Science.gov

Sample records for resolving nonstationary spectral

  1. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  2. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data.

    PubMed

    Huang, Norden E; Hu, Kun; Yang, Albert C C; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H; Wang, Yung-Hung; Long, Steven R; Wu, Zhauhua

    2016-04-13

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time-frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  3. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  4. A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, Gregory L.

    1989-01-01

    A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.

  5. Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering.

    PubMed

    Aboy, Mateo; Márquez, Oscar W; McNames, James; Hornero, Roberto; Trong, Tran; Goldstein, Brahm

    2005-08-01

    We describe an algorithm to estimate the instantaneous power spectral density (PSD) of nonstationary signals. The algorithm is based on a dual Kalman filter that adaptively generates an estimate of the autoregressive model parameters at each time instant. The algorithm exhibits superior PSD tracking performance in nonstationary signals than classical nonparametric methodologies, and does not assume local stationarity of the data. Furthermore, it provides better time-frequency resolution, and is robust to model mismatches. We demonstrate its usefulness by a sample application involving PSD estimation of intracranial pressure signals (ICP) from patients with traumatic brain injury (TBI).

  6. Using the nonstationary spectral method to analyze asymptotic macrodispersion in uniformly recharged heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2008-02-01

    SummaryThis paper describes an investigation of the influence of uniformly distributed groundwater recharge on asymptotic macrodispersion in two-dimensional heterogeneous media. This is performed using a nonstationary spectral approach [Li, S.-G., McLaughlin, D., 1991. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour. Res. 27 (7), 1589-1605; Li, S.-G., McLaughlin, D., 1995. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour. Res. 31 (3), 541-551] based on Fourier-Stieltjes representations for the perturbed quantities. To solve the problem analytically, focus is placed on the case where the local longitudinal dispersivity αL is much smaller than the integral scale of log transmissivity λ (i.e., αL/ λ ≪ 1). The closed-form expressions are obtained for describing the spectrum of flow velocity, the variability of flow velocity and asymptotic macrodispersion, in terms of the statistical properties and the integral scale of log transmissivity, local transport parameters and a parameter β [Rubin, Y., Bellin, A., 1994. The effects of recharge on flow nonuniformity and macrodispersion. Water Resour. Res. 30 (4), 939-948] used to characterize the degree of flow nonuniformity due to the groundwater recharge. The impact of β on these results is examined.

  7. Spatially resolved spectral-imaging device

    SciTech Connect

    Bloom, Joshua Simon; Tyson, John Anthony

    2016-02-09

    A spatially resolved spectral device comprising a dispersive array to receive an incident light comprising a principal ray. The dispersive array comprising a plurality of dichroic layers, each of the plurality of dichroic layers disposed in a path of a direction of the principal ray. Each of the plurality of dichroic layers configured to at least one of reflect or transmit a different wavelength range of the incident light. The device further comprising a detection array operatively coupled with the dispersive array. The detection array comprising a photosensitive component including a plurality of detection pixels, each of the plurality of detection pixels having a light-receiving surface disposed parallel to the direction of the principal ray to detect a respective one of the different wavelength ranges of incident light reflected from a corresponding one of the plurality of dichroic layers.

  8. Spectral estimation of plasma fluctuations. II. Nonstationary analysis of edge localized mode spectra

    SciTech Connect

    Riedel, K.S.; Sidorenko, A. ); Bretz, N. ); Thomson, D.J. )

    1994-03-01

    Several analysis methods for nonstationary fluctuations are described and applied to the edge localized mode (ELM) instabilities of limiter H-mode plasmas. The microwave scattering diagnostic observes poloidal [ital k][sub [theta

  9. Time-Resolved Spectral Optical Breast Tomography

    DTIC Science & Technology

    2005-06-01

    four- dimensional (4D) data is formed. The spectral information adds an additional dimension of the data. The optimal approach to analyze this huge... dimensional near-infrared tomogra- UK, 2001). phy of the breast: initial simulation, phantom, and clinical 38. J.-F. Cardoso, "Blind signal separation...detector signal acquisition scheme providing a variety of spatial and angular views essential for three- dimensional (3D) object localization. Each

  10. Contribution to the study of nonstationary signals emitted by moving jet engine - Application to spectral analysis and imaging. I

    NASA Astrophysics Data System (ADS)

    Hay, J.; Ernoult, M.

    1980-08-01

    In order to install microphones closer to the trajectory of a swiftly moving noise source and deduce the directivities comparable to those measured in the far field but less sensitive to propagation conditions, a special class of nonstationary random processes has been studied. Conventional short time spectral analysis is discussed (periodogram smoothing and autoregressive model evaluation), and a time frequency spectrum is defined which is shown capable of giving back the correct results of the stationary case (far field). Knowing the motion of the source helps in improving the spectral resolution and particularly the spatial resolution of a synthetic antenna. The so-called 'de-Dopplerization' signal processing provides resolutions similar to those obtained in static tests. Some results of experiments on a point source and a jet are given to illustrate these reflections.

  11. Time resolved spectral behavior of bright BATSE precursors

    NASA Astrophysics Data System (ADS)

    Burlon, D.; Ghirlanda, G.; Ghisellini, G.; Greiner, J.; Celotti, A.

    2009-10-01

    Aims: Gamma ray bursts (GRBs) are sometimes preceded by dimmer emission episodes, called “precursors”, whose nature is still a puzzle: they could either have the same origin as the main emission episode or they could be due to another mechanism. We investigate if precursors have some spectral distinctive feature with respect to the main GRB episodes. Methods: To this aim we compare the spectral evolution of the precursor with that of the main GRB event. We also study if and how the spectral parameters, and in particular the peak of the ν Fν spectrum of time resolved spectra, correlates with the flux. This allows us to test if the spectra of the precursor and of the main event belong to the same correlation (if any). We searched GRBs with precursor activity in the complete sample of 2704 bursts detected by BATSE finding that 12% of GRBs have one or more precursors. Among these we considered the bursts with time resolved spectral analysis performed by Kaneko et al. ( 2006, ApJS, 166, 298), selecting those having at least two time resolved spectra for the precursor. Results: We find that precursors and main events have very similar spectral properties. The spectral evolution within precursors has similar trends as the spectral evolution observed in the subsequent peaks. Also the typical spectral parameters of the precursors are similar to those of the main GRB events. Moreover, in several cases we find that within the precursors the peak energy of the spectrum is correlated with the flux similarly to what happens in the main GRB event. This strongly favors models in which the precursor is due to the same fireball physics of the main emission episodes. Figures 8 to 41 are only available in electronic form at http://www.aanda.org

  12. Spectral angle resolved scattering of thin film coatings.

    PubMed

    Schröder, Sven; Unglaub, David; Trost, Marcus; Cheng, Xinbin; Zhang, Jinlong; Duparré, Angela

    2014-02-01

    The light scattering of interference coatings is strongly dependent on the wavelength. In addition to the general strong increase of scattering as the wavelengths get shorter, dramatic scatter effects in and around the resonance regions can occur. This is discussed in detail for highly reflective and chirped mirrors. A new instrument is presented which enables spectral angle resolved scatter measurements of high-quality optical components to be performed between 250 and 1500 nm.

  13. Time-resolved spectral imaging: better photon economy, higher accuracy

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Reitsma, Keimpe; Blab, Gerhard A.; Gerritsen, Hans C.

    2015-03-01

    Lifetime and spectral imaging are complementary techniques that offer a non-invasive solution for monitoring metabolic processes, identifying biochemical compounds, and characterizing their interactions in biological tissues, among other tasks. Newly developed instruments that perform time-resolved spectral imaging can provide even more information and reach higher sensitivity than either modality alone. Here we report a multispectral lifetime imaging system based on a field-programmable gate array (FPGA), capable of operating at high photon count rates (12 MHz) per spectral detection channel, and with time resolution of 200 ps. We performed error analyses to investigate the effect of gate width and spectral-channel width on the accuracy of estimated lifetimes and spectral widths. Temporal and spectral phasors were used for analysis of recorded data, and we demonstrated blind un-mixing of the fluorescent components using information from both modalities. Fractional intensities, spectra, and decay curves of components were extracted without need for prior information. We further tested this approach with fluorescently doubly-labeled DNA, and demonstrated its suitability for accurately estimating FRET efficiency in the presence of either non-interacting or interacting donor molecules.

  14. Spectrally resolved visualization of fluorescent dyes permeating into skin

    NASA Astrophysics Data System (ADS)

    Maeder, Ulf; Bergmann, Thorsten; Beer, Sebastian; Burg, Jan Michael; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin

    2012-03-01

    We present a spectrally resolved confocal imaging approach to qualitatively asses the overall uptake and the penetration depth of fluorescent dyes into biological tissue. We use a confocal microscope with a spectral resolution of 5 nm to measure porcine skin tissue after performing a Franz-Diffusion experiment with a submicron emulsion enriched with the fluorescent dye Nile Red. The evaluation uses linear unmixing of the dye and the tissue autofluorescence spectra. The results are combined with a manual segmentation of the skin's epidermis and dermis layers to assess the penetration behavior additionally to the overall uptake. The diffusion experiments, performed for 3h and 24h, show a 3-fold increased dye uptake in the epidermis and dermis for the 24h samples. As the method is based on spectral information it does not face the problem of superimposed dye and tissue spectra and therefore is more precise compared to intensity based evaluation methods.

  15. The Sun's spectrally resolved center-to-limb variation

    NASA Astrophysics Data System (ADS)

    Stenflo, Jan Olof

    2016-05-01

    The center-to-limb variation (CLV) of the Sun's continuous spectrum is well known and has served as a major observational constraint on models of the solar atmosphere. The CLV however also varies dramatically with wavelength inside each spectral line. Here we report on two new atlases that show the properties of the CLV with high spectral resolution. One is a fully resolved spectral atlas from 4084 to 9950 Å of the ratio between the near limb spectrum, at 10 arcsec inside the limb, and the disk center spectrum, both recorded with the FTS at NSO/Kitt Peak. The other atlas gives the same kind of information but covers the whole range of limb distances by giving the ratio spectra for the nine μ positions 0.1, 0.2, …, 0.9. This set of nine atlases for different μ have been recorded over the last couple of years with the solar facility at IRSOL (Istituto Ricerche Solari Locarno) in Switzerland. We find that the CLV is spectrally as richly structured as the ordinary intensity spectrum, but the structuring is different and contains diagnostic information that is not contained in the intensity spectrum. Here we illustrate the properties of the new spectral structures and discuss what they mean.

  16. CONTROL OF LASER RADIATION PARAMETERS: Spectral nonreciprocity induced by a magnetic field in nonstationary lasing regimes of a solid-state ring laser

    NASA Astrophysics Data System (ADS)

    Kravtsov, Nikolai V.; Lariontsev, E. G.; Pashinin, Pavel P.; Sidorov, S. S.; Chekina, S. N.

    2004-04-01

    It is found experimentally that the application of a magnetic field to the active element of a monolithic ring Nd:YAG chip laser in nonstationary lasing regimes can result in nonidentical spectral parameters of counterpropagating radiation waves (spectral nonreciprocity) in quasi-periodic and chaotic lasing regimes. The value of the spectral nonreciprocity depends on the coupling coefficient of counterpropagating waves, the excess over the pump threshold, and the optical nonreciprocity of the ring cavity. The obtained results are in good agreement with the results of numerical simulation.

  17. Spectrally resolved bioluminescence tomography using the reciprocity approach

    PubMed Central

    Dehghani, Hamid; Davis, Scott C.; Pogue, Brian W.

    2008-01-01

    Spectrally resolved bioluminescence optical tomography is an approach to recover images of, for example, Luciferase activity within a volume using multiwavelength emission data from internal bioluminescence sources. The underlying problem of uniqueness associated with nonspectrally resolved intensity-based bioluminescence tomography is demonstrated and it is shown that using a non-negative constraint inverse algorithm, an accurate solution for the source distribution can be calculated from the measured data. Reconstructed images of bioluminescence are presented using both simulated complex and heterogeneous small animal models as well as real multiwavelength data from a tissue-simulating phantom. The location of the internal bioluminescence source using experimental data is obtained with 0.5 mm accuracy and it is shown that small (2.5 mm diameter) sources of up to 12.5 mm deep, within a complex mouse model, can be resolved accurately using a single view data collection strategy. Finally, using the reciprocity approach for image reconstruction, a dramatic improvement in computational time is shown without loss to image accuracy with both experimental and simulated data, potentially reducing computing time from 402 to 3.75 h. PMID:19070220

  18. Spectrally resolved laser-induced fluorescence for bioaerosols standoff detection

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Stadnyk, Laurie; Rowsell, Susan; Simard, Jean-Robert; Ho, Jim; Déry, Bernard; McFee, John

    2007-09-01

    An efficient standoff biological warfare detection capability could become an important asset for both defence and security communities based on the increasing biological threat and the limits of the presently existing protection systems. Defence R&D Canada (DRDC) has developed, by the end of the 90s, a standoff bioaerosol sensor prototype based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This LIDAR system named SINBAHD monitors the spectrally resolved LIF originating from inelastic interactions with bioaerosols present in atmospheric cells customizable in size and in range. SINBAHD has demonstrated the capability of near real-time detection and classification of bioaerosolized threats at multi-kilometre ranges. In spring 2005, DRDC has initiated the BioSense demonstration project, which combines the SINBAHD technology with a geo-referenced Near InfraRed (NIR) LIDAR cloud mapper. SINBAHD is now being used to acquire more signatures to add in the spectral library and also to optimize and test the new BioSense algorithm strategy. In September 2006, SINBAHD has participated in a two-week trial held at DRDC-Suffield where different open-air wet releases of live and killed bioagent simulants, growth media and obscurants were performed. An autoclave killing procedure was performed on two biological materials (Bacillus subtilis var globigii or BG, and Bacillus thuringiensis or Bt) before being aerosolized, disseminated and spectrally characterized with SINBAHD. The obtained results showed no significant impact of this killing process on their normalised spectral signature in comparison with their live counterparts. Correlation between the detection signals from SINBAHD, an array of slit samplers and a FLuorescent Aerosol Particle Sensor (C-FLAPS) was obtained and SINBAHD's sensitivity could then be estimated. At the 2006 trial, a detection limit of a few tens of Agent Containing Particles per Liter of Air (ACPLA) was obtained

  19. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  20. Spectrally resolved infrared radiances from AIRS observation and GCM simulation

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ramaswamy, V.

    2007-12-01

    Global multi-year spectrally resolved infrared radiances observed by the Atmospheric Infrared Sound (AIRS) satellite instrument and simulated from the General Circulation Models (GCMs) of the Geophysical Fluid Dynamics Lab (GFDL) are processed to obtain long-term global and regional means as well as the associated spatial and temporal variability. The accumulated radiance data comprise a host of phenomena that are still largely unrecognized but reveal important physical processes. For instance, the correlation between the radiances and the Sea Surface Temperatures (SSTs) discloses the roles of water vapor in both upper (via its v2 band) and lower (via the continuum in the window region) troposphere, and that of clouds regarding the so called "super greenhouse effect" in Tropics. A comparison between observed and simulated radiances demonstrates that radiance affords a stricter and more insightful metric than the broadband flux. A seemingly good agreement of OLR flux may arise from cancellation of errors of opposite signs in different spectral regions; radiance biases are indicative of physical causes because the radiances at each frequency are sensitive to factor(s) at different levels. Model validation at the radiance level thus provides a complementary and integrative perspective to that obtained using meteorological variables. It is demonstrated that the radiance discrepancies between the GFDL model and the observation are consistent with the model biases in temperature, water vapor and clouds.

  1. Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor

    SciTech Connect

    Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

    2005-07-15

    Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

  2. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    SciTech Connect

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.

  3. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    DOE PAGES

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less

  4. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-01

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.

  5. Structural investigations of human hairs by spectrally resolved ellipsometry

    NASA Astrophysics Data System (ADS)

    Chan, Danny; Schulz, Benjamin; Rübhausen, Michael; Wessel, Sonya; Wepf, Roger

    2006-01-01

    Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters Ψ and Δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair's structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we describe a dielectric model of hair that explains the spectra in terms of the dielectric properties of the major parts of hair and their associated layer thicknesses. In addition, surface roughness effects modeled by a roughness layer with a complex refractive index given by an effective medium approach can be seen to have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu=273 to 360 nm and the air inclusion fA=0.6 to 5.7%.

  6. Structural investigations of human hairs by spectrally resolved ellipsometry

    NASA Astrophysics Data System (ADS)

    Schulz, Benjamin; Chan, D.; Ruebhausen, M.; Wessel, S.; Wepf, R.

    2006-03-01

    Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters ψ and δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair’s structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we develop a model of the dielectric function of hair that explains the spectra. This model includes the dielectric properties of the cuticle and cortex as well as their associated layer thicknesses. In addition, surface roughness effects modelled by a roughness layer with an complex refractive index given by an effective medium approach can have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu= 273-360 nm and the air inclusion fA= 0.6 -5.7%. [1] accepted for publication in J. Biomed Opt., 2005

  7. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    PubMed

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.

  8. SPECTRALLY RESOLVED PURE ROTATIONAL LINES OF WATER IN PROTOPLANETARY DISKS

    SciTech Connect

    Pontoppidan, Klaus M.; Salyk, Colette; Blake, Geoffrey A.; Kaeufl, Hans Ulrich

    2010-10-20

    We present ground-based high-resolution N-band spectra ({Delta}v = 15 km s{sup -1}) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main-sequence stars AS 205N and RNO 90, selected based on detections of rotational water lines by the Spitzer InfraRed Spectrograph. Using VISIR on the Very Large Telescope, we spectrally resolve individual lines and show that they have widths of 30-60 km s{sup -1}, consistent with an origin in Keplerian disks at radii of {approx}1 AU. The water lines have similar widths to those of the CO at 4.67 {mu}m, indicating that the mid-infrared water lines trace similar radii. The rotational temperatures of the water are 540 and 600 K in the two disks, respectively. However, the line ratios show evidence of non-LTE excitation, with low-excitation line fluxes being overpredicted by two-dimensional disk LTE models. Due to the limited number of observed lines and the non-LTE line ratios, an accurate measure of the water ortho/para (O/P) ratio is not available, but a best estimate for AS 205N is O/P =4.5 {+-} 1.0, apparently ruling out a low-temperature origin of the water. The spectra demonstrate that high-resolution spectroscopy of rotational water lines is feasible from the ground, and further that ground-based high-resolution spectroscopy is likely to significantly improve our understanding of the inner disk chemistry revealed by recent Spitzer observations.

  9. Anticipating HESSI's Spatially Resolved View of Spectral Evolution

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth K.; Giblin, Timothy; Tom, Metcalf

    2000-01-01

    The spectral evolution of observed flares' hard X-ray emission is found to conform to certain patterns in color-color diagrams. By combining the spectral resolution of BATSE data with the spatial resolution of HXT data, we are able to address the nature of flare energy release and anticipate what kind of observations HESSI may make of the energy release/particle acceleration site in flares.

  10. Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry

    SciTech Connect

    Debnath, Sanjit Kumar; Kothiyal, Mahendra Prasad

    2006-09-20

    In spectrally resolved white-light interferometry (SRWLI), the white-light interferogram is decomposed into its monochromatic constituent. The phase of the monochromatic constituents can be determined using a phase-shifting technique over a range of wavelengths. These phase value shave fringe order ambiguity. However, the variation of the phase with respect to the wavenumber is linear and its slope gives the absolute value of the optical-path difference. Since the path difference is related to the height of the test object at a point, a line profile can be determined without ambiguity. The slope value, though less precise helps us determine the fringe order. The fringe order combined with the monochromatic phase value gives the absolute profile, which has the precision of phase-shifting interferometry. The presence of noise in the phase may lead to the misidentification of fringe order, which in turn gives unnecessary jumps in the precise profile. The experimental details of measurement on standard samples with SRWLI are discussed in this paper.

  11. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    PubMed

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  12. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  13. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Prato, Lisa; Mawet, Dimitri

    2017-03-01

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution (R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  14. Spectrally resolved fast transient brain states in electrophysiological data

    PubMed Central

    Vidaurre, Diego; Quinn, Andrew J.; Baker, Adam P.; Dupret, David; Tejero-Cantero, Alvaro; Woolrich, Mark W.

    2016-01-01

    The brain is capable of producing coordinated fast changing neural dynamics across multiple brain regions in order to adapt to rapidly changing environments. However, it is non-trivial to identify multiregion dynamics at fast sub-second time-scales in electrophysiological data. We propose a method that, with no knowledge of any task timings, can simultaneously identify and describe fast transient multiregion dynamics in terms of their temporal, spectral and spatial properties. The approach models brain activity using a discrete set of sequential states, with each state distinguished by its own multiregion spectral properties. This can identify potentially very short-lived visits to a brain state, at the same time as inferring the state's properties, by pooling over many repeated visits to that state. We show how this can be used to compute state-specific measures such as power spectra and coherence. We demonstrate that this can be used to identify short-lived transient brain states with distinct power and functional connectivity (e.g., coherence) properties in an MEG data set collected during a volitional motor task. PMID:26631815

  15. Spectral characteristics of time resolved magnonic spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Chotorlishvili, L.; Berakdar, J.

    2015-09-01

    Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans [Phys. Rev. B 90, 064421 (2014)]. Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics.

  16. Spectral characteristics of time resolved magnonic spin Seebeck effect

    SciTech Connect

    Etesami, S. R.; Chotorlishvili, L.; Berakdar, J.

    2015-09-28

    Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans [Phys. Rev. B 90, 064421 (2014)]. Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics.

  17. A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping.

    PubMed

    Palombi, Lorenzo; Alderighi, Daniele; Cecchi, Giovanna; Raimondi, Valentina; Toci, Guido; Lognoli, David

    2013-06-17

    In this work we present a LIDAR sensor devised for the acquisition of time resolved laser induced fluorescence spectra. The gating time for the acquisition of the fluorescence spectra can be sequentially delayed in order to achieve fluorescence data that are resolved both in the spectral and temporal domains. The sensor can provide sub-nanometric spectral resolution and nanosecond time resolution. The sensor has also imaging capabilities by means of a computer-controlled motorized steering mirror featuring a biaxial angular scanning with 200 μradiant angular resolution. The measurement can be repeated for each point of a geometric grid in order to collect a hyper-spectral time-resolved map of an extended target.

  18. Investigation of spectrally resolved actinic flux in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Blumthaler, M.; Fitzka, M.; Gobbi, J. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2009-09-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV radiation. However for photochemical reactions and various biological processes actinic flux is more important. Therefore, three measurement campaigns had been conducted in alpine areas of Austria (Innsbruck and Hoher Sonnblick). The goal was to investigate the impact of alpine terrain in combination with snow cover on spectral actinic flux under clear sky conditions. This contribution uses the ground-based UV actinic flux measurements to evaluate two different calculation methods. The modified (with topography) 3-D radiative transfer model GRIMALDI was used to calculate the distribution of actinic flux at the ground for selected clear sky situations. To estimate the impact of 3-D effects on actinic flux, the measurement results are also compared with the output of 1-D-model (SDISORT) runs. Apart from border problems due to periodic boundary conditions the spatial distribution of actinic flux is well reproduced by the 3-D-model. Shadowing effects and increasing actinic flux with altitude are realistically reproduced in the calculated 3-D-radiation field.

  19. Marine fluorescence from high spectrally resolved satellite measurements

    NASA Astrophysics Data System (ADS)

    Wolanin, Aleksandra; Dinter, Tilman; Rozanov, Vladimir; Noël, Stefan; Vountas, Marco; Burrows, John P.; Bracher, Astrid

    2014-05-01

    When chlorophyll molecules absorb light, most of this energy is transformed into chemical energy in a process of photosynthesis. However, a fraction of the energy absorbed is reemitted as fluorescence. As a result of its relationship to photosynthetic e?ciency, information about chlorophyll fluorescence can be used to assess the physiological state of phytoplankton (Falkowski and Kolber,1995). In-situ measurements of chlorophyll fluorescence are widespread in physiological and ecophysiological studies. When retrieved from space, chlorophyll fluorescence can improve our knowledge of global biogeochemical cycles and phytoplankton productivity (Behrenfeld et al., 2009; Huot et al., 2013) by providing high coverage and periodicity. So far, the only satellite retrieval of sun-induced marine fluorescence, Fluorescence Line Height (FLH), was designed for MODIS (Abbott and Letelier, 1999), and later also applied to the similar sensor MERIS (Gower et al., 2004). However, it could so far not be evaluated on global scale. Here, we present a different approach to observe marine chlorophyll fluorescence, based on the Differential Optical Absorption Spectroscopy (DOAS) technique (Perner and Platt, 1979) applied to the hyperspectral data from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 (GOME-2). Since fluorescence, as a trans-spectral process, leads to the shift of the wavelength of the radiation, it can be observed in the filling-in of Fraunhofer lines. In our retrieval, we evaluate the filling-in of the Zeeman triplet Fraunhofer line FeI at 684.3 nm, which is located very close to the emission peak of marine fluorescence (~685 nm). In order to conduct the chlorophyll fluorescence retrieval with the DOAS method, we calculated the reference spectra for chlorophyll fluorescence, based on simulations performed with the coupled ocean-atmosphere radiative transfer model SCIATRAN (Rozanov et al., 2014

  20. Elimination of the direction ambiguity and the dead zone in spectrally resolved interferometry

    NASA Astrophysics Data System (ADS)

    Yun, Young Ho; Seo, Yong Bum; Joo, Ki-Nam

    2016-03-01

    We propose a very simple and effective technique to eliminate the direction ambiguity and the dead zone, which limit the measurable range in spectrally resolved interferometry (SRI). By using a dispersive material, the nonlinear spectral phase caused by the dispersion can provide useful information and determine the direction of measuring distances. In addition, the dead zone is removed by two complementary measurement results in dichroic SRI. As the results of feasibility experiments, it was confirmed that the nonlinearity of the spectral phase successfully determined the direction of the measuring distances. Moreover, the final linear distances in the whole measurement range without the dead zone was obtained in dichroic SRI with two LEDs.

  1. Comparing spectral resolvability in chinchillas and human listeners using phase discrimination

    NASA Astrophysics Data System (ADS)

    Shofner, William P.; Sparks, Kathryn; Wu, Yuanxing Esther; Pham, Ellen

    2004-05-01

    A tone complex made of harmonic components that are added in cosine-starting phase can be discriminated from complexes comprised of identical harmonics that are added with random-starting phases. Phase discrimination occurs when unresolved harmonics interact within a single auditory channel. When harmonics are resolved, there is less interaction among components resulting in poorer phase discrimination performance. Thus, phase discrimination indirectly reflects spectral resolvability. Performance in a phase discrimination task was measured in chinchillas and human listeners to compare spectral resolvability between the two groups. Subjects discriminated a cosine-phase tone complex from random-phase tone complexes in a go/no-go behavioral paradigm. Tone complexes were comprised of a 250-Hz fundamental frequency and N consecutive higher harmonics, where N was 5, 10, 20, and 40. Performance was evaluated in terms of d'. The results show that the measured d' increased as N increased, and values of d' for each N condition were similar between chinchillas and human listeners. Values of the criterion for each N condition were also similar between chinchillas and humans. The results do not support the hypothesis that spectral resolvability is poorer in chinchillas, but suggest that resolvability is similar between the two groups. [Work supported by NIH/NIDCD.

  2. Spectral radiative kernel technique and the spectrally-resolved longwave feedbacks in the CMIP3 and CMIP5 experiments

    NASA Astrophysics Data System (ADS)

    Huang, Xianglei; Chen, Xiuhong; Soden, Brian; Liu, Xu

    2015-04-01

    Radiative feedback is normally discussed in terms of Watts per square meter per K, i.e., the change of broadband flux due to the change of certain climate variable in response to 1K change in global-mean surface temperature. However, the radiative feedback has an intrinsic dimension of spectrum and spectral radiative feedback can be defined in terms of Watts per square meter per K per frequency (or per wavelength). A set of all-sky and clear-sky longwave (LW) spectral radiative kernels (SRK) are constructed using a recently developed spectral flux simulator based on the PCRTM (Principal-Component-based Radiative Transfer Model). The LW spectral radiative kernels are validated against the benchmark partial radiative perturbation method. The LW broadband feedbacks derived using this SRK method are consistent with the published results using the broadband radiative kernels. The SRK is then applied to 12 GCMs in CMIP3 archives and 12 GCMs in CMIP5 archives to derive the spectrally resolved Planck, lapse rate, and LW water vapor feedbacks. The inter-model spreads of the spectral lapse-rate feedbacks among the CMIP3 models are noticeably different than those among the CMIP5 models. In contrast, the inter-model spread of spectral LW water vapor feedbacks changes little from the CMIP3 to CMIP5 simulations, when the specific humidity is used as the state variable. Spatially the far-IR band is more responsible for the changes in lapse-rate feedbacks from the CMIP3 to CMIP5 than the window band. When relative humidity (RH) is used as state variable, virtually all GCMs have little broadband RH feedbacks as shown in Held & Shell (2012). However, the RH feedbacks can be significantly non-zero over different LW spectral regions and the spectral details of such RH feedbacks vary significantly from one GCM to the other. Finally an interpretation based on a one-layer atmospheric model is presented to illustrate under what statistical circumstances the linear technique can be applied

  3. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    PubMed Central

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.

    2016-01-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631

  4. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  5. DISPERSION ANALYSIS OF RADIATION/THERMAL FRONTS WITH FULL RESOLVED SPECTRAL OPACITY VARIATION.

    SciTech Connect

    L. AUER; R. LOWRIE

    2000-12-01

    The radiation transport and linearized thermal energy equations have been analyzed to find the temporal dependence of the component modes in a radiation/thermal front. The fully resolved spectral variation of the opacity as a function of energy, as well as the exact time and angular dependence, is treated in this work. As we are able to study arbitrarily complicated opacity spectra, we stress the importance of the new results as a check on the effect of using opacity averages.

  6. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching

    NASA Astrophysics Data System (ADS)

    Lunt, Richard R.; Giebink, Noel C.; Belak, Anna A.; Benziger, Jay B.; Forrest, Stephen R.

    2009-03-01

    We demonstrate spectrally resolved photoluminescence quenching as a means to determine the exciton diffusion length of several archetype organic semiconductors used in thin film devices. We show that aggregation and crystal orientation influence the anisotropy of the diffusion length for vacuum-deposited polycrystalline films. The measurement of the singlet diffusion lengths is found to be in agreement with diffusion by Förster transfer, whereas triplet diffusion occurs primarily via Dexter transfer.

  7. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    NASA Astrophysics Data System (ADS)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  8. Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation

    NASA Astrophysics Data System (ADS)

    Lu, Yujie; Douraghy, Ali; Machado, Hidevaldo B.; Stout, David; Tian, Jie; Herschman, Harvey; Chatziioannou, Arion F.

    2009-11-01

    Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP3-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP3-based reconstruction algorithm.

  9. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    PubMed

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

  10. Distribution of ALA metabolic products in esophageal carcinoma cells using spectrally resolved confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Smolka, Jozef; Mateasik, Anton

    2006-08-01

    Aminolevulinic acid (ALA) is an efficient substance used in photodynamic therapy (PDT). It is a precursor of light-sensitive products that can selectively accumulate in malignant cells following the altered activity of the heme biosynthetic pathway enzymes in such cells. These products are synthesized in mitochondria and distributed to various cellular structures [1]. The localization of ALA products in subcellular structures depends on their chemical characteristics as well as on the properties of the intracellular environment [2]. Characterization of such properties is possible by means of fluorescent probes like JC-1 and carboxy SNARF-1. However, the emission spectra of these probes are overlapped with spectral pattern of typical ALA product -protoporphyrin IX (PpIX). Spectral overlap of fluorescence signals prevents to clearly separate a distribution of probes from PpIX distribution what can completely mess the applicability of these probes in characterization of cell properties. The spectrally resolved confocal laser microscopy can be used to overcome this problem. In this study, a distribution of ALA metabolic products in relation to the mitochondrial membrane potential and intracellular pH was examined. Human cell lines (KYSE-450, KYSE-70) from esophageal squamous cell carcinoma were used. Cells were incubated with 1mM solution of ALA for four hours. Two fluorescent probes, carboxy SNARF-1 and JC-1 , were used to monitor intracellular pH levels and to determine membrane potential changes, respectively. The samples were scanned by spectrally resolved laser scanning microscope. Spectral linear unmixing method was used to discriminate and separate regions of accumulation of ALA metabolic products of JC-1 and carboxy SNARF-1.

  11. Spectral ageing in the era of big data: integrated versus resolved models

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.

    2017-04-01

    Continuous injection models of spectral ageing have long been used to determine the age of radio galaxies from their integrated spectrum; however, many questions about their reliability remain unanswered. With various large area surveys imminent (e.g. LOw Frequency ARray, MeerKAT, Murchison Widefield Array) and planning for the next generation of radio interferometers are well underway (e.g. next generation VLA, Square Kilometre Array), investigations of radio galaxy physics are set to shift away from studies of individual sources to the population as a whole. Determining if and how integrated models of spectral ageing can be applied in the era of big data is therefore crucial. In this paper, I compare classical integrated models of spectral ageing to recent well-resolved studies that use modern analysis techniques on small spatial scales to determine their robustness and validity as a source selection method. I find that integrated models are unable to recover key parameters and, even when known a priori, provide a poor, frequency-dependent description of a source's spectrum. I show a disparity of up to a factor of 6 in age between the integrated and resolved methods but suggest, even with these inconsistencies, such models still provide a potential method of candidate selection in the search for remnant radio galaxies and in providing a cleaner selection of high redshift radio galaxies in z - α selected samples.

  12. Velocity and Temperature Measurement in Supersonic Free Jets Using Spectrally Resolved Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2004-01-01

    The flow fields of unheated, supersonic free jets from convergent and convergent-divergent nozzles operating at M = 0.99, 1.4, and 1.6 were measured using spectrally resolved Rayleigh scattering technique. The axial component of velocity and temperature data as well as density data obtained from a previous experiment are presented in a systematic way with the goal of producing a database useful for validating computational fluid dynamics codes. The Rayleigh scattering process from air molecules provides a fundamental means of measuring flow properties in a non-intrusive, particle free manner. In the spectrally resolved application, laser light scattered by the air molecules is collected and analyzed using a Fabry-Perot interferometer (FPI). The difference between the incident laser frequency and the peak of the Rayleigh spectrum provides a measure of gas velocity. The temperature is measured from the spectral broadening caused by the random thermal motion and density is measured from the total light intensity. The present point measurement technique uses a CW laser, a scanning FPI and photon counting electronics. The 1 mm long probe volume is moved from point to point to survey the flow fields. Additional arrangements were made to remove particles from the main as well as the entrained flow and to isolate FPI from the high sound and vibration levels produced by the supersonic jets. In general, velocity is measured within +/- 10 m/s accuracy and temperature within +/- 10 K accuracy.

  13. Probing multifractality in depth-resolved refractive index fluctuations in biological tissues using backscattering spectral interferometry

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, P. K.; Ghosh, Nirmalya

    2016-12-01

    Fourier domain low coherence interferometry is a promising method for quantification of the depth distribution of the refractive index in a layered scattering medium such as biological tissue. Here, we have explored backscattering spectral interferometric measurement in combination with multifractal detrended fluctuation analysis to probe and quantify multifractality in depth distribution of the refractive index in tissue. The depth resolution of the experimental system was validated on model systems comprising of polystyrene microspheres and mica sheet, and was initially tested on turbid collagen layer, the main building blocks of the connective tissue. Following successful evaluation, the method was applied on ex vivo tissues of human cervix. The derived multifractal parameters of depth-resolved index fluctuations of tissue, namely, the generalized Hurst exponent and the width of the singularity spectrum showed interesting differences between tissues having different grades of precancers. The depth-resolved index fluctuations exhibited stronger multifractality with increasing pathological grades, demonstrating its promise as a potential biomarker for precancer detection.

  14. The sensitivity of the EMAC model to spectrally resolved irradiances during the Archean.

    NASA Astrophysics Data System (ADS)

    Kunze, Markus; Godolt, Mareike; Hamann-Reinus, Anke; Langematz, Ulrike; Rauer, Heike; Jöckel, Patrick

    The contradiction of a reduced solar luminosity by 15-25% during the Archean and the geo-logic evidence for relative high surface temperatures that allowed the presence of liquid water is known as the faint young sun problem. It is supposed that the cooling induced by a fainter sun was offset by higher levels of greenhouse gases during the Archean. We present a study in which we investigate this problem using the Chemistry Climate model EMAC (ECHAM/MESSy At-mospheric Chemistry) with a constructed, spectrally resolved irradiance dataset valid for the Archean. As proxy for the irradiance of our young sun we use the G0V-dwarf star β com. We test differently scaled spectrally resolved irradiances in an offline version of the FUBrad radiation scheme, to analyse the sensitivity of the input data on the heating rates in the middle atmo-sphere. We then use the EMAC model to analyse the sensitivity of the model dynamics to the spectrally resolved irradiances and other parameters valid for the late Archean Earth, such as the composition of the atmosphere and the land sea mask. Our experimental setup includes a control run, which has a zero land fraction, a slab ocean, the present day atmospheric composition, and the present day solar luminosity. Three sensitivity experiments are performed for: (1) 20% reduced solar irradiance, (2) 15% reduced solar irra-diance, and (3) increased CO2 concentration. We concentrate on the thermal and dynamical state of the atmosphere with emphasis on the middle atmosphere.

  15. Measuring evolution of a photon in an interferometer with spectrally resolved modes

    NASA Astrophysics Data System (ADS)

    Bula, Marek; Bartkiewicz, Karol; Černoch, Antonín; Javůrek, Dalibor; Lemr, Karel; Michálek, Václav; Soubusta, Jan

    2016-11-01

    In the year 2013, Danan et al. published a paper [Phys. Rev. Lett. 111, 240402 (2013), 10.1103/PhysRevLett.111.240402] demonstrating a counterintuitive behavior of photons in nested Mach-Zehnder interferometers. The authors then proposed an explanation based on the two-state vector formalism. This experiment and the authors' explanation raised a vivid debate within the scientific community. In this paper, we contribute to the ongoing debate by presenting an alternative experimental implementation of the Danan et al. scheme. We show that no counterintuitive behavior is observed when performing direct spectrally resolved detection.

  16. Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua; Thomas, Michael E.; Joseph, Richard I.

    2007-04-01

    The spectrally resolved absolute fluorescence cross sections of Bacillus globigii (BG) and Bacillus thuringiensis (BT) were measured with a 266nm Nd:YAG laser source. The aerosol samples were prepared in dilute aqueous suspensions for measurement and the absolute cross section was found by use of the Raman scattering line from water. Integrated cross sections for BT and BG were found to be 1.1864 × 10 -12 cm2(spore sr) and 3.251 × 10 -13 cm2/ (spore sr) respectively.

  17. Spectrally resolved four-wave mixing experiments on bulk GaAs with 14-fs pulses

    SciTech Connect

    Wehner, M.U.; Steinbach, D.; Wegener, M.; Marschner, T.; Stolz, W.

    1996-05-01

    We investigate the coherent dynamics at the band edge of GaAs at low temperatures for carrier densities ranging from 4.3{times}10{sup 14} cm{sup {minus}3} to 4.4{times}10{sup 17} cm{sup {minus}3} by means of spectrally resolved transient four-wave mixing with 14-fs pulses. At large nonequilibrium carrier densities we observe oscillations with an energy-dependent oscillation period related to interference among continuum states. The experimental findings are compared with a simple model. This comparison delivers a weak energy dependence of dephasing in the initial buildup phase of screening. {copyright} {ital 1996 Optical Society of America.}

  18. An imaging spectro-polarimeter for measuring hemispherical spectrally resolved down-welling sky polarization

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. L.; Roche, Michael; Hyatt, Brian

    2016-05-01

    A full sky imaging spectro-polarimeter has been developed that measures spectrally resolved (~2.5 nm resolution) radiance and polarization (𝑠0, 𝑠1, 𝑠2 Stokes Elements) of natural sky down-welling over approximately 2π sr between 400nm and 1000nm. The sensor is based on a scanning push broom hyperspectral imager configured with a continuously rotating polarizer (sequential measurement in time polarimeter). Sensor control and processing software (based on Polaris Sensor Technologies Grave' camera control software) has a straight-forward and intuitive user interface that provides real-time updated sky down-welling spectral radiance/polarization maps and statistical analysis tools.

  19. Application of Confocal and Spectrally Resolved Techniques to Scanning Laser Photoluminescence Microscopy.

    NASA Astrophysics Data System (ADS)

    Bowron, John William

    Both confocal microscopes and photoluminescence wafer mapping systems are well-developed technologies, however the application of confocal techniques to photoluminescence microscopy is not common in the literature. While developing this microscope a novel design for a spectrally-resolved detection arm was implemented. The microscope shows full confocal capabilities in reflected light operation, good spectral sensitivity in the visible region and a range of possible spectral resolutions between 10 nm and 0.1 nm, however the axial response in photoluminescence operation was found to be broader than expected by a factor of two. Calculations were performed to model and understand the new microscope. Simulations of the axial-response of an infinity-connected microscope in reflected light agreed well with experimental data. A new prediction showed that under certain circumstances the maximum signal is not always obtained at best focus. This prediction was confirmed later by experiment. These calculations were extended to understand the broadening observed in photoluminescence imaging. Three factors were considered: absorption in the material, diffusion of photo-excited carriers and the high refractive index of the material. The utility of the microscope was demonstrated by using it to image several different samples. Near-infrared fluorescence imaging was demonstrated for a stained biological specimen. Auto-fluorescence imaging was demonstrated using an ultra-violet laser and spectrally-resolved images were used to distinguish between various materials in the specimen. Confocal image stacking was demonstrated in photoluminescence on a CuO sample. Confocal photoluminescence images were shown to have higher spatial resolution than non-confocal images. Quantitative information was obtained for a SiC sample containing several polytypes. The optical measurements were then correlated with X-ray diffraction measurements in order to arrive at a polytype identification scheme

  20. Improvement of spectrally resolved interferometry without direction ambiguity and dead zone

    NASA Astrophysics Data System (ADS)

    Yun, Young Ho; Joo, Ki-Nam

    2016-08-01

    Spectrally-resolved interferometry (SRI) is a very useful technique to measure distances and surface profiles based on the analysis of the spectral interferogram. The most attractive feature of SRI is to obtain the spectral phase to extract the measuring distance at once without any scanning mechanism opposed to the low coherence scanning interferometry although phase shifting techniques can be involved in SRI to improve the measurement accuracy in some cases. However, the measurement range of SRI is relatively small because of the fundamental measuring range limitations such as the maximum measurable range and the minimum measurable range. Moreover, the important issue in SRI is the direction ambiguity because it always provides the positive values, regardless of the direction. In case of measuring optical path difference (OPD) when the reference path is longer than the measurement path, the measurement result of SRI is the same as the distance in the opposite case. Then, SRI only uses one direction to measure distances or surface profiles for the linearity of the measurement results due to these fundamental characteristics although its whole measuring range is two times longer. In this investigation, we propose a very simple and effective technique to eliminate the direction ambiguity and the dead zone, which limit the measurable range in SRI. By using a dispersive material, the nonlinear spectral phase caused by the dispersion can provide useful information and determine the direction of measuring distances. In addition, the dead zone can be successfully removed by two complementary measurement results in dichroic SRI.

  1. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scatteringa)

    NASA Astrophysics Data System (ADS)

    Kraus, D.; Vorberger, J.; Helfrich, J.; Gericke, D. O.; Bachmann, B.; Bagnoud, V.; Barbrel, B.; Blažević, A.; Carroll, D. C.; Cayzac, W.; Döppner, T.; Fletcher, L. B.; Frank, A.; Frydrych, S.; Gamboa, E. J.; Gauthier, M.; Göde, S.; Granados, E.; Gregori, G.; Hartley, N. J.; Kettle, B.; Lee, H. J.; Nagler, B.; Neumayer, P.; Notley, M. M.; Ortner, A.; Otten, A.; Ravasio, A.; Riley, D.; Roth, F.; Schaumann, G.; Schumacher, D.; Schumaker, W.; Siegenthaler, K.; Spindloe, C.; Wagner, F.; Wünsch, K.; Glenzer, S. H.; Roth, M.; Falcone, R. W.

