

    NASA Astrophysics Data System (ADS)

    Yang, Pan; Shen, Wei; Li, Ming; He, Rongxing

    2017-01-01

    The vibrationally resolved electronic spectra of five metal-free NKX-2587 derivatives containing heteroatom with different atomic sizes and electronegativity, were simulated within the Franck-Condon approximation including the Herzberg-Teller and Duschinsky effects, aimed at exploring the correlation of vibronic structure associated with the spectrum and efficiency of dye sensitized solar cells (DSSCs). The parameters of short-circuit current density (Jsc) and open circuit voltage (Voc) involving efficiency of DSSCs, such as total dipole moments (μnormal), the light harvesting efficiency (LHE), injection driving force (∆ Ginject), and the number of electrons in the conduction band (nc), were calculated and discussed in detail. Results showed that the heteroatoms in the same period with large size and weak electronegativity and the ones in the same main group with large size and weak electronegativity are beneficial to Voc. The sizes and electronegativity of the heteroatoms have a weak effect on Jsc. The low-frequency modes play important roles in enhancing the intensities of the electronic spectra and structures can affect light harvesting efficiency (LHE). In this sense, our results provided guidance for understanding the sources of spectral intensities of dye molecules, and a valuable help for rational design of new molecules to improve the energy conversion efficiency (η) of DSSCs.

  7. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  8. Sub-nanosecond time resolved light emission study for diffuse discharges in air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Tardiveau, P.; Magne, L.; Marode, E.; Ouaras, K.; Jeanney, P.; Bournonville, B.

    2016-10-01

    Pin-to-plane discharges in centimetre air gaps and standard conditions of pressure and temperature are generated under very high positive nanosecond scale voltage pulses. The experimental study is based on recordings of sub-nanosecond time resolved and Abel-processed light emission profiles and their complete correlation to electrical current waveforms. The effects of the voltage pulse features (amplitude between 20 and 90 kV, rise time between 2 and 5.2 ns, and time rate between 4 and 40 kV · ns-1) and the electrode configuration (gap distance between 10 and 30 mm, pin radius between 10 and 200 µm, copper, molybdenum or tungsten pin material) are described. A three time period development can be found: a glow-like structure with monotonic light profiles during the first 1.5 ns whose size depends on time voltage rate, a shell-like structure with bimodal profiles whose duration and extension in space depends on rise time, and either diffuse or multi-channel regime for the connection to the cathode plane according to gap distance. The transition of the light from monotonic to bimodal patterns reveals the relative effects and dynamics of streamer space charge and external laplacian field. A classical 2D-fluid model for streamer propagation has been used and adapted for very high and steep voltage pulses. It shows the formation of a strong space charge (streamer) very close to the pin, but also a continuity of emission between the pin and the streamer, and electric fields higher than the critical ionization field (28 kV · cm-1 in air) almost in the whole gap and very early in the discharge propagation.

  9. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    SciTech Connect

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.; Zhong, Z.

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  10. Mircobeam X-ray total scattering experiments at the high-pressure beamline X17B3 at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2013-12-01

    Structure of minerals under extreme conditions of high pressure and temperature is very important in Geosciences. The total scattering pair distribution function (PDF) technique using high energy X-ray microbeam to access a large range of scattering vector, e.g. 20Å-1-40Å-1, is an emerging structural analysis method in high pressure research, which allows simultaneous probing of local, intermediate and long-range structure in crystalline, amorphous or complex materials[1-3]. Using high-energy X-rays of 80 keV at X17B3 beamline, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, PDF measurements has been carried out by users from multiple disciplines [4]. At this AGU meeting, we will present the current status of high-pressure total scattering pair distribution function (PDF) measurements and recent achievements on the availability of high energy X-ray microbeam at X17B3 beamline, NSLS. Accurate X-ray energy calibration is indispensable for X-ray energy-sensitive scattering and diffraction experiments, but there is still a lack of effective methods to precisely calibrate the high energy X-ray beam, because precise energy calibration XAS is problematic due to the lack of suitable X-ray absorption edges at the desired high energy. We have recently proposed an iterative method [5] for a precise and fast X-ray energy calibration over a wide range, including high energy X-ray beam for PDF measurements. Some PDF measurements on the geophysical important materials, such as GeO2 and SiO2 materials, under ambient and high-pressure using diamond anvil cell will be presented. References: 1. Billinge, S.J.L., The atomic pair distribution function: past and present. Zeitschrift für Kristallographie, 2004. 219(3-2004): p. 117-121. 2. Billinge, S.J. and I. Levin, The problem with determining atomic structure at the nanoscale. Science, 2007. 316(5824): p. 561-5. 3. Billinge, S.J.L., et al., Characterisation of amorphous and nanocrystalline molecular

  11. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  12. Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates.

    PubMed

    Debnath, Sanjit K; Kothiyal, Mahendra P; Schmit, Joanna; Hariharan, Parameswaran

    2006-05-29

    We describe how spectrally-resolved white-light phase-shifting interference microscopy with a windowed 8-step algorithm can be used for rapid and accurate measurements of the thickness profile of transparent thin film layers with a wide range of thicknesses deposited upon patterned structures exhibiting steps and discontinuities. An advantage of this technique is that it can be implemented with readily available hardware.

  13. Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy.

    PubMed

    Moonshiram, Dooshaye; Picón, Antonio; Vazquez-Mayagoitia, Alvaro; Zhang, Xiaoyi; Tu, Ming-Feng; Garrido-Barros, Pablo; Mahy, Jean-Pierre; Avenier, Frédéric; Aukauloo, Ally

    2017-02-28

    We report the use of time-resolved X-ray absorption spectroscopy in the ns-μs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy)3](2+)/ a diiron(iii,iii) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(iii,iii) and reduced diiron(ii,ii) states.

  14. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-12-01

    Light absorbing organic carbon, often called brown carbon, has the potential to significantly contribute to the visible light-absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon, are poorly understood. With this in mind size-resolved direct measurements of brown carbon were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a representative urban site and a road-side site adjacent to a main highway. Fine particle absorption was measured with a multi-angle absorption photometer (MAAP) and seven-wavelength Aethalometer, and brown carbon absorption was estimated based on Mie calculations using direct size-resolved measurements of chromophores in solvents. Size-resolved samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light-absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with the highest contributions at the rural site where organic to elemental carbon ratios were

  15. COMPRES X-ray beamlines (X17B3 and X17C) for the diamond anvil cell at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Chen, Z.; Sengupta, A.; Goncharov, A. F.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2011-12-01

    The laser heated diamond anvil cell technique can readily achieve the pressure and temperature domain of Earth from upper mantle to outer core. The laser heating diamond anvil cell X-ray facilities (X17-DAC), consists of X17B3 and X17C stations on a superconducting wiggler beamline and a sample preparation/spectroscopy laboratory at the National Synchrotron Light Source). As the first dedicated high-pressure (HP) beamline in the world, X17-DAC has been a workhorse for HP research for two decades, and has led the way in many developments, Here we report current capabilities and recent developments at X17-DAC beamlines including a new double-side laser heating system . At the X17B3 station, high-temperature high-pressure X-ray diffraction experiments can be carried out either with monochromatic beam (~30 keV or ~80 keV), or with white beam for energy dispersive x-ray diffraction. In-situ laser heating system will be available for users in Geosciences starting from September, 2011. With a monochromatic beam at 30 keV, the X-ray beam can be focused to a beam size of ~10 μm. By combing with the laser heating technique, we can support in-situ X-ray diffraction experiments at the domain of temperature and pressure up to Earth's outer core. With high energy at 80 keV, total scattering pair distribution function (PDF) measurements are performed. Originally, this method was used to study amorphous and highly disordered materials, but more recently, it has been used for the analysis of crystalline and nanostructured materials. This novel technique provides useful information about the long- and short-range ordering of the atoms in the materials. It is promising to combine laser heating and total scattering PDF measurements so as to probe phase transitions and phase relations for geophysical important materials at X17B3 station. At X17C, we conduct angle and energy dispersive x-ray diffraction on polycrystalline samples in either axial or radial geometry. Energy dispersive

  16. Nanoparticles and nanowires: synchrotron spectroscopy studies

    SciTech Connect

    Sham, T.K.

    2008-08-11

    This paper reviews the research in nanomaterials conducted in our laboratory in the last decade using conventional and synchrotron radiation techniques. While preparative and conventional characterisation techniques are described, emphasis is placed on the analysis of nanomaterials using synchrotron radiation. Materials of primary interests are metal nanoparticles and semiconductor nanowires and nanoribbons. Synchrotron techniques based on absorption spectroscopy such as X-ray absorption fine structures (XAFS), which includes X-ray absorption near edge structures (XANES) and extended X-ray absorption fine structures (EXFAS), and de-excitation spectroscopy, including X-ray excited optical luminescence (XEOL), time-resolved X-ray excited optical luminescence (TRXEOL) and X-ray emission spectroscopy (XES) are described. We show that the tunability, brightness, polarisation and time structure of synchrotron radiation are providing unprecedented capabilities for nanomaterials analysis. Synchrotron studies of prototype systems such as gold nanoparticles, 1-D nanowires of group IV materials, C, Si and Ge as well as nanodiamond, and compound semiconductors, ZnS, CdS, ZnO and related materials are used to illustrate the power and unique capabilities of synchrotron spectroscopy in the characterisation of local structure, electronic structure and optical properties of nanomaterials.

  17. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    SciTech Connect

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  18. Infrared microspectroscopy with synchrotron radiation

    SciTech Connect

    Carr, G.L.; Williams, G.P.

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  19. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-07-01

    Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied

  20. Investigation and Characterization of Defects in Epitaxial Films for Ultraviolet Light Emitting Devices Using FUV Time-Resolved Photoluminescence, Time-Resolved Cathodoluminescence, and Spatio-Time-Resolved Cathodoluminescence Excited Using Femtosecond Laser Pulses

    DTIC Science & Technology

    2013-05-22

    for a free excitonic polariton emission is as short as 10 ps at 7 K and 180 ps at 300 K, which are the shortest ever reported for spontaneous...orders of magnitude longer than the measured ones. The discrepancy can be partially explained consider- ing the formation of exciton- polaritons [27...Subsequently excitons are formed and relax to an exciton- polariton bottleneck, especially at LT. An exciton- polariton is a manifold of an exciton and a light

  1. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules Using VUV Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N2 and O2 are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  2. Mass-analyzed threshold ionization (MATI) spectroscopy of atoms and molecules using VUV synchrotron radiation.

    PubMed

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R; Ahmed, Musahid

    2009-12-31

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N(2), O(2), N(2)O, H(2)O, C(2)H(2), and C(6)H(6). MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N(2) and O(2) are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  3. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi2Sr2CaCu2O8+δ superconductor

    DOE PAGES

    He, Junfeng; Mion, Thomas R.; Gao, Shang; ...

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circularmore » dichroism.« less

  4. X-ray excited optical luminescence : Understanding the light emission properties of silicon based nanostructures.

    SciTech Connect

    Sham, T.K.; Rosenberg, R. A.; Univ. of Western Ontario

    2007-01-01

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  5. 3 GeV Booster Synchrotron Conceptual Design Report

    SciTech Connect

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  6. A direct temperature-resolved tandem mass spectrometry study of cholesterol oxidation products in light-aged egg tempera paints with examples from works of art

    NASA Astrophysics Data System (ADS)

    van den Brink, Oscar F.; Ferreira, Ester S. B.; van der Horst, Jerre; Boon, Jaap J.

    2009-07-01

    Cholesterol (1) constitutes approximately 5% of the lipid fraction of eggs. The compound is therefore abundant in fresh egg tempera paints. The fate of cholesterol upon light ageing of egg tempera paint binding medium was investigated by direct temperature resolved mass spectrometry (DTMS) and tandem mass spectrometry (DTMSMS). Cholesterol oxidation products (COPs) such as 5,6-epoxycholestan-3-ol (2) and 3-hydroxycholest-5-en-7-one (3) were positively identified in light-aged egg binding medium. Given the fast rate of oxidation of cholesterol, the corresponding oxidation products are better markers for egg tempera than the cholesterol molecule itself. Cholesterol and COPs were discovered in paints on German baroque altar pieces from the 16th and 18th C and in a 20th C glaze on a Mark Rothko Seagram Mural painting at Tate by DTMS fingerprinting analysis of paint microsamples.

  7. Size-resolved emissions of organic tracers from light- and heavy-duty vehicles measured in a California roadway tunnel.

