Sample records for resonance imaging pattern

  1. Role of Magnetic Resonance Imaging Targeted Biopsy in Detection of Prostate Cancer Harboring Adverse Pathological Features of Intraductal Carcinoma and Invasive Cribriform Carcinoma.

    PubMed

    Prendeville, Susan; Gertner, Mark; Maganti, Manjula; Pintilie, Melania; Perlis, Nathan; Toi, Ants; Evans, Andrew J; Finelli, Antonio; van der Kwast, Theodorus H; Ghai, Sangeet

    2018-07-01

    The aim of this study was to compare biopsy detection of intraductal and cribriform pattern invasive prostate carcinoma in multiparametric magnetic resonance imaging positive and negative regions of the prostate. We queried a prospectively maintained, single institution database to identify patients who underwent multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy and concurrent systematic sextant biopsy of magnetic resonance imaging negative regions between January 2013 and May 2016. All multiparametric magnetic resonance imaging targets were reviewed retrospectively by 2 readers for the PI-RADS™ (Prostate Imaging-Reporting and Data System), version 2 score, the maximum dimension, the apparent diffusion coefficient parameter and whether positive or negative on dynamic contrast enhancement sequence. Biopsy slides were reviewed by 2 urological pathologists for Gleason score/Grade Group and the presence or absence of an intraductal/cribriform pattern. A total of 154 patients were included in study. Multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy and systematic sextant biopsy of magnetic resonance imaging negative regions were negative for prostate carcinoma in 51 patients, leaving 103 available for the correlation of multiparametric magnetic resonance imaging and the intraductal/cribriform pattern. Prostate carcinoma was identified by multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy in 93 cases and by systematic sextant biopsy of magnetic resonance imaging negative regions in 76 (p = 0.008). Intraductal/cribriform positive tumor was detected in 23 cases, including at the multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy site in 22 and at the systematic sextant biopsy of magnetic resonance imaging negative region site in 3 (p <0.001). The intraductal/cribriform pattern was significantly associated with a PI-RADS score of 5 and a decreasing apparent diffusion coefficient value (p = 0.008 and 0.005, respectively). In 19 of the 23 cases with the intraductal/cribriform pattern prior 12-core standard systematic biopsy was negative in 8 and showed Grade Group 1 disease in 11. Multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy was associated with significantly increased detection of intraductal/cribriform positive prostate carcinoma compared to systematic sextant biopsy of multiparametric magnetic resonance imaging negative regions. This supports the role of magnetic resonance imaging to enhance the detection of clinically aggressive intraductal/cribriform positive prostate carcinoma. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Unusual scarring patterns on cardiac magnetic resonance imaging: A potentially treatable etiology not to be missed.

    PubMed

    Jordan, Andrew; Lyne, Jonathan; Wong, Tom

    2010-04-01

    A case of cardiomyopathy and ventricular tachycardia previously assumed to be idiopathic in origin is described. Investigation with cardiac magnetic resonance imaging prompted the diagnosis and successful treatment of an underlying disorder based on typical scarring patterns seen with late gadolinium enhancement. The present report suggests that clinicians should have a low threshold for actively excluding this condition in patients presenting with cardiomyopathy, even in the absence of other disease features, particularly if typical scarring patterns are found on cardiac magnetic resonance imaging because disease-specific therapy appears to significantly improve both symptoms and prognosis.

  3. Circumferential resection margin positivity after preoperative chemoradiotherapy based on magnetic resonance imaging for locally advanced rectal cancer: implication of boost radiotherapy to the involved mesorectal fascia.

    PubMed

    Kim, Kyung Hwan; Park, Min Jung; Lim, Joon Seok; Kim, Nam Kyu; Min, Byung Soh; Ahn, Joong Bae; Kim, Tae Il; Kim, Ho Geun; Koom, Woong Sub

    2016-04-01

    To identify patients who are at a higher risk of pathologic circumferential resection margin involvement using preoperative magnetic resonance imaging. Between October 2008 and November 2012, 165 patients with locally advanced rectal cancer (cT4 or cT3 with <2 mm distance from tumour to mesorectal fascia) who received preoperative chemoradiotherapy were analysed. The morphologic patterns on post-chemoradiotherapy magnetic resonance imaging were categorized into five patterns from Pattern A (most-likely negative pathologic circumferential resection margin) to Pattern E (most-likely positive pathologic circumferential resection margin). In addition, the location of mesorectal fascia involvement was classified as lateral, posterior and anterior. The diagnostic accuracy of the morphologic criteria was calculated using receiver operating characteristic curve analysis. Pathologic circumferential resection margin involvement was identified in 17 patients (10.3%). The diagnostic accuracy of predicting pathologic circumferential resection margin involvement was 0.73 using the five-scale magnetic resonance imaging pattern. The sensitivity, specificity, positive predictive value and negative predictive value for predicting pathologic circumferential resection margin involvement were 76.5, 65.5, 20.3 and 96.0%, respectively, when cut-off was set between Patterns C and D. On multivariate logistic regression, the magnetic resonance imaging patterns D and E (P= 0.005) and posterior or lateral mesorectal fascia involvement (P= 0.017) were independently associated with increased probability of pathologic circumferential resection margin involvement. The rate of pathologic circumferential resection margin involvement was 30.0% when the patient had Pattern D or E with posterior or lateral mesorectal fascia involvement. Patients who are at a higher risk of pathologic circumferential resection margin involvement can be identified using preoperative magnetic resonance imaging although the predictability is moderate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    PubMed

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  5. Near-Resonant Imaging of Trapped Cold Atomic Samples

    PubMed Central

    You, L.; Lewenstein, Maciej

    1996-01-01

    We study the formation of diffraction patterns in the near-resonant imaging of trapped cold atomic samples. We show that the spatial imaging can provide detailed information on the trapped atomic clouds. PMID:27805110

  6. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype.

    PubMed

    Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K

    2014-02-01

    Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review.

    PubMed

    Leung, Doris G

    2017-07-01

    A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.

  8. MR imaging of magnetic ink patterns via off-resonance sensitivity.

    PubMed

    Perkins, Stephanie L; Daniel, Bruce L; Hargreaves, Brian A

    2018-03-30

    Printed magnetic ink creates predictable B 0 field perturbations based on printed shape and magnetic susceptibility. This can be exploited for contrast in MR imaging techniques that are sensitized to off-resonance. The purpose of this work was to characterize the susceptibility variations of magnetic ink and demonstrate its application for creating MR-visible skin markings. The magnetic susceptibility of the ink was estimated by comparing acquired and simulated B 0 field maps of a custom-built phantom. The phantom was also imaged using a 3D gradient echo sequence with a presaturation pulse tuned to different frequencies, which adjusts the range of suppressed frequencies. Healthy volunteers with a magnetic ink pattern pressed to the skin or magnetic ink temporary flexible adhesives applied to the skin were similarly imaged. The volume-average magnetic susceptibility of the ink was estimated to be 131 ± 3 parts per million across a 1-mm isotropic voxel (13,100 parts per million assuming a 10-μm thickness of printed ink). Adjusting the saturation frequency highlights different off-resonant regions created by the ink patterns; for example, if tuned to suppress fat, fat suppression will fail near the ink due to the off-resonance. This causes magnetic ink skin markings placed over a region with underlying subcutaneous fat to be visible on MR images. Patterns printed with magnetic ink can be imaged and identified with MRI. Temporary flexible skin adhesives printed with magnetic ink have the potential to be used as skin markings that are visible both by eye and on MR images. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging.

    PubMed

    Slowik, T J; Green, B L; Thorvilson, H G

    1997-01-01

    Red imported fire ant (Solenopsis invicta) workers, queens, and alates were analyzed by magnetic resonance imaging (MRI) for the presence of natural magnetism. Images of ants showed distortion patterns similar to those of honey bees and monarch butterflies, both of which possess ferromagnetic material. The bipolar ring patterns of MRI indicated the presence in fire ants of small amounts of internal magnetic material, which may be used in orientation behaviors, as in the honey bees.

  10. Advanced neuroimaging techniques for the term newborn with encephalopathy.

    PubMed

    Chau, Vann; Poskitt, Kenneth John; Miller, Steven Paul

    2009-03-01

    Neonatal encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period and of long-term neurodevelopmental disability in survivors. Advanced magnetic resonance techniques now play a major role in the clinical care of newborns with encephalopathy and in research addressing this important condition. From conventional magnetic resonance imaging, typical patterns of injury have been defined in neonatal encephalopathy. When applied in contemporary cohorts of newborns with encephalopathy, the patterns of brain injury on magnetic resonance imaging distinguish risk factors, clinical presentation, and risk of abnormal outcome. Advanced magnetic resonance techniques such as magnetic resonance spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging provide novel perspectives on neonatal brain metabolism, microstructure, and connectivity. With the application of these imaging tools, it is increasingly apparent that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. These observations have complemented findings from trials of emerging strategies of brain protection, such as hypothermia. Application of these advanced magnetic resonance techniques may enable the earliest possible identification of newborns at risk of neurodevelopmental impairment, thereby ensuring appropriate follow-up with rehabilitation and psychoeducational resources.

  11. Improving image-quality of interference fringes of out-of-plane vibration using temporal speckle pattern interferometry and standard deviation for piezoelectric plates.

    PubMed

    Chien-Ching Ma; Ching-Yuan Chang

    2013-07-01

    Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.

  12. Magnetic resonance imaging findings of the pancreas in patients with Shwachman-Diamond syndrome and mutations in the SBDS gene.

    PubMed

    Toiviainen-Salo, Sanna; Raade, Merja; Durie, Peter R; Ip, Wan; Marttinen, Eino; Savilahti, Erkki; Mäkitie, Outi

    2008-03-01

    Pancreatic MRI was evaluated in 14 patients with a clinical diagnosis of Shwachman-Diamond syndrome, and the findings were correlated with Shwachman-Bodian-Diamond gene (SBDS) genotype. The findings suggest that patients with mutations in the SBDS gene have a characteristic magnetic resonance imaging pattern of fat-replaced pancreas and that SBDS mutations are unlikely in patients without this pattern.

  13. Amplitude-integrated EEG in newborns with critical congenital heart disease predicts preoperative brain magnetic resonance imaging findings.

    PubMed

    Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T

    2015-06-01

    The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Intraventricular mass lesions at magnetic resonance imaging: iconographic essay - part 1*

    PubMed Central

    de Castro, Felipe Damásio; Reis, Fabiano; Guerra, José Guilherme Giocondo

    2014-01-01

    The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (ependymoma, pilocytic astrocytoma, central neurocytoma, ganglioglioma, choroid plexus papilloma, primitive neuroectodermal tumors, meningioma, epidermoid tumor). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some image patterns that may facilitate the differential diagnosis. PMID:25741075

  15. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology

    PubMed Central

    Kolasinski, James; Chance, Steven A.; DeLuca, Gabriele C.; Esiri, Margaret M.; Chang, Eun-Hyuk; Palace, Jacqueline A.; McNab, Jennifer A.; Jenkinson, Mark; Miller, Karla L.; Johansen-Berg, Heidi

    2012-01-01

    Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional anatomical connectivity to the spread of multiple sclerosis pathology in a ‘tract-specific’ pattern. Furthermore, the persisting relationship between metrics from post-mortem diffusion-weighted magnetic resonance imaging and histological measures from fixed tissue further validates the potential of imaging for future neuropathological studies. PMID:23065787

  16. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  17. Functional Magnetic Resonance Imaging of Cognitive Processing in Young Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Jacola, Lisa M.; Byars, Anna W.; Chalfonte-Evans, Melinda; Schmithorst, Vincent J.; Hickey, Fran; Patterson, Bonnie; Hotze, Stephanie; Vannest, Jennifer; Chiu, Chung-Yiu; Holland, Scott K.; Schapiro, Mark B.

    2011-01-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate neural activation during a semantic-classification/object-recognition task in 13 persons with Down syndrome and 12 typically developing control participants (age range = 12-26 years). A comparison between groups suggested atypical patterns of brain activation for the…

  18. First-pass myocardial perfusion imaging with whole-heart coverage using L1-SPIRiT accelerated variable density spiral trajectories.

    PubMed

    Yang, Yang; Kramer, Christopher M; Shaw, Peter W; Meyer, Craig H; Salerno, Michael

    2016-11-01

    To design and evaluate two-dimensional (2D) L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring eight slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Combinations of five different spiral trajectories and four k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in vivo performance. A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity and smallest root mean square error from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D perfusion images with whole-heart coverage at the heart rates up to 125 BPM. Magn Reson Med 76:1375-1387, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  19. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  20. Neural mechanisms of working memory in ecstasy (MDMA) users who continue or discontinue ecstasy and amphetamine use: evidence from an 18-month longitudinal functional magnetic resonance imaging study.

    PubMed

    Daumann, Jörg; Fischermann, Thomas; Heekeren, Karsten; Thron, Armin; Gouzoulis-Mayfrank, Euphrosyne

    2004-09-01

    Working memory processing in ecstasy (3,4-methylenedioxymethamphetamine) users is associated with neural alterations as measured by functional magnetic resonance imaging. Here, we examined whether cortical activation patterns change after prolonged periods of continued use or abstinence from ecstasy and amphetamine. We used an n-back task and functional magnetic resonance imaging in 17 ecstasy users at baseline (t(1)) and after 18 months (t(2)). Based on the reported drug use at t(2) we separated subjects with continued ecstasy and amphetamine use from subjects reporting abstinence during the follow-up period (n = 9 and n = 8, respectively). At baseline both groups had similar task performance and similar cortical activation patterns. Task performance remained unchanged in both groups. Furthermore, there were no detectable functional magnetic resonance imaging signal changes from t(1) to t(2) in the follow-up abstinent group. However, the continuing users showed a dose-dependent increased parietal activation for the 2-back task after the follow-up period. Our data suggest that ecstasy use, particularly in high doses, is associated with greater parietal activation during working memory performance. An altered activation pattern might appear before changes in cognitive performance become apparent and, hence, may reflect an early stage of neuronal injury from the neurotoxic drug ecstasy.

  1. Direct observation of resonance scattering patterns in single silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Valuckas, Vytautas; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Luk'yanchuk, Boris; Kuznetsov, Arseniy I.

    2017-02-01

    We present the first direct observation of the scattering patterns of electric and magnetic dipole resonances excited in a single silicon nanosphere. Almost perfectly spherical silicon nanoparticles were fabricated and deposited on a 30 nm-thick silicon nitride membrane in an attempt to minimize particle—substrate interaction. Measurements were carried out at visible wavelengths by means of the Fourier microscopy in a dark-field illumination setup. The obtained back-focal plane images clearly reveal the characteristic scattering patterns associated with each resonance and are found to be in a good agreement with the simulated results.

  2. Magnetic resonance imaging-ultrasound fusion biopsy for prediction of final prostate pathology.

    PubMed

    Le, Jesse D; Stephenson, Samuel; Brugger, Michelle; Lu, David Y; Lieu, Patricia; Sonn, Geoffrey A; Natarajan, Shyam; Dorey, Frederick J; Huang, Jiaoti; Margolis, Daniel J A; Reiter, Robert E; Marks, Leonard S

    2014-11-01

    We explored the impact of magnetic resonance imaging-ultrasound fusion prostate biopsy on the prediction of final surgical pathology. A total of 54 consecutive men undergoing radical prostatectomy at UCLA after fusion biopsy were included in this prospective, institutional review board approved pilot study. Using magnetic resonance imaging-ultrasound fusion, tissue was obtained from a 12-point systematic grid (mapping biopsy) and from regions of interest detected by multiparametric magnetic resonance imaging (targeted biopsy). A single radiologist read all magnetic resonance imaging, and a single pathologist independently rereviewed all biopsy and whole mount pathology, blinded to prior interpretation and matched specimen. Gleason score concordance between biopsy and prostatectomy was the primary end point. Mean patient age was 62 years and median prostate specific antigen was 6.2 ng/ml. Final Gleason score at prostatectomy was 6 (13%), 7 (70%) and 8-9 (17%). A tertiary pattern was detected in 17 (31%) men. Of 45 high suspicion (image grade 4-5) magnetic resonance imaging targets 32 (71%) contained prostate cancer. The per core cancer detection rate was 20% by systematic mapping biopsy and 42% by targeted biopsy. The highest Gleason pattern at prostatectomy was detected by systematic mapping biopsy in 54%, targeted biopsy in 54% and a combination in 81% of cases. Overall 17% of cases were upgraded from fusion biopsy to final pathology and 1 (2%) was downgraded. The combination of targeted biopsy and systematic mapping biopsy was needed to obtain the best predictive accuracy. In this pilot study magnetic resonance imaging-ultrasound fusion biopsy allowed for the prediction of final prostate pathology with greater accuracy than that reported previously using conventional methods (81% vs 40% to 65%). If confirmed, these results will have important clinical implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Is 'virtual histology' the next step after the 'virtual autopsy'? Magnetic resonance microscopy in forensic medicine.

    PubMed

    Thali, M J; Dirnhofer, R; Becker, R; Oliver, W; Potter, K

    2004-10-01

    The study aimed to validate magnetic resonance microscopy (MRM) studies of forensic tissue specimens (skin samples with electric injury patterns) against the results from routine histology. Computed tomography and magnetic resonance imaging are fast becoming important tools in clinical and forensic pathology. This study is the first forensic application of MRM to the analysis of electric injury patterns in human skin. Three-dimensional high-resolution MRM images of fixed skin specimens provided a complete 3D view of the damaged tissues at the site of an electric injury as well as in neighboring tissues, consistent with histologic findings. The image intensity of the dermal layer in T2-weighted MRM images was reduced in the central zone due to carbonization or coagulation necrosis and increased in the intermediate zone because of dermal edema. A subjacent blood vessel with an intravascular occlusion supports the hypothesis that current traveled through the vascular system before arcing to ground. High-resolution imaging offers a noninvasive alternative to conventional histology in forensic wound analysis and can be used to perform 3D virtual histology.

  4. Clinicoradiological Correlation of Infarct Patterns on Diffusion-weighted Magnetic Resonance Imaging in Stroke.

    PubMed

    Hussain, Zainab; Hilal, Kiran; Ahmad, Muhammad; Sajjad, Zafar; Sayani, Raza

    2018-03-02

    Diffusion-weighted magnetic resonance imaging (DW-MRI) represents a major advance in the early diagnosis of acute ischemic stroke. It can detect edema due to ischemia in the brain tissue. It not only establishes the presence and location of ischemic brain injury but also a relatively new concept is the determination of infarct patterns seen on diffusion imaging and its clinical correlation. Objective To determine the frequency of various infarct patterns and their relationship with functional outcome of the patient. Materials and methods A total of 108 patients with acute stroke were enrolled by purposive sampling. Magnetic resonance imaging (MRI) was obtained with departmental protocol and diffusion-weighted sequences. The clinical data was collected from medical records and functional outcome was assessed at the time of admission using Barthel Index (BI) which was dichotomized into poor and favorable outcomes. The radiological data was collected and three infarct patterns (cortical, subcortical, and territorial infarcts) were recorded from diffusion-weighted images. Association of other risk factors such as age, gender, diabetes, hypertension (HTN), hyperlipidemia, and smoking were also evaluated. Results Amongst the three infarct patterns, subcortical infarcts were noted with the highest proportion of 62% (67/108). The highest proportion of territorial infarcts (78.6%) was significantly associated with a poor outcome in comparison to cortical and subcortical infarcts. Cortical infarcts (61.5%) were significantly associated with good outcomes followed by subcortical and then territorial infarcts (p-value < 0.002). Amongst the risk factors, HTN was found to be highly prevalent followed by diabetes mellitus (DM). Conclusion Subcortical infarct pattern was the most common, followed by territorial and cortical infarct. The highest proportion of infarct pattern with good outcomes was seen with cortical infarcts followed by subcortical and then territorial infarct pattern. HTN and coronary artery disease (CAD) were the effect modifiers showing significant association with poor outcomes.

  5. Arterial Wall Imaging in Pediatric Stroke.

    PubMed

    Dlamini, Nomazulu; Yau, Ivanna; Muthusami, Prakash; Mikulis, David J; Elbers, Jorina; Slim, Mahmoud; Askalan, Rand; MacGregor, Daune; deVeber, Gabrielle; Shroff, Manohar; Moharir, Mahendranath

    2018-04-01

    Arteriopathy is common in childhood arterial ischemic stroke (AIS) and predicts stroke recurrence. Currently available vascular imaging techniques mainly image the arterial lumen rather than the vessel wall and have a limited ability to differentiate among common arteriopathies. We aimed to investigate the value of a magnetic resonance imaging-based technique, namely noninvasive arterial wall imaging (AWI), for distinguishing among arteriopathy subtypes in a consecutive cohort of children presenting with AIS. Children with confirmed AIS and magnetic resonance angiography underwent 3-Tesla AWI including T1-weighted 2-dimensional fluid-attenuated inversion recovery fast spin echo sequences pre- and post-gadolinium contrast. AWI characteristics, including wall enhancement, wall thickening, and luminal stenosis, were documented for all. Twenty-six children with AIS had AWI. Of these, 9 (35%) had AWI enhancement. AWI enhancement was associated with anterior circulation magnetic resonance angiography abnormality and cortical infarction in 8 of 9 (89%) children and normal magnetic resonance angiography with posterior circulation subcortical infarction in 1 (1 of 9; 11%) child. AWI enhancement was not seen in 17 (65%), 10 (59%) of whom had an abnormal magnetic resonance angiography. Distinct patterns of pre- and postcontrast signal abnormality were demonstrated in the vessel wall in the region of interest in children with transient cerebral arteriopathy, arterial dissection, primary central nervous system angiitis, dissecting aneurysm, and cardioembolic stroke. AWI is a noninvasive, high-resolution magnetic resonance AWI technique, which can be successfully used in children presenting with AIS. Patterns of AWI enhancement are recognizable and associated with specific AIS pathogeneses. Further studies are required to assess the additional diagnostic utility of AWI over routine vascular imaging techniques, in childhood AIS. © 2018 American Heart Association, Inc.

  6. Analysis of standing sound waves using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.; Parker, David E.; Hughes, Russell S.

    2009-08-01

    Optical holographic interferometry was used to study standing sound waves in air inside a resonance tube driven by a small loudspeaker at one end. The front face of the resonance tube was constructed with plexiglass, allowing optical interrogation of the tube interior. The object beam of the holographic setup was directed through the plexiglass and reflected off the back wall of the resonator. When driven at resonance, the fluctuations in the air density at the antinodes altered the refractive index of the air in the tube, causing interference patterns in the resulting holographic images. Real-time holography was used to determine resonance frequencies and to measure the wavelengths of the standing waves. Time-average holography was used to observe the effect of increasing the sound pressure level on the resulting fringe pattern. A simple theory was developed to successfully predict the fringe pattern.

  7. Role of proton magnetic resonance spectroscopy in the diagnosis of gliomatosis cerebri: a unique pattern of normal choline but elevated Myo-inositol metabolite levels.

    PubMed

    Mohana-Borges, Aurea V R; Imbesi, Steven G; Dietrich, Rosalind; Alksne, John; Amjadi, Darius K

    2004-01-01

    A patient with histologically proven gliomatosis cerebri presented with a normal choline level but a markedly abnormal elevated myo-inositol level on magnetic resonance (MR) spectroscopy. We describe the case presentation, imaging findings (in particular, the unique MR spectroscopic pattern), and their significance regarding the diagnosis of this relatively rare neoplasm.

  8. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    PubMed

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  9. Initial observations using a novel "cine" magnetic resonance imaging technique to detect changes in abdominal motion caused by encapsulating peritoneal sclerosis.

    PubMed

    Wright, Benjamin; Summers, Angela; Fenner, John; Gillott, Richard; Hutchinson, Charles E; Spencer, Paul A; Wilkie, Martin; Hurst, Helen; Herrick, Sarah; Brenchley, Paul; Augustine, Titus; Bardhan, Karna D

    2011-01-01

    Encapsulating peritoneal sclerosis (EPS) is an uncommon complication of peritoneal dialysis (PD), with high mortality and morbidity. The peritoneum thickens, dysfunctions, and forms a cocoon that progressively "strangulates" the small intestine, causing malnutrition, ischemia, and infarction. There is as yet no reliable noninvasive means of diagnosis, but recent developments in image analysis of cine magnetic resonance imaging for the recognition of adhesions offers a way forward. We used this protocol before surgery in 3 patients with suspected EPS. Image analysis revealed patterns of abdominal movement that were markedly different from the patterns in healthy volunteers. The volunteers showed marked movement throughout the abdomen; in contrast, movement in EPS patients was restricted to just below the diaphragm. This clear difference provides early "proof of principle" of the approach that we have developed.

  10. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  11. The IR properties of ringed galaxies and the IRAS database

    NASA Technical Reports Server (NTRS)

    Buta, Ronald J.; Crocker, Deborah A.

    1993-01-01

    Our study of the Infrared Astronomy Satellite (IRAS) properties of ringed galaxies has been largely successful. We have identified what we think is the probable cause of the differences in the IRAS properties among non-interacting barred galaxies as the pattern speed of the bar. The key to identifying this parameter has been our focusing the study on outer-ringed galaxies where we know precisely what is present in the central regions (from available BVI CCD images in our library of images). The theory is that outer rings, through their morphology and other characteristics, can be identified with the outer Lindblad resonance, one of the major resonances in galaxy structure. Using a library of n-body simulations for comparison, we can reliably infer both low and high pattern speed galaxies from the appearance of outer rings and the existence of other ring features. It is clear that in some barred galaxies, the bar pattern speed is high enough to avoid an inner Lindblad resonance, hence such objects do not contain nuclear or circumnuclear star formation. The IRAS observations are most sensitive to nuclear star formation in early-type barred galaxies, and will thus select those barred galaxies where the pattern speed is low enough to allow an inner Lindblad resonance to exist. High pattern speed barred galaxies therefore weaken the correlation between bars and infrared excess. This finding helps to reconcile the inconsistent results found between different studies on the correlation between bars and far-IR emission.

  12. Neuroimaging of HIV-associated cryptococcal meningitis: comparison of magnetic resonance imaging findings in patients with and without immune reconstitution.

    PubMed

    Katchanov, Juri; Branding, Gordian; Jefferys, Laura; Arastéh, Keikawus; Stocker, Hartmut; Siebert, Eberhard

    2016-02-01

    To determine the frequency, imaging characteristics, neuroanatomical distribution and dynamics of magnetic resonance imaging findings in HIV-associated cryptococcal meningitis in immunocompromised patients we compared patients without antiretroviral therapy with patients undergoing immune reconstitution. Neuroimaging and clinical data of 21 consecutive patients presenting to a German HIV centre in a 10-year period between 2005 and 2014 were reviewed. We identified eight patients with magnetic resonance imaging findings related to cryptococcal disease: five patients without antiretroviral therapy and three patients receiving effective antiretroviral therapy resulting in immune reconstitution. The pattern of magnetic resonance imaging manifestations was different in the two groups. In patients not on antiretroviral therapy, pseudocysts (n = 3) and lacunar ischaemic lesions (n = 2) were detected. Contrast-enhancing focal leptomeningeal and/or parenchymal lesions were found in all patients under immune reconstitution (n = 3). Magnetic resonance imaging lesions suggestive of leptomeningitis or meningoencephalitis were detected in all patients with a recurrence of cryptococcal meningitis under immune reconstitution, which differs from the classical magnetic resonance imaging findings in patients without antiretroviral therapy. In antiretroviral therapy-treated patients with past medical history of cryptococcal meningitis, detection of contrast-enhancing focal meningeal and/or parenchymal lesions should prompt further investigations for a recurrence of cryptococcal meningitis under immune reconstitution. © The Author(s) 2015.

  13. Liver Function Assessment by Magnetic Resonance Imaging.

    PubMed

    Ünal, Emre; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver function assessment by hepatocyte-specific contrast-enhanced magnetic resonance imaging is becoming a new biomarker. Liver function can be assessed by T1 mapping (reduction rate) and signal intensity measurement (relative enhancement ratio) before and after GD-EOB-DTPA (gadoxetic acid) administration, as alternative to Tc-99m galactosyl serum albumin scintigraphy, 99m Tc-labeled mebrofenin scintigraphy, and indocyanine green clearance test. Magnetic resonance imaging assessment of liver function can enable diagnosis of cirrhosis, nonalcoholic fatty liver disease associated fibrosis and steatohepatitis, primary sclerosing cholangitis, toxic hepatitis, and chemotherapy and radiotherapy-related changes, which may be only visible on hepatobiliary phase images. Simple visual assessment of signal intensity at hepatobiliary phase images is important for the diagnosis of different patterns of liver dysfunction including diffuse, lobar, segmental, and subsegmental forms. Furthermore, preoperative assessment of liver function is feasible before oncologic hepatic surgery, which may be important to prevent posthepatectomy liver failure and to estimate future remnant volume. Functional magnetic resonance cholangiography obtained by T1-weighted images at hepatobiliary phase can allow diagnosis of acalculous cholecystitis, biliary leakage, bile reflux to the stomach, sphincter of oddi dysfunction, and lesions with communication to biliary tree. Functional information can be easily obtained when Gd-EOB-DTPA is used for liver magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Patterned synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications

    NASA Astrophysics Data System (ADS)

    Lamson, Thomas L.; Khan, Sahar; Wang, Zhifei; Zhang, Yun-Kai; Yu, Yong; Chen, Zhe-Sheng; Xu, Huizhong

    2018-03-01

    We report the patterned synthesis of ZnO nanorod arrays of diameters between 50 nm and 130 nm and various spacings. This was achieved by patterning hole arrays in a polymethyl methacrylate layer with electron beam lithography, followed by chemical synthesis of ZnO nanorods in the patterned holes using the hydrothermal method. The fabrication of ZnO nanorod waveguide arrays is also demonstrated by embedding the nanorods in a silver film using the electroplating process. Optical transmission measurement through the nanorod waveguide arrays is performed and strong resonant transmission of visible light is observed. We have found the resonance shifts to a longer wavelength with increasing nanorod diameter. Furthermore, the resonance wavelength is independent of the nanowaveguide array period, indicating the observed resonant transmission is the effect of a single ZnO nanorod waveguide. These nanorod waveguides may be used in single-molecule imaging and sensing as a result of the nanoscopic profile of the light transmitted through the nanorods and the controlled locations of these nanoscale light sources.

  15. Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations.

    PubMed

    Steenweg, Marjan E; Ghezzi, Daniele; Haack, Tobias; Abbink, Truus E M; Martinelli, Diego; van Berkel, Carola G M; Bley, Annette; Diogo, Luisa; Grillo, Eugenio; Te Water Naudé, Johann; Strom, Tim M; Bertini, Enrico; Prokisch, Holger; van der Knaap, Marjo S; Zeviani, Massimo

    2012-05-01

    In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical signature. In an isolated patient, we found two mutant alleles for EARS2, the gene encoding mitochondrial glutamyl-tRNA synthetase. The brain magnetic resonance imaging of this patient was hallmarked by extensive symmetrical cerebral white matter abnormalities sparing the periventricular rim and symmetrical signal abnormalities of the thalami, midbrain, pons, medulla oblongata and cerebellar white matter. Proton magnetic resonance spectroscopy showed increased lactate. We matched this magnetic resonance imaging pattern with that of a cohort of 11 previously selected unrelated cases. We found mutations in the EARS2 gene in all. Subsequent detailed clinical and magnetic resonance imaging based phenotyping revealed two distinct groups: mild and severe. All 12 patients shared an infantile onset and rapidly progressive disease with severe magnetic resonance imaging abnormalities and increased lactate in body fluids and proton magnetic resonance spectroscopy. Patients in the 'mild' group partially recovered and regained milestones in the following years with striking magnetic resonance imaging improvement and declining lactate levels, whereas those of the 'severe' group were characterized by clinical stagnation, brain atrophy on magnetic resonance imaging and persistent lactate increases. This new neurological disease, early-onset leukoencephalopathy with thalamus and brainstem involvement and high lactate, is hallmarked by unique magnetic resonance imaging features, defined by a peculiar biphasic clinical course and caused by mutations in a single gene, EARS2, expanding the list of medically relevant defects of mitochondrial DNA translation.

  16. Acute Perinatal Sentinel Events, Neonatal Brain Injury Pattern and Outcome of Infants Undergoing a Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Shankaran, Seetha; Laptook, Abbot R.; McDonald, Scott A.; Hintz, Susan R; Barnes, Patrick D.; Das, Abhik; Higgins, Rosemary D.

    2016-01-01

    Infants with perinatal sentinel events in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network Hypothermia for Encephalopathy Trial had more basal ganglia and thalamus lesions on brain magnetic resonance imaging but similar neurodevelopmental outcomes at 18 months of age than infants without perinatal sentinel events. Outcomes correlated with the neonatal magnetic resonance imaging findings. PMID:27776752

  17. Eight channel transmit array volume coil using on-coil radiofrequency current sources

    PubMed Central

    Kurpad, Krishna N.; Boskamp, Eddy B.

    2014-01-01

    Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418

  18. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information (ESI) available: Protocols for the characterization, immunotoxicity and pharmacokinetics analyses. Additional supporting figures. See DOI: 10.1039/c3nr00170a

  19. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.

    PubMed

    Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng

    2017-12-01

    To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography.

    PubMed

    Correia, Teresa; Ginami, Giulia; Cruz, Gastão; Neji, Radhouene; Rashid, Imran; Botnar, René M; Prieto, Claudia

    2018-04-22

    To develop a robust and efficient reconstruction framework that provides high-quality motion-compensated respiratory-resolved images from free-breathing 3D whole-heart Cartesian coronary magnetic resonance angiography (CMRA) acquisitions. Recently, XD-GRASP (eXtra-Dimensional Golden-angle RAdial Sparse Parallel MRI) was proposed to achieve 100% scan efficiency and provide respiratory-resolved 3D radial CMRA images by exploiting sparsity in the respiratory dimension. Here, a reconstruction framework for Cartesian CMRA imaging is proposed, which provides respiratory-resolved motion-compensated images by incorporating 2D beat-to-beat translational motion information to increase sparsity in the respiratory dimension. The motion information is extracted from interleaved image navigators and is also used to compensate for 2D translational motion within each respiratory phase. The proposed Optimized Respiratory-resolved Cartesian Coronary MR Angiography (XD-ORCCA) method was tested on 10 healthy subjects and 2 patients with cardiovascular disease, and compared against XD-GRASP. The proposed XD-ORCCA provides high-quality respiratory-resolved images, allowing clear visualization of the right and left coronary arteries, even for irregular breathing patterns. Compared with XD-GRASP, the proposed method improves the visibility and sharpness of both coronaries. Significant differences (p < .05) in visible vessel length and proximal vessel sharpness were found between the 2 methods. The XD-GRASP method provides good-quality images in the absence of intraphase motion. However, motion blurring is observed in XD-GRASP images for respiratory phases with larger motion amplitudes and subjects with irregular breathing patterns. A robust respiratory-resolved motion-compensated framework for Cartesian CMRA has been proposed and tested in healthy subjects and patients. The proposed XD-ORCCA provides high-quality images for all respiratory phases, independently of the regularity of the breathing pattern. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Creutzfeldt-Jakob Disease

    MedlinePlus

    ... CJD: Electroencephalogram (EEG) measures the brain's patterns of electrical activity similar to the way an electrocardiogram (ECG) measures the heart's electrical activity. Brain magnetic resonance imaging (MRI) can detect ...

  2. Prospective evaluation of magnetic resonance imaging guided in-bore prostate biopsy versus systematic transrectal ultrasound guided prostate biopsy in biopsy naïve men with elevated prostate specific antigen.

    PubMed

    Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert

    2014-11-01

    Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a significantly higher percent of cancer involvement per biopsy core. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    PubMed

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Detailed magnetic resonance imaging features of a case series of primary gliosarcoma.

    PubMed

    Sampaio, Luísa; Linhares, Paulo; Fonseca, José

    2017-12-01

    Objective We aimed to characterise the magnetic resonance imaging (MRI) features of a case series of primary gliosarcoma, with the inclusion of diffusion-weighted imaging and perfusion imaging with dynamic susceptibility contrast MRI. Materials and methods We conducted a retrospective study of cases of primary gliosarcoma from the Pathology Department database from January 2006 to December 2014. Clinical and demographic data were obtained. Two neuroradiologists, blinded to diagnosis, assessed tumour location, signal intensity in T1 and T2-weighted images, pattern of enhancement, diffusion-weighted imaging and dynamic susceptibility contrast MRI studies on preoperative MRI. Results Seventeen patients with primary gliosarcomas had preoperative MRI study: seven men and 10 women, with a mean age of 59 years (range 27-74). All lesions were well demarcated, supratentorial and solitary (frontal n = 5, temporal n = 4, parietal n = 3); 13 tumours abutted the dural surface (8/13 with dural enhancement); T1 and T2-weighted imaging patterns were heterogeneous and the majority of lesions (12/17) showed a rim-like enhancement pattern with focal nodularities/irregular thickness. Restricted diffusion (mean apparent diffusion coefficient values 0.64 × 10 -3 mm 2 /s) in the more solid/thick components was present in eight out of 11 patients with diffusion-weighted imaging study. Dynamic susceptibility contrast MRI study ( n = 8) consistently showed hyperperfusion in non-necrotic/cystic components on relative cerebral volume maps. Conclusions The main distinguishing features of primary gliosarcoma are supratentorial and peripheral location, well-defined boundaries and a rim-like pattern of enhancement with an irregular thick wall. Diffusion-weighted imaging and relative cerebral volume map analysis paralleled primary gliosarcoma with high-grade gliomas, thus proving helpful in differential diagnosis.

  5. Optical head tracking for functional magnetic resonance imaging using structured light.

    PubMed

    Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D

    2008-07-01

    An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.

  6. Quantitative mapping of solute accumulation in a soil-root system by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Vanderborght, J.; Pohlmeier, A.

    2017-08-01

    Differential uptake of water and solutes by plant roots generates heterogeneous concentration distributions in soils. Noninvasive observations of root system architecture and concentration patterns therefore provide information about root water and solute uptake. We present the application of magnetic resonance imaging (MRI) to image and monitor root architecture and the distribution of a tracer, GdDTPA2- (Gadolinium-diethylenetriaminepentacetate) noninvasively during an infiltration experiment in a soil column planted with white lupin. We show that inversion recovery preparation within the MRI imaging sequence can quantitatively map concentrations of a tracer in a complex root-soil system. Instead of a simple T1 weighting, the procedure is extended by a wide range of inversion times to precisely map T1 and subsequently to cover a much broader concentration range of the solute. The derived concentrations patterns were consistent with mass balances and showed that the GdDTPA2- tracer represents a solute that is excluded by roots. Monitoring and imaging the accumulation of the tracer in the root zone therefore offers the potential to determine where and by which roots water is taken up.

  7. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks.

    PubMed

    Di Ieva, Antonio; Matula, Christian; Grizzi, Fabio; Grabner, Günther; Trattnig, Siegfried; Tschabitscher, Manfred

    2012-01-01

    The need for new and objective indexes for the neuroradiologic follow-up of brain tumors and for monitoring the effects of antiangiogenic strategies in vivo led us to perform a technical study on four patients who received computerized analysis of tumor-associated vasculature with ultra-high-field (7 T) magnetic resonance imaging (MRI). The image analysis involved the application of susceptibility weighted imaging (SWI) to evaluate vascular structures. Four patients affected by recurrent malignant brain tumors were enrolled in the present study. After the first 7-T SWI MRI procedure, the patients underwent antiangiogenic treatment with bevacizumab. The imaging was repeated every 2 weeks for a period of 4 weeks. The SWI patterns visualized in the three MRI temporal sequences were analyzed by means of a computer-aided fractal-based method to objectively quantify their geometric complexity. In two clinically deteriorating patients we found an increase of the geometric complexity of the space-filling properties of the SWI patterns over time despite the antiangiogenic treatment. In one patient, who showed improvement with the therapy, the fractal dimension of the intratumoral structure decreased, whereas in the fourth patient, no differences were found. The qualitative changes of the intratumoral SWI patterns during a period of 4 weeks were quantified with the fractal dimension. Because SWI patterns are also related to the presence of vascular structures, the quantification of their space-filling properties with fractal dimension seemed to be a valid tool for the in vivo neuroradiologic follow-up of brain tumors. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis

    PubMed Central

    Jiang, Han-Yu; Chen, Jie; Xia, Chun-Chao; Cao, Li-Kun; Duan, Ting; Song, Bin

    2018-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem worldwide. Hepatocarcinogenesis is a complex multistep process at molecular, cellular, and histologic levels with key alterations that can be revealed by noninvasive imaging modalities. Therefore, imaging techniques play pivotal roles in the detection, characterization, staging, surveillance, and prognosis evaluation of HCC. Currently, ultrasound is the first-line imaging modality for screening and surveillance purposes. While based on conclusive enhancement patterns comprising arterial phase hyperenhancement and portal venous and/or delayed phase wash-out, contrast enhanced dynamic computed tomography and magnetic resonance imaging (MRI) are the diagnostic tools for HCC without requirements for histopathologic confirmation. Functional MRI techniques, including diffusion-weighted imaging, MRI with hepatobiliary contrast agents, perfusion imaging, and magnetic resonance elastography, show promise in providing further important information regarding tumor biological behaviors. In addition, evaluation of tumor imaging characteristics, including nodule size, margin, number, vascular invasion, and growth patterns, allows preoperative prediction of tumor microvascular invasion and patient prognosis. Therefore, the aim of this article is to review the current state-of-the-art and recent advances in the comprehensive noninvasive imaging evaluation of HCC. We also provide the basic key concepts of HCC development and an overview of the current practice guidelines. PMID:29904242

  9. Accelerating Sequences in the Presence of Metal by Exploiting the Spatial Distribution of Off-Resonance

    PubMed Central

    Smith, Matthew R.; Artz, Nathan S.; Koch, Kevin M.; Samsonov, Alexey; Reeder, Scott B.

    2014-01-01

    Purpose To demonstrate feasibility of exploiting the spatial distribution of off-resonance surrounding metallic implants for accelerating multispectral imaging techniques. Theory Multispectral imaging (MSI) techniques perform time-consuming independent 3D acquisitions with varying RF frequency offsets to address the extreme off-resonance from metallic implants. Each off-resonance bin provides a unique spatial sensitivity that is analogous to the sensitivity of a receiver coil, and therefore provides a unique opportunity for acceleration. Methods Fully sampled MSI was performed to demonstrate retrospective acceleration. A uniform sampling pattern across off-resonance bins was compared to several adaptive sampling strategies using a total hip replacement phantom. Monte Carlo simulations were performed to compare noise propagation of two of these strategies. With a total knee replacement phantom, positive and negative off-resonance bins were strategically sampled with respect to the B0 field to minimize aliasing. Reconstructions were performed with a parallel imaging framework to demonstrate retrospective acceleration. Results An adaptive sampling scheme dramatically improved reconstruction quality, which was supported by the noise propagation analysis. Independent acceleration of negative and positive off-resonance bins demonstrated reduced overlapping of aliased signal to improve the reconstruction. Conclusion This work presents the feasibility of acceleration in the presence of metal by exploiting the spatial sensitivities of off-resonance bins. PMID:24431210

  10. Main inherited neurodegenerative cerebellar ataxias, how to recognize them using magnetic resonance imaging?

    PubMed

    Heidelberg, Damien; Ronsin, Solene; Bonneville, Fabrice; Hannoun, Salem; Tilikete, Caroline; Cotton, François

    2018-06-16

    Ataxia is a neurodegenerative disease resulting from brainstem, cerebellar, and/or spinocerebellar tract impairments. Symptom onset could vary widely from childhood to late-adulthood. Autosomal cerebellar ataxias are considered as one of the most complex groups in neurogenetics. In addition to their genetic heterogeneity, there is an important phenotypic variability in the expression of cerebellar impairment, complicating the genetic mutation research. A pattern recognition approach using brain magnetic resonance imaging measures of atrophy, hyperintensities and iron-induced hypointensity of the dentate nuclei could be therefore helpful in guiding genetic research. This review will discuss a pattern recognition approach that, associated with the age at disease onset, and clinical manifestations, may help neuroradiologists differentiate the most frequent profiles of ataxia. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images

    PubMed Central

    Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. Method The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Results Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Conclusion Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies. PMID:27295428

  12. Evaluation of Heterogeneous Metabolic Profile in an Orthotopic Human Glioblastoma Xenograft Model Using Compressed Sensing Hyperpolarized 3D 13C Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J.; James, C. David; Pieper, Russell O.; Ronen, Sabrina M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2013-01-01

    High resolution compressed sensing hyperpolarized 13C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in 13C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D 13C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-13C]-pyruvate using a 3T scanner. The 13C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing 13C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct 13C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of 13C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. PMID:22851374

  13. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    PubMed

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  14. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations.

    PubMed

    Leydet-Quilici, H; Le Corroller, T; Bouvier, C; Giorgi, R; Argenson, J-N; Champsaur, P; Pham, T; de Paula, A Maues; Lafforgue, P

    2010-11-01

    To correlate magnetic resonance imaging (MRI) aspects of the femoral head with histological findings in advanced hip osteoarthritis (OA), with special emphasis on bone marrow edema (BME). MRI was performed in patients with advanced hip OA scheduled for hip arthroplasty. Coronal T1-, fat-suppressed T2-, T1 with gadolinium intravenous injection sequences were obtained on a 1.5 T MR-scanner within 1 month before surgery. Coronal MR images corresponding to the ligamentum teres plane were analyzed by two independent readers blinded to histological data. Normal bone marrow, subchondral cyst, subchondral fracture, edema-like, necrosis-like, and necrosis MR patterns were reported on a synthesis scheme. After surgery, the femoral heads specimens were cut through the ligamentum teres plane and histologically analyzed for correlations. Twenty-three femoral heads were analyzed (female 56.5%, mean age 64.5 years). Edema-like MR pattern was correlated with histological (H) edema (Kappa (K): 0.77). Necrosis-like MR pattern was correlated with H fibrosis (K: 0.49) and with H necrosis (K: 0.24). Cyst MR pattern was correlated with H bone cysts (K: 0.58). Necrosis MR pattern corresponded to a mixture of histological lesions. Sensitivity and specificity of MRI varied from 26% to 80% and from 86% to 95% respectively. In advanced hip OA, the so-called "BME" MR lesion corresponds to a combination of edema, fibrosis, and necrosis at histopathology. When the classical "BME" is more specifically separated into edema-like and necrosis-like MR patterns, MR Imaging and histological findings show substantial agreement, with edema-like MR pattern mainly corresponding to histological edema. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. [Achilles tendon xanthoma imaging on ultrasound and magnetic resonance imaging].