    2015-05-01

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  2. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    NASA Astrophysics Data System (ADS)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  3. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    SciTech Connect

    Kraus, D.; Barbrel, B.; Falcone, R. W.; Vorberger, J.; Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M.; Gericke, D. O.; Wünsch, K.; Bachmann, B.; Döppner, T.; Bagnoud, V.; Blažević, A.; and others

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  4. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography

    PubMed Central

    Cong, Wenxiang; Shen, Haiou; Wang, Ge

    2011-01-01

    The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815

  5. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity

    NASA Astrophysics Data System (ADS)

    Levitt, James A.; Chung, Pei-Hua; Suhling, Klaus

    2015-09-01

    Spectrally resolved confocal microscopy and fluorescence lifetime imaging have been used to measure the polarity of lipid-rich regions in living HeLa cells stained with Nile red. The emission peak from the solvatochromic dye in lipid droplets is at a shorter wavelength than other, more polar, stained internal membranes, and this is indicative of a low polarity environment. We estimate that the dielectric constant, ɛ, is around 5 in lipid droplets and 25<ɛ<40 in other lipid-rich regions. Our spectrally resolved fluorescence lifetime imaging microscopy (FLIM) data show that intracellular Nile red exhibits complex, multiexponential fluorescence decays due to emission from a short lifetime locally excited state and a longer lifetime intramolecular charge transfer state. We measure an increase in the average fluorescence lifetime of the dye with increasing emission wavelength, as shown using phasor plots of the FLIM data. We also show using these phasor plots that the shortest lifetime decay components arise from lipid droplets. Thus, fluorescence lifetime is a viable contrast parameter for distinguishing lipid droplets from other stained lipid-rich regions. Finally, we discuss the FLIM of Nile red as a method for simultaneously mapping both polarity and relative viscosity based on fluorescence lifetime measurements.

  6. Spectrally- and polarization-resolved hyper-Rayleigh scattering measurements with polarization-insensitive detection

    NASA Astrophysics Data System (ADS)

    Němec, P.; Pásztor, F.; Brajer, M.; Němec, I.

    2017-04-01

    Determination of the molecular first hyperpolarizability by hyper-Rayleigh scattering (HRS) is usually significantly complicated by a presence of the multiphoton excited fluorescence which has to be separated from HRS to obtain a meaningful values of the hyperpolarizability. We show, by performing a spectrally-resolved measurement, that the intensity and spectral shape of the fluorescence can depend strongly on the fundamental laser wavelength. Consequently, a properly selected excitation wavelength can significantly simplify the process of separation of HRS from the detected signal. We tested the developed experimental setup with a polarization-insensitive detection by measuring HRS generated in water and in aqueous solutions of 2-aminopyrimidine (AMP) and its monocation (HAMP). The effective hyperpolarizability of AMP and HAMP was measured experimentally and compared with that obtained by quantum chemical calculations. The polarization-resolved HRS measurement was performed for AMP and the experimentally obtained depolarization ratio agrees well with that predicted theoretically, which confirms that routine density functional theory computations of static hyperpolarizability tensor components can be considered as a sufficient approach suitable for non-interacting molecules dissolved in water.

  7. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  8. FTS atlas of the Sun's spectrally resolved center-to-limb variation

    NASA Astrophysics Data System (ADS)

    Stenflo, J. O.

    2015-01-01

    The Sun's spectrum varies with center-to-limb distance, which is usually parameterized by μ = cosθ, where θ is the heliocentric angle. This variation is governed by the underlying temperature-density structure of the solar atmosphere. While the center-to-limb variation (CLV) of the continuous spectrum is well known and has been widely used for atmospheric modeling, there has been no systematic exploration of the spectrally resolved CLV. Here we make use of two spectral atlases recorded with the Fourier transform spectrometer (FTS) at the McMath-Pierce facility at Kitt Peak. One spectral atlas obtained 10 arcsec inside the solar limb was recorded in 1978-79 as part of the first survey of the Second Solar Spectrum, while the other atlas is the well used reference NSO/Kitt Peak FTS atlas for the disk center. Both atlases represent fully resolved spectra without any spectral stray light. We then construct an atlas of the limb/disk-center ratio between the two spectra over the wavelength range 4084-9950 Å. This ratio spectrum, which expresses the CLV amplitude relative to the continuum, is as richly structured as the intensity spectrum itself, but the line profiles differ greatly in both shape and amplitude. It is as if we are dealing with a new, unfamiliar spectrum of the Sun, distinctly different from both the intensity spectrum (which we here refer to with the acronym SS1) and the linear polarization of the Second Solar Spectrum (for which we use acronym SS2). In analogy we refer to the new ratio spectrum as SS3. While there is hardly any resemblance between SS3 and SS2, we are able to identify a non-linear mapping that can translate SS1 to SS3 in the case of weak to medium-strong spectral lines that are mainly formed in LTE (being directly coupled to the local temperature-density structure). This non-linear mapping is successfully modeled in terms of two free parameters that are found to vary approximately linearly over the entire wavelength range covered. These

  9. Noninvasive tumor detection using spectrally-resolved in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Kostenich, Gennady; Kimel, Sol; Malik, Zvi; Orenstein, Arie

    2000-11-01

    A novel spectral image-analysis system was used for tumor fluorescence and reflectance imaging in an animal model and in patients. Transcutaneous fluorescence imaging was carried out on Balb/c mice bearing subcutaneous C26 colon carcinoma after intraperitoneal (i.p.) administration of 5-aminolevulinic acid (ALA), a metabolic precursor of protoporphyrin-IX (PP), and of a novel photosensitizer tetrahydroporphyrin (THP). Tumors were clearly observable by fluorescence detection using green light excitation. Tumor versus normal tissue uptake of the photosensitizing agents was determined by monitoring fluorescence intensity. Maximal PP accumulation in tumor was observed 3 h after i.p. injection of ALA, whereas THP showed selective accumulation in tumor 24 h after administration. Reflectance spectroscopy was employed to study pigmented human skin lesions (nevus, pigmented BCC and pigmented melanoma). In the near-infrared region (800-880 nm) pigmented BCC and melanoma exhibited a differently shaped reflectance spectrum compared to normal skin and nevus. Spatially and spectrally resolved imaging, in combination with mathematical algorithms (such as normalization, spectral similarity mapping and division) allowed unambiguous detection of malignancies. Optical biopsy results from a total of 51 patients showed 45 benign nevi, 3 pigmented BCC and 3 malignant melanomas, as confirmed by histology.

  10. Novel characterization of the nonlinear refractive response of materials using spatially and spectrally resolved interferometry

    NASA Astrophysics Data System (ADS)

    Meier, Amanda; Adams, Daniel; Squier, Jeff; Durfee, Charles

    2010-10-01

    Characterization of the nonlinear refractive index of a material is important in order to fully understand the nonlinear propagation of femtosecond laser pulses. The most common method to obtaining the nonlinear refractive index is Z-scan. However, since it averages over pulse duration and beam profile, Z-scan is not reliable when there is time- and intensity-dependence of the nonlinear response. The new method we are exploring to make these nonlinear refractive index measurements is spatially and spectrally resolved interferometry (SSRI). SSRI is a method that can give a simultaneous measurement of the spatial wave-front across the frequency or temporal profile of the pulse. The SSRI method proves better in measuring response at specific y and t, allowing it to measure both delayed response and saturation effects. The ability to make a measurement in both dimensions enables understanding of spatiotemporal dynamics in other experiments as cross-wave polarization and filamentation.

  11. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-01

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  12. Spectrally-resolved Soft X-ray Observations and the Temperature Structure of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Warren, Harry; McTiernan, James; Woods, Thomas N.

    2015-04-01

    Solar X-ray observations provide important diagnostics of plasma heating and particle acceleration, during solar flares and quiescent periods. How the corona is heated to its ~1-3 MK nominal temperature remains one of the fundamental unanswered questions of solar physics; heating of plasma to tens of MK during solar flares -- particularly to the hottest observed temperatures of up to ~50 MK -- is also still poorly understood. Soft X-ray emission (~0.1-10 keV; or ~0.1-10 nm) is particularly sensitive to hot coronal plasma and serves as a probe of the thermal processes driving coronal plasma heating. Spectrally- and temporally-resolved measurements are crucial for understanding these energetic processes, but there have historically been very few such observations. We present new solar soft X-ray spectra from the Amptek X123-SDD, measuring quiescent solar X-ray emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution from two SDO/EVE calibration sounding rocket underflights in 2012 and 2013. Combined with observations from RHESSI, GOES/XRS, SDO/EVE, and SDO/AIA, the temperature distribution derived from these data suggest significant hot (5-10 MK) emission from active regions, and the 2013 spectra suggest a low-FIP enhancement of only ~1.6 relative to the photosphere, 40% of the usually-observed value from quiescent coronal plasma. We explore the implications of these findings on coronal heating. We discuss future missions for spectrally-resolved soft X-ray observations using the X123-SDD, including the upcoming MinXSS 3U CubeSat using the X123-SDD and scheduled for deployment in mid-2015, and the CubIXSS 6U CubeSat mission concept.

  13. High Broadband Spectral Resolving Transition-Edge Sensors for High Count-Rate Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Smith, Stephen

    2011-01-01

    We are developing arrays of transition-edge sensor (TES) X-ray detectors optimized for high count-rate solar astronomy applications where characterizing the high velocity motions of X-ray jets in solar flares is of particular interest. These devices are fabricated on thick Si substrates and consist of 35x35micron^2 TESs with 4.5micron thick, 60micron pitch, electroplated absorbers. We have tested devices fabricated with different geometric stem contact areas with the TES and surrounding substrate area, which allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between the stem contact area and a non-Gaussian broadening in the spectral line shape consistent with athermal phonon loss. When the contact area is minimized we have obtained remarkable board-band spectral resolving capabilities of 1.3 plus or minus 0.leV at an energy of 1.5 keV, 1.6 plus or minus 0.1 eV at 5.9 keV and 2.0 plus or minus 0.1 eV at 8 keV. This, coupled with a capability of accommodating 100's of counts per second per pixel makes these devices an exciting prospect of future x-ray astronomy applications.

  14. Spectral dependence of resolving power of optical method of detection of ultrasonically enhanced agglutination of human blood erythrocytes

    NASA Astrophysics Data System (ADS)

    Doubrovski, V. A.; Dvoretski, K. N.; Dolmashkin, A. A.

    2010-08-01

    The spectral dependence of the resolving power of an acoustooptic method of monitoring agglutination of human blood erythrocytes is studied theoretically and experimentally. It is shown that, in principle, the resolving power of this method can be increased by several dozen times. The results of the work can be used to create instruments for determining the human blood type in the AB0 system and in the Rhesus system.

  15. Climatic impact of spectrally resolved irradiances during the late Archean as modeled with EMAC-FUB

    NASA Astrophysics Data System (ADS)

    Kunze, M.; Langematz, U.; Godolt, M.; Hamann-Reinus, A.; Rauer, H.; Joeckel, P.

    2011-12-01

    During the Archean eon the surface temperatures of the Earth are assumed to have been high enough to support liquid water, despite a lower luminosity of the young Sun. This fact, known as the faint young Sun paradox, can be explained by assuming higher concentrations of greenhouse gases during the early stages of the Earth. But there is still an ongoing debate about the possible range of greenhouse gas concentrations that are consistent with the geologic evidence. We present a study in which we investigate this problem using the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) in a resolution of T42/L39 with the high-resolution shortwave radiation scheme FUBRad (EMAC-FUB). We are using a constructed, spectrally resolved irradiance dataset valid for the Archean Sun, and analyze the climatic impact of the reduced solar luminosity, an anoxic environment, an increased CO2 concentration, and the different land mass. In total six simulations have been performed, where two simulations only differ by the O2 and O3 content and otherwise have present day conditions. Four simulations use a global ocean, as the distribution and fraction of the continents are highly uncertain during the Archean, and anoxic conditions. Three simulations use a reduced solar luminosity, where two CO2 scenarios are tested (3 ± PAL and 10 ± PAL). As proxy for the early Sun during the late Archean at 2.5 Ga (109 years ago) we take the dwarf star β Com. The spectrally resolved irradiances are compiled from measurements and modeled data, and scaled to a total solar irradiance (TSI) of 82 % the present TSI (i.e. 1121 W m-2). We show that in an anoxic environment with reduced solar luminosity at 2.5 Ga, a global ocean, and present day greenhouse gases, it is still possible to have liquid water in tropical latitudes, even though the global, annual mean surface temperature is below the freezing point of water. When the CO2 concentration is increased, the region of open water widens. The

  16. In vivo stoichiometry monitoring of G protein coupled receptor oligomers using spectrally resolved two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Stoneman, M. R.; Singh, D. R.; Raicu, V.

    2010-02-01

    Resonance Energy Transfer (RET) between a donor molecule in an electronically excited state and an acceptor molecule in close proximity has been frequently utilized for studies of protein-protein interactions in living cells. Typically, the cell under study is scanned a number of times in order to accumulate enough spectral information to accurately determine the RET efficiency for each region of interest within the cell. However, the composition of these regions may change during the course of the acquisition period, limiting the spatial determination of the RET efficiency to an average over entire cells. By means of a novel spectrally resolved two-photon microscope, we were able to obtain a full set of spectrally resolved images after only one complete excitation scan of the sample of interest. From this pixel-level spectral data, a map of RET efficiencies throughout the cell is calculated. By applying a simple theory of RET in oligomeric complexes to the experimentally obtained distribution of RET efficiencies throughout the cell, a single spectrally resolved scan reveals stoichiometric and structural information about the oligomer complex under study. This presentation will describe our experimental setup and data analysis procedure, as well as an application of the method to the determination of RET efficiencies throughout yeast cells (S. cerevisiae) expressing a G-protein-coupled receptor, Sterile 2 α factor protein (Ste2p), in the presence and absence of α-factor - a yeast mating pheromone.

  17. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  18. Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.

    2014-12-01

    We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.

  19. Application and development of a spectrally-resolved confocal microscope: A study of lipofuscin emission properties

    NASA Astrophysics Data System (ADS)

    Haralampus-Grynaviski, Nicole Marie

    A unique spectrally-resolved confocal microscope is developed for use in biophysical applications. This microscope enables the rapid collection of the complete emission spectra for every pixel in a fluorescence image. The basic optical design and function of the device are assessed through examination of fluorescently labeled beads, using both one- and two-photon excitation. The spatial resolution of the device is found to approach the diffraction limit in the lateral plane and ˜2 mum in the axial plane. This device can readily distinguish between overlapping emissions which are not easily differentiated using standard filter techniques. The potential of this device to be used as a detection method in DNA sequence experiments is demonstrated. Images of a human skin tissue section and a mouse kidney section are presented which demonstrate the structure and spectra of biologic samples can be resolved. The emission properties of human ocular lipofuscin, LF, a heterogeneous auto-fluorescent material associated with age-related macular degeneration is investigated in detail. Isolated LF granules show substantial variation in emission spectra. Near-field scanning microscopy experiments find the emissive regions on a single LF granule are homogeneous on the ˜150 nm scale and confirm results obtained on the microscope developed here. For ˜100 studied LF deposits, the histogram of the measured peak emission is centered around 18,000 cm-1 (555 nm). The average emission spectra for large LF aggregates (peak 17,150 cm-1) is red-shifted compared to the average emission from small individual granules (peak 17,600 cm-1). The average LF granule emission observed here is similar to previously reported bulk LF emission and the emission of a previously identified LF chromophore, A2E. Individual LF granules show a broad range in emission maximum whether the LF is isolated from multiple donors or examined within the cells of a single donor. Multiple as yet unidentified chromophores

  20. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  1. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators

    PubMed Central

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-01-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300−2500 nm at incidence angles 15–60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0–60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350–1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article “Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators” in Solar Energy Materials and Solar Cells. PMID:26862556

  2. Spectrally resolved phase-shifting interference microscopy: technique based on optical coherence tomography for profiling a transparent film on a patterned substrate

    SciTech Connect

    Debnath, Sanjit K.; Kim, Seung-Woo; Kothiyal, Mahendra P.; Hariharan, Parameswaran

    2010-12-01

    Spectrally resolved white-light phase-shifting interference microscopy has been used for measurements of the thickness profile of a transparent thin-film layer deposited upon a patterned structure exhibiting steps and discontinuities. We describe a simple technique, using an approach based on spectrally resolved optical coherence tomography, that makes it possible to obtain directly a thickness profile along a line by inverse Fourier transformation of the complex spectral interference function.

  3. Spectrally resolved phase-shifting interference microscopy: technique based on optical coherence tomography for profiling a transparent film on a patterned substrate.

    PubMed

    Debnath, Sanjit K; Kim, Seung-Woo; Kothiyal, Mahendra P; Hariharan, Parameswaran

    2010-12-01

    Spectrally resolved white-light phase-shifting interference microscopy has been used for measurements of the thickness profile of a transparent thin-film layer deposited upon a patterned structure exhibiting steps and discontinuities. We describe a simple technique, using an approach based on spectrally resolved optical coherence tomography, that makes it possible to obtain directly a thickness profile along a line by inverse Fourier transformation of the complex spectral interference function.

  4. Strong Role of Non-stationary Accretion in Spectral Transitions of X-ray Binaries and Implications for Revealing the Accretion Geometry and Broadband Radiation Mechanisms

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Yan, Zhen; Tang, Jing; Wu, Yuxiang

    Observations of spectral transitions from the hard state to the soft state in bright X-ray binaries show strong evidence that the rate-of-change of the mass accretion rate plays a dominant role in determining the luminosity at which the spectral transition occurs. This indicates that in many cases, especially accretion in transients during outbursts, the rate-of-change of the mass accretion rate is the primary parameter driving high energy phenomena. Although this goes beyond the scope of current stationary model of disk and jet, it tells us that it is the rate-of-change of the mass accretion rate that we need to trace observationally. Since state transition is a broadband phenomenon, multi-wavelength observations of spectral transitions of different rate-of-changes of mass accretion rate are expect to reveal the accretion geometry and broadband radiation mechanisms.

  5. A Comparison of PSD Enveloping Methods for Nonstationary Vibration

    NASA Technical Reports Server (NTRS)

    Irvine, Tom

    2015-01-01

    There is a need to derive a power spectral density (PSD) envelope for nonstationary acceleration time histories, including launch vehicle data, so that components can be designed and tested accordingly. This paper presents the results of the three methods for an actual flight accelerometer record. Guidelines are given for the application of each method to nonstationary data. The method can be extended to other scenarios, including transportation vibration.

  6. New Instruments for Spectrally-Resolved Solar Soft X-ray Observations from CubeSats, and Larger Missions

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Shih, A.; Warren, H. P.; DeForest, C. E.; Woods, T. N.

    2015-12-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics and evolution of these energetic processes; spatially-resolved measurements are critical for understanding energy transport. A better understanding of the thermal plasma informs our interpretation of hard X-ray (HXR) observations of nonthermal particles, improving our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-SDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. An X123-CdTe cadmium-telluride detector is also included for ~5-100 keV HXR spectroscopy with ~0.5-1 keV FWHM resolution. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a pinhole aperture and X-ray transmission diffraction grating to provide full-Sun imaging from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. We discuss scaled versions of these instruments, with greater sensitivity and dynamic range, and significantly improved spectral and spatial resolutions for the imager, for deployment on larger platforms such as Small Explorer missions.

  7. Modeling spatially and spectrally resolved observations to diagnose the formation of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory Frantz

    2013-03-01

    In extragalactic astronomy, a central challenge is that we cannot directly watch what happens to galaxies before and after they are observed. This dissertation focuses on linking predictions of galaxy time-evolution directly with observations, evaluating how interactions, mergers, and other processes affect the appearance of elliptical galaxies. The primary approach is to combine hydrodynamical simulations of galaxy formation, including all major components, with dust radiative transfer to predict their observational signatures The current paradigm implies that a quiescent elliptical emerges following a formative starburst event. These trigger accretion onto the central supermassive black hole (SMBH), which then radiates as an active galactic nucleus (AGN). However, it is not clear the extent to which SMBH growth is fueled by these events nor how important is their energy input at setting the appearance of the remnant. This thesis presents results drawing from three phases in the formation of a typical elliptical: 1) I evaluate how to disentangle AGN from star formation signatures in mid-infrared spectra during a dust-enshrouded starburst, making testable predictions for robustly tracing SMBH growth with the James Webb Space Telescope; 2) I develop a model for the rate of merger-induced post-starburst galaxies selected from optical spectra, resolving tension between their observed rarity and merger rates from other estimates; and 3) I present results from Hubble Space Telescope imaging of elliptical galaxies in galaxy clusters at 1 < z < 2, the precursors of present-day massive clusters with M ~ 1015 solar masses, demonstrating that their stars formed over an extended period and ruling out the simplest model for their formation history. These results lend support to a stochastic formation history for ellipticals driven by mergers or interactions. However, significant uncertainties remain in how to evaluate the implications of galaxy appearance, in particular their

  8. Spectrally resolved Hong-Ou-Mandel interference between independent photon sources

    NASA Astrophysics Data System (ADS)

    Jin, Rui-Bo; Gerrits, Thomas; Fujiwara, Mikio; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Shimizu, Ryosuke; Takeoka, Masahiro; Sasaki, Masahide

    2015-11-01

    Hong-Ou-Mandel (HOM) interference between independent photon sources (HOMI-IPS) is the fundamental block for quantum information processing, such as quantum gate, Shor's algorithm, Boson sampling, etc. All the previous HOMI-IPS experiments were carried out in time-domain, however, the spectral information during the interference was lost, due to technical difficulties. Here, we investigate the HOMI-IPS in spectral domain using the recently developed fast fiber spectrometer, and demonstrate the spectral distribution during the HOM interference between two heralded single-photon sources, and two thermal sources. This experiment can not only deepen our understanding of HOMI-IPS in the spectral domain, but also be utilized to improve the visibility by post-processing spectral filtering.

  9. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  10. Resolving fine spectral features in lattice vibrational modes using femtosecond coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Card, A.; Mokim, M.; Ganikhanov, F.

    2016-02-01

    We show resolution of fine spectral features within several Raman active vibrational modes in potassium titanyl phosphate (KTP) crystal. Measurements are performed using a femtosecond time-domain coherent anti-Stokes Raman scattering spectroscopy technique that is capable of delivering equivalent spectral resolution of 0.1 cm-1. The Raman spectra retrieved from our measurements show several spectral components corresponding to vibrations of different symmetry with distinctly different damping rates. In particular, linewidths for unassigned optical phonon mode triplet centered at around 820 cm-1 are found to be 7.5 ± 0.2 cm-1, 9.1 ± 0.3 cm-1, and 11.2 ± 0.3 cm-1. Results of our experiments will ultimately help to design an all-solid-state source for sub-optical-wavelength waveform generation that is based on stimulated Raman scattering.

  11. Chromatic-aberration diagnostic based on a spectrally resolved lateral-shearing interferometer.

    PubMed

    Bahk, Seung-Whan; Dorrer, Christophe; Roides, Rick G; Bromage, Jake

    2016-03-20

    A simple diagnostic characterizing one-dimensional chromatic aberrations in a broadband beam is introduced. A Ronchi grating placed in front of a spectrometer entrance slit provides spectrally coupled spatial phase information. The radial-group delay of a refractive system and the pulse-front delay of a wedged glass plate have been characterized accurately in a demonstration experiment.

  12. Chromatic-aberration diagnostic based on a spectrally resolved lateral-shearing interferometer

    DOE PAGES

    Bahk, Seung -Whan; Dorrer, Christopher; Roides, Rick G.; ...

    2016-03-18

    Here, a simple diagnostic characterizing one-dimensional chromatic aberrations in a broadband beam is introduced. A Ronchi grating placed in front of a spectrometer entrance slit provides spectrally coupled spatial phase information. The radial-group delay of a refractive system and the pulse-front delay of a wedged glass plate have been characterized accurately in a demonstration experiment.

  13. Nonstationary de Sitter Cosmological Models

    NASA Astrophysics Data System (ADS)

    Ibohal, Ng

    This paper proposes a class of nonstationary de Sitter, rotating and nonrotating, solutions to Einstein's field equations with a cosmological term of variable function Λ*(u). It is found that the space-time of the rotating nonstationary de Sitter model is algebraically special in the Petrov classification of the gravitational field with a null vector, which is a geodesic, shear-free, expanding as well as nonzero twist. However, that of the nonrotating nonstationary model is conformally flat, with nonempty space.

  14. Spectral Characterization of A Resolved M dwarf-M dwarf Binary

    NASA Astrophysics Data System (ADS)

    Tamiya, Tomoki; Burgasser, Adam J.; Aganze, Christian; Mercado, Gretel; Suarez, Adrian

    2016-06-01

    We report characterization of the resolved binary M dwarf SDSS J155526.53+095409.5AB through spectroscopic and imaging analysis. Classification of resolved near-infrared spectra with IRTF/SpeX and tools in the SpeX Prism Library Analysis Toolkit (SPLAT) indicate component types of M3.5 and M8, separated by about 4''. We match the data to atmosphere models using an Monte Carlo Markov Chain routine to determine preliminary physical properties for each component (temperature, surface gravity and metallicity), and obtain estimates for the distance (106±11 pc) and projected separation (419±45 AU).Funding acknowledgement: This project is supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  15. Studies of multifrequency phase-resolved fluorescence spectroscopy for spectral fingerprinting

    SciTech Connect

    McGown, L.B.

    1989-01-01

    During the first project period, we have explored several different aspects of phase-resolved fluorescence spectroscopy (PRFS) for the fingerprinting of complex samples. It should be noted that our goal is not only fingerprinting'' per se, but also includes the characterization of complex samples with respect to dynamic interactions of luminescent molecules with each other and with sample matrix constituents. Each area of investigation is discussed in the following sections.

  16. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  17. Diagnosing direct-drive, shock-heated, and compressed plastic planar foils with noncollective spectrally resolved x-ray scattering

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Regan, S. P.; Meyerhofer, D. D.; Igumenshchev, I. V.; Goncharov, V. N.; Boehly, T. R.; Epstein, R.; Sangster, T. C.; Smalyuk, V. A.; Yaakobi, B.; Gregori, G.; Glenzer, S. H.; Landen, O. L.

    2007-12-01

    The electron temperature (Te) and average ionization (Z) of nearly Fermi-degenerate, direct-drive, shock-heated, and compressed plastic planar foils were investigated using noncollective spectrally resolved x-ray scattering on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Plastic (CH) and Br-doped CH foils were driven with six beams, having an overlapped intensity of ˜1×1014W /cm2 and generating ˜15 Mbar pressure in the foil. The plasma conditions of the foil predicted with a one-dimensional (1-D) hydrodynamics code are Te˜10eV, Z ˜1, mass density ρ ˜4g/cm3, and electron density ne˜3×1023cm-3. The uniformly compressed portion of the target was probed with 9.0-keV x rays from a ZnHeα backlighter created with 18 additional tightly focused beams. The x rays scattered at either 90° or 120° were dispersed with a Bragg crystal spectrometer and recorded with an x-ray framing camera. An examination of the scattered x-ray spectra reveals that an upper limit of Z ˜2 and Te=20eV are inferred from the spectral line shapes of the elastic Rayleigh and inelastic Compton components. Low average ionizations (i.e., Z <2) cannot be accurately diagnosed in this experiment due to the difficulties in distinguishing delocalized valence and free electrons. Trace amounts of Br in the CH foil (i.e., 2% atomic concentration) are shown to increase the sensitivity of the noncollective, spectrally resolved x-ray scattering to changes in the average ionization. The experimentally inferred electron temperatures are comparable to the 1-D predictions.

  18. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring.

    PubMed

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-04-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed.

  19. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring

    PubMed Central

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-01-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644

  20. Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants.

    PubMed

    Blum, Christian; Meixner, Alfred J; Subramaniam, Vinod

    2004-12-01

    It is known from ensemble spectroscopy at cryogenic temperatures that variants of the Aequorea green fluorescent protein (GFP) occur in interconvertible spectroscopically distinct forms which are obscured in ensemble room temperature spectroscopy. By analyzing the fluorescence of the GFP variants EYFP and EGFP by spectrally resolved single-molecule spectroscopy we were able to observe spectroscopically different forms of the proteins and to dynamically monitor transitions between these forms at room temperature. In addition to the predominant EYFP B-form we have observed the blue-shifted I-form thus far only seen at cryogenic temperatures and have followed transitions between these forms. Further we have identified for EYFP and for EGFP three more, so far unknown, forms with red-shifted fluorescence. Transitions between the predominant forms and the red-shifted forms show a dark time which indicates the existence of a nonfluorescent intermediate. The spectral position of the newly-identified red-shifted forms and their formation via a nonfluorescent intermediate hint that these states may account for the possible photoactivation observed in bulk experiments. The comparison of the single-protein spectra of the red-shifted EYFP and EGFP forms with single-molecule fluorescence spectra of DsRed suggest that these new forms possibly originate from an extended chromophoric pi-system analogous to the DsRed chromophore.

  1. Resolving spectral information from time domain induced polarization data through 2-D inversion

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Ramm, James; Binley, Andrew; Gazoty, Aurélie; Christiansen, Anders Vest; Auken, Esben

    2013-02-01

    Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given these limitations of conventional approaches, a new 2-D inversion algorithm has been developed using the full voltage decay of the IP response, together with an accurate description of the transmitter waveform and receiver transfer function. This allows reconstruction of the spectral information contained in the TD decay series. The inversion algorithm is based around a 2-D complex conductivity kernel that is computed over a range of frequencies and converted to the TD through a fast Hankel transform. Two key points in the implementation ensure that computation times are minimized. First, the speed of the Jacobian computation, time transformed from frequency domain through the same transformation adopted for the forward response is optimized. Secondly, the reduction of the number of frequencies where the forward response and Jacobian are calculated: cubic splines are used to interpolate the responses to the frequency sampling necessary in the fast Hankel transform. These features, together with parallel computation, ensure inversion times comparable with those of direct current algorithms. The algorithm has been developed in a laterally constrained inversion scheme, and handles both smooth and layered inversions; the latter being helpful in sedimentary environments, where quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. In the layered inversion approach, a general method to derive the thickness derivative from the complex conductivity Jacobian is also proposed. One synthetic example of layered inversion and one field example of smooth inversion show the capability of the algorithm and illustrates a complete uncertainty

  2. Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.; Zupanc, F. J.; Schneider, S. J.

    1991-01-01

    A Rayleigh scattering diagnostic has been developed to measure gas density, temperature, and velocity in the exhaust plume of 100 N thrust class hydrogen-oxygen rockets. The spectrum of argon-ion laser light scattered by the gas molecules in the plume (predominantly water vapor) is measured with a scanning Fabry-Perot interferometer. The gas density is determined from the total scattered power, the gas temperature from the spectral width, and the velocity from the shift in the peak of the spectrum from the frequency of the incident laser light. The diagnostic has been demonstrated in a rocket test cell and a discussion of results is given.

  3. Resolving the xi Boo Binary with Chandra, and Revealing the Spectral Type Dependence of the Coronal "Fip Effect"

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of xi Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5% respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for xi Boo) leads to the surprising conclusion that xi Boo B may dominate the wind from the binary, with xi Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of FIP effect on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries or extremely active stars with logLX 29, explaining why this correlation has not been recognized in the past.

  4. Time-resolved spectral correlations of long-duration γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Firmani, C.; Cabrera, J. I.; Avila-Reese, V.; Ghisellini, G.; Ghirlanda, G.; Nava, L.; Bosnjak, Z.

    2009-03-01

    For a sample of long γ-ray bursts (GRBs) with known redshift, we study the distribution of the evolutionary tracks on the rest-frame luminosity-peak energy Liso - E'p diagram. We are interested in exploring the extension of the `Yonetoku' correlation to any phase of the prompt light curve, and in verifying how the high-signal prompt duration time, T'f, in the rest frame correlates with the residuals of such correlation. For our purpose, we separately analyse two samples of time-resolved spectra corresponding to 32 GRBs with peak fluxes Fp > 1.8 photcm-2 s-1 from the Swift-BAT detector, and seven bright GRBs from the Compton Gamma-ray Observatory (CGRO)-BATSE detector previously processed by Kaneko et al. After constructing the Liso - E'p diagram, we discuss the relevance of selection effects, finding that they could significantly affect the correlation. However, we find that these effects are much less significant in the Liso T'f - E'p diagram, where the intrinsic scatter reduces significantly. We apply further corrections in order to reduce the intrinsic scatter even more. For the subsamples of GRBs (seven from Swift and five from CGRO) with measured jet break time, tj, we analyse the effects of correcting Liso by jet collimation. We find that (i) the scatter around the correlation is reduced, and (ii) this scatter is dominated by the internal scatter of the individual evolutionary tracks. These results suggest that the time-integrated `Amati' and `Ghirlanda' correlations are consequences of the time-resolved features, not of selection effects, and therefore call for a physical origin. We finally remark the relevance of looking inside the nature of the evolutionary tracks.

  5. Modeling nonstationary longitudinal data.

    PubMed

    Núñez-Antón, V; Zimmerman, D L

    2000-09-01

    An important theme of longitudinal data analysis in the past two decades has been the development and use of explicit parametric models for the data's variance-covariance structure. A variety of these models have been proposed, of which most are second-order stationary. A few are flexible enough to accommodate nonstationarity, i.e., nonconstant variances and/or correlations that are not a function solely of elapsed time between measurements. We review five nonstationary models that we regard as most useful: (1) the unstructured covariance model, (2) unstructured antedependence models, (3) structured antedependence models, (4) autoregressive integrated moving average and similar models, and (5) random coefficients models. We evaluate the relative strengths and limitations of each model, emphasizing when it is inappropriate or unlikely to be useful. We present three examples to illustrate the fitting and comparison of the models and to demonstrate that nonstationary longitudinal data can be modeled effectively and, in some cases, quite parsimoniously. In these examples, the antedependence models generally prove to be superior and the random coefficients models prove to be inferior. We conclude that antedependence models should be given much greater consideration than they have historically received.

  6. Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Lock, James A.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream.

  7. PEAK FLUX DISTRIBUTIONS OF SOLAR RADIO TYPE-I BURSTS FROM HIGHLY RESOLVED SPECTRAL OBSERVATIONS

    SciTech Connect

    Iwai, K.; Masuda, S.; Miyoshi, Y.; Tsuchiya, F.; Morioka, A.; Misawa, H.

    2013-05-01

    Solar radio type-I bursts were observed on 2011 January 26 by high resolution observations with the radio telescope AMATERAS in order to derive their peak flux distributions. We have developed a two-dimensional auto burst detection algorithm that can distinguish each type-I burst element from complex noise storm spectra that include numerous instances of radio frequency interference (RFI). This algorithm removes RFI from the observed radio spectra by applying a moving median filter along the frequency axis. Burst and continuum components are distinguished by a two-dimensional maximum and minimum search of the radio dynamic spectra. The analysis result shows that each type-I burst element has one peak flux without double counts or missed counts. The peak flux distribution of type-I bursts derived using this algorithm follows a power law with a spectral index between 4 and 5.

  8. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography.

    PubMed

    Zhang, Yun; Dong, Bo; Bai, Yulei; Ye, Shuangli; Lei, Zhenkun; Zhou, Yanzhou

    2015-10-19

    An updated B-scan method is proposed for measuring the evolution of thermal deformation fields in polymers. In order to measure the distributions of out-of-plane deformation and normal strain field, phase-contrast spectral optical coherence tomography (PC-SOCT) was performed with the depth range and resolution of 4.3 mm and 10.7 μm, respectively, as thermal loads were applied to three different multilayer samples. The relation between temperature and material refractive index was predetermined before the measurement. After accounting for the refractive index, the thermal deformation fields in the polymer were obtained. The measured thermal expansion coefficient of silicone sealant was approximately equal to its reference value. This method allows correctly assessing the mechanical properties in semitransparent polymers.

  9. Advanced microscopy :time-resolved multi-spectral imaging of single biomolecules.

    SciTech Connect

    Hayden, Carl C.; Chandler, David W.; Gradinaru, Claudiu C.; Luong, A. Khai

    2005-12-01

    Over the past few years we have developed the ability to acquire images through a confocal microscope that contain, for each pixel, the simultaneous fluorescence lifetime and spectra of multiple fluorophores within that pixel. We have demonstrated that our system has the sensitivity to make these measurements on single molecules. The spectra and lifetimes of fluorophores bound to complex molecules contain a wealth of information on the conformational dynamics and local chemical environments of the molecules. However, the detailed record of spectral and temporal information our system provides from fluorophores in single molecules has not been previously available. Therefore, we have studied several fluorophores and simple fluorophore-molecule systems that are representative of the use of fluorophores in biological systems. Experiments include studies of a simple fluorescence resonance energy transfer (FRET) system, green fluorescent probe variants and quantum dots. This work is intended to provide a basis for understanding how fluorophores report on the chemistry of more complex biological molecules.

  10. Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique

    NASA Astrophysics Data System (ADS)

    Rhee, June-Koo; Sosnowski, Thomas S.; Tien, An-Chun; Norris, Theodore B.

    1996-08-01

    We demonstrate a real-time femtosecond-laser-pulse analyzer by using a spectrally and temporally resolved upconversion technique (STRUT) for characterization of the phase and the intensity. The STRUT provides simple but reliable analysis of femtosecond pulses by employing a narrow-bandpass dielectric filter in one arm of a conventional single-shot upconversion autocorrelator and analyzing the spatiotemporal upconversion signal with a monochromator. The resulting spatiotemporal and spatiospectral image presents clear and complete information about femtosecond pulses produced by either oscillators or amplifiers. Characterization of 2-nJ, 60-fs Ti:sapphire oscillator pulses is achieved with 0.5 s data acquisition time and 0.2-s computational time.

  11. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  12. Spectrally and time-resolved study of NAD(P)H autofluorescence in cardiac myocytes from human biopsies

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chorvat, D., Jr.; Poirier, N.; Miró, J.; Dahdah, N.; Chorvatova, A.

    2007-09-01

    Rejection of transplanted hearts remains an important reason for death of transplanted children. Finding diagnostic tools for its detection can therefore improve the prognosis in this population of patients. Endomyocardial biopsy (EMB) by cardiac catheterization is currently accepted as the "gold standard" for the diagnosis of rejection. Here, we investigate new approach to monitor mitochondrial metabolic state of cardiac cells using spectrally-resolved autofluorescence lifetime detection of nicotinamide adenine dinucleotide (phosphate), or NAD(P)H, the principal electron donor in mitochondrial oxidative energy metabolism responsible for vital ATP supply of cardiomyocytes. NAD(P)H autofluorescence is long used for non-invasive fluorescent probing the metabolic state of the heart. In this contribution we report dynamic characteristics of NAD(P)H fluorescence decays in living human cardiomyocytes from EMB, following excitation by UV-pulsed laser diode and detection by spectrally-resolved time-correlated single photon counting. At least a 3-exponential decay model, with 0.5-0.7 ns, 1.9-2.4 ns and 9.0-15.0 ns lifetimes, is necessary to describe cardiomyocyte autofluorescence in human cells. When gathered data were compared to those recorded under same conditions in rats, autofluorescence in human hearts was found significantly lower in comparison to rat ones. Rotenone, the inhibitor of the Complex I of the respiratory chain, increased the fluorescence in human cardiac cells, making them more comparable to experimental rat model. These results suggest that human cardiac cells are more metabolically active than the rat ones in the same conditions. Presented work proposes a new tool for evaluation of oxidative metabolism changes in transplanted hearts.

  13. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni.

    PubMed

    Nagloo, Nicolas; Collin, Shaun P; Hemmi, Jan M; Hart, Nathan S

    2016-05-01

    Crocodilians are apex amphibious predators that occupy a range of tropical habitats. In this study, we examined whether their semi-aquatic lifestyle and ambush hunting mode are reflected in specific adaptations in the peripheral visual system. Design-based stereology and microspectrophotometry were used to assess spatial resolving power and spectral sensitivity of saltwater (Crocodylus porosus) and freshwater crocodiles (Crocodylus johnstoni). Both species possess a foveal streak that spans the naso-temporal axis and mediates high spatial acuity across the central visual field. The saltwater crocodile and freshwater crocodile have a peak spatial resolving power of 8.8 and 8.0 cycles deg(-1), respectively. Measurement of the outer segment dimensions and spectral absorbance revealed five distinct photoreceptor types consisting of three single cones, one twin cone and a rod. The three single cones (saltwater/freshwater crocodile) are violet (424/426 nm λmax), green (502/510 nm λmax) and red (546/554 nm λmax) sensitive, indicating the potential for trichromatic colour vision. The visual pigments of both members of the twin cones have the same λmax as the red-sensitive single cone and the rod has a λmax at 503/510 nm (saltwater/freshwater). The λmax values of all types of visual pigment occur at longer wavelengths in the freshwater crocodile compared with the saltwater crocodile. Given that there is a greater abundance of long wavelength light in freshwater compared with a saltwater environment, the photoreceptors would be more effective at detecting light in their respective habitats. This suggests that the visual systems of both species are adapted to the photic conditions of their respective ecological niche.

  14. "Cat"-ology: Spectrally resolved neurophotonics in the mammalian brain and phantom studies

    NASA Astrophysics Data System (ADS)

    Tanner, Kandice

    Physicists provide significant contributions to the field of Biology and Medical Sciences by applying basic physics principles to the field. Specifically, in this work, we probed the light-matter interactions in the NIR region to understand physiological processes in the mammalian brain. We sought to improve on existing principles and propose a new technique by which we can decipher these processes spectrally. This technique touted to be independent of the light transport regime allowed us to examine the hemodynamics and neuronal activity. The aim was then to test this technique and see if it produces results that were comparable to the well established Fd-NIRS in distinguishing physiological processes. Secondly, we wanted to prove that this technique was light transport regime independent which is not the case for the Fd-NIRS. The cat was chosen as an ideal test subject as its anatomy is such that photons are not fully diffusive before being detected as the total size of the grey matter in the cat is roughly 3mm thick. Additionally, we had a priori information about the activation of the visual cortex as a response to specific stimuli.

  15. Phenomenology of spectrally and temporally resolved infrared emissions from bomb detonations

    NASA Astrophysics Data System (ADS)

    Gross, Kevin; Dills, Anthony; Tuttle, Ron; Perram, Glen

    2002-10-01

    The remote sensing of infrared signatures from exothermic reactions during military operations, including missile launches, muzzle flashes, and bomb detonations has been studied using fast FTIR techniques. Battle space characterization includes the ability to classify the munitions type, size, and other characteristics. One possible approach to munitions classification is to understand the spectral and temporal signatures from explosive ordinance. To investigate this possibility, experimental data has been collected remotely from ground-based sensors, processed, and analyzed for several conventional munitions. Field observations of 56 detonation events included a set of aircraft delivered ordnance and a series of static ground detonations for a variety of bomb sizes, types and environmental conditions. The emission is well represented by a gray body with continuously decreasing temperature and characteristic decay times of 1-4 s, providing only limited variability with detonation conditions. However, the fireball size times the emissivity as a function of time can be determined from the spectra without imaging and provides a more sensitive signature. The degree of temporal overlap as a function of frequency for a pair of detonation events provides a very sensitive discriminator for explosion conditions. The temporal overlap decreases with increasing emission frequency for all the observed events, indicating more information content at higher frequencies. Finally, the temporal nature of the emissions has been analyzed, providing a significant reduction in the dimensionality of the data.

  16. SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

    SciTech Connect

    Chen Bin; Bastian, T. S.; Gary, D. E.; Jing Ju

    2011-07-20

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral ({approx}1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.

  17. Spatially and Spectrally Resolved Observations of a Zebra Pattern in a Solar Decimetric Radio Burst

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.; Gary, D. E.; Jing, Ju

    2011-07-01

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral (≈1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.

  18. Coherent photon interference elimination and spectral correction in femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy.