    PubMed

    Phuleria, Harish C; Geller, Michael D; Fine, Philip M; Sioutas, Constantinos

    2006-07-01

    Individual organic compounds found in particulate emissions from vehicles have proven useful in source apportionment of ambient particulate matter. Species of interest include the hopanes, originating in lube oil, and selected PAHs generated via combustion. Most efforts to date have focused on emissions and apportionment PM10 or PM2.5 However, examining how these compounds are segregated by particle size in both emissions and ambient samples will help efforts to apportion size-resolved PM, especially ultrafine particles which have been shown to be more potent toxicologically. To this end, high volume size-resolved (coarse, accumulation, and ultrafine) PM samples were collected inside the Caldecott tunnel in Orinda, California to determine the relative emission factors for these compounds in different size ranges. Sampling occurred in two bores, one off-limits to heavy-duty diesel vehicles, which allows determination of the different emissions profiles for diesel and gasoline vehicles. Although tunnel measurements do not measure emissions over a full engine duty cycle, they do provide an average emissions profile over thousands of vehicles that can be considered characteristic of "freeway" emissions. Results include size-fractionated emission rates for hopanes, PAHs, elemental carbon, and other potential organic markers apportioned to diesel and gasoline vehicles. The results are compared to previously conducted PM2.5 emissions testing using dynamometer facilities and othertunnel environments.

  8. Time Resolved Spectroscopic Studies on a Novel Synthesized Photo-Switchable Organic Dyad and Its Nanocomposite Form in Order to Develop Light Energy Conversion Devices.

    PubMed

    Dutta Pal, Gopa; Paul, Abhijit; Yadav, Somnath; Bardhan, Munmun; De, Asish; Chowdhury, Joydeep; Jana, Aindrila; Ganguly, Tapan

    2015-08-01

    UV-vis absorption, steady state and time resolved spectroscopic investigations in pico and nanosecond time domain were made in the different environments on a novel synthesized dyad, 3-(2-methoxynaphthalen-1-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (MNTMA) in its pristine form and when combined with gold (Au) nanoparticles i.e., in its nanocomposite structure. Both steady state and time resolved measurements coupled with the DFT calculations performed by using Gaussian 03 suit of software operated in the linux operating system show that though the dyad exhibits mainly the folded conformation in the ground state but on photoexcitation the nanocomposite form of dyad prefers to be in elongated structure in the excited state indicating its photoswitchable nature. Due to the predominancy of elongated isomeric form of the dyad in the excited state in presence of Au Nps, it appears that the dyad MNTMA may behave as a good light energy converter specially in its nanocomposite form. As larger charge separation rate (kcs ~ 4 x 10(8) s-1) is found relative to the rate associated with the energy wasting charge recombination processes (kcR ~ 3 x 10(5) s-1) in the nanocomposite form of the dyad, it demonstrates the suitability of constructing the efficient light energy conversion devices with Au-dyad hybrid nanomaterials.

  9. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  10. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NASA Astrophysics Data System (ADS)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-12-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and detection. The optical path lengths are determined from the zero order moment of the phase modulation peak in the power spectrum. The weighted first moment, which is equal to the average Doppler shift, shows a linear response for different mean flow velocities within the physiological range.

  11. EBIS, an option for medical synchrotrons

    SciTech Connect

    Prelec, K.

    1993-12-31

    Light ion beams have been used for cancer therapy for about twenty years; several dedicated facilities are presently either planned or under construction. In addition, several synchrotrons designed for other purposes are now considered for medical applications as well. A medical synchrotron needs a preaccelerator to produce and inject a range of different light ions, preferably fully stripped, into the ring. The size, cost and complexity of the preaccelerator depend on the performance of its first element, the ion source, and these features will be optimized if the source itself produces fully stripped ions. An EBIS (Electron Beam Ion Source) is capable of producing fully stripped light ions up to argon with intensities sufficient for medical applications. As it has been pointed out in the past, this source option may require just one stage of preacceleration, an RFQ linac, thus making it very simple and compact. The AGS Department has a separate project already under way to develop a very high intensity EBIS for our nuclear physics program. It is, however, our plan first to construct and test an intermediate size device and then to proceed to the design of the final, full scale device. Parameters of that intermediate model are close to those that would be needed for a medical synchrotron. This paper describes the BNL program and considers parameters of EBIS devices for possible use in synchrotron facilities serving as sources of high energy light ions for cancer therapy.

  12. Melting-solidification transition of Zn nanoparticles embedded in SiO2: Observation by synchrotron x-ray and ultraviolet-visible-near-infrared light

    NASA Astrophysics Data System (ADS)

    Amekura, H.; Tanaka, M.; Katsuya, Y.; Yoshikawa, H.; Ohnuma, M.; Matsushita, Y.; Kobayashi, K.; Kishimoto, N.

    2010-11-01

    Melting-solidification transition of Zn nanoparticles (NPs) with the mean diameter of 11.5 nm, embedded in silica glass, was investigated by glancing incident x-ray diffraction (GIXRD) at high temperatures using synchrotron radiation (SR). With increasing temperature, 101Zn diffraction peak gradually decreases up to ˜360 °C and then steeply decreases. This is due to the melting of Zn NPs, which completes around 420 °C. With decreasing temperature, the solidification of the NPs begins around ˜310 °C. The temperature hysteresis with a width of ˜110 °C was observed. With temperature, the diffraction angle shows a shift without hysteresis, which is ascribed to thermal expansion of Zn NP lattice. Thermal expansion coefficient of Zn NPs was determined as 24.4×10-6 K-1 along the ⟨101⟩ direction. Optical absorption spectroscopy shows a broad ultraviolet (UV) peak which was observed at even higher temperatures than the melting temperature but shifts to the low-energy side with the melting. The energy shift in the UV peak also shows the temperature hysteresis which resembles with the melting-solidification hysteresis recorded by SR-GIXRD. The melting-solidification transition is also detectable by the optical absorption spectroscopy in the UV-visible-near-infrared region.

  13. Time Resolved Measurements of Light Produced by Onset of Plasma Formation on Electrodes of Fast Pulsed High Voltage Diodes

    DTIC Science & Technology

    1993-12-10

    by Charles M. Wright Captain , United States Army B.S., United States Military Academy, 1983 Submitted in partial fulfillment of the requirements for...Bn . Av" 15.60mV At- 6. BOns Paired Previous TO0 Dots Menu /At - 166.7MHz AvAt - 2.680V/s, W4;49. SO~n46. iOne Figure 5.5 Light Signal for a 75 kV

  14. Grazing incidence synchrotron radiation optics: correlation of performance with metrology

    SciTech Connect

    Takacs, P.Z.; Hewitt, R.C.; Church, E.L.

    1986-06-01

    Image distortions produced by a cylinder mirror at the National Synchrotron Light Source are compared with performance predictions based on measurements of surface slope errors in the millimeter spatial period regime made with an optical surface profiler.

  15. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    NASA Astrophysics Data System (ADS)

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  16. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    SciTech Connect

    Nusrat, H; Pang, G; Ahmad, S; Keller, B; Sarfehnia, A

    2015-06-15

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillators (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident

  17. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines

    NASA Astrophysics Data System (ADS)

    Hoffman, David S.; Nehrir, Amin R.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2007-05-01

    An imaging lidar instrument with the capability of measuring the frequency response of a backscattered return signal up to 3.6 kHz is demonstrated. The instrument uses a commercial microchip frequency-doubled pulsed Nd:YAG laser with a 7.2 kHz pulse repetition rate, a pulse duration of less than 1 ns, and a pulse energy of greater than 10 μJ. A 15.2 cm commercial telescope is used to collect the backscattered signal, and a photomultiplier tube is used to monitor the scattered light. This instrument is designed for range- and angle-resolved optical detection of honeybees for explosives and land-mine detection. The instrument is capable of distinguishing between the scattered light from honeybees and other sources through the frequency content of the return signal caused by the wing-beat modulation of the backscattered light. Detection of honeybees near a bee hive and spatial mapping of honeybee densities near feeders are demonstrated.

  18. Time resolved study of light emitted by detonation arrival at the surface of high explosives in various environments

    SciTech Connect

    Bahl, K.L.; Von Holle, W.G.

    1988-03-24

    In search of a way to accurately measure time of arrival of detonation fronts, we have been using an electronic streak camera equipped with a light intensifier to record intensity-time histories of the light that is emitted when a detonation front emerges through the surface of high explosives in contact with various environments. Streak records at writing speeds up to 100 mm/..mu..s were obtained of detonations in air, argon, water and vacuum when the high explosive (HE) was either bare or covered with materials such as: aluminum silicofluoride (Al/sub 2/(SiF/sub 6/)/sub 3/), PETN powder, polymethyl methacrylate (PMM), glass, aluminum foils, transparent tape, black ink, potassium chloride crystals, sodium chloride crystals and lithium fluoride crystals. The result of this study is that we believe that we can measure the time of arrival of a detonation front at a bare HE surface in air to within a few nanoseconds. 12 refs., 10 figs., 1 tab.

  19. First-light LBT Nulling Interferometric Observations: Warm Exozodiacal Dust Resolved within a Few AU of η Crv

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Hinz, P. M.; Skemer, A. J.; Kennedy, G. M.; Bailey, V. P.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Danchi, W. C.; Absil, O.; Arbo, P.; Beichman, C.; Brusa, G.; Bryden, G.; Downey, E. C.; Durney, O.; Esposito, S.; Gaspar, A.; Grenz, P.; Haniff, C.; Hill, J. M.; Lebreton, J.; Leisenring, J. M.; Males, J. R.; Marion, L.; McMahon, T. J.; Montoya, M.; Morzinski, K. M.; Pinna, E.; Puglisi, A.; Rieke, G.; Roberge, A.; Serabyn, E.; Sosa, R.; Stapeldfeldt, K.; Su, K.; Vaitheeswaran, V.; Vaz, A.; Weinberger, A. J.; Wyatt, M. C.

    2015-01-01

    We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (~2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ~23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (~3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU).

  20. FIRST-LIGHT LBT NULLING INTERFEROMETRIC OBSERVATIONS: WARM EXOZODIACAL DUST RESOLVED WITHIN A FEW AU OF η Crv

    SciTech Connect

    Defrère, D.; Hinz, P. M.; Skemer, A. J.; Bailey, V. P.; Hoffmann, W. F.; Arbo, P.; Brusa, G.; Downey, E. C.; Durney, O.; Gaspar, A.; Grenz, P.; Kennedy, G. M.; Mennesson, B.; Bryden, G.; Millan-Gabet, R.; Beichman, C.; Danchi, W. C.; Absil, O.; Esposito, S.; Haniff, C.; and others

    2015-01-20

    We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81-12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1-2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (∼2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ∼23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5-1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (∼3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU)

  1. Fragmentation of mercury compounds under ultraviolet light irradiation

    NASA Astrophysics Data System (ADS)

    Kokkonen, E.; Löytynoja, T.; Hautala, L.; Jänkälä, K.; Huttula, M.

    2015-08-01

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  2. Fragmentation of mercury compounds under ultraviolet light irradiation

    SciTech Connect

    Kokkonen, E.; Hautala, L.; Jänkälä, K.; Huttula, M.; Löytynoja, T.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  3. Forward light scatter analysis of the eye in a spatially-resolved double-pass optical system

    PubMed Central

    Nam, Jayoung; Thibos, Larry N.; Bradley, Arthur; Himebaugh, Nikole; Liu, Haixia

    2011-01-01

    An optical analysis is developed to separate forward light scatter of the human eye from the conventional wavefront aberrations in a double pass optical system. To quantify the separate contributions made by these micro- and macro-aberrations, respectively, to the spot image blur in the Shark-Hartmann aberrometer, we develop a metric called radial variance for spot blur. We prove an additivity property for radial variance that allows us to distinguish between spot blurs from macro-aberrations and micro-aberrations. When the method is applied to tear break-up in the human eye, we find that micro-aberrations in the second pass accounts for about 87% of the double pass image blur in the Shack-Hartmann wavefront aberrometer under our experimental conditions. PMID:21503052

  4. Resolving the challenge of measuring ligand binding to membrane proteins by combining analytical ultracentrifugation and light scattering photometry.