    PubMed

    Fernandes, Eloy de Ávila; Santos, Eduardo Henrique Sena; Tucunduva, Tatiana Cardoso de Mello; Ferrari, Antonio J L; Fernandes, Artur da Rocha Correa

    2015-01-01

    The Achilles tendon xanthoma is a rare disease and has a high association with primary hyperlipidemia. An early diagnosis is essential to start treatment and change the disease course. Imaging exams can enhance diagnosis. This study reports the case of a 60-year-old man having painless nodules on his elbows and Achilles tendons without typical gout crisis, followed in the microcrystalline disease clinic of Unifesp for diagnostic workup. Laboratory tests obtained showed dyslipidemia. The ultrasound (US) showed a diffuse Achilles tendon thickening with hypoechoic areas. Magnetic resonance imaging (MRI) showed a diffuse tendon thickening with intermediate signal areas, and a reticulate pattern within. Imaging studies showed relevant aspects to diagnose a xanthoma, thus helping in the differential diagnosis. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  16. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    PubMed

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. The Effects of Simulated Stuttering and Prolonged Speech on the Neural Activation Patterns of Stuttering and Nonstuttering Adults

    ERIC Educational Resources Information Center

    De Nil, Luc F.; Beal, Deryk S.; Lafaille, Sophie J.; Kroll, Robert M.; Crawley, Adrian P.; Gracco, Vincent L.

    2008-01-01

    Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions…

  18. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

    PubMed Central

    Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming

    2015-01-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860

  19. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.

    PubMed

    D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn

    2013-07-15

    Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

  20. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    PubMed

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tropp, James

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields,more » oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped between the two antenna ports--giving in one instance a signal intensity pattern whose form resembles an umbrella (i.e., with a central column of moderate intensity surmounted by a bright canopy), and in the other, a distorted oval with slight concavities at its horizontal extremes, whose outline suggests that of a cat's eye. The relation between image patterns and drive scheme can be shown to reverse if the static polarizing field is reversed. Electromagnetic and circuit calculations, together with the modified reciprocity principle, allow us to reproduce these pattern changes in numerical simulations, closely and convincingly. Although the imaging experiments are performed at a static field of 3.0 T, and consequently a Larmor frequency of 128 MHz, the nonreciprocal effects are not related to the shortness of the wavelength in aqueous medium, but appear equally in simulations based in either the quasistatic or full electromagnetic regimes. Finally, we show that although antenna patterns for transmission and reception are swapped with reversal of the polarizing field, meaning that the receive pattern equals the transmit pattern with the field reversed, this in no way invalidates the familiar rotating wave model of spin dynamics in magnetic resonance.« less

  2. Cardiovascular magnetic resonance imaging (CMR) reveals characteristic pattern of myocardial damage in patients with mitochondrial myopathy.

    PubMed

    Yilmaz, Ali; Gdynia, Hans-Jürgen; Ponfick, Matthias; Rösch, Sabine; Lindner, Alfred; Ludolph, Albert C; Sechtem, Udo

    2012-04-01

    Mitochondrial myopathy comprises various clinical subforms of neuromuscular disorders that are characterised by impaired mitochondrial energy metabolism due to dysfunction of the mitochondrial respiratory chain. No comprehensive and targeted cardiovascular magnetic resonance (CMR) studies have been performed so far in patients with mitochondrial disorders. The present study aimed at characterising cardiac disease manifestations in patients with mitochondrial myopathy and elucidating the in vivo cardiac damage pattern of patients with different subforms of mitochondrial disease by CMR studies. In a prospective study, 37 patients with mitochondrial myopathy underwent comprehensive neurological and cardiac evaluations including physical examination, resting ECG and CMR. The CMR studies comprised cine-CMR, T2-weighted "edema" imaging and T1-weighted late-gadolinium-enhancement (LGE) imaging. Various patterns and degrees of skeletal myopathy were present in the participants of this study, whereas clinical symptoms such as chest pain symptoms (in eight (22%) patients) and various degrees of dyspnea (in 16 (43%) patients) were less frequent. Pathological ECG findings were documented in eight (22%) patients. T2-weighted "edema" imaging was positive in one (3%) patient with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) only. LGE imaging demonstrated the presence of non-ischemic LGE in 12 (32%) patients: 10 out of 24 (42%) patients with CPEO (chronic progressive external ophthalmoplegia) or KSS (Kearns-Sayre syndrome) and 2 of 3 (67%) patients with MELAS were LGE positive. All 10 LGE-positive patients with CPEO or KSS demonstrated a potentially typical pattern of diffuse intramural LGE in the left-ventricular (LV) inferolateral segments. Cardiac involvement is a frequent finding in patients with mitochondrial myopathy. A potentially characteristic pattern of diffuse intramural LGE in the LV inferolateral segments was identified in patients suffering from the subforms CPEO or KSS.

  3. A Punctate Magnetic Resonance Imaging Pattern in a Patient with Systemic Lupus Erythematosus is an Early Sign of Progressive Multifocal Leukoencephalopathy: A Clinicopathological Study.

    PubMed

    Ishii, Junko; Shishido-Hara, Yukiko; Kawamoto, Michi; Fujiwara, Satoru; Imai, Yukihiro; Nakamichi, Kazuo; Kohara, Nobuo

    2018-04-27

    A 37-year-old woman with systemic lupus erythematosus (SLE) presented with gait disturbance and cognitive dysfunction. Brain magnetic resonance imaging (MRI) revealed small, punctate, T2-/fluid-attenuated inversion recovery-hyperintense and T1-hypointense lesions without gadolinium enhancement, which is atypical for progressive multifocal leukoencephalopathy (PML). On a pathological examination of biopsied brain tissues, JC virus-infected cells were hardly detected via immunohistochemistry but were certainly detected via in situ hybridization, conclusively verifying the PML diagnosis. After tapering off the immunosuppressant and mefloquine administration, the MRI findings revealed gradual improvement, and she has been stable for over 18 months. A punctate MRI pattern is not specific to natalizumab-associated PML but may be a ubiquitous early sign useful for the early diagnosis of PML.

  4. Magnetic resonance imaging of chemistry.

    PubMed

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  5. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    PubMed

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.

  6. Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons

    DOE PAGES

    Hu, F.; Luan, Y.; Fei, Z.; ...

    2017-08-14

    Here, we report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. And with rigorous simulations, wemore » reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Moreover, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.« less

  7. Low-Loss Optical Metamaterials Based on Mie Resonances in Semiconductor Nanoparticle Composites

    DTIC Science & Technology

    2012-12-13

    Brillouin zone where two transverse bands with linear dispersion intersect a flat longitudinal band, resulting in triple degeneracy. The fields in the...transmission pattern through Fourier plane imaging. This was accomplished by focusing a laser beam within the structure using a high numerical...conditions, a high frequency magnetic response could be created in metamaterials formed from composites of quantum dots utilizing excitonic resonances

  8. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  9. Magnetic resonance imaging spectrum of perinatal hypoxic-ischemic brain injury

    PubMed Central

    Varghese, Binoj; Xavier, Rose; Manoj, V C; Aneesh, M K; Priya, P S; Kumar, Ashok; Sreenivasan, V K

    2016-01-01

    Perinatal hypoxic–ischemic brain injury results in neonatal hypoxic–ischemic encephalopathy and serious long-term neurodevelopmental sequelae. Magnetic resonance imaging (MRI) of the brain is an ideal and safe imaging modality for suspected hypoxic–ischemic injury. The pattern of injury depends on brain maturity at the time of insult, severity of hypotension, and duration of insult. Time of imaging after the insult influences the imaging findings. Mild to moderate hypoperfusion results in germinal matrix hemorrhages and periventricular leukomalacia in preterm neonates and parasagittal watershed territory infarcts in full-term neonates. Severe insult preferentially damages the deep gray matter in both term and preterm infants. However, associated frequent perirolandic injury is seen in term neonates. MRI is useful in establishing the clinical diagnosis, assessing the severity of injury, and thereby prognosticating the outcome. Familiarity with imaging spectrum and insight into factors affecting the injury will enlighten the radiologist to provide an appropriate diagnosis. PMID:27857456

  10. A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)

    NASA Technical Reports Server (NTRS)

    Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.

  11. Imaging of the meninges and the extra-axial spaces.

    PubMed

    Kirmi, Olga; Sheerin, Fintan; Patel, Neel

    2009-12-01

    The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.

  12. The Role of Magnetic Resonance Imaging in Athletic Pubalgia and Core Muscle Injury.

    PubMed

    Coker, Dana J; Zoga, Adam C

    2015-08-01

    Magnetic resonance imaging (MRI) has become the standard of care imaging modality for a difficult, often misunderstood spectrum of musculoskeletal injury termed athletic pubalgia or core muscle injury. Armed with a dedicated noncontrast athletic pubalgia protocol and a late model phased array receiver coil, the musculoskeletal imager can play a great role in effective diagnosis and treatment planning for lesions, including osteitis pubis, midline pubic plate lesions, and rectus abdominis/adductor aponeurosis injury. Beyond these established patterns of MRI findings, there are many confounders and contributing pathologies about the pelvis in patients with activity related groin pain, including internal and periarticular derangements of the hip. The MRI is ideally suited to delineate the extent of expected injury and to identify the unexpected visceral and musculoskeletal lesions.

  13. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    PubMed

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  14. Dynamical phenomena at the inner edge of the Keeler gap

    NASA Astrophysics Data System (ADS)

    Tajeddine, Radwan; Nicholson, Philip D.; Tiscareno, Matthew S.; Hedman, Matthew M.; Burns, Joseph A.; El Moutamid, Maryame

    2017-06-01

    We analyze several thousand Cassini ISS images in order to study the inner edge of the Keeler gap in Saturn's outer A ring. We find strong evidence for an m = 32 perturbation with a mean amplitude of radial variation of 4.5 km. Phase analysis yields a pattern speed consistent with the mean motion of Prometheus, indicating that this pattern is generated by the 32:31 Inner Lindblad resonance with Prometheus. In addition, we find evidence of 18-lobed and 20-lobed patterns with amplitudes of ∼1.5 km. These patterns, whose rotation rates correspond to resonance locations ∼4 km interior to the gap edge, are believed to be normal modes. The former is probably related to the nearby 18:17 (m = 18) resonance with Pandora. In addition to these resonant and normal mode patterns, we also observe multiple localized features that appear to move at the local keplerian rate and that persist for only a few months. One hypothesis is that different groups of ring particles at the inner edge of the gap may be reacting differently to the resonance with Prometheus, with local variations in the forced eccentricity and/or pericenter; an alternative hypothesis is the existence of several unseen objects embedded at or near the inner edge of the Keeler gap, similar to those suspected to exist at the outer edges of the A and B rings. In either case, observations of the ring edge at opposite ansae demonstrate that the localized features must be on eccentric orbits.

  15. A modified thickness extensional disk transducer.

    PubMed

    Trolier, S E; Xu, Q C; Newnham, R E

    1988-01-01

    Photolithography and chemical etching were investigated as a means of patterning miniature piezoelectric devices. Using a processing procedure analogous to that utilized in the production of integrated circuitry, concentrated hydrochloric acid and a commercially available photoresist were used to fabricate a number of complex structures from soft lead zirconate titanate (PZT) substrates. Among the devices produced in this manner was a modified thickness-mode resonator etched to destroy the simple geometry responsible for radial vibrations. The resultant transducer demonstrated significantly smaller amplitudes for lateral resonances and a marked reduction in the effective planar coupling coefficient over the unaltered disk. The results indicate that photolithographic patterning is useful both for eliminating spurious resonances from transducers for medical imaging or nondestructive evaluation and for engineering low planar coupling coefficients into a variety of substrate materials.

  16. Primary Angiitis of the Central Nervous System: Magnetic Resonance Imaging Spectrum of Parenchymal, Meningeal, and Vascular Lesions at Baseline.

    PubMed

    Boulouis, Grégoire; de Boysson, Hubert; Zuber, Mathieu; Guillevin, Loïc; Meary, Eric; Costalat, Vincent; Pagnoux, Christian; Naggara, Olivier

    2017-05-01

    Primary angiitis of the central nervous system remains challenging. To report an overview and pictorial review of brain magnetic resonance imaging findings in adult primary angiitis of the central nervous system and to determine the distribution of parenchymal, meningeal, and vascular lesions in a large multicentric cohort. Adult patients from the French COVAC cohort (Cohort of Patients With Primary Vasculitis of the Central Nervous System), with biopsy or angiographically proven primary angiitis of the central nervous system and brain magnetic resonance imaging available at the time of diagnosis were included. A systematic imaging review was performed blinded to clinical data. Sixty patients met inclusion criteria. Mean age was 45 years (±12.9). Patients initially presented focal deficit(s) (83%), headaches (53%), cognitive disorder (40%), and seizures (38.3%). The most common magnetic resonance imaging finding observed in 42% of patients was multiterritorial, bilateral, distal acute stroke lesions after small to medium artery distribution, with a predominant carotid circulation distribution. Hemorrhagic infarctions and parenchymal hemorrhages were also frequently found in the cohort (55%). Acute convexity subarachnoid hemorrhage was found in 26% of patients and 42% demonstrated pre-eminent leptomeningeal enhancement, which is found to be significantly more prevalent in biopsy-proven patients (60% versus 28%; P =0.04). Seven patients had tumor-like presentations. Seventy-seven percent of magnetic resonance angiographic studies were abnormal, revealing proximal/distal stenoses in 57% and 61% of patients, respectively. Adult primary angiitis of the central nervous system is a heterogenous disease, with multiterritorial, distal, and bilateral acute stroke being the most common pattern of parenchymal lesions found on magnetic resonance imaging. Our findings suggest a higher than previously thought prevalence of hemorrhagic transformation and other hemorrhagic manifestations. © 2017 American Heart Association, Inc.

  17. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    PubMed

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 or greater was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of multiparametric magnetic resonance imaging and fusion guided targeted biopsy for clinically significant prostate cancer was 84.6% and 56.7% with a negative likelihood ratio of 0.35 and 0.46, respectively. Multiparametric magnetic resonance imaging alone should not be performed as a triage test due to a substantial number of false-negative cases with clinically significant prostate cancer. Systematic biopsy outperformed fusion guided targeted biopsy. Therefore, it will remain crucial in the diagnostic pathway of prostate cancer. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. SPIRiT: Iterative Self-consistent Parallel Imaging Reconstruction from Arbitrary k-Space

    PubMed Central

    Lustig, Michael; Pauly, John M.

    2010-01-01

    A new approach to autocalibrating, coil-by-coil parallel imaging reconstruction is presented. It is a generalized reconstruction framework based on self consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k-space sampling patterns. The formulation can flexibly incorporate additional image priors such as off-resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k-space domain are presented. These are based on a projection over convex sets (POCS) and a conjugate gradient (CG) algorithms. Phantom and in-vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off-resonance correction and nonlinear ℓ1-wavelet regularization are also demonstrated. PMID:20665790

  19. White matter injury in term newborns with neonatal encephalopathy.

    PubMed

    Li, Amanda M; Chau, Vann; Poskitt, Kenneth J; Sargent, Michael A; Lupton, Brian A; Hill, Alan; Roland, Elke; Miller, Steven P

    2009-01-01

    White matter injury (WMI) is the characteristic pattern of brain injury detected on magnetic resonance imaging in the premature newborn. Focal noncystic WMI is increasingly recognized in populations of term newborns. The aim of this study was to describe the occurrence of focal noncystic WMI in a cohort of 48 term newborns with encephalopathy studied with magnetic resonance imaging at 72 +/- 12 h of life, and to identify clinical risk factors for this pattern of injury. Eleven newborns (23%; 95% CI 11-35) were found to have WMI (four minimal, three moderate, and four severe). In 10 of the 11 newborns, the WMI was associated with restricted diffusion on apparent diffusion coefficient maps. An increasing severity of WMI was associated with lower gestational age at birth (p = 0.05), but not lower birth weight. Newborns with WMI had milder encephalopathy and fewer clinical seizures relative to other newborns in the cohort. Other brain injuries were seen in three of the 11 newborns: basal nuclei predominant pattern of injury in one and cortical strokes in two. These findings suggest that WMI in the term newborn is acquired near birth and that the state of brain maturation is an important determinant of this pattern of brain injury.

  20. Stress-induced surface magnetization of (La{sub 0.7}Sr{sub 0.3})MnO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, C.; Lofland, S.E.; Bhagat, S.M.

    1997-09-01

    The role of stress on magnetic properties of epitaxial (La{sub 0.7}Sr{sub 0.3}) MnO{sub 3} (LSMO) films has been studied. The authors have investigated 1,100 {angstrom} thick LSMO films deposited on LaAlO{sub 3} (Sample L, under a compressive stress) and SrTiO{sub 3} (Sample S, under a tensile stress) using the magnetic force microscopy (MFM), DC hysteresis loop, ferromagnetic resonance (FMR) measurements. The magnetic force microscope image of Sample L shows a maze-like pattern indicating a sizable out-of-plane magnetization, while the magnetic image of Sample S shows a feather-like pattern indicative of an in-plane magnetization. The hysteresis loop and ferromagnetic resonance measurementsmore » give quantitative evidence for the role of the lattice mismatch between the film and the substrate in the magnetic anisotropy of the two films. The systematic examination of various thickness LSMO films on LaAlO{sub 3} reveals that the maze pattern is exhibited only between 500 {angstrom} and 1,700 {angstrom} thick films. Despite of larger anisotropy, no maze pattern is observed in films thinner than 360 {angstrom}.« less

  1. Intravascular lymphoma: magnetic resonance imaging correlates of disease dynamics within the central nervous system

    PubMed Central

    Baehring, J; Henchcliffe, C; Ledezma, C; Fulbright, R; Hochberg, F

    2005-01-01

    Background: Intravascular lymphoma (IVL) is a rare non-Hodgkin's lymphoma with relative predilection for the central nervous system. In the absence of extraneural manifestations, the disease is not recognised until autopsy in the majority of cases underlining the need for new clinical markers. Methods: This is a retrospective series of five patients with IVL seen at a single institution over three years. An advanced magnetic resonance imaging (MRI) protocol was performed at various time points prior to diagnosis and during treatment. Results: MRI revealed multiple lesions scattered throughout the cerebral hemispheres; the brainstem, cerebellum, and spinal cord were less frequently involved. On initial presentation, hyperintense lesions were seen on diffusion weighted images suggestive of ischaemia in three of four patients in whom the images were obtained at that time point. In four patients lesions were also identifiable as hyperintense areas on fluid attenuated inversion recovery (FLAIR) sequences. Initial contrast enhancement was encountered in three cases. Diffusion weighted imaging lesions either vanished or followed the typical pattern of an ischaemic small vessel stroke with evolution of abnormal FLAIR signal followed by enhancement with gadolinium in the subacute stage and tissue loss in the chronic stage. Diffusion weighted imaging and FLAIR abnormalities proved to be partially reversible, correlating with the response to chemotherapy. Conclusion: We provide the first detailed description of the dynamic pattern of diffusion weighted MRI in IVL. These patterns in combination with systemic findings may facilitate early diagnosis and serve as a new tool to monitor treatment response. PMID:15774442

  2. Sequential contrast-enhanced MR imaging of the penis.

    PubMed

    Kaneko, K; De Mouy, E H; Lee, B E

    1994-04-01

    To determine the enhancement patterns of the penis at magnetic resonance (MR) imaging. Sequential contrast material-enhanced MR images of the penis in a flaccid state were obtained in 16 volunteers (12 with normal penile function and four with erectile dysfunction). Subjects with normal erectile function showed gradual and centrifugal enhancement of the corpora cavernosa, while those with erectile dysfunction showed poor enhancement with abnormal progression. Sequential contrast-enhanced MR imaging provides additional morphologic information for the evaluation of erectile dysfunction.

  3. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy.

    PubMed

    Helman, Guy; Caldovic, Ljubica; Whitehead, Matthew T; Simons, Cas; Brockmann, Knut; Edvardson, Simon; Bai, Renkui; Moroni, Isabella; Taylor, J Michael; Van Haren, Keith; Taft, Ryan J; Vanderver, Adeline; van der Knaap, Marjo S

    2016-03-01

    Succinate dehydrogenase-deficient leukoencephalopathy is a complex II-related mitochondrial disorder for which the clinical phenotype, neuroimaging pattern, and genetic findings have not been comprehensively reviewed. Nineteen individuals with succinate dehydrogenase deficiency-related leukoencephalopathy were reviewed for neuroradiological, clinical, and genetic findings as part of institutional review board-approved studies at Children's National Health System (Washington, DC) and VU University Medical Center (Amsterdam, the Netherlands). All individuals had signal abnormalities in the central corticospinal tracts and spinal cord where imaging was available. Other typical findings were involvement of the cerebral hemispheric white matter with sparing of the U fibers, the corpus callosum with sparing of the outer blades, the basis pontis, middle cerebellar peduncles, and cerebellar white matter, and elevated succinate on magnetic resonance spectroscopy (MRS). The thalamus was involved in most studies, with a predilection for the anterior nucleus, pulvinar, and geniculate bodies. Clinically, infantile onset neurological regression with partial recovery and subsequent stabilization was typical. All individuals had mutations in SDHA, SDHB, or SDHAF1, or proven biochemical defect. Succinate dehydrogenase deficiency is a rare leukoencephalopathy, for which improved recognition by magnetic resonance imaging (MRI) in combination with advanced sequencing technologies allows noninvasive diagnostic confirmation. The MRI pattern is characterized by cerebral hemispheric white matter abnormalities with sparing of the U fibers, corpus callosum involvement with sparing of the outer blades, and involvement of corticospinal tracts, thalami, and spinal cord. In individuals with infantile regression and this pattern of MRI abnormalities, the differential diagnosis should include succinate dehydrogenase deficiency, in particular if MRS shows elevated succinate. © 2016 American Neurological Association.

  4. Image processing applications: From particle physics to society

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-01-01

    We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.

  5. Aberrant Functional Activation in School Age Children At-Risk for Mathematical Disability: A Functional Imaging Study of Simple Arithmetic Skill

    ERIC Educational Resources Information Center

    Davis, Nicole; Cannistraci, Christopher J.; Rogers, Baxter P.; Gatenby, J. Christopher; Fuchs, Lynn S.; Anderson, Adam W.; Gore, John C.

    2009-01-01

    We used functional magnetic resonance imaging (fMRI) to explore the patterns of brain activation associated with different levels of performance in exact and approximate calculation tasks in well-defined cohorts of children with mathematical calculation difficulties (MD) and typically developing controls. Both groups of children activated the same…

  6. Standing magnetic resonance imaging detection of bone marrow oedema-type signal pattern associated with subcarpal pain in 8 racehorses: a prospective study.

    PubMed

    Powell, S E; Ramzan, P H L; Head, M J; Shepherd, M C; Baldwin, G I; Steven, W N

    2010-01-01

    The proximal metacarpal region is a common site of origin of lameness in the performance horse. A number of disease entities are recognised as causes of proximal metacarpal lameness but a definitive diagnosis is often elusive. Magnetic resonance imaging (MRI) is hypothesised to offer advantages over traditional imaging modalities in the investigation of proximal metacarpal pain. To describe clinical and imaging features of cases of lameness in racehorses arising from the proximal metacarpal region in which standing MRI identified 'bone marrow oedema-type' (BMO-type) signal patterns. Records for all horses undergoing standing MRI of the proximal metacarpus/distal carpus from September 2006 to December 2008 were reviewed. Cases underwent a standardised protocol for diagnostic analgesia, radiography and ultrasonography of the proximal metacarpus and distal carpus. Cases with proximal metacarpal lameness displaying a characteristic BMO-type signal pattern on MRI were identified and outcomes analysed. Eight cases were identified with characteristic MRI findings of extensive hyperintensity on T2* gradient echo and short tau inversion fast spin echo sequences and corresponding hypointensity on T1 gradient echo images within the palmaroproximal aspect of the third metacarpal bone. Follow-up information was available for all cases; at the time of writing 7/8 had returned to full work and were free from lameness. The BMO-type signal patterns visible on MR images in these cases may signal the existence of a previously under-diagnosed pathological process associated with proximal metacarpal lameness in racehorses. This finding is postulated to be associated with a stress reaction and possible prodromal stress fracture of the palmaroproximal metacarpus not appreciable radiographically or ultrasonographically. MRI of the proximal metacarpal region permits detection of pathological processes, which may elude conventional imaging and, therefore, has important therapeutic and prognostic implications in these cases.

  7. [Development of a Computer-aided Diagnosis System to Distinguish between Benign and Malignant Mammary Tumors in Dynamic Magnetic Resonance Images: Automatic Detection of the Position with the Strongest Washout Effect in the Tumor].

    PubMed

    Miyazaki, Yoshiaki; Tabata, Nobuyuki; Taroura, Tomomi; Shinozaki, Kenji; Kubo, Yuichiro; Tokunaga, Eriko; Taguchi, Kenichi

    We propose a computer-aided diagnostic (CAD) system that uses time-intensity curves to distinguish between benign and malignant mammary tumors. Many malignant tumors show a washout pattern in time-intensity curves. Therefore, we designed a program that automatically detects the position with the strongest washout effect using the technique, such as the subtraction technique, which extracts only the washout area in the tumor, and by scanning data in 2×2 pixel region of interest (ROI). Operation of this independently developed program was verified using a phantom system that simulated tumors. In three cases of malignant tumors, the washout pattern detection rate in images with manually set ROI was ≤6%, whereas the detection rate with our novel method was 100%. In one case of a benign tumor, when the same method was used, we checked that there was no washout effect and detected the persistent pattern. Thus, the distinction between benign and malignant tumors using our method was completely consistent with the pathological diagnoses made. Our novel method is therefore effective for differentiating between benign and malignant mammary tumors in dynamic magnetic resonance images.

  8. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  9. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  10. A tool for classifying individuals with chronic back pain: using multivariate pattern analysis with functional magnetic resonance imaging data.

    PubMed

    Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun

    2014-01-01

    Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups.

  11. A Tool for Classifying Individuals with Chronic Back Pain: Using Multivariate Pattern Analysis with Functional Magnetic Resonance Imaging Data

    PubMed Central

    Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun

    2014-01-01

    Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups. PMID:24905072

  12. Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging.

    PubMed

    Ye, Yu-Xiang; Basse-Lüsebrink, Thomas C; Arias-Loza, Paula-Anahi; Kocoski, Vladimir; Kampf, Thomas; Gan, Qiang; Bauer, Elisabeth; Sparka, Stefanie; Helluy, Xavier; Hu, Kai; Hiller, Karl-Heinz; Boivin-Jahns, Valerie; Jakob, Peter M; Jahns, Roland; Bauer, Wolfgang R

    2013-10-22

    Monocytes and macrophages are indispensable in the healing process after myocardial infarction (MI); however, the spatiotemporal distribution of monocyte infiltration and its correlation to prognostic indicators of reperfused MI have not been well described. With combined fluorine 19/proton ((1)H) magnetic resonance imaging, we noninvasively visualized the spatiotemporal recruitment of monocytes in vivo in a rat model of reperfused MI. Blood monocytes were labeled by intravenous injection of (19)F-perfluorocarbon emulsion 1 day after MI. The distribution patterns of monocyte infiltration were correlated to the presence of microvascular obstruction (MVO) and intramyocardial hemorrhage. In vivo, (19)F/(1)H magnetic resonance imaging performed in series revealed that monocyte infiltration was spatially inhomogeneous in reperfused MI areas. In the absence of MVO, monocyte infiltration was more intense in MI regions with serious ischemia-reperfusion injuries, indicated by severe intramyocardial hemorrhage; however, monocyte recruitment was significantly impaired in MVO areas accompanied by severe intramyocardial hemorrhage. Compared with MI with isolated intramyocardial hemorrhage, MI with MVO resulted in significantly worse pump function of the left ventricle 28 days after MI. Monocyte recruitment was inhomogeneous in reperfused MI tissue. It was highly reduced in MVO areas defined by magnetic resonance imaging. The impaired monocyte infiltration in MVO regions could be related to delayed healing and worse functional outcomes in the long term. Therefore, monocyte recruitment in MI with MVO could be a potential diagnostic and therapeutic target that could be monitored noninvasively and longitudinally by (19)F/(1)H magnetic resonance imaging in vivo.

  13. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study

    PubMed Central

    Sun, D; Stuart, GW; Jenkinson, M; Wood, SJ; McGorry, PD; Velakoulis, D; van Erp, TGM; Thompson, PM; Toga, AW; Smith, DJ; Cannon, TD; Pantelis, C

    2009-01-01

    Schizophrenia is associated with structural brain abnormalities, but the timing of onset and course of these changes remains unclear. Longitudinal magnetic resonance imaging (MRI) studies have demonstrated progressive brain volume decreases in patients around and after the onset of illness, although considerable discrepancies exist regarding which brain regions are affected. The anatomical pattern of these progressive changes in schizophrenia is largely unknown. In this study, MRI scans were acquired repeatedly from 16 schizophrenia patients approximately 2 years apart following their first episode of illness, and also from 14 age-matched healthy subjects. Cortical Pattern Matching, in combination with Structural Image Evaluation, using Normalisation, of Atrophy, was applied to compare the rates of cortical surface contraction between patients and controls. Surface contraction in the dorsal surfaces of the frontal lobe was significantly greater in patients with first-episode schizophrenia (FESZ) compared with healthy controls. Overall, brain surface contraction in patients and healthy controls showed similar anatomical patterns, with that of the former group exaggerated in magnitude across the entire brain surface. That the pattern of structural change in the early course of schizophrenia corresponds so closely to that associated with normal development is consistent with the hypothesis that a schizophrenia-related factor interacts with normal adolescent brain developmental processes in the pathophysiology of schizophrenia. The exaggerated progressive changes seen in patients with schizophrenia may reflect an increased rate of synaptic pruning, resulting in excessive loss of neuronal connectivity, as predicted by the late neurodevelopmental hypothesis of the illness. PMID:18607377

  14. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    PubMed Central

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  15. Nuclear magnetic resonance proton imaging of bone pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atlan, H.; Sigal, R.; Hadar, H.

    Thirty-two patients with diversified pathology were examined with a supraconductive NMR imager using spin echo with different TR and TE to obtain T1 and T2 weighted images. They included 20 tumors (12 primary, eight metastasis), six osteomyelitis, three fractures, two osteonecrosis, and one diffuse metabolic (Gaucher) disease. In all cases except for the stress fractures, the bone pathology was clearly visualized in spite of the normal lack of signal from the compact cortical bone. Nuclear magnetic resonance (NMR) imaging proved to be at least as sensitive as radionuclide scintigraphy but much more accurate than all other imaging procedures including computedmore » tomography (CT) and angiography to assess the extension of the lesions, especially in tumors extended to soft tissue. This is due both to easy acquisition of sagittal and coronal sections and to different patterns of pathologic modifications of T1 and T2 which are beginning to be defined. It is hoped that more experience in clinical use of these patterns will help to discriminate between tumor extension and soft-tissue edema. We conclude that while radionuclide scintigraphy will probably remain the most sensitive and easy to perform screening test for bone pathology, NMR imaging, among noninvasive diagnostic procedures, appears to be at least as specific as CT. In addition, where the extension of the lesions is concerned, NMR imaging is much more informative than CT. In pathology of the spine, the easy visualization of the spinal cord should decrease the need for myelography.« less

  16. Brain Mechanisms Underlying Urge Incontinence and its Response to Pelvic Floor Muscle Training.

    PubMed

    Griffiths, Derek; Clarkson, Becky; Tadic, Stasa D; Resnick, Neil M

    2015-09-01

    Urge urinary incontinence is a major problem, especially in the elderly, and to our knowledge the underlying mechanisms of disease and therapy are unknown. We used biofeedback assisted pelvic floor muscle training and functional brain imaging (functional magnetic resonance imaging) to investigate cerebral mechanisms, aiming to improve the understanding of brain-bladder control and therapy. Before receiving biofeedback assisted pelvic floor muscle training functionally intact, older community dwelling women with urge urinary incontinence as well as normal controls underwent comprehensive clinical and bladder diary evaluation, urodynamic testing and brain functional magnetic resonance imaging. Evaluation was repeated after pelvic floor muscle training in those with urge urinary incontinence. Functional magnetic resonance imaging was done to determine the brain reaction to rapid bladder filling with urgency. Of 65 subjects with urge urinary incontinence 28 responded to biofeedback assisted pelvic floor muscle training with 50% or greater improvement of urge urinary incontinence frequency on diary. However, responders and nonresponders displayed 2 patterns of brain reaction. In pattern 1 in responders before pelvic floor muscle training the dorsal anterior cingulate cortex and the adjacent supplementary motor area were activated as well as the insula. After the training dorsal anterior cingulate cortex/supplementary motor area activation diminished and there was a trend toward medial prefrontal cortex deactivation. In pattern 2 in nonresponders before pelvic floor muscle training the medial prefrontal cortex was deactivated, which changed little after the training. In older women with urge urinary incontinence there appears to be 2 patterns of brain reaction to bladder filling and they seem to predict the response and nonresponse to biofeedback assisted pelvic floor muscle training. Moreover, decreased cingulate activation appears to be a consequence of the improvement in urge urinary incontinence induced by training while prefrontal deactivation may be a mechanism contributing to the success of training. In nonresponders the latter mechanism is unavailable, which may explain why another form of therapy is required. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Small-tip fast recovery imaging using non-slice-selective tailored tip-up pulses and RF-spoiling

    PubMed Central

    Nielsen, Jon-Fredrik; Yoon, Daehyun; Noll, Douglas C.

    2012-01-01

    Small-tip fast recovery (STFR) imaging is a new steady-state imaging sequence that is a potential alternative to balanced steady-state free precession (bSSFP). Under ideal imaging conditions, STFR may provide comparable signal-to-noise ratio (SNR) and image contrast as bSSFP, but without signal variations due to resonance offset. STFR relies on a tailored “tip-up”, or “fast recovery”, RF pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip-up pulse is based on the acquisition of a separate off-resonance (B0) map. Unfortunately, the design of fast (a few ms) slice- or slab-selective RF pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on non-slice-selective tip-up pulses, which simplifies the RF design problem significantly. Out-of-slice magnetization pathways are suppressed using RF-spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady-state T2/T1-weighted imaging with intrinsic suppression of cerebrospinal fluid, through-plane vessel signal, and off-resonance artifacts. In the future we expect STFR imaging to benefit significantly from parallel excitation hardware and high-order gradient shim systems. PMID:22511367

  18. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    PubMed

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  19. MRI findings in eastern equine encephalitis: the "parenthesis" sign.

    PubMed

    Nickerson, Joshua P; Kannabiran, Suma; Burbank, Heather N

    2016-01-01

    Two patients with eastern equine encephalitis (EEE) presented to a tertiary referral center. Both subjects' brain magnetic resonance imaging showed T2/FLAIR (fluid-attenuated inversion recovery) hyperintensities including linear areas of hyperintensity in the external and internal capsules with sparing of the lentiform nuclei. Single case reports of imaging findings in EEE exist with nonspecific patterns of abnormality. We propose that this "( ) parentheses sign" on T2 or FLAIR imaging may distinguish EEE from other processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. New approach for cognitive analysis and understanding of medical patterns and visualizations

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2003-11-01

    This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.

  1. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings.

    PubMed

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B

    2018-04-06

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO 2 ) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  2. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    NASA Astrophysics Data System (ADS)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  3. Patterns of Breast Magnetic Resonance Imaging Use in Community Practice

    PubMed Central

    Wernli, Karen J.; DeMartini, Wendy B.; Ichikawa, Laura; Lehman, Constance D.; Onega, Tracy; Kerlikowske, Karla; Henderson, Louise M.; Geller, Berta M.; Hofmann, Mike; Yankaskas, Bonnie C.

    2014-01-01

    Importance Breast magnetic resonance imaging (MRI) is increasingly used for breast cancer screening, diagnostic evaluation, and surveillance However, we lack data on national patterns of breast MRI use in community practice. Objective To describe 2005–2009 patterns of breast magnetic resonance imaging (MRI) use in U.S. community practice. Design Observational cohort study Setting Data collected from 2005–2009 on breast MRI and mammography from five national Breast Cancer Surveillance Consortium registries. Participants Data included 8931 breast MRI examinations and 1,288,924 screening mammograms from women aged 18–79 years. Main measures We calculated the rate of breast MRI examinations per 1000 women with breast imaging within the same year and described the clinical indications for the breast MRI examinations by year and age. We compared women screened with breast MRI to women screened with mammography alone for patient characteristics and lifetime breast cancer risk. Results The overall rate of breast MRI from 2005 through 2009 nearly tripled from 4.2 to 11.5 examinations per 1000 women with the most rapid rise from 2005–2007 (p=0.02). The most common clinical indication was diagnostic evaluation (40.3%), followed by screening (31.7%). Compared to women who received screening mammography alone, women who underwent screening breast MRI were more likely to be <50 years, white non-Hispanic, nulliparous, and have extremely dense breast tissue, a family history of breast cancer, and a personal history of breast cancer. The proportion of women screened by breast MRI at high lifetime risk for breast cancer (>20%) increased during the study period from 9% in 2005 to 29% in 2009. Conclusions and relevance Use of breast MRI for screening in high-risk women is increasing. However, our findings suggest there is a need to improve appropriate utilization, including among women who may benefit from screening breast MRI. PMID:24247555

  4. Resonant Mode-hopping Micromixing

    PubMed Central

    Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.

    2009-01-01

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159

  5. Progressive massive fibrosis in patients with pneumoconiosis: utility of MRI in differentiating from lung cancer.

    PubMed

    Ogihara, Yukihiro; Ashizawa, Kazuto; Hayashi, Hideyuki; Nagayasu, Takeshi; Hayashi, Tomayoshi; Honda, Sumihisa; Uetani, Masataka

    2018-01-01

    Background It is occasionally difficult to distinguish progressive massive fibrosis (PMF) from lung cancer on computed tomography (CT) in patients with pneumoconiosis. Purpose To evaluate the magnetic resonance imaging (MRI) features of PMF and to assess its ability to differentiate PMF from lung cancer. Material and Methods Between 2000 and 2014, 40 pulmonary lesions suspected to be lung cancer on the basis of CT in 28 patients with known pneumoconiosis were evaluated. Twenty-four of the 40 lesions were pathologically or clinically diagnosed as PMF. The signal pattern on T2-weighted (T2W) images, post-contrast enhancement pattern on T1-weighted (T1W) images, and the pattern of the time intensity curve (TIC) on contrast-enhanced dynamic studies were evaluated. All images were analyzed independently by two chest radiologists. Results All 24 PMF lesions showed low signal intensity (SI) on T2W images (sensitivity, 100%), while 15 of 16 lung cancer lesions showed intermediate or high SI on T2W images (specificity, 94%) when PMF was regarded as a positive result. Six of 17 PMF lesions showed a homogeneous enhancement pattern (sensitivity, 35%), and 4/9 lung cancer lesions showed an inhomogeneous or a ring-like enhancement pattern (specificity, 44%). Six of 16 PMF lesions showed a gradually increasing enhancement pattern (sensitivity, 38%), and 7/9 lung cancer lesions showed rapid enhancement pattern (specificity, 78%). Conclusion When differentiation between PMF and lung cancer in patients with pneumoconiosis is difficult on CT, an additional MRI study, particularly the T2W imaging sequence, may help differentiate between the two.

  6. MRI as a biomarker for mild neonatal encephalopathy.

    PubMed

    Walsh, Brian H; Inder, Terrie E

    2018-05-01

    Historically, there has been limited neuro-imaging data acquired on infants with mild neonatal encephalopathy (NE). This likely reflects the traditional assumption that these infants had a universally good prognosis. As new evidence has emerged challenging this assumption, there has been a renewed interest in the neuro-imaging findings of these infants. To date, magnetic resonance imaging (MRI) studies in infants with mild NE have demonstrated abnormalities in 20-40% of cases suggestive that the injury occurs during the peripartum period with a predominant watershed pattern of injury. The severity of the injury on MRI in infants with mild NE varies, but includes patterns of injury that have been associated with long-term neuro-developmental impairment. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    PubMed Central

    Gao, Jie; Sun, Qin-Li; Zhang, Yu-Miao; Li, Yan-Yan; Li, Huan; Hou, Xin; Yu, Bo-Lang; Zhou, Xi-Hui; Yang, Jian

    2015-01-01

    Background: Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases. The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI). Methods: Totally, 45 neonates with clinically mild HIE and 45 matched control neonates were enrolled. Gestated age, birth weight, age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups. According to MR findings, mild HIE neonates were divided into three subgroups: Pattern I, neonates with normal MR appearance; Pattern II, preterm neonates with abnormal MR appearance; Pattern III, full-term neonates with abnormal MR appearance. TMS and its parameters, progressive myelination (M), cortical infolding (C), involution of germinal matrix tissue (G), and glial cell migration bands (B), were employed to assess brain maturation and compare difference between HIE and control groups. Results: The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs. 12.36 ± 1.26, P < 0.001). In four parameters of TMS scores, the M and C scores were significantly lower in mild HIE group. Of the three patterns of mild HIE, Pattern I (10 cases) showed no significant difference of TMS compared with control neonates, while Pattern II (22 cases), III (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs. 11.48 ± 0.55, P < 0.05; 12.59 ± 1.28 vs. 13.25 ± 1.29, P < 0.05). It was M, C, and GM scores that significantly decreased in Pattern II, while for Pattern III, only C score significantly decreased. Conclusions: The TMS system, based on conventional MRI, is an effective method to detect delayed brain maturation in clinically mild HIE. The conventional MRI can reveal the different retardations in subtle structures and development processes among the different patterns of mild HIE. PMID:25698186

  8. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Wendy; Ren, Lei, E-mail: lei.ren@duke.edu; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of themore » deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions: Preliminary studies demonstrated the feasibility of generating real-time VC-MRI for on-board localization of moving targets in radiation therapy.« less

  9. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  10. Magnetic resonance imaging phenotyping of Becker muscular dystrophy.

    PubMed

    Faridian-Aragh, Neda; Wagner, Kathryn R; Leung, Doris G; Carrino, John A

    2014-12-01

    There is little information on magnetic resonance imaging (MRI) phenotypes of Becker muscular dystrophy (BMD). This study presents the MRI phenotyping of the upper and lower extremities of a large cohort of BMD patients. In this retrospective study, MRI images of 33 BMD subjects were evaluated for severity, distribution, and symmetry of involvement. Teres major, triceps long head, biceps brachii long head, gluteus maximus, gluteus medius, vasti, adductor longus, adductor magnus, semitendinosus, semimembranosus, and biceps femoris muscles showed the highest severity and frequency of involvement. All analyzed muscles had a high frequency of symmetric involvement. There was significant variability of involvement between muscles within some muscle groups, most notably the arm abductors, posterior arm muscles, medial thigh muscles, and lateral hip rotators. This study showed a distinctive pattern of involvement of extremity muscles in BMD subjects. © 2014 Wiley Periodicals, Inc.

  11. Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants With Neonatal Encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann

    2016-04-01

    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.

  12. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    PubMed Central

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  13. Denoising Medical Images using Calculus of Variations

    PubMed Central

    Kohan, Mahdi Nakhaie; Behnam, Hamid

    2011-01-01

    We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674

  14. A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia.

    PubMed

    Johnson, Matthew R; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D

    2006-07-01

    Previous neuroimaging studies of working memory (WM) in schizophrenia, typically focusing on dorsolateral prefrontal cortex, yield conflicting results, possibly because of varied choice of tasks and analysis techniques. We examined neural function changes at several WM loads to derive a more complete picture of WM dysfunction in schizophrenia. We used a version of the Sternberg Item Recognition Paradigm to test WM function at five distinct loads. Eighteen schizophrenia patients and 18 matched healthy controls were scanned with functional magnetic resonance imaging at 3 Tesla. Patterns of both overactivation and underactivation in patients were observed depending on WM load. Patients' activation was generally less responsive to load changes than control subjects', and different patterns of between-group differences were observed for memory encoding and retrieval. In the specific case of successful retrieval, patients recruited additional neural circuits unused by control subjects. Behavioral effects were generally consistent with these imaging results. Differential findings of overactivation and underactivation may be attributable to patients' decreased ability to focus and allocate neural resources at task-appropriate levels. Additionally, differences between encoding and retrieval suggest that WM dysfunction may be manifested differently during the distinct phases of encoding, maintenance, and retrieval.

  15. Neuromuscular imaging in inherited muscle diseases

    PubMed Central

    Kley, Rudolf A.; Fischer, Dirk

    2010-01-01

    Driven by increasing numbers of newly identified genetic defects and new insights into the field of inherited muscle diseases, neuromuscular imaging in general and magnetic resonance imaging (MRI) in particular are increasingly being used to characterise the severity and pattern of muscle involvement. Although muscle biopsy is still the gold standard for the establishment of the definitive diagnosis, muscular imaging is an important diagnostic tool for the detection and quantification of dystrophic changes during the clinical workup of patients with hereditary muscle diseases. MRI is frequently used to describe muscle involvement patterns, which aids in narrowing of the differential diagnosis and distinguishing between dystrophic and non-dystrophic diseases. Recent work has demonstrated the usefulness of muscle imaging for the detection of specific congenital myopathies, mainly for the identification of the underlying genetic defect in core and centronuclear myopathies. Muscle imaging demonstrates characteristic patterns, which can be helpful for the differentiation of individual limb girdle muscular dystrophies. The aim of this review is to give a comprehensive overview of current methods and applications as well as future perspectives in the field of neuromuscular imaging in inherited muscle diseases. We also provide diagnostic algorithms that might guide us through the differential diagnosis in hereditary myopathies. PMID:20422195

  16. 1-mm catheterscope

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.