    PubMed

    Dang, Wei; Mao, Pengcheng; Weng, Yuxiang

    2013-07-01

    We report an improved setup of femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) with a 210 fs temporal response. The system employs a Cassegrain objective to collect and focus fluorescence photons, which eliminates the interference from the coherent photons in the fluorescence amplification by temporal separation of the coherent photons and the fluorescence photons. The gain factor of the Cassegrain objective-assisted FNOPAS is characterized as 1.24 × 10(5) for Rhodamine 6G. Spectral corrections have been performed on the transient fluorescence spectra of Rhodamine 6G and Rhodamine 640 in ethanol by using an intrinsic calibration curve derived from the spectrum of superfluorescence, which is generated from the amplification of the vacuum quantum noise. The validity of spectral correction is illustrated by comparisons of spectral shape and peak wavelength between the corrected transient fluorescence spectra of these two dyes acquired by FNOPAS and their corresponding standard reference spectra collected by the commercial streak camera. The transient fluorescence spectra of the Rhodamine 6G were acquired in an optimized phase match condition, which gives a deviation in the peak wavelength between the retrieved spectrum and the reference spectrum of 1.0 nm, while those of Rhodamine 640 were collected in a non-optimized phase match condition, leading to a deviation in a range of 1.0-3.0 nm. Our results indicate that the improved FNOPAS can be a reliable tool in the measurement of transient fluorescence spectrum for its high temporal resolution and faithfully corrected spectrum.

  19. Using Analytic Techniques to Resolve Numerical Issues in a Pseudo Spectral Solver for a Black Hole Scalar Field

    NASA Astrophysics Data System (ADS)

    Munro, Eugene

    2013-12-01

    In this paper, we will solve the Hamiltonian constraint describing a curved general relativistic spacetime to find initial data describing how a black hole exists in vacuum. This has been done before by other researchers [Ansorg, 2004], and we will be adapting our own methods to an existing pseudo spectral Poisson solver [Gourgoulhon, 2001]. The need for this adaptation arises from improper numerical handling, done by pseudo spectral-methods, of a large part the Hamiltonian constraint equation due to the presence of the black hole singularity. To resolve a portion of this issue up to a given order, we will determine irregularities by executing a polynomial expansion on the Hamiltonian constraint, analytically solving the troublesome components of the equation and subtracting those out of the numerical process. This technique will increase the equation's differentiability and allow the numerical solver to run more efficiently. We will cover all the calculations needed to describe one black hole with arbitrary spin and linear momentum. Our process is easily expanded into cases with n black holes [Brandt, 1997], which we will show in chapter 2. We will implement a spherical harmonic decomposition of the black hole conformal factor, using them as basis functions by which to further expand and dissect the Hamiltonian Constraint equation. In the end, the expansion and subtraction method will be done out to the order of r4, where r is the spherical radius assuming the black hole is at the coordinate origin, making the Hamiltonian equation, which, unaltered, is a C 2 equation, become a C7 equation. Smoothing the Hamiltonian improves numerical precision, especially near the BH where the most interesting physics occurs. The method used in this paper can be further implemented to higher orders of r to yield even smoother conditions. We will test the numerical results of using this method against the existing solver that uses the publicly available Lorene numerical libraries

  20. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  1. Spectrally Resolved Flux Derived from Collocated AIRS and CERES Observations and its Application in Model Validation. Part I; Clear-Sky Over the Tropic Oceans

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Yang, Wenze; Loeb, Norman G.; Ramaswamy, V.

    2008-01-01

    Spectrally resolved outgoing IR flux, the integrand of the outgoing longwave radiation (OLR), has its unique value in evaluating model simulations. Here we describe an algorithm of deriving such clear-sky outgoing spectral flux through the whole IR region from the collocated Atmospheric Infrared Sounder (AIRS) and the Clouds & the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. Based on the scene types and corresponding angular distribution models (ADMs) used in the CERES Single Satellite Footprint (SSF) dataset, spectrally-dependent ADMs are developed and used to estimate the spectral flux at each AIRS channel. A multivariate linear prediction scheme is then used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The whole algorithm is validated using synthetic spectra as well as the CERES OLR measurements. Using the GFDL AM2 model simulation as a case study, the application of the derived clear-sky outgoing spectral flux in model evaluation is illustrated. By comparing the observed and simulated spectral flux in 2004, compensating errors in the simulated OLR from different absorption bands can be revealed, so does the errors from frequencies within a given absorption band. Discrepancies between the simulated and observed spatial distributions and seasonal evolutions of the spectral fluxes at different spectral ranges are further discussed. The methodology described in this study can be applied to other surface types as well as cloudy-sky observations and corresponding model evaluations.

  2. Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals in the Mid-Infrared Spectral Region

    NASA Astrophysics Data System (ADS)

    Bjork, Bryce J.; Fleisher, Adam J.; Changala, Bryan; Bui, Thinh Quoc; Cossel, Kevin; Okumura, Mitchio; Ye, Jun

    2014-06-01

    The chemical kinetics of transient free radicals, such as HOCO and Criegee intermediates, play important roles in combustion and atmospheric processes. Establishing accurate kinetics models for these complex systems require knowledge of the reaction rates and lifetimes of all molecules along a particular reaction pathway. However, standard spectroscopic techniques lack a combination of sensitivity, frequency resolution, and adequate temporal resolution to survey these reactions on the μs timescale. To answer this challenge, we have developed time-resolved frequency comb spectroscopy (TRFCS). This novel technique allows for the detection of transient intermediates with high time-resolution and sensitivity while also permitting the direct determination of rotational state distributions of all relevant molecules. We demonstrate this technique in the mid-infrared spectral region, at 3.7 μm, by studying the photolysis of deuterated acrylic acid. We simultaneously observe the time-dependent concentrations of photoproducts trans-DOCO, HOD, and D_2O, identified through their unique rovibrational structure, with 5 × 1010 molecules cm-3 sensitivity, and with a time resolution of 25 μs. We aim to apply this technique to detect directly the formation of the DOCO intermediate in the OD + CO chemical reaction at atmospherically relevant pressures, in order to validate statistical rate models of this reaction.

  3. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    SciTech Connect

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  4. Spatially and spectrally resolved particle swarm optimization for precise optical property estimation using diffuse-reflectance spectroscopy.

    PubMed

    Kholodtsova, Maria N; Daul, Christian; Loschenov, Victor B; Blondel, Walter C P M

    2016-06-13

    This paper presents a new approach to estimate optical properties (absorption and scattering coefficients µa and µs) of biological tissues from spatially-resolved spectroscopy measurements. A Particle Swarm Optimization (PSO)-based algorithm was implemented and firstly modified to deal with spatial and spectral resolutions of the data, and to solve the corresponding inverse problem. Secondly, the optimization was improved by fitting exponential decays to the two best points among all clusters of the "particles" randomly distributed all over the parameter space (µs, µa) of possible solutions. The consequent acceleration of all the groups of particles to the "best" curve leads to significant error decrease in the optical property estimation. The study analyzes the estimated optical property error as a function of the various PSO parameter combinations, and several performance criteria such as the cost-function error and the number of iterations in the algorithms proposed. The final one led to error values between ground truth and estimated values of µs and µa less than 6%.

  5. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.

    2015-11-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  6. Improvements to Phyto-DOAS method for identification of major Phytoplankton groups using high spectrally-resolved satellite data

    NASA Astrophysics Data System (ADS)

    Sadeghi, Alireza; Dinter, Tilman; Vountas, Marco; Schmitt, Bettina; Peeken, Ilka; Burrows, John P.; Bracher, Astrid

    The goal of this study is to improve Phyto-DOAS, the retrieval method of identification of major Phytoplankton Functional Types (PFTs) using ocean-color data provided by a high spectrally-resolved satellite sensor, SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) on board ENVISAT. Phyto-DOAS is an extension of DOAS (Differential Optical Absorption Spectroscopy), originally developed to retrieve atmospheric trace gases, for remote identification of oceanic phytoplankton. So far Phyto-DOAS has been successfully exploited to identify Cyanobacteria and Diatom over global ocean (Bracher et al. 2009). The main challenge for retrieving more PFTs by Phyto-DOAS is to overcome the overlapping effects of different PFTs absorption spectra. Different PFTs are composed of different types and concentrations of pigments, but also have pigments in common, e.g. Chl-a, which cause correlation effects in the standard Phyto-DOAS retrieval. In this study two ideas have been implemented to overcome this limitation of Phyto-DOAS: Firstly, using the method of fourth-derivative spectroscopy (Aguirre-Gomez et al. 1995) the peak positions of the main pigment components in each absorption spectrum have been derived. After comparing the corresponding results of major PFTs, the optimized fit-window for DOAS-retrieval of each PFT is determined. Secondly, the simultaneous fitting of different PFTs has been implemented (over the year 2008) to include the real oceanic situation in the retrieval. Within this step the provided optimized fit-windows have been tested to produce higher fit quality. Validation of the global PFTs biomass distribution has been performed using in-situ data sets obtained during several transatlantic cruises in the year 2008.

  7. Enhanced tunneling through nonstationary barriers

    SciTech Connect

    Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.

    2007-11-15

    Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented.

  8. Nonstationary statistical theory for multipactor

    SciTech Connect

    Anza, S.; Vicente, C.; Gil, J.

    2010-06-15

    This work presents a new and general approach to the real dynamics of the multipactor process: the nonstationary statistical multipactor theory. The nonstationary theory removes the stationarity assumption of the classical theory and, as a consequence, it is able to adequately model electron exponential growth as well as absorption processes, above and below the multipactor breakdown level. In addition, it considers both double-surface and single-surface interactions constituting a full framework for nonresonant polyphase multipactor analysis. This work formulates the new theory and validates it with numerical and experimental results with excellent agreement.

  9. A BOINC based, citizen-science project for pixel spectral energy distribution fitting of resolved galaxies in multi-wavelength surveys

    NASA Astrophysics Data System (ADS)

    Vinsen, Kevin; Thilker, David

    2013-11-01

    In this work we present our experience from the first year of theSkyNet Pan-STARRS1 Optical Galaxy Survey (POGS) project. This citizen-scientist driven research project uses the Berkeley Open Infrastructure for Network Computing (BOINC) middleware and thousands of Internet-connected computers to measure the resolved galactic structural properties of ˜100,000 low redshift galaxies. We are combining the spectral coverage of GALEX, Pan-STARRS1, SDSS, and WISE to generate a value-added, multi-wavelength UV-optical-NIR galaxy atlas for the nearby Universe. Specifically, we are measuring physical parameters (such as local stellar mass, star formation rate, and first-order star formation history) on a resolved pixel-by-pixel basis using spectral energy distribution (SED) fitting techniques in a distributed computing mode. Berkeley Open Infrastructure for Network Computing.

  10. Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates.

    PubMed

    Debnath, Sanjit K; Kothiyal, Mahendra P; Schmit, Joanna; Hariharan, Parameswaran

    2006-05-29

    We describe how spectrally-resolved white-light phase-shifting interference microscopy with a windowed 8-step algorithm can be used for rapid and accurate measurements of the thickness profile of transparent thin film layers with a wide range of thicknesses deposited upon patterned structures exhibiting steps and discontinuities. An advantage of this technique is that it can be implemented with readily available hardware.

  11. Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods

    NASA Astrophysics Data System (ADS)

    Moura, R. C.; Sherwin, S. J.; Peiró, J.

    2015-10-01

    We investigate the potential of linear dispersion-diffusion analysis in providing direct guidelines for turbulence simulations through the under-resolved DNS (sometimes called implicit LES) approach via spectral/hp methods. The discontinuous Galerkin (DG) formulation is assessed in particular as a representative of these methods. We revisit the eigensolutions technique as applied to linear advection and suggest a new perspective to the role of multiple numerical modes, peculiar to spectral/hp methods. From this new perspective, "secondary" eigenmodes are seen to replicate the propagation behaviour of a "primary" mode, so that DG's propagation characteristics can be obtained directly from the dispersion-diffusion curves of the primary mode. Numerical dissipation is then appraised from these primary eigencurves and its effect over poorly-resolved scales is quantified. Within this scenario, a simple criterion is proposed to estimate DG's effective resolution in terms of the largest wavenumber it can accurately resolve in a given hp approximation space, also allowing us to present points per wavelength estimates typically used in spectral and finite difference methods. Although strictly valid for linear advection, the devised criterion is tested against (1D) Burgers turbulence and found to predict with good accuracy the beginning of the dissipation range on the energy spectra of under-resolved simulations. The analysis of these test cases through the proposed methodology clarifies why and how the DG formulation can be used for under-resolved turbulence simulations without explicit subgrid-scale modelling. In particular, when dealing with communication limited hardware which forces one to consider the performance for a fixed number of degrees of freedom, the use of higher polynomial orders along with moderately coarser meshes is shown to be the best way to translate available degrees of freedom into resolution power.

  12. Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes

    NASA Astrophysics Data System (ADS)

    Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail

    2002-04-01

    We develop the statistical theory of discrete nonstationary non-Markov random processes in complex systems. The objective of this paper is to find the chain of finite-difference non-Markov kinetic equations for time correlation functions (TCF) in terms of nonstationary effects. The developed theory starts from careful analysis of time correlation through nonstationary dynamics of vectors of initial and final states and nonstationary normalized TCF. Using the projection operators technique we find the chain of finite-difference non-Markov kinetic equations for discrete nonstationary TCF and for the set of nonstationary discrete memory functions (MF's). The last one contains supplementary information about nonstationary properties of the complex system on the whole. Another relevant result of our theory is the construction of the set of dynamic parameters of nonstationarity, which contains some information of the nonstationarity effects. The full set of dynamic, spectral and kinetic parameters, and kinetic functions (TCF, short MF's statistical spectra of non-Markovity parameter, and statistical spectra of nonstationarity parameter) has made it possible to acquire the in-depth information about discreteness, non-Markov effects, long-range memory, and nonstationarity of the underlying processes. The developed theory is applied to analyze the long-time (Holter) series of RR intervals of human ECG's. We had two groups of patients: the healthy ones and the patients after myocardial infarction. In both groups we observed effects of fractality, standard and restricted self-organized criticality, and also a certain specific arrangement of spectral lines. The received results demonstrate that the power spectra of all orders (n=1,2,...) MF mn(t) exhibit the neatly expressed fractal features. We have found out that the full sets of non-Markov, discrete and nonstationary parameters can serve as reliable and powerful means of diagnosis of the cardiovascular system states and can

  13. General interference law for nonstationary, separable optical fields.

    PubMed

    Manea, Vladimir

    2009-09-01

    An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.

  14. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    DOE PAGES

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; ...

    2016-01-25

    In warm target direct-drive ICF implosion experiments performed at the OMEGA laser facility, plastic microballoons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolvedmore » titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400±28eV, electron number density (Ne) = 8.5x1024±2.5x1024 cm-3, and average areal density <ρR> = 86±7mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1±1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5±1μm.« less

  15. On a class of nonstationary stochastic processes

    NASA Technical Reports Server (NTRS)

    Miamee, A. G.; Hardin, Jay C.

    1989-01-01

    A new class of nonstationary stochastic processes is introduced and some of the essential properties of its members are investigated. This class is richer than the class of stationary processes and has the potential of modeling some nonstationary time series. The relation between these newly defined processes with other important classes of nonstationary processes is investigated. Several examples of linearly correlated processes which are not stationary, periodically correlated, or harmonizable are given.

  16. Efficient conceptual framework to quantify flow uncertainty in large-scale, highly nonstationary groundwater systems

    NASA Astrophysics Data System (ADS)

    Ni, Chuen-Fa; Li, Shu-Guang; Liu, Chien-Jung; Hsu, Shaohua Marko

    2010-02-01

    SummaryThis study presents a hybrid spectral method (HSM) to estimate flow uncertainty in large-scale highly nonstationary groundwater systems. Taking advantages of spectral theories in solving unmodeled small-scale variability in hydraulic conductivity, the proposed HSM integrates analytical and numerical spectral solutions in the calculation procedures to estimate flow uncertainty. More specifically, the HSM involves two major computational steps after the mean flow equation is solved. The first step is to apply an analytical-based approximate spectral method (ASM) to predict nonstationary flow variances for entire modeling area. The perturbation-based numerical method, nonstationary spectral method (NSM), is then employed in the second step to correct the regional solution in local areas, where the variance dynamics is considered to be highly nonstationary (e.g., around inner boundaries or strong sources/sinks). The boundary conditions for the localized numerical solutions are based on the ASM closed form solutions at boundary nodes. Since the regional closed form solution is instantaneous and the more expensive perturbation-based numerical analysis is only applied locally around the strong stresses, the proposed HSM can be very efficient, making it possible to model strongly nonstationary variance dynamics with complex flow situations in large-scale groundwater systems. In this study the analytical-based ASM solutions was first assessed to quantify the solution accuracy under transient and inner boundary flow conditions. This study then illustrated the HSM accuracy and effectiveness with two synthetic examples. The HSM solutions were systematically compared with the corresponding numerical solutions of NSM and Monte Carlo simulation (MCS), and the analytical-based solutions of ASM. The simulation results have revealed that the HSM is computationally efficient and can provide accurate variance estimations for highly nonstationary large-scale groundwater flow

  17. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  18. Classification of crystal defects in multicrystalline silicon solar cells and wafer using spectrally and spatially resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Lausch, D.; Mehl, T.; Petter, K.; Svarstad Flø, A.; Burud, I.; Olsen, E.

    2016-02-01

    In this contribution, spectral photoluminescence (SPL) imaging detecting both the spectral distribution and the lateral position is applied on recombination active defects in multicrystalline silicon solar cells and wafers. The result is analysed by a Multivariate Curve Resolution (MCR) algorithm using the spectral photoluminescence response and their positions. (i) Without any pre-assumptions made, the algorithm distinguishes four different recombination active defect types. Looking at the spatial distribution, it is shown that two of these defect types coincide with two defect types that have been distinguished on solar cell level using an analysis of forward and reverse biased electroluminescence (denoted as Type-A and -B) previously. (ii) Using SPL, all previously classified defects can also be distinguished at the wafer level. Therefore, the defects limiting the solar cell efficiency are already present in the wafer material and not introduced by the solar cell process. This is of particular interest for the question of how to predict the solar cell efficiency based on the PL measurements at the wafer level. The SPL is able to distinguish between the recombination activity of the dominant Type-A and -B defects that cannot be distinguished by classical PL measurements of the band-to-band recombination at the wafer level. The technique also highlights the changes in recombination activity of the given defects throughout the fabrication process. (iii) Additionally, it is shown that the spectral peak positions of Type-A defects coincide with the known D3 and D4 lines and of Type-B defects with the D1 line on both solar cell and wafer level. Two further defects are captured by the MCR algorithm denoted as Type-VID3 and Type-D07 defects occurring as spot-like defects in isolated positions. Their spectral PL response is analysed as well.

  19. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    SciTech Connect

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; Mayes, D. C.; Tommasini, R.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J. A.

    2016-01-25

    In warm target direct-drive ICF implosion experiments performed at the OMEGA laser facility, plastic microballoons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolved titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400±28eV, electron number density (Ne) = 8.5x1024±2.5x1024 cm-3, and average areal density <ρR> = 86±7mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1±1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5±1μm.

  20. The analysis of nonstationary vibration data

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1987-01-01

    The general methodology for the analysis of arbitrary nonstationary random data is reviewed. A specific parametric model, called the product model, that has applications to space vehicle launch vibration data analysis is discussed. Illustrations are given using the nonstationary launch vibration data measured on the Space Shuttle orbiter vehicle.

  1. Investigation of the polynomial approach for material decomposition in spectral X-ray tomography using an energy-resolved detector

    NASA Astrophysics Data System (ADS)

    Potop, A.; Rebuffel, V.; Rinkel, J.; Brambilla, A.; Peyrin, F.; Verger, L.

    2014-03-01

    Recent advances in the domain of energy-resolved semiconductor detectors stimulate research in X-ray computed tomography (CT). However, the imperfections of these detectors induce errors that should be considered for further applications. Charge sharing and pile-up effects due to high photon fluxes can degrade image quality or yield wrong material identification. Basis component decomposition provides separate images of principal components, based on the energy related information acquired in each energy bin. The object is typically either decomposed in photoelectric and Compton physical effects or in basis materials functions. This work presents a simulation study taking into account the properties of an energy-resolved CdTe detector with flexible energy thresholds in the context of materials decomposition CT. We consider the effects of a first order pile-up model with triangular pulses of a non-paralyzable detector and a realistic response matrix. We address the problem of quantifying mineral content in bone based on a polynomial approach for material decomposition in the case of two and three energy bins. The basis component line integrals are parameterized directly in the projection domain and a conventional filtered back-projection reconstruction is performed to obtain the material component images. We use figures of merit such as noise and bias to select the optimal thresholds and quantify the mineral content in bone. The results obtained with an energy resolved detector for two and three energy bins are compared with the ones obtained for the dual-kVp technique using an integrating-mode detector with filters and voltages optimized for bone densitometry.

  2. Nonstationary Approaches to Hydrologic Design

    NASA Astrophysics Data System (ADS)

    Vogel, Richard; Hecht, Jory; Read, Laura

    2014-05-01

    We introduce a generalized framework for evaluating the risk, reliability and return period of hydrologic events in a nonstationary world. A heteroscedastic regression model is introduced as an elegant and general framework for modeling trends in the mean and/or variance of hydrologic records using ordinary least squares regression methods. A regression approach to modeling trends has numerous advantages over other methods including: (1) ease of application, (2) considers linear or nonlinear trends, (3) graphical display of trends, (4) analytical estimate of the power of the trend test and prediction intervals associated with trend extrapolation. Traditional statements of risk, reliability and return periods which assume that the annual probability of a flood event remains constant throughout the project horizon are revised to include the impacts of trends in the mean and/or variance of hydrologic records. Our analyses reveal that in a nonstationary world, meaningful expressions of the likelihood of future hydrologic events are unlikely to result from knowledge of return periods whereas knowledge of system reliability over future planning horizons can effectively communicate the likelihood of future hydrologic events of interest.

  3. Non-Markovian dynamics of an open quantum system with nonstationary coupling

    SciTech Connect

    Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.

    2011-04-15

    The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.

  4. Resolving the AGN and Host Emission in the Mid-infrared Using a Model-independent Spectral Decomposition

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Hatziminaoglou, Evanthia; Spoon, Henrik W. W.; Ramos Almeida, Cristina; Díaz Santos, Tanio; Hönig, Sebastian F.; González-Martín, Omaira; Esquej, Pilar

    2015-04-01

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  5. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    SciTech Connect

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Spoon, Henrik W. W.; Almeida, Cristina Ramos; Hönig, Sebastian F.; González-Martín, Omaira; Esquej, Pilar

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  6. The MUSCLES Treasury Survey: Temporally- and Spectrally-Resolved Irradiance from Low-mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Youngblood, Allison; Linsky, Jeffrey; MUSCLES Treasury Survey Team

    2016-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to near-UV; 5 - 3200 Ang) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential "biomarker" gases. It has been shown that the atmospheric signatures of potentially habitable planets around low-mass stars may be significantly different from planets orbiting Sun-like stars owing to the different UV spectral energy distribution. I will present results from a panchromatic survey (Hubble/Chandra/XMM/optical) of M and K dwarf exoplanet hosts, the MUSCLES Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems). We reconstruct the Lyman-alpha and extreme-UV (100-900 Ang) radiation lost to interstellar attenuation and create 5 Angstrom to 5 micron stellar irradiance spectra; these data will be publically available as a High-Level Science Product on MAST. We find that all low-mass exoplanet host stars exhibit significant chromospheric/transition region/coronal emission -- no "UV inactive" M dwarfs are observed. The F(far-UV)/F(near-UV) flux ratio, a driver for possible abiotic production of the suggested biomarkers O2 and O3, increases by ~3 orders of magnitude as the habitable zone moves inward from 1 to 0.1 AU, while the incident far-UV (912 - 1700 Ang) and XUV (5 - 900 Ang) radiation field strengths decrease by factors of a few across this range. Far-UV flare activity is common in 'optically inactive' M dwarfs; statistics from the entire sample indicate that large UV flares (E(300 - 1700 Ang) >= 10^31 erg) occur several times per day on typical M dwarf exoplanet hosts.

  7. Noise-Robust Spectral Signature Classification in Non-resolved Object Detection using Feedback Controlled Adaptive Learning

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Key, G.

    2012-09-01

    Accurate spectral signature classification is key to reliable nonresolved detection and recognition of spaceborne objects. In classical signature-based recognition applications, classification accuracy has been shown to depend on accurate spectral endmember discrimination. Unfortunately, signatures are corrupted by noise and clutter that can be nonergodic in astronomical imaging practice. In previous work, we have shown that object class separation and classifier refinement results can be severely corrupted by input noise, leading to suboptimal classification. We have also shown that computed pattern recognition, like its human counterpart, can benefit from processes such as learning or forgetting, which in spectral signature classification can support adaptive tracking of input nonergodicities. In this paper, we model learning as the acquisition or insertion of a new pattern into a classifier's knowledge base. For example, in neural nets (NNs), this insertion process could correspond to the superposition of a new pattern onto the NN weight matrix. Similarly, we model forgetting as the deletion of a pattern currently stored in the classifier knowledge base, for example, as a pattern deletion operation on the NN weight matrix, which is a difficult goal with classical neural nets (CNNs). In particular, this paper discusses the implementation of feedback control for pattern insertion and deletion in lattice associative memories (LAMs) and dynamically adaptive statistical data fusion (DASDAF) paradigms, in support of signature classification. It is shown that adaptive classifiers based on LNN or DASDAF technology can achieve accurate signature classification in the presence of nonergodic Gaussian and non-Gaussian noise, at low signal-to-noise ratio (SNR). Demonstration involves classification of multiple closely spaced, noise corrupted signatures from a NASA database of space material signatures at SNR > 0.1:1.

  8. Model of non-stationary, inhomogeneous turbulence

    DOE PAGES

    Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.

    2016-07-08

    Here, we compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1–35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to longmore » times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.« less

  9. Model of non-stationary, inhomogeneous turbulence

    SciTech Connect

    Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.

    2016-07-08

    Here, we compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1–35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.

  10. Model of non-stationary, inhomogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.

    2017-02-01

    We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1-35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.

  11. Non-sequential double ionization spectroscopy of argon and spectrally resolved transient alignment of gaseous iodine molecules

    NASA Astrophysics Data System (ADS)

    Peterson, Emily R.

    This pair of experiments investigates strong-field behavior of an atom and of a molecule, observing these phenomena through collection of detailed spectral information under the necessary parameters. We first investigate the double-ionization of an argon atom; inelastic collisions between the ion and the laser-driven electron may provide an explanation of the unexpectedly high probabilities of multiple ionization under certain pulse intensities. The second experiment uses the polarization-dependence of molecular absorption spectra to monitor field-induced orientational anisotropy in a dense iodine gas sample. We record the times of flight of ions and electrons produced by a tightly focused short laser pulse in an intensity regime where non-sequential processes dominate double ionization. When a double ion is recorded under these conditions, it is statistically likely to be non-sequential and one of few ionization events during that laser shot. We collect a spectrum for the resulting electrons, recording only those electrons that are simultaneous with detection of a double ion. This spectrum reflects an enhancement in the fraction of electrons produced by non-sequential double ionization events. This enriched spectrum is compared to the single-ionization ATI spectrum, and the difference attributed to double ionization. These electron spectra show an increase in angular spread of electrons as well as the theorized increase in longitudinal energy associated with rescattering, and include some electrons which are best explained by extensions to the rescattering model. Similarly, we approach transient alignment of molecules with the belief that spectral information is important to our understanding of the system as a whole. It has been demonstrated that molecules exposed to a linearly polarized non-resonant laser pulse receive an angular impulse, kicking them into alignment. The rotational wavepacket created is coherent, resulting in periodic recurrences of this

  12. Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography.

    PubMed

    De la Torre-Ibarra, Manuel H; Ruiz, Pablo D; Huntley, Jonathan M

    2006-10-16

    We describe a system for measuring sub-surface displacement fields within a scattering medium using a phase contrast version of spectral Optical Coherence Tomography. The system provides displacement maps within a 2-D slice extending into the sample with a sensitivity of order 10 nm. The data for a given deformation state is recorded in a single image, potentially allowing sub-surface displacement and strain mapping of moving targets. The system is based on low cost components and has no moving parts. The theoretical basis for the system is presented along with experimental results from a simple well-controlled geometry consisting of independently-tilting glass sheets. Results are validated using standard two-beam interferometry. A modified system was used to measure through-the-thickness phase changes within a porcine cornea due to displacements produced by an increase in the intraocular pressure.

  13. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  14. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma

    PubMed Central

    Arifler, Dizem; Schwarz, Richard A.; Chang, Sung K.; Richards-Kortum, Rebecca

    2009-01-01

    Reflectance spectroscopy is a promising technology for detection of epithelial precancer. Fiber-optic probes that selectively collect scattered light from both the epithelium and the underlying stroma are likely to improve diagnostic performance of in vivo reflectance spectroscopy by revealing diagnostic features unique to each layer. We present Monte Carlo models with which to evaluate fiber-optic probe geometries with respect to sampling depth and depth resolution. We propose a probe design that utilizes half-ball lens coupled source and detector fibers to isolate epithelial scattering from stromal scattering and hence to resolve spectral information from the two layers. The probe is extremely compact and can provide easy access to different organ sites. PMID:16045217

  15. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    PubMed

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  16. Evaluation of a procedure for the analysis of nonstationary vibroacoustic data

    NASA Technical Reports Server (NTRS)

    Himelblau, Harry; Piersol, Allan G.

    1989-01-01

    Numerical techniques for the spectral analysis of vibration data from space-vehicle launches are described and demonstrated. A nonstationary product model described by Bendat and Piersol (1986) and its locally stationary version (Silverman, 1957) are applied to Space Shuttle flight data, and the results are presented in extensive graphs. It is shown that the nonstationary model can analyze data from longer sampling periods and thus significantly reduce random error; this in turn leads to vibration spectra lower than those obtained with short-duration models.

  17. Nonstationary oscillations in gyrotrons revisited

    SciTech Connect

    Dumbrajs, O.; Kalis, H.

    2015-05-15

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper.

  18. Non-Stationary Signals: Phase-Energy APPROACH—THEORY and Simulations

    NASA Astrophysics Data System (ADS)

    Klein, R.; Ingman, D.; Braun, S.

    2001-11-01

    Modern time-frequency methods are intended to deal with a variety of non-stationary signals. One specific class, prevalent in the area of rotating machines, is that of harmonic signals of varying frequencies and amplitude. This paper presents a new adaptive phase-energy (APE) approach for time-frequency representation of varying harmonic signals. It is based on the concept of phase (frequency) paths and the instantaneous power spectral density (PSD). It is this path which represents the dynamic behaviour of the system generating the observed signal. The proposed method utilises dynamic filters based on an extended Nyquist theorem, enabling to extract signal components with optimal signal-to-noise ratio. The APE detects the most energetic harmonic components (frequency paths) in the analysed signal. Tests on simulated signals show the superiority of the APE in resolution and resolving power as compared to STFT and wavelets wave-packet decomposition. The dynamic filters also enable the reconstruction of the signal components (paths) from the noisy signal. A quantitative comparison was performed both for the detected path in the time-frequency plane as well as for the reconstructed signal, demonstrating the performance of the APE.

  19. Investigation of the solid-liquid phase transition of carbon at 150 GPa with spectrally resolved X-ray scattering

    NASA Astrophysics Data System (ADS)

    Helfrich, J.; Kraus, D.; Ortner, A.; Frydrych, S.; Schaumann, G.; Hartley, N. J.; Gregori, G.; Kettle, B.; Riley, D.; Carroll, D. C.; Notley, M. M.; Spindloe, C.; Roth, M.

    2015-03-01

    We have resolved the solid-liquid phase transition of carbon at pressures around 150 GPa. High-pressure samples of different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.30 g/cm3 to 2.25 g/cm3. In this way, temperatures from 5700 K to 14,500 K could be achieved for relatively constant pressure according to hydrodynamic simulations. From measuring the elastic X-ray scattering intensity of vanadium K-alpha radiation at 4.95 keV at a scattering angle of 126°, which is very sensitive to the solid-liquid transition, we can determine whether the sample had transitioned to the fluid phase. We find that samples of initial density 1.3 g/cm3 and 1.85 g/cm3 are liquid in the compressed states, whereas samples close to the ideal graphite crystal density of 2.25 g/cm3 remain solid, probably in a diamond-like state.

  20. Spatially resolved, high-spectral resolution observation of the K giant Aldebaran in the CO first overtone lines with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2013-05-01

    Aims: We present a high-spatial and high-spectral resolution observation of the well-studied K giant Aldebaran with AMBER at the Very Large Telescope Interferometer (VLTI). Our aim is to spatially resolve the outer atmosphere (so-called MOLsphere) in individual CO first overtone lines and derive its physical properties, which are important for understanding the mass-loss mechanism in normal (i.e., non-Mira) K-M giants. Methods: Aldebaran was observed between 2.28 and 2.31 μm with a projected baseline length of 10.4 m and a spectral resolution of 12 000. Results: The uniform-disk diameter observed in the CO first overtone lines is 20-35% larger than is measured in the continuum. We have also detected a signature of inhomogeneities in the CO-line-forming region on a spatial scale of ~45 mas, which is more than twice as large as the angular diameter of the star itself. While the MARCS photospheric model reproduces the observed spectrum well, the angular size in the CO lines predicted by the MARCS model is significantly smaller than observed. This is because the MARCS model with the parameters of Aldebaran has a geometrical extension of only ~2% (with respect to the stellar radius). The observed spectrum and interferometric data in the CO lines can be simultaneously reproduced by placing an additional CO layer above the MARCS photosphere. This CO layer is extended to 2.5 ± 0.3 R⋆ with CO column densities of 5 × 1019-2 × 1020 cm-2 and a temperature of 1500 ± 200 K. Conclusions: The high spectral resolution of AMBER has enabled us to spatially resolve the inhomogeneous, extended outer atmosphere (MOLsphere) in the individual CO lines for the first time in a K giant. Our modeling of the MOLsphere of Aldebaran suggests a rather small gradient in the temperature distribution above the photosphere up to 2-3 R⋆. Based on AMBER observations made with the Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 090.D-0459(A).

  1. Determining the nature of active region heating using high spatially and spectrally resolved x-ray observations

    NASA Astrophysics Data System (ADS)

    Sterrett, M. W.; Cirtain, J. W.

    2013-12-01

    Rarely have active regions on the Sun been studied at wavelengths less than 10 nm while simultaneously maintaining both high spatial and high spectral measurements. Marshall's Grazing Incidence X-ray Spectrometer (MaGIXS) will measure the soft X-ray solar spectrum within a wavelength range of 0.6 - 2.4 nm (0.5 - 2.0 keV) while maintaining a 5 arcsec spatial resolution. The wavelength range of 0.6 - 2.4 nm can provide insight into the heating roles of two of the likely coronal heating mechanisms: nanoflare and Alfven wave heating. The key difference in nanoflares and Alfven wave heating is the high temperature components of plasmas inside single magnetic strands. If the observed frequency of the heating event is low, it is determined to be a nanoflare. If the frequency of the heating event is high, it is Alfvenic in nature. To discriminate between these two distinct events requires that the components of the local high-temperature plasma be measured. MaGIXS is a proposed sounding rocket experiment. Currently in its prototype phase, MaGIXS is being aligned and characterized in hopes of a 2015 launch. To measure the attributes of high-temperature plasma, MaGIXS will employ the use of a matched pair of parabolic mirrors in conjunction with a planar varied-line-space silicon wafer grating. The two mirrors act as a collimator and re-focusing system, molding the beam to desired specifications and removing off-axis optical aberrations in the process. The grating has a HeNe alignment feature which allows the grating to be aligned at atmospheric pressure while focusing the HeNe laser beam near the center of MaGIXS wavelength range. This presentation will cover the alignment procedure of the mirrors, and the results of preliminary testing using both white light and X-ray sources.

  2. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types.

    PubMed

    Kawamura, Shoji; Kasagi, Satoshi; Kasai, Daisuke; Tezuka, Ayumi; Shoji, Ayako; Takahashi, Akiyoshi; Imai, Hiroo; Kawata, Masakado

    2016-10-01

    The guppy (Poecilia reticulata) shows remarkable variation of photoreceptor cells in the retina, especially those sensitive to middle-to-long wavelengths of light. Microspectrophotometry (MSP) has revealed varying "green", "green-yellow" and "yellow" cone cells among guppies in Trinidad and Venezuela (Cumana). In the guppy genome, there are four "long-wave" opsin loci (LWS-1, -2, -3 and -4). Two LWS-1 alleles have potentially differing spectral sensitivity (LWS-1/180Ser and LWS-1/180Ala). In addition, two "middle-wave" loci (RH2-1 and -2), two "short-wave" loci (SWS2-A and -B), and a single "ultraviolet" locus (SWS1) as well as a single "rhodopsin" locus (RH1) are present. However, the absorption spectra of these photopigments have not been measured directly and the association of cell types with these opsins remains speculative. In the present study, we reconstituted these opsin photopigments in vitro. The wavelengths of maximal absorbance (λmax) were 571nm (LWS-1/180Ser), 562nm (LWS-1/180Ala), 519nm (LWS-3), 516nm (LWS-2), 516nm (RH2-1), 476nm (RH2-2), 438nm (SWS2-A), 408nm (SWS2-B), 353nm (SWS1) and 503nm (RH1). The λmax of LWS-3 is much shorter than the value expected (560nm) from the "five-sites" rule. The two LWS-1 alleles could explain difference of the reported MSP λmax values for the yellow cone class between Trinidad and Cumana guppies. Absence of the short-wave-shifted LWS-3 and the green-yellow cone in the green swordtail supports the hypothesis that this cell class of the guppy co-expresses the LWS-1 and LWS-3. These results reveal the basis of variability in the guppy visual system and provide insight into the behavior and ecology of these tropical fishes.

  3. Quantum radiation of general nonstationary black holes

    NASA Astrophysics Data System (ADS)

    Hua, Jia-Chen; Huang, Yong-Chang

    2009-02-01

    Quantum radiation of general nonstationary black holes is investigated by using the method of generalized tortoise-coordinate transformation (GTT). It is shown in general that the temperature and the shape of the event horizon of this kind of black holes depend on time and angle. Further, we find that the chemical potential in the thermal-radiation spectrum is equal to the highest energy of the negative-energy state of particles in nonthermal radiation for general nonstationary black holes.

  4. Determination of the PSI/PSII ratio in living plant cells at room temperature by spectrally resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Elgass, Kirstin; Zell, Martina; Maurino, Veronica G.; Schleifenbaum, Frank

    2011-02-01

    Leaf cells of living plants exhibit strong fluorescence from chloroplasts, the reaction centers of photosynthesis. Mutations in the photosystems change their structure and can, thus, be monitored by recording the fluorescence spectra of the emitted chlorophyll light. These measurements have, up to now, mostly been carried out at low temperatures (77 K), as these conditions enable the differentiation between the fluorescence of Photosystem I (PSI) and Photosystem II (PSII). In contrast, at room temperature, energy transfer processes between the various photosynthetic complexes result in very similar fluorescence emissions, which mainly consist of fluorescence photons emitted by PSII hindering a discrimination based on spectral ROIs (regions of interest). However, by statistical analysis of high resolution fluorescence spectra recorded at room temperature, it is possible to draw conclusions about the relative PSI/PSII ratio. Here, the possibility of determining the relative PSI/PSII ratio by fluorescence spectroscopy is demonstrated in living maize plants. Bundle-sheath chloroplasts of mature maize plants have a special morphologic characteristic; they are agranal, or exhibit only rudimentary grana, respectively. These chloroplasts are depleted in PSII activity and it could be shown that PSII is progressively reduced during leaf differentiation. A direct comparison of PSII activity in isolated chloroplasts is nearly impossible, since the activity of PSII in both mesophyll- and bundle-sheath chloroplasts decays with time after isolation and it takes significantly longer to isolate bundle-sheath chloroplasts. Considering this fact the measurement of PSI/PSII ratios with the 77K method, which includes taking fluorescence spectra from a diluted suspension of isolated chloroplasts at 77K, is questionable. These spectra are then used to analyze the distribution of energy between PSI and PSII. After rapid cooling to 77K secondary biochemical influences, which attenuate the

  5. Tissue photosensitizer dosimetry using spectrally-resolved fluorescence for pre-clinical and clinical verteporfin-PDT of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; Davis, Scott; Li, Zan; Gunn, Jason; Hoopes, P. J.; Pereira, S.; Mosse, C. A.; Hasan, T.; Pogue, B. W.

    2012-02-01

    Photodynamic therapy (PDT) mediated with verteporfin is currently being investigated to treat pancreatic cancer in patients who are not surgical candidates. Clinically, interstitial light delivery is administered through a fiber, via percutaneous needle implantation guided by ultrasound and/or verified by CT. Tumor response to PDT is based on photosensitizer (PS) dose, light dose, light dose rate and the timing of light application following PS injection. However, studies have shown that even when matching administered PDT treatment parameters such as drug dose and light level, there can be significant inter-patient variation in tissue damage post-PDT, and this has been primarily attributed to imprecise PS concentration at the target tissue site. In order to achieve optimal tumor response from PDT without causing major damage to surrounding tissue, it would be advantageous to measure the PS concentration in the target tissue just prior to light application. From these measurements, the clinician can adapt the light application dose to the measured target tissue PS concentration (i.e. insufficient target tissue PS concentrations compensated by higher light doses and vice versa.) in order to provide an optimal light dose for each patient. In animal studies, a spectrometer-based in-vivo fluorescence dosimetry system has been used to assess accumulated PS levels (verteporfin) in situ. Measurements are taken from skin, leg muscle, buccal mucosa and tumor tissue locations one hour after injection of the photosensitizer. Real-time spectral fitting, subtraction of background autofluorescence and ratiometric analysis is performed on the raw data to extract out only the photosensitizer fluorescence and therefore concentration. Using a pre-measured calibration data set of varying concentrations for verteporfin in tissue phantoms composed of intralipid and whole blood, it was possible detect concentrations of the photosensitizer below 0.5nM. In the clinical studies being

  6. THE SPECTRALLY RESOLVED Lyα EMISSION OF THREE Lyα-SELECTED FIELD GALAXIES AT z ∼ 2.4 FROM THE HETDEX PILOT SURVEY

    SciTech Connect

    Chonis, Taylor S.; Finkelstein, Steven L.; Gebhardt, Karl; Overzier, Roderik A.; Song, Mimi; Blanc, Guillermo A.; Adams, Joshua J.; Kollmeier, Juna A.; Hill, Gary J.; Drory, Niv; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Zeimann, Gregory R.

    2013-10-01

    We present new results on the spectrally resolved Lyα emission of three Lyα-emitting field galaxies at z ∼ 2.4 with high Lyα equivalent width (>100 Å) and Lyα luminosity (∼10{sup 43} erg s{sup –1}). At 120 km s{sup –1} (FWHM) spectral resolution, the prominent double-peaked Lyα profile straddles the systemic velocity, where the velocity zero point is determined from spectroscopy of the galaxies' rest-frame optical nebular emission lines. The average velocity offset from systemic of the stronger redshifted emission component for our sample is 176 km s{sup –1} while the average total separation between the redshifted and main blueshifted emission components is 380 km s{sup –1}. These measurements are a factor of ∼2 smaller than for UV-continuum-selected galaxies that show Lyα in emission with lower Lyα equivalent widths. We compare our Lyα spectra to the predicted line profiles of a spherical 'expanding shell' Lyα radiative transfer grid that models large-scale galaxy outflows. Specifically, blueward of the systemic velocity where two galaxies show a weak, highly blueshifted (by ∼1000 km s{sup –1}) tertiary emission peak, the model line profiles are a relatively poor representation of the observed spectra. Since the neutral gas column density has a dominant influence over the shape of the Lyα line profile, we caution against equating the observed Lyα velocity offset with a physical outflow velocity, especially at lower spectral resolution where the unresolved Lyα velocity offset is a convoluted function of several degenerate parameters. Referring to rest-frame ultraviolet and optical Hubble Space Telescope imaging, we find that galaxy-galaxy interactions may play an important role in inducing a starburst that results in copious Lyα emission as well as perturbing the gas distribution and velocity field, both of which have strong influence over the Lyα emission line profile.