    PubMed

    Doran, J D; Mohanty, A K; Fox, T

    2012-01-01

    Membrane proteins are attractive therapeutic targets, however the presence of detergents complicates biophysical binding measurements. Difficulties in determining quantitative dissociation constants for problematic membrane proteins were addressed by combining analytical ultracentrifugation and classical light scattering techniques. Validation of the algorithm used to calculate dissociation constants from sedimentation equilibrium experiments was demonstrated by analyzing binding data of the inhibitor Y-27632 to rho-kinase (ROCK). Kd's of 1.3 ± 0.7 and 52 ± 27 µM were calculated for ROCK constructs (S6-R415) and (M71-E379) respectively, consistent with previously published Ki's of 1.4 ± 0.1 and > 30 µM. Extension of the algorithm to membrane proteins required the collection of light scattering data to determine the partial specific volume, ν, for the membrane protein-detergent complex. Vitamin B12 binding to the bacterial protein btuB in octyl β-D-glucopyranoside (β-OG) illustrates the applicability of the method. A ν of 0.781 ml/g was determined for the btuB-β-OG complex. Incorporating this value into the algorithm generated a Kd of 7.0 ± 1.5 µM for the vitamin B12-btuB affinity. A Kd of 9.7 ± 2.7 µM was determined by equilibrium dialysis under similar experimental conditions. Successfully applying AUC to quantifying small-molecule ligand affinities to membrane proteins represents a significant advance to the field.

  5. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamlinefor photoelectron spectro-microscopies

    SciTech Connect

    Reininger R.; Hulbert L.; Johnson P.D.; Sadowski, J.T.; Starr, D.E.; Chubar, O.; Valla, T.; Vescovo, E.

    2012-02-13

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({micro}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {micro}m for ARPES and 0.5 {micro}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  6. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies

    SciTech Connect

    Reininger, R.; Hulbert, S. L.; Chubar, O.; Vescovo, E.; Johnson, P. D.; Valla, T.; Sadowski, J. T.; Starr, D. E.

    2012-02-15

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({mu}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {mu}m for ARPES and 0.5 {mu}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  7. Metrology of reflection optics for synchrotron radiation

    SciTech Connect

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community.

  8. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  9. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.

    PubMed

    Lynch, Patrick T; Troy, Tyler P; Ahmed, Musahid; Tranter, Robert S

    2015-02-17

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T5 < 1700 K, 3 < P5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques.

  10. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules using VUV Synchrotron Radiation

    SciTech Connect

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-01-28

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly-formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric-field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational stateresolved MATI spectra of N2 and O2 are reported and spectral characteristics are discussed in comparison with previously-reported threshold photoelectron spectroscopic studies. While MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser based sources, this work demonstrates that MATI spectroscopy performed with widely tunable VUV radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  11. Current crowding impact at spatially and temporarily resolved thermal characters of large-area AlGaInP light emitting diodes operating in dimming/flashing modes

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Podoltsev, A. D.; Malyutenko, O. Yu.

    2015-10-01

    By exploring spatially (μm-scale) and temporarily (ms-scale) resolved light and 8-12 μm thermal imaging analyses, we demonstrate how current crowding alternates the thermal parameters of light emitting diodes (LEDs) operating in dimming/flashing mode. For example, in AlGaInP/GaAs high-current (I ≥ 1 A) large-area (≥1 mm2) LEDs, we measured the thermal time constant (2.5 ms), heat diffusion length (110 μm), current crowding length (≤75 μm), thermal diffusivity (0.08 cm2/s) of GaAs substrate, and current-dependent thermal patterns taken from the front and sidewall facet of chips. We discovered that even at I = 100 mA emitting ships are already divided by two regions with different temperatures, small area high-temperature central regions (effective volumes) with high current density and larger area lower-temperature peripheral regions with much lower current density. The experiments evidence that the simplified computer simulations of dimming mode based on mean chip temperature, mean thermal resistance, and average current density, as well as temperature-independent ABC-modeling must be regarded with skepticism.

  12. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    PubMed

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  13. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    achievable emittance in the synchrotron light sources for short bunches.

  14. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  15. Simulations and synchrotron radiation from the relativistic jet base

    NASA Astrophysics Data System (ADS)

    Porth, O.

    The central acceleration region of active galactic nuclei (AGN) is simulated for a two-component spine and sheath jet. For the steady jet component we perform the spatially resolved polarized synchrotron transfer producing observables as radio maps, spectra and derived rotation measures. The wealth of detail obtained this way helps to assess the physical processes (such as internal Faraday rotation) and model assumptions.

  16. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope.

    PubMed

    Nickel, F; Gottlob, D M; Krug, I P; Doganay, H; Cramm, S; Kaiser, A M; Lin, G; Makarov, D; Schmidt, O G; Schneider, C M

    2013-07-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern.

  17. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    PubMed Central

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.

    2015-01-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825

  18. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    SciTech Connect

    Ajemian, Robert C.

    1995-01-01

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  19. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  20. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  1. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  2. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  3. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    SciTech Connect

    Wei, Jingsong; Wang, Rui

    2014-03-28

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thin film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.

  4. Design of the KHIMA synchrotron

    NASA Astrophysics Data System (ADS)

    Yim, Heejoong; An, Dong Hyun; Hahn, Garam; Park, Chawon; Kim, Geun-Beom

    2015-10-01

    The Korea Heavy Ion Medical Accelerator project (KHIMA) has been proposed as an ion-beam synchrotron facility for cancer therapy. The facility will be installed at Gijang, Busan with completion in 2017. The proposed maximum energy of the ions is 430 MeV/u (for carbon) to cover various tumor depths up to 30 cm. For the synchrotron design, we optimized the lattice configuration to fit the therapy. We discuss here the status of the synchrotron's design.

  5. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  6. National Synchrotron Light Source. Annual report 1992

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  7. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  8. Commissioning of the medical synchrotron HIMAC

    SciTech Connect

    Yamada, S.

    1994-12-31

    A heavy ion synchrotron complex, HIMAC, has been constructed for medical use at National Institute of Radiological Sciences (NIRS), Japan. The heavy ion therapy is adopted because it has the merits of the excellent dose localization and the high biological effectiveness on both aerobic and anaerobic cancer cells. The maximum energy of the HIMAC synchrotron is designed to be 800 MeV/u for light ions with q/A=1/2 so that the residual range of silicon ions reaches about 30 cm in human body. There are three treatment rooms two of which have a vertical and a horizontal beam line, respectively. The third treatment room is equipped with both beams lines. The beam tests of the accelerator system started in last November and is successfully completed in February. After about four months tests of the irradiation system including the biological experiments, the clinical trials started on June 21 using a 290 MeV/u carbon beam.

  9. Synchrotron masers and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.

    2017-02-01

    Fast radio bursts, with a typical duration of 1 ms and 1 Jy flux density at gigahertz frequencies, have brightness temperatures exceeding 1033 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Maser emission is a possibility. Under certain conditions, the synchrotron-stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light-crossing time limits, since there is no simple relation between the actual size of the source and the observed variability time-scale.

  10. On the implementation of computed laminography using synchrotron radiation

    SciTech Connect

    Helfen, L.; Pernot, P.; Elyyan, M.; Myagotin, A.; Mikulik, P.; Voropaev, A.; Di Michiel, M.; Baruchel, J.; Baumbach, T.

    2011-06-15

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  11. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  12. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  13. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  14. Synchrotrons for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Pullia, Marco G.

    Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.

  15. Synchrotron and collisional damping effects on runaway electron distributions

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Eidietis, N.; Pace, D.; Cooper, C.; Shiraki, D.; Commaux, N.; Hollmann, E.; Moyer, R.; Granetz, R.; Embreus, O.; Fulop, T.; Stahl, A.; Wilkie, G.; Aleynikov, P.; Brennan, D. P.; Liu, C.

    2016-10-01

    Validated models of runaway electron (RE) dissipation are required to confidently approve safe ITER Q = 10 operation. DIII-D experiments using quiescent REs are exploring the importance of synchrotron and collisional damping terms to RE dissipation. New time and energy-resolved measurements of RE bremsstrahlung hard X-ray (HXR) emission reveal stark differences between high and low energy REs as damping terms are varied. Previously reported anomalously high RE dissipation only applies to low energy REs. At high energy (where synchrotron effects are strongest) low synchrotron damping cases reach higher peak RE energy despite weaker particle confinement. Low-energy RE decay is observed concurrently with high-energy RE growth. RE dissipation models predict bump-on-tail distributions whose properties depend on the damping terms. Measured HXR spectra are very broad, as expected for bump-on-tail distributions. Work supported by the U.S. DOE under DE-FC02-04ER54698.

  16. DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL.

    PubMed

    Réfrégiers, Matthieu; Wien, Frank; Ta, Ha Phuong; Premvardhan, Lavanya; Bac, Stéphane; Jamme, Frederic; Rouam, Valerie; Lagarde, Bruno; Polack, François; Giorgetta, Jean Luc; Ricaud, Jean Paul; Bordessoule, Michel; Giuliani, Alexandre

    2012-09-01

    The new synchrotron-radiation circular-dichroism (SRCD) endstation on the UV-visible synchrotron beamline DISCO has been commissioned at the SOLEIL synchrotron. The design has been focused on preservation of a high degree of linear polarization at high flux and moderate resolving power covering the vacuum ultraviolet to visible spectral range (125-600 nm). The beam dimensions have been set to 4 mm × 4 mm at 1 nm bandwidth for lower sample degradation. The nitrogen-purged sample chamber fits three types of sample holders accommodating conventional round cell mounting, automated rotation of the samples, as well as a microfluidic set-up. Automated temperature-controlled data collection on microvolumes is now available to the biology and chemistry communities. Macromolecules including membrane proteins, soluble proteins, bio-nanotubes, sugars, DNA and RNAs are now routinely investigated.

  17. Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction.

    PubMed

    Katayama, Misaki; Miyahara, Ryota; Watanabe, Toshiki; Yamagishi, Hirona; Yamashita, Shohei; Kizaki, Terue; Sugawara, Yoshimi; Inada, Yasuhiro

    2015-09-01

    Apparatus for a technique based on the dispersive optics of X-ray absorption fine structure (XAFS) has been developed at beamline BL-5 of the Synchrotron Radiation Center of Ritsumeikan University. The vertical axis of the cross section of the synchrotron light is used to disperse the X-ray energy using a cylindrical polychromator and the horizontal axis is used for the spatially resolved analysis with a pixel array detector. The vertically dispersive XAFS (VDXAFS) instrument was designed to analyze the dynamic changeover of the inhomogeneous electrode reaction of secondary batteries. The line-shaped X-ray beam is transmitted through the electrode sample, and then the dispersed transmitted X-rays are detected by a two-dimensional detector. An array of XAFS spectra in the linear footprint of the transmitted X-ray on the sample is obtained with the time resolution of the repetition frequency of the detector. Sequential measurements of the space-resolved XAFS data are possible with the VDXAFS instrument. The time and spatial resolutions of the VDXAFS instrument depend on the flux density of the available X-ray beam and the size of the light source, and they were estimated as 1 s and 100 µm, respectively. The electrode reaction of the LiFePO4 lithium ion battery was analyzed during the constant current charging process and during the charging process after potential jumping.

  18. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik; Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver; Hertlein, Marcus P.; Tyliszczak, Tolek; Huse, Nils; and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  19. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    NASA Astrophysics Data System (ADS)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S.; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Zegkinoglou, Ioannis; Fraund, Matthew W.; Khurmi, Champak; Hertlein, Marcus P.; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.; Rude, Bruce S.; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ˜0.1 mm spatial resolution and ˜150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy Ep = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ˜9 ns at a pass energy of 50 eV and ˜1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  20. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  1. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  2. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  3. Laser Synchrotron Source (LSS)

    NASA Astrophysics Data System (ADS)

    Sprangle, Philip; Ting, Antonio; Esarey, Eric; Fisher, Amon; Mourou, Gerald

    1993-02-01

    The Laser Synchrotron Source (LSS) utilizes a high peak power or high average power laser to generate within a vacuum chamber a laser beam travelling in one direction to interact with an electron beam traveling in an opposite direction in order to generate high-power x-rays. A ring resonator formed by a plurality of mirrors directs the laser beam in a closed loop to impact with the electron beam to produce x-rays. Concave mirrors in the ring resonator focus the laser beam upon the point where the laser beam interacts with the electron beam to intensify the laser energy at that point. When a Radio Frequency Linear Accelerator (RF linac) is used to produce the electron beam, x-rays having a short pulse length are generated. When a betatron is used as an electron source, x-rays having a long pulse length are generated.

  4. Transfiguration of extracting mirror in synchrotron radiation system at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, GuoQing; Zhou, WeiMin; Ye, KaiRong; Leng, YongBin

    2011-12-01

    The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.