    2008-02-01

    Flexible endoscopes use one sensor element per display pixel. When diameter is reduced to the size of a catheter, there is a significant reduction in the number of pixels within the image. By placing a sub-millimeter microscanner at the tip of a catheter, image quality can be significantly improved. The microscanner consists of a 0.4 mm diameter piezoelectric tube with quadrant electrodes, surrounding a cantilevered singlemode optical fiber. At the distal end, the fiber microscanner is sealed with a 0.9 mm diameter lens assembly, creating a rigid length less than 10 mm at the tip of a highly flexible shaft. The cantilevered fiber is vibrated at the first mode of resonance for bending to generate a circular scan pattern. A spiral scan pattern is generated that constitutes an image frame by modulating the piezoelectric drive signals. By using a custom optical fiber at 80 microns cladding diameter, >10 KHz resonant scanning is achieved, resulting in a 30 Hz frame rate. Red (635 nm), green (532 nm), and blue (442 nm) laser light is scanned by coupling to the fiber scanner. The scanned illumination is detected in a non-confocal arrangement by having one or more optical fibers collecting the backscattered light at MHz pixel rates. Current 1-mm diameter catheterscopes generate 500-line images at maximum fields of view of 100 degrees and spatial resolutions of <20 microns with image zooming. Shaft length of four meters have been fabricated with flexibility of <10 mm bending radius to image previously inaccessible regions of the body.

  17. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  18. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  19. The physics of functional magnetic resonance imaging (fMRI).

    PubMed

    Buxton, Richard B

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  20. The Traumatized TFCC: An Illustrated Review of the Anatomy and Injury Patterns of the Triangular Fibrocartilage Complex.

    PubMed

    Skalski, Matthew R; White, Eric A; Patel, Dakshesh B; Schein, Aaron J; RiveraMelo, Hector; Matcuk, George R

    2016-01-01

    The triangular fibrocartilage complex (TFCC) plays an important role in wrist biomechanics and is prone to traumatic and degenerative injury, making it a common source of ulnar-sided wrist pain. Because of this, the TFCC is frequently imaged, and a detailed understanding of its anatomy and injury patterns is critical in generating an accurate report to help guide treatment. In this review, we provide a detailed overview of TFCC anatomy, its normal appearance on magnetic resonance imaging, the spectrum of TFCC injuries based on the Palmer classification system, and pitfalls in accurate assessment. Copyright © 2015 Mosby, Inc. All rights reserved.

  1. Magnetic resonance imaging-transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients.

    PubMed

    Baco, Eduard; Ukimura, Osamu; Rud, Erik; Vlatkovic, Ljiljana; Svindland, Aud; Aron, Manju; Palmer, Suzanne; Matsugasumi, Toru; Marien, Arnaud; Bernhard, Jean-Christophe; Rewcastle, John C; Eggesbø, Heidi B; Gill, Inderbir S

    2015-04-01

    Prostate biopsies targeted by elastic fusion of magnetic resonance (MR) and three-dimensional (3D) transrectal ultrasound (TRUS) images may allow accurate identification of the index tumor (IT), defined as the lesion with the highest Gleason score or the largest volume or extraprostatic extension. To determine the accuracy of MR-TRUS image-fusion biopsy in characterizing ITs, as confirmed by correlation with step-sectioned radical prostatectomy (RP) specimens. Retrospective analysis of 135 consecutive patients who sequentially underwent pre-biopsy MR, MR-TRUS image-fusion biopsy, and robotic RP at two centers between January 2010 and September 2013. Image-guided biopsies of MR-suspected IT lesions were performed with tracking via real-time 3D TRUS. The largest geographically distinct cancer focus (IT lesion) was independently registered on step-sectioned RP specimens. A validated schema comprising 27 regions of interest was used to identify the IT center location on MR images and in RP specimens, as well as the location of the midpoint of the biopsy trajectory, and variables were correlated. The concordance between IT location on biopsy and RP specimens was 95% (128/135). The coefficient for correlation between IT volume on MRI and histology was r=0.663 (p<0.001). The maximum cancer core length on biopsy was weakly correlated with RP tumor volume (r=0.466, p<0.001). The concordance of primary Gleason pattern between targeted biopsy and RP specimens was 90% (115/128; κ=0.76). The study limitations include retrospective evaluation of a selected patient population, which limits the generalizability of the results. Use of MR-TRUS image fusion to guide prostate biopsies reliably identified the location and primary Gleason pattern of the IT lesion in >90% of patients, but showed limited ability to predict cancer volume, as confirmed by step-sectioned RP specimens. Biopsies targeted using magnetic resonance images combined with real-time three-dimensional transrectal ultrasound allowed us to reliably identify the spatial location of the most important tumor in prostate cancer and characterize its aggressiveness. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  2. Liver enhancement in healthy dogs after gadoxetic acid administration during dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Borusewicz, P; Stańczyk, E; Kubiak, K; Spużak, J; Glińska-Suchocka, K; Jankowski, M; Nicpoń, J; Podgórski, P

    2018-05-01

    Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) consists of acquisition of native baseline images, followed by a series of acquisitions performed during and after administration of a contrast medium. DCE-MRI, in conjunction with hepatobiliary-specific contrast media, such as gadoxetic acid (GD-EOB-DTPA), allows for precise characterisation of the enhancement pattern of the hepatic parenchyma following administration of the contrast agent. The aim of the study was to assess the pattern of temporal resolution contrast enhancement of the hepatic parenchyma following administration of GD-EOB-DTPA and to determine the optimal time window for post-contrast assessment of the liver. The study was carried out on eight healthy beagle dogs. MRI was performed using a 1.5T scanner. The imaging protocol included T1 weighted (T1-W) gradient echo (GRE), T2 weighted (T2-W) turbo spin echo (TSE) and dynamic T1-W GRE sequences. The dynamic T1-W sequence was performed using single 10mm thick slices. Regions of interest (ROIs) were chosen and the signal intensity curves were calculated for quantitative image analysis. The mean time to peak for all dogs was 26min. The plateau phase lasted on average 21min. A gradual decrease in the signal intensity of the hepatic parenchyma was observed in all dogs. A DCE-MRI enhancement pattern of the hepatic parenchyma was evident in dogs following the administration of a GD-EOB-DTPA, establishing baseline data for an optimal time window between 26 and 41min after administration of the contrast agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Minimizing eddy currents induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry.

    PubMed

    Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond

    2016-01-01

    The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.

  4. De novo status epilepticus with isolated aphasia.

    PubMed

    Flügel, Dominique; Kim, Olaf Chan-Hi; Felbecker, Ansgar; Tettenborn, Barbara

    2015-08-01

    Sudden onset of aphasia is usually due to stroke. Rapid diagnostic workup is necessary if reperfusion therapy is considered. Ictal aphasia is a rare condition but has to be excluded. Perfusion imaging may differentiate acute ischemia from other causes. In dubious cases, EEG is required but is time-consuming and laborious. We report a case where we considered de novo status epilepticus as a cause of aphasia without any lesion even at follow-up. A 62-year-old right-handed woman presented to the emergency department after nurses found her aphasic. She had undergone operative treatment of varicosis 3 days earlier. Apart from hypertension and obesity, no cardiovascular risk factors and no intake of medication other than paracetamol were reported. Neurological examination revealed global aphasia and right pronation in the upper extremity position test. Computed tomography with angiography and perfusion showed no abnormalities. Electroencephalogram performed after the CT scan showed left-sided slowing with high-voltage rhythmic 2/s delta waves but no clear ictal pattern. Intravenous lorazepam did improve EEG slightly, while aphasia did not change. Lumbar puncture was performed which likely excluded encephalitis. Magnetic resonance imaging showed cortical pathological diffusion imaging (restriction) and cortical hyperperfusion in the left parietal region. Intravenous anticonvulsant therapy under continuous EEG resolved neurological symptoms. The patient was kept on anticonvulsant therapy. Magnetic resonance imaging after 6 months showed no abnormalities along with no clinical abnormalities. Magnetic resonance imaging findings were only subtle, and EEG was without clear ictal pattern, so the diagnosis of aphasic status remains with some uncertainty. However, status epilepticus can mimic stroke symptoms and has to be considered in patients with aphasia even when no previous stroke or structural lesions are detectable and EEG shows no epileptic discharges. Epileptic origin is favored when CT or MR imaging reveal no hypoperfusion. In this case, MRI was superior to CT in detecting hyperperfusion. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Whole-brain patterns of (1)H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies.

    PubMed

    Su, L; Blamire, A M; Watson, R; He, J; Hayes, L; O'Brien, J T

    2016-08-30

    Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB.

  6. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics.

    PubMed

    Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M

    2009-04-01

    Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.

  7. Semiclassical description of photoionization microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordas, Ch.; Lepine, F.; Nicole, C.

    2003-07-01

    Recently, experiments have been reported where a geometrical interference pattern was observed when photoelectrons ejected in the threshold photoionization of xenon were detected in a velocity-map imaging apparatus [C. Nicole et al., Phys. Rev. Lett. 88, 133001 (2002)]. This technique, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. Unlike previous predictions relevant to the hydrogenic case, the structure of the interference pattern evolves smoothly with the excess energy above the saddle point and is only weakly affected by the presence of continuum Starkmore » resonances. In this paper, we describe a semiclassical analysis of this process and present numerical simulations in excellent agreement with the experimental results. It is shown that the background contribution dominates in the observations, as opposed to the behavior expected for hydrogenic systems where the interference pattern is qualitatively different on quasidiscrete Stark resonances.« less

  8. Resolving the Impact of Biological Processes on Water Transport in Unsaturated Porous Media Through Nuclear Magnetic Resonance Micro-Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour, Joseph D.

    2005-06-01

    The magnetic resonance microscopy (MRM) work at Montana State University has extended the imaging of a single biofilm in a 1 mm capillary reactor to correlate T2 magnetic relaxation maps displaying biofilm structure with the corresponding velocity patterns in three dimensions in a Staphylococcus epidermidis biofilm fouled square capillary. A square duct geometry is chosen to provide correlation with existing experiments and simulations, as research bioreactors tend to be of square or rectangular cross section for optical or microelectrode access. The spatially resolved velocity data provide details on the impact of biofilm induced advection on mass transport from the bulkmore » fluid to the biofilm and through the capillary bioreactor.« less

  9. Spectrum of magnetic resonance imaging findings in pancreatic and other abdominal manifestations of Von Hippel-Lindau disease in a series of 23 patients: a pictorial review.

    PubMed

    Graziani, Rossella; Mautone, Simona; Vigo, Mario; Manfredi, Riccardo; Opocher, Giuseppe; Falconi, Massimo

    2014-01-10

    Von Hippel Lindau disease is a rare autosomal dominantly inherited multisystem disorder characterized by development of benign and malignant tumors. The abdominal manifestation of the syndrome are protean. Magnetic resonance plays an important role in identification of abdominal abnormalities and follow-up of lesions. To describe magnetic resonance imaging findings and patterns of pancreatic and other principal abdominal manifestations in a series of von Hippel-Lindau (VHL) disease patients and to review literature. We retrospectively reviewed abdominal magnetic resonance studies performed in 23 patients (10 males, 13 females) diagnosed of VHL. In all examined patients abdominal involvement was present. The pancreatic imaging findings detected were: unilocular cystic lesions (6/23: 26.1%); serous cystadenomas (11/23: 47.8%), including diffuse lesions (8/23: 34.8%); solid neuroendocrine tumors (8/23: 34.8%); cystic neuroendocrine tumors (1/23: 4.3%). The renal findings detected were: simple renal cysts (18/23: 78.3%); complex renal cysts (13/23: 56.5%), including benign lesions (10/23: 43.5%) and malignant lesions (3/23: 13.0%); renal carcinomas (11/23: 47.8%) and 5 of these (45.5%) were multiple and bilateral. Five patients (21.7%) presented pheochromocytoma (4 of these were bilateral; 80.0%) and 1 patient (4.3%) presented cystadenoma of the epididymis. In VHL disease patients, magnetic resonance imaging plays an essential role in the identification of pancreatic and other abdominal lesions, in their follow-up, in the screening of asymptomatic gene carriers, and in their long-term surveillance.

  10. Parallel traveling-wave MRI: a feasibility study.

    PubMed

    Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-04-01

    Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.

  11. Unsupervised texture image segmentation by improved neural network ART2

    NASA Technical Reports Server (NTRS)

    Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco

    1994-01-01

    We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.

  12. A prospective study of risk for Sturge-Weber syndrome in children with upper facial port-wine stain.

    PubMed

    Dutkiewicz, Anne-Sophie; Ezzedine, Khaled; Mazereeuw-Hautier, Juliette; Lacour, Jean-Philippe; Barbarot, Sébastien; Vabres, Pierre; Miquel, Juliette; Balguerie, Xavier; Martin, Ludovic; Boralevi, Franck; Bessou, Pierre; Chateil, Jean-François; Léauté-Labrèze, Christine

    2015-03-01

    Upper facial port-wine stain (PWS) is a feature of Sturge-Weber syndrome (SWS). Recent studies suggest that the distribution of the PWS corresponds to genetic mosaicism rather than to trigeminal nerve impairment. We sought to refine the cutaneous distribution of upper facial PWS at risk for SWS. This was a prospective multicenter study of consecutive cases of upper facial PWS larger than 1 cm² located in the ophthalmic division of trigeminal nerve distribution in infants aged less than 1 year, seen in 8 French pediatric dermatology departments between 2006 and 2012. Clinical data, magnetic resonance imaging, and photographs were systematically collected and studied. PWS were classified into 6 distinct patterns. In all, 66 patients were included. Eleven presented with SWS (magnetic resonance imaging signs and seizure). Four additional infants had suspected SWS without neurologic manifestations. Hemifacial (odds ratio 7.7, P = .003) and median (odds ratio 17.08, P = .008) PWS patterns were found to be at high risk for SWS. A nonmedian linear pattern was not associated with SWS. Small number of patients translated to limited power of the study. Specific PWS distribution patterns are associated with an increased risk of SWS. These PWS patterns conform to areas of somatic mosaicism. Terminology stipulating ophthalmic division of trigeminal nerve territory involvement in SWS should be abandoned. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Whole-heart magnetic resonance coronary angiography with multiple breath-holds and automatic breathing-level tracking

    NASA Astrophysics Data System (ADS)

    Kuhara, Shigehide; Ninomiya, Ayako; Okada, Tomohisa; Kanao, Shotaro; Kamae, Toshikazu; Togashi, Kaori

    2010-05-01

    Whole-heart (WH) magnetic resonance coronary angiography (MRCA) studies are usually performed during free breathing while monitoring the position of the diaphragm with real-time motion correction. However, this results in a long scan time and the patient's breathing pattern may change, causing the study to be aborted. Alternatively, WH MRCA can be performed with multiple breath-holds (mBH). However, one problem in the mBH method is that patients cannot hold their breath at the same position every time, leading to image degradation. We have developed a new WH MRCA imaging method that employs both the mBH method and automatic breathing-level tracking to permit automatic tracking of the changes in breathing or breath-hold levels. Evaluation of its effects on WH MRCA image quality showed that this method can provide high-quality images within a shorter scan time. This proposed method is expected to be very useful in clinical WH MRCA studies.

  14. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  15. Review of dynamic contrast-enhanced MRI: Technical aspects and applications in the musculoskeletal system.

    PubMed

    Sujlana, Parvinder; Skrok, Jan; Fayad, Laura M

    2018-04-01

    Although postcontrast imaging has been used for many years in musculoskeletal imaging, dynamic contrast enhanced (DCE) MRI is not routinely used in many centers around the world. Unlike conventional contrast-enhanced sequences, DCE-MRI allows the evaluation of the temporal pattern of enhancement in the musculoskeletal system, perhaps best known for its use in oncologic applications (such as differentiating benign from malignant tumors, evaluating for treatment response after neoadjuvant chemotherapy, and differentiating postsurgical changes from residual tumor). However, DCE-MRI can also be used to evaluate inflammatory processes such as Charcot foot and synovitis, and evaluate bone perfusion in entities like Legg Calve Perthes disease and arthritis. Finally, vascular abnormalities and associated complications may be better characterized with DCE-MRI than conventional imaging. The goal of this article is to review the applications and technical aspects of DCE-MRI in the musculoskeletal system. 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:875-890. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  17. Imaging Patterns of Muscle Atrophy.

    PubMed

    Weber, Marc-André; Wolf, Marcel; Wattjes, Mike P

    2018-07-01

    The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Hilar cholangiocarcinoma: Cross sectional evaluation of disease spectrum

    PubMed Central

    Mahajan, Mangal S; Moorthy, Srikanth; Karumathil, Sreekumar P; Rajeshkannan, R; Pothera, Ramchandran

    2015-01-01

    Although hilar cholangiocarcinoma is relatively rare, it can be diagnosed on imaging by identifying its typical pattern. In most cases, the tumor appears to be centered on the right or left hepatic duct with involvement of the ipsilateral portal vein, atrophy of hepatic lobe on that side, and invasion of adjacent liver parenchyma. Multi-detector computed tomography (MDCT) and magnetic resonance cholangiopancreatography (MRCP) are commonly used imaging modalities to assess the longitudinal and horizontal spread of tumor. PMID:25969643

  19. False Lumen Flow Patterns and their Relation with Morphological and Biomechanical Characteristics of Chronic Aortic Dissections. Computational Model Compared with Magnetic Resonance Imaging Measurements

    PubMed Central

    Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo

    2017-01-01

    Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720

  20. Single and double acquisition strategies for compensation of artifacts from eddy current and transient oscillation in balanced steady-state free precession.

    PubMed

    Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong

    2017-07-01

    To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. In vivo magnetic resonance microscopy of brain structure in unanesthetized flies

    NASA Astrophysics Data System (ADS)

    Jasanoff, Alan; Sun, Phillip Z.

    2002-09-01

    We present near-cellular-resolution magnetic resonance (MR) images of an unanesthetized animal, the blowfly Sarcophaga bullata. Immobilized flies were inserted into a home-built gradient probe in a 14.1-T magnet, and images of voxel size (20-40 μm) 3—comparable to the diameter of many neuronal cell bodies in the fly's brain—were obtained in several hours. Use of applied field gradients on the order of 60 G/cm allowed minimally distorted images to be produced, despite significant susceptibility differences across the specimen. The images we obtained have exceptional contrast-to-noise levels; comparison with histology-based anatomical information shows that the MR microscopy faithfully represents patterns of nervous tissue and allows distinct brain regions to be clearly identified. Even at the highest resolutions we explored, morphological detail was pronounced in the apparent absence of instabilities or movement-related artifacts frequently observed during imaging of live animal specimens. This work demonstrates that the challenges of noninvasive in vivo MR microscopy can be overcome in a system amenable to studies of brain structure and physiology.

  2. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  3. Dissociable Patterns of Neural Activity during Response Inhibition in Depressed Adolescents with and without Suicidal Behavior

    ERIC Educational Resources Information Center

    Pan, Lisa A.; Batezati-Alves, Silvia C.; Almeida, Jorge R. C.; Segreti, AnnaMaria; Akkal, Dalila; Hassel, Stefanie; Lakdawala, Sara; Brent, David A.; Phillips, Mary L.

    2011-01-01

    Objectives: Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method: Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of…

  4. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  5. Decreased Functional Brain Activation in Friedreich Ataxia Using the Simon Effect Task

    ERIC Educational Resources Information Center

    Georgiou-Karistianis, N.; Akhlaghi, H.; Corben, L. A.; Delatycki, M. B.; Storey, E.; Bradshaw, J. L.; Egan, G. F.

    2012-01-01

    The present study applied the Simon effect task to examine the pattern of functional brain reorganization in individuals with Friedreich ataxia (FRDA), using functional magnetic resonance imaging (fMRI). Thirteen individuals with FRDA and 14 age and sex matched controls participated, and were required to respond to either congruent or incongruent…

  6. Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies.

    PubMed

    Martin, Anna; Schurz, Matthias; Kronbichler, Martin; Richlan, Fabio

    2015-05-01

    We used quantitative, coordinate-based meta-analysis to objectively synthesize age-related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23-34 years) were matched to 20 studies with children (age means: 7-12 years). The separate meta-analyses of these two sets showed a pattern of reading-related brain activation common to children and adults in left ventral occipito-temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta-analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading-related activation clusters in children and adults are provided. © 2015 Wiley Periodicals, Inc.

  7. Decreased bilateral cortical representation patterns in writer's cramp: a functional magnetic resonance imaging study at 3.0 T.

    PubMed

    Islam, Tina; Kupsch, Andreas; Bruhn, Harald; Scheurig, Christian; Schmidt, Sein; Hoffmann, Karl-Titus

    2009-06-01

    Functional magnetic resonance imaging was used to characterize patterns of cortical activation in response to sensory and motor tasks in patients with writer's cramp. 17 patients and 17 healthy subjects were examined during finger-tapping, index finger flexion, and electrical median nerve stimulation of both hands during electromyographic monitoring. SPM2 was used to evaluate Brodmann area (BA) 4, 1, 2, 3, 6, 40. Patients showed decreased activation in the left BA 4 with motor tasks of both hands and the left BA 1-3 with right finger-tapping. With left finger-tapping there was bilateral underactivation of single areas of the somatosensory cortex. Patients exhibited decreased activation in the bilateral BA 6 with left motor tasks and in the right BA 6 with right finger-tapping. Patients had decreased activation in bilateral BA 40 with finger-tapping of both hands. The findings suggest decreased baseline activity or an impaired activation in response to motor tasks in BA 1-4, 6, 40 in patients with writer's cramp for the dystonic and the clinically unaffected hand.

  8. Neonatal Magnetic Resonance Imaging Pattern of Brain Injury as a Biomarker of Childhood Outcomes following a Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy.

    PubMed

    Shankaran, Seetha; McDonald, Scott A; Laptook, Abbot R; Hintz, Susan R; Barnes, Patrick D; Das, Abhik; Pappas, Athina; Higgins, Rosemary D

    2015-11-01

    To examine the ability of magnetic resonance imaging (MRI) patterns of neonatal brain injury defined by the National Institute of Child Health and Human Development Neonatal Research Network to predict death or IQ at 6-7 years of age following hypothermia for neonatal encephalopathy. Out of 208 participants, 124 had MRI and primary outcome (death or IQ <70) data. The relationship between injury pattern and outcome was assessed. Death or IQ <70 occurred in 4 of 50 (8%) of children with pattern 0 (normal MRI), 1 of 6 (17%) with 1A (minimal cerebral lesions), 1 of 4 (25%) with 1B (extensive cerebral lesions), 3 of 8 (38%) with 2A (basal ganglia thalamic, anterior or posterior limb of internal capsule, or watershed infarction), 32 of 49 (65%) with 2B (2A with cerebral lesions), and 7 of 7 (100%) with pattern 3 (hemispheric devastation), P < .001; this association was also seen within hypothermia and control subgroups. IQ was 90 ± 13 among the 46 children with a normal MRI and 69 ± 25 among the 50 children with an abnormal MRI. In childhood, for a normal outcome, a normal neonatal MRI had a sensitivity of 61%, specificity of 92%, a positive predictive value of 92%, and a negative predictive value of 59%; for death or IQ <70, the 2B and 3 pattern combined had a sensitivity of 81%, specificity of 78%, positive predictive value of 70%, and a negative predictive value of 87%. The Neonatal Research Network MRI pattern of neonatal brain injury is a biomarker of neurodevelopmental outcome at 6-7 years of age. ClinicalTrials.gov: NCT00005772. Copyright © 2015. Published by Elsevier Inc.

  9. Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Roots and Soil

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard

    The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.

  10. Imaging patterns and focal lesions in fatty liver: a pictorial review.

    PubMed

    Venkatesh, Sudhakar K; Hennedige, Tiffany; Johnson, Geoffrey B; Hough, David M; Fletcher, Joel G

    2017-05-01

    Non-alcoholic fatty liver disease is the most common cause of chronic liver disease and affects nearly one-third of US population. With the increasing trend of obesity in the population, associated fatty change in the liver will be a common feature observed in imaging studies. Fatty liver causes changes in liver parenchyma appearance on imaging modalities including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) and may affect the imaging characteristics of focal liver lesions (FLLs). The imaging characteristics of FLLs were classically described in a non-fatty liver. In addition, focal fatty change and focal fat sparing may also simulate FLLs. Knowledge of characteristic patterns of fatty change in the liver (diffuse, geographical, focal, subcapsular, and perivascular) and their impact on the detection and characterization of FLL is therefore important. In general, fatty change may improve detection of FLLs on MRI using fat suppression sequences, but may reduce sensitivity on a single-phase (portal venous) CT and conventional ultrasound. In patients with fatty liver, MRI is generally superior to ultrasound and CT for detection and characterization of FLL. In this pictorial essay, we describe the imaging patterns of fatty change in the liver and its effect on detection and characterization of FLLs on ultrasound, CT, MRI, and PET.

  11. Divergent regional patterns of cerebral hypoperfusion and gray matter atrophy in mild cognitive impairment patients.

    PubMed

    Wirth, Miranka; Pichet Binette, Alexa; Brunecker, Peter; Köbe, Theresa; Witte, A Veronica; Flöel, Agnes

    2017-03-01

    Reductions of cerebral blood flow and gray matter structure have been implicated in early pathogenesis of Alzheimer's disease, potentially providing complementary information. The present study evaluated regional patterns of cerebral hypoperfusion and atrophy in patients with mild cognitive impairment and healthy older adults. In each participant, cerebral perfusion and gray matter structure were extracted within selected brain regions vulnerable to Alzheimer's disease using magnetic resonance imaging. Measures were compared between diagnostic groups with/without adjustment for covariates. In mild cognitive impairment patients, cerebral blood flow was significantly reduced in comparison with healthy controls in temporo-parietal regions and the basal ganglia in the absence of local gray matter atrophy. By contrast, gray matter structure was significantly reduced in the hippocampus in the absence of local hypoperfusion. Both, cerebral perfusion and gray matter structure were significantly reduced in the entorhinal and isthmus cingulate cortex in mild cognitive impairment patients compared with healthy older adults. Our results demonstrated partly divergent patterns of temporo-parietal hypoperfusion and medial-temporal atrophy in mild cognitive impairment patients, potentially indicating biomarker sensitivity to dissociable pathological mechanisms. The findings support applicability of cerebral perfusion and gray matter structure as complementary magnetic resonance imaging-based biomarkers in early Alzheimer's disease detection, a hypothesis to be further evaluated in longitudinal studies.

  12. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  13. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images.

    PubMed

    Modlesky, Christopher M; Whitney, Daniel G; Carter, Patrick T; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman

    2014-03-01

    Magnetic resonance imaging (MRI) is used to assess trabecular bone microarchitecture in humans; however, image processing can be labor intensive and time consuming. One aim of this study was to determine the pattern of trabecular bone microarchitecture in the distal femur of typically developing children. A second aim was to determine the proportion and location of magnetic resonance images that need to be processed to yield representative estimates of trabecular bone microarchitecture. Twenty-six high resolution magnetic resonance images were collected immediately above the growth plate in the distal femur of 6-12year-old typically developing children (n=40). Measures of trabecular bone microarchitecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the lateral aspect of the distal femur were determined using the twenty most central images (20IM). The average values for appBV/TV, appTb.N, appTb.Th and appTb.Sp from 20IM were compared to the average values from 10 images (10IM), 5 images (5IM) and 3 images (3IM) equally dispersed throughout the total image set and one image (1IM) from the center of the total image set using linear regression analysis. The resulting mathematical models were cross-validated using the leave-one-out technique. Distance from the growth plate was strongly and inversely related to appBV/TV (r(2)=0.68, p<0.001) and appTb.N (r(2)=0.92, p<0.001) and was strongly and positively related to appTb.Sp (r(2)=0.86, p<0.001). The relationship between distance from the growth plate and appTb.Th was not linear (r(2)=0.06, p=0.28), but instead it was quadratic and statistically significant (r(2)=0.54, p<0.001). Trabecular bone microarchitecture estimates from 10IM, 5IM, 3IM and 1IM were not different from estimates from 20IM (p>0.05). However, there was a progressive decrease in the strength of the relationships as a smaller proportion of images were used to predict estimates from 20IM (r(2)=0.98 to 0.99 using 10IM, 0.94 to 0.96 using 5IM, 0.87 to 0.90 using 3IM and 0.66 to 0.72 using 1IM; all p<0.001). Using the resulting mathematical models and the leave-one-out cross-validation analysis, measures of trabecular bone microarchitecture estimated from the 10IM and 5IM partial image sets agreed extremely well with estimates from 20IM. The findings indicate that partial magnetic resonance image sets can be used to provide reasonable estimates of trabecular bone microarchitecture status in the distal femur of typically developing children. However, because the relative amount of trabecular bone in the distal femur decreases with distance from the growth plate due to a decrease in trabecular number, careful positioning of the region of interest and sampling from throughout the region of interest is necessary. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Revealing representational content with pattern-information fMRI--an introductory guide.

    PubMed

    Mur, Marieke; Bandettini, Peter A; Kriegeskorte, Nikolaus

    2009-03-01

    Conventional statistical analysis methods for functional magnetic resonance imaging (fMRI) data are very successful at detecting brain regions that are activated as a whole during specific mental activities. The overall activation of a region is usually taken to indicate involvement of the region in the task. However, such activation analysis does not consider the multivoxel patterns of activity within a brain region. These patterns of activity, which are thought to reflect neuronal population codes, can be investigated by pattern-information analysis. In this framework, a region's multivariate pattern information is taken to indicate representational content. This tutorial introduction motivates pattern-information analysis, explains its underlying assumptions, introduces the most widespread methods in an intuitive way, and outlines the basic sequence of analysis steps.

  15. Nuclear Magnetic Resonance Relaxation and Imaging Studies on Water Flow in Soil Cores

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Stapf, Siegfried

    2010-05-01

    Magnetic resonance imaging (MRI) is applied to the study of flow processes in a model and a natural soils core. Since flow velocities in soils are mostly too slow to be monitored directly by MRI flow velocity imaging, Gd-DTPA was used as contrast agent for the first time for flow processes in soils. Apart from its chemical stability the main advantage is the anionic net charge in neutral aqueous solution. Here we can show that this property hinders the adsorption at soil mineral surfaces and therefore retardation. Gd-DTPA turns out to be a very convenient conservative tracer for the investigation of flow processes in model and natural soil cores. With respect to the flow processes in the coaxial model soil column and the natural soil column we found total different flow patterns: In the first case tracer plume moves quite homogeneously only in the inner highly conductive core. No penetration into the outer fine material takes place. In contrast, the natural soil core shows a flow pattern which is characterized by preferential paths avoiding dense regions and preferring loose structures. In the case of the simpler model column also the local flow velocities are calculated by the application of a peak tracking algorithm.

  16. Correlation of Electrocardiographic Changes with Cardiac Magnetic Resonance Findings in Patients with Hypertrophic Cardiomyopathy

    PubMed Central

    Paixão, Gabriela Miana de Mattos; Veronesi, Horácio Eduardo; da Silva, Halsted Alarcão Gomes Pereira; de Alencar Neto, José Nunes; Maldi, Carolina de Paulo; Aguiar Filho, Luciano de Figueiredo; Pinto, Ibrahim Masciarelli Francisco; de França, Francisco Faustino de Albuquerque Carneiro; Correia, Edileide de Barros

    2018-01-01

    Background Electrocardiogram is the initial test in the investigation of heart disease. Electrocardiographic changes in hypertrophic cardiomyopathy have no set pattern, and correlates poorly with echocardiographic findings. Cardiac magnetic resonance imaging has been gaining momentum for better assessment of hypertrophy, as well as the detection of myocardial fibrosis. Objectives To correlate the electrocardiographic changes with the location of hypertrophy in hypertrophic cardiomyopathy by cardiac magnetic resonance. Methods This descriptive cross-sectional study evaluated 68 patients with confirmed diagnosis of hypertrophic cardiomyopathy by cardiac magnetic resonance. The patients’ electrocardiogram was compared with the location of the greatest myocardial hypertrophy by cardiac magnetic resonance. Statistical significance level of 5% and 95% confidence interval were adopted. Results Of 68 patients, 69% had septal hypertrophy, 21% concentric and 10% apical hypertrophies. Concentric hypertrophy showed the greatest myocardial fibrosis mass (p < 0.001) and the greatest R wave size in D1 (p = 0.0280). The amplitudes of R waves in V5 and V6 (p = 0.0391, p = 0.0148) were higher in apical hypertrophy, with statistical significance. Apical hypertrophy was also associated with higher T wave negativity in D1, V5 and V6 (p < 0.001). Strain pattern was found in 100% of the patients with apical hypertrophy (p < 0.001). Conclusion The location of myocardial hypertrophy by cardiac magnetic resonance can be correlated with electrocardiographic changes, especially for apical hypertrophy. PMID:29538524

  17. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects-a 3.0 T magnetic resonance imaging study.

    PubMed

    Stahl, Robert; Luke, Anthony; Ma, C Benjamin; Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M

    2008-07-01

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P < 0.05). A high prevalence of knee abnormalities was found in marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences.

  18. Cerebral Perforating Artery Disease : Characteristics on High-Resolution Magnetic Resonance Imaging.

    PubMed

    Liang, Jianye; Liu, Yiyong; Xu, Xiaoshuang; Shi, Changzheng; Luo, Liangping

    2018-03-23

    Our aims were to evaluate the feasibility of high-resolution magnetic resonance imaging (HR-MRI) for displaying the cerebral perforating arteries in normal subjects and to discuss the value of HR-MRI for detecting the causes of infarctions in the territory of the lenticulostriate artery (LSA). Included in this study were 31 healthy subjects and 28 patients who had infarctions in the territory supplied by the LSA. The T1-weighted imaging (T1WI), T2WI, diffusion-weighted imaging (DWI), and HR-MRI, including 3‑dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) and 3D fast spin-echo T1WI (namely CUBE T1 in GE Healthcare), were applied on a 3-Tesla scanner. The numbers and route of the perforating arteries on both sides were independently confirmed on HR-MRI by two physicians. The Wilcoxon test was used to compare the differences. The numbers of perforating arteries in healthy subjects observed on 3D-TOF-MRA were as follows: numbers of the bilateral recurrent artery of Heubner (RAH) ranged from 0-3 (median 1), numbers of the left LSA ranged from 0-7 (median 3), numbers of the right LSA ranged from 0-5 (median 3), numbers of the bilateral anterior choroidal artery ranged from 1-2 (median 1) and the numbers of the bilateral thalamoperforating artery ranged from 1-2 (median 1). In the patients with lenticulostriate infarctions, the numbers of LSAs on the affected side were lower than on the opposite and ipsilateral sides in the healthy subjects. The results were statistically significant. An abnormality of the RAH may lead to a centrum semiovale infarct pattern, whereas an abnormality of the LSA is associated with a corona radiata infarct pattern. The use of HR 3D-TOF-MRA and CUBE T1 had unique advantages in displaying the tiny perforating arteries in vivo. Moreover, effective recognition of the associated cerebral perforating artery and infarct patterns may enhance our understanding of the mechanism of stroke in patients with lenticulostriate infarctions.

  19. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  20. Recognition Alters the Spatial Pattern of fMRI Activation in Early Retinotopic Cortex

    PubMed Central

    Vul, E.; Kanwisher, N.

    2010-01-01

    Early retinotopic cortex has traditionally been viewed as containing a veridical representation of the low-level properties of the image, not imbued by high-level interpretation and meaning. Yet several recent results indicate that neural representations in early retinotopic cortex reflect not just the sensory properties of the image, but also the perceived size and brightness of image regions. Here we used functional magnetic resonance imaging pattern analyses to ask whether the representation of an object in early retinotopic cortex changes when the object is recognized compared with when the same stimulus is presented but not recognized. Our data confirmed this hypothesis: the pattern of response in early retinotopic visual cortex to a two-tone “Mooney” image of an object was more similar to the response to the full grayscale photo version of the same image when observers knew what the two-tone image represented than when they did not. Further, in a second experiment, high-level interpretations actually overrode bottom-up stimulus information, such that the pattern of response in early retinotopic cortex to an identified two-tone image was more similar to the response to the photographic version of that stimulus than it was to the response to the identical two-tone image when it was not identified. Our findings are consistent with prior results indicating that perceived size and brightness affect representations in early retinotopic visual cortex and, further, show that even higher-level information—knowledge of object identity—also affects the representation of an object in early retinotopic cortex. PMID:20071627

  1. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  2. The Efficacy of Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging Targeted Biopsy in Risk Classification for Patients with Prostate Cancer on Active Surveillance.

    PubMed

    Recabal, Pedro; Assel, Melissa; Sjoberg, Daniel D; Lee, Daniel; Laudone, Vincent P; Touijer, Karim; Eastham, James A; Vargas, Hebert A; Coleman, Jonathan; Ehdaie, Behfar

    2016-08-01

    We determined whether multiparametric magnetic resonance imaging targeted biopsies may replace systematic biopsies to detect higher grade prostate cancer (Gleason score 7 or greater) and whether biopsy may be avoided based on multiparametric magnetic resonance imaging among men with Gleason 3+3 prostate cancer on active surveillance. We identified men with previously diagnosed Gleason score 3+3 prostate cancer on active surveillance who underwent multiparametric magnetic resonance imaging and a followup prostate biopsy. Suspicion for higher grade cancer was scored on a standardized 5-point scale. All patients underwent a systematic biopsy. Patients with multiparametric magnetic resonance imaging regions of interest also underwent magnetic resonance imaging targeted biopsy. The detection rate of higher grade cancer was estimated for different multiparametric magnetic resonance imaging scores with the 3 biopsy strategies of systematic, magnetic resonance imaging targeted and combined. Of 206 consecutive men on active surveillance 135 (66%) had a multiparametric magnetic resonance imaging region of interest. Overall, higher grade cancer was detected in 72 (35%) men. A higher multiparametric magnetic resonance imaging score was associated with an increased probability of detecting higher grade cancer (Wilcoxon-type trend test p <0.0001). Magnetic resonance imaging targeted biopsy detected higher grade cancer in 23% of men. Magnetic resonance imaging targeted biopsy alone missed higher grade cancers in 17%, 12% and 10% of patients with multiparametric magnetic resonance imaging scores of 3, 4 and 5, respectively. Magnetic resonance imaging targeted biopsies increased the detection of higher grade cancer among men on active surveillance compared to systematic biopsy alone. However, a clinically relevant proportion of higher grade cancer was detected using only systematic biopsy. Despite the improved detection of disease progression using magnetic resonance imaging targeted biopsy, systematic biopsy cannot be excluded as part of surveillance for men with low risk prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Cortical Activation Patterns during Long-Term Memory Retrieval of Visually or Haptically Encoded Objects and Locations

    ERIC Educational Resources Information Center

    Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…

  4. Neural Connectivity Patterns Underlying Symbolic Number Processing Indicate Mathematical Achievement in Children

    ERIC Educational Resources Information Center

    Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M.

    2014-01-01

    In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis…

  5. Where the Brain Appreciates the Final State of an Event: The Neural Correlates of Telicity

    ERIC Educational Resources Information Center

    Romagno, Domenica; Rota, Giuseppina; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    In this study we investigated whether the human brain distinguishes between telic events that necessarily entail a specified endpoint (e.g., "reaching"), and atelic events with no delimitation or final state (e.g., "chasing"). We used functional magnetic resonance imaging to explore the patterns of neural response associated with verbs denoting…

  6. Testing Second Language Oral Proficiency in Direct and Semidirect Settings: A Social-Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Jeong, Hyeonjeong; Hashizume, Hiroshi; Sugiura, Motoaki; Sassa, Yuko; Yokoyama, Satoru; Shiozaki, Shuken; Kawashima, Ryuta

    2011-01-01

    This study used functional magnetic resonance imaging (fMRI) to identify differences in the neural processes underlying direct and semidirect interviews. We examined brain activation patterns while 20 native speakers of Japanese participated in direct and semidirect interviews in both Japanese (first language [L1]) and English (second language…

  7. Effect of body temperature on the pharmacokinetics of a triarylmethyl-type paramagnetic contrast agent used in EPR oximetry.

    PubMed

    Matsumoto, Ken-Ichiro; Hyodo, Fuminori; Mitchell, James B; Krishna, Murali C

    2018-02-01

    Pharmacokinetics of the tri[8-carboxy-2,2,6,6-tetrakis(2-hydroxymethyl)benzo[1,2-d:4,5-d']bis(1,3)dithio-4-yl]methyl radical (Oxo63) after a single bolus and/or continuous intravenous infusion was investigated in tumor-bearing C3H mice with or without body temperature control while under anesthesia. The in vivo time course of Oxo63 in blood was measured using X-band electron paramagnetic resonance spectroscopy. Distribution of Oxo63 in normal muscle and tumor tissues was obtained using a surface coil resonator and a 700-MHz electron paramagnetic resonance spectrometer. The whole-body distribution of Oxo63 was obtained by 300-MHz continuous-wave electron paramagnetic resonance imaging. The high-resolution 300-MHz time-domain electron paramagnetic resonance imaging was also carried out to probe the distribution of Oxo63. Urination of mice was retarded at low body temperature, causing the concentration of Oxo63 in blood to attain high levels. However, the concentration of Oxo63 in tumor tissue was lower with no control of body temperature than active body temperature control. The nonsystemized blood flow in the tumor tissues may pool Oxo63 at lower body temperature. Pharmacokinetics of the contrast agent were found to be significantly affected by body temperature of the experimental animal, and can influence the probe distribution and the image patterns. Magn Reson Med 79:1212-1218, 2018. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. SVD compression for magnetic resonance fingerprinting in the time domain.

    PubMed

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  9. SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain

    PubMed Central

    McGivney, Debra F.; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A.

    2016-01-01

    Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously. PMID:25029380

  10. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.

    PubMed

    Chen, Longyi; Tse, Wai Hei; Chen, Yi; McDonald, Matthew W; Melling, James; Zhang, Jin

    2017-05-15

    In this paper, a nanostructured biosensor is developed to detect glucose in tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The designed FRET pair, including the donor, CdSe/ZnS quantum dots (QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of glucose, the quenched emission of QDs through the FRET mechanism is restored by displacing the dextran from Con A. To have a dual-modulation sensor for convenient and accurate detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the patterned sensor can be converted to fluorescence spectra with high signal-to-noise ratio and calibrated image pixel value. The photoluminescence intensity of the patterned FRET sensor increases linearly with increasing concentration of glucose from 0.03mmol/L to 3mmol/L, which covers the range of tear glucose levels for both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured by a handhold fluorescence microscope increases with increasing glucose. Four male Sprague-Dawley rats with different blood glucose concentrations were utilized to demonstrate the quick response of the patterned FRET sensor to 2µL of tear samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Edge-preserving image compression for magnetic-resonance images using dynamic associative neural networks (DANN)-based neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Tat C.; Kabuka, Mansur R.

    1994-05-01

    With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.

  12. Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: Implications for multi-center imaging studies.

    PubMed

    An, Hyeong Su; Moon, Won-Jin; Ryu, Jae-Kyun; Park, Ju Yeon; Yun, Won Sung; Choi, Jin Woo; Jahng, Geon-Ho; Park, Jang-Yeon

    2017-12-01

    This prospective multi-center study aimed to evaluate the inter-vendor and test-retest reliabilities of resting-state functional magnetic resonance imaging (RS-fMRI) by assessing the temporal signal-to-noise ratio (tSNR) and functional connectivity. Study included 10 healthy subjects and each subject was scanned using three 3T MR scanners (GE Signa HDxt, Siemens Skyra, and Philips Achieva) in two sessions. The tSNR was calculated from the time course data. Inter-vendor and test-retest reliabilities were assessed with intra-class correlation coefficients (ICCs) derived from variant component analysis. Independent component analysis was performed to identify the connectivity of the default-mode network (DMN). In result, the tSNR for the DMN was not significantly different among the GE, Philips, and Siemens scanners (P=0.638). In terms of vendor differences, the inter-vendor reliability was good (ICC=0.774). Regarding the test-retest reliability, the GE scanner showed excellent correlation (ICC=0.961), while the Philips (ICC=0.671) and Siemens (ICC=0.726) scanners showed relatively good correlation. The DMN pattern of the subjects between the two sessions for each scanner and between three scanners showed the identical patterns of functional connectivity. The inter-vendor and test-retest reliabilities of RS-fMRI using different 3T MR scanners are good. Thus, we suggest that RS-fMRI could be used in multicenter imaging studies as a reliable imaging marker. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Changes in brain magnetic resonance imaging patterns for preterm infants after introduction of a magnetic resonance-compatible incubator coil system: 5-year experience at a single institution.