  7. Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell

    SciTech Connect

    Tamaki, Ryo Shoji, Yasushi; Okada, Yoshitaka; Miyano, Kenjiro

    2014-08-18

    Two-step photon absorption processes in a self-organized In{sub 0.4}Ga{sub 0.6}As/GaAs quantum dot (QD) solar cell have been investigated by monitoring the mid-infrared (IR) photoinduced modulation of the external quantum efficiency (ΔEQE) at low temperature. The first step interband and the second step intraband transitions were both spectrally resolved by scanning photon energies of visible to near-IR CW light and mid-IR pulse lasers, respectively. A peak centered at 0.20 eV corresponding to the transition to virtual bound states and a band above 0.42 eV probably due to photoexcitation to GaAs continuum states were observed in ΔEQE spectra, when the interband transition was above 1.4 eV, directly exciting wetting layers or GaAs spacer layers. On the other hand, resonant excitation of the ground state of QDs at 1.35 eV resulted in a reduction of EQE. The sign of ΔEQE below 1.40 eV changed from negative to positive by increasing the excitation intensity of the interband transition. We ascribe this to the filling of higher energy trap states.

  8. Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Shoji, Yasushi; Okada, Yoshitaka; Miyano, Kenjiro

    2014-08-01

    Two-step photon absorption processes in a self-organized In0.4Ga0.6As/GaAs quantum dot (QD) solar cell have been investigated by monitoring the mid-infrared (IR) photoinduced modulation of the external quantum efficiency (ΔEQE) at low temperature. The first step interband and the second step intraband transitions were both spectrally resolved by scanning photon energies of visible to near-IR CW light and mid-IR pulse lasers, respectively. A peak centered at 0.20 eV corresponding to the transition to virtual bound states and a band above 0.42 eV probably due to photoexcitation to GaAs continuum states were observed in ΔEQE spectra, when the interband transition was above 1.4 eV, directly exciting wetting layers or GaAs spacer layers. On the other hand, resonant excitation of the ground state of QDs at 1.35 eV resulted in a reduction of EQE. The sign of ΔEQE below 1.40 eV changed from negative to positive by increasing the excitation intensity of the interband transition. We ascribe this to the filling of higher energy trap states.

  9. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    PubMed

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  10. AXISYMMETRIC, NONSTATIONARY BLACK HOLE MAGNETOSPHERES: REVISITED

    SciTech Connect

    Song, Yoo Geun; Park, Seok Jae E-mail: sjpark@kasi.re.kr

    2015-10-10

    An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park and Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.

  11. Analysis of planetary gear transmission in non-stationary operations

    NASA Astrophysics Data System (ADS)

    Chaari, Fakher; Abbes, Mohamed Slim; Rueda, Fernando Viadero; del Rincon, Alfonso Fernandez; Haddar, Mohamed

    2013-03-01

    Planetary gearboxes operate usually in nonstationary conditions generated mainly by variable loads applied to these transmissions. In order to understand the dynamic behavior of planetary gearboxes in such conditions, a mathematic model is developed including driving unit, transmission and load. The variability of load induces a variable speed of the transmission which is taken into account when characterizing the main dynamic parameter of the transmission which is the mesh stiffness function. This function is not periodic following the variability of the transmission speed. The computation of the dynamic response shows an intimate relation between the vibration amplitude level and the load value. As the load increase the vibration level increase. A combined amplitude and frequency modulation is observed which is well characterized using Short Time Fourier transform more suited than the spectral analysis.

  12. Whole-body multicolor spectrally resolved fluorescence imaging for development of target-specific optical contrast agents using genetically engineered probes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.

    2007-02-01

    Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.

  13. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    NASA Astrophysics Data System (ADS)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit

  14. Disk-resolved spectral reflectance properties of Phobos from 0.3-3.2 micron: Preliminary integrated results from Phobos 2

    NASA Technical Reports Server (NTRS)

    Murchie, Scott L.; Erard, Stephane; Langevin, Yves; Britt, Daniel T.; Bibring, Jean-Pierre; Mustard, John F.; Head, James W.; Pieters, Carle M.

    1991-01-01

    The Phobos 2 mission provided multispectral observations of Phobos over a large wavelength range and with relatively high spectral resolution. Here, researchers integrate results from three multispectral detectors by determining the ultraviolet-visible near infrared spectral properties of color and brightness features recognized in VSK TV images. Researchers present evidence that there are two fundamental spectral units within the region of overlapping coverage by the detectors. They describe the units' spectral and reflectance properties and discuss the implications of these results for the composition of Phobos.

  15. Revealing the radiative and non-radiative relaxation rates of the fluorescent dye Atto488 in a λ/2 Fabry-Pérot-resonator by spectral and time resolved measurements

    NASA Astrophysics Data System (ADS)

    Konrad, Alexander; Metzger, Michael; Kern, Andreas M.; Brecht, Marc; Meixner, Alfred J.

    2016-07-01

    Using a Fabry-Pérot-microresonator with controllable cavity lengths in the λ/2-regime, we show the controlled modification of the vibronic relaxation dynamics of a fluorescent dye molecule in the spectral and time domain. By altering the photonic mode density around the fluorophores we are able to shape the fluorescence spectrum and enhance specifically the probability of the radiative transitions from the electronic excited state to distinct vibronic excited states of the electronic ground state. Analysis and correlation of the spectral and time resolved measurements by a theoretical model and a global fitting procedure allows us to reveal quantitatively the spectrally distributed radiative and non-radiative relaxation dynamics of the respective dye molecule under ambient conditions at the ensemble level.Using a Fabry-Pérot-microresonator with controllable cavity lengths in the λ/2-regime, we show the controlled modification of the vibronic relaxation dynamics of a fluorescent dye molecule in the spectral and time domain. By altering the photonic mode density around the fluorophores we are able to shape the fluorescence spectrum and enhance specifically the probability of the radiative transitions from the electronic excited state to distinct vibronic excited states of the electronic ground state. Analysis and correlation of the spectral and time resolved measurements by a theoretical model and a global fitting procedure allows us to reveal quantitatively the spectrally distributed radiative and non-radiative relaxation dynamics of the respective dye molecule under ambient conditions at the ensemble level. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02380K

  16. Anomalous radiation from a nonstationary plasma

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Larsson, J.; Lindgren, T.; Stenflo, L.; Tegeback, R.; Uddholm, P.

    1980-01-01

    This paper considers the anomalous growth of the radiation intensity, which is caused by an EM wave incident on an inhomogeneous nonstationary plasma. The amplitude of the reflected signal can thus during relatively short time intervals be larger than that of the incident wave. The reason is that the plasma parameters can pass through values, for which linear resonance of leaking surface waves exist. An analytical expression is obtained for the maximum value of the intensity of the reflected wave for two different plasma density profiles, interacting with waves of different polarization. It is shown that the effect can occur repeatedly in a nonstationary plasma with a nonmonotonous density profile, if the region, where the inhomogeneity gradient changes sign, increases.

  17. Sequential decision analysis for nonstationary stochastic processes

    NASA Technical Reports Server (NTRS)

    Schaefer, B.

    1974-01-01

    A formulation of the problem of making decisions concerning the state of nonstationary stochastic processes is given. An optimal decision rule, for the case in which the stochastic process is independent of the decisions made, is derived. It is shown that this rule is a generalization of the Bayesian likelihood ratio test; and an analog to Wald's sequential likelihood ratio test is given, in which the optimal thresholds may vary with time.

  18. Assessment of Power Quality based on Fuzzy Logic and Discrete Wavelet Transform for Nonstationary Disturbances

    NASA Astrophysics Data System (ADS)

    Sinha, Pampa; Nath, Sudipta

    2010-10-01

    The main aspects of power system delivery are reliability and quality. If all the customers of a power system get uninterrupted power through the year then the system is considered to be reliable. The term power quality may be referred to as maintaining near sinusoidal voltage at rated frequency at the consumers end. The power component definitions are defined according to the IEEE Standard 1459-2000 both for single phase and three phase unbalanced systems based on Fourier Transform (FFT). In the presence of nonstationary power quality (PQ) disturbances results in accurate values due to its sensitivity to the spectral leakage problem. To overcome these limitations the power quality components are calculated using Discrete Wavelet Transform (DWT). In order to handle the uncertainties associated with electric power systems operations fuzzy logic has been incorporated in this paper. A new power quality index has been introduced here which can assess the power quality under nonstationary disturbances.

  19. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  20. The influence of non-stationary ENSO teleconnections on reconstructions of paleoclimate using a pseudoproxy framework

    NASA Astrophysics Data System (ADS)

    Batehup, R.; McGregor, S.; Gallant, A. J. E.

    2015-08-01

    Reconstructions of the El Niño-Southern Oscillation (ENSO) ideally require high-quality, annually-resolved and long-running paleoclimate proxy records in the eastern tropical Pacific Ocean, located in ENSO's centre-of-action. However, to date, the paleoclimate records that have been extracted in the region are short or temporally and spatially sporadic, limiting the information that can be provided by these reconstructions. Consequently, most ENSO reconstructions exploit the downstream influences of ENSO on remote locations, known as teleconnections, where longer records from paleoclimate proxies exist. However, using teleconnections to reconstruct ENSO relies on the assumption that the relationship between ENSO and the remote location is stationary in time. Increasing evidence from observations and climate models suggests that some teleconnections are, in fact, non-stationary, potentially threatening the validity of those paleoclimate reconstructions that exploit teleconnections. This study examines the implications of non-stationary teleconnections on modern multi-proxy reconstructions of ENSO. The sensitivity of the reconstructions to non-stationary teleconnections were tested using a suite of idealized pseudoproxy experiments that employed output from a fully coupled global climate model. Reconstructions of the variance in the Niño 3.4 index, representing ENSO variability, were generated using four different methods to which surface temperature data from the GFDL CM2.1 was applied as a pseudoproxy. As well as sensitivity of the reconstruction to the method, the experiments tested the sensitivity of the reconstruction to the number of non-stationary pseudoproxies and the location of these proxies. ENSO reconstructions in the pseudoproxy experiments were not sensitive to non-stationary teleconnections when global, uniformly-spaced networks of a minimum of approximately 20 proxies were employed. Neglecting proxies from ENSO's center-of-action still produced

  1. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-12-14

    The emergence of sub-wavenumber high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BBSFG-VS) [Velarde et al., J. Chem. Phys., 2011, 135, 241102] has offered new opportunities in obtaining and understanding the spectral lineshape and temporal effects on the surface vibrational spectroscopy. Particularly, the high accuracy in the HR-BBSFG-VS spectral lineshape measurement provides detailed information on the complex coherent vibrational dynamics through spectral measurement. Here we present a unified formalism of the theoretical and experimental approaches for obtaining the accurate lineshape of the SFG response, and then present a analysis on the higher and lower spectral resolution SFG spectra as well as their temporal effects of the cholesterol molecules at the air/water interface. With the high spectral resolution and accurate lineshape, it is shown that the parameters from the sub-wavenumber resolution SFG spectra can be used not only to understand but also to quantitatively reproduce the temporal effects in the lower resolution SFG measurement. These not only provide a unified picture in understanding both the frequency-domain and the time-domain SFG response of the complex molecular interface, but also provide novel experimental approaches that can directly measure them.

  2. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  3. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L. K.; Vogel, R. M.

    2015-11-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.

  4. Hazard function theory for nonstationary natural hazards

    DOE PAGES

    Read, Laura K.; Vogel, Richard M.

    2016-04-11

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.« less

  5. Hazard function theory for nonstationary natural hazards

    SciTech Connect

    Read, Laura K.; Vogel, Richard M.

    2016-04-11

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  6. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration

    NASA Technical Reports Server (NTRS)

    Irvine, T.

    2016-01-01

    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  7. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration

    NASA Astrophysics Data System (ADS)

    Irvine, T.

    2016-09-01

    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  8. Time-resolved spectral measurements of delayed luminescence from a single soybean seed: effects of thermal damage and correlation with germination performance.

    PubMed

    Lanzanò, Luca; Sui, Li; Costanzo, Evelina; Gulino, Marisa; Scordino, Agata; Tudisco, Salvatore; Musumeci, Francesco

    2009-01-01

    Delayed luminescence from a single dry soybean seed was investigated in both spectral and time domains, under different excitation wavelengths. Emission spectra were collected, under 337 nm laser excitation, from native and artificially deteriorated seeds and the time-dependence of different spectral components was analyzed in detail. The single seed viability was evaluated through observation of germination properties after imbibition and compared with different parameters related to the luminescence kinetics. The significant correlation found between single seed delayed luminescence parameters and germination capability strongly validates the connection of this phenomenon with the functional state of the system and suggests the development of a non-invasive technique for seed quality determination.

  9. Fast "stretched-space" method for generating synthetic vertical sheets of nonstationary stochastic atmospheric structure for infrared background scene simulation

    NASA Astrophysics Data System (ADS)

    Brown, James H.; Grossbard, Neil J.

    1996-04-01

    Images of atmospheric airglow emissions are often characterized by known or assumed power spectral density functions that have an asymptotic negative power law slope dependency. Various filter synthesis methods are routinely employed to generate synthetic scenes from random arrays by passing stochastic data through filters that provide a desired correlation structure and power spectral dependency. A 2-D array, or vertical sheet, of nonstationary synthetic structure is produced by means of a nonlinear 'stretched space' transformation. Since computations that apply multidimensional transforms to large data arrays consume enormous computer resources and run times, an alternative autoregressive method is employed to reduce the heavy computational burden. Future editions of the Phillips Laboratory Strategic High Altitude Atmospheric Radiance Code (SHARC) will feature an ability to compute structured radiance. The method explored provides a process for rapidly generating large arrays of 2-D nonstationary structure.

  10. Improved Statistical Signal Processing of Nonstationary Random Processes Using Time-Warping

    NASA Astrophysics Data System (ADS)

    Wisdom, Scott Thomas

    A common assumption used in statistical signal processing of nonstationary random signals is that the signals are locally stationary. Using this assumption, data is segmented into short analysis frames, and processing is performed using these short frames. Short frames limit the amount of data available, which in turn limits the performance of statistical estimators. In this thesis, we propose a novel method that promises improved performance for a variety of statistical signal processing algorithms. This method proposes to estimate certain time-varying parameters of nonstationary signals and then use this estimated information to perform a time-warping of the data that compensates for the time-varying parameters. Since the time-warped data is more stationary, longer analysis frames may be used, which improves the performance of statistical estimators. We first examine the spectral statistics of two particular types of nonstationary random processes that are useful for modeling ship propeller noise and voiced speech. We examine the effect of time-varying frequency content on these spectral statistics, and in addition show that the cross-frequency spectral statistics of these signals contain significant additional information that is not usually exploited using a stationary assumption. This information, combined with our proposed method, promises improvements for a wide variety of applications in the future. We then describe and test an implementation of our time-warping method, the fan-chirp transform. We apply our method to two applications, detection of ship noise in a passive sonar application and joint denoising and dereverberation of speech. Our method yields improved results for both applications compared to conventional methods.

  11. Quantifying nonstationary radioactivity concentration fluctuations near chernobyl: A complete statistical description

    PubMed

    Viswanathan; Buldyrev; Garger; Kashpur; Lucena; Shlyakhter; Stanley; Tschiersch

    2000-09-01

    We analyze nonstationary 137Cs atmospheric activity concentration fluctuations measured near Chernobyl after the 1986 disaster and find three new results: (i) the histogram of fluctuations is well described by a log-normal distribution; (ii) there is a pronounced spectral component with period T=1yr, and (iii) the fluctuations are long-range correlated. These findings allow us to quantify two fundamental statistical properties of the data: the probability distribution and the correlation properties of the time series. We interpret our findings as evidence that the atmospheric radionuclide resuspension processes are tightly coupled to the surrounding ecosystems and to large time scale weather patterns.

  12. Molecular binoculars: how to spatially resolve environmental fluctuations by following two or more single-molecule spectral trails at a time.

    PubMed

    Lubchenko, Vassiliy; Silbey, Robert J

    2013-10-24

    We propose a novel type of spectral diffusion experiment that enables one to decouple spatial characteristics of the environmental fluctuations, such as their concentration, from the interaction with the chromophore. Traditional hole broadening experiments do not allow for such decoupling in the common case when the chromophore-environment interaction is scale invariant. Here we propose to simultaneously follow the spectral trails of a small number of nearby chromophores--two or more--which thereby sense a highly overlapping set of the fluctuations. To this end, we estimate the combined probability distribution for the frequencies of a set of chromophores contained within the same sample. The present setup introduces a new length scale, i.e., the interchromophore distance, which breaks the aforementioned scale invariance and enables one to determine independently the concentration of the environmental fluctuations and their coupling to the chromophores, by monitoring the time after which spectral diffusion of distinct chromophores becomes uncorrelated. We illustrate these results with structural excitations in low temperature glasses.

  13. Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range

    NASA Astrophysics Data System (ADS)

    Konugolu Venkata Sekar, Sanathana; Farina, Andrea; Martinenghi, Edoardo; Dalla Mora, Alberto; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut; Pagliazzi, Marco; Lindner, Claus; Farzam, Parisa; Mora, Mireia; Squarcia, Mattia; Urbano-Ispizua, A.

    2015-07-01

    We report on the design, performance assessment, and first in vivo measurement of a Time-Resolved Diffuse Optical system for broadband (600-1350 nm) nm measurement of absorption and scattering spectra of biological tissues for non-invasive clinical diagnostics. Two strategies to reduce drift and enhance responsivity are adopted. The system was enrolled in a first in vivo test phase on healthy volunteers, carrying out non-invasive, in vivo quantification of key tissue constituents (oxy- and deoxy-hemoglobin, water, lipids, collagen) and tissue micro-structure (scatterer size and density).

  14. Appropriate model selection methods for nonstationary generalized extreme value models

    NASA Astrophysics Data System (ADS)

    Kim, Hanbeen; Kim, Sooyoung; Shin, Hongjoon; Heo, Jun-Haeng

    2017-04-01

    Several evidences of hydrologic data series being nonstationary in nature have been found to date. This has resulted in the conduct of many studies in the area of nonstationary frequency analysis. Nonstationary probability distribution models involve parameters that vary over time. Therefore, it is not a straightforward process to apply conventional goodness-of-fit tests to the selection of an appropriate nonstationary probability distribution model. Tests that are generally recommended for such a selection include the Akaike's information criterion (AIC), corrected Akaike's information criterion (AICc), Bayesian information criterion (BIC), and likelihood ratio test (LRT). In this study, the Monte Carlo simulation was performed to compare the performances of these four tests, with regard to nonstationary as well as stationary generalized extreme value (GEV) distributions. Proper model selection ratios and sample sizes were taken into account to evaluate the performances of all the four tests. The BIC demonstrated the best performance with regard to stationary GEV models. In case of nonstationary GEV models, the AIC proved to be better than the other three methods, when relatively small sample sizes were considered. With larger sample sizes, the AIC, BIC, and LRT presented the best performances for GEV models which have nonstationary location and/or scale parameters, respectively. Simulation results were then evaluated by applying all four tests to annual maximum rainfall data of selected sites, as observed by the Korea Meteorological Administration.

  15. Performance and Prospects of Khayyam, A Tunable Spatial Heterodyne Spectrometer (SHS) for High Spectral Resolving Power Observation of Extended Planetary Targets in Optical Wavelengths

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.

    2014-12-01

    We present initial results, calibration and data reduction process from observations of wide-field targets using Khayyam at Mt. Hamilton, a new instrument based on a reflective spatial heterodyne spectrometer (SHS) at the focus of the Coudé Auxiliary Telescope (CAT). SHS instruments are common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~105), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. This report focuses on the tunable instrument at Mt Hamilton, The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2014 E2 (Jacques), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability.

  16. Credibility of statistical downscaling under nonstationary climate

    NASA Astrophysics Data System (ADS)

    Salvi, Kaustubh; Ghosh, Subimal; Ganguly, Auroop R.

    2016-03-01

    Statistical downscaling (SD) establishes empirical relationships between coarse-resolution climate model simulations with higher-resolution climate variables of interest to stakeholders. These statistical relations are estimated based on historical observations at the finer resolutions and used for future projections. The implicit assumption is that the SD relations, extracted from data are stationary or remain unaltered, despite non-stationary change in climate. The validity of this assumption relates directly to the credibility of SD. Falsifiability of climate projections is a challenging proposition. Calibration and verification, while necessary for SD, are unlikely to be able to reproduce the full range of behavior that could manifest at decadal to century scale lead times. We propose a design-of-experiments (DOE) strategy to assess SD performance under nonstationary climate and evaluate the strategy via a transfer-function based SD approach. The strategy relies on selection of calibration and validation periods such that they represent contrasting climatic conditions like hot-versus-cold and ENSO-versus-non-ENSO years. The underlying assumption is that conditions such as warming or predominance of El Niño may be more prevalent under climate change. In addition, two different historical time periods are identified, which resemble pre-industrial and the most severe future emissions scenarios. The ability of the empirical relations to generalize under these proxy conditions is considered an indicator of their performance under future nonstationarity. Case studies over two climatologically disjoint study regions, specifically India and Northeast United States, reveal robustness of DOE in identifying the locations where nonstationarity prevails as well as the role of effective predictor selection under nonstationarity.

  17. Ground roll attenuation using non-stationary matching filtering

    NASA Astrophysics Data System (ADS)

    Jiao, Shebao; Chen, Yangkang; Bai, Min; Yang, Wencheng; Wang, Erying; Gan, Shuwei

    2015-12-01

    Conventional approaches based on adaptive subtraction for ground roll attenuation first predict an initial model for ground rolls and then adaptively subtract it from the original data using a stationary matching filter (MF). Because of the non-stationary property of seismic data and ground rolls, the application of a traditional stationary MF is not physically plausible. Thus, in the case of highly non-stationary seismic reflections and ground rolls, a stationary MF cannot obtain satisfactory results. In this paper, we apply a non-stationary matching filter (NMF) to adaptively subtract the ground rolls. The NMF can be obtained by solving a highly under-determined inversion problem using non-stationary autoregression. We apply the proposed approach to one synthetic example and two field data examples, and demonstrate a much improved performance compared with the traditional MF approach.

  18. Nonstationary Root Causes of Cobb’s Paradox

    DTIC Science & Technology

    2010-07-01

    evolutionary strategies that have recently been adopted. Working in a nonstationary environment One historical method to acquire new systems is termed the...project must address cost, performance, marketing features, technical maturity, and time to completion. Yet, nonstationary environments imply...depends on what we consider to be the most important variables to control. The priority given to cost and schedule will vary product to product, market

  19. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: identification of chlorogenic acid as one of the major fluorophores and age-mediated changes.

    PubMed

    Morales, Fermín; Cartelat, Aurélie; Alvarez-Fernández, Ana; Moya, Ismael; Cerovic, Zoran G

    2005-12-14

    Synchrotron radiation and the time-correlated single-photon counting technique were used to investigate the spectral and time-resolved characteristics of blue-green fluorescence (BGF) of artichoke leaves. Leaves emitted BGF under ultraviolet (UV) excitation; the abaxial side was much more fluorescent than the adaxial side, and in both cases, the youngest leaves were much more fluorescent than the oldest ones. The BGF of artichoke leaves was dominated by the presence of hydroxycinnamic acids. A decrease in the percentage of BGF attributable to the very short kinetic component (from 42 to 20%), in the shape of the BGF excitation spectra, and chlorogenic acid concentrations indicate that there is a loss of hydroxycinnamic acid with leaf age. Studies on excitation, emission, and synchronized fluorescence spectra of leaves and trichomes and chlorogenic acid contents indicate that chlorogenic acid is one of the main blue-green fluorophores in artichoke leaves. Results of the present study indicate that 20-42% (i.e., the very short kinetic component) of the overall BGF is emitted by chlorogenic acid. Time-resolved BGF measurements could be a means to extract information on chlorogenic acid fluorescence from the overall leaf BGF.

  20. Automatic identification of various spectral features at the time-resolved excitation emission matrix of dissolved organic matters and phytoplankton cells in seawater

    NASA Astrophysics Data System (ADS)

    Krikun, Vladimir A.; Salyuk, Pavel A.

    2016-10-01

    The variation of the different parameters of the exciting radiation and the registration of the fluorescence of the investigated object allows to obtain multidimensional spectral images: from three-dimensional (length of the exciting radiation, the wavelength of the emitted radiation, the fluorescence intensity) to eight and more dimensions (in addition to three of these dimensions: spatial coordinates x, y, z; time of measurements; the duration and the intensity of the exciting radiation and etc.). In the case of measurements in natural conditions is highly desirable that the result of the processing performed during a single measurement for the operation in real time. In this paper we consider the approach described for the treatment of fluorescence measurements of dissolved organic matter and chlorophyll-a in seawater. Joint analysis of the various pairs of wavelengths of excitation / emission fluorescence, fluorescence analysis at different durations of the exciting radiation and the time-spatial analysis of the received signal allow identifying different types of fluorescent dissolved organic matter and estimate their stage of biodegradation, to study the functional state of phytoplankton cells. So it is possible to provide real-time investigation of environmental indicators of seawater.

  1. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector.

    PubMed

    Epple, Franz M; Ehn, Sebastian; Thibault, Pierre; Koehler, Thomas; Potdevin, Guillaume; Herzen, Julia; Pennicard, David; Graafsma, Heinz; Noël, Peter B; Pfeiffer, Franz

    2015-03-01

    Grating-based differential phase-contrast imaging has proven to be feasible with conventional X-ray sources. The polychromatic spectrum generally limits the performance of the interferometer but benefit can be gained with an energy-sensitive detector. In the presented work, we employ the energy-discrimination capability to correct for phase-wrapping artefacts. We propose to use the phase shifts, which are measured in distinct energy bins, to estimate the optimal phase shift in the sense of maximum likelihood. We demonstrate that our method is able to correct for phase-wrapping artefacts, to improve the contrast-to-noise ratio and to reduce beam hardening due to the modelled energy dependency. The method is evaluated on experimental data which are measured with a laboratory Talbot-Lau interferometer equipped with a conventional polychromatic X-ray source and an energy-sensitive photon-counting pixel detector. Our work shows, that spectral imaging is an important step to move differential phase-contrast imaging closer to pre-clinical and clinical applications, where phase wrapping is particularly problematic.

  2. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    NASA Technical Reports Server (NTRS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Merand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schoeller, M.; Teodoro, M.; Wittkowski, M.

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  3. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    NASA Astrophysics Data System (ADS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  4. Performance evaluation of a sub-millimetre spectrally resolved CT system on high- and low-frequency imaging tasks: a simulation.

    PubMed

    Yveborg, Moa; Danielsson, Mats; Bornefalk, Hans

    2012-04-21

    We are developing a photon-counting silicon strip detector with 0.4 × 0.5 mm² detector elements for clinical CT applications. Except for the limited detection efficiency of approximately 0.8 for a spectrum of 80 kVp, the largest discrepancies from ideal spectral behaviour have been shown to be Compton interactions in the detector and electronic noise. Using the framework of cascaded system analysis, we reconstruct the 3D MTF and NPS of a silicon strip detector including the influence of scatter and charge sharing inside the detector. We compare the reconstructed noise and signal characteristics with a reconstructed 3D MTF and NPS of an ideal energy-integrating detector system with unity detection efficiency, no scatter or charge sharing inside the detector, unity presampling MTF and 1 × 1 mm² detector elements. The comparison is done by calculating the dose-normalized detectability index for some clinically relevant imaging tasks and spectra. This work demonstrates that although the detection efficiency of the silicon detector rapidly drops for the acceleration voltages encountered in clinical computed tomography practice, and despite the high fraction of Compton interactions due to the low atomic number, silicon detectors can perform on a par with ideal energy-integrating detectors for routine imaging tasks containing low-frequency components. For imaging tasks containing high-frequency components, the proposed silicon detector system can perform approximately 1.1-1.3 times better than a fully ideal energy-integrating system.

  5. VEGA/CHARA interferometric observations of Cepheids. I. A resolved structure around the prototype classical Cepheid δ Cep in the visible spectral range

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mérand, A.; Mourard, D.; Storm, J.; Gieren, W.; Fouqué, P.; Gallenne, A.; Graczyk, D.; Kervella, P.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Breitfelder, J.; Berio, P.; Challouf, M.; Clausse, J.-M.; Ligi, R.; Mathias, P.; Meilland, A.; Perraut, K.; Poretti, E.; Rainer, M.; Spang, A.; Stee, P.; Tallon-Bosc, I.; ten Brummelaar, T.

    2016-09-01

    Context. The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. The underlying assumption is that the photospheres probed in the infrared and in the visible are located at the same layer in the star whatever the pulsation phase. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. Aims: This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Methods: Observations of δ Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. Results: These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of θCSE = 8.9 ± 3.0 mas and a relative flux contribution of fCSE = 0.07 ± 0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2σ) with two different regimes over the pulsation cycle of the star, φ = 0.0 - 0.8 and φ = 0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. Conclusions: For the first time we have been able to detect in the visible domain a resolved structure around δ Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and

  6. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    SciTech Connect

    Li, Dong; Svensson, J.; Thomsen, H.; Werner, A.; Wolf, R.; Medina, F.

    2013-08-15

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  7. Non-stationary random ground vibration due to loads moving along a railway track

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Gao, Qiang; Lin, J. H.; Williams, F. W.

    2006-11-01

    The pseudo-excitation method (PEM) and the precise integration algorithm are combined to compute the non-stationary random ground vibration caused by loads moving along a railway track at constant speed. The rails are modeled as a single infinite Euler beam connected to sleepers and hence to ballast. This ballast rests on the ground, which is assumed to consist of layered transversely isotropic soil. The equations of motion of the system are established in a Cartesian coordinate system which moves with the loads. The non-stationary power spectral density and the time-dependent standard deviation can be derived conveniently by means of PEM, while the precise integration algorithm for two-point boundary value problems is applied to the solution of the equations of motion in the frequency/wavenumber domain. By virtue of the transverse isotropic property of the layered soils, the threefold iteration process in the frequency/wavenumber domain is reduced into a twofold iteration process. Hence the computational efficiency is improved considerably.

  8. Nonstationary 3D motion of an elastic spherical shell

    NASA Astrophysics Data System (ADS)

    Tarlakovskii, D. V.; Fedotenkov, G. V.

    2015-03-01

    A 3D model of motion of a thin elastic spherical Timoshenko shell under the action of arbitrarily distributed nonstationary pressure is considered. An approach for splitting the system of equations of 3D motion of the shell is proposed. The integral representations of the solution with kernels in the form of influence functions, which can be determined analytically by using series expansions in the eigenfunctions and the Laplace transform, are constructed. An algorithm for solving the problem on the action of nonstationary normal pressure on the shell is constructed and implemented. The obtained results find practical use in aircraft and rocket construction and in many other industrial fields where thin-walled shell structural members under nonstationary working conditions are widely used.

  9. Theory, implementation and applications of nonstationary Gabor frames.

    PubMed

    Balazs, P; Dörfler, M; Jaillet, F; Holighaus, N; Velasco, G

    2011-10-15

    Signal analysis with classical Gabor frames leads to a fixed time-frequency resolution over the whole time-frequency plane. To overcome the limitations imposed by this rigidity, we propose an extension of Gabor theory that leads to the construction of frames with time-frequency resolution changing over time or frequency. We describe the construction of the resulting nonstationary Gabor frames and give the explicit formula for the canonical dual frame for a particular case, the painless case. We show that wavelet transforms, constant-Q transforms and more general filter banks may be modeled in the framework of nonstationary Gabor frames. Further, we present the results in the finite-dimensional case, which provides a method for implementing the above-mentioned transforms with perfect reconstruction. Finally, we elaborate on two applications of nonstationary Gabor frames in audio signal processing, namely a method for automatic adaptation to transients and an algorithm for an invertible constant-Q transform.

  10. Non-Stationary Internal Tides Observed with Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  11. Learning geotemporal nonstationary failure and recovery of power distribution.

    PubMed

    Wei, Yun; Ji, Chuanyi; Galvan, Floyd; Couvillon, Stephen; Orellana, George; Momoh, James

    2014-01-01

    Smart energy grid is an emerging area for new applications of machine learning in a nonstationary environment. Such a nonstationary environment emerges when large-scale failures occur at power networks because of external disruptions such as hurricanes and severe storms. Power distribution networks lie at the edge of the grid, and are especially vulnerable to external disruptions. Quantifiable approaches are lacking and needed to learn nonstationary behaviors of large-scale failure and recovery of power distribution. This paper studies such nonstationary behaviors in three aspects. First, a novel formulation is derived for an entire life cycle of large-scale failure and recovery of power distribution. Second, spatial-temporal models of failure and recovery of power distribution are developed as geolocation-based multivariate nonstationary GI(t)/G(t)/∞ queues. Third, the nonstationary spatial-temporal models identify a small number of parameters to be learned. Learning is applied to two real-life examples of large-scale disruptions. One is from Hurricane Ike, where data from an operational network is exact on failures and recoveries. The other is from Hurricane Sandy, where aggregated data is used for inferring failure and recovery processes at one of the impacted areas. Model parameters are learned using real data. Two findings emerge as results of learning: 1) failure rates behave similarly at the two different provider networks for two different hurricanes but differently at the geographical regions and 2) both the rapid and slow-recovery are present for Hurricane Ike but only slow recovery is shown for a regional distribution network from Hurricane Sandy.

  12. Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current

    NASA Astrophysics Data System (ADS)

    Buonassisi, T.; Istratov, A. A.; Pickett, M. D.; Marcus, M. A.; Hahn, G.; Riepe, S.; Isenberg, J.; Warta, W.; Willeke, G.; Ciszek, T. F.; Weber, E. R.

    2005-07-01

    Synchrotron-based, spectrally resolved x-ray beam-induced current (SR-XBIC) is introduced as a technique to locally measure the minority carrier diffusion length in semiconductor devices. Equivalence with well-established diffusion length measurement techniques is demonstrated. The strength of SR-XBIC is that it can be combined in situ with other synchrotron-based analytical techniques, such as x-ray fluorescence microscopy (μ-XRF) and x-ray absorption microspectroscopy (μ-XAS), yielding information about the distribution, elemental composition, chemical nature, and effect on minority carrier diffusion length of individual transition metal species in multicrystalline silicon. SR-XBIC, μ-XRF, and μ-XAS measurements were performed on intentionally contaminated multicrystalline silicon, revealing a strong correlation between local concentrations of copper and nickel silicide precipitates and a decrease of minority carrier diffusion length. In addition, the reduction of minority carrier diffusion length due to submicron-sized Cu3Si and NiSi2 precipitates could be decoupled from the influence of homogeneously distributed nanoprecipitates and point defects.

  13. Redefine Water Infrastructure Adaptation to a Nonstationary Climate (Editorial)

    EPA Science Inventory

    The statement “Climate Stationarity is Dead” by Milly et al. (2008) stresses the need to evaluate and when necessary, incorporate non-stationary hydroclimatic changes into water resources and infrastructure planning and engineering. Variations of this theme echo in several other ...

  14. Time reversibility from visibility graphs of nonstationary processes

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Flanagan, Ryan

    2015-08-01

    Visibility algorithms are a family of methods to map time series into networks, with the aim of describing the structure of time series and their underlying dynamical properties in graph-theoretical terms. Here we explore some properties of both natural and horizontal visibility graphs associated to several nonstationary processes, and we pay particular attention to their capacity to assess time irreversibility. Nonstationary signals are (infinitely) irreversible by definition (independently of whether the process is Markovian or producing entropy at a positive rate), and thus the link between entropy production and time series irreversibility has only been explored in nonequilibrium stationary states. Here we show that the visibility formalism naturally induces a new working definition of time irreversibility, which allows us to quantify several degrees of irreversibility for stationary and nonstationary series, yielding finite values that can be used to efficiently assess the presence of memory and off-equilibrium dynamics in nonstationary processes without the need to differentiate or detrend them. We provide rigorous results complemented by extensive numerical simulations on several classes of stochastic processes.

  15. Fusing Heterogeneous Data for Detection Under Non-stationary Dependence

    DTIC Science & Technology

    2012-07-01

    In this paper, we consider the problem of detection for dependent, non-stationary signals where the non-stationarity is encoded in the dependence ...allows for a more general description of inter-sensor dependence . We design a copula-based detector using the Neyman-Pearson framework. Our approach

  16. Dynamic Factor Analysis of Nonstationary Multivariate Time Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; And Others

    1992-01-01

    The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)

  17. LMXB X-ray Transients: Revealing Basic Accretion Parameters in Non-stationary Regimes

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Yan, Zhen; Zhang, Hui; Zhang, Wenda

    2014-08-01

    X-ray observations of low mass X-ray binaries(LMXBs), especially those black hole transient systems, have been very important in shaping up our understanding of black hole accretion and testing accretion theory in a broad range of accretion regimes. We show strong evidence for non-stationary accretion regimes in the X-ray observations of spectral states and multi-wavelength observations of disk-jet coupling in more than 100 outbursts of 36 black hole and neutron star transients in the past decade or so. The occurrence of spectral state transitions and the peak episodic jet power during the rising phase of transient outbursts are found correlated with rate-of-increase of the X-ray luminosity, indicating the rate-of-change of the mass accretion rate, in addition to the mass accretion rate, must be considered when interpreting observations of spectral state transitions and disk-jet coupling in these X-ray transients. This is supported by observations since the increase of the mass accretion rate due to its rate-of-change on the observational time scale of interest is significant during outbursts.

  18. Resolving Insurgencies

    DTIC Science & Technology

    2011-06-01

    Army, the Department of Defense, or the U.S. Government . Authors of Strategic Studies Institute (SSI) publica- tions enjoy full academic freedom...century, the author identifies four ways in which insurgencies have ended. Clear- cut victories for either the government or the insur- gents occurred...threatened government has resolved the conflict by co-opting the insurgents. After achieving a strategic stalemate and persuading the belligerents that

  19. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  20. Non-stationary stochastic vibration analysis of fuzzy truss system

    NASA Astrophysics Data System (ADS)

    Ma, Juan; Chen, Jian-jun; Gao, Wei; Zhai, Tian-song

    2006-11-01

    A new method (fuzzy factor method based on the fuzzy sets theory) for the dynamic response analysis of fuzzy truss system under non-stationary stochastic excitation is presented. Considering the fuzziness of the structural physical parameters and geometric dimensions simultaneously, the fuzzy correlation function matrix of the structural displacement response in time domain is derived using the fuzzy factor method and the optimisation method; then from the structural non-stationary stochastic response in the frequency domain, the fuzzy mean square values of the displacement and stress response are developed by the fuzzy factor method. The influences of the fuzziness of the physical parameters and geometric dimensions on the fuzziness of the mean square values of the structural displacement and stress response are illustrated via two engineering examples and some important conclusions are obtained.

  1. Quantum tunneling of the non-stationary BTZ black hole

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Yang, Shu Zheng

    2009-07-01

    The semi-classical tunneling method is extended to study the Hawking tunneling radiation from the non-stationary BTZ black hole via general tortoise coordination transformation and WKB approximation. In this paper, we simplify the spin-0 scalar field equation and the spin-1/2 Dirac equation at the event horizon of this black hole, and then the quantum tunneling probability and Hawking temperature are obtained. Finally, the correctional tunneling rate is researched, and the results show that after considering the changed background space-time of the non-stationary BTZ black hole, the tunneling rate depends not only on the entropy change but also on the integral about {\\dot r}_H .

  2. Hawking's radiation in non-stationary rotating de Sitter background

    NASA Astrophysics Data System (ADS)

    Ibohal, N.; Ibungochouba, T.

    2011-05-01

    Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.

  3. ADSL Transceivers Applying DSM and Their Nonstationary Noise Robustness

    NASA Astrophysics Data System (ADS)

    den Bogaert, Etienne Van; Bostoen, Tom; Verlinden, Jan; Cendrillon, Raphael; Moonen, Marc

    2006-12-01

    Dynamic spectrum management (DSM) comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL) networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.

  4. Climate variance influence on the non-stationary plankton dynamics.

    PubMed

    Molinero, Juan Carlos; Reygondeau, Gabriel; Bonnet, Delphine

    2013-08-01

    We examined plankton responses to climate variance by using high temporal resolution data from 1988 to 2007 in the Western English Channel. Climate variability modified both the magnitude and length of the seasonal signal of sea surface temperature, as well as the timing and depth of the thermocline. These changes permeated the pelagic system yielding conspicuous modifications in the phenology of autotroph communities and zooplankton. The climate variance envelope, thus far little considered in climate-plankton studies, is closely coupled with the non-stationary dynamics of plankton, and sheds light on impending ecological shifts and plankton structural changes. Our study calls for the integration of the non-stationary relationship between climate and plankton in prognostic models on the productivity of marine ecosystems.

  5. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  6. Estimation of Parameters from Discrete Random Nonstationary Time Series

    NASA Astrophysics Data System (ADS)

    Takayasu, H.; Nakamura, T.

    For the analysis of nonstationary stochastic time series we introduce a formulation to estimate the underlying time-dependent parameters. This method is designed for random events with small numbers that are out of the applicability range of the normal distribution. The method is demonstrated for numerical data generated by a known system, and applied to time series of traffic accidents, batting average of a baseball player and sales volume of home electronics.

  7. Continually Plastic Modeling of Non-Stationary Systems

    DTIC Science & Technology

    2016-09-01

    further explore more efficient ways for the selection process at each stage and to ex- tend the algorithm to model more general systems that exhibit...AFRL-RY-WP-TR-2016-0168 CONTINUALLY PLASTIC MODELING OF NON- STATIONARY SYSTEMS Josh Bongard and Chris Danforth University of...To) September 2016 Final 27 September 2011 – 27 June 2016 4. TITLE AND SUBTITLE CONTINUALLY PLASTIC MODELING OF NON-STATIONARY SYSTEMS 5a. CONTRACT

  8. Quantum entanglement for two qubits in a nonstationary cavity

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2016-11-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  9. Methods of dynamic spectral analysis by self-exciting autoregressive moving average models and their application to analysing biosignals.

    PubMed

    Schack, B; Bareshova, E; Grieszbach, G; Witte, H

    1995-05-01

    Dynamic methods in the spectral domain are necessary to analyse biological signals because of the frequently nonstationary character of the signals. The paper presents an adaptive procedure of fitting time-dependent ARMA models to nonstationary signals, which is suitable for on-line calculations. The properties of the model parameter estimations are examined, and in the stationary case are compared with the results of convergent estimation methods. On this basis time-varying spectral parameters with high temporal and spectral resolution are calculated, and the possibility of their application is shown in EEG analysis and laser-Doppler-flowmetry.

  10. Burst of reflected electrons in nonstationary quasi-perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Matsukiyo, S.; Scholer, M.

    2013-05-01

    One-dimensional full particle-in-cell simulations are performed to investigate energetic electron bursts produced at a nonstationary quasi-perpendicular shock. Some of the incoming electrons are intermittently energized and reflected by interacting with nonstationary electromagnetic fields in the shock front. The reflected electrons form an upstream non-thermal population. The reflection process is strongly affected by the non-coplanar magnetic field which is temporarily rather strong in the transition region of a highly nonstationary shock. Oblique whistler waves in the shock transition region generated due to dispersion effect or due to modified two-stream instability may pitch angle scatter the electrons and thus blur the loss-cone feature of the reflected electrons. Some electrons are trapped by the waves while staying in the transition region and energized through the shock drift acceleration mechanism. They are suddenly released toward upstream when the magnetic overshoot begins to collapse in a reformation cycle resulting in the clumps of the reflected electrons in a phase space. It is also discussed how upstream physical quantities associated with the reflected electrons can give information about the shock front nonstationarity as well as about local small scale wave activities in the transition region.