  5. Resolving Insurgencies

    DTIC Science & Technology

    2011-06-01

    Army, the Department of Defense, or the U.S. Government . Authors of Strategic Studies Institute (SSI) publica- tions enjoy full academic freedom...century, the author identifies four ways in which insurgencies have ended. Clear- cut victories for either the government or the insur- gents occurred...threatened government has resolved the conflict by co-opting the insurgents. After achieving a strategic stalemate and persuading the belligerents that

  6. Short X-ray pulses from third-generation light sources.

    PubMed

    Stepanov, A G; Hauri, C P

    2016-01-01

    High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50-100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.

  7. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    PubMed

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  8. Spatial Coherence of Synchrotron Radiation

    SciTech Connect

    Marchesini, S; Coisson, R

    2003-10-30

    Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

  9. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  10. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing thismore » dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  11. Synchrotron-Radiation-based Investigationsof the Electronic Structure of Pu

    SciTech Connect

    Tobin, J; Chung, B; Terry, J; Schulze, R; Farr, J; Heinzelman, K; Rotenberg, E; Shuh, D

    2004-09-27

    Synchrotron radiation from the Advanced Light Source has been used to investigate the electronic structure of {alpha}-Pu and {delta}-Pu. Measurements include core level and valence band photoelectron spectroscopy, Resonant Photoelectron Spectroscopy (REPES), and X-ray Absorption Spectroscopy (XAS).

  12. Mapping prehistoric ghosts in the synchrotron

    NASA Astrophysics Data System (ADS)

    Edwards, N. P.; Wogelius, R. A.; Bergmann, U.; Larson, P.; Sellers, W. I.; Manning, P. L.

    2013-04-01

    The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples.

  13. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  14. Cataclysmic Variables as Synchrotron Sources?

    SciTech Connect

    Harrison, Thomas E.

    2008-05-23

    Evidence is mounting that cataclysmic variables are weak sources of synchrotron emission. If true, it demonstrates that accretion powered interacting binaries produce such emission whether their primaries are white dwarfs, neutron stars, or black holes.

  15. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  16. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  17. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  18. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470nm) and methicillin-resistant Staphylococcus aureus.

    PubMed

    Bumah, Violet V; Aboualizadeh, Ebrahim; Masson-Meyers, Daniela S; Eells, Janis T; Enwemeka, Chukuka S; Hirschmugl, Carol J

    2017-02-01

    Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm(-1)), lipids (1743, 1409cm(-1)), and nucleic acids region of the spectrum (1060, 1087cm(-1)) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at νasym PO(2-) band (from 1228 to 1238cm(-1)), DNA backbone (from 970 to 966cm(-1)) and base pairing vibration of DNA (from 1717 to 1712cm(-1)) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover

  19. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  20. Laser-synchrotron hybrid experiments: ``A photon to tickle, a photon to poke``

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R.; Shuker, R.; O`Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A.; Carr, G.L.; Williams, G.P.; Hirschmugl, C.J.; Etemad, S.; Inam, A.; Tanner, D.B.

    1991-12-31

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  1. Laser-synchrotron hybrid experiments: A photon to tickle, a photon to poke''

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R. ); Shuker, R. ); O'Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A. ); Carr, G.L. . Corporate Research Center); Williams, G.P.; Hirschmugl, C.J

    1991-01-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  2. A high-peak-power UV picosecond-pulse light source based on a gain-switched 1.55 microm laser diode and its application to time-resolved spectroscopy of blue-violet materials.

    PubMed

    Sato, Aya; Kono, Shunsuke; Saito, Kyosuke; Sato, Ki-ichi; Yokoyama, Hiroyuki

    2010-02-01

    We generated sub-kilowatt peak-power and 6-ps duration 390-nm optical pulses via the fourth harmonic generation of amplified optical output from a gain-switched 1.55-microm laser diode. We obtained a power-conversion-efficiency of 12% from 1.55-microm to 390-nm light, and subsequently applied the ultraviolet pulses to time-resolved spectroscopy of blue-violet luminescent materials, including a Coumarine dye solution and nitride semiconductor materials using single-photon and two-photon excitation schemes.

  3. Transvenous coronary angiography in humans with synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  4. A new principle of coherence in a synchrotron source

    NASA Astrophysics Data System (ADS)

    Singal, Ashok Kumar

    A synchrotron source with a random distribution of velocity vectors for radiating charges will assumedly have no systematic phase relation between radiation fields from individual charges and would thereby give rise to an incoherent emission. It is known that synchrotron radiation mechanism does not allow a MASER type coherent emission. Here we show that a partial coherence due to antenna mechanism can be inherently present in any compact synchrotron source. Synchrotron radiation at an observing frequency selectively arises from relativistic electrons having a narrow range of Lorentz factors and moving in a cone of a narrow opening angle with respect to the line of sight to the observer, and thus having similar velocity vectors. As we show, even opposite charges moving within the cone augment each others radiation fields, contrary to what may be normally expected. The coherence volume grows with wavelength λ as ∝λ^{3}, giving rise to the possibility of coherence occurring at wavelengths larger than a certain value λ_{p} in a source. The coherence resolves many long standing astrophysical problems where theoretical predictions were not borne out by the observational data. For example, the spectrum gets enhanced by a factor ∝λ^{3} in the self-absorbed region. This resolves the observational puzzle of a flat spectrum instead of the theoretical steep slope - known in literature as a ``cosmic conspiracy''. It further explains the brightness temperatures observed in space VLBI up to two orders of magnitude higher than the theoretical incoherent synchrotron limit ˜10^{11.5} K. A simple model for the variability, based on an injection of large number of particles resulting in coherence, explains the observed range of variability time scales (from less than a day to years) and the inferred extremely high brightness temperatures, up to ˜10^{18-19} K, millions of time more than the theoretical limit. Coherence also explains the correlation observed in the optical

  5. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  6. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  7. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    PubMed Central

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-01-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source. PMID:28181544

  8. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy.

    PubMed

    Hoesch, M; Kim, T K; Dudin, P; Wang, H; Scott, S; Harris, P; Patel, S; Matthews, M; Hawkins, D; Alcock, S G; Richter, T; Mudd, J J; Basham, M; Pratt, L; Leicester, P; Longhi, E C; Tamai, A; Baumberger, F

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm(2), and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 10(13) ph/s and well below 3 meV for high resolution spectra.

  9. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoesch, M.; Kim, T. K.; Dudin, P.; Wang, H.; Scott, S.; Harris, P.; Patel, S.; Matthews, M.; Hawkins, D.; Alcock, S. G.; Richter, T.; Mudd, J. J.; Basham, M.; Pratt, L.; Leicester, P.; Longhi, E. C.; Tamai, A.; Baumberger, F.

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm2, and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ṡ 1013 ph/s and well below 3 meV for high resolution spectra.

  10. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  11. Spin echo in synchrotrons

    NASA Astrophysics Data System (ADS)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  12. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  13. Bystander Effects During Synchrotron Imaging Procedures?

    NASA Astrophysics Data System (ADS)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  14. Time-resolved photoelectron imaging with a femtosecond vacuum-ultraviolet light source: Dynamics in the A˜ /B˜ - and F˜ -bands of SO2

    NASA Astrophysics Data System (ADS)

    Svoboda, Vít; Ram, Niraghatam Bhargava; Rajeev, Rajendran; Wörner, Hans Jakob

    2017-02-01

    Time-resolved photoelectron imaging is demonstrated using the third harmonic of a 400-nm femtosecond laser pulse as the ionization source. The resulting 133-nm pulses are combined with 266-nm pulses to study the excited-state dynamics in the A˜ /B˜ - and F˜ -band regions of SO2. The photoelectron signal from the molecules excited to the A˜ /B˜ -band does not decay for at least several picoseconds, reflecting the population of bound states. The temporal variation of the photoelectron angular distribution (PAD) reflects the creation of a rotational wave packet in the excited state. In contrast, the photoelectron signal from molecules excited to the F˜ -band decays with a time constant of 80 fs. This time constant is attributed to the motion of the excited-state wave packet out of the ionization window. The observed time-dependent PADs are consistent with the F˜ band corresponding to a Rydberg state of dominant s character. These results establish low-order harmonic generation as a promising tool for time-resolved photoelectron imaging of the excited-state dynamics of molecules, simultaneously giving access to low-lying electronic states, as well as Rydberg states, and avoiding the ionization of unexcited molecules.

  15. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  16. Towards synchrotron-based nanocharacterization

    NASA Astrophysics Data System (ADS)

    Bleuet, Pierre; Arnaud, Lucile; Biquard, Xavier; Cloetens, Peter; Doyen, Lise; Gergaud, Patrice; Lamontagne, Patrick; Lavayssière, Maylis; Micha, Jean-Sébastien; Renault, Olivier; Rieutord, François; Susini, Jean; Ulrich, Olivier

    2009-09-01

    The advent of 3rd generation synchrotron sources coupled with high efficiency x-ray focusing optics opened new nanocharacterization possibilities. This paper is an overview of synchrotron-based techniques that may be of interest for nanotechnology researchers. Although not exhaustive, it includes a general background of synchrotron principle and main x-ray interactions before addressing nanoimaging possibilities. Three-dimensional (3D) hard x-ray multimodal tomography is now doable that allows producing 3D morphological, chemical and crystalline images with a sub-100 nm resolution. Although the resolution is still limited with respect to electron imaging, it presents attractive features like depth resolution and non-destructive exam. Besides imaging, diffraction also allows strain determination within microstructures and is illustrated here on 100 nm copper lines. Surface analysis is illustrated through X-ray Photoelectron Emission Microscopy (XPEEM).

  17. Contact microscopy with synchrotron radiation

    SciTech Connect

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  18. Optimized IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2015-09-01

    Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

  19. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  20. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  1. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C.

    1991-12-31

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  2. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C. . Dept. of Applied Physics)

    1991-01-01

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  3. Impact system for ultrafast synchrotron experiments

    SciTech Connect

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-15

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 {+-} 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  4. Three energy computed tomography with synchrotron radiation

    SciTech Connect

    Menk, R.H.; Thomlinson, W.; Zhong, Z.; Charvet, A.M.; Arfelli, F. |; Chapman, L.

    1997-09-01

    Preliminary experiments for digital subtraction computed tomography (CT) at the K-edge of iodine (33.1 keV) were carried out at SMERF (Synchrotron Medical Research Facility X17B2) at the National Synchrotron Light Source, Brookhaven National Laboratory. The major goal was to evaluate the availability of this kind of imaging for in vivo neurological studies. Using the transvenous coronary angiography system, CT images of various samples and phantoms were taken simultaneously at two slightly different energies bracketing the K-absorption edge of iodine. The logarithmic subtraction of the two images resulted in the contrast enhancement of iodine filled structures. An additional CT image was taken at 99.57 keV (second harmonic of the fundamental wave). The third energy allowed the calculation of absolute iodine, tissue and bone images by means of a matrix inversion. A spatial resolution of 0.8 LP/mm was measured in single energy images and iodine concentrations down to 0.082 mg/ml in a 1/4 diameter detail were visible in the reconstructed subtraction image.

  5. Impact system for ultrafast synchrotron experiments

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Iverson, A. J.; Luo, S. N.; Fezzaa, K.; Hooks, D. E.

    2013-01-01

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  6. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2015-03-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Although South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give thousands of African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several sub-Saharan African countries. An interim Steering Committee has been formed. SESAME, now nearing completion in Jordan as a collaboration of 9 countries in the Middle East (www.sesame.org.jo) may be the example followed. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions''. It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  7. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Evans-Lutterodt, Kenneth; Mtingwa, Sekazi; Wague, Ahmadou; Tessema, Guebre; Winick, Herman

    2015-04-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Even though South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give many more African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several African countries. An interim Steering Committee has been formed, with a mandate to plan a conference. SESAME, now nearing completion in Jordan, is a collaboration of 9 countries in the Middle East (www.sesame.org.jo) is an example to follow. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions.'' It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  8. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  9. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  10. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  11. SAMRAI: A novel variably polarized angle-resolved photoemission beamline in the VUV region at UVSOR-II

    SciTech Connect

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito; Katoh, Masahiro; Sakai, Masahiro; Nakamura, Eiken; Kondo, Naonori; Horigome, Toshio; Hayashi, Kenji; Goto, Tomohiro; Ejima, Takeo; Soda, Kazuo

    2010-05-15

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directly led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.