    PubMed

    Cho, Hyun-Hae; Kim, In-One; Cheon, Jung-Eun; Choi, Young Hun; Lee, So Mi; Kim, Woo Sun

    2016-09-01

    To evaluate the changes in using patterns of brain magnetic resonance imaging (MRI) in preterm infants after introduction of a MR-compatible incubator coil system. Brain MRIs for preterm infants with the MR-compatible incubator coil from March 2010 to July 2014 (n=154, group A) were compared with MRIs prior to the introduction of the incubator coil, from March 2005 to February 2010 (n=65, group B). Clinical data, MRI findings, acquisition time, and incidence of adverse events during the study were retrospectively reviewed. For the qualitative analysis of the examinations, the presence of motion artefact, spatial resolution, and overall image quality were assessed. Signal uniformity of each sequence was evaluated for a quantitative comparison. Comparing with group B, Group A was significantly younger (36+3 vs. 38+3 weeks, p<0.001), had a significantly lower body weight (2006.6 and 2390.3g respectively; p<0.001) at the time of MRI, and had shorter time interval (54.3±2.6 vs. 70.5±4.4days, p=0.002) between birth and examination. Abnormal findings were noted more frequently in group A (n=100, 65%) than in B (n=24, 37%. p=0.001) with a significantly higher incidence of diffusion restriction (n=21, 13.6% vs. n=4, 6.2%, p=0.034). Mean image acquisition time was significantly shorter in group A (21.4±4.5 vs. 25.4±5.5min, p<0.001) with significant lower adverse events during MRI (n=26, 40 vs. n=6, 3.9%, p<0.001). Group A exhibited significantly less motion artefact, better spatial resolution, and better overall image quality with decreased signal variation than group B (all p<0.001). Application of the MR-compatible incubator for preterm brain MRI evaluation is safer and provides more timely evaluation of preterm infants with better image quality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Magnetic resonance imaging differential diagnosis of brainstem lesions in children

    PubMed Central

    Quattrocchi, Carlo Cosimo; Errante, Yuri; Rossi Espagnet, Maria Camilla; Galassi, Stefania; Della Sala, Sabino Walter; Bernardi, Bruno; Fariello, Giuseppe; Longo, Daniela

    2016-01-01

    Differential diagnosis of brainstem lesions, either isolated or in association with cerebellar and supra-tentorial lesions, can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential, especially in the pediatric population. Magnetic resonance imaging (MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and, particularly, the brainstem. High magnetic static field MRI allows detailed visualization of the morphology, signal intensity and metabolic content of the brainstem nuclei, together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular, toxico-metabolic, infective-inflammatory, degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions, the brainstem vascularization territories, gray and white matter distribution and tissue selective vulnerability. PMID:26834941

  15. Diffusion weighted MR imaging and proton MR spectroscopy findings of central neurocytoma with pathological correlation.

    PubMed

    Tlili-Graiess, Kalthoum; Mama, Nadia; Arifa, Nadia; Kadri, Khaled; Hasni, Ibtissem; Krifa, Hedi; Mokni, Moncef

    2014-10-01

    Three cases of histopathologically confirmed central neurocytoma (CN) are presented, emphasizing diagnostic imaging issues: conventional magnetic resonance imaging with Proton magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) findings of CN. Patients age ranged from 17 to 32 years, Imaging include a CT scan and MR examination with DWI and proton MRS on a 1.5-T system. DWI and subsequent apparent diffusion coefficient (ADC) were obtained in all. Single voxel MRS was performed prior to surgery using a point resolved spectroscopy sequence (PRESS) with short 35 ms and long echotime (TE) 144 ms, associated with a two-dimensional chemical Shift Imaging (2D-CSI) with 144 ms TE (one case). Histopathological examination included immunostaining with synaptophysin. With the long TE, a variable amount of glycine with markedly increased choline, very small to almost complete loss of N-acetylaspartate and creatine, and inverted triplet of alanine-lactate were observed in all three patients. Increased glutamate and glutamine complex (Glx) was also observed in all with short TE. DWI demonstrated variable low ADC which appeared well correlated with the tumor signal intensity and cell density: the most homogeneous and highly dense cellular tumor with increased nucleus to cytoplasm ratio demonstrated the lower ADC. Histological pattern was typical in two cases and demonstrated an oligodendroglioma-like pattern in one case. Positivity for synaptophysin confirmed the neuronal origin in all. The demonstration within an intraventricular tumor of both glycine and alanine on MRS along with high choline, bulky Glx and restricted diffusion appear diagnostic of CN. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Design Method of Digital Optimal Control Scheme and Multiple Paralleled Bridge Type Current Amplifier for Generating Gradient Magnetic Fields in MRI Systems

    NASA Astrophysics Data System (ADS)

    Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo

    This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.

  17. Predicting consumer behavior: using novel mind-reading approaches.

    PubMed

    Calvert, Gemma A; Brammer, Michael J

    2012-01-01

    Advances in machine learning as applied to functional magnetic resonance imaging (fMRI) data offer the possibility of pretesting and classifying marketing communications using unbiased pattern recognition algorithms. By using these algorithms to analyze brain responses to brands, products, or existing marketing communications that either failed or succeeded in the marketplace and identifying the patterns of brain activity that characterize success or failure, future planned campaigns or new products can now be pretested to determine how well the resulting brain responses match the desired (successful) pattern of brain activity without the need for verbal feedback. This major advance in signal processing is poised to revolutionize the application of these brain-imaging techniques in the marketing sector by offering greater accuracy of prediction in terms of consumer acceptance of new brands, products, and campaigns at a speed that makes them accessible as routine pretesting tools that will clearly demonstrate return on investment.

  18. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jianning; Wen, Tingdun; Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with thatmore » of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.« less

  19. A Greedy Algorithm for Brain MRI's Registration.

    PubMed

    Chesseboeuf, Clément

    2016-12-01

    This document presents a non-rigid registration algorithm for the use of brain magnetic resonance (MR) images comparison. More precisely, we want to compare pre-operative and post-operative MR images in order to assess the deformation due to a surgical removal. The proposed algorithm has been studied in Chesseboeuf et al. ((Non-rigid registration of magnetic resonance imaging of brain. IEEE, 385-390. doi: 10.1109/IPTA.2015.7367172 , 2015), following ideas of Trouvé (An infinite dimensional group approach for physics based models in patterns recognition. Technical Report DMI Ecole Normale Supérieure, Cachan, 1995), in which the author introduces the algorithm within a very general framework. Here we recalled this theory from a practical point of view. The emphasis is on illustrations and description of the numerical procedure. Our version of the algorithm is associated with a particular matching criterion. Then, a section is devoted to the description of this object. In the last section we focus on the construction of a statistical method of evaluation.

  20. Cardiac structure and function in the obese: a cardiovascular magnetic resonance imaging study.

    PubMed

    Danias, Peter G; Tritos, Nicholas A; Stuber, Matthias; Kissinger, Kraig V; Salton, Carol J; Manning, Warren J

    2003-07-01

    Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.

  1. Cerebral signal intensity abnormalities on T2-weighted MR images in HIV patients with highly active antiretroviral therapy: relationship with clinical parameters and interval changes.

    PubMed

    Hanning, Uta; Husstedt, Ingo W; Niederstadt, Thomas-Ulrich; Evers, Stefan; Heindel, Walter; Kloska, Stephan P

    2011-09-01

    The aim of this study was to assess the relationship between immune state and cerebral signal intensity abnormalities (SIAs) on T2-weighted magnetic resonance images in subjects with human immunodeficiency virus type 1 infection and highly active antiretroviral therapy. Thirty-two subjects underwent a total of 109 magnetic resonance studies. The presence of human immunodeficiency virus-associated neurocognitive disorder, categorized CD4(+) T lymphocyte count, and plasma viral load were assessed for relationship with the severity and interval change of SIAs for different anatomic locations of the brain. Subjects with multifocal patterns of SIAs had CD4(+) cell counts < 200 cells/μL in 66.0%, whereas subjects with diffuse patterns of SIAs had CD4(+) cell counts < 200 cells/μL in only 31.4% (P < .001). Subjects without SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 37.0%, whereas subjects with minor and moderate SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 78.3% and 80.0%, respectively (P < .005). The percentage of subjects with CD4(+) cell counts < 200 cells/μL was 85.7% when there were progressive periventricular SIA changes and 45.5% when periventricular SIA changes were stable in follow-up (P < .05). The presence and progression of cerebral SIAs on T2-weighted magnetic resonance images reflecting cerebral infection with human immunodeficiency virus are significantly related to impaired immune state as measured by CD4(+) cell count. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  2. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage.

    PubMed

    Stefanik, J J; Niu, J; Gross, K D; Roemer, F W; Guermazi, A; Felson, D T

    2013-05-01

    To describe the prevalence of magnetic resonance imaging (MRI) detected structural damage in the patellofemoral joint (PFJ) and tibiofemoral joint (TFJ) in a population-based cohort. A secondary aim was to evaluate the patterns of compartmental involvement in knees with pain, between men and women, and in different age and body mass index (BMI) categories. We studied 970 knees, one knee per subject, from the Framingham Osteoarthritis Study, a population-based cohort study of persons 51-92 years old. Cartilage damage and bone marrow lesions (BMLs) were assessed using the Whole Organ Magnetic Resonance Imaging Score (WORMS). The prevalence of isolated PFJ, isolated TFJ, and mixed structural damage was determined using the following definitions: any cartilage damage, full thickness cartilage loss, any BML, and the combination of full thickness cartilage loss with any BML. The mean age and BMI was 63.4 years and 28.6 m/kg(2), respectively; 57% were female. Isolated PFJ damage occurred in 15-20% of knees and isolated TFJ damage occurred in 8-17% of knees depending on the definition used. The prevalence of isolated PFJ damage was greater than isolated TFJ damage using all definitions except the any BML definition. This pattern was similar between genders and among age and BMI categories. In those with knee pain, isolated PFJ was at least as common as TFJ damage depending on the definition used. Using MRI to assess knee joint structural damage, isolated PFJ damage was at least as common as, if not more common than, isolated TFJ damage. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Magnetic Resonance Imaging

    MedlinePlus

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  4. Dissociation of Down syndrome and Alzheimer's disease effects with imaging.

    PubMed

    Matthews, Dawn C; Lukic, Ana S; Andrews, Randolph D; Marendic, Boris; Brewer, James; Rissman, Robert A; Mosconi, Lisa; Strother, Stephen C; Wernick, Miles N; Mobley, William C; Ness, Seth; Schmidt, Mark E; Rafii, Michael S

    2016-06-01

    Down Syndrome (DS) adults experience accumulation of Alzheimer's disease (AD)-like amyloid plaques and tangles and a high incidence of dementia and could provide an enriched population to study AD-targeted treatments. However, to evaluate effects of therapeutic intervention, it is necessary to dissociate the contributions of DS and AD from overall phenotype. Imaging biomarkers offer the potential to characterize and stratify patients who will worsen clinically but have yielded mixed findings in DS subjects. We evaluated 18F fluorodeoxyglucose positron emission tomography (PET), florbetapir PET, and structural magnetic resonance (sMR) image data from 12 nondemented DS adults using advanced multivariate machine learning methods. Our results showed distinctive patterns of glucose metabolism and brain volume enabling dissociation of DS and AD effects. AD-like pattern expression corresponded to amyloid burden and clinical measures. These findings lay groundwork to enable AD clinical trials with characterization and disease-specific tracking of DS adults.

  5. Application of imaging fusion combining contrast-enhanced ultrasound and magnetic resonance imaging in detection of hepatic cellular carcinomas undetectable by conventional ultrasound.

    PubMed

    Dong, Yi; Wang, Wen-Ping; Mao, Feng; Ji, Zheng-Biao; Huang, Bei-Jian

    2016-04-01

    The aim of this study is to explore the value of volume navigation image fusion-assisted contrast-enhanced ultrasound (CEUS) in detection for radiofrequency ablation guidance of hepatocellular carcinomas (HCCs), which were undetectable on conventional ultrasound. From May 2012 to May 2014, 41 patients with 49 HCCs were included in this study. All lesions were detected by dynamic magnetic resonance imaging (MRI) and planned for radiofrequency ablation but were undetectable on conventional ultrasound. After a bolus injection of 2.4 ml SonoVue® (Bracco, Italy), LOGIQ E9 ultrasound system with volume navigation system (version R1.0.5, GE Healthcare, Milwaukee, WI, USA) was used to fuse CEUS and MRI images. The fusion time, fusion success rate, lesion enhancement pattern, and detection rate were analyzed. Image fusions were conducted successfully in 49 HCCs, the technical success rate was 100%. The average fusion time was (9.2 ± 2.1) min (6-12 min). The mean diameter of HCCs was 25.2 ± 5.3 mm (mean ± SD), and mean depth was 41.8 ± 17.2 mm. The detection rate of HCCs using CEUS/MRI imaging fusion (95.9%, 47/49) was significantly higher than CEUS (42.9%, 21/49) (P < 0.05). For small HCCs (diameter, 1-2 cm), the detection rate using imaging fusion (96.9%, 32/33) was also significantly higher than CEUS (18.2%, 6/33) (P < 0.01). All HCCs displayed a rapid wash-in pattern in the arterial phase of CEUS. Imaging fusion combining CEUS and MRI is a promising technique to improve the detection, precise localization, and accurate diagnosis of undetectable HCCs on conventional ultrasound, especially small and atypical HCCs. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  6. Simultaneous acquisition of perfusion image and dynamic MR angiography using time‐encoded pseudo‐continuous ASL

    PubMed Central

    Helle, Michael; Koken, Peter; Van Cauteren, Marc; van Osch, Matthias J. P.

    2017-01-01

    Purpose Both dynamic magnetic resonance angiography (4D‐MRA) and perfusion imaging can be acquired by using arterial spin labeling (ASL). While 4D‐MRA highlights large vessel pathology, such as stenosis or collateral blood flow patterns, perfusion imaging provides information on the microvascular status. Therefore, a complete picture of the cerebral hemodynamic condition could be obtained by combining the two techniques. Here, we propose a novel technique for simultaneous acquisition of 4D‐MRA and perfusion imaging using time‐encoded pseudo‐continuous arterial spin labeling. Methods The time‐encoded pseudo‐continuous arterial spin labeling module consisted of a first subbolus that was optimized for perfusion imaging by using a labeling duration of 1800 ms, whereas the other six subboli of 130 ms were used for encoding the passage of the labeled spins through the arterial system for 4D‐MRA acquisition. After the entire labeling module, a multishot 3D turbo‐field echo‐planar‐imaging readout was executed for the 4D‐MRA acquisition, immediately followed by a single‐shot, multislice echo‐planar‐imaging readout for perfusion imaging. The optimal excitation flip angle for the 3D turbo‐field echo‐planar‐imaging readout was investigated by evaluating the image quality of the 4D‐MRA and perfusion images as well as the accuracy of the estimated cerebral blood flow values. Results When using 36 excitation radiofrequency pulses with flip angles of 5 or 7.5°, the saturation effects of the 3D turbo‐field echo‐planar‐imaging readout on the perfusion images were relatively moderate and after correction, there were no statistically significant differences between the obtained cerebral blood flow values and those from traditional time‐encoded pseudo‐continuous arterial spin labeling. Conclusions This study demonstrated that simultaneous acquisition of 4D‐MRA and perfusion images can be achieved by using time‐encoded pseudo‐continuous arterial spin labeling. Magn Reson Med 79:2676–2684, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:28913838

  7. Performance of magnetic resonance imaging in the evaluation of first-time and reoperative primary hyperparathyroidism.

    PubMed

    Kluijfhout, Wouter P; Venkatesh, Shriya; Beninato, Toni; Vriens, Menno R; Duh, Quan-Yang; Wilson, David M; Hope, Thomas A; Suh, Insoo

    2016-09-01

    Preoperative imaging in patients with primary hyperparathyroidism and a previous parathyroid operation is essential; however, performance of conventional imaging is poor in this subgroup. Magnetic resonance imaging appears to be a good alternative, though overall evidence remains scarce. We retrospectively investigated the performance of magnetic resonance imaging in patients with and without a previous parathyroid operation, with a separate comparison for dynamic gadolinium-enhanced magnetic resonance imaging. All patients undergoing magnetic resonance imaging prior to parathyroidectomy for primary hyperparathyroidism (first time or recurrent) between January 2000 and August 2015 at a high-volume, tertiary care, referral center for endocrine operations were included. We compared the sensitivity and positive predictive value of magnetic resonance imaging with conventional ultrasound and sestamibi on a per-lesion level. A total of 3,450 patients underwent parathyroidectomy, of which 84 patients with recurrent (n = 10) or persistent (n = 74) disease and 41 patients with a primary operation were included. Magnetic resonance imaging had a sensitivity and positive predictive value of 79.9% and 84.7%, respectively, and performance was good in both patients with and without a previous parathyroid operation. Adding magnetic resonance imaging to the combination of ultrasound and sestamibi resulted in a significant increase in sensitivity from 75.2% to 91.5%. Dynamic magnetic resonance imaging produced excellent results in the reoperative group, with sensitivity and a positive predictive value of 90.1%. Technologic advances have enabled faster and more accurate magnetic resonance imaging protocols, making magnetic resonance imaging an excellent alternative modality without associated ionizing radiation. Our study shows that the sensitivity of multimodality imaging for parathyroid adenomas improved significantly with the use of conventional and dynamic magnetic resonance imaging, even in the case of recurrent or persistent disease. Published by Elsevier Inc.

  8. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  9. Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study.

    PubMed

    Khalafvand, S S; Ng, E Y K; Zhong, L; Hung, T K

    2012-08-01

    Pulsating blood flow patterns in the left ventricular (LV) were computed for three normal subjects and three patients after myocardial infarction (MI). Cardiac magnetic resonance (MR) images were obtained, segmented and transformed into 25 frames of LV for a computational fluid dynamics (CFD) study. Multi-block structure meshes were generated for 25 frames and 75 intermediate grids. The complete LV cycle was modelled by using ANSYS-CFX 12. The flow patterns and pressure drops in the LV chamber of this study provided some useful information on intra-LV flow patterns with heart diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  11. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  12. Proton magnetic resonance spectroscopy imaging in the study of human brain cancer.

    PubMed

    Martínez-Bisbal, M C; Celda, B

    2009-12-01

    Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive imaging technique that provides metabolic information on brain tumor. This biochemical information can be processed and presented as density maps of several metabolites, among them N-acetylaspartate (marker of neuronal viability), choline (marker of membrane turnover), creatine (related to the energy state of the cells), myo-Inositol (exclusively found in astrocytes), lipids and lactate (observed in necrosis and other pathological processes) which mean relevant information in the context of brain tumors. Thus, this technique is a multiparametrical molecular imaging method that can complete the magnetic resonance imaging (MRI) study enabling the detection of biochemical patterns of different features and aspects of brain tumors. In this article, the role of MRSI as a molecular imaging technique to provide biochemical information on human brain tumors is reviewed. The most frequent questions and situations in the study of human brain tumors in clinical settings will be considered, as well as the distinction of neoplastic lesions from non neoplastic, the tumor type identification, the study of heterogeneity and infiltration of normal appearing white matter and the therapy following with detection of side effects. The great amount of data in MRSI acquisition compared to the single voxel techniques requires the use of automated methods of quantification, but the possibility to obtain self-reference in the non-affected areas allows different strategies for data handling and interpretation, as presented in the literature. The combination of MRSI with other physiological MRI techniques and positron emission tomography is also included in this review.

  13. Can the pattern of vertebral marrow oedema differentiate intervertebral disc infection from degenerative changes?

    PubMed

    Shrot, S; Sayah, A; Berkowitz, F

    2017-07-01

    To evaluate whether various patterns of bone marrow oedema could be used to discriminate between infection and degenerative change. Seventy patients with imaging features suspicious for discitis and available clinical follow-up were blindly reviewed for vertebral marrow oedema on sagittal short-tau inversion recovery (STIR) images according to the following patterns: I, vertebra oedema is adjacent to the intervertebral space and sharply-marginated; II, vertebral oedema is adjacent to the intervertebral space but not sharply marginated from normal marrow or involves the entire vertebral body; and III, vertebral oedema is distant from the endplate with intervening hypointense marrow signal. Of 45 patients with a clinical diagnosis of discitis, pattern II was the most common oedema pattern (64%). Approximately 20% and 9% of discitis patients showed patterns I and III, respectively. In patients with degenerative changes, 44% patients showed pattern I, 32% showed pattern II, and 24% showed pattern III. Pattern II had a sensitivity, specificity, and positive predictive value of 0.64, 0.68, and 0.78 for diagnosing spine infection, respectively. Although bone marrow oedema in infective discitis most often extends from the disc space and has indistinct margins, the oedema may also have sharp margins or be remote from the involved intervertebral space. Bone marrow oedema patterns of infective discitis overlap with those of degenerative disease and are not sufficiently reliable to exclude infection in cases with magnetic resonance imaging findings suggestive of discitis. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Magnetic Resonance Imaging Predicts Histopathological Composition of Ileal Crohn's Disease.

    PubMed

    Wagner, Mathilde; Ko, Huaibin Mabel; Chatterji, Manjil; Besa, Cecilia; Torres, Joana; Zhang, Xiaofei; Panchal, Hinaben; Hectors, Stefanie; Cho, Judy; Colombel, Jean-Frederic; Harpaz, Noam; Taouli, Bachir

    2018-05-25

    Recently, smooth muscle hypertrophy has been suggested to be a contributor to small bowel lesions secondary to Crohn's disease [CD], in addition to inflammation and fibrosis. Here, we assess the value of magnetic resonance imaging [MRI] for the characterisation of histopathological tissue composition of small bowel CD, including inflammation, fibrosis, and smooth muscle hypertrophy. A total of 35 consecutive patients [male/female 17/18, mean age 33 years] with ileal CD, who underwent small bowel resection and a preoperative contrast-enhanced MRI examination within 1 month before surgery, were retrospectively included. Image assessment included qualitative [pattern/degree of enhancement, presence of ulcerations/fistulas/abscesses] and quantitative parameters [wall thickness on T2/T1-weighted images [WI], enhancement ratios, apparent diffusion coefficient [ADC], Clermont and Magnetic Resonance Index of Activity [MaRIA] scores). MRI parameters were compared with histopathological findings including active inflammation, collagen deposition, and muscle hypertrophy using chi square/Fisher or Mann-Whitney tests and univariate/multivariate logistic/linear regression analyses. Forty ileal segments were analysed in 35 patients. Layered pattern at early-post-contrast phase was more prevalent (odds ratio [OR] = 8; p = 0.008), ADC was significantly lower [OR = 0.005; p = 0.022], and MaRIA score was significantly higher [OR = 1.125; p = 0.022] in inflammation grades 2-3 compared with grade 1. Wall thickness on T2WI was significantly increased [OR = 1.688; p = 0.043], and fistulas [OR = 14.5; p = 0.017] were more prevalent in segments with disproportionately increased muscle hypertrophy versus those with disproportionately increased fibrosis. MaRIA/Clermont scores, wall thickness on T1WI and T2WI, and ADC were all significantly correlated with degree of muscular hypertrophy. MRI predicts the degree of inflammation, and can distinguish prominent muscle hypertrophy from prominent fibrosis in ileal CD with reasonable accuracy (area under receiver operating characteristic curve [AUROC] > 0.7).

  15. Noninvasive analysis of human neck muscle function

    NASA Technical Reports Server (NTRS)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few selected muscles that have been examined in human electromyographic studies. Neck muscle function and morphology can be studied at a detailed level using exercise-induced shifts in magnetic resonance images.

  16. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children.

    PubMed

    Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan

    2016-01-01

    Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.

  17. Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: An update

    PubMed Central

    Chen, Feng; Ni, Yi-Cheng

    2012-01-01

    The concept of magnetic resonance perfusion-diffusion mismatch (PDM) provides a practical and approximate measure of the tissue at risk and has been increasingly applied for the evaluation of hyperacute and acute stroke in animals and patients. Recent studies demonstrated that PDM does not optimally define the ischemic penumbra; because early abnormality on diffusion-weighted imaging overestimates the infarct core by including part of the penumbra, and the abnormality on perfusion weighted imaging overestimates the penumbra by including regions of benign oligemia. To overcome these limitations, many efforts have been made to optimize conventional PDM. Various alternatives beyond the PDM concept are under investigation in order to better define the penumbra. The PDM theory has been applied in ischemic stroke for at least three purposes: to be used as a practical selection tool for stroke treatment; to test the hypothesis that patients with PDM pattern will benefit from treatment, while those without mismatch pattern will not; to be a surrogate measure for stroke outcome. The main patterns of PDM and its relation with clinical outcomes were also briefly reviewed. The conclusion was that patients with PDM documented more reperfusion, reduced infarct growth and better clinical outcomes compared to patients without PDM, but it was not yet clear that thrombolytic therapy is beneficial when patients were selected on PDM. Studies based on a larger cohort are currently under investigation to further validate the PDM hypothesis. PMID:22468186

  18. Bilateral transfer phenomenon: A functional magnetic resonance imaging pilot study of healthy subjects.

    PubMed

    Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio

    2016-08-01

    The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.

  19. Characterizing brain patterns in conversion from mild cognitive impairment (MCI) to Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Silva R., Santiago S.; Giraldo, Diana L.; Romero, Eduardo

    2017-11-01

    Structural Magnetic Resonance (MR) brain images should provide quantitative information about the stage and progression of Alzheimer's disease. However, the use of MRI is limited and practically reduced to corroborate a diagnosis already performed with neuropsychological tools. This paper presents an automated strategy for extraction of relevant anatomic patterns related with the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) using T1-weighted MR images. The process starts by representing each of the possible classes with models generated from a linear combination of volumes. The difference between models allows us to establish which are the regions where relevant patterns might be located. The approach searches patterns in a space of brain sulci, herein approximated by the most representative gradients found in regions of interest defined by the difference between the linear models. This hypothesis is assessed by training a conventional SVM model with the found relevant patterns under a leave-one-out scheme. The resultant AUC was 0.86 for the group of women and 0.61 for the group of men.

  20. Frequency of Magnetic Resonance Imaging patterns of tuberculous spondylitis in a public sector hospital.

    PubMed

    Tabassum, Sumera; Haider, Shahbaz

    2016-01-01

    To determine frequencies of different MRI patterns of tuberculous spondylitisin a public sector hospital in Karachi. This descriptive multidisciplinary case series study was done from October 25, 2011 to May 28, 2012 in Radiology Department and Department of Medicine in the Jinnah Postgraduate Medical Center Karachi. MRI scans (dorsal / lumbosacral spine) of the Patients presenting with backache in Medical OPD, were performed in Radiology Department. Axial and sagittal images of T1 weighted, T2 weighted and STIR sequences of the affected region were taken. A total of 140 patients who were diagnosed as having tuberculous spondylitis were further evaluated and analyzed for having different patterns of involvement of the spine and compared with similar studies. Among frequencies of different MRI pattern of tuberculous spondylitis, contiguous vertebral involvement was 100%, discal involvement 98.6%, paravertebral abscess 92.1% cases, epidural abscess 91.4%, spinal cord / thecal sac compression 89.3%, vertebral collapse 72.9%, gibbus deformity 42.9% and psoas abscess 36.4%. Contiguous vertebral involvement was commonest MRI pattern, followed by disk involvement, paravertebral & epidural abscesses, thecal sac compression and vertebral collapse.

  1. The evaluation of lateral pterygoid muscle pathologic changes and insertion patterns in temporomandibular joints with or without disc displacement using magnetic resonance imaging.

    PubMed

    Imanimoghaddam, M; Madani, A S; Hashemi, E M

    2013-09-01

    Temporomandibular joint (TMJ) disc displacement is a common disorder in patients with internal derangement. Certain anatomic features of TMJ may make the patient prone to this condition, namely lateral pterygoid muscle (LPM) insertion variations. The aim of this study was to investigate LPM attachments and their relationships with disc displacement and subsequent pathologic changes. A total of 26 patients with clinical temporomandibular disorders (TMDs) and a control group of 14 unaffected individuals were studied. Magnetic resonance images (MRIs) were taken to evaluate LPM insertion patterns, superior LPM head pathologic changes, and relative disc to condyle position. Data registration and analysis were done using SPSS v. 16.0. The most common variation (type I) was shown to be the superior head with two bundles, one attached to the disc and another to the condyle. No significant relationship between LPM insertion type and disc displacement or pathologic changes of the muscle was found. However, a link between disc displacement and muscle pathologic changes was established (P=0.001). Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Reading in the brain of children and adults: A meta‐analysis of 40 functional magnetic resonance imaging studies

    PubMed Central

    Martin, Anna; Schurz, Matthias; Kronbichler, Martin

    2015-01-01

    Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041

  3. Neural correlates of Korean proverb processing: A functional magnetic resonance imaging study.

    PubMed

    Yi, You Gyoung; Kim, Dae Yul; Shim, Woo Hyun; Oh, Joo Young; Kim, Sung Hyun; Kim, Ho Sung

    2017-10-01

    The Korean language is based on a syntactic system that is different from other languages. This study investigated the processing area of the Korean proverb in comparison with the literal sentence using functional magnetic resonance imaging. In addition, the effect of opacity and transparency of proverbs on the activation pattern, when familiarity is set to the same condition, was also examined. The experimental stimuli included 36 proverbs and 18 literal sentences. A cohort of 15 healthy participants silently read each sentence for 6 s. A total of 18 opaque proverbs, 18 transparent proverbs, and 18 literal sentences were presented pseudo-randomly in one of three predesigned sequences. Compared with the literal sentences, a significant activation pattern was observed in the left hemisphere, including the left inferior frontal gyrus, in association with the proverbs. Compared with the transparent proverbs, opaque proverbs elicited more activation in the right supramarginal gyrus and precuneus. Our study confirmed that the left inferior frontal gyrus mediates the retrieval and/or selection of semantic knowledge in the Korean language. The present findings indicated that the right precuneus and the right supramarginal gyrus may be involved in abstract language processing.

  4. Localized Surface Plasmon Resonance of Metal Nanodot Nanowire Arrays Studied by Far-Field and Near-Field Optical

    DTIC Science & Technology

    2007-09-05

    microscope, nanoholes or nanogrooves can be created on the film. After coating a thin Au film by electron beam evaporation and soaking the sample in acetone...SNOM. III. Results and Discussion: (a) LSPR of Au Nanodots With the use of an indentation force of 3.8 μN, a nanohole array was generated on the...images of (a) a nanohole array on PMMA and (b) the corresponding Au nanodot array after lift-off. SEM images of (c) a Au nanodot pattern “NANO” on

  5. Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?

    PubMed

    Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C

    2018-06-18

    Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.

  6. Acute Transient Vestibular Syndrome: Prevalence of Stroke and Efficacy of Bedside Evaluation.

    PubMed

    Choi, Jae-Hwan; Park, Min-Gyu; Choi, Seo Young; Park, Kyung-Pil; Baik, Seung Kug; Kim, Ji-Soo; Choi, Kwang-Dong

    2017-03-01

    The aim of this study was to determine the prevalence of stroke and efficacy of bedside evaluation in diagnosing stroke in acute transient vestibular syndrome (ATVS). We performed a prospective, single-center, observational study that had consecutively recruited 86 patients presenting with ATVS to the emergency department of Pusan National University Yangsan Hospital from January to December 2014. All patients received a constructed evaluation, including HINTS plus (head impulse, nystagmus patterns, test of skew, and finger rubbing) and brain magnetic resonance imagings. Patients without an obvious cause further received perfusion-weighted imaging. Multivariable logistic regression was used to determine clinical parameters to identify stroke in ATVS. The prevalence of stroke was 27% in ATVS. HINTS plus could not be applied to the majority of patients because of the resolution of the vestibular symptoms, and magnetic resonance imagings were falsely negative in 43% of confirmed strokes. Ten patients (12%) showed unilateral cerebellar hypoperfusion on perfusion-weighted imaging without an infarction on diffusion-weighted imaging, and 8 of them had a focal stenosis or hypoplasia of the corresponding vertebral artery. The higher risk of stroke in ATVS was found in association with craniocervical pain (odds ratio, 9.6; 95% confidence interval, 2.0-45.2) and focal neurological symptoms/signs (odds ratio, 15.2; 95% confidence interval, 2.5-93.8). Bedside examination and routine magnetic resonance imagings have a limitation in diagnosing strokes presenting with ATVS, and perfusion imaging may help to identify strokes in ATVS of unknown cause. Associated craniocervical pain and focal neurological symptoms/signs are the useful clues for strokes in ATVS. © 2017 American Heart Association, Inc.

  7. Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes—MELAS Syndrome

    PubMed Central

    Henry, Caitlin; Patel, Neema; Shaffer, William; Murphy, Lillian; Park, Joe

    2017-01-01

    Background: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a rare inherited disorder that results in waxing and waning nervous system and muscle dysfunction. MELAS syndrome may overlap with other neurologic disorders but shows distinctive imaging features. Case Report: We present the case of a 28-year-old female with atypical stroke-like symptoms, a strong family history of stroke-like symptoms, and a relapsing-remitting course for several years. We discuss the imaging features distinctive to the case, the mechanism of the disease, typical presentation, imaging diagnosis, and disease management. Conclusion: This case is a classic example of the relapse-remitting MELAS syndrome progression with episodic clinical flares and fluctuating patterns of stroke-like lesions on imaging. MELAS is an important diagnostic consideration when neuroimaging reveals a pattern of disappearing and relapsing cortical brain lesions that may occur in different areas of the brain and are not necessarily limited to discrete vascular territories. Future studies should investigate disease mechanisms at the cellular level and the value of advanced magnetic resonance imaging techniques for a targeted approach to therapy. PMID:29026367

  8. Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes-MELAS Syndrome.

    PubMed

    Henry, Caitlin; Patel, Neema; Shaffer, William; Murphy, Lillian; Park, Joe; Spieler, Bradley

    2017-01-01

    Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a rare inherited disorder that results in waxing and waning nervous system and muscle dysfunction. MELAS syndrome may overlap with other neurologic disorders but shows distinctive imaging features. We present the case of a 28-year-old female with atypical stroke-like symptoms, a strong family history of stroke-like symptoms, and a relapsing-remitting course for several years. We discuss the imaging features distinctive to the case, the mechanism of the disease, typical presentation, imaging diagnosis, and disease management. This case is a classic example of the relapse-remitting MELAS syndrome progression with episodic clinical flares and fluctuating patterns of stroke-like lesions on imaging. MELAS is an important diagnostic consideration when neuroimaging reveals a pattern of disappearing and relapsing cortical brain lesions that may occur in different areas of the brain and are not necessarily limited to discrete vascular territories. Future studies should investigate disease mechanisms at the cellular level and the value of advanced magnetic resonance imaging techniques for a targeted approach to therapy.

  9. Preoperative Magnetic Resonance Imaging in Patients With Stage I Invasive Ductal Breast Cancer: A Prospective Randomized Study.

    PubMed

    Brück, N; Koskivuo, I; Boström, P; Saunavaara, J; Aaltonen, R; Parkkola, R

    2018-03-01

    Preoperative magnetic resonance imaging has become an important complementary imaging technique in patients with breast cancer, providing additional information for preoperative local staging. Magnetic resonance imaging is recommended selectively in lobular breast cancer and in patients with dense breast tissue in the case when mammography and ultrasound fail to fully evaluate the lesion, but the routine use of magnetic resonance imaging in all patients with invasive ductal carcinoma is controversial. The purpose of this randomized study was to investigate the diagnostic value of preoperative magnetic resonance imaging and its impact on short-term surgical outcome in newly diagnosed unifocal stage I invasive ductal carcinoma. A total of 100 patients were randomized to either receive preoperative breast magnetic resonance imaging or to be scheduled directly to operation without magnetic resonance imaging on a 1:1 basis. There were 50 patients in both study arms. In 14 patients (28%), breast magnetic resonance imaging detected an additional finding and seven of them were found to be malignant. Six additional cancer foci were found in the ipsilateral breast and one in the contralateral breast. Magnetic resonance imaging findings caused a change in planned surgical management in 10 patients (20%). Mastectomy was performed in six patients (12%) in the magnetic resonance imaging group and in two patients (4%) in the control group ( p = 0.140). The breast reoperation rate was 14% in the magnetic resonance imaging group and 24% in the control group ( p = 0.202). The mean interval between referral and first surgical procedure was 34 days in the magnetic resonance imaging group and 21 days in the control group ( p < 0.001). Preoperative magnetic resonance imaging may be beneficial for some patients with early-stage invasive ductal carcinoma, but its routine use is not recommended without specific indications.

  10. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less

  11. Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma

    PubMed Central

    Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Bilello, Michel; Wolf, Ronald L.; Martinez-Lage, Maria; Biros, George; Alonso-Basanta, Michelle; O’Rourke, Donald M.; Davatzikos, Christos

    2016-01-01

    Background Glioblastoma is an aggressive and highly infiltrative brain cancer. Standard surgical resection is guided by enhancement on postcontrast T1-weighted (T1) magnetic resonance imaging (MRI), which is insufficient for delineating surrounding infiltrating tumor. Objective To develop imaging biomarkers that delineate areas of tumor infiltration and predict early recurrence in peritumoral tissue. Such markers would enable intensive, yet targeted, surgery and radiotherapy, thereby potentially delaying recurrence and prolonging survival. Methods Preoperative multiparametric MRIs (T1, T1-Gad, T2-weighted [T2], T2-fluid-attenuated inversion recovery [FLAIR], diffusion tensor imaging (DTI), and dynamic susceptibility contrast-enhanced [DSC]-MRI) from 31 patients were combined using machine learning methods, thereby creating predictive spatial maps of infiltrated peritumoral tissue. Cross validation was used in the retrospective cohort to achieve generalizable biomarkers. Subsequently, the imaging signatures learned from the retrospective study were used in a replication cohort of 34 new patients. Spatial maps representing likelihood of tumor infiltration and future early recurrence were compared to regions of recurrence on postresection follow-up studies with pathology confirmation. Results This technique produced predictions of early recurrence with a mean area under the curve (AUC) of 0.84, sensitivity of 91%, specificity of 93%, and odds ratio estimates of 9.29 (99% CI, 8.95–9.65) for tissue predicted to be heavily infiltrated in the replication study. Regions of tumor recurrence were found to have subtle, yet fairly distinctive multiparametric imaging signatures when analyzed quantitatively by pattern analysis and machine learning. Conclusion Visually imperceptible imaging patterns discovered via multiparametric pattern analysis methods were found to estimate the extent of infiltration and location of future tumor recurrence, paving the way for improved targeted treatment. PMID:26813856

  12. MRA of the skin: mapping for advanced breast reconstructive surgery.

    PubMed

    Thimmappa, N D; Vasile, J V; Ahn, C Y; Levine, J L; Prince, M R

    2018-02-27

    Autologous breast reconstruction using muscle-sparing free flaps are becoming increasingly popular, although microvascular free flap reconstruction has been utilised for autologous breast reconstructions for >20 years. This innovative microsurgical technique involves meticulous dissection of artery-vein bundle (perforators) responsible for perfusion of the subcutaneous fat and skin of the flap; however, due to unpredictable anatomical variations, preoperative imaging of the donor site to select appropriate perforators has become routine. Preoperative imaging also reduces operating time and enhances the surgeon's confidence in choosing the appropriate donor site for harvesting flaps. Although computed tomography angiography has been widely used for preoperative imaging, concerns over excessive exposure to ionising radiation and poor iodinated contrast agent enhancement of the intramuscular perforator course has made magnetic resonance angiography, the first choice imaging modality in our centre. Magnetic resonance angiography with specific post-processing of the images has established itself as a reliable method for mapping tiny perforator vessels. Multiple donor sites can be imaged in a single setting without concern for ionising radiation exposure. This provides anatomical information of more reconstruction donor site options, so that a surgeon can design a flap of tissue centralised around the best perforator, as well as a back-up perforator, and even a back-up flap option located on a different region of the body. This information is especially helpful in patients with a history of scar tissue from previous surgeries, where the primary choice perforator is found to be damaged or unsuitable intraoperatively. In addition, chest magnetic resonance angiography evaluates recipient site blood vessel suitability including vessel diameters, course, and branching patterns. In this article we provide a broad overview of various skin flaps, clinical indications, advantages and disadvantages of each of these flaps, basic imaging technique, along with advanced sequences for visualising tiny arteries in the groin and in the chest. Post-processing techniques, structure of the report and how automation of the reporting system improves workflow is described. We also describe applications of magnetic resonance angiography in postoperative imaging. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Neuroelectrical Decomposition of Spontaneous Brain Activity Measured with Functional Magnetic Resonance Imaging

    PubMed Central

    Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.

    2014-01-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947

  14. Identifying thematic roles from neural representations measured by functional magnetic resonance imaging.

    PubMed

    Wang, Jing; Cherkassky, Vladimir L; Yang, Ying; Chang, Kai-Min Kevin; Vargas, Robert; Diana, Nicholas; Just, Marcel Adam

    2016-01-01

    The generativity and complexity of human thought stem in large part from the ability to represent relations among concepts and form propositions. The current study reveals how a given object such as rabbit is neurally encoded differently and identifiably depending on whether it is an agent ("the rabbit punches the monkey") or a patient ("the monkey punches the rabbit"). Machine-learning classifiers were trained on functional magnetic resonance imaging (fMRI) data evoked by a set of short videos that conveyed agent-verb-patient propositions. When tested on a held-out video, the classifiers were able to reliably identify the thematic role of an object from its associated fMRI activation pattern. Moreover, when trained on one subset of the study participants, classifiers reliably identified the thematic roles in the data of a left-out participant (mean accuracy = .66), indicating that the neural representations of thematic roles were common across individuals.

  15. Para-hydrogenated glucose derivatives as potential 13C-hyperpolarized probes for magnetic resonance imaging.

    PubMed

    Reineri, Francesca; Santelia, Daniela; Viale, Alessandra; Cerutti, Erika; Poggi, Luisa; Tichy, Tomas; Premkumar, Samuel S D; Gobetto, Roberto; Aime, Silvio

    2010-05-26

    A set of molecules in which a glucose moiety is bound to a hydrogenable synthon has been synthesized and evaluated for hydrogenation reactions and for the corresponding para-hydrogen-induced polarization (PHIP) effects, in order to select suitable candidates for an in vivo magnetic resonance imaging (MRI) method for the assessment of glucose cellular uptake. It has been found that amidic derivatives do not yield any polarization enhancement, probably due to singlet-triplet state mixing along the reaction pathway. In contrast, ester derivatives are hydrogenated in high yield and afford enhanced (1)H and (13)C NMR spectra after para-hydrogenation. The obtained PHIP patterns are discussed and explained on the basis of the calculated spin level populations in the para-hydrogenated products. These molecules may find interesting applications in (13)C MRI as hyperpolarized probes for assessing the activity of glucose transporters in cells.

  16. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.

  17. Is there a specific magnetic resonance phenotype characteristic of hereditary breast cancer?

    PubMed

    Trecate, Giovanna; Manoukian, Siranuosh; Suman, Laura; Vergnaghi, Daniele; Marchesini, Monica; Agresti, Roberto; Ferraris, Cristina; Peissel, Bernard; Scaramuzza, Davide; Bergonzi, Silvana

    2010-01-01

    The aim of the study was to investigate the growth rate of inherited breast cancer, to analyze its T2 signal intensity besides kinetic and morphologic aspects, and to verify whether there is any correlation between magnetic resonance imaging phenotype and BRCA status. Between June 2000 and September 2009, we enrolled 227 women at high genetic risk for breast cancer in a surveillance program, within a multicenter project of the Istituto Superiore di Sanità (Rome). Thirty-four cancers were detected among 31 subjects. One patient refused magnetic resonance imaging because of claustrophobia. Compared with sporadic disease, hereditary cancer showed some differences, in terms of biologic attitude and semeiotic patterns. These differences were mainly registered for magnetic resonance imaging, where the most frequent radiological variant was represented by the very high T2 signal intensity (73%). Moreover, the size of 8 of the neoplasms showed a significant increase in less than one year, 5 of them in less than 6 months. Six lesions were in BRCA1 patients and the remaining in BRCA2. Furthermore, cancers with a high growth rate also demonstrated a significant increment in T2 signal intensity. Our results confirmed the high growth rate within BRCA-related breast cancers, especially for BRCA1 mutation carriers. In our experience, we found a specific imaging phenotype, represented by the high T2 signal intensity of hereditary breast cancer. To our knowledge, this is the first report that points out this new semeiotic parameter, which is usually typical of benign lesions. Considering the correlation between high growth rate and high T2 signal intensity, the former seems to be related to the absence of induction of a desmoplastic reaction that could somehow restrict cancer growth.

  18. Diagnostic yield of lumbosacral magnetic resonance imaging requested by paediatric urology consultations.

    PubMed

    Fernández-Ibieta, M; Rojas Ticona, J; Villamil, V; Guirao Piñera, M J; López García, A; Zambudio Carmona, G

    2017-11-01

    In the historical series, the diagnostic yield of lumbosacral magnetic resonance imaging to rule out occult spinal dysraphism (or occult myelodysplasia), requested by paediatric urology, ranged from 2% to 15%. The aim of this study was to define our cost-effectiveness in children with urinary symptoms and to define endpoints that increase the possibility of finding occult spinal dysraphism. A screening was conducted on patients with urinary dysfunction for whom an magnetic resonance imaging was requested by the paediatric urology clinic, for persistent symptoms after treatment, voiding dysfunction or other clinical or urodynamic findings. We analysed clinical (UTI, daytime leaks, enuresis, voiding dysfunction, urgency, renal ultrasonography, lumbosacral radiography, history of acute urine retention, skin stigma and myalgia) and urodynamic endpoints (hyperactivity or areflexia, voiding dysfunction, interrupted pattern, accommodation value and maximum flow). A univariate analysis was conducted with SPSS 20.0. We analysed 21 patients during the period 2011-2015. The median age was 6 years (3-10). Three patients (14.3%) had occult spinal dysraphism: one spinal lipoma, one filum lipomatosus and one caudal regression syndrome with channel stenosis. The endpoints with statistically significant differences were the myalgias and the history of acute urine retention (66.7% vs. 5.6%, P=.04; OR= 34; 95%CI: 1.5-781 for both endpoints). The diagnostic yield of magnetic resonance imaging requested for children with urinary dysfunctions without skin stigma or neuro-orthopaedic abnormalities is low, although nonnegligible. In this group, the patients with a history of acute urine retention and muscle pain (pain, «cramps») can experience a greater diagnostic yield or positive predictive value. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Identifying the association between contrast enhancement pattern, surgical resection, and prognosis in anaplastic glioma patients.