  11. Dynamics of energetic electrons in nonstationary quasi-perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Shuichi; Scholer, Manfred

    2012-11-01

    A one-dimensional full particle-in-cell (PIC) code is utilized to investigate energetic electron bursts produced at a nonstationary quasi-perpendicular shock. A number of electrons are intermittently energized by interacting with nonstationary electromagnetic fields in the shock front. Some of the energetic electrons are reflected at the shock and form an upstream non-thermal population. The reflection process is strongly affected by the non-coplanar magnetic field component which is temporarily rather strong in the transition region of a highly nonstationary shock. Oblique whistler waves in the transition region influence the distribution function of the reflected electrons. Waves excited by the modified two-stream instability may pitch angle scatter the electrons and thus blur the loss cone feature of the reflected electrons. Dispersive standing whistler waves are also emitted locally in the foot even when a Mach number exceeds a critical value. These whistler waves may also scatter the electrons to blur the loss cone. Furthermore, the whistler waves produce clumps of the reflected electrons in a phase space. Some electrons are trapped by the ion holes produced downstream as a remnant of a self-reformation process of the shock front and accelerated through a drift mechanism. It is also discussed how physical quantities associated with the reflected electrons observed upstream of the shock can give information about the shock front nonstationarity as well as about local small scale wave activities in the transition region.

  12. Mapping the nonstationary internal tide with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  13. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  14. Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Amabili, Marco; Balasubramanian, Prabakaran; Ferrari, Giovanni

    2016-10-01

    The nonlinear vibrations of a water-filled circular cylindrical shell subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated experimentally and numerically by using a seamless aluminium sample. The experimental boundary conditions are close to simply supported edges. The presence of exact one-to-one internal resonance, giving rise to a travelling wave response around the shell circumference and non-stationary vibrations, is experimentally observed and the nonlinear response is numerically reproduced. The travelling wave is measured by means of state-of-the-art laser Doppler vibrometers applied to multiple points on the structure simultaneously. Chaos is detected in the frequency region where the travelling wave response is present. The reduced-order model is based on the Novozhilov nonlinear shell theory retaining in-plane inertia and the nonlinear equations of motion are numerically studied (i) by using a code based on arclength continuation method that allows bifurcation analysis in case of stationary vibrations, (ii) by a continuation code based on direct integration and Poincaré maps that evaluates also the maximum Lyapunov exponent in case of non-stationary vibrations. The comparison of experimental and numerical results is particularly satisfactory.

  15. Theory of spatially and spectrally partially coherent pulses.

    PubMed

    Lajunen, Hanna; Vahimaa, Pasi; Tervo, Jani

    2005-08-01

    A coherent-mode representation for spatially and spectrally partially coherent pulses is derived both in the space-frequency domain and in the space-time domain. It is shown that both the cross-spectral density and the mutual coherence function of partially coherent pulses can be expressed as a sum of spatially and spectrally and temporally completely coherent modes. The concept of the effective degree of coherence for nonstationary fields is introduced. As an application of the theory, the propagation of Gaussian Schell-model pulsed beams in the space-frequency domain is considered and their coherent-mode representation is presented.

  16. Nonstationary phase of the plio-pleistocene Asian monsoon

    SciTech Connect

    Clemens, S.C.; Murray, D.W.; Prell, W.L.

    1996-11-08

    Paleoclimate records indicate that the strength of the Asian summer monsoon is sensitive to orbital forcing at the obliquity and precession periods (41,000 and 23,000 years, respectively) and the extent of Northern Hemisphere glaciation. Over the past 2.6 million years, the timing (phase) of strong monsoons has changed by {approximately}83 degrees in the precession and {approximately}124 degrees in the obliquity bands relative to the phase of maximum global ice volume (inferred from the marine oxygen isotope record). These results suggest that one or both of these systems is nonstationary relative to orbital forcing. 1 ref., 4 figs.

  17. Suborbital spaceplane optimization using non-stationary Gaussian processes

    NASA Astrophysics Data System (ADS)

    Dufour, Robin; de Muelenaere, Julien; Elham, Ali

    2014-10-01

    This paper presents multidisciplinary design optimization of a sub-orbital spaceplane. The optimization includes three disciplines: the aerodynamics, the structure and the trajectory. An Adjoint Euler code is used to calculate the aerodynamic lift and drag of the vehicle as well as their derivatives with respect to the design variables. A new surrogate model has been developed based on a non-stationary Gaussian process. That model was used to estimate the aerodynamic characteristics of the vehicle during the trajectory optimization. The trajectory of thevehicle has been optimized together with its geometry in order to maximize the amount of payload that can be carried by the spaceplane.

  18. Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)

    2001-01-01

    Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.

  19. Discontinuous Galerkin schemes for nonstationary convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Dautov, R. Z.; Fedotov, E. M.

    2016-11-01

    In this paper we analyse an approximation of linear nonstationary convection- diffusion problem based on combination of discontinues Galerkin method for time discretisation in conjunction with hybridized discontinues Galerkin for spatial approximation. Such discrete schemes can be used for the solution of equations degenerating in the leading part and are formulated in term of solution of the problem, its gradient, the diffusional flux, and the restriction of the solution to the boundaries of elements. Conditions responsible for the solvability, stability and accuracy of the schemes are presented.

  20. Nonstationary Feller process with time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume

    2016-01-01

    We study the nonstationary Feller process with time varying coefficients. We obtain the exact probability distribution exemplified by its characteristic function and cumulants. In some particular cases we exactly invert the distribution and achieve the probability density function. We show that for sufficiently long times this density approaches a Γ distribution with time-varying shape and scale parameters. Not far from the origin the process obeys a power law with an exponent dependent of time, thereby concluding that accessibility to the origin is not static but dynamic. We finally discuss some possible applications of the process.

  1. Nonstationary Feller process with time-varying coefficients.

    PubMed

    Masoliver, Jaume

    2016-01-01

    We study the nonstationary Feller process with time varying coefficients. We obtain the exact probability distribution exemplified by its characteristic function and cumulants. In some particular cases we exactly invert the distribution and achieve the probability density function. We show that for sufficiently long times this density approaches a Γ distribution with time-varying shape and scale parameters. Not far from the origin the process obeys a power law with an exponent dependent of time, thereby concluding that accessibility to the origin is not static but dynamic. We finally discuss some possible applications of the process.

  2. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  3. Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter

    PubMed Central

    Liu, Xin; Wang, Hongkai; Yan, Zhuangzhi

    2016-01-01

    Dynamic fluorescence molecular tomography (FMT) plays an important role in drug delivery research. However, the majority of current reconstruction methods focus on solving the stationary FMT problems. If the stationary reconstruction methods are applied to the time-varying fluorescence measurements, the reconstructed results may suffer from a high level of artifacts. In addition, based on the stationary methods, only one tomographic image can be obtained after scanning one circle projection data. As a result, the movement of fluorophore in imaged object may not be detected due to the relative long data acquisition time (typically >1 min). In this paper, we apply extended kalman filter (EKF) technique to solve the non-stationary fluorescence tomography problem. Especially, to improve the EKF reconstruction performance, the generalized inverse of kalman gain is calculated by a second-order iterative method. The numerical simulation, phantom, and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that by using the proposed EKF-based second-order iterative (EKF-SOI) method, we cannot only clearly resolve the time-varying distributions of fluorophore within imaged object, but also greatly improve the reconstruction time resolution (~2.5 sec/frame) which makes it possible to detect the movement of fluorophore during the imaging processes. PMID:27895993

  4. Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter.

    PubMed

    Liu, Xin; Wang, Hongkai; Yan, Zhuangzhi

    2016-11-01

    Dynamic fluorescence molecular tomography (FMT) plays an important role in drug delivery research. However, the majority of current reconstruction methods focus on solving the stationary FMT problems. If the stationary reconstruction methods are applied to the time-varying fluorescence measurements, the reconstructed results may suffer from a high level of artifacts. In addition, based on the stationary methods, only one tomographic image can be obtained after scanning one circle projection data. As a result, the movement of fluorophore in imaged object may not be detected due to the relative long data acquisition time (typically >1 min). In this paper, we apply extended kalman filter (EKF) technique to solve the non-stationary fluorescence tomography problem. Especially, to improve the EKF reconstruction performance, the generalized inverse of kalman gain is calculated by a second-order iterative method. The numerical simulation, phantom, and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that by using the proposed EKF-based second-order iterative (EKF-SOI) method, we cannot only clearly resolve the time-varying distributions of fluorophore within imaged object, but also greatly improve the reconstruction time resolution (~2.5 sec/frame) which makes it possible to detect the movement of fluorophore during the imaging processes.

  5. Nonstationary decision model for flood risk decision scaling

    NASA Astrophysics Data System (ADS)

    Spence, Caitlin M.; Brown, Casey M.

    2016-11-01

    Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."

  6. Nonstationary stochastic charge fluctuations of a dust particle in plasmas

    SciTech Connect

    Shotorban, B.

    2011-06-15

    Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.

  7. Nonstationary hydrological time series forecasting using nonlinear dynamic methods

    NASA Astrophysics Data System (ADS)

    Coulibaly, Paulin; Baldwin, Connely K.

    2005-06-01

    Recent evidence of nonstationary trends in water resources time series as result of natural and/or anthropogenic climate variability and change, has raised more interest in nonlinear dynamic system modeling methods. In this study, the effectiveness of dynamically driven recurrent neural networks (RNN) for complex time-varying water resources system modeling is investigated. An optimal dynamic RNN approach is proposed to directly forecast different nonstationary hydrological time series. The proposed method automatically selects the most optimally trained network in any case. The simulation performance of the dynamic RNN-based model is compared with the results obtained from optimal multivariate adaptive regression splines (MARS) models. It is shown that the dynamically driven RNN model can be a good alternative for the modeling of complex dynamics of a hydrological system, performing better than the MARS model on the three selected hydrological time series, namely the historical storage volumes of the Great Salt Lake, the Saint-Lawrence River flows, and the Nile River flows.

  8. Incremental learning of concept drift in nonstationary environments.

    PubMed

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper.

  9. Nonstationary multistate Coulomb and multistate exponential models for nonadiabatic transitions

    SciTech Connect

    Ostrovsky, V. N.

    2003-07-01

    The nonstationary Schroedinger equation is considered in a finite basis of states. The model Hamiltonian matrix corresponds to a single diabatic potential curve with a Coulombic {approx}1/t time dependence. An arbitrary number of other diabatic potential curves are flat, i.e., time independent and have arbitrary energies. Related states are coupled by constant interactions with the Coulomb state. The resulting nonstationary Schroedinger equation is solved by the method of contour integral. Probabilities of transitions to any other state are obtained as t{yields}{infinity} in a simple analytical form for the case when the Coulomb state is populated initially (at instant of time t{yields}+0). The formulas apply both to the cases when a horizontal diabatic potential curve is crossed by the Coulomb one and to a noncrossing situation. In the limit of weak coupling, the transition probabilities are interpreted in terms of a sequence of pairwise Landau-Zener-type transitions. Mapping of the Coulomb model onto an exactly solvable exponential multistate model is established. For the special two-state case, the well-known Nikitin model is recovered.

  10. CONTROL OF LASER RADIATION PARAMETERS: Influence of a constant magnetic field on non-stationary operation regimes of solid-state ring lasers

    NASA Astrophysics Data System (ADS)

    Kravtsov, Nikolai V.; Chekina, S. N.

    2007-02-01

    The effect of a constant magnetic field on the nonlinear radiation dynamics of a monolithic chip ring Nd:YAG laser pumped by modulated radiation is studied experimentally. It is found that the application of a constant magnetic field to the active element of the solid-state ring laser operating in the non-stationary regime results in the displacement of the regions of existence of quasi-periodic and chaotic lasing regimes to the low-frequency region of pump power modulation. In addition, the application of a magnetic field to the active element of the laser gives rise to the spectral nonreciprocity.

  11. Estimating the population local wavelet spectrum with application to non-stationary functional magnetic resonance imaging time series.

    PubMed

    Gott, Aimee N; Eckley, Idris A; Aston, John A D

    2015-12-20

    Functional magnetic resonance imaging (fMRI) is a dynamic four-dimensional imaging modality. However, in almost all fMRI analyses, the time series elements of this data are assumed to be second-order stationary. In this paper, we examine, using time series spectral methods, whether such stationary assumptions can be made and whether estimates of non-stationarity can be used to gain understanding into fMRI experiments. A non-stationary version of replicated stationary time series analysis is proposed that takes into account the replicated time series that are available from nearby voxels in a region of interest (ROI). These are used to investigate non-stationarities in both the ROI itself and the variations within the ROI. The proposed techniques are applied to simulated data and to an anxiety-inducing fMRI experiment.

  12. Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes

    NASA Astrophysics Data System (ADS)

    Franco, Glaura C.; Reisen, Valderio A.

    2007-03-01

    This paper deals with different bootstrap approaches and bootstrap confidence intervals in the fractionally autoregressive moving average (ARFIMA(p,d,q)) process [J. Hosking, Fractional differencing, Biometrika 68(1) (1981) 165-175] using parametric and semi-parametric estimation techniques for the memory parameter d. The bootstrap procedures considered are: the classical bootstrap in the residuals of the fitted model [B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, New York, 1993], the bootstrap in the spectral density function [E. Paparoditis, D.N Politis, The local bootstrap for periodogram statistics. J. Time Ser. Anal. 20(2) (1999) 193-222], the bootstrap in the residuals resulting from the regression equation of the semi-parametric estimators [G.C Franco, V.A Reisen, Bootstrap techniques in semiparametric estimation methods for ARFIMA models: a comparison study, Comput. Statist. 19 (2004) 243-259] and the Sieve bootstrap [P. Bühlmann, Sieve bootstrap for time series, Bernoulli 3 (1997) 123-148]. The performance of these procedures and confidence intervals for d in the stationary and non-stationary ranges are empirically obtained through Monte Carlo experiments. The bootstrap confidence intervals here proposed are alternative procedures with some accuracy to obtain confidence intervals for d.

  13. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    NASA Astrophysics Data System (ADS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J.

    2017-03-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold-Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis.

  14. System for monitoring non-coincident, nonstationary process signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.

    2005-01-04

    An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.

  15. Rare switching events in non-stationary systems.

    PubMed

    Becker, Nils B; ten Wolde, Pieter Rein

    2012-05-07

    Physical systems with many degrees of freedom can often be understood in terms of transitions between a small number of metastable states. For time-homogeneous systems with short-term memory these transitions are fully characterized by a set of rate constants. We consider the question how to extend such a coarse-grained description to non-stationary systems and to systems with finite memory. We identify the physical regimes in which time-dependent rates are meaningful, and state microscopic expressions that can be used to measure both externally time-dependent and history-dependent rates in microscopic simulations. Our description can be used to generalize Markov state models to time-dependent Markovian or non-Markovian systems.

  16. Response of a rigid aircraft to nonstationary atmospheric turbulence.

    NASA Technical Reports Server (NTRS)

    Verdon, J. M.; Steiner, R.

    1973-01-01

    The plunging response of an aircraft to a type of nonstationary turbulent excitation is considered. The latter consists of stationary Gaussian noise modulated by a well-defined envelope function. The intent of the investigation is to model the excitation experienced by an airplane flying through turbulence of varying intensity and to examine the influence of intensity variations on exceedance frequencies of the gust velocity and the airplane's plunging velocity and acceleration. One analytical advantage of the proposed model is that the Gaussian assumption for the gust excitation is retained. The analysis described herein is developed in terms of an envelope function of arbitrary form; however, numerical calculations are limited to the case of harmonic modulation.

  17. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  18. Nonstationary elementary-field light randomly triggered by Poisson impulses.

    PubMed

    Fernández-Pousa, Carlos R

    2013-05-01

    A stochastic theory of nonstationary light describing the random emission of elementary pulses is presented. The emission is governed by a nonhomogeneous Poisson point process determined by a time-varying emission rate. The model describes, in the appropriate limits, stationary, cyclostationary, locally stationary, and pulsed radiation, and reduces to a Gaussian theory in the limit of dense emission rate. The first- and second-order coherence theories are solved after the computation of second- and fourth-order correlation functions by use of the characteristic function. The ergodicity of second-order correlations under various types of detectors is explored and a number of observables, including optical spectrum, amplitude, and intensity correlations, are analyzed.

  19. Spectral and correlation analysis with applications to middle-atmosphere radars

    NASA Technical Reports Server (NTRS)

    Rastogi, Prabhat K.

    1989-01-01

    The correlation and spectral analysis methods for uniformly sampled stationary random signals, estimation of their spectral moments, and problems arising due to nonstationary are reviewed. Some of these methods are already in routine use in atmospheric radar experiments. Other methods based on the maximum entropy principle and time series models have been used in analyzing data, but are just beginning to receive attention in the analysis of radar signals. These methods are also briefly discussed.

  20. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.

    PubMed

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-11-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology.

  1. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology

    PubMed Central

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-01-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1–0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. PMID:26272507

  2. Inequalities generalizing the second law of thermodynamics for transitions between nonstationary states.

    PubMed

    Verley, Gatien; Chétrite, Raphaël; Lacoste, David

    2012-03-23

    We discuss the consequences of a variant of the Hatano-Sasa relation in which a nonstationary distribution is used in place of the usual stationary one. We first show that this nonstationary distribution is related to a difference of traffic between the direct and dual dynamics. With this formalism, we extend the definition of the adiabatic and nonadiabatic entropies introduced by M. Esposito and C. Van den Broeck in Phys. Rev. Lett. 104, 090601 (2010) for the stationary case. We also obtain interesting second-law-like inequalities for transitions between nonstationary states.

  3. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  4. Spectral multigrid methods for the solution of homogeneous turbulence problems

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.

    1987-01-01

    New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.

  5. Seismic spatial effects on long-span bridge response in nonstationary inhomogeneous random fields

    NASA Astrophysics Data System (ADS)

    Jiahao, Lin; Yahui, Zhang; Yan, Zhao

    2005-06-01

    The long-span bridge response to nonstationary multiple seismic random excitations is investigated using the PEM (pseudo excitation method). This method transforms the nonstationary random response analysis into ordinary direct dynamic analysis, and therefore, the analysis can be solved conveniently using the Newmark, Wilson-θ schemes or the precise integration method. Numerical results of the seismic response for an actual long-span bridge using the proposed PEM are given and compared with the results based on the conventional stationary analysis. From the numerical comparisons, it was found that both the seismic spatial effect and the nonstationary effect are quite important, and that both stationary and nonstationary seismic analysis should pay special attention to the wave passage effect.

  6. Exact Solution of the Massless Dkp Equation in a Nonstationary GÖDEL-TYPE Cosmological Universe

    NASA Astrophysics Data System (ADS)

    Havare, Ali; Aydogdu, Oktay; Yetkin, Taylan

    In this paper the massless Duffin-Kemmer-Petiau equation in a nonstationary rotating, causal Gödel-type cosmological background is studied. Exact solutions of the corresponding field equation are obtained and used to calculate the frequency spectrum of photon in nonstationary Gödel-type universe. To compare the results found with the classical field solutions, we also solved Maxwell's equations as given in the appendix.

  7. Nonstationary current-driven dynamics of vortex domain walls in films with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Dubovik, M. N.; Filippov, B. N.; Korzunin, L. G.

    2017-02-01

    Micromagnetic simulation of a current-driven vortex domain wall motion in a film with in-plane anisotropy was carried out. The current density values j >jc were considered corresponding to the nonstationary motion, with the domain wall structure dynamic transformation occurred. A nonlinear dependence of the jc value on the film thickness was obtained. The nonstationary motion regime existence restricted the possibility to increase the domain wall velocity by increasing j and decreasing the damping parameter.

  8. A frequency measurement algorithm for non-stationary signals by using wavelet transform

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Oh, Dong Keun

    2016-11-01

    Scalogram is widely used to measure instantaneous frequencies of non-stationary signals. However, the basic property of the scalogram is observed only for stationary sinusoidal functions. A property of the scalogram for non-stationary signal is analytically derived in this paper. Based on the property, a new frequency measurement algorithm is proposed. In addition, a filter that can separate two similar frequency signals is developed based on the wavelet transform.

  9. Analyzing nonstationary financial time series via hilbert-huang transform (HHT)

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2008-01-01

    An apparatus, computer program product and method of analyzing non-stationary time varying phenomena. A representation of a non-stationary time varying phenomenon is recursively sifted using Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs). The representation is filtered to extract intrinsic trends by combining a number of IMFs. The intrinsic trend is inherent in the data and identifies an IMF indicating the variability of the phenomena. The trend also may be used to detrend the data.

  10. Multipurpose Spectral Imager

    NASA Astrophysics Data System (ADS)

    Sigernes, Fred; Lorentzen, Dag Arne; Heia, Karsten; Svenøe, Trond

    2000-06-01

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 . One can achieve the spatial domain by rotating the system s front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).

  11. Teaching geographical hydrology in a non-stationary world

    NASA Astrophysics Data System (ADS)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and

  12. Extracting stationary segments from non-stationary synthetic and cardiac signals

    NASA Astrophysics Data System (ADS)

    Rodríguez, María. G.; Ledezma, Carlos A.; Perpiñán, Gilberto; Wong, Sara; Altuve, Miguel

    2015-01-01

    Physiological signals are commonly the result of complex interactions between systems and organs, these interactions lead to signals that exhibit a non-stationary behaviour. For cardiac signals, non-stationary heart rate variability (HRV) may produce misinterpretations. A previous work proposed to divide a non-stationary signal into stationary segments by looking for changes in the signal's properties related to changes in the mean of the signal. In this paper, we extract stationary segments from non-stationary synthetic and cardiac signals. For synthetic signals with different signal-to-noise ratio levels, we detect the beginning and end of the stationary segments and the result is compared to the known values of the occurrence of these events. For cardiac signals, RR interval (cardiac cycle length) time series, obtained from electrocardiographic records during stress tests for two populations (diabetic patients with cardiovascular autonomic neuropathy and control subjects), were divided into stationary segments. Results on synthetic signals reveal that the non-stationary sequence is divided into more stationary segments than needed. Additionally, due to HRV reduction and exercise intolerance reported on diabetic cardiovascular autonomic neuropathy patients, non-stationary RR interval sequences from these subjects can be divided into longer stationary segments compared to the control group.

  13. Non-Stationary Effects and Cross Correlations in Solar Activity

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  14. Standard Codon Substitution Models Overestimate Purifying Selection for Nonstationary Data

    PubMed Central

    Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Estimation of natural selection on protein-coding sequences is a key comparative genomics approach for de novo prediction of lineage-specific adaptations. Selective pressure is measured on a per-gene basis by comparing the rate of nonsynonymous substitutions to the rate of synonymous substitutions. All published codon substitution models have been time-reversible and thus assume that sequence composition does not change over time. We previously demonstrated that if time-reversible DNA substitution models are applied in the presence of changing sequence composition, the number of substitutions is systematically biased towards overestimation. We extend these findings to the case of codon substitution models and further demonstrate that the ratio of nonsynonymous to synonymous rates of substitution tends to be underestimated over three data sets of mammals, vertebrates, and insects. Our basis for comparison is a nonstationary codon substitution model that allows sequence composition to change. Goodness-of-fit results demonstrate that our new model tends to fit the data better. Direct measurement of nonstationarity shows that bias in estimates of natural selection and genetic distance increases with the degree of violation of the stationarity assumption. Additionally, inferences drawn under time-reversible models are systematically affected by compositional divergence. As genomic sequences accumulate at an accelerating rate, the importance of accurate de novo estimation of natural selection increases. Our results establish that our new model provides a more robust perspective on this fundamental quantity. PMID:28175284

  15. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  16. Dynamically weighted ensemble classification for non-stationary EEG processing

    NASA Astrophysics Data System (ADS)

    Liyanage, Sidath Ravindra; Guan, Cuntai; Zhang, Haihong; Keng Ang, Kai; Xu, JianXin; Lee, Tong Heng

    2013-06-01

    Objective. The non-stationary nature of EEG poses a major challenge to robust operation of brain-computer interfaces (BCIs). The objective of this paper is to propose and investigate a computational method to address non-stationarity in EEG classification. Approach. We developed a novel dynamically weighted ensemble classification (DWEC) framework whereby an ensemble of multiple classifiers are trained on clustered features. The decisions from these multiple classifiers are dynamically combined based on the distances of the cluster centres to each test data sample being classified. Main Results. The clusters of the feature space from the second session spanned a different space compared to the clusters of the feature space from the first session which highlights the processes of session-to-session non-stationarity. The session-to-session performance of the proposed DWEC method was evaluated on two datasets. The results on publicly available BCI Competition IV dataset 2A yielded a significantly higher mean accuracy of 81.48% compared to 75.9% from the baseline support vector machine (SVM) classifier without dynamic weighting. Results on the data collected from our twelve in-house subjects yielded a significantly higher mean accuracy of 73% compared to 69.4% from the baseline SVM classifier without dynamic weighting. Significance. The cluster based analysis provides insight into session-to-session non-stationarity in EEG data. The results demonstrate the effectiveness of the proposed method in addressing non-stationarity in EEG data for the operation of a BCI.

  17. Nonstationary Stokes System in Cylindrical Domains Under Boundary Slip Conditions

    NASA Astrophysics Data System (ADS)

    Zaja¸czkowski, Wojciech M.

    2017-03-01

    Existence and uniqueness of solutions to the nonstationary Stokes system in a cylindrical domain {Ωsubset{R}^3} and under boundary slip conditions are proved in anisotropic Sobolev spaces. Assuming that the external force belong to {L_r(Ω×(0,T))} and initial velocity to {W_r^{2-2/r}(Ω)} there exists a solution such that velocity belongs to {W_r^{2,1}(Ω×(0,T))} and gradient of pressure to {L_r(Ω×(0,T))}, {rin(1,∞)}, {T > 0}. Thanks to the slip boundary conditions and a partition of unity the Stokes system is transformed to the Poisson equation for pressure and the heat equation for velocity. The existence of solutions to these equations is proved by applying local considerations. In this case we have to consider neighborhoods near the edges which by local mapping can be transformed to dihedral angle {π/2}. Hence solvability of the problem bases on construction local Green functions (near an interior point, near a point of a smooth part of the boundary, near a point of the edge) and their appropriate estimates. The technique presented in this paper can also work in other functional spaces: Sobolev-Slobodetskii, Besov, Nikolskii, Hölder and so on.

  18. Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma

    NASA Astrophysics Data System (ADS)

    Yurov, D. V.; Prikhodko, V. V.; Tsidulko, Yu. A.

    2016-03-01

    The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model.

  19. Solar cycle signal in Earth rotation: nonstationary behavior.

    PubMed

    Currie, R G

    1981-01-23

    Following the discovery of the 11-year solar cycle signal in earth rotation, linear techniques were employed to investigate the amplitude and phase of the difference between ephemeris time and universal time (DeltaT) as a function of time. The amplitude is nonstationary. This difference was related to Delta(LOD), the difference between the length of day and its nominal value. The 11-year term in Delta(LOD) was 0.8 millisecond at the close of the 18th century and decreased below noise level from 1840 to 1860. From 1875 to 1925, Delta(LOD) was about 0.16 millisecond, and it decreased to about 0.08 millisecond by the 1950's. Except for anomalous behavior from 1797 to 1838, DeltaT lags sunspot numbers by 3.0 +/- 0.4 years. Since DeltaT lags Delta(LOD) by 2.7 years, the result is that Delta(LOD) is approximately in phase with sunspot numbers.

  20. Progress in Operational Analysis of Launch Vehicles in Nonstationary Flight

    NASA Technical Reports Server (NTRS)

    James, George; Kaouk, Mo; Cao, Timothy

    2013-01-01

    This paper presents recent results in an ongoing effort to understand and develop techniques to process launch vehicle data, which is extremely challenging for modal parameter identification. The primary source of difficulty is due to the nonstationary nature of the situation. The system is changing, the environment is not steady, and there is an active control system operating. Hence, the primary tool for producing clean operational results (significant data lengths and data averaging) is not available to the user. This work reported herein uses a correlation-based two step operational modal analysis approach to process the relevant data sets for understanding and development of processes. A significant drawback for such processing of short time histories is a series of beating phenomena due to the inability to average out random modal excitations. A recursive correlation process coupled to a new convergence metric (designed to mitigate the beating phenomena) is the object of this study. It has been found in limited studies that this process creates clean modal frequency estimates but numerically alters the damping.

  1. Nonstationary magnetosonic wave dynamics in plasmas exhibiting collapse

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2013-08-01

    In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.145003 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass variable as a new spatial coordinate [Schamel, Phys. Rep.PRPLCM0370-157310.1016/j.physrep.2003.12.002 392, 279 (2004)]. The obtained exact nonlinear wave solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing collapse only when dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special importance in the astrophysical context of magnetic star formation.

  2. Nonstationary brain source separation for multiclass motor imagery.

    PubMed

    Gouy-Pailler, Cédric; Congedo, Marco; Brunner, Clemens; Jutten, Christian; Pfurtscheller, Gert

    2010-02-01

    This paper describes a method to recover task-related brain sources in the context of multiclass brain--computer interfaces (BCIs) based on noninvasive EEG. We extend the method joint approximate diagonalization (JAD) for spatial filtering using a maximum likelihood framework. This generic formulation: 1) bridges the gap between the common spatial patterns (CSPs) and blind source separation of nonstationary sources; and 2) leads to a neurophysiologically adapted version of JAD, accounting for the successive activations/deactivations of brain sources during motor imagery (MI) trials. Using dataset 2a of BCI Competition IV (2008) in which nine subjects were involved in a four-class two-session MI-based BCI experiment, a quantitative evaluation of our extension is provided by comparing its performance against JAD and CSP in the case of cross-validation, as well as session-to-session transfer. While JAD, as already proposed in other works, does not prove to be significantly better than classical one-versus-rest CSP, our extension is shown to perform significantly better than CSP for cross-validated and session-to-session performance. The extension of JAD introduced in this paper yields among the best session-to-session transfer results presented so far for this particular dataset; thus, it appears to be of great interest for real-life BCIs.

  3. Wavelet analysis for non-stationary, nonlinear time series

    NASA Astrophysics Data System (ADS)

    Schulte, Justin A.

    2016-08-01

    Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and the quasi-biennial oscillation (QBO) time series. Multiple-testing problems inherent in wavelet analysis were addressed by controlling the false discovery rate. A new local autobicoherence spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. The local autobicoherence spectrum of the QBO time series showed that the QBO time series contained a mode with a period of 28 months that was phase coupled to a harmonic with a period of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 10, 16 and 26 months. Local biphase spectra determined that the nonlinear interactions were not quadratic and that the effect of the nonlinearities was to produce non-smoothly varying oscillations. The oscillations were found to be skewed so that negative QBO regimes were preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly phases occurred more rapidly than those from westerly to easterly regimes.

  4. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  5. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  6. Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Yan, Shaoze; Zhang, Wei

    2016-06-01

    Deployable structures have been widely used in on-orbit servicing spacecrafts, and the vibration properties of such structures have become increasingly important in the aerospace industry. The constant-Q nonstationary Gabor transform (CQ-NSGT) is introduced in this paper to accurately evaluate the variation in the frequency and amplitude of vibration signals along with time. First, an example signal is constructed on the basis of the vibration properties of deployable structures and is processed by the short-time Fourier transform, Wigner-Ville distribution, Hilbert-Huang transform, and CQ-NSGT. Results show that time and frequency resolutions are simultaneously fine only by employing CQ-NSGT. Subsequently, a zero padding operation is conducted to correct the calculation error at the end of the transform results. Finally, a set of experimental devices is constructed. The vibration signal of the experimental mode is processed by CQ-NSGT. On this basis, the experimental signal properties are discussed. This time-frequency method may be useful for formulating the dynamics for complex deployable structures.

  7. Improvements to surrogate data methods for nonstationary time series.

    PubMed

    Lucio, J H; Valdés, R; Rodríguez, L R

    2012-05-01

    The method of surrogate data has been extensively applied to hypothesis testing of system linearity, when only one realization of the system, a time series, is known. Normally, surrogate data should preserve the linear stochastic structure and the amplitude distribution of the original series. Classical surrogate data methods (such as random permutation, amplitude adjusted Fourier transform, or iterative amplitude adjusted Fourier transform) are successful at preserving one or both of these features in stationary cases. However, they always produce stationary surrogates, hence existing nonstationarity could be interpreted as dynamic nonlinearity. Certain modifications have been proposed that additionally preserve some nonstationarity, at the expense of reproducing a great deal of nonlinearity. However, even those methods generally fail to preserve the trend (i.e., global nonstationarity in the mean) of the original series. This is the case of time series with unit roots in their autoregressive structure. Additionally, those methods, based on Fourier transform, either need first and last values in the original series to match, or they need to select a piece of the original series with matching ends. These conditions are often inapplicable and the resulting surrogates are adversely affected by the well-known artefact problem. In this study, we propose a simple technique that, applied within existing Fourier-transform-based methods, generates surrogate data that jointly preserve the aforementioned characteristics of the original series, including (even strong) trends. Moreover, our technique avoids the negative effects of end mismatch. Several artificial and real, stationary and nonstationary, linear and nonlinear time series are examined, in order to demonstrate the advantages of the methods. Corresponding surrogate data are produced with the classical and with the proposed methods, and the results are compared.

  8. Non-stationary background intensity and Caribbean seismic events

    NASA Astrophysics Data System (ADS)

    Valmy, Larissa; Vaillant, Jean

    2014-05-01

    We consider seismic risk calculation based on models with non-stationary background intensity. The aim is to improve predictive strategies in the framework of seismic risk assessment from models describing at best the seismic activity in the Caribbean arc. Appropriate statistical methods are required for analyzing the volumes of data collected. The focus is on calculating earthquakes occurrences probability and analyzing spatiotemporal evolution of these probabilities. The main modeling tool is the point process theory in order to take into account past history prior to a given date. Thus, the seismic event conditional intensity is expressed by means of the background intensity and the self exciting component. This intensity can be interpreted as the expected event rate per time and / or surface unit. The most popular intensity model in seismology is the ETAS (Epidemic Type Aftershock Sequence) model introduced and then generalized by Ogata [2, 3]. We extended this model and performed a comparison of different probability density functions for the triggered event times [4]. We illustrate our model by considering the CDSA (Centre de Données Sismiques des Antilles) catalog [1] which contains more than 7000 seismic events occurred in the Lesser Antilles arc. Statistical tools for testing the background intensity stationarity and for dynamical segmentation are presented. [1] Bengoubou-Valérius M., Bazin S., Bertil D., Beauducel F. and Bosson A. (2008). CDSA: a new seismological data center for the French Lesser Antilles, Seismol. Res. Lett., 79 (1), 90-102. [2] Ogata Y. (1998). Space-time point-process models for earthquake occurrences, Annals of the Institute of Statistical Mathematics, 50 (2), 379-402. [3] Ogata, Y. (2011). Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity, Earth, Planets and Space, 63 (3), 217-229. [4] Valmy L. and Vaillant J. (2013). Statistical models in seismology: Lesser Antilles arc case

  9. Is the covariate based non-stationary rainfall IDF curve capable of encompassing future rainfall changes?

    NASA Astrophysics Data System (ADS)

    Agilan, V.; Umamahesh, N. V.

    2016-10-01

    Storm water management and other engineering design applications are primarily based on rainfall Intensity-Duration-Frequency (IDF) curves and the existing IDF curves are based on the concept of stationary Extreme Value Theory (EVT). However, during the last few decades, global climate change is intensifying the extreme precipitation events and creating a non-stationary component in the extreme rainfall time series. Subsequently, in recent years, advancements in the EVT helped the researchers to propose a method for developing non-stationary rainfall IDF curve by modelling trend present in the observed extreme rainfall series using covariate. But, is it capable of encompassing future rainfall changes? Towards answering this question, the Hyderabad city, India non-stationary rainfall IDF curves are compared with the IDF curves of two future time periods (2015-2056 and 2057-2098). Using 24 Global Climate Models' (GCMs') simulations and 'K' Nearest Neighbor (KNN) weather generator based downscaling method, the IDF curves are developed for two future time periods and they are compared with covariate based non-stationary rainfall IDF curves of the Hyderabad city. The results of this study indicate that the return of period of an extreme rainfall of the Hyderabad city is reducing. In addition, it is noted that the non-stationary IDF curve developed by modelling trend in the observed extreme rainfall with covariate is an appropriate choice for designing the Hyderabad city infrastructure under climate change.

  10. The evolution of the electric field at a nonstationary perpendicular shock

    SciTech Connect

    Yang, Z. W.; Lu, Q. M.; Wang, S.

    2009-12-15

    Particle-in-cell simulations evidenced that supercritical, quasiperpendicular shocks are nonstationary and may suffer a self-reformation on the ion gyroscale. In this brief communication, we investigate the evolution of the electric field at a nonstationary, supercritial perpendicular shock. The contributions of the ion Lorentz, Hall, and electron pressure terms to the electric field are analyzed. During the evolution of the perpendicular shock, a new ramp may be formed in front of the old ramp, and its amplitude becomes larger and larger. At last, the new ramp exceeds the old one, and such a nonstationary process can be formed periodically. When the new ramp begins to be formed in front of the old ramp, the Hall term becomes more and more important. The electric field E{sub x} is dominated by the Hall term when the new ramp exceeds the old one. The significance of the evolution of the electric field on shock acceleration is also discussed.

  11. Recognizing Non-Stationary Walking based on Gait Analysis using Laser Scanners

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsuyuki; Shao, Xiaowei; Zhao, Huijing; Shibasaki, Ryosuke

    In this paper the authors propose a method for recognizing non-stationary walking based on a gait analysis using multiple laser range scanners. The proposed method consists of the following procedures: (1) people tracking; (2) detection of gait features; (3) recognition of non-stationary walking. First, people tracking is performed by recognizing patterns in which the range data obtained near ankle rhythmically. Next, gait analysis is performed by the spatio-temporal clustering using Mean Shift algorithm. Finally, One Class Support Vector Machine (One Class SVM) is applied for learning and classifying a non-stationary walking. The experiment in a station concourse in Tokyo shows the overall accuracy of 98.4% by the proposed method.

  12. The Influence of Periodically Non-Stationary Afflux on Transition Behavior of Compressor Grids

    NASA Astrophysics Data System (ADS)

    Teusch, Reinhold

    2001-01-01

    The primary goal of this study is to obtain a deeper look into the physical occurrences within the shovel border layer. The author accomplishes this effort through a detailed examination of non-stationary flow behavior of compressor shovels with Controlled Diffusion Airfoil (CDA)-profiling under the influence of after-running depressions of current salient shovel rows. In addition to the checking of the precision of stationary and non-stationary calculatory processes, criteria are defined for the layout of modern compression shovels under the rubrick of rotor/stator interaction. An overview of the literature is then given regarding both the basic principles of non-stationary transition behavior under the influence of after-running depressions as well as the most up-to-date scholarship on the problematics of the field discussed.

  13. Non-stationary drying of ceramic-like materials controlled through acoustic emission method

    NASA Astrophysics Data System (ADS)

    Kowalski, Stefan Jan; Szadzińska, Justyna

    2012-12-01

    This paper presents results of convective drying of ceramic-like materials in non-stationary conditions. The effect of periodically changing drying parameters at different frequencies and amplitudes on material quality has been investigated. During drying tests the destruction of the material was controlled trough the acoustic emission method and monitored with a digital camera. The experiments were carried out on cylindrically shaped samples made of KOC kaolin clay. The non-stationary drying consisted in periodical changes of the drying medium temperature and humidity. It has been found that a properly arranged methodology of non-stationary drying positively affects the product quality, mainly when drying is carried on with periodical changes of air humidity and to lesser extent with periodical changes of air temperature.

  14. Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables

    PubMed Central

    Yin, Yu; Yao, Dezhong

    2016-01-01

    The main concept behind causality involves both statistical conditions and temporal relations. However, current approaches to causal inference, focusing on the probability vs. conditional probability contrast, are based on model functions or parametric estimation. These approaches are not appropriate when addressing non-stationary variables. In this work, we propose a causal inference approach based on the analysis of Events of Relations (CER). CER focuses on the temporal delay relation between cause and effect, and a binomial test is established to determine whether an “event of relation” with a non-zero delay is significantly different from one with zero delay. Because CER avoids parameter estimation of non-stationary variables per se, the method can be applied to both stationary and non-stationary signals. PMID:27389921

  15. Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables.

    PubMed

    Yin, Yu; Yao, Dezhong

    2016-07-08

    The main concept behind causality involves both statistical conditions and temporal relations. However, current approaches to causal inference, focusing on the probability vs. conditional probability contrast, are based on model functions or parametric estimation. These approaches are not appropriate when addressing non-stationary variables. In this work, we propose a causal inference approach based on the analysis of Events of Relations (CER). CER focuses on the temporal delay relation between cause and effect, and a binomial test is established to determine whether an "event of relation" with a non-zero delay is significantly different from one with zero delay. Because CER avoids parameter estimation of non-stationary variables per se, the method can be applied to both stationary and non-stationary signals.

  16. Stationary and nonstationary random vibrations of laminated composite plates via a higher order theory

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac; Librescu, Liviu; Cederbaum, Gabriel

    1990-01-01

    Higher order shear deformation theory is utilized to study he weakly stationary and nonstationary random vibrations of cross-ply laminated plates. Normal mode method, in conjunction with the biorthogonality condition, for the nonsymmetric differential equations is applied. Detailed derivation is given for the governing equations, biorthogonality condition, the generalized mass and the generalized forces. Results are listed for a plate which is simply supported at all the edges, and subjected to a point load which is either timewise stationary or nonstationary random process.

  17. Calculation of non-stationary aerodynamic forces in the near sonic range

    NASA Technical Reports Server (NTRS)

    Teipel, I.

    1988-01-01

    The development of a mathematical method for calculating nonstationary supersonic flow in the near-sonic range is described. A perturbation formula is derived based on the exact stationary values; it is applicable to the equation for potential. The problem can thus be divided into stationary and nonstationary fields. The pressure distribution in an oscillating profile is determined, based on hyperbolic differential equations. It is shown that there are important corollaries concerning the application of linear theory. With suitable extrapolations, linear theory can be used up to about Mach 0.8. Linear theory is not applicable, however, when determining the moment coefficients; for this case, a special technique is described.

  18. Parity retransmission hybrid ARQ using rate 1/2 convolutional codes on a nonstationary channel

    NASA Technical Reports Server (NTRS)

    Lugand, Laurent R.; Costello, Daniel J., Jr.; Deng, Robert H.

    1989-01-01

    A parity retransmission hybrid automatic repeat request (ARQ) scheme is proposed which uses rate 1/2 convolutional codes and Viterbi decoding. A protocol is described which is capable of achieving higher throughputs than previously proposed parity retransmission schemes. The performance analysis is based on a two-state Markov model of a nonstationary channel. This model constitutes a first approximation to a nonstationary channel. The two-state channel model is used to analyze the throughput and undetected error probability of the protocol presented when the receiver has both an infinite and a finite buffer size. It is shown that the throughput improves as the channel becomes more bursty.

  19. Extended trigonometric Cherednik algebras and nonstationary Schrödinger equations with delta-potentials

    NASA Astrophysics Data System (ADS)

    Hartwig, J. T.; Stokman, J. V.

    2013-02-01

    We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.

  20. Spatially resolved observation of the spectral hole burning in the Xe(L) amplifier on single (2\\bar p) and double (2\\bar s2\\bar p) vacancy 3d → 2p transitions in the 2.62 Å < λ < 2.94 Å range

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Zhao, Ji; Fontanarosa, Joel; Dai, Yang; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2010-02-01

    The analysis of spatially resolved Xe(L) spectra obtained with Z-λ imaging reveals two prominent findings concerning the characteristics of the x-ray amplification occurring in self-trapped plasma channels formed by the focusing of multi-TW subpicosecond 248 nm laser pulses into a high-density gaseous Xe cluster target. They are (1) strongly saturated amplification across both lobes of the Xe(L) hollow atom 3d → 2p emission profile, a breadth that spans a spectral width of ~600 eV, and (2) new evidence for the formation of x-ray spatial modes based on the signature of the transversely observed emission from the narrow trapped zone of the channel. The global characteristics of the spectral measurements, in concert with prior analyses of the strength of the amplification, indicate that the enhancement of the x-ray emission rate by intra-cluster superradiant dynamics plays a leading role in the amplification. This radiative interaction simultaneously promotes (a) a sharp boost in the effective gain, (b) the directly consequent efficient production of coherent Xe(L) x-rays from both single (2\\bar p) and double (2\\bar s2\\bar p) vacancy 3d → 2p transition arrays, estimated herein at ~30%, and (c) the development of a very short x-ray pulse width τx. In the limit of sufficiently strong superradiant coupling in the cluster, the system assumes a dynamically collective character and acts as a single homogeneously broadened transition whose effective radiative width approaches the full Xe(L) bandwidth, a breadth that establishes a potential lower limit of τx ~5-10 as, a value substantially less than the canonical atomic time ao/αc cong 24 as.