  12. Time and space resolved measurements of visible-light and soft x-ray emission from foam z-pinch plasmas and implosions

    SciTech Connect

    Lazier, S.E.; Barber, T.L.; Derzon, M.S.; Kellogg, J.W.

    1997-01-01

    We have developed a time-resolved imaging capability to make measurements of the emission profile or spot size for low density foam z-pinch targets on the Saturn accelerator. By lens-coupling visible emission from the z-pinch target to an array of fiber optics, we obtained an emission profile as a function of time with radial resolution of 200 {mu}m. To measure the emission at temperatures greater than {approx}40 eV, x rays from the source were slit-imaged or pinhole-imaged onto a scintillator. The emission was filtered to select 50{endash}80, 200{endash}280, and 400{endash}450 eV x rays. Nonuniformities were observed in both visible and x-ray emissions for solid foam targets. For wire array on foam targets, on-axis x-ray emission-spot implosion velocities calculated for the three spectral regions differed from the mass-implosion velocity. We describe the diagnostics, the image-unfold process, and results from the instrument for both visible and x-ray measurements. {copyright} {ital 1997 American Institute of Physics.}

  13. SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Tamura, Yoichi; Kohno, Kotaro; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Ishii, Shun; Ivison, Rob J.; Izumi, Takuma; Kawabe, Ryohei; Kodama, Tadayuki; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Ohta, Kouji; Rujopakarn, Wiphu; Tadaki, Ken-ichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2016-10-01

    We present a multiwavelength analysis of five submillimeter sources (S1.1mm = 0.54-2.02 mJy) that were detected during our 1.1 mm deep continuum survey in the Subaru/XMM-Newton Deep Survey Field (SXDF)-UDS-CANDELS field (2 arcmin2, 1σ = 0.055 mJy beam-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ˜ 4.1^{+5.4}_{-3.0}Jy deg-2, which corresponds to ˜ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multiwavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR˜eq 1× 10^{12} L_{⊙} or SFR ≃ 100 M⊙ yr-1). By fitting the spectral energy distributions at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (zphoto) and stellar masses (M*): zphoto ≃ 1.3-2.5, M* ≃ (3.5-9.5) × 1010 M⊙. We also derived their star formation rates (SFRs) and specific SFRs as ≃30-200 M⊙ yr-1 and ≃0.8-2 Gyr-1, respectively. These values imply that they are main sequence star-forming galaxies.

  14. Optical components and systems for synchrotron radiation: an introduction

    SciTech Connect

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance.

  15. Time Resolved X-Ray Diffraction of Reactive Solids Under Dynamic Loadings

    NASA Astrophysics Data System (ADS)

    Yoo, Choong-Shik

    2015-06-01

    We present novel time-resolved (TR) x-ray diffraction and TR Raman spectroscopy capable of probing structural and chemical evolutions of solids undergoing chemical and phase transformations. These methods are applicable to a wide range of dynamic experiments to study both single event phenomena of solids under thermal, electric or mechanical impact conditions and non-single event phenomena under dynamic-diamond anvil cell (d-DAC) and high frequency pulse (or ramp) laser-heated DAC. In this talk, relevant technology developments are described with several examples of our recent studies on reactive metals and dense molecular systems, which are synergistic to many proposed activities to develop dynamic synchrotron x-ray diffraction capabilities centered at advanced third and fourth generation light sources.

  16. Intramolecular electron diffraction in vibrationally resolved K-shell photoionization of methane

    NASA Astrophysics Data System (ADS)

    Plésiat, Etienne; Argenti, Luca; Kukk, Edwin; Miron, Catalin; Ueda, Kiyoshi; Decleva, Piero; Martín, Fernando

    2012-02-01

    Current techniques based on x-ray or electron diffraction are successfully employed for structure determination in condensed matter but are sometimes limited when applied to low density media such as the gas phase. Here we show that vibrationally resolved photoelectron spectroscopy based on x rays generated by third generation synchrotron light sources can be used to infer the structure of isolated molecules in a simple and efficient way. In particular, we show that vibrational ratios obtained from inner shell C 1s photoelectron spectroscopy of isolated methane molecules exhibit pronounced oscillations that are the fingerprints of electron diffraction by the surrounding atomic centers, thus providing the necessary information for the determination of the molecular geometry.

  17. Exploration of synchrotron Mossbauer micrscopy with micrometer resolution: forward and a new backscattering modality on natural samples

    SciTech Connect

    Yan, L.; Zhao, J.; Toellner, T.S.; Divan, R.; Xu, S.; Cai, Z.; Boesenberg, J.S.; Freidrich, J.M.; Cramer, S.P.; Alp, E.E.

    2012-01-01

    New aspects of synchrotron Moessbauer microscopy are presented. A 5 {micro}m spatial resolution is achieved, and sub-micrometer resolution is envisioned. Two distinct and unique methods, synchrotron Moessbauer imaging and nuclear resonant incoherent X-ray imaging, are used to resolve spatial distribution of species that are chemically and magnetically distinct from one another. Proof-of-principle experiments were performed on enriched {sup 57}Fe phantoms, and on samples with natural isotopic abundance, such as meteorites.

  18. Interplay of point defects, extended defects, and carrier localization in the efficiency droop of InGaN quantum wells light-emitting diodes investigated using spatially resolved electroluminescence and photoluminescence

    SciTech Connect

    Lin, Yue; Zhang, Yong Su, Liqin; Liu, Zhiqiang; Wei, Tongbo; Zhang, Jihong; Chen, Zhong

    2014-01-14

    We perform both spatially resolved electroluminescence (SREL) as a function of injection current and spatially resolved photoluminescence (SRPL) as a function of excitation power on InGaN quantum well blue light-emitting diodes to investigate the underlying physics for the phenomenon of the external quantum efficiency (EQE) droop. SREL allows us to study two most commonly observed but distinctly different droop behaviors on a single device, minimizing the ambiguity trying to compare independently fabricated devices. Two representative devices are studied: one with macroscopic scale material non-uniformity, the other being macroscopically uniform, but both with microscopic scale fluctuations. We suggest that the EQE–current curve reflects the interplay of three effects: nonradiative recombination through point defects, carrier localization due to either In composition or well width fluctuation, and nonradiative recombination of the extended defects, which is common to various optoelectronic devices. By comparing SREL and SRPL, two very different excitation/detection modes, we show that individual singular sites exhibiting either particularly strong or weak emission in SRPL do not usually play any significant and direct role in the EQE droop. We introduce a two-level model that can capture the basic physical processes that dictate the EQE–current dependence and describe the whole operating range of the device from 0.01 to 100 A/cm{sup 2}.

  19. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    SciTech Connect

    Debreczeny, Martin Paul

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  20. CCD-based detector for protein crystallography with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.; Stanton, M.

    1990-11-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 109 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512×512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of a 4×4 pixel resolution element, comparable in size to a diffraction peak, was 104. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1° frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1° frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a = 275 Å) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources.

  1. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  2. Light-induced structural phase behaviour of metal nanoparticle materials

    NASA Astrophysics Data System (ADS)

    Plech, A.; Kotaidis, V.; Wulff, M.; Dahmen, C.; von Plessen, G.

    2005-01-01

    We have investigated the structural dynamics of gold nanoparticles induced by femtosecond light excitation. Structure evolution in both embedded particles (glass matrix or liquid water suspension) and quasi-free particles adsorbed on a solid surface is analyzed. By use of stroboscopic laser pump- x-ray probe techniques the structural relaxations have been resolved on the 100 ps time scale at the European Synchrotron Radiation Facility. Several methods including powder scattering, liquid scattering and small angle scattering serve to resolve microscopic and mesoscopic length scales of the composite system. The thermal response includes the heating, lattice melting, explosive solvent evaporation and solvent cooling subsequent to the laser flash excitation. Nonthermal effects are observed with femtosecond excitation. They are attributed to ablation from the particle and particle explosion at strong nonequilibrium conditions. The observations can form a complete picture of the energy dissipation and phase transitions involved in nanoscale composites.

  3. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  4. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  5. Color changes in modern and fossil teeth induced by synchrotron microtomography.

    PubMed

    Richards, Gary D; Jabbour, Rebecca S; Horton, Caroline F; Ibarra, Caitlin L; MacDowell, Alastair A

    2012-10-01

    Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.

  6. Laser undulated synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Baine, Michael A. J.

    2000-07-01

    This work will address the practicality of using lasers to undulate electron beams for the production of tunable, short pulsed, monochromatic, synchrotron radiation. An x-ray source based on this mechanism, referred to as a Laser Synchrotron Source (LSS), has several attractive features: (1)x-rays can be generated with an electron beam whose energy is a factor of 100 smaller than competing synchrotron sources that use magnetic undulators, (2)the pulse length can be made extremely short (<100fs) by using short pulsed lasers, (3)the polarization can be controlled by changing the polarization of the incident laser, (4)the bandwidth can be quite narrow (<1%), and (5)the resultant x-rays are well collimated (θ < .1 rad for γ > 10) in the direction of the electron beam. These factors combine to produce one of the brightest (>1018 J/s mrad mm2 1%BW) sources of x-rays available. The most attractive feature, however, is its compact size and low cost, which suit it well for applications in Medicine, Biology, and Physics. The problem will be treated in two parts: analysis of nonlinear Thomson scattering for arbitrary interaction geometry of intense lasers and relativistic electron beams, and description of a proof-of-principle experiment carried out at the Naval Research Laboratory.

  7. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  8. Development of a tunable UV laser system synchronizing precisely with synchrotron radiation pulses from UVSOR.

    PubMed

    Mizutani, M; Tokeshi, M; Hiraya, A; Mitsuke, K

    1997-01-01

    A mode-locked Ti:sapphire laser is made to oscillate at the frequency of the UVSOR storage ring, 90.115 MHz, in a multi-bunch operation mode. The third harmonic of the laser is available in the wavelength range 243-280 nm. Synchrotron radiation from an undulator is monochromated by a grazing-incidence monochromator and introduced coaxially with the laser. The temporal profile of the photon pulses is monitored in situ by a luminescing substance/photomultiplier combination. The delay timing between the laser and synchrotron radiation can be changed from 0 to 11 ns by adjusting an electronic module that provides phase-locked loop stabilization of the laser pulse. The reliability and feasibility of this laser-synchrotron radiation combination technique are demonstrated by applying pump-probe experiments to two physical systems. The first system is photodissociation of iodomethane (CHA) with a laser photon, followed by photoionization of I and CH3 fragments with synchrotron radiation. The second, two-photon ionization of He atoms, is studied as the prototype of a time-resolved experiment. The He+ signal counts as a function of the laser-synchrotron radiation delay are found to be enhanced in a narrow time window, which can be interpreted in terms of a short lifetime of the resonant state, He*(1s2p 1P), produced by primary synchrotron radiation excitation.

  9. Transmission grating goniometer elements for use at synchrotron radiation facilities

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Lindau, I.

    1982-04-01

    In this paper we show analytically that accurate detection of the positions of the diffracted orders from a holographic transmission grating can be used to compute the angle of incidence of the light onto the grating, irrespective of the light's frequency. Since such a device may be employed as a goniometer, and since beam height may be measured independently, we show that such grating may be employed as beam attitude/altitude detectors at synchrotron radiation facilities where beam steering and positioning are problematical.

  10. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE PAGES

    Mueller, C.; Marx, A.; Epp, S. W.; ...

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  11. Time-and-state resolved spectroscopy, diffraction, and circular dichroism in core photoelectron emission from clean and oxygen-covered W(110)

    SciTech Connect

    Ynzunza, Ramon Xavier

    1998-10-01

    Several aspects of core-level photoelectron emission fi-om solid surfaces as excited by high-brightness variable-polarization synchrotrons radiation have been studied with a new beamline and experimental station at the Advanced Light Source in Berkeley. These include: resolution of different chemical states and site types via high-resolution photoelectron spectroscopy (PS), the use of state-resolved photoelectron difllaction (PD) to determine local atomic geometries, and the observation and analysis of circular dichroism (CD) effects in photoelectron diffraction. These methods have been applied to clean and oxygen-exposed surfaces of W(110). Full-solid-angle photoelectron diffraction from clean W(110) was measured, with the surface and bulk atoms being clearly resolved.

  12. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  13. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS.

  14. Inner-shell photoemission from atoms and molecules using synchrotron radiation

    SciTech Connect

    Lindle, D.W.