    PubMed

    Wang, Yinyan; Wang, Kai; Wang, Jiangfei; Li, Shaowu; Ma, Jun; Dai, Jianping; Jiang, Tao

    2016-04-01

    Contrast enhancement observable on magnetic resonance (MR) images reflects the destructive features of malignant gliomas. This study aimed to investigate the relationship between radiologic patterns of tumor enhancement, extent of resection, and prognosis in patients with anaplastic gliomas (AGs). Clinical data from 268 patients with histologically confirmed AGs were retrospectively analyzed. Contrast enhancement patterns were classified based on preoperative T1-contrast MR images. Univariate and multivariate analyses were performed to evaluate the prognostic value of MR enhancement patterns on progression-free survival (PFS) and overall survival (OS). The pattern of tumor contrast enhancement was associated with the extent of surgical resection in AGs. A gross total resection was more likely to be achieved for AGs with focal enhancement than those with diffuse (p = 0.001) or ring-like (p = 0.024) enhancement. Additionally, patients with focal-enhanced AGs had a significantly longer PFS and OS than those with diffuse (log-rank, p = 0.025 and p = 0.031, respectively) or ring-like (log-rank, p = 0.008 and p = 0.011, respectively) enhanced AGs. Furthermore, multivariate analysis identified the pattern of tumor enhancement as a significant predictor of PFS (p = 0.016, hazard ratio [HR] = 1.485) and OS (p = 0.030, HR = 1.446). Our results suggested that the contrast enhancement pattern on preoperative MR images was associated with the extent of resection and predictive of survival outcomes in AG patients.

  20. Thermography based diagnosis of ruptured anterior cruciate ligament (ACL) in canines

    NASA Astrophysics Data System (ADS)

    Lama, Norsang; Umbaugh, Scott E.; Mishra, Deependra; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    Anterior cruciate ligament (ACL) rupture in canines is a common orthopedic injury in veterinary medicine. Veterinarians use both imaging and non-imaging methods to diagnose the disease. Common imaging methods such as radiography, computed tomography (CT scan) and magnetic resonance imaging (MRI) have some disadvantages: expensive setup, high dose of radiation, and time-consuming. In this paper, we present an alternative diagnostic method based on feature extraction and pattern classification (FEPC) to diagnose abnormal patterns in ACL thermograms. The proposed method was experimented with a total of 30 thermograms for each camera view (anterior, lateral and posterior) including 14 disease and 16 non-disease cases provided from Long Island Veterinary Specialists. The normal and abnormal patterns in thermograms are analyzed in two steps: feature extraction and pattern classification. Texture features based on gray level co-occurrence matrices (GLCM), histogram features and spectral features are extracted from the color normalized thermograms and the computed feature vectors are applied to Nearest Neighbor (NN) classifier, K-Nearest Neighbor (KNN) classifier and Support Vector Machine (SVM) classifier with leave-one-out validation method. The algorithm gives the best classification success rate of 86.67% with a sensitivity of 85.71% and a specificity of 87.5% in ACL rupture detection using NN classifier for the lateral view and Norm-RGB-Lum color normalization method. Our results show that the proposed method has the potential to detect ACL rupture in canines.

  1. Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging

    NASA Astrophysics Data System (ADS)

    Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata

    2007-01-01

    This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.

  2. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment.

    PubMed

    Bjurlin, Marc A; Meng, Xiaosong; Le Nobin, Julien; Wysock, James S; Lepor, Herbert; Rosenkrantz, Andrew B; Taneja, Samir S

    2014-09-01

    Optimization of prostate biopsy requires addressing the shortcomings of standard systematic transrectal ultrasound guided biopsy, including false-negative rates, incorrect risk stratification, detection of clinically insignificant disease and the need for repeat biopsy. Magnetic resonance imaging is an evolving noninvasive imaging modality that increases the accurate localization of prostate cancer at the time of biopsy, and thereby enhances clinical risk assessment and improves the ability to appropriately counsel patients regarding therapy. In this review we 1) summarize the various sequences that comprise a prostate multiparametric magnetic resonance imaging examination along with its performance characteristics in cancer detection, localization and reporting standards; 2) evaluate potential applications of magnetic resonance imaging targeting in prostate biopsy among men with no previous biopsy, a negative previous biopsy and those with low stage cancer; and 3) describe the techniques of magnetic resonance imaging targeted biopsy and comparative study outcomes. A bibliographic search covering the period up to October 2013 was conducted using MEDLINE®/PubMed®. Articles were reviewed and categorized based on which of the 3 objectives of this review was addressed. Data were extracted, analyzed and summarized. Multiparametric magnetic resonance imaging consists of anatomical T2-weighted imaging coupled with at least 2 functional imaging techniques. It has demonstrated improved prostate cancer detection sensitivity up to 80% in the peripheral zone and 81% in the transition zone. A prostate cancer magnetic resonance imaging suspicion score has been developed, and is depicted using the Likert or PI-RADS (Prostate Imaging Reporting and Data System) scale for better standardization of magnetic resonance imaging interpretation and reporting. Among men with no previous biopsy, magnetic resonance imaging increases the frequency of significant cancer detection to 50% in low risk and 71% in high risk patients. In low risk men the negative predictive value of a combination of negative magnetic resonance imaging with prostate volume parameters is nearly 98%, suggesting a potential role in avoiding biopsy and reducing over detection/overtreatment. Among men with a previous negative biopsy 72% to 87% of cancers detected by magnetic resonance imaging guidance are clinically significant. Among men with a known low risk cancer, repeat biopsy using magnetic resonance targeting demonstrates a high likelihood of confirming low risk disease in low suspicion score lesions and of upgrading in high suspicion score lesions. Techniques of magnetic resonance imaging targeted biopsy include visual estimation transrectal ultrasound guided biopsy; software co-registered magnetic resonance imaging-ultrasound, transrectal ultrasound guided biopsy; and in-bore magnetic resonance imaging guided biopsy. Although the improvement in accuracy and efficiency of visual estimation biopsy compared to systematic appears limited, co-registered magnetic resonance imaging-ultrasound biopsy as well as in-bore magnetic resonance imaging guided biopsy appear to increase cancer detection rates in conjunction with increasing suspicion score. Use of magnetic resonance imaging for targeting prostate biopsies has the potential to reduce the sampling error associated with conventional biopsy by providing better disease localization and sampling. More accurate risk stratification through improved cancer sampling may impact therapeutic decision making. Optimal clinical application of magnetic resonance imaging targeted biopsy remains under investigation. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Diagnostic efficacy of contrast-enhanced sonography by combined qualitative and quantitative analysis in breast lesions: a comparative study with magnetic resonance imaging.

    PubMed

    Wang, Lin; Du, Jing; Li, Feng-Hua; Fang, Hua; Hua, Jia; Wan, Cai-Feng

    2013-10-01

    The purpose of this study was to evaluate the diagnostic efficacy of contrast-enhanced sonography for differentiation of breast lesions by combined qualitative and quantitative analyses in comparison to magnetic resonance imaging (MRI). Fifty-six patients with American College of Radiology Breast Imaging Reporting and Data System category 3 to 5 breast lesions on conventional sonography were evaluated by contrast-enhanced sonography and MRI. A comparative analysis of diagnostic results between contrast-enhanced sonography and MRI was conducted in light of the pathologic findings. Pathologic analysis showed 26 benign and 30 malignant lesions. The predominant enhancement patterns of the benign lesions on contrast-enhanced sonography were homogeneous, centrifugal, and isoenhancement or hypoenhancement, whereas the patterns of the malignant lesions were mainly heterogeneous, centripetal, and hyperenhancement. The detection rates for perfusion defects and peripheral radial vessels in the malignant group were much higher than those in the benign group (P < .05). As to quantitative analysis, statistically significant differences were found in peak and time-to-peak values between the groups (P < .05). With pathologic findings as the reference standard, the sensitivity, specificity, and accuracy of contrast-enhanced sonography and MRI were 90.0%, 92.3%, 91.1% and 96.7%, 88.5%, and 92.9%, respectively. The two methods had a concordant rate of 87.5% (49 of 56), and the concordance test gave a value of κ = 0.75, indicating that there was high concordance in breast lesion assessment between the two diagnostic modalities. Contrast-enhanced sonography provided typical enhancement patterns and valuable quantitative parameters, which showed good agreement with MRI in diagnostic efficacy and may potentially improve characterization of breast lesions.

  4. Reduced integration and differentiation of the imitation network in autism: A combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study.

    PubMed

    Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel

    2015-12-01

    Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.

  5. Comparison of radiography and magnetic resonance imaging for evaluating the extent of nasal neoplasia in dogs.

    PubMed

    Petite, A F B; Dennis, R

    2006-09-01

    Magnetic resonance imaging (MRI) is increasingly used in veterinary practice and, in some centres, is part of the diagnostic work-up of small animals with nasal disease. However, there are no published studies which critically evaluate the use of magnetic resonance imaging for this purpose. The purpose of this work was to assess the changes seen using magnetic resonance imaging and to compare them with radiography. The study included 12 dogs that had undergone both radiography and magnetic resonance imaging of the nasal cavity and had a histopathological diagnosis of malignant nasal neoplasia. Two pairs of board-certified radiologists scored the radiographs and the MRI scans, evaluating 10 signs of abnormality using a simple scoring system. Magnetic resonance imaging features were described in detail, and radiographic and magnetic resonance imaging scores for each sign as well as total scores were compared. Magnetic resonance imaging often showed that the tumour was more extensive than it had appeared on radiography but occasionally showed that radiographs had overestimated its size. Although radiography was reliable for assessment of the presence and size of a mass and for the extent of turbinate destruction, it usually failed to show occlusion of the major airway passages that were evident on magnetic resonance imaging. Extension of the tumour into the opposite nasal cavity, frontal sinus, orbit and cranial cavity was shown much better on magnetic resonance imaging. Minor but significant extension beyond the nasal cavity, which is important for treatment planning and prognosis, requires magnetic resonance imaging for demonstration, although radiography shows major changes reliably.

  6. Appearance of osteolysis with melorheostosis: redefining the disease or a new disorder? A novel case report with multimodality imaging.

    PubMed

    Osher, Lawrence S; Blazer, Marie Mantini; Bumpus, Kelly

    2013-01-01

    We present a case report of melorheostosis with the novel radiographic finding of underlying cortical resorption. A number of radiographic patterns of melorheostosis have been described; however, the combination of new bone formation and resorption of the original cortex appears unique. Although the presence of underlying lysis has been postulated in published studies, direct radiographic evidence of bony resorption in melorheostosis has not been reported. These findings can be subtle and might go unnoticed using standard imaging. An in-depth review of the radiographic features is presented, including multimodality imaging with magnetic resonance imaging and computed tomography. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Molecular prenatal diagnosis of megalencephalic leukoencephalopathy with subcortical cysts in a child from southwest of Iran.

    PubMed

    Shariati, Gholamreza; Hamid, Mohammad; Saberi, Alihossein; Andashti, Behnaz; Galehdari, Hamid

    2015-02-01

    Megalencephalic leukoencephalopathy (MLC) is a rare neurological disorder with an autosomal recessive pattern. Clinical diagnosis was based on macrocephaly, recurrent seizure, and magnetic resonance imaging (MRI). Here we report first finding of a novel homozygous single base deletion in the MLC1 gene in an affected Iranian child causing a premature stop codon (p.L150fs.160X).

  8. [Clinical observation of isolated congenital anosmia].

    PubMed

    Li, Li; Wei, Yong-xiang; Wang, Ning-yu; Miao, Xu-tao; Yang, Ling; Ge, Xiao-hui; Wu, Ying; Liu, Jia; Tian, Jun; Li, Kun-yan; Liu, Chun-li

    2013-12-01

    To introduce 8 patients with isolated congenital anosmia and to discuss the clinical manifestations, imaging characteristics and family characteristics of this rarely seen disorder. Eight patients with isolated congenital anosmia treated between April 2007 and April 2012 were reviewed retrospectively. There were 4 males and 4 females. A detailed medical history collection, physical examination, nasal endoscopy, T&T and Sniffin'Sticks subjective olfactory function tests, olfactory event-related potentials sinonasal computed tomography scan and sex hormones level monitoring were performed in all patients. Seven cases underwent magnetic resonance image of olfactory pathway examination. All patients were anosmia without evidence of other defects. ENT physical examination, nasal endoscopy and computed tomography scan were normal except 4 cases with obvious nasal septum deviation, 2 cases with concha bullosa. Subjective olfactory test indicated all of them were anosmia. Olfactory event-related potentials were obtained in only 1 patient. Magnetic resonance imaging revealed the smaller or atrophy olfactory bulb and olfactory tract in five cases, the absence of olfactory bulbs and tracts in two case. A female patient did not have MRI examination because of wearing IUDs. Detection of 8 patients of sex hormones were normal. Family characteristics: 3 patients showed family inheritance pattern. The diagnosis of isolated congenital anosmia should be based on chief complaint, medical history, physical examination, olfactory test, nasal endoscopy, olfactory testing, olfactory imaging and olfactory event-related potentials. Magnetic resonance image of olfactory pathway and olfactory event-related potentials have important value for the diagnosis. More attention should be paid to the genetic susceptibility of the family.

  9. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia.

    PubMed

    Drees, R; Forrest, L J; Chappell, R

    2009-07-01

    Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.

  10. Cross-Modal Multivariate Pattern Analysis

    PubMed Central

    Meyer, Kaspar; Kaplan, Jonas T.

    2011-01-01

    Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6. Here, we present an extension of the classical MVPA paradigm, according to which perceptual stimuli are not predicted within, but across sensory systems. Specifically, the method we describe addresses the question of whether stimuli that evoke memory associations in modalities other than the one through which they are presented induce content-specific activity patterns in the sensory cortices of those other modalities. For instance, seeing a muted video clip of a glass vase shattering on the ground automatically triggers in most observers an auditory image of the associated sound; is the experience of this image in the "mind's ear" correlated with a specific neural activity pattern in early auditory cortices? Furthermore, is this activity pattern distinct from the pattern that could be observed if the subject were, instead, watching a video clip of a howling dog? In two previous studies7,8, we were able to predict sound- and touch-implying video clips based on neural activity in early auditory and somatosensory cortices, respectively. Our results are in line with a neuroarchitectural framework proposed by Damasio9,10, according to which the experience of mental images that are based on memories - such as hearing the shattering sound of a vase in the "mind's ear" upon seeing the corresponding video clip - is supported by the re-construction of content-specific neural activity patterns in early sensory cortices. PMID:22105246

  11. Utility of 3-dimensional ultrasound imaging to evaluate carotid artery stenosis: comparison with magnetic resonance angiography.

    PubMed

    Igase, Keiji; Kumon, Yoshiaki; Matsubara, Ichiro; Arai, Masamori; Goishi, Junji; Watanabe, Hideaki; Ohnishi, Takanori; Sadamoto, Kazuhiko

    2015-01-01

    We evaluated the utility of 3-dimensional (3-D) ultrasound imaging for assessment of carotid artery stenosis, as compared with similar assessment via magnetic resonance angiography (MRA). Subjects comprised 58 patients with carotid stenosis who underwent both 3-D ultrasound imaging and MRA. We studied whether abnormal findings detected by ultrasound imaging could be diagnosed using MRA. Ultrasound images were generated using Voluson 730 Expert and Voluson E8. The degree of stenosis was mild in 17, moderate in 16, and severe in 25 patients, according to ultrasound imaging. Stenosis could not be recognized using MRA in 4 of 17 patients diagnosed with mild stenosis using ultrasound imaging. Ultrasound imaging showed ulceration in 13 patients and mobile plaque in 6 patients. When assessing these patients, MRA showed ulceration in only 2 of 13 patients and did not detect mobile plaque in any of these 6 patients. Static 3-D B mode images demonstrated distributions of plaque, ulceration, and mobile plaque, and static 3-D flow images showed flow configuration as a total structure. Real-time 3-D B mode images demonstrated plaque and vessel movement. Carotid artery stenting was not selected for patients diagnosed with ulceration or mobile plaque. Ultrasound imaging was necessary to detect mild stenosis, ulcerated plaque, or mobile plaque in comparison with MRA, and 3-D ultrasound imaging was useful to recognize carotid stenosis and flow pattern as a total structure by static and real-time 3-D demonstration. This information may contribute to surgical planning. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients.

    PubMed

    Voskrebenzev, Andreas; Gutberlet, Marcel; Klimeš, Filip; Kaireit, Till F; Schönfeld, Christian; Rotärmel, Alexander; Wacker, Frank; Vogel-Claussen, Jens

    2018-04-01

    In this feasibility study, a phase-resolved functional lung imaging postprocessing method for extraction of dynamic perfusion (Q) and ventilation (V) parameters using a conventional 1H lung MRI Fourier decomposition acquisition is introduced. Time series of coronal gradient-echo MR images with a temporal resolution of 288 to 324 ms of two healthy volunteers, one patient with chronic thromboembolic hypertension, one patient with cystic fibrosis, and one patient with chronic obstructive pulmonary disease were acquired at 1.5 T. Using a sine model to estimate cardiac and respiratory phases of each image, all images were sorted to reconstruct full cardiac and respiratory cycles. Time to peak (TTP), V/Q maps, and fractional ventilation flow-volume loops were calculated. For the volunteers, homogenous ventilation and perfusion TTP maps (V-TTP, Q-TTP) were obtained. The chronic thromboembolic hypertension patient showed increased perfusion TTP in hypoperfused regions in visual agreement with dynamic contrast-enhanced MRI, which improved postpulmonary endaterectomy surgery. Cystic fibrosis and chronic obstructive pulmonary disease patients showed a pattern of increased V-TTP and Q-TTP in regions of hypoventilation and decreased perfusion. Fractional ventilation flow-volume loops of the chronic obstructive pulmonary disease patient were smaller in comparison with the healthy volunteer, and showed regional differences in visual agreement with functional small airways disease and emphysema on CT. This study shows the feasibility of phase-resolved functional lung imaging to gain quantitative information regarding regional lung perfusion and ventilation without the need for ultrafast imaging, which will be advantageous for future clinical translation. Magn Reson Med 79:2306-2314, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Magnetic Resonance Imaging of Three-Dimensional Cervical Anatomy in the Second and Third Trimester

    PubMed Central

    HOUSE, Michael; BHADELIA, Rafeeque A.; MYERS, Kristin; SOCRATE, Simona

    2009-01-01

    OBJECTIVE Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to 1) construct three-dimensional anatomic models during normal pregnancy and 2) use the models to compare cervical anatomy in the second and third trimester. STUDY DESIGN A cross sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. RESULTS Fourteen patients were imaged and divided into two groups according to gestational age: 20 – 24 weeks (n=7)) and 31 – 36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac. (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These 3-dimensional changes were associated with a cervix that appeared shorter in the third trimester. CONCLUSION We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment. PMID:19297070

  14. Pathologic Findings of Breast Lesions Detected on Magnetic Resonance Imaging.

    PubMed

    Jabbar, Seema B; Lynch, Beverly; Seiler, Stephen; Hwang, Helena; Sahoo, Sunati

    2017-11-01

    - Breast magnetic resonance imaging (MRI) is now used routinely for high-risk screening and in the evaluation of the extent of disease in newly diagnosed breast cancer patients. Morphologic characteristics and the kinetic pattern largely determine how suspicious a breast lesion is on MRI. Because of its high sensitivity, MRI identifies a large number of suspicious lesions. However, the low to moderate specificity and the additional cost have raised questions regarding its frequent use. - To identify the pathologic entities that frequently present as suspicious enhancing lesions and to identify specific MRI characteristics that may be predictive of malignancy. - One hundred seventy-seven MRI-guided biopsies from 152 patients were included in the study. The indication for MRI, MRI features, pathologic findings, and patient demographics were recorded. The MRI findings and the pathology slides were reviewed by a dedicated breast radiologist and breast pathologists. - Seventy-one percent (126 of 177) of MRI-guided breast biopsies were benign, 11% (20 of 177) showed epithelial atypia, and 18% (31 of 177) showed malignancy. The vast majority (84%; 62 of 74) of MRI lesions with persistent kinetics were benign. However, 57% (17 of 30) of lesions with washout kinetics and 65% (62 of 95) of mass lesions were also benign. - Magnetic resonance imaging detects malignancies undetected by other imaging modalities but also detects a wide variety of benign lesions. Benign and malignant lesions identified by MRI share similar morphologic and kinetic features, necessitating biopsy for histologic confirmation.

  15. Magnetic resonance enterography in pediatric celiac disease.

    PubMed

    Koc, Gonca; Doganay, Selim; Sevinc, Eylem; Deniz, Kemal; Chavhan, Govind; Gorkem, Sureyya B; Karacabey, Neslihan; Dogan, Mehmet S; Coskun, Abdulhakim; Aslan, Duran

    To assess if magnetic resonance enterography is capable of showing evidence/extent of disease in pediatric patients with biopsy-proven celiac disease by comparing with a control group, and to correlate the magnetic resonance enterography findings with anti-endomysial antibody level, which is an indicator of gluten-free dietary compliance. Thirty-one pediatric patients (mean age 11.7±3.1 years) with biopsy-proven celiac disease and 40 pediatric patients as a control group were recruited in the study. The magnetic resonance enterography images of both patients with celiac disease and those of the control group were evaluated by two pediatric radiologists in a blinded manner for the mucosal pattern, presence of wall thickening, luminal distention of the small bowel, and extra-intestinal findings. Patient charts were reviewed to note clinical features and laboratory findings. The histopathologic review of the duodenal biopsies was re-conducted. The mean duration of the disease was 5.6±1.8 years (range: 3-7.2 years). In 24 (77%) of the patients, anti-endomysial antibody levels were elevated (mean 119.2±66.6RU/mL). Magnetic resonance enterography revealed normal fold pattern in all the patients. Ten (32%) patients had enlarged mesenteric lymph nodes. Although a majority of the patients had elevated anti-endomysial antibody levels indicating poor dietary compliance, magnetic resonance enterography did not show any mucosal abnormality associated with the inability of magnetic resonance enterography to detect mild/early changes of celiac disease in children. Therefore, it may not be useful for the follow-up of pediatric celiac disease. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Magnetic Resonance Imaging of the Lung as an Alternative for a Pregnant Woman with Pulmonary Tuberculosis.

    PubMed

    Schloß, Manuel; Heckrodt, Jan; Schneider, Christian; Discher, Thomas; Krombach, Gabriele Anja

    2015-05-01

    We report a case of a pregnant 21-year-old woman with pulmonary tuberculosis in which magnetic resonance imaging of the lung was used to assess the extent and characteristics of the pathological changes. Although the lung has been mostly ignored in magnetic resonance imaging for many decades, today technical development enables detailed examinations of the lung. The technique is now entering the clinical arena and its indications are increasing. Magnetic resonance imaging of the lung is not only an alternative method without radiation exposure, it can provide additional information in pulmonary imaging compared to other modalities including computed tomography. We describe a successful application of magnetic resonance imaging of the lung and the imaging appearance of post-primary tuberculosis. This case report indicates that magnetic resonance imaging of the lung can potentially be the first choice imaging technique in pregnant women with suspected pulmonary tuberculosis.

  17. Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging.

    PubMed

    Falahati, Farshad; Westman, Eric; Simmons, Andrew

    2014-01-01

    Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.

  18. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    PubMed Central

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  19. (2 + 1)D-CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T.

    PubMed

    Strasser, B; Považan, M; Hangel, G; Hingerl, L; Chmelik, M; Gruber, S; Trattnig, S; Bogner, W

    2017-08-01

    To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging ( 1 H-MRSI), termed (2 + 1)D-CAIPIRINHA, with two standard PI methods: 2D-GRAPPA and 2D-CAIPIRINHA at 7 Tesla (T). (2 + 1)D-CAIPIRINHA is a combination of 2D-CAIPIRINHA and slice-CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32-channel head coil. The best undersampling patterns were estimated for all three PI methods. The artifact powers, g-factors, Cramér-Rao lower bounds (CRLB), and root mean square errors (RMSE) were compared quantitatively among the three PI methods. Metabolic maps and spectra were compared qualitatively. (2 + 1)D-CAIPIRINHA allows acceleration in three spatial dimensions in contrast to 2D-GRAPPA and 2D-CAIPIRINHA. Thus, this sequence significantly decreased the RMSE of the metabolic maps by 12.1 and 6.9%, on average, for 4 < R < 11, compared with 2D-GRAPPA and 2D-CAIPIRINHA, respectively. The artifact power was 22.6 and 8.4% lower, and the CRLB were 3.4 and 0.6% lower, respectively. (2 + 1)-CAIPIRINHA can be implemented for multislice MRSI in the brain, enabling higher accelerations than possible with two-dimensional (2D) parallel imaging methods. An eight-fold acceleration was still feasible in vivo with negligible PI artifacts with lipid decontamination, thus decreasing the measurement time from 120 to 15 min for a 64 × 64 × 4 matrix. Magn Reson Med 78:429-440, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  20. Tumor Size of Invasive Breast Cancer on Magnetic Resonance Imaging and Conventional Imaging (Mammogram/Ultrasound): Comparison with Pathological Size and Clinical Implications.

    PubMed

    Haraldsdóttir, K H; Jónsson, Þ; Halldórsdóttir, A B; Tranberg, K-G; Ásgeirsson, K S

    2017-03-01

    In Landspitali University Hospital, magnetic resonance imaging is used non-selectively in addition to mammogram and ultrasound in the preoperative assessment of breast cancer patients. The aim of this study was to assess invasive tumor size on imaging, compare with pathological size and evaluate the impact of magnetic resonance imaging on the type of surgery performed. All women with invasive breast cancer, diagnosed in Iceland, between 2007 and 2009 were reviewed retrospectively. In all, 438 of 641 (68%) patients diagnosed had preoperative magnetic resonance imaging. Twelve patients treated with neoadjuvant chemotherapy were excluded and 65 patients with multifocal or contralateral disease were assessed separately. Correlations between microscopic and radiologic tumor sizes were relatively weak. All imaging methods were inaccurate especially for large tumors, resulting in an overall underestimation of tumor size for these tumors. Magnetic resonance imaging under- and overestimated pathological tumor size by more than 10 mm in 16/348 (4.6%) and 26/348 patients (7.5%), respectively. In 19 patients (73%), overestimation of size was seen exclusively on magnetic resonance imaging. For tumors under- or overestimated by magnetic resonance imaging, the mastectomy rates were 56% and 65%, respectively, compared to an overall mastectomy rate of 43%. Of 51 patients diagnosed with multifocal disease on pathology, 19 (37%) were diagnosed by mammogram or ultrasound and 40 (78%) by magnetic resonance imaging resulting in a total detection rate of 84% (43 patients). Fourteen (3%) patients were diagnosed preoperatively with contralateral disease. Of those tumors, all were detected on magnetic resonance imaging but seven (50%) were also detected on mammogram or ultrasound or both. Our results suggest that routine use of magnetic resonance imaging may result in both under- and overestimation of tumor size and increase mastectomy rates in a small proportion of patients. Magnetic resonance imaging aids in the diagnosis of contralateral and multifocal disease.

  1. Magnetic resonance imaging findings of cellular angiofibroma of the tunica vaginalis of the testis: a case report.

    PubMed

    Ntorkou, Alexandra A; Tsili, Athina C; Giannakis, Dimitrios; Batistatou, Anna; Stavrou, Sotirios; Sofikitis, Nikolaos; Argyropoulou, Maria I

    2016-03-31

    Cellular angiofibroma represents a rare mesenchymal tumor typically involving the inguinoscrotal area in middle-aged men. Although the origin of this benign tumor is unknown, it is histologically classified as an angiomyxoid tumor. Cellular angiofibroma is characterized by a diversity of pathological and imaging features. An accurate preoperative diagnosis is challenging. Magnetic resonance imaging examination of the scrotum has been reported as a valuable adjunct modality in the investigation of scrotal pathology. The technique by providing both structural and functional information is useful in the differentiation between extratesticular and intratesticular diseases and in the preoperative characterization of the histologic nature of various scrotal lesions. There are few reports in the English literature addressing the magnetic resonance imaging findings of cellular angiofibroma of the scrotum and no reports on functional magnetic resonance imaging data. Here we present the first case of a cellular angiofibroma arising from the tunica vaginalis of the testis and we discuss the value of a multiparametric magnetic resonance protocol, including diffusion-weighted imaging, magnetization transfer imaging and dynamic contrast-enhanced magnetic resonance imaging in the preoperative diagnosis of this rare neoplasm. A 47-year Greek man presented with a painless left scrotal swelling, which had gradually enlarged during the last 6 months. Magnetic resonance imaging of his scrotum displayed a left paratesticular mass, in close proximity to the tunica vaginalis, with heterogeneous high signal intensity on T2-weighted images and no areas of restricted diffusion. The tumor was hypointense on magnetization transfer images, suggestive for the presence of macromolecules. On dynamic contrast-enhanced magnetic resonance imaging the mass showed intense heterogeneous enhancement with a type II curve. Magnetic resonance imaging findings were strongly suggestive of a benign paratesticular tumor, which was confirmed on pathology following lesion excision. Magnetic resonance imaging of the scrotum by combining conventional and functional magnetic resonance data provides useful diagnostic information in the preoperative characterization of scrotal masses. A possible diagnosis of a benign paratesticular tumor based on magnetic resonance imaging features may improve patient care and decrease the number of unnecessary radical surgical explorations.

  2. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats.

    PubMed

    Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q

    2017-08-01

    Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.

  3. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer.

    PubMed

    Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-06-01

    The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P < .001). Preoperative hepatic magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit--a hybrid tool for assessment of choroidal melanoma.

    PubMed

    Walter, Uwe; Niendorf, Thoralf; Graessl, Andreas; Rieger, Jan; Krüger, Paul-Christian; Langner, Sönke; Guthoff, Rudolf F; Stachs, Oliver

    2014-05-01

    A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. • Orbital magnetic resonance and colour Doppler ultrasound real-time fusion imaging is feasible • Fusion imaging combines the spatial and temporal resolution advantages of each modality • Magnetic resonance and ultrasound fusion imaging improves assessment of choroidal melanoma vascularisation.

  5. Diagnostic value of three-dimensional magnetic resonance imaging of inner ear after intratympanic gadolinium injection, and clinical application of magnetic resonance imaging scoring system in patients with delayed endolymphatic hydrops.

    PubMed

    Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X

    2014-01-01

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.

  6. Terahertz Near-Field Imaging Using Enhanced Transmission through a Single Subwavelength Aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ikari, Tomofumi; Minamide, Hiroaki; Shikata, Jun-ichi; Ohashi, Keishi; Yokoyama, Hiroyuki; Ito, Hiromasa

    2005-07-01

    We demonstrate terahertz (THz) near-field imaging using resonantly enhanced transmission of THz-wave radiation (λ˜ 200 μm) through a bull’s eye structure (a single subwavelength aperture surrounded by concentric periodic grooves in a metal plate). The bull’s eye structure shows extremely large enhanced transmission, which has the advantage for a single subwavelength aperture. The spatial resolution for the bull’s eye structure (with an aperture diameter d=100 μm) is evaluated in the near-field region, and a resolution of 50 μm (corresponding to λ/4) is achieved. We obtain the THz near-field images of the subwavelength metal pattern with a spatial resolution below the diffraction limit.

  7. The utility of ultrasound and magnetic resonance imaging versus surgery for the characterization of müllerian anomalies in the pediatric and adolescent population.

    PubMed

    Santos, X M; Krishnamurthy, R; Bercaw-Pratt, J L; Dietrich, J E

    2012-06-01

    To evaluate the utility of transabdominal ultrasound and magnetic resonance imaging in the evaluation of American Society for Reproductive Medicine (†)(ASRM)-classified müllerian anomalies compared to surgical findings in the pediatric and adolescent population. Retrospective chart review. Tertiary academic center. Thirty-eight patients with müllerian anomalies seen in our pediatric and adolescent gynecology clinic were identified both on the basis of ICD-9 codes and having magnetic resonance imaging at Texas Children's Hospital between 2004 and 2009. None. Correlation among transabdominal ultrasound and magnetic resonance imaging findings with surgical findings. Mean age was 12.2 (± 4.1) years. Twenty-eight patients underwent magnetic resonance imaging and required surgical intervention, and 88.5% demonstrated correlative consistency with surgical findings. Twenty-two patients underwent ultrasound, magnetic resonance imaging, and surgery, which revealed consistency among ultrasound and surgical findings (59.1%) and consistency among magnetic resonance imaging and surgical findings (90.9%). In ASRM diagnoses evaluated by magnetic resonance imaging, surgical findings correlated in 92% (Pearson 0.89). Overall, 55.2% of patients had a renal malformation. Magnetic resonance imaging is the gold standard imaging modality for müllerian anomalies and is an effective technique for noninvasive evaluation and accurate classification of the type of anomaly in the pediatric and adolescent population. Magnetic resonance imaging should be considered as an adjunct to transabdominal ultrasound to evaluate müllerian anomalies. Copyright © 2012 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  8. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  9. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  10. Magnetic resonance imaging spectroscopy in pediatric atypical teratoid rhabdoid tumors of the brain.

    PubMed

    Bruggers, Carol S; Moore, Kevin

    2014-08-01

    Pediatric central nervous system (CNS) atypical teratoid rhabdoid tumors (ATRT) are highly malignant tumors characterized by SMARCB1 gene abnormalities. Despite chemoradiation responsiveness, most children die of disease. No imaging findings distinguish ATRT from other malignant brain tumors. This study sought to describe magnetic resonance spectroscopy (MRS) of childhood CNS ATRT and identify metabolite patterns for diagnosis and disease status monitoring. Data from 7 children diagnosed with CNS ATRT from 2007 to 2010, whose imaging included MRS, were retrospectively reviewed. Age at diagnosis ranged from 2.5 to 54 months. Tumors were large with calcium and cysts and avid gadolinium enhancement. All were isointense on T1-weighted imaging and mildly hyperintense on T2-weighted imaging. Short-TE MRS showed prominent lactate+lipid and choline, minimal N-acetyl acetate (NAA), and rarely minimal myoinositol and low creatine peaks. Long TE showed prominent choline, minimal NAA, and rarely low lactate peaks. The combination of prominent choline and lactate+lipids peaks, and generally absent NAA and myoinositol peaks by MRS in this panel of ATRT expands existing information and provides a potentially distinct metabolite profile from other malignant pediatric brain tumors, including medulloblastoma. Prospective, comparative quantitative MRS of ATRT with other pediatric CNS tumors is warranted.

  11. Contrast-enhanced magnetic resonance imaging of pulmonary lesions: description of a technique aiming clinical practice.

    PubMed

    Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich; Puderbach, Michael

    2015-01-01

    To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Readers agreed moderately to substantially concerning lesions' enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Functional and structural correlates of magnetic resonance patterns in a new in vitro model of cerebral ischemia by transient occlusion of the medial cerebral artery.

    PubMed

    Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco

    2010-08-01

    Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.

  13. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  14. Atomic photoionization processes under magnification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepine, F.; Bordas, Ch.; Nicole, C.

    2004-09-01

    Recently, classical simulations of threshold photoionization in the presence of an electric field have shown that a clear distinction between direct and indirect trajectories followed by the outgoing electron can be observed in the patterns of electron impacts on a two-dimensional detector. Subsequently, slow photoelectron imaging experiments have been reported where this distinction could be observed in atomic xenon. Furthermore, using a magnifying electrostatic lens to improve the velocity-map imaging technique, oscillatory patterns were observed modulating the classical envelope that was measured in the experiments of Nicole et al. [Phys. Rev. Lett. 88, 133001 (2002)]. This extension of slow photoelectronmore » imaging, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. In this article we present the main experimental results obtained both in slow photoelectron imaging and in photoionization microscopy. The formation of the interference pattern is discussed in the framework of a semiclassical model that is described in detail elsewhere. The qualitative information that can be drawn from the experiments is discussed, and the potential applications of photoionization microscopy are considered. Particular attention is paid to the role of continuum Stark resonances that appear between the saddle point in the Coulomb+dc field potential and the field-free ionization limit.« less

  15. Tracking the unconscious generation of free decisions using ultra-high field fMRI.

    PubMed

    Bode, Stefan; He, Anna Hanxi; Soon, Chun Siong; Trampel, Robert; Turner, Robert; Haynes, John-Dylan

    2011-01-01

    Recently, we demonstrated using functional magnetic resonance imaging (fMRI) that the outcome of free decisions can be decoded from brain activity several seconds before reaching conscious awareness. Activity patterns in anterior frontopolar cortex (BA 10) were temporally the first to carry intention-related information and thus a candidate region for the unconscious generation of free decisions. In the present study, the original paradigm was replicated and multivariate pattern classification was applied to functional images of frontopolar cortex, acquired using ultra-high field fMRI at 7 Tesla. Here, we show that predictive activity patterns recorded before a decision was made became increasingly stable with increasing temporal proximity to the time point of the conscious decision. Furthermore, detailed questionnaires exploring subjects' thoughts before and during the decision confirmed that decisions were made spontaneously and subjects were unaware of the evolution of their decision outcomes. These results give further evidence that FPC stands at the top of the prefrontal executive hierarchy in the unconscious generation of free decisions.

  16. Human inferior colliculus activity relates to individual differences in spoken language learning.

    PubMed

    Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M

    2012-03-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.

  17. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  18. Comparison of magnetic resonance imaging and computed tomography in suspected lesions in the posterior cranial fossa.

    PubMed Central

    Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.

    1989-01-01

    OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases... PMID:2506965

  19. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  20. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia

    PubMed Central

    Drees, R.; Forrest, L. J.; Chappell, R.

    2009-01-01

    Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490

  1. MRI Findings of Intrinsic and Extrinsic Duodenal Abnormalities and Variations

    PubMed Central

    Erden, Ayse; Ustuner, Evren; Uzun, Caglar; Bektas, Mehmet

    2015-01-01

    This pictorial review aims to illustrate the magnetic resonance imaging (MRI) findings and presentation patterns of anatomical variations and various benign and malignant pathologies of the duodenum, including sphincter contraction, major papilla variation, prominent papilla, diverticulum, annular pancreas, duplication cysts, choledochocele, duodenal wall thickening secondary to acute pancreatitis, postbulbar stenosis, celiac disease, fistula, choledochoduodenostomy, external compression, polyps, Peutz-Jeghers syndrome, ampullary carcinoma and adenocarcinoma. MRI is a useful imaging tool for demonstrating duodenal pathology and its anatomic relationships with adjacent organs, which is critical for establishing correct diagnosis and planning appropriate treatment, especially for surgery. PMID:26576112

  2. Assessing paedophilia based on the haemodynamic brain response to face images.

    PubMed

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Deuschl, Günther; Huchzermeier, Christian; Stirn, Aglaja; Bosinski, Hartmut; Roman Siebner, Hartwig

    2016-01-01

    Objective assessment of sexual preferences may be of relevance in the treatment and prognosis of child sexual offenders. Previous research has indicated that this can be achieved by pattern classification of brain responses to sexual child and adult images. Our recent research showed that human face processing is tuned to sexual age preferences. This observation prompted us to test whether paedophilia can be inferred based on the haemodynamic brain responses to adult and child faces. Twenty-four men sexually attracted to prepubescent boys or girls (paedophiles) and 32 men sexually attracted to men or women (teleiophiles) were exposed to images of child and adult, male and female faces during a functional magnetic resonance imaging (fMRI) session. A cross-validated, automatic pattern classification algorithm of brain responses to facial stimuli yielded four misclassified participants (three false positives), corresponding to a specificity of 91% and a sensitivity of 95%. These results indicate that the functional response to facial stimuli can be reliably used for fMRI-based classification of paedophilia, bypassing the problem of showing child sexual stimuli to paedophiles.

  3. Functional magnetic resonance imaging in primary writing tremor and writer’s cramp: A pilot study

    PubMed Central

    Sahni, Hirdesh; Jayakumar, Peruvumba N.; Pal, Pramod Kumar

    2010-01-01

    Objectives: The precise pathophysiology of primary writing tremor (PWT) and writer’s cramp (WC) is not known. The aim of this study is to compare the cerebral activation patterns in patients of PWT, WC and healthy controls, during a task of signing on paper, using functional magnetic resonance imaging (fMRI). Materials and Methods: Six subjects with PWT, three with WC and six healthy volunteers were examined using a 1.5-Tesla scanner. The paradigm consisted of three times repetition of a set of period of rest and activity. Each set consisted of 10 blood oxygen level dependent (BOLD) echo-planar imaging (EPI) acquisitions at rest followed by 10 BOLD EPI acquisitions while signing their names on paper using the dominant right hand. Entire brain was covered. SPM99 analysis was done. Results: In comparison to the healthy controls, the following differences in cerebral activation were noted in the patients: (a) primary and supplementary motor areas showed overactivation in patients of PWT and underactivation in patients of WC, (b) the cingulate motor area showed underactivation in patients of PWT and overactivation in patients of WC and (c) the cerebellar activity was reduced in both WC and PWT. Conclusion: Our preliminary findings suggest that the cerebral and cerebellar activation patterns in PWT and WC during signing on paper are distinct from each other and from healthy controls. There may be cerebellar dysfunction in addition to motor dysfunctions in the pathogenesis of these disorders. PMID:21085530

  4. Terahertz imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam

    Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.

  5. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: implications for principles underlying odor mapping

    PubMed Central

    Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed

    2015-01-01

    Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819

  6. The clinical outcomes of deep gray matter injury in children with cerebral palsy in relation with brain magnetic resonance imaging.

    PubMed

    Choi, Ja Young; Choi, Yoon Seong; Rha, Dong-Wook; Park, Eun Sook

    2016-08-01

    In the present study we investigated the nature and extent of clinical outcomes using various classifications and analyzed the relationship between brain magnetic resonance imaging (MRI) findings and the extent of clinical outcomes in children with cerebral palsy (CP) with deep gray matter injury. The deep gray matter injuries of 69 children were classified into hypoxic ischemic encephalopathy (HIE) and kernicterus patterns. HIE patterns were divided into four groups (I-IV) based on severity. Functional classification was investigated using the gross motor function classification system-expanded and revised, manual ability classification system, communication function classification system, and tests of cognitive function, and other associated problems. The severity of HIE pattern on brain MRI was strongly correlated with the severity of clinical outcomes in these various domains. Children with a kernicterus pattern showed a wide range of clinical outcomes in these areas. Children with severe HIE are at high risk of intellectual disability (ID) or epilepsy and children with a kernicterus pattern are at risk of hearing impairment and/or ID. Grading severity of HIE pattern on brain MRI is useful for predicting overall outcomes. The clinical outcomes of children with a kernicterus pattern range widely from mild to severe. Delineation of the clinical outcomes of children with deep gray matter injury, which are a common abnormal brain MRI finding in children with CP, is necessary. The present study provides clinical outcomes for various domains in children with deep gray matter injury on brain MRI. The deep gray matter injuries were divided into two major groups; HIE and kernicterus patterns. Our study showed that severity of HIE pattern on brain MRI was strongly associated with the severity of impairments in gross motor function, manual ability, communication function, and cognition. These findings suggest that severity of HIE pattern can be useful for predicting the severity of impairments. Conversely, children with a kernicterus pattern showed a wide range of clinical outcomes in various domains. Children with severe HIE pattern are at high risk of ID or epilepsy and children with kernicterus pattern are at risk of hearing impairment or ID. The strength of our study was the assessment of clinical outcomes after 3 years of age using standardized classification systems in various domains in children with deep gray matter injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An Australian population study of factors associated with MRI patterns in cerebral palsy.

    PubMed

    Reid, Susan M; Dagia, Charuta D; Ditchfield, Michael R; Carlin, John B; Meehan, Elaine M; Reddihough, Dinah S

    2014-02-01

    The aim of this study was to describe the distribution of magnetic resonance imaging (MRI) patterns in a large population sample of children with cerebral palsy (CP) and to examine associations between MRI patterns, and antenatal and perinatal variables. Data were retrieved from the Victorian CP Register for 884 children (527 males, 357 females) born between 1999 and 2006. Postneonatal MRI was classified for 594 children. For 563 children (329 males, 234 females) for whom classification was to a single MRI pattern, the frequency of each variable was compared between patterns and with the population frequency. White matter injury was the most common MRI pattern (45%), followed by grey matter injury (14%), normal imaging (13%), malformations (10%), focal vascular insults (9%), and miscellaneous patterns (7%). Parity, birth gestation, level of neonatal care, Apgar score, and time to established respiration varied between MRI patterns (p<0.01). Nulliparity was most strongly associated with focal vascular insults, whereas multiparity was associated only with malformations. Grey matter injury was not associated with birth in a tertiary unit, but was strongly associated with severe perinatal compromise. The frequency of neonatal seizures and of nursery admissions was lowest among children with malformations. As known risk factors for CP are differentially associated with specific MRI patterns, future exploration of causal pathways might be facilitated when performed in pathogenically defined groups. © 2013 Mac Keith Press.