  1. Resolving the Pericenter

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack

    2015-10-01

    The Wisdom-Holman mapping method and its variations have become a mainstay of research in solar system dynamics. But the method is not without its limitations. Rauch & Holman noted that at large eccentricities sufficiently small steps must be taken to resolve the pericenter. In this paper, I explore in more detail what it means to resolve the pericenter.

  2. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  3. Scene analysis without spectral analysis?

    NASA Astrophysics Data System (ADS)

    de Cheveigne, Alain

    2003-04-01

    Auditory scene analysis is often described in terms of grouping stimulus components. Components, once grouped, are assigned to one source or another [A. S. Bregman, Auditory Scene Analysis (MIT, Cambridge, MA, 2002)]. The actual grouping must operate on whatever representation is available within the auditory nervous system. An obvious hypothesis is that correlates of individual stimulus components are created by peripheral spectral analysis. However, peripheral frequency resolution is limited. The number of resolved partials is between 5 and 8 for a harmonic complex in isolation, but resolution must necessarily be less good for the interleaved components of concurrent sources. Source amplitudes are rarely equal, and partials of a weaker source must be particularly hard to resolve. The question is thus: given the paucity of resolved elements to group, how does the auditory system perform the grouping? A number of possibilities will be reviewed. One is that partials not resolved peripherally are somehow resolved centrally (a modern version of the ``second filter'' hypothesis). Another is that scene analysis does not operate by grouping resolved elements, but instead by modifying directly unresolved entities, for example by time-domain processing.

  4. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  5. Weighted Least Squares Estimates of the Magnetotelluric Transfer Functions from Nonstationary Data

    SciTech Connect

    Stodt, John A.

    1982-11-01

    Magnetotelluric field measurements can generally be viewed as sums of signal and additive random noise components. The standard unweighted least squares estimates of the impedance and tipper functions which are usually calculated from noisy data are not optimal when the measured fields are nonstationary. The nonstationary behavior of the signals and noises should be exploited by weighting the data appropriately to reduce errors in the estimates of the impedances and tippers. Insight into the effects of noise on the estimates is gained by careful development of a statistical model, within a linear system framework, which allows for nonstationary behavior of both the signal and noise components of the measured fields. The signal components are, by definition, linearly related to each other by the impedance and tipper functions. It is therefore appropriate to treat them as deterministic parameters, rather than as random variables, when analyzing the effects of noise on the calculated impedances and tippers. From this viewpoint, weighted least squares procedures are developed to reduce the errors in impedances and tippers which are calculated from nonstationary data.

  6. Nonstationary approximation error approach to imaging of three-dimensional pipe flow: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Lipponen, A.; Seppänen, A.; Kaipio, J. P.

    2011-10-01

    In this paper, we consider nonstationary estimation in imaging of three-dimensional fluid flow. More specifically, we experimentally evaluate the feasibility of a recently invented approximation error method to recovering from modelling errors in imaging of nonstationary targets. In nonstationary estimation, both the observations and the time evolution of the target distribution are modelled, and the image reconstruction problem is written in the form of a state estimation problem. The state estimates rely on these models and the observations carried out during the evolution of the target. If the associated modelling errors are not accounted for, state estimation can lead to heavily biased reconstructions. In the approximation error approach, the model inaccuracies and uncertainties are modelled statistically. In this experimental study, we consider a case of rapidly moving fluid in a pipeline, and model the target with the convection-diffusion equation. Electrical impedance tomography (EIT) is used as the imaging modality. In the nonstationary approximation error scheme, we model the errors due to truncation of the computational domain, discretization, unknown contact impedances of electrodes used in EIT measurements and partly unknown boundary conditions in the convection-diffusion model. The results verify that enhancing the state-space representation with the approximation error models can yield a significant improvement in the reconstructions.

  7. Bivariate Frequency Analysis with Nonstationary Gumbel/GEV Marginal Distributions for Rainfall Event

    NASA Astrophysics Data System (ADS)

    Joo, Kyungwon; Kim, Sunghun; Kim, Hanbeen; Ahn, Hyunjun; Heo, Jun-Haeng

    2016-04-01

    Multivariate frequency analysis has been developing for hydrological data recently. Particularly, the copula model has been used as an effective method which has no limitation on deciding marginal distributions. The time-series rainfall data can be characterized to rainfall event by inter-event time definition and each rainfall event has rainfall depth and duration. In addition, changes in rainfall depth have been studied recently due to climate change. The nonstationary (time-varying) Gumbel and Generalized Extreme Value (GEV) have been developed and their performances have been investigated from many studies. In the current study, bivariate frequency analysis has performed for rainfall depth and duration using Archimedean copula on stationary and nonstationary hourly rainfall data to consider the effect of climate change. The parameter of copula model is estimated by inference function for margin (IFM) method and stationary/nonstationary Gumbel and GEV distributions are used for marginal distributions. As a result, level curve of copula model is obtained and goodness-of-fit test is performed to choose appropriate marginal distribution among the applied stationary and nonstationary Gumbel and GEV distributions.

  8. The combined effects of reverberation and nonstationary noise on sentence intelligibility.

    PubMed

    George, Erwin L J; Festen, Joost M; Houtgast, Tammo

    2008-08-01

    Listening conditions in everyday life typically include a combination of reverberation and nonstationary background noise. It is well known that sentence intelligibility is adversely affected by these factors. To assess their combined effects, an approach is introduced which combines two methods of predicting speech intelligibility, the extended speech intelligibility index (ESII) and the speech transmission index. First, the effects of reverberation on nonstationary noise (i.e., reduction of masker modulations) and on speech modulations are evaluated separately. Subsequently, the ESII is applied to predict the speech reception threshold (SRT) in the masker with reduced modulations. To validate this approach, SRTs were measured for ten normal-hearing listeners, in various combinations of nonstationary noise and artificially created reverberation. After taking the characteristics of the speech corpus into account, results show that the approach accurately predicts SRTs in nonstationary noise and reverberation for normal-hearing listeners. Furthermore, it is shown that, when reverberation is present, the benefit from masker fluctuations may be substantially reduced.

  9. Fermions Tunneling from Non-Stationary Dilaton-Maxwell Black Hole via General Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shu-Zheng

    2009-10-01

    Fermions tunneling of the non-stationary Dilaton-Maxwell black hole is investigated with general tortoise coordinate transformation. The Dirac equation is simplified by semiclassical approximation so that the Hamilton-Jacobi equation is generated. Finally the tunneling rate and the Hawking temperature is calculated.

  10. Nonstationary Vibrations of Transversely Reinforced Elliptic Cylindrical Shells on an Elastic Foundation

    NASA Astrophysics Data System (ADS)

    Meish, Yu. A.

    2016-11-01

    The forced vibrations of transversely reinforced elliptic cylindrical shells on an elastic foundation under nonstationary loads are studied using the Timoshenko-type theory of shells and rods. A numerical algorithm for solving problems of this class is developed. A numerical example for the case of distributed impulsive loading is given

  11. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets.

    PubMed

    Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong

    2015-09-01

    Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.

  12. Experimental Investigations of Non-Stationary Properties In Radiometer Receivers Using Measurements of Multiple Calibration References

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.

  13. Self-Consistent Non-Stationary Theory of Multipactor in DLA Structures

    SciTech Connect

    Sinitsyn, O. V.; Nusinovich, G. S.; Antonsen, T. M.; Kishek, R.

    2009-01-22

    In this paper a non-stationary self-consistent theoretical model of multipactor in dielectric loaded accelerator structures is proposed. In comparison with our previous work, the effects of the cylindricity are included. The corresponding numerical implementation of the model is described and some simulation results are shown.

  14. Non-stationary dynamics of climate variability in synchronous influenza epidemics in Japan

    NASA Astrophysics Data System (ADS)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-09-01

    Seasonal variation in the incidence of influenza is widely assumed. However, few studies have examined non-stationary relationships between global climate factors and influenza epidemics. We examined the monthly incidence of influenza in Fukuoka, Japan, from 2000 to 2012 using cross-wavelet coherency analysis to assess the patterns of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). The monthly incidence of influenza showed cycles of 1 year with the IOD and 2 years with ENSO indices (Multivariate, Niño 4, and Niño 3.4). These associations were non-stationary and appeared to have major influences on the synchrony of influenza epidemics. Our study provides quantitative evidence that non-stationary associations have major influences on synchrony between the monthly incidence of influenza and the dynamics of the IOD and ENSO. Our results call for the consideration of non-stationary patterns of association between influenza cases and climatic factors in early warning systems.

  15. Stationary and non-stationary nonlinear optical spectroscopy on surface polaritons

    NASA Technical Reports Server (NTRS)

    Ponath, H. E.

    1984-01-01

    A phenomenological theory is given for non-stationary electromagnetic surface waves propagating along the boundary plane between two homogeneous isotropic media. The description of nonlinear optical effects using shortened wave equations is demonstrated for spontaneous and simulated Raman scattering processes on surface polaritons.

  16. Solvability of certain inverse problems for the nonstationary kinetic transport equation

    NASA Astrophysics Data System (ADS)

    Volkov, N. P.

    2016-09-01

    Linear and nonlinear inverse problems for the nonstationary multispeed anisotropic kinetic transport equation are studied. Sufficient conditions for the existence and uniqueness of weak solutions to these problems in various function spaces are found. The proofs of the corresponding theorems imply that solutions of the inverse problems under study can be obtained by applying the method of successive approximations.

  17. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    SciTech Connect

    Dixit, Gopal; Santra, Robin

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  18. System identification through nonstationary data using Time-Frequency Blind Source Separation

    NASA Astrophysics Data System (ADS)

    Guo, Yanlin; Kareem, Ahsan

    2016-06-01

    Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the

  19. Climate change and non-stationary flood risk for the upper Truckee River basin

    NASA Astrophysics Data System (ADS)

    Condon, L. E.; Gangopadhyay, S.; Pruitt, T.

    2015-01-01

    Future flood frequency for the upper Truckee River basin (UTRB) is assessed using non-stationary extreme value models and design-life risk methodology. Historical floods are simulated at two UTRB gauge locations, Farad and Reno, using the Variable Infiltration Capacity (VIC) model and non-stationary Generalized Extreme Value (GEV) models. The non-stationary GEV models are fit to the cool season (November-April) monthly maximum flows using historical monthly precipitation totals and average temperature. Future cool season flood distributions are subsequently calculated using downscaled projections of precipitation and temperature from the Coupled Model Intercomparison Project Phase 5 (CMIP-5) archive. The resulting exceedance probabilities are combined to calculate the probability of a flood of a given magnitude occurring over a specific time period (referred to as flood risk) using recent developments in design-life risk methodologies. This paper provides the first end-to-end analysis using non-stationary GEV methods coupled with contemporary downscaled climate projections to demonstrate the evolution of a flood risk profile over typical design life periods of existing infrastructure that are vulnerable to flooding (e.g., dams, levees, bridges and sewers). Results show that flood risk increases significantly over the analysis period (from 1950 through 2099). This highlights the potential to underestimate flood risk using traditional methodologies that do not account for time-varying risk. Although model parameters for the non-stationary method are sensitive to small changes in input parameters, analysis shows that the changes in risk over time are robust. Overall, flood risk at both locations (Farad and Reno) is projected to increase 10-20% between the historical period 1950 to 1999 and the future period 2000 to 2050 and 30-50% between the same historical period and a future period of 2050 to 2099.

  20. Nonstationary Intensity-Duration-Frequency Curves for Drainge Infrastructure Coping with Climate Change

    NASA Astrophysics Data System (ADS)

    Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk

    2015-04-01

    As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA

  1. What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency relationship?

    NASA Astrophysics Data System (ADS)

    Agilan, V.; Umamahesh, N. V.

    2017-03-01

    Present infrastructure design is primarily based on rainfall Intensity-Duration-Frequency (IDF) curves with so-called stationary assumption. However, in recent years, the extreme precipitation events are increasing due to global climate change and creating non-stationarity in the series. Based on recent theoretical developments in the Extreme Value Theory (EVT), recent studies proposed a methodology for developing non-stationary rainfall IDF curve by incorporating trend in the parameters of the Generalized Extreme Value (GEV) distribution using Time covariate. But, the covariate Time may not be the best covariate and it is important to analyze all possible covariates and find the best covariate to model non-stationarity. In this study, five physical processes, namely, urbanization, local temperature changes, global warming, El Niño-Southern Oscillation (ENSO) cycle and Indian Ocean Dipole (IOD) are used as covariates. Based on these five covariates and their possible combinations, sixty-two non-stationary GEV models are constructed. In addition, two non-stationary GEV models based on Time covariate and one stationary GEV model are also constructed. The best model for each duration rainfall series is chosen based on the corrected Akaike Information Criterion (AICc). From the findings of this study, it is observed that the local processes (i.e., Urbanization, local temperature changes) are the best covariate for short duration rainfall and global processes (i.e., Global warming, ENSO cycle and IOD) are the best covariate for the long duration rainfall of the Hyderabad city, India. Furthermore, the covariate Time is never qualified as the best covariate. In addition, the identified best covariates are further used to develop non-stationary rainfall IDF curves of the Hyderabad city. The proposed methodology can be applied to other situations to develop the non-stationary IDF curves based on the best covariate.

  2. Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals

    NASA Astrophysics Data System (ADS)

    Mengistu, Samson G.; Quick, Christopher G.; Creed, Irena F.

    2013-06-01

    Headwater catchment hydrology and biogeochemistry are influenced by climate, including linear trends (nonstationary signals) and climate oscillations (stationary signals). We used an analytical framework to detect nonstationary and stationary signals in yearly time series of nutrient export [dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate (NO3--N), and total dissolved phosphorus (TDP)] in forested headwater catchments with differential water loading and water storage potential at the Turkey Lakes Watershed in Ontario, Canada. We tested the hypotheses that (1) climate has nonstationary and stationary effects on nutrient export, the combination of which explains most of the variation in nutrient export; (2) more metabolically active nutrients (e.g., DON, NO3--N, and TDP) are more sensitive to these signals; and (3) catchments with relatively low water loading and water storage capacity are more sensitive to these signals. Both nonstationary and stationary signals were identified, and the combination of both explained the majority of the variation in nutrient export data. More variation was explained in more labile nutrients (DON, NO3--N, and TDP), which were also more sensitive to climate signals. The catchment with low-water storage potential and low water loading was most sensitive to nonstationary and stationary climatic oscillations, suggesting that these hydrologic features are characteristic of the most effective sentinels of climate change. The observed complex links between climate change, climatic oscillations, and water nutrient fluxes in headwater catchments suggest that climate may have considerable influence on the productivity and biodiversity of surface waters, in addition to other drivers such as atmospheric pollution.

  3. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    SciTech Connect

    Gil, J. M.; Rodriguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Minguez, E.; Sauvan, P.; Angelo, P.; Dalimier, E.; Schott, R.; Mancini, R.

    2008-10-22

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph ({lambda}/{delta}{lambda}{approx_equal}6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Ly{alpha}, He{beta}, He{gamma}, Ly{beta} and Ly{gamma} line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  4. Time-Resolved Spectral Analysis of Blazar 0716+714

    NASA Astrophysics Data System (ADS)

    Diaz, Rosamaria; Harp, Gerald

    2016-01-01

    As electromagnetic (EM) waves from sources such as blazars travel through the intergalactic medium (IGM), they are slowed by electrons; a phenomenon called dispersion delay [2]. We study the propagation effects in emissions of EM waves from blazar source BL 0716+714 by estimating the average electron density, or dispersion measure (DM), of the IGM on a line of sight to the blazar. Measuring the variations in these effects with time allow us to understand the properties of the intervening material. Toward this goal we analyzed months of archived observations of BL 0716+714 taken by the Allen Telescope Array (ATA). The ATA's correlator produces cross-power vs. frequency spectra for every baseline (distance between a pair of antennas) in ten-second intervals. To reduce this immense load of data we used a technique based on interferometry called bispectrum, which does not depend on complicated array calibration and simplifies our work. The bispectrum multiplies baselines, three at a time, so that they form a closed loop, then the cube root of spectra are averaged [1]. This technique is independent of phase errors associated with any individual antenna and has a better SNR ratio than simply taking the average of all the baselines. We developed a numerical analysis program that takes in archived blazar files containing correlation data, computes the bispectrum, and outputs FITS images for each day of observations. The results show that our observations do not have sufficient sensitivity to reveal blazar variations in the frequency ranges that were studied. It is suggested that future observations at higher frequencies and/or with another telescope having greater sensitivity would reveal the time/frequency dependence of emission structure that would allow measurements of electron content. This work shows that but bispectrum is a useful tool for rapid characterization of interferometer data that does not require interferometer caclibration which could introduce artifacts into radio light curves.References:[1] Law C.J. and Bower G.C. (2012) Astrophysical Journal, 749:143[2] Rani B. et al. (2013) A&A, ms, 1-25.

  5. Resolving Spectral Lines with a Periscope-Type DVD Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka

    2008-01-01

    A new type of DVD spectroscope, the periscope type, is described and the numerical analysis of the observed emission and absorption spectra is demonstrated. A small and thin mirror is put inside and an eighth part of a DVD is used as a grating. Using this improved DVD spectroscope, one can observe and photograph visible spectra more easily and…

  6. Radially resolved spectral observations of polyacetal capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Morgan, C. A.; Griem, H. R.; Elton, R. C.

    1995-07-01

    The temporal evolution of the radial profile of lithium-like oxygen (OVI or O5+) 3d-4f, 52.0 nm emission from 80 ns rise time, 6-16 kA peak current, pulsed capillary discharges in 1 mm diam, 1 cm long polyacetal capillaries, has been studied. Evidence was seen for a central ``flattening'' in this emission. Extreme-ultraviolet, time-integrated, pinhole transmission grating spectra were taken of discharges at 16 and 23 kA peak currents in 0.5 mm diam, 1 cm long capillaries. Spectra obtained at the higher peak current (23 kA) showed evidence of helium-like (CV or C4+) and/or hydrogen-like carbon (CV or C5+) resonance line emission (4.0 and 3.4 nm wavelength) filling the capillary diameter.

  7. Modelling and prediction of non-stationary optical turbulence behaviour

    NASA Astrophysics Data System (ADS)

    Doelman, Niek; Osborn, James

    2016-07-01

    There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument installed at the Isaac Newton Telescope at La Palma. Based on an estimate of the power spectral density function, a low order stochastic model to capture the temporal variability of r0 is proposed. The impact of this type of stochastic model on the prediction of the coherence length behaviour is shown.

  8. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  9. On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1995-01-01

    For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.

  10. Spectral Causality Measures for Land-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Casagrande, Erik; Mueller, Brigitte; Miralles, Diego; Entekhabi, Dara; Molini, Annalisa

    2014-05-01

    This talk addresses the problem of detecting and inferring the strength and directionality (i.e. causality) of Land-Atmosphere (L-A) interactions from available observations of climatic and hydrological variables. Our still incomplete understanding of L-A interactions - their inherent complexity, non-stationary features and multi-scale character - is in fact one of the main sources of uncertainty in current climate modeling, with strong implications for our ability to predict in an accurate way future climate. We apply different causality-detection techniques, based on spectral methods and continuous wavelet transform, to unravel the coupling between soil moisture and air temperature, and to give evidence of the importance of soil moisture memory for climate. The proposed mathematical techniques have previously shown the ability of disentangling directional couplings within synthetic multi-scale processes. Also, the frequency-domain causal techniques presented here show several advantages in analyzing L-A couplings and feedbacks when compared to classic methods based on linear correlations, since they are explicitly designed to detect causal couplings and to infer multi-scale and non-stationary relationships. By applying these spectral causal metrics to newly developed satellite-based products and climate reanalysis data, we uncover the contribution of processes acting at different time scales to the build-up of global soil moisture-temperature coupling hot spots, addressing at the same time possible causal effects in land-atmosphere interactions.

  11. Numerical method for solution of systems of non-stationary spatially one-dimensional nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Morozov, S. K.; Krasitskiy, O. P.

    1978-01-01

    A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.

  12. Predicting the ocurrence probability of freak waves baed on buoy data and non-stationary extreme value models

    NASA Astrophysics Data System (ADS)

    Tomas, A.; Menendez, M.; Mendez, F. J.; Coco, G.; Losada, I. J.

    2012-04-01

    In the last decades, freak or rogue waves have become an important topic in engineering and science. Forecasting the occurrence probability of freak waves is a challenge for oceanographers, engineers, physicists and statisticians. There are several mechanisms responsible for the formation of freak waves, and different theoretical formulations (primarily based on numerical models with simplifying assumption) have been proposed to predict the occurrence probability of freak wave in a sea state as a function of N (number of individual waves) and kurtosis (k). On the other hand, different attempts to parameterize k as a function of spectral parameters such as the Benjamin-Feir Index (BFI) and the directional spreading (Mori et al., 2011) have been proposed. The objective of this work is twofold: (1) develop a statistical model to describe the uncertainty of maxima individual wave height, Hmax, considering N and k as covariates; (2) obtain a predictive formulation to estimate k as a function of aggregated sea state spectral parameters. For both purposes, we use free surface measurements (more than 300,000 20-minutes sea states) from the Spanish deep water buoy network (Puertos del Estado, Spanish Ministry of Public Works). Non-stationary extreme value models are nowadays widely used to analyze the time-dependent or directional-dependent behavior of extreme values of geophysical variables such as significant wave height (Izaguirre et al., 2010). In this work, a Generalized Extreme Value (GEV) statistical model for the dimensionless maximum wave height (x=Hmax/Hs) in every sea state is used to assess the probability of freak waves. We allow the location, scale and shape parameters of the GEV distribution to vary as a function of k and N. The kurtosis-dependency is parameterized using third-order polynomials and the model is fitted using standard log-likelihood theory, obtaining a very good behavior to predict the occurrence probability of freak waves (x>2). Regarding the

  13. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    SciTech Connect

    Behera, Abhinna K. Panigrahi, Prasanta K.; Sekar Iyengar, A. N.

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding to neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.

  14. Practical methods of tracking of nonstationary time series applied to real-world data

    NASA Astrophysics Data System (ADS)

    Nabney, Ian T.; McLachlan, Alan; Lowe, David

    1996-03-01

    In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Two real world data sets, containing electricity load demands and foreign exchange market prices, are used to test several different methods, ranging from linear models with fixed parameters, to non-linear models which adapt both parameters and model order on-line. Training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. The results of our experiments show that there are advantages to be gained in tracking real world non-stationary data through the use of more complex adaptive models.

  15. Entropy of Non-stationary and Slowly Changing Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Yan, Han

    2014-01-01

    Simplifying Dirac equation near the horizon, Hawking temperature is obtained by applying a new tortoise coordinate transformation. Using the improved thin film brick-wall model and WKB approximation, the entropy of Dirac field in the non-stationary and slowly changing Reissner-Nordström black hole is calculated. The result shows that the entropy of the black hole is still proportional to the horizon area, and black hole entropy is just identical to the entropy of the quantum state at the horizon. In addition, the new tortoise coordinate transformation can make the cut-off parameter introduced in solving the entropy of non-stationary black hole simplified to the same as that in the static and stationary cases.

  16. Characteristics of Quantum Radiation of Slowly Varying Nonstationary Kerr-Newman Black Holes

    NASA Astrophysics Data System (ADS)

    Hua, Jia-Chen; Huang, Yong-Chang

    Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of this kind of black holes depend on the time and the angle. Further, we reveal a previously ignored relationship between thermal radiation and nonthermal radiation, which is that the chemical potential in the thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in nonthermal radiation for slowly varying nonstationary Kerr-Newman black holes. Also, we show that the deduced general results can be degenerated to the known conclusion of stationary Kerr-Newman black holes.

  17. Efficient Simulation and Downscaling of Large Non-Stationary Fields with Varying Local Anisotropy

    NASA Astrophysics Data System (ADS)

    Dodov, B.

    2015-12-01

    Simulation of locally anisotropic, non-stationary random fields is a relatively new topic in geostatistics with applications currently restricted to the construction of an admissible covariance matrix. In this paper, we introduce an efficient algorithm for constructing large non-stationary random fields with arbitrary local covariance structure and anisotropy. At the heart of our approach is a newly developed robust directional multiresolution framework combined with a local tensor anisotropy model. The use of our algorithm is illustrated with local anisotropy analysis, simulation and downscaling of complex pseudo-precipitation (PP) fields* related to tropical and extra-tropical cyclones. The efficiency of the algorithm allows obtaining realistic downscaled global GCM precipitation fields down to a few kilometers resolution in seconds.* Reference: Unpublished work by Huiling Yuan and Zoltan Toth. PP fields are constructed by taking the precipitation as the positive component of the field and the water vapor saturation deficit as its negative complement.

  18. NONINDEPENDENT AND NONSTATIONARY RESPONSE TIMES IN STOPPING AND STEPPING SACCADE TASKS

    PubMed Central

    Nelson, Matthew J.; Boucher, Leanne; Logan, Gordon D.; Palmeri, Thomas J.; Schall, Jeffrey D.

    2011-01-01

    Saccade stop-signal and target-step tasks are used to investigate the mechanisms of cognitive control. Performance of these tasks can be explained as the outcome of a race between stochastic GO and STOP processes. The race-model analyses assume that response times (RTs) measured throughout an experimental session are independent samples from stationary stochastic processes. This article demonstrates that RTs are neither independent nor stationary for humans and monkeys performing saccade stopping and target-step tasks. We investigate the consequences this has on analyses of these data. Nonindependent and nonstationary RTs artificially flatten inhibition functions and account for some of the systematic differences in RTs following different types of trials. However, nonindependent and nonstationary RTs do not bias the estimation of the stop-signal RT. These results demonstrate the robustness of the race model to some aspects of nonindependence and nonstationarity, and point to useful extensions of the model. PMID:20952788

  19. A self-normalized confidence interval for the mean of a class of nonstationary processes.

    PubMed

    Zhao, Zhibiao

    2011-01-01

    We construct an asymptotic confidence interval for the mean of a class of nonstationary processes with constant mean and time-varying variances. Due to the large number of unknown parameters, traditional approaches based on consistent estimation of the limiting variance of sample mean through moving block or non-overlapping block methods are not applicable. Under a block-wise asymptotically equal cumulative variance assumption, we propose a self-normalized confidence interval that is robust against the nonstationarity and dependence structure of the data. We also apply the same idea to construct an asymptotic confidence interval for the mean difference of nonstationary processes with piecewise constant means. The proposed methods are illustrated through simulations and an application to global temperature series.

  20. Non-stationary hydrological frequency analysis based on the reconstruction of extreme hydrological series

    NASA Astrophysics Data System (ADS)

    Hu, Y. M.; Liang, Z. M.; Jiang, X. L.; Bu, H.

    2015-06-01

    In this paper, a novel approach for non-stationary hydrological frequency analysis is proposed. The approach is due to the following consideration that, at present the data series used to detect mutation characteristic is very short, which may only reflect the partial characteristic of the population. That is to say, the mutation characteristic of short series may not fully represent the mutation characteristic of population, such as the difference of mutation degree between short sample and population. In this proposed method, an assumption is done that the variation hydrological series in a big time window owns an expected vibration center (EVC), which is a linear combination of the two mean values of the two subsample series obtained through separating the original hydrological series by a novel optimal segmentation technique (change rate of slope method). Then using the EVC to reconstruct non-stationary series to meet the requirement of stationary, and further ensure the conventional frequency analysis methods is valid.

  1. Exact Stationary and Non-stationary Solutions to Inelastic Maxwell Model with Infinite Energy

    NASA Astrophysics Data System (ADS)

    Ilyin, Oleg

    2016-11-01

    The one-dimensional inelastic Boltzmann equation with a constant collision rate (the Maxwell model) is considered. It is shown that for special values of restitution parameter there exists a stationary solution with the characteristic function in the form e^{-P(log (z))z}, where P is a periodic function. The corresponding distribution function belongs to a one special class of stochastic processes termed as a generalized stable in the probability theory. The Fourier transform of the non-stationary equation has the solution bigl (1+P(log (z))zbigr )e^{-Q(log (z))z}. It is proved that this solution is a characteristic function if periodic functions P, Q satisfy some not very restrictive conditions. The stationary and non-stationary solutions correspond to a gas with infinite temperature.

  2. Application of a Class of Nonstationary Iterative Methods to Flow Problems

    NASA Astrophysics Data System (ADS)

    Lei, Xiuren; Peng, Hong

    Convergence of a certain class of nonstationary iterative methods applied to the numerical solution of algebraic linear systems arising in flow problems is studied. The iteration matrix of these methods can be expressed by a constant matrix plus a variable matrix tending to zero. The conclusions of convergence based on the matrix spectrum are given and applied to a class of semi-iterative methods. Keywords: algebraic linear system, iterative method, convergence, matrix spectrum

  3. Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.

    PubMed

    Matsumoto, Tomotaka; Akashi, Hiroshi; Yang, Ziheng

    2015-07-01

    Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to evaluate their performance when the substitution process is nonstationary. The methods we evaluated include parsimony and likelihood using the single best reconstruction (SBR), averaging over reconstructions weighted by the posterior probabilities (AWP), and a new method called expected Markov counting (EMC) that produces maximum-likelihood estimates of substitution counts for any branch under a nonstationary Markov model. We simulated base composition evolution on a phylogeny for six species, with different selective pressures on G+C content among lineages, and compared the counts of nucleotide substitutions recorded during simulation with the inference by different methods. We found that large systematic biases resulted from (i) the use of parsimony or likelihood with SBR, (ii) the use of a stationary model when the substitution process is nonstationary, and (iii) the use of the Hasegawa-Kishino-Yano (HKY) model, which is too simple to adequately describe the substitution process. The nonstationary general time reversible (GTR) model, used with AWP or EMC, accurately recovered the substitution counts, even in cases of complex parameter fluctuations. We discuss model complexity and the compromise between bias and variance and suggest that the new methods may be useful for studying complex patterns of nucleotide substitution in large genomic data sets.

  4. Slow Time-Scale Source-Free Maxwell Equations for a Nonstationary, Inhomogeneous Medium.

    DTIC Science & Technology

    1983-02-01

    along the same lines, gives -(- 4n E+ 1 2 ) at V(V.E) 47t a2 L2 E. (3.10) 12 NSWC TR 83-100 L.s. (3.9) and (3.10) are exact consequences of Maxwell’s ... equation for a nonstationary inhomoheneous medium characterized by constitutive relations defined by Eqs. (2.3) and (2.5). The special case o-0 and

  5. Quantum Radiation of a Non-stationary Kerr Newman Black Hole in de Sitter Space Time

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Yang, Shu-Zheng

    2006-12-01

    Hawking radiation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman-de-Sitter black hole is studied by introducing a new tortoise coordinate transformation. The result shows that the Fermi-Dirac radiant spectrum displays a new term that represents the interaction between the spin of spinor particles and the rotation of black holes, which is absent in the Bose-Einstein distribution of Klein-Gordon particles.

  6. Nonstationary discrete-time deterministic and stochastic control systems with infinite horizon

    NASA Astrophysics Data System (ADS)

    Guo, Xianping; Hernández-del-Valle, Adrián; Hernández-Lerma, Onésimo

    2010-09-01

    This article is about nonstationary nonlinear discrete-time deterministic and stochastic control systems with Borel state and control spaces, possibly noncompact control constraint sets, and unbounded costs. The control problem is to minimise an infinite-horizon total cost performance index. Using dynamic programming arguments we show that, under suitable assumptions, the optimal cost functions satisfy optimality equations, which in turn give a procedure to find optimal control policies.

  7. Blind estimation of statistical properties of non-stationary random variables

    NASA Astrophysics Data System (ADS)

    Mansour, Ali; Mesleh, Raed; Aggoune, el-Hadi M.

    2014-12-01

    To identify or equalize wireless transmission channels, or alternatively to evaluate the performance of many wireless communication algorithms, coefficients or statistical properties of the used transmission channels are often assumed to be known or can be estimated at the receiver end. For most of the proposed algorithms, the knowledge of transmission channel statistical properties is essential to detect signals and retrieve data. To the best of our knowledge, most proposed approaches assume that transmission channels are static and can be modeled by stationary random variables (uniform, Gaussian, exponential, Weilbul, Rayleigh, etc.). In the majority of sensor networks or cellular systems applications, transmitters and/or receivers are in motion. Therefore, the validity of static transmission channels and the underlying assumptions may not be valid. In this case, coefficients and statistical properties change and therefore the stationary model falls short of making an accurate representation. In order to estimate the statistical properties (represented by the high-order statistics and probability density function, PDF) of dynamic channels, we firstly assume that the dynamic channels can be modeled by short-term stationary but long-term non-stationary random variable (RV), i.e., the RVs are stationary within unknown successive periods but they may suddenly change their statistical properties between two successive periods. Therefore, this manuscript proposes an algorithm to detect the transition phases of non-stationary random variables and introduces an indicator based on high-order statistics for non-stationary transmission which can be used to alter channel properties and initiate the estimation process. Additionally, PDF estimators based on kernel functions are also developed. The first part of the manuscript provides a brief introduction for unbiased estimators of the second and fourth-order cumulants. Then, the non-stationary indicators are formulated

  8. The importance of phenological tracking to plant community structure under stationary versus nonstationary environments

    NASA Astrophysics Data System (ADS)

    Wolkovich, E. M.; Donahue, M. J.

    2014-12-01

    Recent work has found links between how a species' phenology shifts with climate change and its changes in performance with climate change. Species that appear to 'track' climate change, for example North American temperate plant species that shift leafing or flowering earlier with warmer springs, also tend to increase in abundance or other metrics of plant performance, while the reverse is generally seen for species that delay phenology with warming. This correlation between phenological tracking and performance has been implicated in plant invasions and appears to be an important factor in predicting future plant populations and communities under climate change scenarios. We have, however, little theory on why--or why not--species may phenologically track the start of spring. Early-season phenology gives priority access to light and soil resources and thus, in a simplistic model where the start of season varies between years, all species should strongly track the start of season, yet communities are always a mix of phenological tracking strategies (from species that do not track the start of season to strong trackers). Using a stochastic community assembly model we examined how phenological tracking influences species abundances across time under two different environmental scenarios: one with a stationary environment and one with a nonstationary environment where the start of season shifts earlier over time. Our model shows that trade-offs are required between phenological tracking and parameters related to species-specific resource use to maintain a community with a diversity of phenological tracking strategies and that nonstationary environments strongly favor species that track the start of season. Our results suggest that trade-offs established under a stationary climate that allow a diversity of phenological tracking strategies across species in a community may not hold under non-stationary environments to maintain the same diversity of species. Instead

  9. A non-stationary earthquake probability assessment with the Mohr-Coulomb failure criterion

    NASA Astrophysics Data System (ADS)

    Wang, J. P.; Xu, Y.

    2015-10-01

    From theory to experience, earthquake probability associated with an active fault should be gradually increasing with time since the last event. In this paper, a new non-stationary earthquake assessment motivated/derived from the Mohr-Coulomb failure criterion is introduced. Different from other non-stationary earthquake analyses, the new model can more clearly define and calculate the stress states between two characteristic earthquakes. In addition to the model development and the algorithms, this paper also presents an example calculation to help explain and validate the new model. On the condition of best-estimate model parameters, the example calculation shows a 7.6 % probability for the Meishan fault in central Taiwan to induce a major earthquake in years 2015-2025, and if the earthquake does not occur by 2025, the earthquake probability will increase to 8 % in 2025-2035, which validates the new model that can calculate non-stationary earthquake probability as it should vary with time.

  10. "Novel Techniques in Non-Stationary Analysis of Rotorcraft Vibration Signitures"

    NASA Technical Reports Server (NTRS)

    Meng, Teresa

    1999-01-01

    This research effort produced new methods to analyze the performance of linear predictors that track non-stationary processes. Specifically, prediction methods have been applied to the vibration pattern of rotorcraft drivetrains. This analysis is part or a larger rotorcraft Health and Usage Monitoring System (HUMS) that can diagnose immediate failures of the subsystems, as indicated by abrupt change in the vibration signature, and prognosticate future health, by examining the vibration patterns against long-term trends. This problem is described by a earlier joint paper co-authored by members of the funding agency and the recipient institutions prior to this grant effort. Specific accomplishments under this grant include the following: (1) Definition of a framework for analysis of non-stationary time-series estimation using the coefficients of an adaptive filter. (2) Description of a novel method of combining short-term predictor error and long-term regression error to analyze the performance of a non-stationary predictor. (3) Formulation of a multi-variate probability density function that quantifies the performance of a adaptive predictor by using the short- and long-term error variables in a Gamma function distribution. and (4) Validation of the mathematical formulations with empirical data from NASA flight tests and simulated data to illustrate the utility beyond the domain of vibrating machinery.

  11. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.

    2016-03-01

    A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.

  12. Performance of tensor decomposition-based modal identification under nonstationary vibration

    NASA Astrophysics Data System (ADS)

    Friesen, P.; Sadhu, A.

    2017-03-01

    Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.

  13. Multiscale analysis of heart rate variability in non-stationary environments

    PubMed Central

    Gao, Jianbo; Gurbaxani, Brian M.; Hu, Jing; Heilman, Keri J.; Emanuele II, Vincent A.; Lewis, Greg F.; Davila, Maria; Unger, Elizabeth R.; Lin, Jin-Mann S.

    2013-01-01

    Heart rate variability (HRV) is highly non-stationary, even if no perturbing influences can be identified during the recording of the data. The non-stationarity becomes more profound when HRV data are measured in intrinsically non-stationary environments, such as social stress. In general, HRV data measured in such situations are more difficult to analyze than those measured in constant environments. In this paper, we analyze HRV data measured during a social stress test using two multiscale approaches, the adaptive fractal analysis (AFA) and scale-dependent Lyapunov exponent (SDLE), for the purpose of uncovering differences in HRV between chronic fatigue syndrome (CFS) patients and their matched-controls. CFS is a debilitating, heterogeneous illness with no known biomarker. HRV has shown some promise recently as a non-invasive measure of subtle physiological disturbances and trauma that are otherwise difficult to assess. If the HRV in persons with CFS are significantly different from their healthy controls, then certain cardiac irregularities may constitute good candidate biomarkers for CFS. Our multiscale analyses show that there are notable differences in HRV between CFS and their matched controls before a social stress test, but these differences seem to diminish during the test. These analyses illustrate that the two employed multiscale approaches could be useful for the analysis of HRV measured in various environments, both stationary and non-stationary. PMID:23755016

  14. Nonstationary Influence of El Niño on the Synchronous Dengue Epidemics in Thailand

    PubMed Central

    2005-01-01

    Background Several factors, including environmental and climatic factors, influence the transmission of vector-borne diseases. Nevertheless, the identification and relative importance of climatic factors for vector-borne diseases remain controversial. Dengue is the world's most important viral vector-borne disease, and the controversy about climatic effects also applies in this case. Here we address the role of climate variability in shaping the interannual pattern of dengue epidemics. Methods and Findings We have analysed monthly data for Thailand from 1983 to 1997 using wavelet approaches that can describe nonstationary phenomena and that also allow the quantification of nonstationary associations between time series. We report a strong association between monthly dengue incidence in Thailand and the dynamics of El Niño for the 2–3-y periodic mode. This association is nonstationary, seen only from 1986 to 1992, and appears to have a major influence on the synchrony of dengue epidemics in Thailand. Conclusion The underlying mechanism for the synchronisation of dengue epidemics may resemble that of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection. When association with El Niño is strong in the 2–3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When this association is absent, the seasonal dynamics become dominant and the synchrony initiated in Bangkok collapses. PMID:15839751

  15. Self-organising mixture autoregressive model for non-stationary time series modelling.

    PubMed

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.

  16. Predictability of nonstationary time series using wavelet and EMD based ARMA models

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Nagesh Kumar, D.

    2013-10-01

    Research has been undertaken to ascertain the predictability of non-stationary time series using wavelet and Empirical Mode Decomposition (EMD) based time series models. Methods have been developed in the past to decompose a time series into components. Forecasting of these components combined with random component could yield predictions. Using this ideology, wavelet and EMD analyses have been incorporated separately which decomposes a time series into independent orthogonal components with both time and frequency localizations. The component series are fit with specific auto-regressive models to obtain forecasts which are later combined to obtain the actual predictions. Four non-stationary streamflow sites (USGS data resources) of monthly total volumes and two non-stationary gridded rainfall sites (IMD) of monthly total rainfall are considered for the study. The predictability is checked for six and twelve months ahead forecasts across both the methodologies. Based on performance measures, it is observed that wavelet based method has better prediction capabilities over EMD based method despite some of the limitations of time series methods and the manner in which decomposition takes place. Finally, the study concludes that the wavelet based time series algorithm can be used to model events such as droughts with reasonable accuracy. Also, some modifications that can be made in the model have been discussed that could extend the scope of applicability to other areas in the field of hydrology.

  17. Studying the Dynamics of Non-stationary Jet Streams Formation in the Northern Hemisphere Troposphere

    NASA Astrophysics Data System (ADS)

    Emtsev, Sergey; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    In the present study, we investigate dynamics of non-stationary jets formation in troposphere by means of mesoscale simulations in the Weather Research & Forecasting (WRF) modeling system, analyzing jet streams that affected the territory of Belarus over the time period of 2010-2012. For that purpose, we perform modeling on domains with 5 km, 3 km and 1 km grid steps and 35 vertical coordinate levels with an upper boundary of 10 hPa. We focus our attention to identification of basic regularities in formation, movements and transformations of jet streams, as well as to analysis of their characteristic features, geographical position and underlying atmospheric processes and their classification. On the basis of these regularities, we define basic meteorological parameters that can be used to directly or indirectly (as well as qualitatively and quantitatively) identify the presence of jet streams in the specific region of troposphere, and also to determine their localization, stage of development and other characteristics. Furthermore, we estimate energetic parameters of the identified jet streams and their impact on synoptic situation in the surrounding region. Analyzing meteorological fields obtained from satellite observations, we elaborate a methodology of operational detection and localization of non-stationary jet streams from satellite data. Validation of WRF modeling results with these data proves that mesoscale simulations with WRF are able to provide quite successful forecasts of non-stationary tropospheric jet streams occurrence and also determination of their localization and main characteristics up to 3 days in advance.

  18. A New Method for Nonlinear and Nonstationary Time Series Analysis: The Empirical Mode Decomposition Method

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical nonlinear system models are used to illustrate the roles played by the nonlinear and nonstationary effects in the energy-frequency-time distribution.

  19. Non-stationary noise estimation using dictionary learning and Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Hughes, James M.; Rockmore, Daniel N.; Wang, Yang

    2014-02-01

    Stationarity of the noise distribution is a common assumption in image processing. This assumption greatly simplifies denoising estimators and other model parameters and consequently assuming stationarity is often a matter of convenience rather than an accurate model of noise characteristics. The problematic nature of this assumption is exacerbated in real-world contexts, where noise is often highly non-stationary and can possess time- and space-varying characteristics. Regardless of model complexity, estimating the parameters of noise dis- tributions in digital images is a difficult task, and estimates are often based on heuristic assumptions. Recently, sparse Bayesian dictionary learning methods were shown to produce accurate estimates of the level of additive white Gaussian noise in images with minimal assumptions. We show that a similar model is capable of accu- rately modeling certain kinds of non-stationary noise processes, allowing for space-varying noise in images to be estimated, detected, and removed. We apply this modeling concept to several types of non-stationary noise and demonstrate the model's effectiveness on real-world problems, including denoising and segmentation of images according to noise characteristics, which has applications in image forensics.

  20. Resolving writer's block.

    PubMed Central

    Huston, P.