    1983-12-01

    Photoelectron spectroscopy, in conjunction with synchrotron radiation, has been used to study inner-shell photoemission from atoms and molecules. The time structure of the synchrotron radiation permits the measurements of time-of-flight (TOF) spectra of Auger and photoelectrons, thereby increasing the electron collection efficiency. The double-angle TOF method yielded angle-resolved photoelectron intensities, which were used to determine photoionization cross sections and photoelectron angular distributions in several cases. Comparison to theoretical calculations has been made where possible to help explain observed phenomena in terms of the electronic structure and photoionization dynamics of the systems studied. 154 references, 23 figures, 7 tables.

  15. Experimental Studies on Coherent Synchrotron Radiation at an Emittance Exchange Beamline

    SciTech Connect

    Thangaraj, J.C.T.; Thurman-Keup, R.; Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Santucci, J.; /Fermilab

    2012-04-01

    One of the goals of the Fermilab A0 photoinjector is to experimentally investigate the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy chirped beam.

  16. Time Resolved Imaging of Longitudinal Modulations in Intense Beams

    NASA Astrophysics Data System (ADS)

    Tian, Kai

    2007-11-01

    The longitudinal evolution of high intensity beams is not well understood despite its importance to the success of such applications as free electron lasers and light sources, heavy ion inertial fusion, and high energy colliders. For example any amplification of current modulations in an FEL photoinjector can lead to unwanted coherent synchrotron radiation further downstream in compression chicanes or bends. A significant factor usually neglected is the coupling to the transverse dynamics which can strongly affect the longitudinal evolution. Previous experiments at the University of Maryland have revealed much about the longitudinal physics of space-charge dominated beams by monitoring the evolution of longitudinal perturbations. For the first time, experimental results are presented here which reveal the effect of longitudinal perturbations on the transverse beam distribution, with the aid of several new diagnostics that capture detailed time-resolved density images. A longitudinal modulation of the particle density is deliberately generated at the source, and its evolution is tracked downstream using a number of diagnostics such as current monitors, high-resolution energy analyzers, as well as the transverse imaging devices. The latter consist of a high-resolution 16-bit gated camera coupled with very fast emitters such as prompt optical transition radiation (OTR) from an alumina screen, or fast Phosphor screens with 3-ns time resolution. Simulations using the particle-in-cell code WARP are applied to cross-check the experimental results. These experiments and especially the comparisons to simulation represent significant progress towards understanding the longitudinal physics of intense beams.

  17. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  18. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    SciTech Connect

    Fiorito, R. B.; Zhang, H. D.; Corbett, W. J.; Fisher, A. S.; Mok, W. Y.; Tian, K.; Douglas, D.; Wilson, F. G.; Zhang, S.; Mitsuhashi, T. M.; Shkvarunets, A. G.

    2012-11-01

    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  19. New synchrotron powder diffraction facility for long-duration experiments.

    PubMed

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  20. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  1. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  2. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    SciTech Connect

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; Dooryhee, Eric; Conley, Ray

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.

  3. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements.

    PubMed

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; Dooryhee, Eric; Conley, Ray

    2016-11-01

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2-10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.

  4. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  5. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    SciTech Connect

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  6. The SAGA Light Source

    SciTech Connect

    Yoshida, K.; Iwasaki, Y.; Koda, S.; Okajima, S.; Setoyama, H.; Takabayashi, Y.; Tomimasu, T.; Yoshimura, D.; Ohgaki, H.

    2007-01-19

    Saga prefectural government operates a synchrotron light facility mainly for industrial applications of the synchrotron light. The facility comprises a 1.4 GeV storage ring, a 250 MeV linac as an electron injector and beamlines. The lattice of the storage ring is designed to perform as small emittance as 25 nm-radian and has long straight sections of 2.9 m length for installing insertion devices. Three beam lines have been prepared by Saga prefectural government and one by Saga University.

  7. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Mortier, Jérémy; Philippov, Alexander A.

    2016-11-01

    Polarization is a powerful diagnostic tool to constrain the site of the high-energy pulsed emission and particle acceleration in gamma-ray pulsars. Recent particle-in-cell simulations of pulsar magnetosphere suggest that high-energy emission results from particles accelerated in the equatorial current sheet emitting synchrotron radiation. In this study, we re-examine the simulation data to compute the phase-resolved polarization properties. We find that the emission is mildly polarized and that there is an anti-correlation between the flux and the degree of linear polarization (on-pulse: ˜15 per cent, off-pulse: ˜30 per cent). The decrease of polarization during pulses is mainly attributed to the formation of caustics in the current sheet. Each pulse of light is systematically accompanied by a rapid swing of the polarization angle due to the change of the magnetic polarity when the line of sight passes through the current sheet. The optical polarization pattern observed in the Crab can be well-reproduced for a pulsar inclination angle ˜60° and an observer viewing angle ˜130°. The predicted high-energy polarization is a robust feature of the current sheet emitting scenario which can be tested by future X-ray and gamma-ray polarimetry instruments.

  8. The Organic LED Surface:. a Synchrotron Radiation Photoemission Study

    NASA Astrophysics Data System (ADS)

    Pi, Tun-Wen; Yu, T. C.

    Tris(8-hydroxyquinolato) aluminum (Alq3), a prototypical molecule for organic light-emitting devices, has been studied via synchrotron radiation photoemission to investigate (1) the surface electronic structure of the molecules at room temperature and at elevated temperatures, (2) adsorption onto the inorganic Si(001)-2×1 surface, and (3) doping with the alkaline metal Mg. For case (1), three chemical environments of carbon are resolved. Moreover, the shake-up satellite structures are detected in all the N 1s, C 1s, O 1s, and Al 2p core-level spectra, but with different magnitudes. Annealing allows for a charge redistribution within Alq3 itself. As to case (2), the organic molecules not only passivate the dangling bonds, but also rupture the dimer bonds. The wave function of the surface dangling bonds and of the pyridyl side of an 8-quinolinol ligand overlaps greatly so that charge is polarized towards, the organic adlayer. However, the polarization diminishes at greater coverage. With regard to case (3), the N 1s core-level spectra appear as an Mg-induced charge-transfer component with a binding energy lower than the original component. This new component grows gradually in intensity with increasing concentration of the dopant. Moreover, Mg also affects the O 1s core, as manifested by a component lying at a +1.09 eV higher binding energy than the original component. The Mg 2p core-level spectra, although rather broad, exhibit a shift toward a lower binding energy with increasing Mg vapor. Upon examining all these experimental results, we propose that Mg in the surface Alq3 molecules forms clusters. Each cluster attaches to a pyridyl ring, affecting not only the nitrogen atom at that ring, but also the oxygen atom in the adjacent phenoxide ring. The depleted charge in the affected oxygen then flows about its adherent ligand and resides on the pyridyl ring at that ligand, resulting in a high Alq3 anion state.

  9. Multiple energy synchrotron biomedical imaging system

    NASA Astrophysics Data System (ADS)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  10. Transverse beam size measurement system using visible synchrotron radiation at HLS II

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Sun, Bao-Gen; Yang, Yong-Liang; Lu, Ping; Tang, Lei-Lei; Wu, Fang-Fang; Cheng, Chao-Cai; Zheng, Jia-Jun; Li, Hao

    2016-09-01

    An interferometer system and an imaging system using visible synchrotron radiation (SR) have been installed in the Hefei Light Source (HLS) II storage ring. Simulations of these two systems are given using Synchrotron Radiation Workshop (SRW) code. With these two systems, the beam energy spread and the beam emittance can be measured. A detailed description of these two systems and the measurement method is given in this paper. The measurement results of beam size, emittance and energy spread are given at the end. Supported by National Natural Science Foundation of China (11105141, 11175173) and Upgrade Project of Hefei Light Source

  11. Sirepo for Synchrotron Radiation Workshop

    SciTech Connect

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  12. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  13. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  14. Nuclear dynamical diffraction using synchrotron radiation

    SciTech Connect

    Brown, Dennis Eugene

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 11/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  15. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  16. Spin-Orbit Effects in Spin-Resolved L2,3 Core Level Photoemission of 3d Ferromagnetic Thin Films

    SciTech Connect

    Komesu, T; Waddill, G D; Yu, S W; Butterfield, M; Tobin, J G

    2007-10-02

    We present spin-resolved 2p core level photoemission for the 3d transition metal films of Fe and Co grown on Cu(100). We observe clear spin asymmetry in the main 2p core level photoemission peaks of Fe and Co films consistent with trends in the bulk magnetic moments. The spin polarization can be strongly enhanced, by variation of the experimental geometry, when the photoemission is undertaken with circularly polarized light, indicating that spin-orbit interaction can have a profound in spin polarized photoemission. Further spin polarized photoemission studies using variable circularly polarized light at high photon energies, high flux are indicated, underscoring the value of synchrotron measurements at facilities with increased beam stability.

  17. Imaging using synchrotron radiation for forensic science

    NASA Astrophysics Data System (ADS)

    Cervelli, F.; Carrato, S.; Mattei, A.; Jerian, M.; Benevoli, L.; Mancini, L.; Zanini, F.; Vaccari, L.; Perucchi, A.; Aquilanti, G.

    2011-03-01

    Forensic science is already taking benefits from synchrotron radiation (SR) sources in trace evidence analysis. In this contribution we show a multi-technique approach to study fingerprints from the morphological and chemical point of view using SR based techniques such as Fourier transform infrared microspectroscopy (FTIRMS), X-ray fluorescence (XRF), X-ray absorption structure (XAS), and phase contrast microradiography. Both uncontaminated and gunshot residue contaminated human fingerprints were deposited on lightly doped silicon wafers and on poly-ethylene-terephthalate foils. For the uncontaminated fingerprints an univariate approach of functional groups mapping to model FT-IRMS data was used to get the morphology and the organic compounds map. For the gunshot residue contaminated fingerprints, after a preliminary elemental analysis using XRF, microradiography just below and above the absorption edge of the elements of interest has been used to map the contaminants within the fingerprint. Finally, XAS allowed us to determine the chemical state of the different elements. The next step will be fusing the above information in order to produce an exhaustive and easily understandable evidence.

  18. A water-cooled mirror system for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    DiGennaro, Richard; Gee, Bruce; Guigli, Jim; Hogrefe, Henning; Howells, Malcolm; Rarback, Harvey

    1988-04-01

    This paper describes the design and performance of a directly-cooled soft X-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance . Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T miniundulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with a peak absorbed power density of 520 W/cm 2. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract #DE-AC03-76SF00098.

  19. A water-cooled mirror system for synchrotron radiation

    SciTech Connect

    DiGennaro, R.; Gee, B.; Guigli, J.; Hogrefe, H.; Howells, M.; Rarback, H.

    1987-06-01

    This paper describes the design and performance of a directly-cooled soft x-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance. Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T mini-undulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with peak absorbed power density of 520 W/cm/sup 2/. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. 11 refs., 8 figs.

  20. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  1. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  2. Rotationally resolved fluorescence as a probe of molecular photoionization dynamics

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-11-01

    We present rotationally resolved data for the v'=0 and v'=1 levels of N2+(B 2Σu+) produced via 2σu-1 photoionization of N2. The data are obtained over a broad photon energy range (19≤hνexc≤35 eV). This is made possible by using synchrotron radiation excitation in conjunction with dispersed fluorescence detection. The results exhibit both resonant and nonresonant effects.

  3. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  4. Recent Research and Progress in Food, Feed and Nutrition with Advanced Synchrotron-based SR-IMS and DRIFT Molecular Spectroscopy.

    PubMed

    Liu, Na; Yu, Peiqiang

    2016-01-01

    Ultraspatially resolved synchrotron radiation based infrared microspectroscopy is able to detect the structure features of a food or feed tissue at cellular and molecular levels. However, to date, this advanced synchrotron-based technique is almost unknown to food and feed scientists. The objective of this article was to introduce this novel analytical technology, ultra-spatially resolved synchrotron radiation based infrared microspectroscopy (SR-IMS) to food, feed, conventional nutrition, and molecular nutrition scientists. The emphasis of this review focused on the following areas: (1) Principles of molecular spectroscopy for food and feed structure research, such as protein molecular structure, carbohydrate conformation, heating induced protein structure changes, and effect of gene-transformation on food and feed structure; (2) Molecular spectral analysis methodology; (3) Biological applications of synchrotron SR-IMS and DRIFT spectroscopy; and (4) Recent progress in food, feed and nutrition research program. The information described in this article gives better insight in food structure research progress and update.

  5. Time-resolved x-ray crystallography of heme proteins

    PubMed Central

    Royer, William E.