  8. Frequency of Magnetic Resonance Imaging patterns of tuberculous spondylitis in a public sector hospital

    PubMed Central

    Tabassum, Sumera; Haider, Shahbaz

    2016-01-01

    Objective: To determine frequencies of different MRI patterns of tuberculous spondylitisin a public sector hospital in Karachi. Methods: This descriptive multidisciplinary case series study was done from October 25, 2011 to May 28, 2012 in Radiology Department and Department of Medicine in the Jinnah Postgraduate Medical Center Karachi. MRI scans (dorsal / lumbosacral spine) of the Patients presenting with backache in Medical OPD, were performed in Radiology Department. Axial and sagittal images of T1 weighted, T2 weighted and STIR sequences of the affected region were taken. A total of 140 patients who were diagnosed as having tuberculous spondylitis were further evaluated and analyzed for having different patterns of involvement of the spine and compared with similar studies. Results: Among frequencies of different MRI pattern of tuberculous spondylitis, contiguous vertebral involvement was 100%, discal involvement 98.6%, paravertebral abscess 92.1% cases, epidural abscess 91.4%, spinal cord / thecal sac compression 89.3%, vertebral collapse 72.9%, gibbus deformity 42.9% and psoas abscess 36.4%. Conclusion: Contiguous vertebral involvement was commonest MRI pattern, followed by disk involvement, paravertebral & epidural abscesses, thecal sac compression and vertebral collapse. PMID:27022369

  9. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  10. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  11. A magnetic resonance imaging-based articulatory and acoustic study of “retroflex” and “bunched” American English ∕r∕

    PubMed Central

    Zhou, Xinhui; Espy-Wilson, Carol Y.; Boyce, Suzanne; Tiede, Mark; Holland, Christy; Choe, Ann

    2008-01-01

    Speakers of rhotic dialects of North American English show a range of different tongue configurations for ∕r∕. These variants produce acoustic profiles that are indistinguishable for the first three formants [Delattre, P., and Freeman, D. C., (1968). “A dialect study of American English r’s by x-ray motion picture,” Linguistics 44, 28–69; Westbury, J. R. et al. (1998), “Differences among speakers in lingual articulation for American English ∕r∕,” Speech Commun. 26, 203–206]. It is puzzling why this should be so, given the very different vocal tract configurations involved. In this paper, two subjects whose productions of “retroflex” ∕r∕ and “bunched” ∕r∕ show similar patterns of F1–F3 but very different spacing between F4 and F5 are contrasted. Using finite element analysis and area functions based on magnetic resonance images of the vocal tract for sustained productions, the results of computer vocal tract models are compared to actual speech recordings. In particular, formant-cavity affiliations are explored using formant sensitivity functions and vocal tract simple-tube models. The difference in F4∕F5 patterns between the subjects is confirmed for several additional subjects with retroflex and bunched vocal tract configurations. The results suggest that the F4∕F5 differences between the variants can be largely explained by differences in whether the long cavity behind the palatal constriction acts as a half- or a quarter-wavelength resonator. PMID:18537397

  12. Laser ultrasonic multi-component imaging

    DOEpatents

    Williams, Thomas K [Federal Way, WA; Telschow, Kenneth [Des Moines, WA

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  13. Dynamic MRI confirms support of the mid-urethra by TVT and TVT-O surgery for stress incontinence.

    PubMed

    Rinne, Kirsi; Kainulainen, Sakari; Aukee, Sinikka; Heinonen, Seppo; Nilsson, Carl G

    2011-06-01

    To study changes in mid-urethral function with dynamic MRI in stress urinary incontinent women undergoing either tension-free vaginal tape (TVT) or TVT-obturator sling operations. Prospective clinical study. University hospital. Forty-two parous women with stress urinary incontinence recruited to dynamic magnetic resonance imaging before and after mid-urethral sling surgery. Control group of 16 healthy women. Dynamic magnetic resonance imaging at rest, during pelvic floor muscle contraction, coughing and voiding with a bladder volume of 200-300 ml. X- and Y- coordinates were used to determine the location of the mid-urethra during these activities. Changes in mid-urethral position after TVT and TVT-obturator operations during the different activities. Postoperatively the women could elevate their mid-urethra by pelvic floor muscle contraction significantly higher than before the operation (p<0.05). Despite a different support angle between the TVT and the TVT-O mid-urethral slings, we could not see any differences in the movement patterns. Mid-urethral slings support the mid-urethra and restrict downward movement during different activities. Movement patterns are similar after TVT and TVT-O operations. © 2011 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2011 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. Multimodal approach to characterization of hydrophilic matrices manufactured by wet and dry granulation or direct compression methods.

    PubMed

    Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P

    2016-02-29

    The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Reduced activation and altered laterality in two neuroleptic-naive catatonic patients during a motor task in functional MRI.

    PubMed

    Northoff, G; Braus, D F; Sartorius, A; Khoram-Sefat, D; Russ, M; Eckert, J; Herrig, M; Leschinger, A; Bogerts, B; Henn, F A

    1999-07-01

    Catatonia, a symptom complex with motor, affective and cognitive symptoms seen in a variety of psychotic conditions and with organic disease, was examined using a motor task using functional magnetic resonance imaging (fMRI). Two acute catatonic patients and two age- and sex-matched healthy controls performed sequential finger opposition (SFO) after being medicated with 2 mg of lorazepam (i.v.). Functional magnetic resonance images were collected using a gradient echo pulse sequence (EPI). Patients with catatonia showed reduced motor activation of the contralateral motor cortex during SFO of the right hand, ipsilateral activation was similar for patients and controls. There were no differences in the activation of the SMA. During left hand activation the right-handed catatonic patients showed more activation in the ipsilateral cortex, a reversal from the normal pattern of activation in which the contralateral side shows four to five times more activation than the ipsilateral side. In catatonic patients there is a decreased activation in motor cortex during a motor task compared to matched medicated healthy controls. In addition activation of the non-dominant side, left-handed activity in right-handed patients, results in a total reversal of the normal pattern of lateral activation suggesting a disturbance in hemispheric localization of activity during a catatonic state.

  16. Development of vocal tract length during early childhood: A magnetic resonance imaging study

    NASA Astrophysics Data System (ADS)

    Vorperian, Houri K.; Kent, Ray D.; Lindstrom, Mary J.; Kalina, Cliff M.; Gentry, Lindell R.; Yandell, Brian S.

    2005-01-01

    Speech development in children is predicated partly on the growth and anatomic restructuring of the vocal tract. This study examines the growth pattern of the various hard and soft tissue vocal tract structures as visualized by magnetic resonance imaging (MRI), and assesses their relational growth with vocal tract length (VTL). Measurements on lip thickness, hard- and soft-palate length, tongue length, naso-oro-pharyngeal length, mandibular length and depth, and distance of the hyoid bone and larynx from the posterior nasal spine were used from 63 pediatric cases (ages birth to 6 years and 9 months) and 12 adults. Results indicate (a) ongoing growth of all oral and pharyngeal vocal tract structures with no sexual dimorphism, and a period of accelerated growth between birth and 18 months; (b) vocal tract structure's region (oral/anterior versus pharyngeal/posterior) and orientation (horizontal versus vertical) determine its growth pattern; and (c) the relational growth of the different structures with VTL changes with development-while the increase in VTL throughout development is predominantly due to growth of pharyngeal/posterior structures, VTL is also substantially affected by the growth of oral/anterior structures during the first 18 months of life. Findings provide normative data that can be used for modeling the development of the vocal tract. .

  17. Perfusion information extracted from resting state functional magnetic resonance imaging.

    PubMed

    Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB

    2017-02-01

    It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.

  18. Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain

    PubMed Central

    Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria

    2015-01-01

    Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870

  19. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction

    PubMed Central

    XU, PENG; LV, LULU; LI, SHAODONG; GE, HAITAO; RONG, YUTAO; HU, CHUNFENG; XU, KAI

    2015-01-01

    The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI. PMID:26668651

  20. "Magnetic resonance imaging negative positron emission tomography positive" temporal lobe epilepsy: FDG-PET pattern differs from mesial temporal lobe epilepsy.

    PubMed

    Carne, R P; Cook, M J; MacGregor, L R; Kilpatrick, C J; Hicks, R J; O'Brien, T J

    2007-01-01

    Some patients with temporal lobe epilepsy (TLE) lack evidence of hippocampal sclerosis (HS) on MRI (HS-ve). We hypothesized that this group would have a different pattern of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) hypometabolism than typical mesial TLE/HS patients with evidence of hippocampal atrophy on magnetic resonance imaging (MRI) (HS+ve), with a lateral temporal neocortical rather than mesial focus. Thirty consecutive HS-ve patients and 30 age- and sex-matched HS+ve patients with well-lateralized EEG were identified. FDG-PET was performed on 28 HS-ve patients and 24 HS+ve patients. Both groups were compared using statistical parametric mapping (SPM), directly and with FDG-PET from 20 healthy controls. Both groups showed lateralized temporal hypometabolism compared to controls. In HS+ve, this was antero-infero-mesial (T = 17.13); in HS-ve the main clustering was inferolateral (T = 17.63). When directly compared, HS+ve had greater hypometabolism inmesial temporal/hippocampal regions (T = 4.86); HS-ve had greater inferolateral temporal hypometabolism (T = 4.18). These data support the hypothesis that focal hypometabolism involves primarily lateal neocortical rather than mesial temporal structures in 'MRI-negative PET-positive TLE.'

  1. Magnetic resonance imaging in the evaluation of sports injuries of the foot and ankle: a pictorial essay.

    PubMed

    Riley, Geoffrey M

    2007-01-01

    Magnetic resonance imaging is playing an increasingly important role in evaluation of the injured athlete's foot and ankle. Magnetic resonance imaging allows accurate detection of bony abnormalities, such as stress fractures, and soft-tissue abnormalities, including ligament tears, tendon tears, and tendinopathy. The interpreter of magnetic resonance images should systematically review the images, noting normal structures and accounting for changes in soft-tissue and bony signal.

  2. Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.

    DTIC Science & Technology

    1996-12-01

    PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image

  3. Magnetic Resonance-Based Electrical Property Tomography (MR-EPT) for Prostate Cancer Grade Imaging

    DTIC Science & Technology

    2016-07-01

    Award Number: W81XWH-13-1-0127 TITLE: Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0127 Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...developing Magnetic Resonance – Electrical Property Tomography (MR-EPT) specifically for prostate imaging. MR-EPT is an imaging modality that may enable

  4. Merosin-deficient congenital muscular dystrophy with mental retardation and cerebellar cysts, unlinked to the LAMA2, FCMD, MEB and CMD1B loci, in three Tunisian patients.

    PubMed

    Triki, Chahnez; Louhichi, Nacim; Méziou, Mériam; Choyakh, Fakher; Kéchaou, Mohamed Salah; Jlidi, Rachid; Mhiri, Chokri; Fakhfakh, Faiza; Ayadi, Hamadi

    2003-01-01

    We report three Tunisian patients affected by congenital muscular dystrophy with mental retardation and cerebellar cysts on cranial magnetic resonance imaging. The clinical features were characterized by hypotonia at birth, joint contractures associated with severe psychomotor retardation, absence of speech, inability to walk in three patients, but calf hypertrophy was noted only in two patients. Brain magnetic resonance imaging showed several cerebellar cysts and vermis hypoplasia in all of the patients. Abnormality of the white matter was present in two patients. The pattern of gyration was normal in all cases. Serum creatine kinase was elevated in all three cases and their muscle biopsy showed dystrophic changes compatible with congenital muscular dystrophy. The immunohistochemical analysis of the skeletal muscle revealed partial merosin deficiency, more pronounced for the N-terminal antibody. Linkage analysis excluded congenital muscular dystrophy loci on chromosomes 6q22, 9q31, 1p32 and 1q42. These patients constituted a particular form of congenital muscular dystrophy with a combination of severe motor delay, mental retardation, partial merosin deficiency and cerebellar cysts. Two patients showed white matter abnormalities on magnetic resonance imaging and hypertrophy of the calves. These cases, in addition to those reported previously, confirmed the large phenotypic variability in the group of secondary merosin deficiency congenital muscular dystrophy.

  5. Magnetic resonance imaging in Tietze's syndrome.

    PubMed

    Volterrani, L; Mazzei, M A; Giordano, N; Nuti, R; Galeazzi, M; Fioravanti, A

    2008-01-01

    To evaluate the usefulness of magnetic resonance imaging (MRI) in Tietze's syndrome which, to our knowledge, has not previously been reported in the literature. Twelve consecutive outpatients with clinical features of Tietze's syndrome underwent evaluation, including the anamnesis, clinical general examination, clinical evaluation of costosternal and sternoclavicular joints (SCJ) and biochemical and instrumental investigations. Twenty normal subjects age- and sex-matched to the patients' group were examined in a similar manner. MRI of costosternal and SCJ was performed using a 1.5 Tesla unit (Gyroscan NT 1.5 Philips, The Netherlands and GE Signa Excite HD, GE Healthcare, Milwaukee, Wis., USA). The MRI pattern of primary Tietze's syndrome was characterized as follows: enlargement and thickening of cartilage at the site of complaint (12/12 patients); focal or widespread increased signal intensities of affected cartilage on both TSE T2-weighted and STIR or FAT SAT images (10/12 patients); bone marrow oedema in the subcondral bone (5/12 patients); vivid gadolinium uptake in the areas of thickened cartilage, in the subcondral bone marrow and/or in capsule and ligaments (10/12, 4/12 and 7/12 patients respectively). Magnetic resonance is an excellent technique to evidence both the cartilage and bone abnormalities, therefore it represents the elective method in the investigation of primary Tietze's syndrome, due to its high sensitivity, diagnostic reliability and biological advantages thanks to the lack of ionizing radiation.

  6. Four-channel surface coil array for sequential CW-EPR image acquisition

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  7. Correlating MALDI and MRI Biomarkers of Breast Cancer

    DTIC Science & Technology

    2010-07-01

    resonance imaging ( MRI ) with matrix-assisted laser desorption ionization (MALDI) analysis of healthy and tumorous ex vivo specimens in order to examine the...assess the correlation between physiological parameters reported by magnetic resonance (MR) imaging and tumor protein distribution determined from... imaging research (e.g., Cancer Imaging , Quantitative Magnetic Resonance Imaging , and Medical Image Registration classes) • completion of

  8. Use of cardiovascular magnetic resonance in the evaluation of a giant right atrial appendage aneurysm: a case report and review of the literature.

    PubMed

    Sivakumaran, Lojan; Sayegh, Karl; Mehanna, Emile; Sanchez, Frank W; Fields, Jonathan; Cury, Ricardo

    2017-12-04

    Right atrial appendage aneurysms are rare entities that may have significant clinical consequences. When co-existing with atrial fibrillation, patients are at risk of developing pulmonary or paradoxical systemic emboli. An elderly patient presented to medical attention with symptoms of acute diverticulitis. On abdominal computed tomography, a massively enlarged right atrial appendage aneurysm was discovered incidentally. The aneurysm caused marked compression of the right ventricle and contained an area of hypoenhancement concerning for an intraluminal thrombus. Gadolinium-enhanced cardiovascular magnetic resonance was performed and first-pass perfusion images demonstrated that the area of hypoenhancement was in fact poorly mixing blood. The patient was therefore managed medically. Right atrial appendage aneurysms are infrequently encountered cardiac abnormalities. In the literature, surgery has been offered to patients who are young, symptomatic, or have evidence of thrombotic disease, although whether this practice pattern is associated with superior clinical outcomes is unclear. In the present case, gadolinium-enhanced cardiovascular magnetic resonance imaging was used to exclude the presence of intraluminal thrombus in an elderly patient, which helped orient the patient's treating team towards medical-rather than surgical-therapy.

  9. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Ji Won

    2013-01-01

    A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitivemore » DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.« less

  10. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.

    PubMed Central

    Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B

    1995-01-01

    The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258

  11. Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications

    PubMed Central

    Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan

    2018-01-01

    Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. PMID:28611116

  12. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  13. Patterns of Primary Tumor Invasion and Regional Lymph Node Spread Based on Magnetic Resonance Imaging in Early-Stage Nasal NK/T-cell Lymphoma: Implications for Clinical Target Volume Definition and Prognostic Significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Run-Ye; Liu, Kang; Wang, Wei-Hu

    Purpose: This study aimed to determine the pathways of primary tumor invasion (PTI) and regional lymph node (LN) spread based on magnetic resonance imaging (MRI) in early-stage nasal NK/T-cell lymphoma (NKTCL), to improve clinical target volume (CTV) delineation and evaluate the prognostic value of locoregional extension patterns. Methods and Materials: A total of 105 patients with newly diagnosed early-stage nasal NKTCL who underwent pretreatment MRI were retrospectively reviewed. All patients received radiation therapy with or without chemotherapy. Results: The incidences of PTI and regional LN involvement were 64.7% and 25.7%, respectively. Based on the incidence of PTI, involved sites surroundingmore » the nasal cavity were classified into 3 risk subgroups: high-risk (>20%), intermediate-risk (5%-20%), and low-risk (<5%). The most frequently involved site was the nasopharynx (35.2%), followed by the maxillary (21.9%) and ethmoid (21.9%) sinuses. Local disease and regional LN spread followed an orderly pattern without LN skipping. The retropharyngeal nodes (RPNs) were most frequently involved (19.0%), followed by level II (11.4%). The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) rates for all patients were 72.8%, 65.2%, and 90.0%, respectively. The presence of PTI and regional LN involvement based on MRI significantly and negatively affected PFS and OS. Conclusions: Early-stage nasal NKTCL presents with a high incidence of PTI but a relatively low incidence of regional LN spread. Locoregional spread followed an orderly pattern, and PTI and regional LN spread are powerful prognostic factors for poorer survival outcomes. CTV reduction may be feasible for selected patients.« less

  14. Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study.

    PubMed

    Hug, François; Bendahan, David; Le Fur, Yann; Cozzone, Patrick J; Grélot, Laurent

    2004-07-01

    Although a number of studies have been devoted to the analysis of the activity pattern of the muscles involved in pedaling in sedentary subjects and/or amateur cyclists, data on professional cyclists are scarce and the issue of inter-individual differences has never been addressed in detail. In the present series of experiments, we performed a non-invasive investigation using functional magnetic resonance imaging and surface electromyography to determine the pattern of activity of lower limb muscles during two different exhausting pedaling exercises in eight French professional cyclists. Each subject performed an incremental exercise during which electromyographic activity of eight lower limb muscles and respiratory variables were recorded. After a 3-h recovery period, transverse relaxation times (T2) were measured before and just after a standardized constant-load maximal exercise in order to quantify exercise-related T2 changes. The global EMG activity illustrated by the root mean square clearly showed a large inter-individual difference during the incremental exercise regardless of the investigated muscle (variation coefficient up to 81%). In addition, for most of the muscles investigated, the constant-load exercise induced T2 increases, which varied noticeably among the subjects. This high level of variation in the recruitment of lower limb muscles in professional cyclists during both incremental and constant-load exercises is surprising given the homogeneity related to maximal oxygen consumption and training volume. The high degree of expertise of these professional cyclists was not linked to the production of a common pattern of pedaling and our results provide an additional evidence that the nervous system has multiple ways of accomplishing a given motor task, as has been suggested previously by neural control theorists and experimentalists.

  15. Electrocardiography based prediction of hypertrophy pattern and fibrosis amount in hypertrophic cardiomyopathy: comparative study with cardiac magnetic resonance imaging.

    PubMed

    Park, Chul Hwan; Chung, Hyemoon; Kim, Yoonjung; Kim, Jong-Youn; Min, Pil-Ki; Lee, Kyung-A; Yoon, Young Won; Kim, Tae Hoon; Lee, Byoung Kwon; Hong, Bum-Kee; Rim, Se-Joong; Kwon, Hyuck Moon; Choi, Eui-Young

    2018-05-04

    Although, cardiac magnetic resonance imaging (CMR) is a gold standard for risk stratification of hypertrophic cardiomyopathy (HCM), is limited in some situations. We sought to evaluate the predictive power of quantitative electrocardiography in assessing hypertrophy pattern and fibrosis in HCM. Eighty-eight patients with HCM were studied. Voltage of R-S-T waves, number of fragmented QRS (fQRS) complexes, and T wave morphology were measured by 12-lead electrocardiography. Sixteen segmental thickness, late gadolinium enhancement (LGE), native T1, extracellular volume fraction (ECV), and T2, left ventricular (LV) mass and %LGE were measured by CMR. Patterns of LV hypertrophy were classified as pure apical, mixed, or asymmetrical septal hypertrophy. Positive and negative predictive values of biphasic T wave for pure apical type were 70.4 and 63.9%, and the predictive values of precordial negative T wave sums [Formula: see text] 12.5 mm were 69.2 and 79.6%. Precordial S waves, especially Cornell voltage index, were significantly correlated to LV mass index and maximal thickness (p [Formula: see text]0.001). The number of fQRS leads was significantly correlated to %LGE, average ECV, and T2 (all p [Formula: see text]0.001). More than one lead with fQRS could predict [Formula: see text]5% of LGE mass with 58% sensitivity and 63% specificity (p = 0.049, area under the curve = 0.627). However, degree of correlation between maximal thickness and precordial S was poor in cases with fQRS more two leads. T wave morphology and precordial S helps discriminate hypertrophy pattern and maximal hypertrophy, however, in cases with more than two leads of concomitant fQRS, CMR defines fibrosis amount and hypertrophy more accurately.

  16. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study

    PubMed Central

    van Veluw, Susanne J.; Charidimou, Andreas; van der Kouwe, Andre J.; Lauer, Arne; Reijmer, Yael D.; Costantino, Isabel; Gurol, M. Edip; Biessels, Geert Jan; Frosch, Matthew P.; Viswanathan, Anand; Greenberg, Steven M.

    2016-01-01

    Cerebral amyloid angiopathy is a common neuropathological finding in the ageing human brain, associated with cognitive impairment. Neuroimaging markers of severe cerebral amyloid angiopathy are cortical microbleeds and microinfarcts. These parenchymal brain lesions are considered key contributors to cognitive impairment. Therefore, they are important targets for therapeutic strategies and may serve as surrogate neuroimaging markers in clinical trials. We aimed to gain more insight into the pathological basis of magnetic resonance imaging-defined microbleeds and microinfarcts in cerebral amyloid angiopathy, and to explore the pathological burden that remains undetected, by using high and ultra-high resolution ex vivo magnetic resonance imaging, as well as detailed histological sampling. Brain samples from five cases (mean age 85 ± 6 years) with pathology-proven cerebral amyloid angiopathy and multiple microbleeds on in vivo clinical magnetic resonance imaging were subjected to high-resolution ex vivo 7 T magnetic resonance imaging. On the obtained high-resolution (200 μm isotropic voxels) ex vivo magnetic resonance images, 171 microbleeds were detected compared to 66 microbleeds on the corresponding in vivo magnetic resonance images. Of 13 sampled microbleeds that were matched on histology, five proved to be acute and eight old microhaemorrhages. The iron-positive old microhaemorrhages appeared approximately four times larger on magnetic resonance imaging compared to their size on histology. In addition, 48 microinfarcts were observed on ex vivo magnetic resonance imaging in three out of five cases (two cases exhibited no microinfarcts). None of them were visible on in vivo 1.5 T magnetic resonance imaging after a retrospective analysis. Of nine sampled microinfarcts that were matched on histology, five were confirmed as acute and four as old microinfarcts. Finally, we explored the proportion of microhaemorrhage and microinfarct burden that is beyond the detection limits of ex vivo magnetic resonance imaging, by scanning a smaller sample at ultra-high resolution, followed by serial sectioning. At ultra-high resolution (75 μm isotropic voxels) magnetic resonance imaging we observed an additional 48 microbleeds (compared to high resolution), which proved to correspond to vasculopathic changes (i.e. morphological changes to the small vessels) instead of frank haemorrhages on histology. After assessing the serial sections of this particular sample, no additional haemorrhages were observed that were missed on magnetic resonance imaging. In contrast, nine microinfarcts were found in these sections, of which six were only retrospectively visible at ultra-high resolution. In conclusion, these findings suggest that microbleeds on in vivo magnetic resonance imaging are specific for microhaemorrhages in cerebral amyloid angiopathy, and that increasing the resolution of magnetic resonance images results in the detection of more ‘non-haemorrhagic’ pathology. In contrast, the vast majority of microinfarcts currently remain under the detection limits of clinical in vivo magnetic resonance imaging. PMID:27645801

  17. Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: current state of the art and novel approaches.

    PubMed

    Postal, M; Lapa, A Tamires; Reis, F; Rittner, L; Appenzeller, S

    2017-04-01

    Systemic lupus erythematosus is a chronic, inflammatory, immune-mediated disease affecting 0.1% of the general population. Neuropsychiatric manifestations in systemic lupus erythematosus have been more frequently recognized and reported in recent years, occurring in up to 75% of patients during the disease course. Magnetic resonance imaging is known to be a useful tool for the detection of structural brain abnormalities in neuropsychiatric systemic lupus erythematosus patients because of the excellent soft-tissue contrast observed with MRI and the ability to acquire multiplanar images. In addition to conventional magnetic resonance imaging techniques to evaluate the presence of atrophy and white matter lesions, several different magnetic resonance imaging techniques have been used to identify microstructural or functional abnormalities. This review will highlight different magnetic resonance imaging techniques, including the advanced magnetic resonance imaging methods used to determine central nervous system involvement in systemic lupus erythematosus.

  18. T1-weighted dynamic contrast-enhanced brain magnetic resonance imaging: A preliminary study with low infusion rate in pediatric patients.

    PubMed

    Rochetams, Bruno-Bernard; Marechal, Bénédicte; Cottier, Jean-Philippe; Gaillot, Kathleen; Sembely-Taveau, Catherine; Sirinelli, Dominique; Morel, Baptiste

    2017-10-01

    Background The aim of this preliminary study is to evaluate the results of T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in pediatric patients at 1.5T, with a low peripheral intravenous gadoteric acid injection rate of 1 ml/s. Materials and methods Children with neurological symptoms were examined prospectively with conventional MRI and T1-weighted DCE MRI. An magnetic resonance perfusion analysis method was used to obtain time-concentration curves (persistent pattern, type-I; plateau pattern, type-II; washout pattern, type-III) and to calculate pharmacokinetic parameters. A total of two radiologists manually defined regions of interest (ROIs) in the part of the lesion exhibiting the greatest contrast enhancement and in the surrounding normal or contralateral tissue. Lesion/surrounding tissue or contralateral tissue pharmacokinetic parameter ratios were calculated. Tumors were categorized by grade (I-IV) using the World Health Organization (WHO) Grade. Mann-Whitney testing and receiver-operating characteristic (ROC) curves were performed. Results A total of nine boys and nine girls (mean age 10.5 years) were included. Lesions consisted of 10 brain tumors, 3 inflammatory lesions, 3 arteriovenous malformations and 2 strokes. We obtained analyzable concentration-time curves for all patients (6 type-I, 9 type-II, 3 type-III). K trans between tumor tissue and surrounding or contralateral tissue was significantly different ( p = 0.034). K trans ratios were significantly different between grade I tumors and grade IV tumors ( p = 0.027) and a K trans ratio value superior to 0.63 appeared to be discriminant to determine a grade IV of malignancy. Conclusions Our results confirm the feasibility of pediatric T1-weighted DCE MRI at 1.5T with a low injection rate, which could be of great value in differentiating brain tumor grades.

  19. Correlation between Clinical Features and Magnetic Resonance Imaging Findings in Lumbar Disc Prolapse.

    PubMed

    Thapa, S S; Lakhey, R B; Sharma, P; Pokhrel, R K

    2016-05-01

    Magnetic resonance imaging is routinely done for diagnosis of lumbar disc prolapse. Many abnormalities of disc are observed even in asymptomatic patient.This study was conducted tocorrelate these abnormalities observed on Magnetic resonance imaging and clinical features of lumbar disc prolapse. A This prospective analytical study includes 57 cases of lumbar disc prolapse presenting to Department of Orthopedics, Tribhuvan University Teaching Hospital from March 2011 to August 2012. All patientshad Magnetic resonance imaging of lumbar spine and the findings regarding type, level and position of lumbar disc prolapse, any neural canal or foraminal compromise was recorded. These imaging findings were then correlated with clinical signs and symptoms. Chi-square test was used to find out p-value for correlation between clinical features and Magnetic resonance imaging findings using SPSS 17.0. This study included 57 patients, with mean age 36.8 years. Of them 41(71.9%) patients had radicular leg pain along specific dermatome. Magnetic resonance imaging showed 104 lumbar disc prolapselevel. Disc prolapse at L4-L5 and L5-S1 level constituted 85.5%.Magnetic resonance imaging findings of neural foramina compromise and nerve root compression were fairly correlated withclinical findings of radicular pain and neurological deficit. Clinical features and Magnetic resonance imaging findings of lumbar discprolasehad faircorrelation, but all imaging abnormalities do not have a clinical significance.

  20. Fast and robust multimodal image registration using a local derivative pattern.

    PubMed

    Jiang, Dongsheng; Shi, Yonghong; Chen, Xinrong; Wang, Manning; Song, Zhijian

    2017-02-01

    Deformable multimodal image registration, which can benefit radiotherapy and image guided surgery by providing complementary information, remains a challenging task in the medical image analysis field due to the difficulty of defining a proper similarity measure. This article presents a novel, robust and fast binary descriptor, the discriminative local derivative pattern (dLDP), which is able to encode images of different modalities into similar image representations. dLDP calculates a binary string for each voxel according to the pattern of intensity derivatives in its neighborhood. The descriptor similarity is evaluated using the Hamming distance, which can be efficiently computed, instead of conventional L1 or L2 norms. For the first time, we validated the effectiveness and feasibility of the local derivative pattern for multimodal deformable image registration with several multi-modal registration applications. dLDP was compared with three state-of-the-art methods in artificial image and clinical settings. In the experiments of deformable registration between different magnetic resonance imaging (MRI) modalities from BrainWeb, between computed tomography and MRI images from patient data, and between MRI and ultrasound images from BITE database, we show our method outperforms localized mutual information and entropy images in terms of both accuracy and time efficiency. We have further validated dLDP for the deformable registration of preoperative MRI and three-dimensional intraoperative ultrasound images. Our results indicate that dLDP reduces the average mean target registration error from 4.12 mm to 2.30 mm. This accuracy is statistically equivalent to the accuracy of the state-of-the-art methods in the study; however, in terms of computational complexity, our method significantly outperforms other methods and is even comparable to the sum of the absolute difference. The results reveal that dLDP can achieve superior performance regarding both accuracy and time efficiency in general multimodal image registration. In addition, dLDP also indicates the potential for clinical ultrasound guided intervention. © 2016 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...

  2. Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging

    PubMed Central

    Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun

    2017-01-01

    Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542

  3. Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.

    PubMed

    Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun

    2017-01-01

    Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.

  4. Cardiac magnetic resonance imaging has limited additional yield in cryptogenic stroke evaluation after transesophageal echocardiography.

    PubMed

    Liberman, Ava L; Kalani, Rizwan E; Aw-Zoretic, Jessie; Sondag, Matthew; Daruwalla, Vistasp J; Mitter, Sumeet S; Bernstein, Richard; Collins, Jeremy D; Prabhakaran, Shyam

    2017-12-01

    Background The use of cardiac magnetic resonance imaging is increasing, but its role in the diagnostic work-up following ischemic stroke has received limited study. We aimed to explore the added yield of cardiac magnetic resonance imaging to identify cardio-aortic sources not detected by transesophageal echocardiography among patients with cryptogenic stroke. Methods A retrospective single-center cohort study was performed from 01 January 2009 to 01 March 2013. Consecutive patients who had both a stroke protocol cardiac magnetic resonance imaging and a transesophageal echocardiography preformed during a single hospitalization were included. All cardiac magnetic resonance imaging studies underwent independent, blinded review by two investigators. We applied the causative classification system for ischemic stroke to all patients, first blinded to cardiac magnetic resonance imaging results; we then reapplied the causative classification system using cardiac magnetic resonance imaging. Standard statistical tests to evaluate stroke subtype reclassification rates were used. Results Ninety-three patients were included in the final analysis; 68.8% were classified as cryptogenic stroke after initial diagnostic evaluation. Among patients with cryptogenic stroke, five (7.8%) were reclassified due to cardiac magnetic resonance imaging findings: one was reclassified as "cardio-aortic embolism evident" due to the presence of a patent foramen ovale and focal cardiac infarct and four were reclassified as "cardio-aortic embolism possible" due to mitral valve thickening (n = 1) or hypertensive cardiomyopathy (n = 3). Overall, findings on cardiac magnetic resonance imaging reduced the percentage of patients with cryptogenic stroke by slightly more than 1%. Conclusion Our stroke subtype reclassification rate after the addition of cardiac magnetic resonance imaging results to a diagnostic work-up which includes transesophageal echocardiography was very low. Prospective studies evaluating the role of cardiac magnetic resonance imaging and transesophageal echocardiography among patients with cryptogenic stroke should be considered.

  5. Consensus Recommendations of the Multiple Sclerosis Study Group and Portuguese Neuroradiological Society for the Use of the Magnetic Resonance Imaging in Multiple Sclerosis in Clinical Practice: Part 1.

    PubMed

    Abreu, Pedro; Pedrosa, Rui; Sá, Maria José; Cerqueira, João; Sousa, Lívia; Da Silva, Ana Martins; Pinheiro, Joaquim; De Sá, João; Batista, Sónia; Simões, Rita Moiron; Pereira, Daniela Jardim; Vilela, Pedro; Vale, José

    2018-05-30

    Magnetic resonance imaging is established as a recognizable tool in the diagnosis and monitoring of multiple sclerosis patients. In the present, among multiple sclerosis centers, there are different magnetic resonance imaging sequences and protocols used to study multiple sclerosis that may hamper the optimal use of magnetic resonance imaging in multiple sclerosis. In this context, the Group of Studies of Multiple Sclerosis and the Portuguese Society of Neuroradiology, after a joint discussion, appointed a committee of experts to create recommendations adapted to the national reality on the use of magnetic resonance imaging in multiple sclerosis. The purpose of this document is to publish the first Portuguese consensus recommendations on the use of magnetic resonance imaging in multiple sclerosis in clinical practice. The Group of Studies of Multiple Sclerosis and the Portuguese Society of Neuroradiology, after discussion of the topic in national meetings and after a working group meeting held in Figueira da Foz on May 2017, have appointed a committee of experts that have developed by consensus several standard protocols on the use of magnetic resonance imaging in the diagnosis and follow-up of multiple sclerosis. The document obtained was based on the best scientific evidence and expert opinion. Subsequently, the majority of Portuguese multiple sclerosis consultants and departments of neuroradiology scrutinized and reviewed the consensus paper; comments and suggestions were considered. Technical magnetic resonance imaging protocols regarding diagnostic, monitoring and the recommended information to be included in the magnetic resonance imaging report will be published in a separate paper. We provide some practical guidelines to promote standardized strategies to be applied in the clinical practice setting of Portuguese healthcare professionals regarding the use of magnetic resonance imaging in multiple sclerosis. We hope that these first Portuguese magnetic resonance imaging guidelines, based in the best available clinical evidence and practices, will serve to optimize multiple sclerosis management and improve multiple sclerosis patient care across Portugal.

  6. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  7. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  8. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  9. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? What ...

  10. Radiological features of primitive neuroectodermal tumors in intra-abdominal and retroperitoneal regions: A series of 18 cases

    PubMed Central

    Zhang, Youming; Xiao, Desheng; Yin, Hongling; Long, Xueying; Li, Li; Zai, Hongyan; Chen, Minfeng; Li, Wenzheng; Sun, Lunquan

    2017-01-01

    Objectives To characterize the imaging and clinicopathological features of primitive neuroectodermal tumors (PNETs) arising in intra-abdominal and retroperitoneal regions. Methods Eighteen patients with histopathologically proven intra-abdominal and retroperitoneal PNET were enrolled; computed tomography was performed for all cases, and magnetic resonance imaging was performed for a single case. Typical computed tomography and magnetic resonance imaging findings, including morphology, texture and enhancement features, as well as clinicopathological characteristics and prognosis data were retrospectively analyzed. Results Of eighteen PNET patients, fifteen were male and three were female, with a median age of 36 years (range, 2–65 years). The onset of symptoms was most often nonspecific and insidious. The mean tumor diameter was 7.2 cm (range, 3.0–12.1 cm), with necrosis in fifteen cases, cystic changes in eight, partition structure in five, calcification in five, hemorrhage in two, and mural nodules in one. Contrast enhanced computed tomography showed multiple tiny feeding arteries within the masses in six cases, resulting in a crab-like appearance, and mild ring enhancement pattern in five cases. Eleven cases showed surrounding invasion and metastasis. Of the eighteen PNET cases, nine cases showed smooth, well-defined margins, and nine cases had irregular, ill-defined margins. A median survival was 10.0±1.6 months. However, chemotherapy had efficacy on patients even those with advanced disease. Conclusions Primary intra-abdominal and retroperitoneal PNETs are rare, and imaging features documented here may help the diagnosis of this severe disease. Notably, two signs present in retroperitoneal PNET tumors, including a mild ring enhancement pattern and a crab-like appearance of the tiny feeding arteries, may have the potential to help us improve the ability to make a relatively reliable diagnosis. PMID:28319177

  11. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms

    PubMed Central

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-01-01

    AIM: To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). METHODS: The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. RESULTS: Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. CONCLUSION: Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases. PMID:26167082

  12. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms.

    PubMed

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-07-07

    To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases.

  13. Thermographic image analysis as a pre-screening tool for the detection of canine bone cancer

    NASA Astrophysics Data System (ADS)

    Subedi, Samrat; Umbaugh, Scott E.; Fu, Jiyuan; Marino, Dominic J.; Loughin, Catherine A.; Sackman, Joseph

    2014-09-01

    Canine bone cancer is a common type of cancer that grows fast and may be fatal. It usually appears in the limbs which is called "appendicular bone cancer." Diagnostic imaging methods such as X-rays, computed tomography (CT scan), and magnetic resonance imaging (MRI) are more common methods in bone cancer detection than invasive physical examination such as biopsy. These imaging methods have some disadvantages; including high expense, high dose of radiation, and keeping the patient (canine) motionless during the imaging procedures. This project study identifies the possibility of using thermographic images as a pre-screening tool for diagnosis of bone cancer in dogs. Experiments were performed with thermographic images from 40 dogs exhibiting the disease bone cancer. Experiments were performed with color normalization using temperature data provided by the Long Island Veterinary Specialists. The images were first divided into four groups according to body parts (Elbow/Knee, Full Limb, Shoulder/Hip and Wrist). Each of the groups was then further divided into three sub-groups according to views (Anterior, Lateral and Posterior). Thermographic pattern of normal and abnormal dogs were analyzed using feature extraction and pattern classification tools. Texture features, spectral feature and histogram features were extracted from the thermograms and were used for pattern classification. The best classification success rate in canine bone cancer detection is 90% with sensitivity of 100% and specificity of 80% produced by anterior view of full-limb region with nearest neighbor classification method and normRGB-lum color normalization method. Our results show that it is possible to use thermographic imaging as a pre-screening tool for detection of canine bone cancer.

  14. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  15. A model of the transverse modes of stable and unstable porro-prism resonators using symmetry considerations

    NASA Astrophysics Data System (ADS)

    Burger, Liesl; Forbes, Andrew

    2007-09-01

    A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the "petal" mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest-order modes of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented.

  16. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-07-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  17. Image Guided Focal Therapy for Magnetic Resonance Imaging Visible Prostate Cancer: Defining a 3-Dimensional Treatment Margin Based on Magnetic Resonance Imaging Histology Co-Registration Analysis.

    PubMed

    Le Nobin, Julien; Rosenkrantz, Andrew B; Villers, Arnauld; Orczyk, Clément; Deng, Fang-Ming; Melamed, Jonathan; Mikheev, Artem; Rusinek, Henry; Taneja, Samir S

    2015-08-01

    We compared prostate tumor boundaries on magnetic resonance imaging and radical prostatectomy histological assessment using detailed software assisted co-registration to define an optimal treatment margin for achieving complete tumor destruction during image guided focal ablation. Included in study were 33 patients who underwent 3 Tesla magnetic resonance imaging before radical prostatectomy. A radiologist traced lesion borders on magnetic resonance imaging and assigned a suspicion score of 2 to 5. Three-dimensional reconstructions were created from high resolution digitalized slides of radical prostatectomy specimens and co-registered to imaging using advanced software. Tumors were compared between histology and imaging by the Hausdorff distance and stratified by the magnetic resonance imaging suspicion score, Gleason score and lesion diameter. Cylindrical volume estimates of treatment effects were used to define the optimal treatment margin. Three-dimensional software based registration with magnetic resonance imaging was done in 46 histologically confirmed cancers. Imaging underestimated tumor size with a maximal discrepancy between imaging and histological boundaries for a given tumor of an average ± SD of 1.99 ± 3.1 mm, representing 18.5% of the diameter on imaging. Boundary underestimation was larger for lesions with an imaging suspicion score 4 or greater (mean 3.49 ± 2.1 mm, p <0.001) and a Gleason score of 7 or greater (mean 2.48 ± 2.8 mm, p = 0.035). A simulated cylindrical treatment volume based on the imaging boundary missed an average 14.8% of tumor volume compared to that based on the histological boundary. A simulated treatment volume based on a 9 mm treatment margin achieved complete histological tumor destruction in 100% of patients. Magnetic resonance imaging underestimates histologically determined tumor boundaries, especially for lesions with a high imaging suspicion score and a high Gleason score. A 9 mm treatment margin around a lesion visible on magnetic resonance imaging would consistently ensure treatment of the entire histological tumor volume during focal ablative therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Use of radiography, computed tomography and magnetic resonance imaging for evaluation of navicular syndrome in the horse.

    PubMed

    Widmer, W R; Buckwalter, K A; Fessler, J F; Hill, M A; VanSickle, D C; Ivancevich, S

    2000-01-01

    Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.

  19. Magnetic resonance imaging-directed transperineal limited-mapping prostatic biopsies to diagnose prostate cancer: a Scottish experience.

    PubMed

    Mukherjee, Ankur; Morton, Simon; Fraser, Sioban; Salmond, Jonathan; Baxter, Grant; Leung, Hing Y

    2014-11-01

    Transperineal prostatic biopsy is firmly established as an important tool in the diagnosis of prostate cancer. The benefit of additional imaging (magnetic resonance imaging) to target biopsy remains to be fully addressed. Using a cohort of consecutive patients undergoing transperineal template mapping biopsies, we studied positive biopsies in the context of magnetic resonance imaging findings and examined the accuracy of magnetic resonance imaging in predicting the location of transperineal template mapping biopsies-detected prostate cancer. Forty-four patients (mean age: 65 years, range 53-78) underwent transperineal template mapping biopsies. Thirty-four patients had 1-2 and 10 patients had ≥3 previous transrectal ultrasound scan-guided biopsies. The mean prostate-specific antigen was 15 ng/mL (range 2.5-79 ng/mL). High-grade prostatic intraepithelial neoplasia was found in 12 (27%) patients and prostate cancer with Gleason <7, 7 and >7 in 13, 10 and 8 patients, respectively. Suspicious lesions on magnetic resonance imaging scans were scored from 1 to 5. In 28 patients, magnetic resonance imaging detected lesions with score ≥3. Magnetic resonance imaging correctly localised transperineal template mapping biopsies-detected prostate cancer in a hemi-gland approach, particularly in a right to left manner (79% positive prediction rate), but not in a quadrant approach (33% positive prediction rate). Our findings support the notion of magnetic resonance imaging-based selection of patients for transperineal template mapping biopsies and that lesions revealed by magnetic resonance imaging are likely useful for targeted biopsies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Sedation of Pediatric Patients in Magnetic Resonance Imaging

    DTIC Science & Technology

    2000-01-03

    f-U. 7. SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING Alesia D. Ricks APPROVED: ll^fll JohnJ>. McDonough,-CRNA, Ed.D., Chair...any copyrighted material in the thesis entitled: " Sedation of Pediatric Patients in Magnetic Resonance Imaging" beyond brief excerpts is with the...arise from such copyright violations. IV f SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING By CAPT ALESIA D. RICKS, RN, BSN, NQUSAF

  1. Eight-channel transmit/receive body MRI coil at 3T.

    PubMed

    Vernickel, P; Röschmann, P; Findeklee, C; Lüdeke, K-M; Leussler, Ch; Overweg, J; Katscher, U; Grässlin, I; Schünemann, K

    2007-08-01

    Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.

  2. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    PubMed

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p < 0.0001) and 0.81 (p < 0.0001) for direct and reconstructed measurements, respectively. For magnetic resonance imaging, direct measures of tumour thickness (mean ± standard deviation, 18.2 ± 7.3 mm) did not significantly differ from the reconstructed measures (mean ± standard deviation, 17.9 ± 7.2 mm; r = 0.879). Moreover, 3 Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  3. The predictive value of magnetic resonance imaging of retinoblastoma for the likelihood of high-risk pathologic features.

    PubMed

    Hiasat, Jamila G; Saleh, Alaa; Al-Hussaini, Maysa; Al Nawaiseh, Ibrahim; Mehyar, Mustafa; Qandeel, Monther; Mohammad, Mona; Deebajah, Rasha; Sultan, Iyad; Jaradat, Imad; Mansour, Asem; Yousef, Yacoub A

    2018-06-01

    To evaluate the predictive value of magnetic resonance imaging in retinoblastoma for the likelihood of high-risk pathologic features. A retrospective study of 64 eyes enucleated from 60 retinoblastoma patients. Contrast-enhanced magnetic resonance imaging was performed before enucleation. Main outcome measures included demographics, laterality, accuracy, sensitivity, and specificity of magnetic resonance imaging in detecting high-risk pathologic features. Optic nerve invasion and choroidal invasion were seen microscopically in 34 (53%) and 28 (44%) eyes, respectively, while they were detected in magnetic resonance imaging in 22 (34%) and 15 (23%) eyes, respectively. The accuracy of magnetic resonance imaging in detecting prelaminar invasion was 77% (sensitivity 89%, specificity 98%), 56% for laminar invasion (sensitivity 27%, specificity 94%), 84% for postlaminar invasion (sensitivity 42%, specificity 98%), and 100% for optic cut edge invasion (sensitivity100%, specificity 100%). The accuracy of magnetic resonance imaging in detecting focal choroidal invasion was 48% (sensitivity 33%, specificity 97%), and 84% for massive choroidal invasion (sensitivity 53%, specificity 98%), and the accuracy in detecting extrascleral extension was 96% (sensitivity 67%, specificity 98%). Magnetic resonance imaging should not be the only method to stratify patients at high risk from those who are not, eventhough it can predict with high accuracy extensive postlaminar optic nerve invasion, massive choroidal invasion, and extrascleral tumor extension.

  4. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  5. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia.