    1998-01-01

    PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467

  1. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  2. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  3. Stochastic analysis of bounded unsaturated flow in heterogeneous aquifers: Spectral/perturbation approach

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2009-01-01

    This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier-Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589-605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541-51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775-84].

  4. Xenon Spectral Gamma Penetrometer Probe Characterization and Calibration

    DTIC Science & Technology

    2004-09-01

    Figure 15. The xenon gas gamma detector demonstrated the capability to fully resolve the two spectral energy lines of actinium -228, a thorium-232 progeny...daughter product), at 911 keV and 969 keV (Figure 15). Since the two actinium -228 spectral energy lines at 911 keV and 969 keV were fully resolved in...demonstrated the capability to detect the two spectral energy lines of actinium -228 but produced a smeared camel-humped peak (i.e., it was unable to

  5. Resource Prospector: The RESOLVE Payload

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Smith, J.; J., Captain; Paz, A.; Colaprete, A.; Elphic, R.; Zacny, K.

    2015-10-01

    NASA has been developing a lunar volatiles exploration payload named RESOLVE. Now the primary science payload on-board the Resource Prospector (RP) mission, RESOLVE, consists of several instruments that evaluate lunar volatiles.

  6. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  7. Damage detection using transient trajectories in phase-space with extended random decrement technique under non-stationary excitations

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Mao, Zhu; Todd, Michael

    2016-11-01

    This paper proposes a damage detection method based on the geometrical variation of transient trajectories in phase-space, and the proposed methodology is compatible with non-stationary excitations (e.g., earthquake-induced ground motion). The work presented assumes zero-mean non-stationary excitation, and extends the random decrement technique to convert non-stationary response signals of the structure into free-vibration data. Transient trajectories of the structure are reconstructed via the embedding theorem from the converted free-vibration data, and trajectories are mapped successively into phase-space to enhance statistical analysis. Based upon the characterized system dynamics in terms of phase-space, the time prediction error is adopted as the damage index. To identify the presence and severity of damage in a statistically rigorous way, receiver operating characteristic curves and the Bhattacharyya distance are employed. The results from both numerical simulations and experiments validate the proposed framework, when the test structures are subject to non-stationary excitations. The extension achieved in this paper enables the phase-space damage detection approach to be compatible with non-stationary scenarios, such as traffic, wind, and earthquake loadings. Moreover, the results indicate that this phase-state-based method is able to identify damage-induced nonlinearity in response, which is an intrinsic characteristic associated with most structural damage types.

  8. Dual Brushless Resolver Rate Sensor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor)

    1997-01-01

    A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.

  9. Brief resolved unexplained event

    PubMed Central

    Arane, Karen; Claudius, Ilene; Goldman, Ran D.

    2017-01-01

    Abstract Question For many years, the term apparent life-threatening event (ALTE) was associated with sudden infant death syndrome, and parents who described an acute event in their infants were sent to the hospital for admission. I understand that for infants new terminology is recommended. What is the current approach to a near-death experience of an infant? Answer A recent clinical practice guideline revised the name and definition of an ALTE to a brief resolved unexplained event (BRUE). The diagnosis of BRUE in infants younger than 1 year of age is made when infants experience 1 of the following BRUE symptoms: a brief episode (ie, less than 1 minute and usually less than 20 to 30 seconds) that is entirely resolved (infant is at baseline), which remains unexplained after the history and physical examination are completed, and includes an event characterized by cyanosis or pallor; absent, decreased, or irregular breathing; hypertonia or hypotonia; or altered responsiveness. Low-risk infants should not be admitted to the hospital and overtesting is discouraged. PMID:28115439

  10. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  11. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  12. Nonstationary Stochastic Dynamics Underlie Spontaneous Transitions between Active and Inactive Behavioral States

    PubMed Central

    Jun, James J.; Longtin, André

    2017-01-01

    Abstract The neural basis of spontaneous movement generation is a fascinating open question. Long-term monitoring of fish, swimming freely in a constant sensory environment, has revealed a sequence of behavioral states that alternate randomly and spontaneously between periods of activity and inactivity. We show that key dynamical features of this sequence are captured by a 1-D diffusion process evolving in a nonlinear double well energy landscape, in which a slow variable modulates the relative depth of the wells. This combination of stochasticity, nonlinearity, and nonstationary forcing correctly captures the vastly different timescales of fluctuations observed in the data (∼1 to ∼1000 s), and yields long-tailed residence time distributions (RTDs) also consistent with the data. In fact, our model provides a simple mechanism for the emergence of long-tailed distributions in spontaneous animal behavior. We interpret the stochastic variable of this dynamical model as a decision-like variable that, upon reaching a threshold, triggers the transition between states. Our main finding is thus the identification of a threshold crossing process as the mechanism governing spontaneous movement initiation and termination, and to infer the presence of underlying nonstationary agents. Another important outcome of our work is a dimensionality reduction scheme that allows similar segments of data to be grouped together. This is done by first extracting geometrical features in the dataset and then applying principal component analysis over the feature space. Our study is novel in its ability to model nonstationary behavioral data over a wide range of timescales. PMID:28374017

  13. A simple analytical description of the non-stationary dynamics in Ising spin systems

    NASA Astrophysics Data System (ADS)

    Domínguez Vázquez, Eduardo; Del Ferraro, Gino; Ricci-Tersenghi, Federico

    2017-03-01

    The analytical description of the dynamics in models with discrete variables (e.g. Ising spins) is a notoriously difficult problem, which can only be tackled under some approximation. Recently a novel variational approach to solve the stationary dynamical regime has been introduced by Pelizzola (2013 Eur. Phys. J. B 86 120), where simple closed equations are derived under mean-field approximations based on the cluster variational method. Here we propose to use the same approximation based on the cluster variational method also for the non-stationary regime, which has not been considered up to now within this framework. We check the validity of this approximation in describing the non-stationary dynamical regime of several Ising models defined on Erdős–Rényi random graphs: we study ferromagnetic models with symmetric and partially asymmetric couplings, models with random fields and also spin glass models. A comparison with the actual Glauber dynamics, solved numerically, shows that one of the two studied approximations (the so-called ‘diamond’ approximation) provides very accurate results in all the systems studied. Only for the spin glass models do we find some small discrepancies in the very low temperature phase, probably due to the existence of a large number of metastable states. Given the simplicity of the equations to be solved, we believe the diamond approximation should be considered as the ‘minimal standard’ in the description of the non-stationary regime of Ising-like models: any new method pretending to provide a better approximate description to the dynamics of Ising-like models should perform at least as good as the diamond approximation.

  14. Risk-based water resources planning: Incorporating probabilistic nonstationary climate uncertainties

    NASA Astrophysics Data System (ADS)

    Borgomeo, Edoardo; Hall, Jim W.; Fung, Fai; Watts, Glenn; Colquhoun, Keith; Lambert, Chris

    2014-08-01

    We present a risk-based approach for incorporating nonstationary probabilistic climate projections into long-term water resources planning. The proposed methodology uses nonstationary synthetic time series of future climates obtained via a stochastic weather generator based on the UK Climate Projections (UKCP09) to construct a probability distribution of the frequency of water shortages in the future. The UKCP09 projections extend well beyond the range of current hydrological variability, providing the basis for testing the robustness of water resources management plans to future climate-related uncertainties. The nonstationary nature of the projections combined with the stochastic simulation approach allows for extensive sampling of climatic variability conditioned on climate model outputs. The probability of exceeding planned frequencies of water shortages of varying severity (defined as Levels of Service for the water supply utility company) is used as a risk metric for water resources planning. Different sources of uncertainty, including demand-side uncertainties, are considered simultaneously and their impact on the risk metric is evaluated. Supply-side and demand-side management strategies can be compared based on how cost-effective they are at reducing risks to acceptable levels. A case study based on a water supply system in London (UK) is presented to illustrate the methodology. Results indicate an increase in the probability of exceeding the planned Levels of Service across the planning horizon. Under a 1% per annum population growth scenario, the probability of exceeding the planned Levels of Service is as high as 0.5 by 2040. The case study also illustrates how a combination of supply and demand management options may be required to reduce the risk of water shortages.

  15. Mathematical modeling of non-stationary heat and mass transfer in disperse systems

    NASA Astrophysics Data System (ADS)

    Ermakova, L. A.; Krasnoperov, S. Y.; Kalashnikov, S. N.

    2016-09-01

    The work describes mathematical model of non-stationary heat and mass transfer processes in dispersed environment, taking into account the phase transition; presents the results of numeric modelling for conditions of direct reduction in high-temperature reducing atmosphere, corresponding to the direct reduction in the jet-emulsion unit according to the principles of self-organization. The method was developed for calculation of heat and mass transfer of the aggregate of iron material particles in accordance with the given distribution law.

  16. Iterative generalized time-frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowang; Feng, Zhipeng

    2016-12-01

    Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to

  17. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling

    NASA Astrophysics Data System (ADS)

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  18. Hawking radiation temperatures in non-stationary Kerr black holes with different tortoise coordinate transformations

    NASA Astrophysics Data System (ADS)

    Lan, X. G.; Jiang, Q. Q.; Wei, L. F.

    2012-04-01

    We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future.

  19. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  20. Optimal Fitting of Non-linear Detector Pulses with Nonstationary Noise

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Moseley, S. H.; Cabera, B.; Figueroa-Felicianco, E.; Oegerle, William (Technical Monitor)

    2002-01-01

    Optimal extraction of pulses of constant known shape from a time series with stationary noise is well understood and widely used in detection applications. Applications where high resolution is required over a wide range of input signal amplitudes use much of the dynamic range of the sensor. The noise will in general vary over this signal range, and the response may be a nonlinear function of the energy input. We present an optimal least squares procedure for inferring input energy in such a detector with nonstationary noise and nonlinear energy response.

  1. Robust nonstationary jammer mitigation for GPS receivers with instantaneous frequency error tolerance

    NASA Astrophysics Data System (ADS)

    Wang, Ben; Zhang, Yimin D.; Qin, Si; Amin, Moeness G.

    2016-05-01

    In this paper, we propose a nonstationary jammer suppression method for GPS receivers when the signals are sparsely sampled. Missing data samples induce noise-like artifacts in the time-frequency (TF) distribution and ambiguity function of the received signals, which lead to reduced capability and degraded performance in jammer signature estimation and excision. In the proposed method, a data-dependent TF kernel is utilized to mitigate the artifacts and sparse reconstruction methods are then applied to obtain instantaneous frequency (IF) estimation of the jammers. In addition, an error tolerance of the IF estimate is applied is applied to achieve robust jammer suppression performance in the presence of IF estimation inaccuracy.

  2. Nonstationary flow in the model channel of a ramjet engine in pulse-periodic energy supply

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2008-05-01

    A study has been made of the influence of the pulse-periodic supply of energy that is equal to the energy released in the combustion of hydrogen in air on the structure of supersonic flow in a channel of variable cross section, modeling the duct of a ramjet engine. The flow has been modeled on the basis of two-dimensional nonstationary gas-dynamic equations. Different flow regimes have been obtained depending on the configuration of the zones of energy supply and the excess-air coefficients.

  3. Optimizing a Military Supply Chain in the Presence of Random, Non-Stationary Demands

    DTIC Science & Technology

    2003-12-01

    supply chain that satisfies uncertain, non-stationary demands, while taking into account the volatility and singularity of military operations This research focuses on the development of a modeling framework that determines the optimal deployment of transportation assets and supplies at the operational level, with possible interdiction by enemy forces, We term this model, Optimal Military Logistics Supply Chain (OPTiMiLSC), This is a two-level, multiple time period scenario-based stochastic model OPTiMiLSC uses a combination of optimization,

  4. Diagnostics of many-particle electronic states: non-stationary currents and residual charge dynamics

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.

    2017-01-01

    We propose the method for identifying many particle electronic states in the system of coupled quantum dots (impurities) with Coulomb correlations. We demonstrate that different electronic states can be distinguished by the complex analysis of localized charge dynamics and non-stationary characteristics. We show that localized charge time evolution strongly depends on the properties of initial state and analyze different time scales in charge kinetics for initially prepared singlet and triplet states. We reveal the conditions for existence of charge trapping effects governed by the selection rules for electron transitions between the states with different occupation numbers.

  5. Comparison of symbol-rate detector and radiometer intercept receiver performances in a nonstationary environment

    NASA Astrophysics Data System (ADS)

    Reed, David E.

    The performances of radiometer and DMR (delay and multiply receiver) intercept receivers have been compared. Examples showing the detectability of direct-sequence spread-spectrum versus spreading ratio and noise fluctuation are given. Comparisons are also made between communicator performance and interceptor performance. It is shown that the DMR can give superior performance in an environment with nonstationary interference. This is achieved at the cost of higher complexity at the detector. Some of this performance gain can be nullified if the communicator uses filtering to defeat the DMR. Which detector is most appropriate depends on the target signal and the cost complexity trade.

  6. On the functional optimization of a certain class of nonstationary spatial functions

    USGS Publications Warehouse

    Christakos, G.; Paraskevopoulos, P.N.

    1987-01-01

    Procedures are developed in order to obtain optimal estimates of linear functionals for a wide class of nonstationary spatial functions. These procedures rely on well-established constrained minimum-norm criteria, and are applicable to multidimensional phenomena which are characterized by the so-called hypothesis of inherentity. The latter requires elimination of the polynomial, trend-related components of the spatial function leading to stationary quantities, and also it generates some interesting mathematics within the context of modelling and optimization in several dimensions. The arguments are illustrated using various examples, and a case study computed in detail. ?? 1987 Plenum Publishing Corporation.

  7. Application of a hybrid approach in nonstationary flood frequency analysis - a Polish perspective

    NASA Astrophysics Data System (ADS)

    Kochanek, K.; Strupczewski, W. G.; Bogdanowicz, E.; Feluch, W.; Markiewicz, I.

    2013-10-01

    The alleged changes in rivers' flow regime resulted in the surge in the methods of non-stationary flood frequency analysis (NFFA). The maximum likelihood method is said to produce big systematic errors in moments and quantiles resulting mainly from bad assumption of the model (model error) unless this model is the normal distribution. Since the estimators by the method of linear moments (L-moments) yield much lower model errors than those by the maximum likelihood, to improve the accuracy of the parameters and quantiles in non-stationary case, a new two-stage methodology of NFFA based on the concept of L-moments was developed. Despite taking advantage of the positive characteristics of L-moments, a new technique also allows to keep the calculations "distribution independent" as long as possible. These two stages consists in (1) least square estimation of trends in mean value and/or in standard deviation and "de-trendisation" of the time series and (2) estimation of parameters and quantiles by means of stationary sample with L-moments method and "re-trendisation" of quantiles. As a result time-dependent quantiles for a given time and return period can be calculated. The comparative results of Monte Carlo simulations confirmed the superiority of two-stage NFFA methodology over the classical maximum likelihood one. Further analysis of trends in GEV-parent-distributed generic time series by means of both NFFA methods revealed big differences between classical and two-stage estimators of trends got for the same data by the same model (GEV or Gumbel). Additionally, it turned out that the quantiles estimated by the methods of traditional stationary flood frequency analysis equal only to those non-stationary calculated for a strict middle of the time series. It proves that use of traditional stationary methods in conditions of variable regime is too much a simplification and leads to erroneous results. Therefore, when the phenomenon is non-stationary, so should be the

  8. Spectral partitioning in diffraction tomography

    SciTech Connect

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  9. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  10. Quantum Spectral Symmetries

    NASA Astrophysics Data System (ADS)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  11. Time-Spectral Rotorcraft Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.

    2014-01-01

    The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.

  12. An intelligent approach for variable size segmentation of non-stationary signals

    PubMed Central

    Azami, Hamed; Hassanpour, Hamid; Escudero, Javier; Sanei, Saeid

    2014-01-01

    In numerous signal processing applications, non-stationary signals should be segmented to piece-wise stationary epochs before being further analyzed. In this article, an enhanced segmentation method based on fractal dimension (FD) and evolutionary algorithms (EAs) for non-stationary signals, such as electroencephalogram (EEG), magnetoencephalogram (MEG) and electromyogram (EMG), is proposed. In the proposed approach, discrete wavelet transform (DWT) decomposes the signal into orthonormal time series with different frequency bands. Then, the FD of the decomposed signal is calculated within two sliding windows. The accuracy of the segmentation method depends on these parameters of FD. In this study, four EAs are used to increase the accuracy of segmentation method and choose acceptable parameters of the FD. These include particle swarm optimization (PSO), new PSO (NPSO), PSO with mutation, and bee colony optimization (BCO). The suggested methods are compared with other most popular approaches (improved nonlinear energy operator (INLEO), wavelet generalized likelihood ratio (WGLR), and Varri’s method) using synthetic signals, real EEG data, and the difference in the received photons of galactic objects. The results demonstrate the absolute superiority of the suggested approach. PMID:26425359

  13. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming

    2015-02-01

    The synchrosqueezing transform can effectively improve the readability of time-frequency representation of mono-component and constant frequency signals. However, for multi-component and time-variant frequency signals, it still suffers from time-frequency blurs. In order to address this issue, the synchrosqueezing transform is improved using iterative generalized demodulation. Firstly, the complex nonstationary signal is decomposed into mono-components of constant frequency by iterative generalized demodulation. Then, the instantaneous frequency of each mono-component is accurately estimated via the synchrosqueezing transform, by exploiting its merit of enhanced time-frequency resolution. Finally, the time-frequency representation of the original signal is obtained by superposing the time-frequency representations of all the mono-components with restored instantaneous frequency. This proposed method generalizes the synchrosqueezing transform to multi-component and time-variant frequency signals, and it has fine time-frequency resolution and is free of cross-term interferences. The proposed method was validated using both numerically simulated and lab experimental vibration signals of planetary gearboxes under nonstationary conditions. The time-variant planetary gearbox characteristic frequencies were effectively identified, and the gear faults were correctly diagnosed.

  14. Non-Stationary Hydrologic Frequency Analysis using B-Splines Quantile Regression

    NASA Astrophysics Data System (ADS)

    Nasri, B.; St-Hilaire, A.; Bouezmarni, T.; Ouarda, T.

    2015-12-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic structures and water resources system under the assumption of stationarity. However, with increasing evidence of changing climate, it is possible that the assumption of stationarity would no longer be valid and the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extreme flows based on B-Splines quantile regression, which allows to model non-stationary data that have a dependence on covariates. Such covariates may have linear or nonlinear dependence. A Markov Chain Monte Carlo (MCMC) algorithm is used to estimate quantiles and their posterior distributions. A coefficient of determination for quantiles regression is proposed to evaluate the estimation of the proposed model for each quantile level. The method is applied on annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in these variables and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for annual maximum and minimum discharge with high annual non-exceedance probabilities. Keywords: Quantile regression, B-Splines functions, MCMC, Streamflow, Climate indices, non-stationarity.

  15. Local multifractal detrended fluctuation analysis for non-stationary image's texture segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Zong-shou; Li, Jin-wei

    2014-12-01

    Feature extraction plays a great important role in image processing and pattern recognition. As a power tool, multifractal theory is recently employed for this job. However, traditional multifractal methods are proposed to analyze the objects with stationary measure and cannot for non-stationary measure. The works of this paper is twofold. First, the definition of stationary image and 2D image feature detection methods are proposed. Second, a novel feature extraction scheme for non-stationary image is proposed by local multifractal detrended fluctuation analysis (Local MF-DFA), which is based on 2D MF-DFA. A set of new multifractal descriptors, called local generalized Hurst exponent (Lhq) is defined to characterize the local scaling properties of textures. To test the proposed method, both the novel texture descriptor and other two multifractal indicators, namely, local Hölder coefficients based on capacity measure and multifractal dimension Dq based on multifractal differential box-counting (MDBC) method, are compared in segmentation experiments. The first experiment indicates that the segmentation results obtained by the proposed Lhq are better than the MDBC-based Dq slightly and superior to the local Hölder coefficients significantly. The results in the second experiment demonstrate that the Lhq can distinguish the texture images more effectively and provide more robust segmentations than the MDBC-based Dq significantly.

  16. Signal Restoration of Non-stationary Acoustic Signals in the Time Domain

    NASA Technical Reports Server (NTRS)

    Babkin, Alexander S.

    1988-01-01

    Signal restoration is a method of transforming a nonstationary signal acquired by a ground based microphone to an equivalent stationary signal. The benefit of the signal restoration is a simplification of the flight test requirements because it could dispense with the need to acquire acoustic data with another aircraft flying in concert with the rotorcraft. The data quality is also generally improved because the contamination of the signal by the propeller and wind noise is not present. The restoration methodology can also be combined with other data acquisition methods, such as a multiple linear microphone array for further improvement of the test results. The methodology and software are presented for performing the signal restoration in the time domain. The method has no restrictions on flight path geometry or flight regimes. Only requirement is that the aircraft spatial position be known relative to the microphone location and synchronized with the acoustic data. The restoration process assumes that the moving source radiates a stationary signal, which is then transformed into a nonstationary signal by various modulation processes. The restoration contains only the modulation due to the source motion.

  17. Non-stationary nonparametric inference of river-to-groundwater travel-time distributions

    NASA Astrophysics Data System (ADS)

    Liao, Zijie; Osenbrück, Karsten; Cirpka, Olaf A.

    2014-11-01

    The travel-time distribution between rivers and groundwater observation points and the mixing of freshly infiltrated river water with groundwater of other origin is of high relevance in riverbank filtration. These characteristics usually are inferred from the analysis of natural-tracer time series, typically relying on a stationary input-output relationship. However, non-stationarity is a significant feature of the riparian zone causing time-varying river-to-groundwater transfer functions. We present a non-stationary extension of nonparametric deconvolution by performing stationary deconvolution with windowed time series, enforcing smoothness of the determined transfer function in time and travel time. The nonparametric approach facilitates the identification of unconventional features in travel-time distributions, such as broad peaks, and the sliding-window approach is an easy way to accommodate the method to dynamic changes of the system under consideration. By this, we obtain time-varying signal-recovery rates and travel-time distributions, from which we derive the mean travel time and the spread of the distribution as function of time. We apply our method to electric-conductivity data collected at River Thur, Switzerland, and adjacent piezometers. The non-stationary approach reproduces the groundwater observations significantly better than the stationary one, both in terms of overall metrics and in matching individual peaks. We compare characteristics of the transient transfer function to base flow which indicates shorter travel times at higher river stages.

  18. On metastability and Markov state models for non-stationary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koltai, Péter; Ciccotti, Giovanni; Schütte, Christof

    2016-11-01

    Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t1, t2] if (a) most of the trajectories starting in A at t1 end up in B at t2 and (b) most of the trajectories arriving in B at t2 actually started from A at t1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.

  19. Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition.

    PubMed

    Salisbury, John I; Sun, Ying

    2004-10-01

    This study addressed the issue of assessing chaotic parameters from nonstationary electrocardiogram (ECG) signals. The empirical mode decomposition (EMD) was proposed as a method to extract intrinsic mode functions (IMFs) from ECG signals. Chaos analysis methods were then applied to the stationary IMFs without violating the underlying assumption of stationarity. Eight ECG data sets representing normal and various abnormal rhythms were obtained from the American Heart Associate Ventricular Arrhythmia database. The chaotic parameters including Lyapunov exponent, entropy, and correlation dimension were computed. The results consistently showed that the 10th IMF (IMF-10) was stationary and preserved sufficient nonlinearity of the ECG signals. Each IMF-10 from the data sets (n = 8) gave a positive dominate Lyapunov exponent (0.29-0.64, p < 0.0001), a positive entropy (0.039-0.061, p < 0.0001), and a noninteger correlation dimension (1.1-1.9). These were evidences of a chaotic dynamic system. We therefore concluded that the original ECG signals must also have chaotic properties. The chaotic parameters did not show significant differences among the eight data sets representing normal sinus rhythm and various abnormalities. This study has demonstrated an effective way to characterize nonlinearities in nonstationary ECG signals by combining the empirical mode decomposition and the chaos analysis methods.

  20. An intelligent approach for variable size segmentation of non-stationary signals.

    PubMed

    Azami, Hamed; Hassanpour, Hamid; Escudero, Javier; Sanei, Saeid

    2015-09-01

    In numerous signal processing applications, non-stationary signals should be segmented to piece-wise stationary epochs before being further analyzed. In this article, an enhanced segmentation method based on fractal dimension (FD) and evolutionary algorithms (EAs) for non-stationary signals, such as electroencephalogram (EEG), magnetoencephalogram (MEG) and electromyogram (EMG), is proposed. In the proposed approach, discrete wavelet transform (DWT) decomposes the signal into orthonormal time series with different frequency bands. Then, the FD of the decomposed signal is calculated within two sliding windows. The accuracy of the segmentation method depends on these parameters of FD. In this study, four EAs are used to increase the accuracy of segmentation method and choose acceptable parameters of the FD. These include particle swarm optimization (PSO), new PSO (NPSO), PSO with mutation, and bee colony optimization (BCO). The suggested methods are compared with other most popular approaches (improved nonlinear energy operator (INLEO), wavelet generalized likelihood ratio (WGLR), and Varri's method) using synthetic signals, real EEG data, and the difference in the received photons of galactic objects. The results demonstrate the absolute superiority of the suggested approach.

  1. A review on prognostic techniques for non-stationary and non-linear rotating systems

    NASA Astrophysics Data System (ADS)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  2. Nonstationary patterns of isolation-by-distance: inferring measures of local genetic differentiation with Bayesian kriging.

    PubMed

    Duforet-Frebourg, Nicolas; Blum, Michael G B

    2014-04-01

    Patterns of isolation-by-distance (IBD) arise when population differentiation increases with increasing geographic distances. Patterns of IBD are usually caused by local spatial dispersal, which explains why differences of allele frequencies between populations accumulate with distance. However, spatial variations of demographic parameters such as migration rate or population density can generate nonstationary patterns of IBD where the rate at which genetic differentiation accumulates varies across space. To characterize nonstationary patterns of IBD, we infer local genetic differentiation based on Bayesian kriging. Local genetic differentiation for a sampled population is defined as the average genetic differentiation between the sampled population and fictive neighboring populations. To avoid defining populations in advance, the method can also be applied at the scale of individuals making it relevant for landscape genetics. Inference of local genetic differentiation relies on a matrix of pairwise similarity or dissimilarity between populations or individuals such as matrices of FST between pairs of populations. Simulation studies show that maps of local genetic differentiation can reveal barriers to gene flow but also other patterns such as continuous variations of gene flow across habitat. The potential of the method is illustrated with two datasets: single nucleotide polymorphisms from human Swedish populations and dominant markers for alpine plant species.

  3. NONSTATIONARY PATTERNS OF ISOLATION-BY-DISTANCE: INFERRING MEASURES OF LOCAL GENETIC DIFFERENTIATION WITH BAYESIAN KRIGING

    PubMed Central

    Duforet-Frebourg, Nicolas; Blum, Michael GB

    2014-01-01

    Patterns of isolation-by-distance (IBD) arise when population differentiation increases with increasing geographic distances. Patterns of IBD are usually caused by local spatial dispersal, which explains why differences of allele frequencies between populations accumulate with distance. However, spatial variations of demographic parameters such as migration rate or population density can generate nonstationary patterns of IBD where the rate at which genetic differentiation accumulates varies across space. To characterize nonstationary patterns of IBD, we infer local genetic differentiation based on Bayesian kriging. Local genetic differentiation for a sampled population is defined as the average genetic differentiation between the sampled population and fictive neighboring populations. To avoid defining populations in advance, the method can also be applied at the scale of individuals making it relevant for landscape genetics. Inference of local genetic differentiation relies on a matrix of pairwise similarity or dissimilarity between populations or individuals such as matrices of FST between pairs of populations. Simulation studies show that maps of local genetic differentiation can reveal barriers to gene flow but also other patterns such as continuous variations of gene flow across habitat. The potential of the method is illustrated with two datasets: single nucleotide polymorphisms from human Swedish populations and dominant markers for alpine plant species. PMID:24372175

  4. Nonstationary shape activities: dynamic models for landmark shape change and applications.

    PubMed

    Das, Samarjit; Vaswani, Namrata

    2010-04-01

    Our goal is to develop statistical models for the shape change of a configuration of "landmark" points (key points of interest) over time and to use these models for filtering and tracking to automatically extract landmarks, synthesis, and change detection. The term "shape activity" was introduced in recent work to denote a particular stochastic model for the dynamics of landmark shapes (dynamics after global translation, scale, and rotation effects are normalized for). In that work, only models for stationary shape sequences were proposed. But most "activities" of a set of landmarks, e.g., running, jumping, or crawling, have large shape changes with respect to initial shape and hence are nonstationary. The key contribution of this work is a novel approach to define a generative model for both 2D and 3D nonstationary landmark shape sequences. Greatly improved performance using the proposed models is demonstrated for sequentially filtering noise-corrupted landmark configurations to compute Minimum Mean Procrustes Square Error (MMPSE) estimates of the true shape and for tracking human activity videos, i.e., for using the filtering to predict the locations of the landmarks (body parts) and using this prediction for faster and more accurate landmarks extraction from the current image.

  5. A novel data-driven learning method for radar target detection in nonstationary environments

    SciTech Connect

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    2016-04-12

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detect changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.

  6. A novel data-driven learning method for radar target detection in nonstationary environments

    DOE PAGES

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    2016-04-12

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  7. Detection and attribution of urbanization effect on flood extremes using nonstationary flood‐frequency models

    PubMed Central

    Kjeldsen, T. R.; Miller, J. D.

    2015-01-01

    Abstract This study investigates whether long‐term changes in observed series of high flows can be attributed to changes in land use via nonstationary flood‐frequency analyses. A point process characterization of threshold exceedances is used, which allows for direct inclusion of covariates in the model; as well as a nonstationary model for block maxima series. In particular, changes in annual, winter, and summer block maxima and peaks over threshold extracted from gauged instantaneous flows records in two hydrologically similar catchments located in proximity to one another in northern England are investigated. The study catchment is characterized by large increases in urbanization levels in recent decades, while the paired control catchment has remained undeveloped during the study period (1970–2010). To avoid the potential confounding effect of natural variability, a covariate which summarizes key climatological properties is included in the flood‐frequency model. A significant effect of the increasing urbanization levels on high flows is detected, in particular in the summer season. Point process models appear to be superior to block maxima models in their ability to detect the effect of the increase in urbanization levels on high flows. PMID:26877559

  8. Material reconstruction for spectral computed tomography with detector response function

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Gao, Hao

    2016-11-01

    Different from conventional computed tomography (CT), spectral CT using energy-resolved photon-counting detectors is able to provide the unprecedented material compositions. However accurate spectral CT needs to account for the detector response function (DRF), which is often distorted by factors such as pulse pileup and charge-sharing. In this work, we propose material reconstruction methods for spectral CT with DRF. The simulation results suggest that the proposed methods reconstructed more accurate material compositions than the conventional method without DRF. Moreover, the proposed linearized method with linear data fidelity from spectral resampling had improved reconstruction quality from the nonlinear method directly based on nonlinear data fidelity.

  9. A New View of Earthquake Ground Motion Data: The Hilbert Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Norden; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    A brief description of the newly developed Empirical Mode Decomposition (ENID) and Hilbert Spectral Analysis (HSA) method will be given. The decomposition is adaptive and can be applied to both nonlinear and nonstationary data. Example of the method applied to a sample earthquake record will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.

  10. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    NASA Astrophysics Data System (ADS)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  11. Some problems in the measurement of the frequency-resolving ability of hearing.

    PubMed

    Supin, A Ya

    2005-10-01

    Despite the detailed development of masking methods for measurement of the frequency selectivity of hearing, these measurements are hardly used for diagnostic purposes because they are time-consuming and because of the uncertain extrapolation of the results to the perception of complex spectral patterns. A method for the direct measurement of the spectral resolving ability of hearing using test signals with rippled spectra is proposed. These measurements showed 1) that the resolving ability of the auditory system in terms of discriminating complex spectra is greater than that suggested by the acuity of auditory frequency filters; 2) that changes in the acuity of frequency auditory filters associated with sound intensity hardly affect the ability to resolve complex spectra; 3) that the effects of interference on frequency-resolving ability do not lead to decreases in the spectral contrast of signals due to superimposition of noise.

  12. Time-Resolved Hard X-Ray Spectrometer

    SciTech Connect

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-03-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  13. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  14. Depth resolved detection of lipid using spectroscopic optical coherence tomography

    PubMed Central

    Fleming, Christine P.; Eckert, Jocelyn; Halpern, Elkan F.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images. PMID:24009991

  15. Gradient pattern analysis of short nonstationary time series: an application to Lagrangian data from satellite tracked drifters

    NASA Astrophysics Data System (ADS)

    Assireu, A. T.; Rosa, R. R.; Vijaykumar, N. L.; Lorenzzetti, J. A.; Rempel, E. L.; Ramos, F. M.; Abreu Sá, L. D.; Bolzan, M. J. A.; Zanandrea, A.

    2002-08-01

    Based on the gradient pattern analysis (GPA) technique we introduce a new methodology for analyzing short nonstationary time series. Using the asymmetric amplitude fragmentation (AAF) operator from GPA we analyze Lagrangian data observed as velocity time series for ocean flow. The results show that quasi-periodic, chaotic and turbulent regimes can be well characterized by means of this new geometrical approach.

  16. Suppressing non-stationary random noise in microseismic data by using ensemble empirical mode decomposition and permutation entropy

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Liang, Yong-Quan; Hua, Yu-Cong; Sun, Hong-Mei; Xia, Fang-Fang

    2016-10-01

    Microseismic signal is inevitably mixed with non-stationary random noise in the process of acquisition, which is difficult to be separated from non-stationary random noise by using the traditional methods of linear filtering and spectrum analysis. Thus a suppressing method of non-stationary random noise is proposed. It firstly conducts the multi-scale decomposition of microseismic signal containing noises based on ensemble empirical mode decomposition (EEMD). Several components of Intrinsic Mode Functions (IMFs) are obtained and they are arranged in descending order according to their frequencies. In order to accurately identify the signals and noises in these IMF components and compare the normal microseismic signals with noises, the quantity of permutation entropy is introduced to describe the characteristics of normal microseismic signal. The threshold value of permutation entropy is used to extract the IMF components conforming to the characteristics of microseismic signal. These IMF components are reconstructed to suppress the noise. Through simulation and the test for the practical microseismic monitoring data, it is indicated that the method has a better treatment effect for non-stationary random noise in microseismic signal.

  17. A Critical Examination of Wind-Wave Spectral Functional Form

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Long, Steven R.

    1999-01-01

    Traditionally, data from random ocean waves are presented in spectral functions. The spectra are the result of Fourier analysis. Fourier spectral analysis has dominated data analysis for, at least, the last hundred years. It has been the standard method for is examining the global amplitude-frequency distributions. Although Fourier transform valid under extremely general conditions, there are some crucial restrictions for the Fourier spectral analysis. The system must be linear, and the data must be stationary- otherwise, the resulting spectrum will make little physical sense. The stationarity requirement is also a common required criterion for most of other available data analysis methods. Nevertheless, few, if any, natural phenomena are linear and stationary. To compound these complications is the imperfection of our probes or numerical schemes the interactions of the imperfect probes even with a perfect linear system can make the final data nonlinear. Furthermore, all the available data are usually of finite duration. Under these conditions, Fourier analysis is of limited use, For lack of alternatives, however, Fourier analysis is still used to process such data. The loose application of Fourier analysis and the insouciant adoption of the stationary and linear assumptions may lead to misleading conclusions. Ocean waves are know to be nonlinear, and the wind system generating the wave field are seldom stationary- As a result, the traditional examination of the spectral form hardly made physical sense. A new method for analyzing nonlinear and nonstationary data has been developed. The key part is the Empirical Mode Decomposition (EMD) method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that serve as the basis of the representation of the data, This decomposition method is adaptive, and, therefore, highly efficient. The IMFs admit well-behaved Hilbert transforms, and yield instantaneous

  18. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Vousdoukas, Michalis; Voukouvalas, Evangelos; Sartini, Ludovica; Feyen, Luc; Besio, Giovanni; Alfieri, Lorenzo

    2016-09-01

    Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are

  19. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    NASA Astrophysics Data System (ADS)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  20. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    NASA Astrophysics Data System (ADS)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-01-01

    Historical records are an important source of information about extreme and rare floods with a great value to establish a reliable flood return frequency. The use of long historic records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 year flood record from the Tagus River in Aranjuez (Central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their implications on hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations on flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation index (NAO index). Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators; (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, that incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  1. Non-stationary resonance dynamics of a nonlinear sonic vacuum with grounding supports

    NASA Astrophysics Data System (ADS)

    Koroleva (Kikot), I. P.; Manevitch, L. I.; Vakakis, Alexander F.

    2015-11-01

    In a recent work [L.I. Manevitch, A.F.Vakakis, Nonlinear oscillatory acoustic vacuum, SIAM Journal of Applied Mathematics 74(6) (2014), 1742-1762] it was shown that a periodic chain of linearly coupled particles performing low-energy in-plane transverse oscillations behaves as a strongly nonlinear sonic vacuum (with corresponding speed of sound equal to zero). In this work we consider the grounded version of this system by coupling each particle to the ground through lateral springs in order to study the effect of the grounding stiffness on the strongly nonlinear dynamics. In that context we consider the simplest possible such system consisting of two coupled particles and present analytical and numerical studies of the non-stationary planar dynamics. The most significant limiting case corresponding to predominant low energy transversal excitations is considered by taking into account leading order geometric nonlinearities. Then we show that the grounded system behaves as a nonlinear sonic vacuum due to the purely cubic stiffness nonlinearities in the governing equations of motion and the complete absence of any linear stiffness terms. Under certain assumptions the nonlinear normal modes (i.e., the time-periodic nonlinear oscillations) in the configuration space of this system coincide with those of the corresponding linear one, so they obey the same orthogonality relations. Moreover, we analytically find that there are two transitions in the dynamics of this system, with the parameter governing these transitions being the relation between the lateral (grounding) and the interchain stiffnesses. The first transition concerns a bifurcation of one of the nonlinear normal modes (NNMs), whereas the second provides conditions for intense energy transfers and mixing between the NNMs. The drastic effects of these bifurcations on the non-stationary resonant dynamics are discussed. Specifically, the second transition relates to strongly non-stationary dynamics, and signifies

  2. Momentum Resolved Radio Frequency Spectroscopy in Trapped Fermi Gases

    SciTech Connect

    Chen Qijin; Levin, K.

    2009-05-15

    We address recent momentum-resolved radio frequency (rf) spectroscopy experiments, showing how they yield more stringent tests than other comparisons with theory, associated with the ultracold Fermi gases. We demonstrate that, by providing a clear dispersion signature of pairing, they remove the ambiguity plaguing the interpretation of previous rf experiments. Our calculated spectral intensities are in semiquantitative agreement with the data. Even in the presence of a trap, the spectra are predicted to exhibit two BCS-like branches.

  3. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  4. A nonstationary Markov transition model for computing the relative risk of dementia before death.

    PubMed

    Yu, Lei; Griffith, William S; Tyas, Suzanne L; Snowdon, David A; Kryscio, Richard J

    2010-03-15

    This paper investigates the long-term behavior of the k-step transition probability matrix for a nonstationary discrete-time Markov chain in the context of modeling transitions from intact cognition to dementia with mild cognitive impairment and global impairment as intervening cognitive states. The authors derive formulas for the following absorption statistics: (1) the relative risk of absorption between competing absorbing states and (2) the mean and variance of the number of visits among the transient states before absorption. As absorption is not guaranteed, sufficient conditions are discussed to ensure that the substochastic matrix associated with transitions among transient states converges to zero in limit. Results are illustrated with an application to the Nun Study, a cohort of 678 participants, 75-107 years of age, followed longitudinally with up to 10 cognitive assessments over a 15-year period.

  5. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  6. Stabilization of hydrocarbon fuel combustion by non-stationary electric field

    NASA Astrophysics Data System (ADS)

    Kozulin, V. S.; Tretyakov, P. K.; Tupikin, A. V.

    2016-10-01

    The research results of a non-stationary weak electric field effect on diffusion combustion of gas hydrocarbons are presented in the paper. The main attention was focused on the study of electric field parameters effect on a flame stabilization. The two field types were considered: pulse-periodic and with variable direction of an electric vector. In the experiments the direct photography and the video shooting were used, as well as the spectrozonal photography of the own flame luminescence (at the wavelengths of excited OH* and CH* radicals emission). It was shown that the stabilization zone tends to the place of the largest electric field strength. The rotation of the electric vector leads to the flame stabilization in the electrodes plane and the local intensification of combustion.

  7. INCA: a computational platform for isotopically non-stationary metabolic flux analysis.

    PubMed

    Young, Jamey D

    2014-05-01

    13C flux analysis studies have become an essential component of metabolic engineering research. The scope of these studies has gradually expanded to include both isotopically steady-state and transient labeling experiments, the latter of which are uniquely applicable to photosynthetic organisms and slow-to-label mammalian cell cultures. Isotopomer network compartmental analysis (INCA) is the first publicly available software package that can perform both steady-state metabolic flux analysis and isotopically non-stationary metabolic flux analysis. The software provides a framework for comprehensive analysis of metabolic networks using mass balances and elementary metabolite unit balances. The generation of balance equations and their computational solution is completely automated and can be performed on networks of arbitrary complexity.

  8. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  9. Quantum radiation of Maxwell’s electromagnetic field in nonstationary Kerr-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.

    2016-03-01

    Quantum radiation properties of nonstationary Kerr-de Sitter (KdS) black hole is investigated using the method of generalized tortoise coordinate transformation. The locations of horizons and the temperature of the thermal radiation as well as the maximum energy of the nonthermal radiation are derived. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Maxwell’s electromagnetic field equations which is absent in the thermal radiation spectrum of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the nonthermal radiation for KdS black hole. It is also shown that the generalized tortoise coordinate transformation produces a constant term in the expression of the surface gravity and Hawking temperature.

  10. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  11. Quantifying two-dimensional nonstationary signal with power-law correlations by detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Fan, Qingju; Wu, Yonghong

    2015-08-01

    In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.

  12. Nonstationary precipitation Intensity-Duration-Frequency curves for infrastructure design in a changing climate.

    PubMed

    Cheng, Linyin; AghaKouchak, Amir

    2014-11-18

    Extreme climatic events are growing more severe and frequent, calling into question how prepared our infrastructure is to deal with these changes. Current infrastructure design is primarily based on precipitation Intensity-Duration-Frequency (IDF) curves with the so-called stationary assumption, meaning extremes will not vary significantly over time. However, climate change is expected to alter climatic extremes, a concept termed nonstationarity. Here we show that given nonstationarity, current IDF curves can substantially underestimate precipitation extremes and thus, they may not be suitable for infrastructure design in a changing climate. We show that a stationary climate assumption may lead to underestimation of extreme precipitation by as much as 60%, which increases the flood risk and failure risk in infrastructure systems. We then present a generalized framework for estimating nonstationary IDF curves and their uncertainties using Bayesian inference. The methodology can potentially be integrated in future design concepts.

  13. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate

    PubMed Central

    Cheng, Linyin; AghaKouchak, Amir

    2014-01-01

    Extreme climatic events are growing more severe and frequent, calling into question how prepared our infrastructure is to deal with these changes. Current infrastructure design is primarily based on precipitation Intensity-Duration-Frequency (IDF) curves with the so-called stationary assumption, meaning extremes will not vary significantly over time. However, climate change is expected to alter climatic extremes, a concept termed nonstationarity. Here we show that given nonstationarity, current IDF curves can substantially underestimate precipitation extremes and thus, they may not be suitable for infrastructure design in a changing climate. We show that a stationary climate assumption may lead to underestimation of extreme precipitation by as much as 60%, which increases the flood risk and failure risk in infrastructure systems. We then present a generalized framework for estimating nonstationary IDF curves and their uncertainties using Bayesian inference. The methodology can potentially be integrated in future design concepts. PMID:25403227

  14. Ion-acoustic waves in a nonstationary ultra-cold neutral plasma

    SciTech Connect

    Mendonca, J. T.; Shukla, P. K.