    2012-01-01

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third generation synchrotrons provide 100ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have permitted observing allosteric transitions in real time for a cooperative dimeric hemoglobin. PMID:18433638

  6. Time-Resolved X-Ray Crystallography of Heme Proteins

    SciTech Connect

    Srajer, Vukica; Royer, Jr., William E.

    2008-04-29

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third-generation synchrotrons provide 100-ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have recently permitted observing for the first time allosteric transitions in real time for a cooperative dimeric hemoglobin.

  7. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  8. Optical synchrotron radiation beam imaging with a digital mask

    SciTech Connect

    Zhang, Hao; Fiorito, Ralph; Corbett, Jeff; Shkvarunets, Anatoly; Tian, Kai; Fisher, Alan; Douglas, D.; Wilson, F.; Zhang, S.; Mok, W.; Mitsuhashi, T.

    2016-01-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  9. Calculations of synchrotron radiation emission in the transverse coherent limit

    SciTech Connect

    Hulbert, S.L.; Williams, G.P.

    2009-10-14

    We present approximations for the synchrotron radiation emission for low emittance light sources, which provide a connection between user needs and the electron beam parameters. The results and calculations are a consequence of the phase coherence in the emission from the electrons. We derive the remarkable result that if the electron beam is energetic enough, the emitted flux is independent of the photon energy, electron beam energy, or bending radius in the transverse coherent limit. Similarly the brightness is identical for all machines at a given current.

  10. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  11. An X-ray microprobe facility using synchrotron radiation.

    PubMed

    Gordon, B M; Jones, K W; Hanson, A L; Pounds, J G; Rivers, M L; Spanne, P; Sutton, S R

    1990-01-01

    An X-ray microprobe for trace elemental analysis at micrometer spatial resolutions, using synchrotron radiation (SR), is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present, "white light" is used for excitation of the characteristic X-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 microns2 areas in 5 min irradiation times. Scanning techniques, as well as microtomography and chemical speciation, are discussed. Application to a specific biomedical study is included.

  12. An x-ray microprobe facility using synchrotron radiation

    SciTech Connect

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Spanne, P.; Sutton, S.R.

    1989-01-01

    A x-ray microprobe for trace elemental analysis at micrometer spatial resolutions using synchrotron radiation (SR) is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present ''white light''' is used for excitation of the characteristic x-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 ..mu..m/sup 2/ areas in 5 min irradiation times. Scanning techniques as well as microtomography and chemical speciation are discussed. Application to a specific biomedical study is included. 13 refs., 2 figs.

  13. Electron correlation explored through electron spectrometry using synchrotron radiation

    SciTech Connect

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G. . Dept. of Physics); Krause, M.O. )

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs.

  14. Reveal Protein Molecular Structural-Chemical Differrences Between Two Types of Winterfat (Forage) Seeds with Physiological Differences in Low Temperature Tolerance Using Synchrotron-Based Fourier Transform Infrared Microspectroscopy

    SciTech Connect

    Yu,P.; Wang, R.; Bai, Y.

    2005-01-01

    Winterfat (Krascheninnikovia lanata) (forage seed) is a long-lived native shrub with superior forage quality for livestock and wildlife. The objectives of this study were to use advanced synchrotron technology [S-Fourier transform infrared microspectroscopy (FTIR)] as a novel approach to reveal protein molecular structural-chemical differences in terms of protein secondary structures between the two types of winterfat (forage) seeds, which show physiological differences in low-temperature tolerances. This experiment was performed at beamline U10B at the National Synchrotron Light Source NSLS in Brookhaven National Laboratory BNL, U.S. Department of Energy (NSLS-BNL, New York). The results showed that with the synchrotron analytical technique (S-FTIR), the molecular structural-chemical makeup and characteristics of the winterfat seed tissues could be imaged and revealed. The protein secondary structures differed between the large and the small seed tissues. By using the multicomponent peaks modeling method, the results show that the large seeds contained no significant differences (P > 0.05) in percentage of {beta}-sheet (average 37.0%) and {alpha}-helix (average 24.1%). However, the large seeds contained a lower (P < 0.05) percentage of {beta}-turns (18.1 vs. 20.1%) and a lower (P < 0.05) ratio of {beta}-turns to {alpha}-helices (0.8 vs. 0.9) and {beta}-turns to {beta}-sheets (0.5 vs. 0.6). Our results demonstrate the potential of highly spatially resolved synchrotron-based FTIR microspectroscopy to reveal differences of structural molecular chemistry and protein secondary structures, which are associated with seed size variation and may affect germination behaviors.

  15. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  16. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  17. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  18. Observation of Synchrotron Sidebands in a Storage-Ring-Based Seeded Free-Electron Laser

    SciTech Connect

    Labat, M.; Hosaka, M.; Yamamoto, N.; Shimada, M.; Katoh, M.; Couprie, M. E.

    2009-01-09

    Seeded free-electron lasers (FELs) are among the future fourth-generation light sources in the vacuum ultraviolet and x-ray spectral regions. We analyze the seed temporal coherence preservation in the case of coherent harmonic generation FELs, including spectral narrowing and structure degradation. Indeed, the electron synchrotron motion driven by the seeding laser can cause sideband growth in the FEL spectrum.

  19. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  20. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  1. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    SciTech Connect

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Miller, R. J. Dwayne

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  2. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  3. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  4. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  5. Empirical deadtime corrections at synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  6. Empirical deadtime corrections for synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  7. High-energy thermal synchrotron emission

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-01-01

    It is shown how the thermal synchrotron emission spectrum is modified when the photon energy is greater than the mean energy of the radiating particles. The effect if applying this energy conservation constraint is to produce spectra which have less high-energy photon emission than had been previously estimated. The thermal synchrotron spectra provide satisfactory fits to recently observed very high energy gamma ray spectra of certain burst sources.

  8. Synchrotron Infrared Confocal Microspectroscopic Spatial Resolution or a Customized Synchrotron/focal Plane Array System Enhances Chemical Imaging of Biological Tissue or Cells

    SciTech Connect

    D Wetzel; M Nasse; =

    2011-12-31

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 {mu} with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  9. Synchrotron infrared confocal microspectroscopic spatial resolution or a customized synchrotron/focal plane array system enhances chemical imaging of biological tissue or cells

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Nasse, Michael J.

    2011-09-01

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 μm with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  10. Resolving the Pericenter

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack

    2015-10-01

    The Wisdom-Holman mapping method and its variations have become a mainstay of research in solar system dynamics. But the method is not without its limitations. Rauch & Holman noted that at large eccentricities sufficiently small steps must be taken to resolve the pericenter. In this paper, I explore in more detail what it means to resolve the pericenter.

  11. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  12. National Institute of Standards and Technology Synchrotron Radiation Facilities for Materials Science

    PubMed Central

    Long, Gabrielle G.; Allen, Andrew J.; Black, David R.; Burdette, Harold E.; Fischer, Daniel A.; Spal, Richard D.; Woicik, Joseph C.

    2001-01-01

    Synchrotron Radiation Facilities, supported by the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, include beam stations at the National Synchrotron Light Source at Brookhaven National Laboratory and at the Advanced Photon Source at Argonne National Laboratory. The emphasis is on materials characterization at the microstructural and at the atomic and molecular levels, where NIST scientists, and researchers from industry, universities and government laboratories perform state-of-the-art x-ray measurements on a broad range of materials. PMID:27500070

  13. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  14. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  15. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  16. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  17. The application of Synchrotron radiation based microtomography in (structural) geology

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Xiao, X.; Schrank, C.; Liu, J.; De Carlo, F.

    2012-04-01

    Synchrotron radiation based tomography (SRT) is a well established, yet still improving technique to image the internal microstructure of a wide range of materials in three dimensions. It benefits from the very high photon flux provided by synchrotron sources, which is collimated in a very small, coherent photon beam covering a continuous energy spectrum of up to 100 keV. Imaging techniques such as absorption contrast, absorption edge and phase contrast tomography as well as automated sample loading render the method very flexible for addressing a large number of scientific questions concerning rock microstructure. With different end stations for micro- and nanotomography achieving spatial resolutions of several hundred down to a few tens of nanometers, SRT provides three-dimensional microstructural data that bridge a critical gap towards the nanoscale. In combination with high-speed cameras even dense rock samples can be imaged in fractions of seconds, leading the way to time-resolved studies in 3D. Beyond the stunning three-dimensional insights that SRT data provide into rock microstructure, such data allow a quantitative and time-dependent characterisation of rock properties. On the way to such a characterisation, the quantitative analyses of three- and four-dimensional SRT data may pose a significant challenge for the user. The analyses are demanding in terms of the necessary hardware and software, and the procedure involves a number of possible technical pitfalls and analytical error sources. However, mastering these challenges means opening a new approach to experimental as well as computational rock mechanics and microstructural geology. Increasingly, these approaches are included in the multi-scale characterisation of rocks and their mechanical properties. This presentation aims at reviewing the potential of Synchrotron radiation based microtomography for research applications in structural geology and experimental rock mechanics. Besides outlining the

  18. On-line control of the nonlinear dynamics for synchrotrons

    NASA Astrophysics Data System (ADS)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  19. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    SciTech Connect

    Huff, Welcome Rex Anthony

    1996-02-01

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2x2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field Xα scattered wave calculation confirm that the Fe1-Fe2 space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2x2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-ℓ partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5° off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

  20. More on the catalysis of internal conversion in chlorophyll a by an adjacent carotenoid in light-harvesting complex (Chl a/ b LHCII) of higher plants: time-resolved triplet-minus-singlet spectra of detergent-perturbed complexes

    NASA Astrophysics Data System (ADS)

    Naqvi, K. Razi; Jávorfi, Tamás; Melø, T. B.; Garab, Gyözö

    1998-12-01

    Wavelength-selective photo-excitation of samples containing a detergent and LHCII (the main light-harvesting complex pertaining to photosystem II of green plants) is used for recording time-resolved triplet-minus-singlet (TmS) difference spectra, with a view to probing interactions between chlorophyll a (Chl a) and chlorophyll b (Chl b), and between Chl a and lutein (Lut). Once the detergent concentration ( CD) exceeds a threshold, C©, the TmS spectrum becomes sensitive to λ⊗, the wavelength of excitation, and to t, the delay between excitation and observation. Each increment in CD brings about a diminution in the efficiency of a†→ x† transfer (triplet-triplet transfer from Chl a to Lut) and a rise in both the triplet formation yield and the fluorescence yield of Chl a. What is more, b*→ a* transfer (singlet-singlet transfer from Chl b to Chl a) slackens to such an extent that Chl b*→Chl b† intersystem crossing, negligible when CD is below C©, begins to vie with transfer, for the deactivation of Chl b* (in the foregoing an asterisk/dagger denotes singlet/triplet excitation). The reduction in the efficiencies of the two transfers is easily understood by: (i) invoking the Kühlbrandt-Wang-Fujiyoshi model of LHCII, which posits each Chl b in contact with a Chl a and each Chl a in contact with a Lut, and (ii) assuming that the detergent severs contact between adjacent chromophores. That a growth in the triplet yield of Chl a* accompanies the detergent-induced decrease in the efficiency of a†→ x† transfer becomes intelligible if one assumes, further, that internal conversion in Chla* is faster than that in overlineChla * , where under or over lining betokens the presence or absence of a carotenoid neighbour. When CD is close to C©, most Chl a molecules are adjacent to a Lut, internal conversion dominates, and the overall triplet yield is low. As CD is gradually raised the Chla → overlineChla transformation sets in, causing concomitant drops in

  1. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    SciTech Connect

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J. |; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-08-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p{sub o} final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA.

  2. Exploration of synchrotron Mössbauer microscopy with micrometer resolution: forward and a new backscattering modality on natural samples

    PubMed Central

    Yan, Lifen; Zhao, Jiyong; Toellner, Thomas S.; Divan, Ralu; Xu, Shenglan; Cai, Zhonghou; Boesenberg, Joseph S.; Friedrich, Jon M.; Cramer, Stephen P.; Alp, Esen E.

    2012-01-01

    New aspects of synchrotron Mössbauer microscopy are presented. A 5 µm spatial resolution is achieved, and sub-micrometer resolution is envisioned. Two distinct and unique methods, synchrotron Mössbauer imaging and nuclear resonant incoherent X-ray imaging, are used to resolve spatial distribution of species that are chemically and magnetically distinct from one another. Proof-of-principle experiments were performed on enriched 57Fe phantoms, and on samples with natural isotopic abundance, such as meteorites. PMID:22898962

  3. A 1200 element detector system for synchrotron-based coronary angiography

    SciTech Connect

    Thompson, A.C.; Lavender, W.M.; Rubenstein, E.; Giacomini, J.C.; Rosso, V.; Schulze, C.; Chapman, D.; Thomlinson, W.