    PubMed

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J; Liu, Hesheng

    2015-06-01

    Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates is yet to be unveiled. To quantify intrinsic hemispheric specialization at cortical and subcortical levels and to reveal potential disease effects in schizophrenia. Resting-state functional connectivity magnetic resonance imaging has been previously used to quantitatively measure hemispheric specialization in healthy individuals in a reliable manner. We quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy controls from November 28, 2007, through June 29, 2010, using resting-state functional magnetic resonance imaging. The caudate nucleus and cortical regions with connections to the caudate nucleus had markedly abnormal hemispheric specialization in schizophrenia. Compared with healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus (P < .001). Patients with schizophrenia also had a disruption of the interhemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74% (with a sensitivity of 68% and a specificity of 78%). These data suggest that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared with task-based functional magnetic resonance imaging measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language.

  6. Functional Magnetic Resonance Imaging and Spectroscopic Imaging of the Brain: Application of fMRI and fMRS to Reading Disabilities and Education.

    ERIC Educational Resources Information Center

    Richards, Todd L.

    2001-01-01

    This tutorial/review covers functional brain-imaging methods and results used to study language and reading disabilities. Although the emphasis is on magnetic resonance imaging and functional magnetic resonance spectroscopy, other imaging techniques are also discussed including positron emission tomography, electroencephalography,…

  7. EPR Imaging at a Few Megahertz Using SQUID Detectors

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use weaker applied magnetic fields: For example, for a resonance frequency of 1.4 MHz, one needs a magnetic flux density of 0.5 Gauss approximately the flux density of the natural magnetic field of the Earth.

  8. Breast Volume Measurement by Recycling the Data Obtained From 2 Routine Modalities, Mammography and Magnetic Resonance Imaging.

    PubMed

    Itsukage, Shizu; Sowa, Yoshihiro; Goto, Mariko; Taguchi, Tetsuya; Numajiri, Toshiaki

    2017-01-01

    Objective: Preoperative prediction of breast volume is important in the planning of breast reconstructive surgery. In this study, we prospectively estimated the accuracy of measurement of breast volume using data from 2 routine modalities, mammography and magnetic resonance imaging, by comparison with volumes of mastectomy specimens. Methods: The subjects were 22 patients (24 breasts) who were scheduled to undergo total mastectomy for breast cancer. Preoperatively, magnetic resonance imaging volume measurement was performed using a medical imaging system and the mammographic volume was calculated using a previously proposed formula. Volumes of mastectomy specimens were measured intraoperatively using a method based on Archimedes' principle and Newton's third law. Results: The average breast volumes measured on magnetic resonance imaging and mammography were 318.47 ± 199.4 mL and 325.26 ± 217.36 mL, respectively. The correlation coefficients with mastectomy specimen volumes were 0.982 for magnetic resonance imaging and 0.911 for mammography. Conclusions: Breast volume measurement using magnetic resonance imaging was highly accurate but requires data analysis software. In contrast, breast volume measurement with mammography requires only a simple formula and is sufficiently accurate, although the accuracy was lower than that obtained with magnetic resonance imaging. These results indicate that mammography could be an alternative modality for breast volume measurement as a substitute for magnetic resonance imaging.

  9. Breast Volume Measurement by Recycling the Data Obtained From 2 Routine Modalities, Mammography and Magnetic Resonance Imaging

    PubMed Central

    Itsukage, Shizu; Goto, Mariko; Taguchi, Tetsuya; Numajiri, Toshiaki

    2017-01-01

    Objective: Preoperative prediction of breast volume is important in the planning of breast reconstructive surgery. In this study, we prospectively estimated the accuracy of measurement of breast volume using data from 2 routine modalities, mammography and magnetic resonance imaging, by comparison with volumes of mastectomy specimens. Methods: The subjects were 22 patients (24 breasts) who were scheduled to undergo total mastectomy for breast cancer. Preoperatively, magnetic resonance imaging volume measurement was performed using a medical imaging system and the mammographic volume was calculated using a previously proposed formula. Volumes of mastectomy specimens were measured intraoperatively using a method based on Archimedes’ principle and Newton's third law. Results: The average breast volumes measured on magnetic resonance imaging and mammography were 318.47 ± 199.4 mL and 325.26 ± 217.36 mL, respectively. The correlation coefficients with mastectomy specimen volumes were 0.982 for magnetic resonance imaging and 0.911 for mammography. Conclusions: Breast volume measurement using magnetic resonance imaging was highly accurate but requires data analysis software. In contrast, breast volume measurement with mammography requires only a simple formula and is sufficiently accurate, although the accuracy was lower than that obtained with magnetic resonance imaging. These results indicate that mammography could be an alternative modality for breast volume measurement as a substitute for magnetic resonance imaging. PMID:29308107

  10. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

    PubMed Central

    Khan, Bilal; Chand, Pankaj; Alexandrakis, George

    2011-01-01

    Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826

  11. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining detailed ...

  12. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.

    PubMed

    Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé

    2012-10-01

    In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.

  13. Approaches to inspecting computed tomographic and magnetic resonance studies.

    PubMed

    Lamb, Christopher R; Dale, Vicki H M

    2013-01-01

    There is a need to better understand how to optimally inspect large image datasets. The aim of the present study was to complement experimental studies of visual perception by using an online questionnaire to collect opinions of practicing veterinary radiologists about the approaches they use when inspecting clinical computed X-ray tomography (CT) and/or magnetic resonance (MR) studies, and to test associations between radiologist's approaches and their training, experience, or caseload. Questionnaires were received from 90/454 (20%) American College of Veterinary Radiology (ACVR) Diplomates and 58/156 (37%) European College of Veterinary Diagnostic Imaging (ECVDI) Diplomates, providing 139 complete responses for CT studies and 116 for MR. Questionnaire responses differed for the following variables: specialty college, years since Board Certification, CT and MR caseload, and type of practice. ACVR Diplomates more frequently inspected multiple anatomic structures in CT and MR images before moving on to the next image, and ECVDI Diplomates more frequently inspected a specific anatomic structure through a series, then went back and checked another structure. A significant number of radiologists indicated that they initially ignore the history, adopt relatively rigid search patterns with emphasis on viewing images in a predetermined order with minimal deviation, and arrange series of images to facilitate comparisons between images, such as pre- and postcontrast images. Radiologists tended to adopt similar approaches for both CT and MR studies. Findings from this study could be used as foci for teaching novices how to approach large imaging studies, and provide guidance for case-based assessment of trainees. © 2013 Veterinary Radiology & Ultrasound.

  14. Current beliefs and practice patterns among urologists regarding prostate magnetic resonance imaging and magnetic resonance-targeted biopsy.

    PubMed

    Muthigi, Akhil; Sidana, Abhinav; George, Arvin K; Kongnyuy, Michael; Maruf, Mahir; Valayil, Subin; Wood, Bradford J; Pinto, Peter A

    2017-01-01

    Multiparametric magnetic resonance imaging (MRI) and magnetic resonance (MR) -targeted biopsy have a growing role in the screening and evaluation of prostate cancer. We aim to evaluate the current knowledge, attitude, and practice patterns of urologists regarding this new technique. An anonymous online questionnaire was designed to collect information on urologists' beliefs and use of prostate multiparametric MRI and MR-targeted biopsy. The survey was sent to members of the Society of Urologic Oncology, the Endourological Society, and European Association of Urology. Multivariate logistic regression analysis was performed to determine predictors for use of prostate MRI and MR-targeted biopsy. A total of 302 responses were received (Endourological Society: 175, European Association of Urology: 23, and Society of Urologic Oncology: 104). Most respondents (83.6%) believe MR-targeted biopsy to be moderately to extremely beneficial in the evaluation of prostate cancer. Overall, 85.7% of responders use prostate MRI in their practice, and 63.0% use MR-targeted biopsy. The 2 most common settings for use of MR-targeted biopsy include patients with history of prior negative biopsy result (96.3%) and monitoring patients on active surveillance (72.5%). In those who do not use MR-targeted biopsy, the principal reasons were lack of necessary infrastructure (64.1%) and prohibitive costs (48.1%). On multivariate logistic regression analysis, practice in an academic setting (1.86 [1.02-3.40], P = 0.043) and performing greater than 25 radical prostatectomies per year (2.32 [1.18-4.56], P = 0.015) remained independent predictors for using MR-targeted biopsy. Most respondents of our survey look favorably on use of prostate MRI and MR-targeted biopsy in clinical practice. Over time, reduction in fixed costs and easier access to equipment may lead to further dissemination of this novel and potentially transformative technology. Published by Elsevier Inc.

  15. [Possibilities of modern imaging technologies in early diagnosis of Alzheimer disease].

    PubMed

    Unschuld, Paul G

    2015-04-01

    Recent advances in neuroimaging technology and image analysis algorithms have significantly contributed to a better understanding of spatial and temporal aspects of brain change associated with Alzheimer Disease. The current review will demonstrate how functional (fMRI) and structural magnetic resonance imaging (MRI) techniques may be used to identify distinct patterns of brain change associated with disease progression and also increased risk for Alzheimer Disease. Moreover, Positron Emission Tomography (PET) based measures of glucosemetabolism (Fluorodeoxyglucose, FDG) and Amyloid-beta plaque density (11-C-Pittsburgh Compound B, PiB and 18-F) will be reviewed regarding their diagnostic value for assessing the individual degree of Alzheimer -pathology and thus complement the information provided by MRI and other clinical measures.

  16. Type a niemann-pick disease. Description of three cases with delayed myelination.

    PubMed

    D'Amico, A; Sibilio, M; Caranci, F; Bartiromo, F; Taurisano, R; Balivo, F; Melis, D; Parenti, G; Cirillo, S; Elefante, R; Brunetti, A

    2008-06-03

    We describe three patients with type A Niemann-Pick disease (NPD-A). NPD-A is an autosomal recessive neuronal storage disease classified among the sphingolipidoses, characterized by accumulation of sphingomyelin in various tissues and in the brain. Magnetic Resonance imaging (MRI) of our three patients showed a marked delay of myelination with frontal atrophy. Few descriptions of this MRI pattern of delayed myelination have been published to date.

  17. Dynamic Connectivity Patterns in Conscious and Unconscious Brain

    PubMed Central

    Ma, Yuncong; Hamilton, Christina

    2017-01-01

    Abstract Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level. PMID:27846731

  18. Clinical Benefit of 3 Tesla Magnetic Resonance Imaging Rescanning in Patients With Focal Epilepsy and Negative 1.5 Tesla Magnetic Resonance Imaging.

    PubMed

    Ladino, Lady D; Balaguera, Pedro; Rascovsky, Simon; Delgado, Jorge; Llano, Juan; Hernández-Ronquillo, Lizbeth; Gómez-Arias, Bety; Téllez-Zenteno, José F

    2016-01-01

    Magnetic resonance imaging is an essential tool in the pre-surgical evaluation of patients with drug-resistant epilepsy. Our aim was to assess the value of re-imaging patients with focal drug-resistant epilepsy. Thirty patients with negative or non-conclusive 1.5 Tesla magnetic resonance imaging were rescanned with 1.5T and 3T. All of them had previous 1.5 scans with no seizure protocol in a non-specialized center. Two neuroradiologists who were blinded to prior imaging results randomly reviewed the magnetic resonance images. Kappa score was used to assess the reliability. Mean age of patients was 30 (SD ± 11) years. The intra-observer agreement for the first radiologist was 0.74 for 1.5T and 0.71 for 3T. In the second radiologist it was 0.82 and 0.66, respectively. Three lesions (10%) were identified by general radiologists in non-specialized centers using a 1.5T standard protocol. In our center a consensus between two neuroradiologists using epilepsy protocol identified seven lesions (23%) using 1.5T and 10 (33%) using 3T (p < 0.01). In 28% of patients this additional information resulted in a change in clinical management. 3T magnetic resonance imaging rescanning improves the diagnostic yield in patients with focal epilepsy and previous negative 1.5T magnetic resonance imaging. Use of 3T magnetic resonance imaging, epilepsy protocols, and interpretation by experienced neuroradiologists is highly recommended.

  19. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    PubMed

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  20. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging.

    PubMed

    Osuga, T; Obata, T; Ikehira, H

    2004-04-01

    A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.

  1. Multiparametric magnetic resonance imaging and prostate cancer: what's new?

    PubMed

    Catalá, V; Vilanova, J C; Gaya, J M; Algaba, F; Martí, T

    Prostatic multi-parametric magnetic resonance imaging (MP-MRI) has recently had a wide development becoming a key tool in the diagnostic and therapeutic decisions in prostate cancer (Pca). The fast development both in technology and in reading (PIRADS V2) requires a continuous updating of knowledge within this area. The aim of this article is to present an updated revision of technical aspects, reading patterns and prostatic MP-MRI in Pca, with a multidisciplinary approach. Currently guidelines establish the use of the MP-MRI when there is a high PSA and a negative prostatic biopsy; tumor staging; evaluation in candidates to active surveillance; focal treatments plans and tumoral recurrence evaluation. Although it is used in other indications in some centers, like its use in patients suspicious of Pca but with no previous biopsy, there is still the need of a cost/benefit assessment for its use to be wider. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  3. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  4. NASA Tech Briefs, March 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.

  5. The role of magnetic resonance imaging techniques in evaluation and management of the idiopathic inflammatory myopathies.

    PubMed

    Day, Jessica; Patel, Sandy; Limaye, Vidya

    2017-04-01

    Magnetic resonance imaging (MRI) is an important tool in the evaluation of neuromuscular disorders. MRI accurately demonstrates muscle oedema, atrophy, subcutaneous pathology and fatty infiltration and also highlights the distribution of muscle involvement. This review examines the role of MRI in evaluation of the idiopathic inflammatory myopathies (IIMs), a heterogeneous group of autoimmune conditions characterised by muscle inflammation and a variety of extra-muscular manifestations. MRI has a clear role in aiding diagnosis of these conditions, guiding muscle biopsy, differentiating subtypes of IIM using a pattern-based approach, and monitoring disease activity in a longitudinal fashion. Whole body MRI is an emerging technique that offers several advantages over regional MRI, but is not currently widely available. We will also consider newer MRI techniques which provide detailed information regarding the metabolism, function and structure of muscle, although their use is restricted to research purposes at present. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Different Plasticity Patterns of Language Function in Children With Perinatal and Childhood Stroke

    PubMed Central

    Tomberg, Tiiu; Kepler, Joosep; Laugesaar, Rael; Kaldoja, Mari-Liis; Kepler, Kalle; Kolk, Anneli

    2014-01-01

    Plasticity of language function after brain damage can depend on maturation of the brain. Children with left-hemisphere perinatal (n = 7) or childhood stroke (n = 5) and 12 controls were investigated using functional magnetic resonance imaging. The verb generation and the sentence comprehension tasks were employed to activate the expressive and receptive language areas, respectively. Weighted laterality indices were calculated and correlated with results assessed by neuropsychological test battery. Compared to controls, children with childhood stroke showed significantly lower mean scores for the expressive (P < .05) and receptive (P = .05) language tests. On functional magnetic resonance imaging they showed left-side cortical activation, as did controls. Perinatal stroke patients showed atypical right-side or bilateral language lateralization during both tasks. Negative correlation for stroke patients was found between scores for expressive language tests and laterality index during the verb generation task. (Re)organization of language function differs in children with perinatal and childhood stroke and correlates with neurocognitive performance. PMID:23748202

  7. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  8. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  9. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts.

    PubMed

    Pandey, Shilpa; Hakky, Michael; Kwak, Ellie; Jara, Hernan; Geyer, Carl A; Erbay, Sami H

    2013-05-01

    Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluate the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls. ©RSNA, 2013.

  10. Super-contrast photoacoustic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin

    2018-02-01

    In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.

  11. Right ventricular volumes assessed by echocardiographic three-dimensional knowledge-based reconstruction compared with magnetic resonance imaging in a clinical setting.

    PubMed

    Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik

    2014-01-01

    A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.

  12. Brain MR image segmentation using NAMS in pseudo-color.

    PubMed

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  13. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    PubMed

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  14. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.

  15. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    PubMed Central

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-01-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629

  16. Characterization of the biliary tract by virtual ultrasonography constructed by gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging.

    PubMed

    Koizumi, Yohei; Hirooka, Masashi; Ochi, Hironori; Tokumoto, Yoshio; Takechi, Megumi; Hiraoka, Atsushi; Ikeda, Yoshio; Kumagi, Teru; Matsuura, Bunzo; Abe, Masanori; Hiasa, Yoichi

    2015-04-01

    This study aimed at prospectively evaluating bile duct anatomy on ultrasonography and evaluating the safety and utility of radiofrequency ablation (RFA) assisted by virtual ultrasonography from gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). The institutional review board approved this study, and patients provided written informed consent prior to entry into the study. Bile duct anatomy was assessed in 201 patients who underwent Gd-EOB-DTPA-enhanced MRI for the evaluation of hepatic tumor. Eighty-one of these patients subsequently underwent RFA assisted by ultrasound imaging. In 23 patients, the tumor was located within 5 mm of the central bile duct, as demonstrated by MRI. Virtual ultrasonography constructed by Gd-EOB-enhanced MRI was able to visualize the common bile duct, left hepatic duct, and right hepatic duct in 96.5, 94.0, and 89.6 % of cases, respectively. The target hepatic tumor nodule and biliary duct could be detected with virtual ultrasonography in all patients, and no severe complications occurred. The running pattern of the bile ducts could be recognized on conventional ultrasound by referencing virtual ultrasonography constructed by Gd-EOB-DTPA-enhanced MRI. RFA assisted by this imaging strategy did not result in bile duct injury.

  17. Magnetic resonance imaging screening results compared with explantation results in poly implant prothèse silicone breast implants, recalled from the European market in 2010.

    PubMed

    Maijers, Maria C; Niessen, Francisus B; Veldhuizen, Jacob F H; Ritt, Marco J P F; Manoliu, Radu A

    2014-02-01

    In a prospective cohort study, the authors followed 112 women whose Poly Implant Prothèse silicone breast implants were recalled. Magnetic resonance imaging results and clinical consequences were previously published. The authors compared magnetic resonance imaging screening with explantation results to study the diagnostic value of magnetic resonance imaging in this unique unselected and nonbiased group. women with 224 proven Poly Implant Prothèse implants after a mean implantation time of 10 years were enrolled in 2011. All women underwent magnetic resonance imaging screening and were offered explantation. The explantation details of 107 women could be compared with magnetic resonance imaging results. Of 107 women, 29 (27 percent) had at least one ruptured implant at explantation, and 44 of 214 explanted implants (21 percent) were ruptured. The magnetic resonance imaging results correctly diagnosed 154 intact and 35 ruptured implants. Sensitivity and specificity were 80 percent and 91 percent, respectively. The positive predictive value was 69 percent, and the negative predictive value was 95 percent. The accuracy of magnetic resonance imaging is comparable to previously published data from other manufacturers of modern silicone implants but lower than that of some recent validation studies in selected symptomatic women. The authors believe that this study is representative of common daily practice as they followed normal day-to-day magnetic resonance imaging protocol without using multiple independent readers. The authors hope that this study will contribute to the ongoing discussion to screen asymptomatic women with modern silicone breast implants. Diagnostic, II.

  18. [Principles of PET].

    PubMed

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  19. Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition

    PubMed Central

    Koutsouleris, Nikolaos; Meisenzahl, Eva M.; Davatzikos, Christos; Bottlender, Ronald; Frodl, Thomas; Scheuerecker, Johanna; Schmitt, Gisela; Zetzsche, Thomas; Decker, Petra; Reiser, Maximilian; Möller, Hans-Jürgen; Gaser, Christian

    2014-01-01

    Context Identification of individuals at high risk of developing psychosis has relied on prodromal symptomatology. Recently, machine learning algorithms have been successfully used for magnetic resonance imaging–based diagnostic classification of neuropsychiatric patient populations. Objective To determine whether multivariate neuroanatomical pattern classification facilitates identification of individuals in different at-risk mental states (ARMS) of psychosis and enables the prediction of disease transition at the individual level. Design Multivariate neuroanatomical pattern classification was performed on the structural magnetic resonance imaging data of individuals in early or late ARMS vs healthy controls (HCs). The predictive power of the method was then evaluated by categorizing the baseline imaging data of individuals with transition to psychosis vs those without transition vs HCs after 4 years of clinical follow-up. Classification generalizability was estimated by cross-validation and by categorizing an independent cohort of 45 new HCs. Setting Departments of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany. Participants The first classification analysis included 20 early and 25 late at-risk individuals and 25 matched HCs. The second analysis consisted of 15 individuals with transition, 18 without transition, and 17 matched HCs. Main Outcome Measures Specificity, sensitivity, and accuracy of classification. Results The 3-group, cross-validated classification accuracies of the first analysis were 86% (HCs vs the rest), 91% (early at-risk individuals vs the rest), and 86% (late at-risk individuals vs the rest). The accuracies in the second analysis were 90% (HCs vs the rest), 88% (individuals with transition vs the rest), and 86% (individuals without transition vs the rest). Independent HCs were correctly classified in 96% (first analysis) and 93% (second analysis) of cases. Conclusions Different ARMSs and their clinical outcomes may be reliably identified on an individual basis by assessing patterns of whole-brain neuroanatomical abnormalities. These patterns may serve as valuable biomarkers for the clinician to guide early detection in the prodromal phase of psychosis. PMID:19581561

  20. Adenomyosis: from the sign to the diagnosis. Imaging, diagnostic pitfalls and differential diagnosis: a pictorial review.

    PubMed

    Valentini, A L; Speca, S; Gui, B; Soglia, G; Soglia, B G; Miccò, M; Bonomo, L

    2011-12-01

    Adenomyosis is a pathological gynaecological condition characterised by benign invasion of the endometrium into the myometrium. It is often misdiagnosed, or is not easily recognised, although it is responsible for disabling symptoms such as menorrhagia, abnormal uterine bleeding, dysmenorrhoea and infertility in premenopausal women. The aim of this pictorial review is to analyse the features of adenomyosis by illustrating the most usual and typical imaging patterns, along with the unusual appearances, seen in a vast array of gynaecological imaging modalities. The different findings of focal and diffuse adenomyosis along with the diagnostic limitations of ultrasound, hysterosalpingography and magnetic resonance imaging are described, as are the pitfalls and differential diagnosis with other pathological conditions that are often misdiagnosed as adenomyosis. The role of the different imaging modalities in planning appropriate treatment and their usefulness in monitoring therapy are also discussed.

  1. Beyond the Cuff: MR Imaging of Labroligamentous Injuries in the Athletic Shoulder.

    PubMed

    Roy, Elizabeth A; Cheyne, Ian; Andrews, Gordon T; Forster, Bruce B

    2016-02-01

    Shoulder disease is common in the athletic population and may arise as a consequence of a single traumatic episode or multiple repeated events. Associated labroligamentous injuries can result in substantial disability. Specific athletic and occupational activities result in predictable injury patterns. Imaging in general and magnetic resonance (MR) imaging, in particular, are vital in establishing the correct diagnosis and excluding common mimicking conditions, to ensure timely and appropriate management. In this review, the utility of MR imaging and MR arthrography will be explored in evaluation of shoulder disease, taking into account normal variants of the labroligamentous complex. Subsequently, broad categories of labral lesions and instability, external and internal impingement, as well as nerve entrapment syndromes, will be discussed, while emphasizing their imaging findings in the clinical context and illustrating key features. More recent concepts of internal impingement and secondary subacromial impingement will also be clarified. © RSNA, 2016.

  2. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells.

    PubMed

    Shroff, Geeta

    2017-02-01

    Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.

  3. Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV.

    PubMed

    Disbrow, E; Roberts, T; Krubitzer, L

    2000-02-28

    The human somatosensory cortex in the Sylvian fissure was examined using functional magnetic resonance imaging to describe the number and internal organization of cortical fields present. Somatic stimuli were applied to the lips, face, hand, trunk, and foot of 18 human subjects. Activity patterns were transposed onto three-dimensional magnetic resonance images of the brain so that the location of activity associated with the different stimuli could be related to specific regions of the cortex. There were several consistent findings. First, there were three regions of activity in the lateral sulcus associated with stimulation of the contralateral body. The most consistent locus of activation was on the upper bank of the lateral sulcus, continuing onto the operculum. The other two areas, one rostral and one caudal to this large central area, were smaller and were activated less consistently. Second, when activity patterns in the large central area resulting from stimulation of all body parts were considered, this region appeared to contain two fields that corresponded in location and somatotopic organization to the second somatosensory area (SII) and the parietal ventral area (PV). Finally, patterns of activation within SII and PV were somewhat variable across subjects. Repeated within-subject stimulus presentation indicated that differences across subjects were not due to inconsistent stimulus presentation. Comparisons with other mammals suggest that some features of organization are found only in primates. It is hypothesized that these features may be associated with manual dexterity and coordination of the hands, a characteristic generally restricted to the primate lineage.

  4. A Longitudinal Mapping Study on Cortical Plasticity of Peripheral Nerve Injury Treated by Direct Anastomosis and Electroacupuncture in Rats.

    PubMed

    Wu, Jia-Jia; Lu, Ye-Chen; Hua, Xu-Yun; Ma, Shu-Jie; Xu, Jian-Guang

    2018-06-01

    We used functional magnetic resonance imaging to provide a longitudinal description of cortical plasticity caused by electroacupuncture (EA) of sciatic nerve transection and direct anastomosis in rats. Sixteen rats in a sciatic nerve transection and direct anastomosis model were randomly divided into intervention and control groups. EA intervention in the position of ST-36, GB-30 was conducted continuously for 4 months in the intervention group. Functional magnetic resonance imaging and gait assessment were performed every month after intervention. The somatosensory area was more activated in the first 2 months and then deactivated in the rest 2 months when EA was applied. The pain-related areas had the same activation pattern as the somatosensory area. The limbic/paralimbic areas fluctuated more during the EA intervention, which was not constantly activated or deactivated as previous studies reported. We attributed such changes in somatosensory and pain-related areas to the gradual reduction of sensory afferentation. The alterations in limbic/paralimbic system might be associated with the confrontation between the upregulating effect of paresthesia or pain and the downregulating effect of EA intervention through the autonomic nerve system. The gait analysis showed significantly higher maximum contact mean intensity in the intervention group. The alterations in the brain brought about by the long-term therapeutic effect of EA could be described as a synchronized activation pattern in the somatosensory and pain-related areas and a fluctuating pattern in the limbic/paralimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. "Comet tail sign": A pitfall of post-gadolinium magnetic resonance imaging findings for metastatic brain tumors.

    PubMed

    Mitsuya, Koichi; Nakasu, Yoko; Narita, Yoshitaka; Nakasu, Satoshi; Ohno, Makoto; Miyakita, Yasuji; Abe, Masato; Ito, Ichiro; Hayashi, Nakamasa; Endo, Masahiro

    2016-05-01

    A highly enhanced cap attached to the surface of metastatic tumors in the brain parenchyma is occasionally encountered on magnetic resonance (MR) images. This atypical enhanced cap tends to occur in severe peritumoral edema and may produce the characteristic bulge of a metastatic mass lesion termed the "comet tail sign" (CTS). The purpose of this study was to demonstrate the features of the CTS using MR imaging and pathological findings, and to clarify its clinical relevance. We selected 21 consecutive cases of newly diagnosed metastases from MR imaging studies that demonstrated the CTS; all had diffuse peritumoral edema. The MR T2-weighted images showed similarly homogenous and high intensity signals in both the tail and peritumoral edema. Fourteen of the 21 patients underwent surgical resection of their tumors, and 12 tails were separately removed for pathological examination, no tumor cells which revealed. We speculate that the CTS does not contain neoplastic tissues but is observed as a result of the leakage of contrast medium from the tumor body into the interstitial space of the white matter. Although CTS is a peculiar and uncommon enhancement pattern, it has clinical significance in determining the extent of the margin for invasive local treatments, such as surgical resection or stereotactic radiotherapy; this is particularly true in and near the eloquent areas.

  6. Neuro-Magnetic Resonance Imaging in Hand, Foot, and Mouth Disease: Finding in 412 Patients and Prognostic Features.

    PubMed

    Lian, Zhou-Yang; Li, He-Hong; Zhang, Bin; Dong, Yu-Hao; Deng, Wu-Xu; Liu, Jing; Luo, Xiao-Ning; Huang, Biao; Liang, Chang-Hong; Zhang, Shui-Xing

    The aims of this study were to describe the neuroimaging findings in hand, foot, and mouth disease and determine those who may provide prognosis. Magnetic resonance imaging scans in 412 severe hand, foot, and mouth disease between 2009 and 2014 were retrospectively evaluated. The patients who had the neurological signs were followed for 6 months to 1 year. According to the good or poor prognosis, 2 groups were categorized. The incidence of lesions in different sites between the 2 groups was compared, and multivariate analysis was used to look for risk factors. The major sites of involvement for all patients with percentages were the medulla oblongata (16.1%), spinal anterior nerve roots (12.4%), thoracic segments (11.1%), brain or spinal meninges (8.3%), and so on. There were 347 patients (84.2%) with good prognosis and 65 (15.8%) with poor prognosis in the follow-up. There was a significantly higher rate of lesions involving the cerebral white substance, thalamus, medulla oblongata, pons, midbrain, and spinal cord in the group with poor prognosis. Multivariate analysis showed 2 independent risk factors associated with poor prognosis: lesions located in the medulla oblongata (P < 0.015) and spinal cord (P < 0.001) on magnetic resonance imaging; the latter was the most significant prognostic factor (odds ratio, 29.11; P < 0.001). We found that the distribution patterns for all patients mainly involved the medulla oblongata, spinal anterior nerve roots, thoracic segments, and brain or spinal meninges. Our findings suggested that patients with lesions located in the medulla oblongata and spinal cord may be closely monitored for early intervention and meticulous management. For children with the symptom of nervous system, they are strongly recommended for magnetic resonance examination.

  7. Assessing the multiscale architecture of muscular tissue with Q-space magnetic resonance imaging: Review.

    PubMed

    Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J

    2018-02-01

    Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue. © 2016 Wiley Periodicals, Inc.

  8. Integrated approach to ischemic heart disease. The one-stop shop.

    PubMed

    Kramer, C M

    1998-05-01

    Magnetic resonance imaging is unique in its variety of applications for imaging the cardiovascular system. A thorough assessment of myocardial structure, function, and perfusion; assessment of coronary artery anatomy and flow; and spectroscopic evaluation of cardiac energetics can be readily performed by magnetic resonance imaging. One key to the advancement of cardiac magnetic resonance imaging as a clinical tool in the evaluation, the so called one stop shop. Improvements in magnetic resonance hardware, software, and imaging speed now permit this integrated examination. Cardiac magnetic resonance is a powerful technique with the potential to replace or complement other commonly used techniques in the diagnostic armamentarium of physicians caring for patients with ischemic heart disease.

  9. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Improvement of 19F MR image uniformity in a mouse model of cellular therapy using inductive coupling.

    PubMed

    Park, Bu S; Ma, Ge; Koch, William T; Rajan, Sunder S; Mastromanolis, Manuel; Lam, Johnny; Sung, Kyung; McCright, Brent

    2018-06-15

    Improve 19 F magnetic resonance imaging uniformity of perfluorocarbon (PFC)-labeled cells by using a secondary inductive resonator tuned to 287 MHz to enhance the induced radio frequency (RF) magnetic field (B 1 ) at 7.05 T. Following Faraday's induction law, the sign of induced B 1 made by the secondary resonator can be changed depending on the tuning of the resonator. A secondary resonator located on the opposite side of the phantom of the 19 F surface coil can be shown to enhance or subtract the induced B 1 field, depending upon its tuning. The numerical simulation results of rotating transmit B 1 magnitude (|B 1 + |) and corresponding experimental 19 F images were compared without and with the secondary resonator. With the secondary resonator tuned to 287 MHz, improvements of |B 1 + | and 19 F image uniformity were demonstrated. The use of the secondary resonator improved our ability to visualize transplanted cell location non-invasively over a period of 6 weeks. The secondary resonator tuned to enhance the induced B 1 results in improved image uniformity in a pre-clinical application, enabling cell tracking of PFC-labeled cells with the secondary resonator.

  11. Near-electrode imager

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  12. Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and Peristaltic Pumps for Defense-Based Research

    DTIC Science & Technology

    2016-05-05

    SECURITY CLASSIFICATION OF: The goal of this proposal is to purchase the GWC Technologies, Inc. Horizontal Surface Plasmon Resonance Imaging (SPRi...Unlimited UU UU UU UU 05-05-2016 1-Feb-2014 31-Jan-2016 Final Report: Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Surface Plasmon Resonance Imager, Digital

  13. Effectiveness of the levonorgestrel-releasing intrauterine system in the treatment of adenomyosis diagnosed and monitored by magnetic resonance imaging.

    PubMed

    Bragheto, Aristides M; Caserta, Nelson; Bahamondes, Luis; Petta, Carlos A

    2007-09-01

    This study was conducted to evaluate the effect of the levonorgestrel-releasing intrauterine system (LNG-IUS) on adenomyotic lesions diagnosed and monitored by magnetic resonance imaging (MRI). LNG-IUS was inserted during menstrual bleeding in 29 women, 24 to 46 years of age, with MRI-diagnosed adenomyosis associated with menorrhagia and dysmenorrhea. Clinical evaluations were carried out at baseline and at 3 and 6 months postinsertion. MRI was performed at baseline and at 6 months postinsertion and was used to calculate junctional zone thickness (in mm), to define the junctional zone borders, to identify the presence of high-signal foci on T(2)-weighted images and to calculate uterine volume (in mL). A significant reduction of 24.2% in junctional zone thickness was observed (p<.0001); however, no significant decrease in uterine volume was observed (142.6 mL vs. 136.4 mL; p=.2077) between baseline and the 6-month evaluation. A significant decrease in pain score was observed at 3 and 6 months after insertion (p<.0001); however, six women continued to report pain scores >3 at 6 months of observation. At 3 months of use, the most common bleeding pattern was spotting, and at 6 months of observation, oligomenorrhea was the most common pattern observed, although spotting was present in one third of the women. The insertion of an LNG-IUS led to a reduction in pain and abnormal bleeding associated with adenomyosis. MRI was useful for monitoring response of adenomyotic lesions to the LNG-IUS.

  14. Strain map of the tongue in normal and ALS speech patterns from tagged and diffusion MRI

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Reese, Timothy G.; Atassi, Nazem; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2018-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  15. Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.

    PubMed

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Reese, Timothy G; Atassi, Nazem; Wedeen, Van J; El Fakhri, Georges; Woo, Jonghye

    2018-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  16. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  17. Combined Magnetic Resonance Imaging and Spectroscopic Imaging Approach to Molecular Imaging of Prostate Cancer

    PubMed Central

    Kurhanewicz, John; Swanson, Mark G.; Nelson, Sarah J.; Vigneron, Daniel B.

    2005-01-01

    Magnetic resonance spectroscopic imaging (MRSI) provides a noninvasive method of detecting small molecular markers (historically the metabolites choline and citrate) within the cytosol and extracellular spaces of the prostate, and is performed in conjunction with high-resolution anatomic imaging. Recent studies in pre-prostatectomy patients have indicated that the metabolic information provided by MRSI combined with the anatomical information provided by MRI can significantly improve the assessment of cancer location and extent within the prostate, extracapsular spread, and cancer aggressiveness. Additionally, pre- and post-therapy studies have demonstrated the potential of MRI/MRSI to provide a direct measure of the presence and spatial extent of prostate cancer after therapy, a measure of the time course of response, and information concerning the mechanism of therapeutic response. In addition to detecting metabolic biomarkers of disease behavior and therapeutic response, MRI/MRSI guidance can improve tissue selection for ex vivo analysis. High-resolution magic angle spinning (1H HR-MAS) spectroscopy provides a full chemical analysis of MRI/MRSI-targeted tissues prior to pathologic and immunohistochemical analyses of the same tissue. Preliminary 1H HR-MAS spectroscopy studies have already identified unique spectral patterns for healthy glandular and stromal tissues and prostate cancer, determined the composition of the composite in vivo choline peak, and identified the polyamine spermine as a new metabolic marker of prostate cancer. The addition of imaging sequences that provide other functional information within the same exam (dynamic contrast uptake imaging and diffusion-weighted imaging) have also demonstrated the potential to further increase the accuracy of prostate cancer detection and characterization. PMID:12353259

  18. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  19. Pattern Recognition of the Multiple Sclerosis Syndrome

    PubMed Central

    Stewart, Renee; Healey, Kathleen M.

    2017-01-01

    During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis. PMID:29064441

  20. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    PubMed

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Low plasma magnesium is associated with impaired brain metabolism in neonates with hypoxic-ischaemic encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Chau, Vann; Poskitt, Kenneth J; Synnes, Anne; Kwan, Eddie; Roland, Elke; Miller, Steven P

    2016-09-01

    To determine the association between lowest plasma magnesium concentration and brain metabolism, and whether magnetic resonance imaging brain injury patterns moderated the association in hypoxic-ischemic encephalopathy. In 131 early (day-of-life 3) and 65 late (day-of-life 10) scans of term encephalopathic infants born between 2004 and 2012, we examined the association of lowest plasma magnesium (until day-of-life 3) on basal ganglia and white matter peak metabolite ratios on magnetic resonance spectroscopy independent of covariates, stratified by the predominant patterns of injury (normal, basal nuclei/total, watershed, multifocal) using multiple linear regression. Lowest plasma magnesium was associated with lower white matter N-acetyl-aspartate/choline in the multifocal pattern on early scan (regression-coefficient, β: 0.13; 95% CI: 0.04, 0.22) and in the basal nuclei/total pattern on late scan (β: 0.08; 95% CI: 0.02, 0.15), and was negatively associated with basal ganglia lactate/N-acetyl-aspartate (β: -0.16; 95% CI: -0.05, -0.28) and lactate/choline (β: -0.1; 95% CI: -0.03, -0.17) ratio in the basal nuclei/total pattern on late scan independent of hypomagnesaemia correction, cooling and postmenstrual age at scan. Lowest plasma magnesium was not associated with metabolite ratios in other brain injury patterns. In infants with hypoxic-ischaemic encephalopathy, predominant patterns of brain injury moderated the association between lowest plasma magnesium in the first three days of life and impaired brain metabolism. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Parapharyngeal neuroglial heterotopia appearing as high uptake on 18F-FDG PET: case report and literature review of radiographical findings.

    PubMed

    Kameyama, Masayuki; Kawaguchi, Tomohiro; Niizuma, Hidetaka; Ogawa, Takenori; Watanabe, Kenichi; Hayashi, Toshiaki; Sato, Kanako; Kanamori, Masayuki; Watanabe, Mika; Katori, Yukio; Kure, Shigeo; Tominaga, Teiji

    2018-04-01

    Parapharyngeal neuroglial heterotopia is a rare entity, and the specific radiographical findings are unclear. We present a case of parapharyngeal neuroglial heterotopia examined with proton magnetic resonance spectroscopy ( 1 H-MRS) and 18 F-fluorodesoxyglucose positron emission tomography ( 18 F-FDG PET). Our neonate patient presented with neck mass and polyhydramnios during gestation. Computed tomography and magnetic resonance imaging demonstrated the morphological characteristics, but failed to establish the diagnosis. 1 H-MRS showed a non-malignant pattern, but 18 F-FDG PET demonstrated high glucose metabolism. Complete resection was achieved and the histopathological diagnosis was neuroglial heterotopia. Assessment of biological activity may be useful for both preoperative diagnosis and postoperative evaluation of residual lesions.

  3. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  4. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  5. Oncologic relevance of magnetic resonance imaging-detected threatened mesorectal fascia for patients with mid or low rectal cancer: A longitudinal analysis before and after long-course, concurrent chemoradiotherapy.

    PubMed

    Son, Il Tae; Kim, Young Hoon; Lee, Kyoung Ho; Kang, Sung Il; Kim, Duck-Woo; Shin, Eun; Lee, Keun-Wook; Ahn, Soyeon; Kim, Jae-Sung; Kang, Sung-Bum

    2017-07-01

    The oncologic importance of threatened mesorectal fascia detected with magnetic resonance imaging is obscured by the heterogeneity of preoperative treatments. We evaluated the oncologic relevance of threatened mesorectal fascia detected with consecutive magnetic resonance imaging performed before and after long-course, concurrent chemoradiotherapy (LCRT) for mid or low rectal cancer. We evaluated 196 patients who underwent total mesorectal excision with LCRT. Threatened mesorectal fascia was defined as a shortest distance from tumor to mesorectal fascia of ≤ 1 mm on magnetic resonance imaging. Multivariate analyses for disease-free survival using magnetic resonance imaging-based parameters were conducted with a Cox proportional hazard model before and after LCRT, respectively. The pathologic positivity of the circumferential resection margin was greater for threatened mesorectal fascia than for clear mesorectal fascia (pre-LCRT, 14.8% vs 3.0%, P = .004; post-LCRT, 15.4% vs 4.5%, P = .025). At a median follow-up of 68 months, 3-year disease-free survival was worse for threatened mesorectal fascia than for clear mesorectal fascia (pre-LCRT, 77.0% vs 88.1%, P = .023; post-LCRT, 76.9% vs 86.6%, P = .029). On multivariate analyses, threatened mesorectal fascia on pre-LCRT magnetic resonance imaging was an independent factor for poor disease-free survival (hazard ratio = 2.153, 95% confidence interval, 1.07-4.32, P = .031), whereas threatened mesorectal fascia on post-LCRT magnetic resonance imaging was not (hazard ratio = 1.689, 95% confidence interval, 0.77-3.66, P = .189). This study confirms that magnetic resonance imaging-detected threatened mesorectal fascia predicts poor oncologic outcomes for mid or low rectal cancer and shows that the diagnostic performance of pre-LCRT magnetic resonance imaging is different from that of post-LCRT magnetic resonance imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.

    PubMed

    Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G

    2013-08-01

    To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance imaging should be included as part of the preoperative investigation in patients planned for breast-conserving surgery, in whom there are doubts about the extent of the tumours based on conventional assessment.

  7. Magnetic resonance imaging is often misleading when used as an adjunct to ultrasound in the management of placenta accreta spectrum disorders.

    PubMed

    Einerson, Brett D; Rodriguez, Christina E; Kennedy, Anne M; Woodward, Paula J; Donnelly, Meghan A; Silver, Robert M

    2018-06-01

    Magnetic resonance imaging is reported to have good sensitivity and specificity in the diagnosis of placenta accreta spectrum disorders, and is often used as an adjunct to ultrasound. But the additional utility of obtaining magnetic resonance imaging to assist in the clinical management of patients with placenta accreta spectrum disorders, above and beyond the information provided by ultrasound, is unknown. We aimed to determine whether magnetic resonance imaging provides data that may inform clinical management by changing the sonographic diagnosis of placenta accreta spectrum disorders. In all, 78 patients with sonographic evidence or clinical suspicion of placenta accreta spectrum underwent magnetic resonance imaging of the abdomen and pelvis in orthogonal planes through the uterus utilizing T1- and T2-weighted imaging sequences at the University of Utah and the University of Colorado from 1997 through 2017. The magnetic resonance imaging was interpreted by radiologists with expertise in diagnosis of placenta accreta spectrum who had knowledge of the sonographic interpretation and clinical risk factors for placenta accreta spectrum disorders. The primary outcome was a change in diagnosis from sonographic interpretation that could alter clinical management, which was defined a priori. Diagnostic accuracy was verified by surgical and histopathologic diagnosis at the time of delivery. A change in diagnosis that could potentially alter clinical management occurred in 28 (36%) cases. Magnetic resonance imaging correctly changed the diagnosis in 15 (19%), and correctly confirmed the diagnosis in 34 (44%), but resulted in an incorrect change in diagnosis in 13 (17%), and an incorrect confirmation of ultrasound diagnosis in 15 (21%). Magnetic resonance imaging was not more likely to change a diagnosis in the 24 cases of posterior and lateral placental location compared to anterior location (33% vs 37%, P = .84). Magnetic resonance imaging resulted in overdiagnosis in 23% and in underdiagnosis in 14% of all cases. When ultrasound suspected severe disease (percreta) in 14 cases, magnetic resonance imaging changed the diagnosis in only 2 cases. Lastly, the proportion of accurate diagnosis with magnetic resonance imaging did not improve over time (61-65%, P = .96 for trend) despite increasing volume and increasing numbers of changed diagnoses. Magnetic resonance imaging resulted in a change in diagnosis that could alter clinical management of placenta accreta spectrum disorders in more than one third of cases, but when changed, the diagnosis was often incorrect. Given its high cost and limited clinical value, magnetic resonance imaging should not be used routinely as an adjunct to ultrasound in the diagnosis of placenta accreta spectrum until evidence for utility is clearly demonstrated by more definitive prospective studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Implanted Silicon Resistor Layers for Efficient Terahertz Absorption

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Abrahams, J.; Allen, C. A.; Benford, D. J.; Henry, R.; Stevenson, T.; Wollack, E.; Moseley, S. H.

    2005-01-01

    Broadband absorption structures are an essential component of large format bolometer arrays for imaging GHz and THz radiation. We have measured electrical and optical properties of implanted silicon resistor layers designed to be suitable for these absorbers. Implanted resistors offer a low-film-stress, buried absorber that is robust to longterm aging, temperature, and subsequent metals processing. Such an absorber layer is readily integrated with superconducting integrated circuits and standard micromachining as demonstrated by the SCUBA II array built by ROE/NIST (1). We present a complete characterization of these layers, demonstrating frequency regimes in which different recipes will be suitable for absorbers. Single layer thin film coatings have been demonstrated as effective absorbers at certain wavelengths including semimetal (2,3), thin metal (4), and patterned metal films (5,6). Astronomical instrument examples include the SHARC II instrument is imaging the submillimeter band using passivated Bi semimetal films and the HAWC instrument for SOFIA, which employs ultrathin metal films to span 1-3 THz. Patterned metal films on spiderweb bolometers have also been proposed for broadband detection. In each case, the absorber structure matches the impedance of free space for optimal absorption in the detector configuration (typically 157 Ohms per square for high absorption with a single or 377 Ohms per square in a resonant cavity or quarter wave backshort). Resonant structures with -20% bandwidth coupled to bolometers are also under development; stacks of such structures may take advantage of instruments imaging over a wide band. Each technique may enable effective absorbers in imagers. However, thin films tend to age, degrade or change during further processing, can be difficult to reproduce, and often exhibit an intrinsic granularity that creates complicated frequency dependence at THz frequencies. Thick metal films are more robust but the requirement for patterning can limit their absorption at THz frequencies and their heat capacity can be high. patterned absorber structures that offer low heat capacity, absence of aging, and uniform, predictable behavior at THz frequencies. We have correlated DC electrical and THz optical measurements of a series of implanted layers and studied their frequency dependence of optical absorption from .3 to 10 THz at cryogenic temperatures. We have modeled the optical response to determine the suitability of the implanted silicon resistor as a function of resistance in the range 10 Ohms/sq to 300 Ohms/sq.