    2011-04-15

    We consider the excitation and dispersion of electrostatic ion-acoustic (IA) waves in a nonstationary ultra-cold neutral plasma (UCNP). This can be seen as an extension of time-refraction models of photons and plasmons to the case of low-frequency IA waves in the UCNP. It is shown that temporal changes in the medium lead to a frequency-shift of the IA wave, and to the emission of the IA waves propagating in a direction opposite to each other. We consider an arbitrary temporal variation of the background plasma density, and determine the transmission and reflection coefficients. We also consider the influence of a fast ionization process, assumed inhomogeneous in volume and show that it excites a well-defined spectrum of ion-acoustic waves, which agree very well with a recent experimental observation.

  15. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Cheng, Linyin; Aghakouchak, Amir

    2014-11-01

    Extreme climatic events are growing more severe and frequent, calling into question how prepared our infrastructure is to deal with these changes. Current infrastructure design is primarily based on precipitation Intensity-Duration-Frequency (IDF) curves with the so-called stationary assumption, meaning extremes will not vary significantly over time. However, climate change is expected to alter climatic extremes, a concept termed nonstationarity. Here we show that given nonstationarity, current IDF curves can substantially underestimate precipitation extremes and thus, they may not be suitable for infrastructure design in a changing climate. We show that a stationary climate assumption may lead to underestimation of extreme precipitation by as much as 60%, which increases the flood risk and failure risk in infrastructure systems. We then present a generalized framework for estimating nonstationary IDF curves and their uncertainties using Bayesian inference. The methodology can potentially be integrated in future design concepts.

  16. Scaling in non-stationary time series. (II). Teen birth phenomenon

    NASA Astrophysics Data System (ADS)

    Ignaccolo, M.; Allegrini, P.; Grigolini, P.; Hamilton, P.; West, B. J.

    2004-05-01

    This paper is devoted to the problem of statistical mechanics raised by the analysis of an issue of sociological interest: the teen birth phenomenon. It is expected that these data are characterized by correlated fluctuations, reflecting the cooperative properties of the process. However, the assessment of the anomalous scaling generated by these correlations is made difficult, and ambiguous as well, by the non-stationary nature of the data that shows a clear dependence on seasonal periodicity (periodic component) and an average changing slowly in time (slow component) as well. We use the detrending techniques described in the companion paper [The earlier companion paper], to safely remove all the biases and to derive the genuine scaling of the teen birth phenomenon.

  17. EM algorithm applied for estimating non-stationary region boundaries using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Khambampati, A. K.; Rashid, A.; Kim, B. S.; Liu, Dong; Kim, S.; Kim, K. Y.

    2010-04-01

    EIT has been used for the dynamic estimation of organ boundaries. One specific application in this context is the estimation of lung boundaries during pulmonary circulation. This would help track the size and shape of lungs of the patients suffering from diseases like pulmonary edema and acute respiratory failure (ARF). The dynamic boundary estimation of the lungs can also be utilized to set and control the air volume and pressure delivered to the patients during artificial ventilation. In this paper, the expectation-maximization (EM) algorithm is used as an inverse algorithm to estimate the non-stationary lung boundary. The uncertainties caused in Kalman-type filters due to inaccurate selection of model parameters are overcome using EM algorithm. Numerical experiments using chest shaped geometry are carried out with proposed method and the performance is compared with extended Kalman filter (EKF). Results show superior performance of EM in estimation of the lung boundary.

  18. Non-stationary Generation of Weak Turbulence for Very Stable and Weak-Wind Conditions

    NASA Astrophysics Data System (ADS)

    Mahrt, Larry; Thomas, Christoph; Richardson, Scott; Seaman, Nelson; Stauffer, David; Zeeman, Matthias

    2013-05-01

    Turbulence measurements for very stable conditions near the surface are contrasted among three sites: a high altitude basin during winter with grass or snow-covered grass, a broad valley with complex agricultural land use, and a more narrow valley that is influenced by a valley cold pool and cold air drainage. In contrast to previous studies, this investigation emphasizes the very weak turbulence with large bulk Richardson number occurring during extensive periods between brief mixing events. The relationship of the turbulence to the non-stationary wind and stratification is examined along with the impact of short-term flow accelerations, directional shear and downward diffusion of turbulence from higher levels. The failure of the turbulence for strong stratification to decrease with further increase of stratification is explored. Additional analyses are applied to weak-wind cases for the entire range of stratification, including weak stratification associated with cloudy conditions.

  19. Covariance of nonstationary sodium current fluctuations at the node of Ranvier.

    PubMed Central

    Sigworth, F J

    1981-01-01

    A theory is presented which relates the nonstationary autocovariance (covariance) function to the kinetics of independently-gated ionic channels. The experimental covariance was calculated from ensembles of 256--504 current records elicited from single, voltage-clamped, frog myelinated nerve fibers. Analysis of the covariance shows that the decay of channels from conducting to nonconducting states proceeds more slowly late in a depolarization to near 0 mV, as compared with early in the same depolarization. This behavior is inconsistent with there being only one kinetic state corresponding to the open channel. The behavior can be explained by the existence of multiple kinetic states corresponding to the open channel, or, alternatively, by the existence of multiple, kinetically distinct populations of channels. PMID:6260261

  20. Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups

    NASA Astrophysics Data System (ADS)

    Speckbacher, Michael; Balazs, Peter

    2015-10-01

    In this paper we introduce and investigate the concept of reproducing pairs as a generalization of continuous frames. Reproducing pairs yield a bounded analysis and synthesis process while the frame condition can be omitted at both stages. Moreover, we will investigate certain continuous frames (resp. reproducing pairs) on LCA groups, which can be described as a continuous version of nonstationary Gabor systems and state sufficient conditions for these systems to form a continuous frame (resp. reproducing pair). As a byproduct we identify the structure of the frame operator (resp. resolution operator). We will apply our results to systems generated by a unitary action of a subset of the affine Weyl-Heisenberg group in {L}2({{R}}). This setup will also serve as a nontrivial example of a system for which, whereas continuous frames exist, no dual system with the same structure exists even if we drop the frame property.

  1. Stability of nonstationary solutions of the generalized KdV-Burgers equation

    NASA Astrophysics Data System (ADS)

    Chugainova, A. P.; Shargatov, V. A.

    2015-02-01

    The stability of nonstationary solutions to the Cauchy problem for a model equation with a complex nonlinearity, dispersion, and dissipation is analyzed. The equation describes the propagation of nonlinear longitudinal waves in rods. Previously, complex behavior of traveling waves was found, which can be treated as discontinuity structures in solutions of the same equation without dissipation and dispersion. As a result, the solutions of standard self-similar problems constructed as a sequence of Riemann waves and shocks with a stationary structure become multivalued. The multivaluedness of the solutions is attributed to special discontinuities caused by the large effect of dispersion in conjunction with viscosity. The stability of special discontinuities in the case of varying dispersion and dissipation parameters is analyzed numerically. The computations performed concern the stability analysis of a special discontinuity propagating through a layer with varying dispersion and dissipation parameters.

  2. A copula-based nonstationary frequency analysis for the 2012-2015 drought in California

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Lall, Upmanu

    2016-07-01

    Using a multicentury reconstruction of drought, we investigate how rare the 2012-2015 California drought is. A Bayesian approach to a nonstationary, bivariate probabilistic model, including the estimation of copula parameters is used to assess the time-varying return period of the current drought. Both the duration and severity of drought exhibit similar multicentury trends. The period from 800 to 1200 A.D. was perhaps more similar to the recent period than the period from 1200 to 1800 A.D. The median return period of the recent drought accounting for both duration and severity, varies from approximately 667-2652 years, if the model parameters from the different time periods are considered. However, we find that the recent California drought is of unprecedented severity, especially given the relatively modest duration of the drought. The return period of the severity of the recent drought given its 4 year duration is estimated to be nearly 21,000 years.

  3. Non-stationary time series modeling on caterpillars pest of palm oil for early warning system

    NASA Astrophysics Data System (ADS)

    Setiyowati, Susi; Nugraha, Rida F.; Mukhaiyar, Utriweni

    2015-12-01

    The oil palm production has an important role for the plantation and economic sector in Indonesia. One of the important problems in the cultivation of oil palm plantation is pests which causes damage to the quality of fruits. The caterpillar pest which feed palm tree's leaves will cause decline in quality of palm oil production. Early warning system is needed to minimize losses due to this pest. Here, we applied non-stationary time series modeling, especially the family of autoregressive models to predict the number of pests based on its historical data. We realized that there is some uniqueness of these pests data, i.e. the spike value that occur almost periodically. Through some simulations and case study, we obtain that the selection of constant factor has a significance influence to the model so that it can shoot the spikes value precisely.

  4. A New Family of Interpolatory Non-Stationary Subdivision Schemes for Curve Design in Geometric Modeling

    NASA Astrophysics Data System (ADS)

    Conti, Costanza; Romani, Lucia

    2010-09-01

    Univariate subdivision schemes are efficient iterative methods to generate smooth limit curves starting from a sequence of arbitrary points. Aim of this paper is to present and investigate a new family of 6-point interpolatory non-stationary subdivision schemes capable of reproducing important curves of great interest in geometric modeling and engineering applications, if starting from uniformly spaced initial samples. This new family can reproduce conic sections since it is obtained by a parameter depending affine combination of the cubic exponential B-spline symbol generating functions in the space V4,γ = {1,x,etx,e-tx} with t∈{0,s,is|s>0}. Moreover, the free parameter can be chosen to reproduce also other interesting analytic curves by imposing the algebraic conditions for the reproduction of an additional pair of exponential polynomials giving rise to different extensions of the space V4,γ.

  5. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  6. A climate informed model for nonstationary flood risk prediction: Application to Negro River at Manaus, Amazonia

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara J.; Devineni, Naresh

    2015-03-01

    Historically, flood risk management and flood frequency modeling have been based on assumption of stationarity, i.e., flood probabilities are invariant across years. However, it is now recognized that in many places, extreme floods are associated with specific climate states which may recur with non-uniform probability across years. Conditional on knowledge of the operating climate regime, the probability of a flood of a certain magnitude can be higher or lower in a given year. Here we explore nonstationary flood risk for the streamflow series of the Negro River at the city of Manaus in Brazil by investigating climate teleconnections associated with the interannual variability of the peak flows. We evaluate attributes and the fit of a generalized extreme value (GEV) distribution with nonstationary parameters to the annual peak series of the Negro River stages. The annual peak flood occurs between May and July and its magnitude depends on the Negro River stage at the beginning of the year and on the previous December sea surface temperature (SST) of a region in the tropical Pacific Ocean. A statistically significant monotonic trend is also observed in the peak level series. The indexing of the parameters of a GEV distribution to the NINO3 index and to the observed river stage at the beginning of the year reveals a changing flood hazard for the city, with the joint occurrence of high values associated with La Niña conditions in the previous December and high river stages in January preceding the flood season. The proposed model is shown to be useful for quantifying the changing flood hazard several months in advance for Manaus, thus providing an early flood alert system for the city and may be an important tool for the dynamic flood risk management for the region.

  7. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series

    PubMed Central

    Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael

    2014-01-01

    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and

  8. A Non-Stationary 1981-2015 AVHRR NDVI3g Time Series

    NASA Astrophysics Data System (ADS)

    Pinzon, J. E.

    2015-12-01

    Long-term records of vegetation indices from Earth Observing instruments play a major role in monitoring terrestrial ecosystems and further our understanding on the varying effects of climate on vegetation. We describe 34+ years of an improved non-stationary 8-km normalized difference vegetation index (NDVI) produced from Advanced Very High Resolution Radiometer (AVHRR) instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA) and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of ± 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set.

  9. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  10. Non-stationary rainfall and natural flows modeling at the watershed scale

    NASA Astrophysics Data System (ADS)

    Egüen, M.; Aguilar, C.; Solari, S.; Losada, M. A.

    2016-07-01

    In areas in which natural water resources are variable over time, tools that determine the probability distribution of hydrological variables are required to evaluate various management alternatives. In this article, a stochastic simulation framework of hydrological variables through atmospheric pressure modeling is proposed. This methodology employs the mean value of the atmospheric pressure in the winter to differentiate the wet, medium and dry years in terms of rainfall and flow at different temporal scales. Monthly mean and daily maximum rainfall and flow data series are stochastically replicated. To achieve this replication, a non-stationary parametric mixture distribution model that combines a Weibull and a Normal distribution is fitted to the univariate distribution of the atmospheric pressure. This model includes interannual variability through two covariables: extraterrestrial solar radiation and the NAO index. This model is applied to the Guadalete River Basin in southern Spain, in which the river flow regime is influenced by the highly seasonal precipitation regime typically found in the Mediterranean area. The non-stationary parametric mixture distribution model with the two covariables showed a good fit to the observed sea level pressure, displaying an important reduction on the BIC. A good correlation was obtained between the average sea level pressure in winter and the accumulated precipitation and flow (r = -0.8 for monthly values and -0.6 for maximum daily values). The statistical similarity indicated that the synthetic series of precipitation and flow preserved the distribution trends in the observed data. The identical methodology can be applied in other watersheds once the direct relationship between the mean atmospheric pressure and the hydrology of the area is known.

  11. Shortwave Spectral Radiative Forcing of Cumulus Clouds from Surface Observations

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Long, Charles N.; Flynn, Connor J.

    2011-04-02

    The spectral changes of the total cloud radiative forcing (CRF) and its diffuse and direct components are examined by using spectrally resolved (visible spectral range) all-sky surface irradiances measured by Multi-Filter Rotating Shadowband Radiometer. We demonstrate: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and can be applied for estimation of the shortwave total CRF.

  12. Sub pixel location identification using super resolved multilooking CHRIS data

    NASA Astrophysics Data System (ADS)

    Sahithi, V. S.; Agrawal, S.

    2014-11-01

    CHRIS /Proba is a multiviewing hyperspectral sensor that monitors the earth in five different zenith angles +55°, +36°, nadir, -36° and -55° with a spatial resolution of 17 m and within a spectral range of 400-1050 nm in mode 3. These multiviewing images are suitable for constructing a super resolved high resolution image that can reveal the mixed pixel of the hyperspectral image. In the present work, an attempt is made to find the location of various features constituted within the 17m mixed pixel of the CHRIS image using various super resolution reconstruction techniques. Four different super resolution reconstruction techniques namely interpolation, iterative back projection, projection on to convex sets (POCS) and robust super resolution were tried on the -36, nadir and +36 images to construct a super resolved high resolution 5.6 m image. The results of super resolution reconstruction were compared with the scaled nadir image and bicubic convoluted image for comparision of the spatial and spectral property preservance. A support vector machine classification of the best super resolved high resolution image was performed to analyse the location of the sub pixel features. Validation of the obtained results was performed using the spectral unmixing fraction images and the 5.6 m classified LISS IV image.

  13. RESOLVING THE MOTH AT MILLIMETER WAVELENGTHS

    SciTech Connect

    Ricarte, Angelo; Moldvai, Noel; Hughes, A. Meredith; Duchene, Gaspard; Williams, Jonathan P.; Andrews, Sean M.; Wilner, David J.

    2013-09-01

    HD 61005, also known as ''The Moth'', is one of only a handful of debris disks that exhibit swept-back ''wings'' thought to be caused by interaction with the ambient interstellar medium (ISM). We present 1.3 mm Submillimeter Array observations of the debris disk around HD 61005 at a spatial resolution of 1.''9 that resolve the emission from large grains for the first time. The disk exhibits a double-peaked morphology at millimeter wavelengths, consistent with an optically thin ring viewed close to edge-on. To investigate the disk structure and the properties of the dust grains we simultaneously model the spatially resolved 1.3 mm visibilities and the unresolved spectral energy distribution (SED). The temperatures indicated by the SED are consistent with expected temperatures for grains close to the blowout size located at radii commensurate with the millimeter and scattered light data. We also perform a visibility-domain analysis of the spatial distribution of millimeter-wavelength flux, incorporating constraints on the disk geometry from scattered light imaging, and find suggestive evidence of wavelength-dependent structure. The millimeter-wavelength emission apparently originates predominantly from the thin ring component rather than tracing the ''wings'' observed in scattered light. The implied segregation of large dust grains in the ring is consistent with an ISM-driven origin for the scattered light wings.

  14. Digital phantoms generated by spectral and spatial light modulators

    PubMed Central

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-01-01

    Abstract. A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications. PMID:26502383

  15. Digital phantoms generated by spectral and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-12-01

    A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications.

  16. RESOLVE and ECO: Survey Design

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Moffett, Amanda J.; Norris, Mark A.; Eckert, Kathleen D.; Stark, David; Berlind, Andreas A.; Snyder, Elaine M.; Norman, Dara J.; Hoversten, Erik A.; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of stellar, gas, and dynamical mass as well as star formation and galaxy interactions within >50,000 cubic Mpc of the nearby cosmic web, reaching down to dwarf galaxies of baryonic mass ~10^9 Msun and spanning multiple large-scale filaments, walls, and voids. RESOLVE is surrounded by the ~10x larger Environmental COntext (ECO) catalog, with matched custom photometry and environment metrics enabling analysis of cosmic variance with greater statistical power. For the ~1500 galaxies in its two equatorial footprints, RESOLVE goes beyond ECO in providing (i) deep 21cm data with adaptive sensitivity ensuring HI mass detections or upper limits <10% of the stellar mass and (ii) 3D optical spectroscopy including both high-resolution ionized gas or stellar kinematic data for each galaxy and broad 320-725nm spectroscopy spanning [OII] 3727, Halpha, and Hbeta. RESOLVE is designed to complement other radio and optical surveys in providing diverse, contiguous, and uniform local/global environment data as well as unusually high completeness extending into the gas-dominated dwarf galaxy regime. RESOLVE also offers superb reprocessed photometry including full, deep NUV coverage and synergy with other equatorial surveys as well as unique northern and southern facilities such as Arecibo, the GBT, and ALMA. The RESOLVE and ECO surveys have been supported by funding from NSF grants AST-0955368 and OCI-1156614.

  17. Ocean wavenumber estimation from wave-resolving time series imagery

    USGS Publications Warehouse

    Plant, N.G.; Holland, K.T.; Haller, M.C.

    2008-01-01

    We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.

  18. PHL 5038: a spatially resolved white dwarf + brown dwarf binary

    NASA Astrophysics Data System (ADS)

    Steele, P. R.; Burleigh, M. R.; Farihi, J.; Gänsicke, B. T.; Jameson, R. F.; Dobbie, P. D.; Barstow, M. A.

    2009-06-01

    A near-infrared excess is detected at the white dwarf PHL 5038 in UKIDSS photometry, consistent with the presence of a cool, substellar companion. We have obtained H- and K-grism spectra and images of PHL 5038 using NIRI on Gemini North. The target is spatially and spectrally resolved into two components: an 8000 K DA white dwarf, and a likely L8 brown dwarf companion, separated by 0.94 arcsec. The spectral type of the secondary was determined using standard spectral indices for late L and T dwarfs. The projected orbital separation of the binary is 55 AU, so it becomes only the second known wide WD+dL binary to be found after GD 165AB. This object could potentially be used as a benchmark for testing substellar evolutionary models at intermediate to older ages.

  19. Evaluating Spectral Signals to Identify Spectral Error

    PubMed Central

    Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana

    2016-01-01

    Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541

  20. New type of wavelet-based spectral analysis by which modes with different toroidal mode number are separated

    NASA Astrophysics Data System (ADS)

    Ohdachi, S.

    2016-11-01

    A new type of wavelet-based analysis for the magnetic fluctuations by which toroidal mode number can be resolved is proposed. By using a wavelet, having a different phase toroidally, a spectrogram with a specific toroidal mode number can be obtained. When this analysis is applied to the measurement of the fluctuations observed in the large helical device, MHD activities having similar frequency in the laboratory frame can be separated from the difference of the toroidal mode number. It is useful for the non-stationary MHD activity. This method is usable when the toroidal magnetic probes are not symmetrically distributed.

  1. ALMA resolves SN 1987A's dust factory and particle accelerator

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; SN1987A ALMA Cycle 0 Team

    2014-01-01

    SN1987A in the Large Magellanic Cloud is the closest supernova to earth to be observed since 1604, making it a unique laboratory to study supernova physics in real time. Among SN87A's remarkable properties are a very large mass of new dust forming in the supernova ejecta. This dust was inferred from Herschel data, but its location not proven since Herschel could not resolve the 1.8" diameter remnant. Another mystery is whether the explosion left behind a neutron star - neither pulsar nor pulsar wind nebula has been detected so far. Excess emission from a PWN should be easiest to detect at millimeter wavelengths, if it can be spatially resolved from the synchrotron-emitting supernova shock. We present the first spatially resolved images of SN1987A at 450um, 870um, and 1.4mm, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). ALMA resolves emission from the newly formed dust, unambiguously locating it within the ejecta, interior to the reverse shock. The shocked ring is also well-resolved, and separated spatially from the ejecta. The ring shows no spectral break compared to centimeter wavelengths, and no free-free or PWN emission is required to explain the data. We discuss physical properties of the components of the remnant determined from these high resolution ALMA images.

  2. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  3. Kinetics of local "magnetic" moment and non-stationary spin-polarized current in the single impurity Anderson-model

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.

    2017-02-01

    We perform theoretical investigation of the localized state dynamics in the presence of interaction with the reservoir and Coulomb correlations. We analyze kinetic equations for electron occupation numbers with different spins taking into account high order correlation functions for the localized electrons. We reveal that in the stationary state electron occupation numbers with the opposite spins always have the same value - the stationary state is a "paramagnetic" one. "Magnetic" properties can appear only in the non-stationary characteristics of the single-impurity Anderson model and in the dynamics of the localized electrons second order correlation functions. We found, that for deep energy levels and strong Coulomb correlations, relaxation time for initial "magnetic" state can be several orders larger than for "paramagnetic" one. So, long-living "magnetic" moment can exist in the system. We also found non-stationary spin polarized currents flowing in opposite directions for the different spins in the particular time interval.

  4. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    SciTech Connect

    Zentner, I.; Ferré, G.; Poirion, F.; Benoit, M.

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated by applications to earthquakes (seismic ground motion) and sea states (wave heights).

  5. New Tortoise Coordinate and Hawking Radiation of Dirac Particles in a Non-stationary Kerr-Newman Black Hole

    NASA Astrophysics Data System (ADS)

    Lan, Xiao-Gang

    2012-04-01

    The Hawking effect of Dirac particles in a non-stationary Kerr-Newman black hole is investigated using an improved Damour-Ruffini method with a new tortoise coordinate transformation. In contrast with the old tortoise coordinate, the new one satisfies the dimensional requirement. It is interesting to note that the Hawking emission spectrum remains a blackbody one with a correction term ξ existing in the Hawking temperature. Compared with the old tortoise coordinate transformation, our results appears more accurate and reliable.

  6. Seismic response of structures: from non-stationary to non-linear effects

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Mucciarelli, Marco; Smith, Tobias

    2013-04-01

    The need for an effective seismic protection of buildings, and all the problems related to their management and maintenance over time, have led to a growing interest associated to develop of new integrated techniques for structural health monitoring and for damage detection and location during both ambient vibration and seismic events. It is well known that the occurrence of damage on any kind of structure is able to modify its dynamic characteristics. Indeed, the main parameters affected by the changes in stiffness characteristics are: periods of vibration, mode shapes and all the related equivalent viscous damping factors. With the aim to evaluate structural dynamic characteristics, their variation over time and after earthquakes, several Non Destructive Evaluation (NDE) methods have been proposed in the last years. Most of these are based on simplified relationship that provide the maximum inter-story drift evaluated combining structural variations in terms of: peak ground acceleration and/or structural eigenfrequencies and/or equivalent viscous damping factors related the main modes of the monitored structure. The NDE methods can be classified into four different levels. The progress of the level increases the quality and the number of the information. The most popular are certainly Level I methods being simple in implementation and economic in management. These kinds of methods are mainly based on the fast variation (less than 1 minute) of the structural fundamental frequency and the related variation of the equivalent viscous damping factor. Generally, it is possible to distinguish two types of variations: the long term variations, which may also be linked to external factors (temperature change, water content in the foundation soils, etc.) and short period variations (for example, due to seismic events), where apparent frequencies variations could occurred due to non-stationary phenomena (particular combination of input and structural response). In these

  7. Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali

    PubMed Central

    Medina, Daniel C.; Findley, Sally E.; Guindo, Boubacar; Doumbia, Seydou

    2007-01-01

    Background Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. Methodology/Principal Findings In this longitudinal retrospective (01/1996–06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. Conclusions/Significance The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby

  8. Non-stationary and Trend Assessment of Flash Flood in the Carolinas

    NASA Astrophysics Data System (ADS)

    Samadi, S.; Martin, T.; Meadows, M.

    2015-12-01

    Evidence that frequency of flash flood is increasing at the global scale has strengthened considerably in recent years. Our study provides insight into how changes in maximum precipitation and large-scale atmospheric circulations modulated the modes of regional scale short- and long-term flood magnitudes during last several decades (i.e.1920-2015) in North and South Carolina. The non-stationary univariate/bivariate extreme value analysis (EVA) models were fit to the short-term (5-day and 11-day) and long-term (monthly, seasonal and annual) maximum flows by incorporating linear/non-linear combination of covariates like maximum precipitation and large scale atmospheric circulations (the El Niño-Southern Oscillation (ENSO) teleconnection and Pacific Decadal Oscillation (PDO)). Eleven of 13 piedmont and the coastal plain gauges show upward trends in short-term (5-day and 11-day) flood magnitudes with changes in the location (mean), scale (standard deviation) and shape (skewness) parameters of the probability distribution. In addition, the trend and nonstationarity in annual flood magnitudes of mountain gauges are monotonically positive potentially leading to increased rainfall induced annual floods. Incorporating large scale covariates in the functionality of the EVA procedure indicated a lagged positive relationship between fall to early winter ENSO and PDO with winter (Jan- Mar) flood magnitudes and frequency. Many study gauges show evidence for step increases in flood frequency around 1940 and 1980 for long- and short-term periods of major catchments in the Carolinas. Our study further used copulas to model the bivariate dependence between ENSO and flood anomaly and the trivariate dependence between ENSO, PDO, and flood anomaly. Both the bivariate and trivariate copulas resulted with almost the same interquartile ranges and simultaneously predicted flood magnitude and frequency. Our results indicated that the greatest monotonic trends occurred in both short

  9. Can We Identify Non-Stationary Dynamics of Trial-to-Trial Variability?

    PubMed Central

    Balaguer-Ballester, Emili; Tabas-Diaz, Alejandro; Budka, Marcin

    2014-01-01

    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial

  10. Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices

    NASA Astrophysics Data System (ADS)

    Russo, S.; Dosio, A.; Sterl, A.; Barbosa, P.; Vogt, J.

    2013-07-01

    The probabilities of the occurrence of extreme dry/wet years and seasons in Europe are estimated by using two ways of the Standardized Precipitation Index (SPI and SPI-GEV) and the Standardized Nonstationary Precipitation Index (SnsPI). The latter is defined as the SPI by fitting precipitation data with a nonstationary Gamma distribution in order to model the precipitation time dependence under climate change. Bias-corrected daily precipitation outputs from five different regional climate models (RCMs) provided by the ENSEMBLES project are used. The five RCMs are selected so as to represent the main statistical properties of the whole ENSEMBLES set and the most extreme deviation from the ensemble mean. All indicators are calculated for the ensemble of the five models over the period 1971-2098. Results show that under global warming, climate in Europe will significantly change from its current state with the probability of the occurrence of extreme dry and wet years and seasons increasing, respectively, over southern dry and northern wet regions. Comparing nonstationary and stationary indices, the SnsPI is found to be more robust than the common SPI in the prediction of precipitation changes with multimodel ensembles.

  11. Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling.

    PubMed

    Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka

    2013-01-01

    Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment.

  12. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train - A contemporary survey

    NASA Astrophysics Data System (ADS)

    Uma Maheswari, R.; Umamaheswari, R.

    2017-02-01

    Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.

  13. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems.

    PubMed

    Park, Jeryang; Rao, P Suresh C

    2014-11-15

    We present here a conceptual model and analysis of complex systems using hypothetical cases of regime shifts resulting from temporal non-stationarity in attractor strengths, and then present selected published cases to illustrate such regime shifts in hydrologic systems (shallow aquatic ecosystems; water table shifts; soil salinization). Complex systems are dynamic and can exist in two or more stable states (or regimes). Temporal variations in state variables occur in response to fluctuations in external forcing, which are modulated by interactions among internal processes. Combined effects of external forcing and non-stationary strengths of alternative attractors can lead to shifts from original to alternate regimes. In systems with bi-stable states, when the strengths of two competing attractors are constant in time, or are non-stationary but change in a linear fashion, regime shifts are found to be temporally stationary and only controlled by the characteristics of the external forcing. However, when attractor strengths change in time non-linearly or vary stochastically, regime shifts in complex systems are characterized by non-stationary probability density functions (pdfs). We briefly discuss implications and challenges to prediction and management of hydrologic complex systems.

  14. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  15. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  16. Spectral collocation methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.

    1987-01-01

    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

  17. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  18. Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements.

    PubMed

    Kumar, Deepak; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael; Tarrio, Charles; Grantham, Steven

    2010-10-01

    A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 Å and has a resolving capability of δλ/λ on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

  19. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  20. Resolving boosted jets with XCone

    NASA Astrophysics Data System (ADS)

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm [1] smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  1. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on Atlas 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Dougani, H.; Swift, W.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory (ISO) on the ATLAS I mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v' = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of + 10%, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v' = 5 level is not observed although there is a suggestion of depletion in v' = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  2. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Fellows, C. W.; Dougani, H.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory on the ATLAS 1 mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v-prime = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of +/- 10 percent, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v-prime = 5 level is not observed although there is a suggestion of depletion in v-prime = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  3. Reconstruction of nonstationary sound fields based on the time domain plane wave superposition method.

    PubMed

    Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude

    2012-10-01

    A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.

  4. Deviations from Equilibrium in Daytime Atmospheric Boundary Layer Turbulence arising from Nonstationary Mesoscale Forcing

    NASA Astrophysics Data System (ADS)

    Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared

    2016-11-01

    LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.

  5. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Havlin, Shlomo; Stanley, H. Eugene; Goldberger, Ary L.

    1995-03-01

    The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state [Physiol. Rev. 9, 399-431 (1929)]. However, recent studies [Phys. Rev. Lett. 70, 1343-1346 (1993); Fractals in Biology and Medicine (Birkhauser-Verlag, Basel, 1994), pp. 55-65] reveal that under normal conditions, beat-to-beat fluctuations in heart rate display the kind of long-range correlations typically exhibited by dynamical systems far from equilibrium [Phys. Rev. Lett. 59, 381-384 (1987)]. In contrast, heart rate time series from patients with severe congestive heart failure show a breakdown of this long-range correlation behavior. We describe a new method—detrended fluctuation analysis (DFA)—for quantifying this correlation property in non-stationary physiological time series. Application of this technique shows evidence for a crossover phenomenon associated with a change in short and long-range scaling exponents. This method may be of use in distinguishing healthy from pathologic data sets based on differences in these scaling properties.

  6. Time-reversal symmetry in nonstationary Markov processes with application to some fluctuation theorems.

    PubMed

    Van Vliet, Carolyne M

    2012-11-01

    Nonequilibrium processes require that the density operator of an interacting system with Hamiltonian H(t) = H(0)(t)+λV converges and produces entropy. Employing projection operators in the state space, the density operator is developed to all orders of perturbation and then resummed. In contrast to earlier treatments by Van Hove [Physica 21, 517 (1955)] and others [U. Fano, Rev. Mod. Phys. 29, 74 (1959); U. Fano, in Lectures on the Many-Body Problem, Vol 2, edited by E. R. Caniello (Academic Press, New York, 1964); R. Zwanzig, in Lectures in Theoretical Physics, Vol. III, edited by W. E. Britten, B. W. Downs, and J. Downs (Wiley Interscience, New York, 1961), pp. 116-141; K. M. Van Vliet, J. Math. Phys. 19, 1345 (1978); K. M. Van Vliet, Can. J. Phys. 56, 1206 (1978)], closed expressions are obtained. From these we establish the time-reversal symmetry property P(γ,t|γ',t') = Pγ',t'|γ,t), where the tilde refers to the time-reversed protocol; also a nonstationary Markovian master equation is derived. Time-reversal symmetry is then applied to thermostatted systems yielding the Crooks-Tasaki fluctuation theorem (FT) and the quantum Jarzynski work-energy theorem, as well as the general entropy FT. The quantum mechanical concepts of work and entropy are discussed in detail. Finally, we present a nonequilibrium extension of Mazo's lemma of linear response theory, obtaining some applications via this alternate route.

  7. A fast nonstationary iterative method with convex penalty for inverse problems in Hilbert spaces

    NASA Astrophysics Data System (ADS)

    Jin, Qinian; Lu, Xiliang

    2014-04-01

    In this paper we consider the computation of approximate solutions for inverse problems in Hilbert spaces. In order to capture the special feature of solutions, non-smooth convex functions are introduced as penalty terms. By exploiting the Hilbert space structure of the underlying problems, we propose a fast iterative regularization method which reduces to the classical nonstationary iterated Tikhonov regularization when the penalty term is chosen to be the square of norm. Each iteration of the method consists of two steps: the first step involves only the operator from the problem while the second step involves only the penalty term. This splitting character has the advantage of making the computation efficient. In case the data is corrupted by noise, a stopping rule is proposed to terminate the method and the corresponding regularization property is established. Finally, we test the performance of the method by reporting various numerical simulations, including the image deblurring, the determination of source term in Poisson equation, and the de-autoconvolution problem.

  8. A new adaptive multiple modelling approach for non-linear and non-stationary systems

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gong, Yu; Hong, Xia

    2016-07-01

    This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

  9. Hawking radiation of stationary and non-stationary Kerr-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Singh, T. Ibungochouba

    2015-07-01

    Hawking radiation of the stationary Kerr-de Sitter black hole is investigated using the relativistic Hamilton-Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr-de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.

  10. Multipactor threshold calculation of coaxial transmission lines in microwave applications with nonstationary statistical theory

    SciTech Connect

    Lin, S.; Li, Y.; Liu, C.; Wang, H.; Zhang, N.; Cui, W.; Neuber, A.

    2015-08-15

    This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration of their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio.

  11. Numerical simulation of precessing vortex core dumping by localized nonstationary heat source

    NASA Astrophysics Data System (ADS)

    Porfiriev, Denis; Gorbunova, Anastasiya; Zavershinsky, Igor; Sugak, Semen; Molevich, Nonna

    2016-10-01

    The precessing vortex core (PVC) is a crucial structure for many technical devices with the heat release. For this purpose, we performed the 3D numerical simulations of PVC in the swirling flow created in the open tube with the paraxial nonstationary heat source. Power of the source was modulated by sinusoidal law. We showed that three turbulence models give the qualitatively similar dependences of PVC frequency and amplitude on the heat-source power. The numerical simulation demonstrated that the obtained PVC is a left-handed co-rotated bending single-vortex structure. For considered values of the swirl and mass flow rate, we obtained that, for wide range of modulation frequencies, the growth of the heat-source power leads to gradual increase in the PVC frequency and slow change in the amplitude of vortex core oscillations. However, for specific modulation frequency, which depends on the tube geometry, dependencies of the PVC frequency and the amplitudes of oscillations have distinct maximum and minimum. Which means that, under specific conditions, flow pattern changes dramatically and precession is almost dumped at the relatively low values of heat power.

  12. Multipactor threshold calculation of coaxial transmission lines in microwave applications with nonstationary statistical theory

    NASA Astrophysics Data System (ADS)

    Lin, S.; Wang, H.; Li, Y.; Liu, C.; Zhang, N.; Cui, W.; Neuber, A.

    2015-08-01

    This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration of their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio.

  13. Nonstationary analysis of geomagnetic time sequences from Mount Etna and North Palm Springs earthquake

    NASA Astrophysics Data System (ADS)

    Fedi, M.; La Manna, M.; Palmieri, F.

    2003-10-01

    Volcanomagnetic and/or seismomagnetic effects are geomagnetic variations generated before eruptions and/or seismic events. Our aim is to analyze geomagnetic time series to detect the volcanomagnetic and/or seismomagnetic effects among a number of other variations. Two advanced signal-processing techniques are proposed to analyze the geomagnetic time series. The first technique, called Continuous Wavelet Transform Singularity Analysis (CWTSA), is based on the Continuous Wavelet Transform; the second, called Time-Variant Statistical Analysis of Nonstationary Signals (TVANS), is based on a time-varying adaptive algorithm (Recursive Least Squares). Both techniques are very effective in detecting the geomagnetic variations at the time instants likely linked to volcanic and/or seismic activity. The application of these methodologies to geomagnetic time sequences, respectively, recorded on Mount Etna during the volcanic activity of 1981 and in North Palm Springs during the seismic events of 8 July 1986 yields a good correspondence between events detected by both techniques and volcanic end seismic events. The statistical significance of geomagnetic time series was also assessed to verify the obtained results from CWTSA and TVANS. It was defined at significance level of 95% in the wavelet power spectrum for the difference of the geomagnetic time series aiming at distinguishing the most "significant" events when they are upon this one.

  14. Determination of hydraulic fracture parameters using a non-stationary fluid injection

    NASA Astrophysics Data System (ADS)

    Valov, A. V.; Golovin, S. V.

    2016-06-01

    In this paper, one provides a theoretical justification of the possibility of hydraulic fracture parameters determination by using a non-stationary fluid injection. It is assumed that the fluid is pumped into the fractured well with the time-periodic flow rate. It is shown that there is a phase shift between waves of fluid pressure and velocity. For the modelling purposes, the length and width of the fracture are assumed to be fixed. In the case of infinite fracture, one constructs an exact solution that ensures analytical determination of the phase shift in terms of the physical parameters of the problem. In the numerical calculation, the phase shift between pressure and velocity waves is found for a finite fracture. It is shown that the value of the phase shift depends on the physical parameters and on the fracture geometry. This makes it possible to determine parameters of hydraulic fracture, in particular its length, by the experimental measurement of the time shift and comparison with the numerical solution.

  15. Asymmetry Spectrum Analysis of ADCP Data and Characterization of Tidal Currents Non-Stationary Dynamics

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Viana, M.; Barbosa, E.; Vijaykumar, N.; Menezes, V.; Zanandrea, A.; Bolzan, M.; Ramos, F.

    The northeast Brazilian shelf is characterized by the presence of a rich suite of quartz sand bedforms having heights of 3-10 m and 100-4000 m crest lengths which are clearly visible by satellite imagery up to 40 m depth The impact of the kilometer-scale bedform fields generated by currents and waves in a time scale of decades to centuries strongly modifies ocean circulation patterns in the shallow shelf through bottom interactions Recent analysis of the tidal band obtained from the Acoustic Doppler Current Profiler ADCP data suggests the presence of a nonlinear interaction of the subtidal and the tidal variability In this paper the tidal and long-period bands are analyzed from sep 2000 to nov 2001 from a hybrid approach combining the gradient pattern analysis and discrete wavelet decomposition The asymmetry spectrum amplitude asymmetries versus characteristic frequencies is a robust and alternative method for short time series complex variability characterization From the asymmetry spectrum slope the underlying dynamics as turbulence deterministic chaos reaction-diffusion and hybrid regimes can be well characterized From this analysis it can be stated that a reactive-diffusive regime can be responsible for the intermittency and coherent structures present observed in non-stationary multi-scaling tidal currents dynamics In the context of these results new insights on remote sensing improvements related to fine characterization of tidal current extended dynamics are discussed

  16. Spatial and temporal stream temperature prediction: Modeling nonstationary temporal covariance structures

    NASA Astrophysics Data System (ADS)

    Gardner, Beth; Sullivan, Patrick J.

    2004-01-01

    Stream temperature is a measure of water quality and directly influences both the biotic and abiotic dynamics within the aquatic system. Because of its importance, there is a need to find better methods of monitoring and modeling stream temperatures. [2003] derived a networked geostatistical model to explain the spatial patterns of stream temperatures based on 72 temperature loggers recording stream temperatures hourly throughout the Beaverkill watershed network, New York, for a single time period. Because temperatures and temperature relationships between stream sections change over the season, the covariance structure of the system is likely also to change with time. The covariance structure of stream temperature data collected throughout the month of July was examined and found to be nonstationary temporally. However, the observed changes in the covariance structure were found to be highly dependent on main stem stream temperatures over time. Five nested correlation models were created and compared using Mallow's Cp. One model representing large-scale variation in the sill as a linear function of the main stem temperature for each day was selected as the most parsimonious model.

  17. Estimating Consumption to Biomass Ratio in Non-Stationary Harvested Fish Populations

    PubMed Central

    Wiff, Rodrigo; Roa-Ureta, Ruben H.; Borchers, David L.; Milessi, Andrés C.; Barrientos, Mauricio A.

    2015-01-01

    The food consumption to biomass ratio (C) is one of the most important population parameters in ecosystem modelling because its quantifies the interactions between predator and prey. Existing models for estimating C in fish populations are per-recruit cohort models or empirical models, valid only for stationary populations. Moreover, empirical models lack theoretical support. Here we develop a theory and derive a general modelling framework to estimate C in fish populations, based on length frequency data and the generalised von Bertalanffy growth function, in which models for stationary populations with a stable-age distributions are special cases. Estimates using our method are compared with estimates from per-recruit cohort models for C using simulated harvested fish populations of different lifespans. The models proposed here are also applied to three fish populations that are targets of commercial fisheries in southern Chile. Uncertainty in the estimation of C was evaluated using a resampling approach. Simulations showed that stationary and non-stationary population models produce different estimates for C and those differences depend on the lifespan, fishing mortality and recruitment variations. Estimates of C using the new model exhibited smoother inter-annual variation in comparison with a per-recruit model estimates and they were also smaller than C predicted by the empirical equations in all population assessed. PMID:26528721

  18. Analysis of non-stationary turbulent flows using Multivariate EMD and Matching Pursuits

    NASA Astrophysics Data System (ADS)

    Mohan, Arvind; Agostini, Lionel; Gaitonde, Datta; Visbal, Miguel

    2016-11-01

    Time-series analysis of highly transient non-stationary turbulent flow is challenging. Traditional Fourier based techniques are generally difficult to apply because of the highly aperiodic nature of the data. Another significant obstacle is assimilating multivariate data, such as multiple variables at a location or from different sources in a flow-field. Such an analysis has the potential to identify sensitive events common among these sources. In this work, we explore two techniques to address these challenges - Multivariate Empirical Mode Decomposition and Matching Pursuits, on deep dynamic stall of a plunging airfoil in a mixed laminar-transitional-turbulent regime. Although primarily used for neuroscience applications, we use them in fluid mechanics and highlight their significant potential to overcome limitations of more traditional techniques. Application of these methods highlight different stages in the development of stall. A first stage shows development of 2-D boundary layer oscillations at frequencies similar to those associated with trailing edge vortices. Subsequently, new instabilities arise due to imminent separation. The separation bubble itself is characterized by relatively higher frequency content, and further analysis indicates its 3-D collapse.

  19. Practical methods for noise removal: applications to spikes, nonstationary quasi-periodic noise, and baseline drift.

    PubMed

    Feuerstein, Delphine; Parker, Kim H; Boutelle, Martyn G

    2009-06-15

    A new approach to signal processing of analytical time-domain data is presented. It consists in identifying the types of noise, characterizing them, and subsequently subtracting them from the otherwise unprocessed data set. The algorithms have been successfully applied to three classes of noise commonly found in analytical signals: spikes, ripples, and baseline drift. Traditional filters have been used as an intermediary step to detect and remove spikes in the signal with 96.8% success. Adaptive ensemble average subtraction has been developed to remove nonstationary ripples that have similar time scales as the signal of interest. This method increased the signal-to-noise ratio by up to 250% and led to minimal distortion of the signal, unlike conventional Fourier filters. Finally the removal of baseline drift has been achieved by subtraction of a mathematical model for the baseline. These three methods are generic, computationally fast, and applicable to a wide range of analytical techniques. Full Matlab codes and examples are included as Supporting Information.

  20. Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes

    DOE PAGES

    Cheng, L.; Phillips, T. J.; AghaKouchak, A.

    2015-05-01

    The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less