    1993-08-23

    A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long {times} 11 mm high {times} 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. A Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.

  4. Installation of a Synchrotron Radiation Beamline Facility at the J. Bennett Johnston Center. Final Report

    SciTech Connect

    Gooden, R.

    2000-03-21

    The Johnston Center presents a unique opportunity for scientists and engineers at southern institutions to initiate and carry out original research using synchrotron radiation ranging from visible light to hard x-rays. The Science and Engineering Alliance proposes to carry out a comprehensive new synchrotron radiation research initiative at CAMD in carefully phased steps of increasing risks. (1) materials research on existing CAMD beam lines and end stations; (2) design, construction and installation of end stations on existing CAMD beam lines, and research with this new instrumentation; (3) design, construction and operation of dedicated synchrotron radiation beam lines that covers the full spectral range of the CAMD storage ring and expanded research in the new facility.

  5. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  6. SUNY beam line X3, National Synchrotron Light Source

    SciTech Connect

    Not Available

    1991-01-01

    This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP).

  7. Fullerene-Encapsulated Atoms in the Light of Synchrotron Radiation

    SciTech Connect

    Mueller, A.; Schippers, S.; Esteves, D.; Habibi, M.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Aguilar, A.; Dunsch, L.

    2009-12-03

    Mass-selected beams of endohedral fullerene Ce-C{sub 82}{sup +} ions, of atomic Ce{sup q+} ions (q = 2, 3, 4), and of empty fullerene-cage C{sub 82}{sup +} ions were employed to study photoionization of fullerene-encapsulated and free cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce-C{sub 82}{sup +} fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to Ce 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength is apparently diverted to additional decay channels of the Ce-C{sub 82}{sup +} complex.

  8. BNL National Synchrotron Light Source activity report 1997

    SciTech Connect

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  9. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-12-31

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  10. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J. ); Murray, J. )

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  11. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect

    Fewell, N.

    1990-03-01

    This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling.

  12. 2001 NSLS ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE).

    SciTech Connect

    CORWIN, M.A.

    2002-05-01

    The year 2001 has been another highly productive year at the NSLS, with over 2500 users, including 720 first time users, conducting nearly 1200 experiments in fields ranging from the life, materials, chemical, and environmental sciences to applied science and technology. An impressive array of highlights from this scientific activity is included in this Activity Report. They include the first demonstration of a direct structural probe of the superconducting ground state in the cuprates by utilizing anomalous soft x-ray resonance effects to selectively enhance the scattering from doped holes. Another highly significant result was the determination of the structure of the potassium channel membrane protein. This is especially significant as it provides insight into how the channel functions and how it selects a particular kind of ion. In the nanoscience area, small angle x-ray scattering measurements played an essential role in determining that preferential sequestering of tailored metal nanocrystals into a self-assembled lamellar diblock copolymer can produce high quality metallodielectric photonic bandgap structures, demonstrating the potential of these nanocomposites for photonic crystal engineering. The infrared microscopy program continued to yield noteworthy results, including an important study that characterized the types and abundances of organic materials in contaminated and uncontaminated sediments from the New York/New Jersey Harbor. These results will be useful in devising improved methods for the destruction or removal of these environmental contaminants.

  13. Fast ferrite tuner for the BNL synchrotron light source

    SciTech Connect

    Pivit, E. ); Hanna, S.M.; Keane, J. )

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs.

  14. X-ray grating interferometer for imaging at a second-generation synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Herzen, Julia; Beckmann, Felix; Donath, Tilman; Ogurreck, Malte; David, Christian; Pfeiffer, Franz; Mohr, Jürgen; Reznikova, Elena; Riekehr, Stefan; Haibel, Astrid; Schulz, Georg; Müller, Bert; Schreyer, Andreas

    2010-09-01

    X-ray phase-contrast radiography and tomography enables to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed which extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron even to non-coherent sources. Here, we present a setup of an x-ray grating interferometer designed and installed at low-coherence wiggler source at the GKSS beamline W2 (HARWI II) operated at the second-generation synchrotron storage ring DORIS at the Deutsches Elektronen-Synchrotron (DESY, Hamburg, Germany). The beamline is dedicated to imaging in materials science. Equipped with the grating interferometer, it is the first synchrotron radiation beamline with a three-grating setup combining the advantages of phase-contrast imaging with monochromatic radiation with very high flux and a sufficiently large field of view for centimeter sized objects. Examples of radiography on laser-welded aluminum and magnesium joints are presented to demonstrate the high potential of the new gratingbased setup in the field of materials science. In addition, the results of an off-axis phase-contrast tomography of a human urethra with 15 mm in diameter are presented showing internal structures, which cannot be resolved by the conventional tomography in absorption mode.

  15. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  16. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  17. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  18. Electronic and spin structures of solids investigated by means of synchrotron radiation photoemission

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.; Iwasawa, H.; Miyamoto, K.; Okuda, T.

    2013-12-01

    Recent progress in research on electronic and spin structures of solids and instrumentation on spin-resolved photoemission at Hiroshima Synchrotron Radiation Center are reported. The fine details of electron dynamics of a typical multiband superconductor Sr2RuO4 were uncovered by high-resolution angle-resolved photoemission spectroscopy (ARPES) with tunable polarizations, and the surface of W(1 1 0) was found to have a Dirac-corn-like state of d character with nearly massless energy dispersion by high-resolution ARPES and spin-resolved ARPES (SARPES). The SARPES system with very low energy electron diffraction spin detector and modified VG-SCIENTA R4000 electron analyzer brought a breakthrough in spin detection efficiency as well as energy and angular resolution, and enables precise SARPES measurements for materials that require high energy and angular resolution.

  19. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  20. Coherent synchrotron radiation for broadband terahertz spectroscopy.

    PubMed

    Barros, J; Evain, C; Manceron, L; Brubach, J-B; Tordeux, M-A; Brunelle, P; Nadolski, L; Loulergue, A; Couprie, M-E; Bielawski, S; Szwaj, C; Roy, P

    2013-03-01

    We present the first high resolution (10(-3) cm(-1)) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10(5) times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

  1. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    SciTech Connect

    Lee, Peter L; Rhyne, James J

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  2. Coherent synchrotron radiation for broadband terahertz spectroscopy

    SciTech Connect

    Barros, J.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Brunelle, P.; Nadolski, L.; Loulergue, A.; Couprie, M.-E.; Roy, P.; Evain, C.; Bielawski, S.; Szwaj, C.

    2013-03-15

    We present the first high resolution (10{sup -3} cm{sup -1}) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10{sup 5} times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

  3. Synchrotron characterization of functional tin dioxide nanowires

    SciTech Connect

    Domashevskaya, E. P. Chuvenkova, O. A.; Turishchev, S. Yu.

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  4. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  5. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  6. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  7. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  8. Magnetic Reconnection with Strong Synchrotron Cooling in Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri; Spitkovsky, Anatoly

    2012-10-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. In this presentation, a basic physical picture of reconnection in this environment is developed. It is shown that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. The basic parameters of these current layers --- temperature, density, and layer thickness --- are estimated in terms of the upstream magnetic field. It is argued that, after accounting for the bulk Doppler boosting, the synchrotron and inverse-Compton emission mechanisms can explain the observed pulsed high-energy (GeV) and VHE (˜ 100 GeV) radiation, respectively. The motions of the secondary plasmoids may contribute to the pulsar's radio emission.

  9. The Properties of Light

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.

    The mystery of light has formed the core of creation stories in every culture, and attracted the earnest attentions of philosophers since at least the fifth century BCE. Their questions have ranged from how and what we see, to the interaction of light with material bodies, and finally to the nature of light itself. This chapter begins with a brief intellectual history of light from ancient Greece to the end of the 19th century. After introducing the physical parameterization of light in terms of standard units, three concepts of light are introduced: light as a wave, light as a quantum particle, and light as a quantum field. After highlighting the distinctive characteristics of light beams from various sources - thermal radiation, luminescence from atoms and molecules, and synchrotron light sources - the distinctive physical characteristics of light beams are examined in some detail. The chapter concludes with a survey of the statistical and quantum-mechanical properties of light beams. In the appropriate limits, this treatment not only recovers the classical description of light waves and the semiclassical view of light as a stream of quanta, but also forms a consistent description of quantum phenomena - such as interference phenomena generated by single photons - that have no classical analogs.

  10. SYNCHROTRON ORIGIN OF THE TYPICAL GRB BAND FUNCTION—A CASE STUDY OF GRB 130606B

    SciTech Connect

    Zhang, Bin-Bin; Briggs, Michael S.; Uhm, Z. Lucas; Zhang, Bing; Connaughton, Valerie

    2016-01-10

    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm and Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Band parameter values can indeed be explained by synchrotron radiation.

  11. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  12. Radiation properties of Turkish light source facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Zafer

    2015-09-01

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01-60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  13. The Crab Nebula: Linking MeV Synchrotron and 50 TeV Inverse Compton Photons

    NASA Astrophysics Data System (ADS)

    Horns, D.; Aharonian, F. A.

    2004-10-01

    Pulsar wind driven synchrotron nebulae are offering a unique view on the connection of the pulsar wind and the surrounding medium. The Crab nebula is particu- larly well suited for detailed studies of the different emis- sion regions. As inferred from the observed synchrotron emission extending beyond MeV energies, the Crab is a unique and extreme accelerator. In the framework of the synchrotron/inverse Compton emission model, the same electrons with energies exceeding 1015 eV that are re- sponsible for the MeV synchrotron emission produce via inverse Compton scattering 10-50 TeV radiation which has recently been observed with the HEGRA system of ground based gamma-ray telescopes. Here we discuss the close relation of the two energy bands covered by INTE- GRAL and ground based gamma-ray telescopes. Despite the lack of sufficient spatial resolution in both bands to resolve the emission region, correlation of the flux mea- surements in the two energy bands would allow to con- strain the structure of the emission region. The emission region is expected to be a very compact region (limited by the life-time of the electrons) near the termination shock of the pulsar wind. We extend previous model calcula- tions for the nebula's emission to include an additional compact non-thermal emission region recently detected at mm wavelengths. The overall good agreement of this model with data constrains additional emission processes (ions in the wind, inverse Compton from the unshocked wind) to be of little relevance. Key words: Crab nebula; acceleration; Crab pulsar; elec- trons; radiation; synchrotron; inverse Compton.

  14. Molecular electronics studies by synchrotron radiation

    SciTech Connect

    Wee, Andrew T. S.; Chen Wei; Chi Dongchen; Chen Shi; Wang Li; Gao Xingyu

    2009-01-29

    In molecular electronics research, the molecule-metal interfacial properties crucially control the electronic properties of the devices fabricated. We use synchrotron radiation techniques of PES and NEXAFS, complemented by STM, to study the molecular orientation and interfacial charge transfer processes of model molecule-metal systems.

  15. PRINCIPLES OF SYNCHROTRON TECHNIQUES, POTENTIAL AND LIMITATIONS

    EPA Science Inventory

    Once environmental contaminants, such as arsenic, chromium, cadmium and lead, are detected, the problem becomes how to deal with them. For the past decade, researchers at the US EPA in Cincinnati have been employing synchrotron speciation methods to determine the exact chemical f...

  16. Laboratory source of synchrotron radiation: TROLL-2

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. E.; Panasjuk, V. S.; Khromchenko, V. B.

    1987-11-01

    A laboratory synchrotron radiation (SR) source TROLL-2 is described. Its main parameters are as follows: the energy of the accelerated particles = 24 MeV; the orbit radius = 20 mm; the SR pulse half-width = 2 ms, the maximum spectral radiant power (at λ = 350 nm) = 1.2×10 6 W/m.

  17. Synchrotron emission from runaway electron distributions

    SciTech Connect

    Winske, D.; Peter, T.; Boyd, D.A.

    1983-12-01

    Synchrotron emission from a relativistic anti-loss-cone (runaway) distribution is investigated numerically and compared with various analytical approximations. The results are applied to recent measurements of enhanced emission during current-drive experiments on the Princeton Large Torus (PLT) as well as to impulsive solar microwave bursts.

  18. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  19. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  20. Dynamics of synchrotron VUV-induced intracluster reactions

    SciTech Connect

    Grover, J.R.

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.