  9. Disruption of intracardiac flow patterns in the newborn infant.

    PubMed

    Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David

    2012-04-01

    Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.

  10. Correlation Between Magnetic Resonance Imaging-Based Evaluation of Extramural Vascular Invasion and Prognostic Parameters of T3 Stage Rectal Cancer.

    PubMed

    Yu, Jing; Huang, Dong-Ya; Xu, Hui-Xin; Li, Yang; Xu, Qing

    2016-01-01

    The aim of this study was to analyze the correlation between magnetic resonance imaging-based extramural vascular invasion (EMVI) and the prognostic clinical and histological parameters of stage T3 rectal cancers. Eighty-six patients with T3 stage rectal cancer who received surgical resection without neoadjuvant therapy were included. Magnetic resonance imaging-based EMVI scores were determined. Correlations between the scores and pretreatment carcinoembryonic antigen levels, tumor differentiation grade, nodal stage, and vascular endothelial growth factor expression were analyzed using Spearman rank coefficient analysis. Magnetic resonance imaging-based EMVI scores were statistically different (P = 0.001) between histological nodal stages (N0 vs N1 vs N2). Correlations were found between magnetic resonance imaging-based EMVI scores and tumor histological grade (rs = 0.227, P = 0.035), histological nodal stage (rs = 0.524, P < 0.001), and vascular endothelial growth factor expression (rs = 0.422; P = 0.016). Magnetic resonance imaging-based EMVI score is correlated with prognostic parameters of T3 stage rectal cancers and has the potential to become an imaging biomarker of tumor aggressiveness. Magnetic resonance imaging-based EMVI may be useful in helping the multidisciplinary team to stratify T3 rectal cancer patients for neoadjuvant therapies.

  11. Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting.

    PubMed

    Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A

    2017-11-01

    The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. The imaging features of the meniscal roots on isotropic 3D MRI in young asymptomatic volunteers.

    PubMed

    Wang, Ping; Zhang, Cheng-Zhou; Zhang, Di; Liu, Quan-Yuan; Zhong, Xiao-Fei; Yin, Zhi-Jie; Wang, Bin

    2018-05-01

    This study aimed to describe clearly the normal imaging features of the meniscal roots on the magnetic resonance imaging (MRI) with a 3-dimensional (3D) proton density-weighted (PDW) sequence at 3T. A total of 60 knees of 31 young asymptomatic volunteers were examined using a 3D MRI. The insertion patterns, constitution patterns, and MR signals of the meniscal roots were recorded. The anterior root of the medial meniscus (ARMM), the anterior root of the lateral meniscus (ARLM), and the posterior root of the medial meniscus (PRMM) had 1 insertion site, whereas the posterior root of the lateral meniscus (PRLM) can be divided into major and minor insertion sites. The ARLM and the PRMM usually consisted of multiple fiber bundles (≥3), whereas the ARMM and the PRLM often consisted of a single fiber bundle. The ARMM and the PRLM usually appeared as hypointense, whereas the ARLM and the PRMM typically exhibited mixed signals. The meniscal roots can be complex and diverse, and certain characteristics of them were observed on 3D MRI. Understanding the normal imaging features of the meniscal roots is extremely beneficial for further diagnosis of root tears.

  13. Diffusion weighted magnetic resonance imaging and its recent trend—a survey

    PubMed Central

    Chilla, Geetha Soujanya; Tan, Cher Heng

    2015-01-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements. PMID:26029644

  14. The magnetic resonance imaging spectrum of Pelizaeus-Merzbacher disease: A multicenter study of 19 patients.

    PubMed

    Sumida, Kaoru; Inoue, Ken; Takanashi, Jun-Ichi; Sasaki, Masayuki; Watanabe, Kenji; Suzuki, Motomasa; Kurahashi, Hirokazu; Omata, Taku; Tanaka, Manabu; Yokochi, Kenji; Iio, Jun; Iyoda, Kuniaki; Kurokawa, Toru; Matsuo, Muneaki; Sato, Tamotu; Iwaki, Akiko; Osaka, Hitoshi; Kurosawa, Kenji; Yamamoto, Toshiyuki; Matsumoto, Naomichi; Maikusa, Norihide; Matsuda, Hiroshi; Sato, Noriko

    2016-06-01

    We retrospectively evaluated the imaging spectrum of Pelizaeus-Merzbacher disease (PMD) in correlation with the clinical course and genetic abnormality. We collected the magnetic resonance imaging (MRI) findings of 19 genetically proven PMD patients (all males, aged 0-29years old) using our integrated web-based MRI data collection system from 14 hospitals. The patterns of hypomyelination were determined mainly by the signals of the cerebrum, corticospinal tract, and brainstem on T2-weighted images (T2WI). We assessed the degree of myelination age on T1-weighted images (T1WI) and T2WI independently, and we evaluated cerebellar and callosal atrophy. The clinical severity and genetic abnormalities (causal mutations of the proteolipid protein gene PLP1) were analyzed together with the imaging findings. The clinical stage tended to be more severe when the whole brainstem, or corticospinal tract in the internal capsule showed abnormally high intensity on T2WI. Diffuse T2-high signal of brainstem was observed only in the patients with PLP1 point mutation. Myelination age "before birth" on T1WI is a second manifestation correlated with the clinically severe phenotypes. On the other hand, eight patients whose myelination ages were > 4months on T1WI were associated with mild clinical phenotypes. Four of them showed almost complete myelination on T1WI with a discrepancy in myelination age between T1WI and T2WI. A random and patchy pattern of myelination on T2WI was noted in one patient with PLP1 point mutation. Advanced myelination was observed in three of the seven followed-up patients. Four patients had atrophy of the cerebellum, and 17 patients had atrophy of the corpus callosum. Our multicenter study has demonstrated a wide variety of imaging findings of PMD. Signal intensity of brainstem and corticospinal tract of internal capsule would be the points to presume clinical severity in PMD patients. The spectrum of MRI findings should be kept in mind to diagnose PMD and to differentiate from other demyelinating leukodystrophies. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Microelectromechanical resonator and method for fabrication

    DOEpatents

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  16. Microelectromechanical resonator and method for fabrication

    DOEpatents

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2010-01-26

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  17. Three-dimensional contrast-enhanced magnetic resonance angiography for anterolateral thigh flap outlining: A retrospective case series of 68 patients.

    PubMed

    Jiang, Chunjing; Lin, Ping; Fu, Xiaoyan; Shu, Jiner; Li, Huimin; Hu, Xiaogang; He, Jianrong; Ding, Mingxing

    2016-08-01

    Flap transfer is increasingly used for repairing limb defects secondary to trauma or tumor, and appropriate preoperative planning plays a critical role. The present study aimed to examine the use of three-dimensional (3D) contrast-enhanced magnetic resonance angiography (CE-MRA) in evaluating the blood supply distribution and perforating branch pattern of anterolateral thigh (ALT) flaps. Bilateral donor lower limbs were scanned in 68 patients (136 limbs) using a Siemens Avanto 1.5 T magnetic resonance imaging scanner with a 3D fast low-angle shot sequence, following the thin-slab maximum intensity projection (TS-MIP) technique. The lateral femoral circumflex artery (LFCA) was visualized in all patients: 101 limbs (101/136, 74.3%) were type I; 20 limbs (20/136, 14.7%) were type II; 3 limbs (3/136, 2.2%) were type III; and 12 limbs (12/136, 8.8%) were type IV. Tertiary branches were identified in 94 limbs (94/136, 69.1%). Donor flaps were outlined according to MRA TS-MIP findings in 4 patients. All flaps survived uneventfully following the transfer. In donor flap outlining, 3D CE-MRA with the TS-MIP technique allowed an accurate, direct visualization of the branching pattern and distribution profile of the LFCA supplying the ALT flap.

  18. Brain activation during mental rotation in school children and adults.

    PubMed

    Kucian, K; von Aster, M; Loenneker, T; Dietrich, T; Mast, F W; Martin, E

    2007-01-01

    Mental rotation is a complex cognitive skill depending on the manipulation of mental representations. We aimed to investigate the maturing neuronal network for mental rotation by measuring brain activation in 20 children and 20 adults using functional magnetic resonance imaging. Our results indicate that brain activation patterns are very similar between children and adults. However, adults exhibit stronger activation in the left intraparietal sulcus compared to children. This finding suggests a shift of activation from a predominantly right parietal activation in children to a bilateral activation pattern in adults. Furthermore, adults show a deactivation of the posterior cingulate gyrus and precuneus, which is not observed in children. In conclusion, developmental changes of brain activation during mental rotation are leading to a bilateral parietal activation pattern and faster performance.

  19. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    PubMed Central

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-01-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  20. Human inferior colliculus activity relates to individual differences in spoken language learning

    PubMed Central

    Chandrasekaran, Bharath; Kraus, Nina

    2012-01-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural “sharpening” models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models. PMID:22131377

  1. Tracking children's mental states while solving algebra equations.

    PubMed

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2012-11-01

    Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks. Copyright © 2011 Wiley Periodicals, Inc.

  2. Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  3. Smart detection of microRNAs through fluorescence enhancement on a photonic crystal.

    PubMed

    Pasquardini, L; Potrich, C; Vaghi, V; Lunelli, L; Frascella, F; Descrovi, E; Pirri, C F; Pederzolli, C

    2016-04-01

    The detection of low abundant biomarkers, such as circulating microRNAs, demands innovative detection methods with increased resolution, sensitivity and specificity. Here, a biofunctional surface was implemented for the selective capture of microRNAs, which were detected through fluorescence enhancement directly on a photonic crystal. To set up the optimal biofunctional surface, epoxy-coated commercially available microscope slides were spotted with specific anti-microRNA probes. The optimal concentration of probe as well as of passivating agent were selected and employed for titrating the microRNA hybridization. Cross-hybridization of different microRNAs was also tested, resulting negligible. Once optimized, the protocol was adapted to the photonic crystal surface, where fluorescent synthetic miR-16 was hybridized and imaged with a dedicated equipment. The photonic crystal consists of a dielectric multilayer patterned with a grating structure. In this way, it is possible to take advantage from both a resonant excitation of fluorophores and an angularly redirection of the emitted radiation. As a result, a significant fluorescence enhancement due to the resonant structure is collected from the patterned photonic crystal with respect to the outer non-structured surface. The dedicated read-out system is compact and based on a wide-field imaging detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development such as for example in microarray-type bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Functional magnetic resonance imaging and dynamic neuroanatomy of addictive disorders].

    PubMed

    Mel'nikov, M E; Shtark, M B

    2014-01-01

    Research into the cerebral patterns that govern the formation and development of addictive behavior is one of the most interesting goals of neurophysiology. Authors of contemporary papers on the matter define a number of symptoms that are all part of substance or non-substance dependence, each one of them leading to abnormalities in the corresponding system of the brain. During the last twenty years the functional magnetic resonance imaging (fMR1) technology has been instrumental in locating such abnormalities, identifying specific parts of the brain that, when dysfunctional, may enhance addiction and cause its positive or negative symptoms. This article reviews fMRI studies aimed toward locating areas in the brain that are responsible for cognitive, emotional, and motivational dysfunction. Cerebral correlatives of impulsiveness, behavior control, and drug cravings are reviewed separately. The article also contains an overview of possibilities to further investigate the Selves of those dependent on substances, identify previously unknown diagnostic markers of substance dependence, and evaluate the effectiveness of therapy. The research under review in this article provides data that points to a special role of the nucleus caudatus as well as the nucleus accumbens, the thalamus, the insular cortex (IC), the anterior cingulate, prefrontal and orbitofrontal areas in psychological disorders that are part of substance dependence. General findings of the article are in accordance with contemporary models of addictive pattern.

  5. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  6. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  7. Classification of brain MRI with big data and deep 3D convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Wegmayr, Viktor; Aitharaju, Sai; Buhmann, Joachim

    2018-02-01

    Our ever-aging society faces the growing problem of neurodegenerative diseases, in particular dementia. Magnetic Resonance Imaging provides a unique tool for non-invasive investigation of these brain diseases. However, it is extremely difficult for neurologists to identify complex disease patterns from large amounts of three-dimensional images. In contrast, machine learning excels at automatic pattern recognition from large amounts of data. In particular, deep learning has achieved impressive results in image classification. Unfortunately, its application to medical image classification remains difficult. We consider two reasons for this difficulty: First, volumetric medical image data is considerably scarcer than natural images. Second, the complexity of 3D medical images is much higher compared to common 2D images. To address the problem of small data set size, we assemble the largest dataset ever used for training a deep 3D convolutional neural network to classify brain images as healthy (HC), mild cognitive impairment (MCI) or Alzheimers disease (AD). We use more than 20.000 images from subjects of these three classes, which is almost 9x the size of the previously largest data set. The problem of high dimensionality is addressed by using a deep 3D convolutional neural network, which is state-of-the-art in large-scale image classification. We exploit its ability to process the images directly, only with standard preprocessing, but without the need for elaborate feature engineering. Compared to other work, our workflow is considerably simpler, which increases clinical applicability. Accuracy is measured on the ADNI+AIBL data sets, and the independent CADDementia benchmark.

  8. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    NASA Astrophysics Data System (ADS)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  9. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  10. Imaging of juvenile spondyloarthritis. Part II: Ultrasonography and magnetic resonance imaging

    PubMed Central

    Znajdek, Michał; Gietka, Piotr; Vasilevska-Nikodinovska, Violeta; Patrovic, Lukas; Salapura, Vladka

    2017-01-01

    Juvenile spondyloarthropathies are mainly manifested by symptoms of peripheral arthritis and enthesitis. Early involvement of sacroiliac joints and spine is exceptionally rare in children; this usually happens in adulthood. Conventional radiographs visualize late inflammatory lesions. Early diagnosis is possible with the use of ultrasonography and magnetic resonance imaging. The first part of the article presented classifications and radiographic presentation of juvenile spondyloarthropathies. This part discusses changes seen on ultrasonography and magnetic resonance imaging. In patients with juvenile spondyloarthropathies, these examinations are conducted to diagnose inflammatory lesions in peripheral joints, tendon sheaths, tendons and bursae. Moreover, magnetic resonance also shows subchondral bone marrow edema, which is considered an early sign of inflammation. Ultrasonography and magnetic resonance imaging do not show specific lesions for any rheumatic disease. Nevertheless, they are conducted for early diagnosis, treatment monitoring and identifying complications. This article presents a spectrum of inflammatory changes and discusses the diagnostic value of ultrasonography and magnetic resonance imaging. PMID:29075522

  11. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    PubMed

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  12. Clinical utility of FDG PET/CT in acute complicated pyelonephritis-results from an observational study.

    PubMed

    Wan, Chih-Hsing; Tseng, Jing-Ren; Lee, Ming-Hsun; Yang, Lan-Yan; Yen, Tzu-Chen

    2018-03-01

    Acute complicated pyelonephritis (ACP) is an upper urinary tract infection associated with coexisting urinary tract abnormalities or medical conditions that could predispose to serious outcomes or treatment failures. Although CT and magnetic resonance imaging (MRI) are frequently used in patients with ACP, the clinical value of 18 F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG PET/CT) has not been systematically investigated. This single-center retrospective study was designed to evaluate the potential usefulness of FDG PET/CT in patients with ACP. Thirty-one adult patients with ACP who underwent FDG PET/CT were examined. FDG PET/CT imaging characteristics, including tracer uptake patterns, kidney volumes, and extrarenal imaging findings, were reviewed in combination with clinical data and conventional imaging results. Of the 31 patients, 19 (61%) showed focal FDG uptake. The remaining 12 study participants showed a diffuse FDG uptake pattern. After volumetric approximation, the affected kidneys were found to be significantly enlarged. Patients who showed a focal uptake pattern had a higher frequency of abscess formation requiring drainage. ACP patients showing diffuse tracer uptake patterns had a more benign clinical course. Seven patients had suspected extrarenal coinfections, and FDG PET/CT successfully confirmed the clinical suspicion in five cases. FDG PET/CT was as sensitive as CT in identifying the six patients (19%) who developed abscesses. Notably, FDG PET/CT findings caused a modification to the initial antibiotic regimen in nine patients (29%). FDG PET/CT may be clinically useful in the assessment of patients with ACP who have a progressive disease course.

  13. Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.

    PubMed

    Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui

    2015-02-01

    The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.

  14. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NASA Astrophysics Data System (ADS)

    Vesseur, E. J. R.

    2011-07-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide range of applications of nanoantennas operating both in receiving and transmitting mode. This thesis presents how the dispersion and confinement of surface plasmons in nanoantennas are resolved and further engineered. Fabrication of nanostructures is done using focused ion beam milling (FIB) in metallic surfaces. We demonstrate that patterning in single-crystal substrates allows us to precisely control the geometry in which plasmons are confined. The nanoscale properties of the resonant plasmonic fields are resolved using a new technique developed in this thesis: angle- and polarization controlled cathodoluminescence (CL) imaging spectroscopy. The use of a tightly focused electron beam allows us to probe the optical antenna properties with deep subwavelength resolution. We show using this technique that nanoantennas consisting of 500-1200 nm long polycrystalline Au nanowires support standing plasmon waves. We directly observe the plasmon wavelengths which we use to derive the dispersion relation of guided nanowire plasmons. A 590-nm-long ridge-shaped nanoantenna was fabricated using FIB milling on a single-crystal Au substrate, demonstrating a level of control over the fabrication impossible with polycrystalline metals. CL experiments show that the ridge supports multiple-order resonances. The confinement of surface plasmons to the ridge is confirmed by boundary-element-method (BEM) calculations. The resonant modes in plasmonic whispering gallery cavities consisting of a FIB-fabricated circular groove are resolved. We find an excellent agreement between boundary element method calculations and the measured CL emission from the ring-shaped cavities. The calculations show that the ring supports resonances with increasing azimuthal or radial order. The smallest cavity fits only one wavelength in its circumference. We theoretically show that in these cavities, spontaneous emission can be enhanced over a broad spectral band due to the small modal volume of the plasmon resonances. A Purcell factor >2000 was found. We further study the mode symmetries and coupling of the ring resonances using far-field excitation, fluorescence, angle-resolved cathodoluminescence and photoelectron emission microscopy. We demonstrate spectral reshaping of emitters, mode-specific angular emission patterns, and a mode-selective excitation by incoming light, and we directly resolve the modal fields at high resolution. In the next chapter, we present metal-insulator-metal plasmon waveguides in which we engineer the dispersion to reach a refractive index of zero. Using spatially- and angle-resolved CL we directly observe the spatial mode profiles and determine the dispersion relation of plasmon modes. At the cutoff frequency, the emission pattern corresponds to that of a line dipole antenna demonstrating the entire waveguide is in phase (n=0). A strongly enhanced density of optical states is directly observed at cutoff from the enhanced CL intensity. Finally, we present 5 possible applications: a localized surface plasmon sensor, a plasmon ring laser, template stripping technique, an in-situ monitor of ionoluminescence and cathodoluminescence in a FIB system and a single-photon source.

  15. A technique for magnetic resonance imaging of equine cadaver specimens.

    PubMed

    Widmer, W R; Buckwalter, K A; Hill, M A; Fessler, J F; Ivancevich, S

    1999-01-01

    We tested an adaptation of a technique for performing magnetic resonance (MR) imaging of human cadaver limbs in the horse. The forelimbs from a normal horse were collected, frozen, and sealed with a paraffin-polymer combination prior to imaging with either a high- or midfield magnetic resonance scanner. Each forelimb was defrosted, scanned, and refrozen on two separate occasions. A five-point scale was used to evaluate the quality of each set of sagittal and transverse, T1-weighted images of each digit. There was no difference in image quality between first and second scans of either specimen (p > 0.05). We conclude that this technique allows investigators to bank tissue specimens for future magnetic resonance imaging without significant loss of image quality.

  16. Transcultural differences in brain activation patterns during theory of mind (ToM) task performance in Japanese and Caucasian participants.

    PubMed

    Koelkebeck, Katja; Hirao, Kazuyuki; Kawada, Ryousaku; Miyata, Jun; Saze, Teruyasu; Ubukata, Shiho; Itakura, Shoji; Kanakogi, Yasuhiro; Ohrmann, Patricia; Bauer, Jochen; Pedersen, Anya; Sawamoto, Nobukatsu; Fukuyama, Hidenao; Takahashi, Hidehiko; Murai, Toshiya

    2011-01-01

    Theory of mind (ToM) functioning develops during certain phases of childhood. Factors such as language development and educational style seem to influence its development. Some studies that have focused on transcultural aspects of ToM development have found differences between Asian and Western cultures. To date, however, little is known about transcultural differences in neural activation patterns as they relate to ToM functioning. The aim of our study was to observe ToM functioning and differences in brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). This study included a sample of 18 healthy Japanese and 15 healthy Caucasian subjects living in Japan. We presented a ToM task depicting geometrical shapes moving in social patterns. We also administered questionnaires to examine empathy abilities and cultural background factors. Behavioral data showed no significant group differences in the subjects' post-scan descriptions of the movies. The imaging results displayed stronger activation in the medial prefrontal cortex (MPFC) in the Caucasian sample during the presentation of ToM videos. Furthermore, the task-associated activation of the MPFC was positively correlated with autistic and alexithymic features in the Japanese sample. In summary, our results showed evidence of culturally dependent sociobehavioral trait patterns, which suggests that they have an impact on brain activation patterns during information processing involving ToM.

  17. The Diagnostic Performance of Multiparametric Magnetic Resonance Imaging to Detect Significant Prostate Cancer.

    PubMed

    Thompson, J E; van Leeuwen, P J; Moses, D; Shnier, R; Brenner, P; Delprado, W; Pulbrook, M; Böhm, M; Haynes, A M; Hayen, A; Stricker, P D

    2016-05-01

    We assess the accuracy of multiparametric magnetic resonance imaging for significant prostate cancer detection before diagnostic biopsy in men with an abnormal prostate specific antigen/digital rectal examination. A total of 388 men underwent multiparametric magnetic resonance imaging, including T2-weighted, diffusion weighted and dynamic contrast enhanced imaging before biopsy. Two radiologists used PI-RADS to allocate a score of 1 to 5 for suspicion of significant prostate cancer (Gleason 7 with more than 5% grade 4). PI-RADS 3 to 5 was considered positive. Transperineal template guided mapping biopsy of 18 regions (median 30 cores) was performed with additional manually directed cores from magnetic resonance imaging positive regions. The anatomical location, size and grade of individual cancer areas in the biopsy regions (18) as the primary outcome and in prostatectomy specimens (117) as the secondary outcome were correlated to the magnetic resonance imaging positive regions. Of the 388 men who were enrolled in the study 344 were analyzed. Multiparametric magnetic resonance imaging was positive in 77.0% of patients, 62.5% had prostate cancer and 41.6% had significant prostate cancer. The detection of significant prostate cancer by multiparametric magnetic resonance imaging had a sensitivity of 96%, specificity of 36%, negative predictive value of 92% and positive predictive value of 52%. Adding PI-RADS to the multivariate model, including prostate specific antigen, digital rectal examination, prostate volume and age, improved the AUC from 0.776 to 0.879 (p <0.001). Anatomical concordance analysis showed a low mismatch between the magnetic resonance imaging positive regions and biopsy positive regions (4 [2.9%]), and the significant prostate cancer area in the radical prostatectomy specimen (3 [3.3%]). In men with an abnormal prostate specific antigen/digital rectal examination, multiparametric magnetic resonance imaging detected significant prostate cancer with an excellent negative predictive value and moderate positive predictive value. The use of multiparametric magnetic resonance imaging to diagnose significant prostate cancer may result in a substantial number of unnecessary biopsies while missing a minimum of significant prostate cancers. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. The Importance of Neurogenic Inflammation in Blast-Induced Neurotrauma

    DTIC Science & Technology

    2013-01-01

    mild/moderate BINT are imaged by magnetic resonance imaging ( MRI ) to visualize potential macrophage infiltration; blood-brain barrier (BBB) disturbance...TERMS blast, traumatic brain injury, brain, inflammation, magnetic resonance imaging , mice 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...monitoring the success of therapeutic interventions. In this annual report we have utilized current live imaging methods (i.e. magnetic resonance

  19. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  20. Neurilemmoma of the glans penis: ultrasonography and magnetic resonance imaging findings.

    PubMed

    Jung, Dae Chul; Hwang, Sung Il; Jung, Sung Il; Kim, Sun Ho; Kim, Seung Hyup

    2006-01-01

    Neurilemmoma of the glans penis is rare, and no imaging findings have been reported. A case of neurilemmoma of the glans penis is presented. Ultrasonography (US) and magnetic resonance imaging revealed a well-defined small mass in the glans penis. The mass appeared hypoechoic on gray-scale US and hypervascular on color Doppler US. Magnetic resonance imaging revealed high signal intensity of the mass on a T2-weighted image and strong enhancement on a contrast-enhanced T1-weighted image.

  1. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  2. Human tooth and root canal morphology reconstruction using magnetic resonance imaging.

    PubMed

    Drăgan, Oana Carmen; Fărcăşanu, Alexandru Ştefan; Câmpian, Radu Septimiu; Turcu, Romulus Valeriu Flaviu

    2016-01-01

    Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. Magnetic resonance imaging offers 3D image datasets with more information than the conventional radiographic techniques. Due to its ability of imaging both hard and soft dental tissues, magnetic resonance imaging can be successfully used as a 3D diagnostic imaging technique in dentistry. When choosing the imaging method, dental clinicians should weight the benefit-risk ratio, taking into account the costs associated to magnetic resonance imaging and the harmful effects of ionizing radiations when cone beam computed tomography or conventional x-ray are used.

  3. Magnetic resonance imaging of appendicular musculoskeletal infection.

    PubMed

    Lalam, Radhesh K; Cassar-Pullicino, Victor N; Tins, Bernhard J

    2007-06-01

    Appendicular skeletal infection includes osseous and extraosseous infections. Skeletal infection needs early diagnosis and appropriate management to prevent long-term morbidity. Magnetic resonance imaging is the best imaging modality to diagnose skeletal infection early in most circumstances. This article describes the role of magnetic resonance imaging in relation to the other available imaging modalities in the diagnosis of skeletal infection. Special circumstances such as diabetic foot, postoperative infection, and chronic recurrent multifocal osteomyelitis are discussed separately.

  4. Overview of Imaging Tests

    MedlinePlus

    ... Overview of Imaging Tests Angiography Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Plain X-Rays Radionuclide Scanning ... and radionuclide scanning Sound waves, as in ultrasonography Magnetic fields, as in magnetic resonance imaging (MRI) Substances ...

  5. A Functional Magnetic Resonance Imaging Predictor of Treatment Response to Venlafaxine in Generalized Anxiety Disorder

    PubMed Central

    Johnstone, Tom; Somerville, Leah H.; Nitschke, Jack B.; Polis, Sara; Alexander, Andrew L.; Davidson, Richard J.; Kalin, Ned H.

    2008-01-01

    Background Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD). Methods Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment. Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group. Conclusions These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD. PMID:17964548

  6. Documenting the location of systematic transrectal ultrasound-guided prostate biopsies: correlation with multi-parametric MRI.

    PubMed

    Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A

    2011-03-29

    During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.

  7. Synthesis of Water-Dispersible Mn2+ Functionalized Silicon Nanoparticles under Room Temperature and Atmospheric Pressure for Fluorescence and Magnetic Resonance Dual-Modality Imaging.

    PubMed

    Dou, Ya-Kun; Chen, Yang; He, Xi-Wen; Li, Wen-You; Li, Yu-Hao; Zhang, Yu-Kui

    2017-11-07

    Silicon nanoparticles (Si NPs) have been widely used in fluorescence imaging. However, rigorous synthesis conditions and the single modality imaging limit the further development of Si NPs in the field of biomedical imaging. Here, we reported a method for synthesizing water-dispersible Mn 2+ functionalized Si NPs (Mn-Si NPs) under mild experimental conditions for fluorescence and magnetic resonance dual-modality imaging. The whole synthesis process was completed under room temperature and atmospheric pressure, and no special and expensive equipment was required. The synthetic nanoparticles, with favorable pH stability, NaCl stability, photostability, and low toxicity, emitted green fluorescence (512 nm). At the same time, the nanoparticles also demonstrated excellent magnetic resonance imaging ability. In vitro, their T 1 -weighted magnetic resonance imaging effect was obvious, and the value of longitudinal relaxation degree r 1 reached 4.25 mM -1 s -1 . On the basis of their good biocompatibility, Mn-Si NPs were successfully used for the fluorescence imaging as well as magnetic resonance imaging in vivo.

  8. Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.

    PubMed

    Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen

    2018-01-01

    While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.

  9. In vivo experiences with magnetic resonance imaging scans in Vibrant Soundbridge type 503 implantees.

    PubMed

    Todt, I; Mittmann, P; Ernst, A; Mutze, S; Rademacher, G

    2018-05-01

    To observe the effects of magnetic resonance imaging scans in Vibrant Soundbridge 503 implantees at 1.5T in vivo. In a prospective case study of five Vibrant Soundbridge 503 implantees, 1.5T magnetic resonance imaging scans were performed with and without a headband. The degree of pain was evaluated using a visual analogue scale. Scan-related pure tone audiogram and audio processor fitting changes were assessed. In all patients, magnetic resonance imaging scans were performed without any degree of pain or change in pure tone audiogram or audio processor fitting, even without a headband. In this series, 1.5T magnetic resonance imaging scans were performed with the Vibrant Soundbridge 503 without complications. Limitations persist in terms of magnetic artefacts.

  10. A comparative analysis of 7.0-Tesla magnetic resonance imaging and histology measurements of knee articular cartilage in a canine posterolateral knee injury model: a preliminary analysis.

    PubMed

    Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F

    2009-11-01

    There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the histology sections (P > .1). These results demonstrate that 7.0-T magnetic resonance imaging provides an alternative method to histology to evaluate early osteoarthritic changes in articular cartilage in a canine model by detecting increases in articular cartilage area. The noninvasive nature of 7.0-T magnetic resonance imaging will allow for in vivo monitoring of osteoarthritis progression and intervention in animal models and humans for osteoarthritis.

  11. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model.

    PubMed

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael

    2017-08-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.

  12. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  13. Neural correlates of nature stimuli: an FMRI study.

    PubMed

    Pati, Debajyoti; O'Boyle, Michael; Amor, Cherif; Hou, Jiancheng; Valipoor, Shabboo; Fang, Dan

    2014-01-01

    Examine whether there are unique patterns of brain activation associated with exposure to photographic sky compositions (representing nature stimuli) as compared with other positive, negative, and neutral images. The positive impact of nature images on health outcomes traditionally has been measured using behavioral and physiological indicators. However, there is a lack of understanding of the underlying neural mechanism that explains this positive influence. A combination of behavioral responses and functional magnetic resonance imaging (fMRI) technology was used to address research questions. Ten participants belonging to five age groups were subjected to short (25 seconds) exposures of 32 images while their brain activation was monitored via the BOLD response. In a separate run, participants were subjected to extended exposures (12 minutes) of a sky composition and an image of a traditional ceiling. The results show that the activation patterns produced by sky compositions and positive images were quite similar as compared to negative or neutral images. However, sky compositions also produced some unique areas of activation, including those associated with spatial cognition, the expanse of space, circadian rhythm, and perceived motion. In the extended exposure condition, sky compositions tended to activate regions associated with dreaming, while traditional ceiling images activated regions that are related to face processing and potentially visual hallucinations. Nature stimuli, with a combination of vegetation and sky, may produce unique beneficial effects not present in general positive stimuli. Evidence-based design, hospital, healing environments, outcomes, patient-centered care.

  14. Impact of Lesion Visibility on Transrectal Ultrasound on the Prediction of Clinically Significant Prostate Cancer (Gleason Score 3 + 4 or Greater) with Transrectal Ultrasound-Magnetic Resonance Imaging Fusion Biopsy.

    PubMed

    Garcia-Reyes, Kirema; Nguyen, Hao G; Zagoria, Ronald J; Shinohara, Katsuto; Carroll, Peter R; Behr, Spencer C; Westphalen, Antonio C

    2017-09-20

    The purpose of this study was to estimate the impact of lesion visibility with transrectal ultrasound on the prediction of clinically significant prostate cancer with transrectal ultrasound-magnetic resonance imaging fusion biopsy. This HIPAA (Health Insurance Portability and Accountability Act) compliant, institutional review board approved, retrospective study was performed in 178 men who were 64.7 years old with prostate specific antigen 8.9 ng/ml. They underwent transrectal ultrasound-magnetic resonance imaging fusion biopsy from January 2013 to September 2016. Visible lesions on magnetic resonance imaging were assigned a PI-RADS™ (Prostate Imaging Reporting and Data System), version 2 score of 3 or greater. Transrectal ultrasound was positive when a hypoechoic lesion was identified. We used a 3-level, mixed effects logistic regression model to determine how transrectal ultrasound-magnetic resonance imaging concordance predicted the presence of clinically significant prostate cancer. The diagnostic performance of the 2 methods was estimated using ROC curves. A total of 1,331 sextants were targeted by transrectal ultrasound-magnetic resonance imaging fusion or systematic biopsies, of which 1,037 were negative, 183 were Gleason score 3 + 3 and 111 were Gleason score 3 + 4 or greater. Clinically significant prostate cancer was diagnosed by transrectal ultrasound and magnetic resonance imaging alone at 20.5% and 19.7% of these locations, respectively. Men with positive imaging had higher odds of clinically significant prostate cancer than men without visible lesions regardless of modality (transrectal ultrasound OR 14.75, 95% CI 5.22-41.69, magnetic resonance imaging OR 12.27, 95% CI 6.39-23.58 and the 2 modalities OR 28.68, 95% CI 14.45-56.89, all p <0.001). The ROC AUC to detect clinically significant prostate cancer using the 2 methods (0.85, 95% CI 0.81-0.89) was statistically greater than that of transrectal ultrasound alone (0.80, 95% CI 0.76-0.85, p = 0.001) and magnetic resonance imaging alone (0.83, 95% CI 0.79-0.87, p = 0.04). The sensitivity and specificity of transrectal ultrasound were 42.3% and 91.6%, and the sensitivity and specificity of magnetic resonance imaging were 62.2% and 84.1%, respectively. Lesion visibility on magnetic resonance imaging or transrectal ultrasound denotes a similar probability of clinically significant prostate cancer. This probability is greater when each examination is positive. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Greater neural pattern similarity across repetitions is associated with better memory.

    PubMed

    Xue, Gui; Dong, Qi; Chen, Chuansheng; Lu, Zhonglin; Mumford, Jeanette A; Poldrack, Russell A

    2010-10-01

    Repeated study improves memory, but the underlying neural mechanisms of this improvement are not well understood. Using functional magnetic resonance imaging and representational similarity analysis of brain activity, we found that, compared with forgotten items, subsequently remembered faces and words showed greater similarity in neural activation across multiple study in many brain regions, including (but not limited to) the regions whose mean activities were correlated with subsequent memory. This result addresses a longstanding debate in the study of memory by showing that successful episodic memory encoding occurs when the same neural representations are more precisely reactivated across study episodes, rather than when patterns of activation are more variable across time.

  16. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    PubMed

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  17. Normal Skeletal Maturation and Imaging Pitfalls in the Pediatric Shoulder.

    PubMed

    Zember, Jonathan S; Rosenberg, Zehava S; Kwong, Steven; Kothary, Shefali P; Bedoya, Maria A

    2015-01-01

    A growing number of magnetic resonance (MR) imaging studies of the shoulder are being performed as a result of greater and earlier participation of children and adolescents in competitive sports such as softball and baseball. However, scant information is available regarding the MR imaging features of the normal sequential development of the shoulder. The authors discuss the radiographic and MR imaging appearances of the normal musculoskeletal maturation patterns of the shoulder, with emphasis on (a) development of secondary ossification centers of the glenoid (including the subcoracoid and peripheral glenoid ossification centers); (b) development of preossification and secondary ossification centers of the humeral head and the variable appearance and number of the secondary ossification centers of the distal acromion, with emphasis on the formation of the os acromiale; (c) development of the growth plates, glenoid bone plates, glenoid bare area, and proximal humeral metaphyseal stripe; and (d) marrow signal alterations in the distal humerus, acromion, and clavicle. In addition, the authors discuss various imaging interpretation pitfalls inherent to the normal skeletal maturation of the shoulder, examining clues that may help distinguish normal development from true disease (eg, osteochondral lesions, labral tears, abscesses, fractures, infection, tendon disease, acromioclavicular widening, and os acromiale). Familiarity with the timing, location, and appearance of maturation patterns in the pediatric shoulder is crucial for correct image interpretation. ©RSNA, 2015.

  18. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Daniels, Kevin M.; Jadidi, M. Mehdi; Sushkov, Andrei B.; Nath, Anindya; Boyd, Anthony K.; Sridhara, Karthik; Drew, H. Dennis; Murphy, Thomas E.; Myers-Ward, Rachael L.; Gaskill, D. Kurt

    2017-06-01

    Exploiting the underdeveloped terahertz range (~1012-1013 Hz) of the electromagnetic spectrum could advance many scientific fields (e.g. medical imaging for the identification of tumors and other biological tissues, non-destructive evaluation of hidden objects or ultra-broadband communication). Despite the benefits of operating in this regime, generation, detection and manipulation have proven difficult, as few materials have functional interactions with THz radiation. In contrast, graphene supports resonances in the THz regime through structural confinement of surface plasmons, which can lead to enhanced absorption. In prior work, the achievable plasmon resonances in such structures have been limited by multiple electron scattering mechanisms (i.e. large carrier scattering rates) which greatly broaden the resonance (>100 cm-1 3 THz). We report the narrowest room temperature Drude response to-date, 30 cm-1 (0.87 THz), obtained using quasi-free standing bilayer epitaxial graphene (QFS BLG) synthesized on (0 0 0 1)6H-SiC. This narrow response is due to a 4-fold increase in carrier mobility and improved thickness and electronic uniformity of QFS BLG. Moreover, QFS BLG samples patterned into microribbons targeting 1.8-5.7 THz plasmon resonances also exhibit low scattering rates (37-53 cm-1). Due to the improved THz properties of QFS BLG, the effects of e-beam processing on carrier scattering rates was determined and we found that fabrication conditions can be tuned to minimize the impact on optoelectronic properties. In addition, electrostatic gating of patterned QFS BLG shows narrow band THz amplitude modulation. Taken together, these properties of QFS BLG should facilitate future development of THz optoelectronic devices for monochromatic applications.

  19. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  20. Prevalence and patterns of neurological involvement in Behcet's disease: a prospective study from Iraq

    PubMed Central

    Al-Araji, A; Sharquie, K; Al-Rawi, Z

    2003-01-01

    Objectives: To determine the prevalence of neurological involvement in Behcet's disease in a prospective study, and to describe the clinical patterns of neurological presentation in this disease in patients attending a multidisciplinary clinic in Baghdad. Methods: All patients attending the clinic who fulfilled the international study group criteria for the diagnosis of Behcet's disease were studied during a two year period starting in April 1999. Patients were assessed neurologically by a neuro-Behcetologist. All those with clinical neurological manifestations were sent for CSF examination, cranial magnetic resonance imaging, and magnetic resonance venography and were followed up to explore the patterns of neurological relapse. Results: 140 patients with Behcet's disease were studied. Their mean age was 34.2 years (range 16 to 66); 105 (75%) were men and 35 (25%) were women. The mean duration of the disease was 4.2 years (range 0.4 to 26). Twenty patients (14%) had neurological involvement (neuro-Behcet's disease); 14 of these (70%) were men and six (30%) women. The mean age at the first neurological presentation was 34.1 years. The mean duration of follow up of patients with neuro-Behcet's disease was 20.7 months. Ten patients with neuro-Behcet's disease (50%) presented with parenchymal CNS involvement, six (30%) with intracranial hypertension, and four (20%) with a mixed pattern of both parenchymal CNS involvement and intracranial hypertension. Conclusions: Careful neurological assessment of patients with Behcet's disease may show a relatively high prevalence of neuro-Behcet features, and though the clinical patterns of presentation are characteristic a mixed pattern may occur. PMID:12700303

  1. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.

    PubMed

    Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming

    2009-01-01

    An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.

  2. Structural, functional and spectroscopic MRI studies of methamphetamine addiction.

    PubMed

    Salo, Ruth; Fassbender, Catherine

    2012-01-01

    This chapter reviews selected neuroimaging findings related to long-term amphetamine and methamphetamine (MA) use. An overview of structural and functional (fMRI) MR studies, Diffusion Tensor Imaging (DTI), Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) studies conducted in long-term MA abusers is presented. The focus of this chapter is to present the relevant studies as tools to understand brain changes following drug abstinence and recovery from addiction. The behavioral relevance of these neuroimaging studies is discussed as they relate to clinical symptoms and treatment. Within each imaging section this chapter includes a discussion of the relevant imaging studies as they relate to patterns of drug use (i.e., duration of MA use, cumulative lifetime dose and time MA abstinent) as well as an overview of studies that link the imaging findings to cognitive measures. In our conclusion we discuss some of the future directions of neuroimaging as it relates to the pathophysiology of addiction.

  3. Quantitative comparison of high-resolution MRI and myelin-stained histology of the human cerebral cortex.

    PubMed

    Osechinskiy, Sergey; Kruggel, Frithjof

    2009-01-01

    The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.

  4. Finding the Truth in Medical Imaging: Painting the Picture of Appropriateness for Magnetic Resonance Imaging in Canada.

    PubMed

    Vanderby, Sonia; Peña-Sánchez, Juan Nicolás; Kalra, Neil; Babyn, Paul

    2015-11-01

    Questions about the appropriateness of medical imaging exams, particularly related to magnetic resonance exams, have arisen in recent years. However, the prevalence of inappropriate imaging in Canada is unclear as inappropriate exam proportion estimates are often based on studies from other countries. Hence, we sought to compare and summarize Canadian studies related to magnetic resonance imaging appropriateness. We completed a systematic literature search identifying studies related to magnetic resonance appropriateness in Canada published between 2003 and 2013. Two researchers independently searched and evaluated the literature available. Articles that studied or discussed magnetic resonance appropriateness in Canada were selected based on titles, abstracts, and, where necessary, full article review. Articles relating solely to other modalities or countries were excluded, as were imaging appropriateness guidelines and reviews. Fourteen articles were included: 8 quantitative studies and 6 editorials/commentaries. The quantitative studies reported inappropriate proportions of magnetic resonance exams ranging from 2%-28.5%. Our review also revealed substantial variations among study methods and analyses. Common topics identified among editorials/commentaries included reasons for obtaining imaging in general and for selecting a specific modality, consequences of inappropriate imaging, factors contributing to demand, and suggested means of mitigating inappropriate medical imaging use. The available studies do not support the common claim that 30% of medical imaging exams in Canada are inappropriate. The actual proportion of inappropriate magnetic resonance exams has not yet been established conclusively in Canada. Further research, particularly on a widespread national scale, is needed to guide healthcare policies. Copyright © 2015 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer.

    PubMed

    Baco, Eduard; Rud, Erik; Vlatkovic, Ljiljana; Svindland, Aud; Eggesbø, Heidi B; Hung, Andrew J; Matsugasumi, Toru; Bernhard, Jean-Christophe; Gill, Inderbir S; Ukimura, Osamu

    2015-02-01

    Tumor contact length is defined as the amount of prostate cancer in contact with the prostatic capsule. We evaluated the ability of magnetic resonance imaging determined tumor contact length to predict microscopic extracapsular extension compared to existing predictors of extracapsular extension. We retrospectively analyzed the records of 111 consecutive patients with magnetic resonance imaging/ultrasound fusion targeted, biopsy proven prostate cancer who underwent radical prostatectomy from January 2010 to July 2013. Median patient age was 64 years and median prostate specific antigen was 8.9 ng/ml. Clinical stage was cT1 in 93 cases (84%) and cT2 in 18 (16%). Postoperative pathological analysis confirmed pT2 in 71 patients (64%) and pT3 in 40 (36%). We evaluated 1) in the radical prostatectomy specimen the correlation of microscopic extracapsular extension with pathological cancer volume, pathological tumor contact length and Gleason score, 2) the correlation between microscopic extracapsular extension and magnetic resonance imaging tumor contact length, and 3) the ability of preoperative variables to predict microscopic extracapsular extension. Logistic regression analysis revealed that pathological tumor contact length correlated better with microscopic extracapsular extension than the predictive power of pathological cancer volume (0.821 vs 0.685). The Spearman correlation between pathological and magnetic resonance imaging tumor contact length was r = 0.839 (p <0.0001). ROC AUC analysis revealed that magnetic resonance imaging tumor contact length outperformed cancer core involvement on targeted biopsy and the Partin tables to predict microscopic extracapsular extension (0.88 vs 0.70 and 0.63, respectively). At a magnetic resonance imaging tumor contact length threshold of 20 mm the accuracy for diagnosing microscopic extracapsular extension was superior to that of conventional magnetic resonance imaging criteria (82% vs 67%, p = 0.015). We developed a predicted probability plot curve of extracapsular extension according to magnetic resonance imaging tumor contact length. Magnetic resonance imaging determined tumor contact length could be a promising quantitative predictor of microscopic extracapsular extension. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Magnetic Resonance Imaging Targeted Biopsy Improves Selection of Patients Considered for Active Surveillance for Clinically Low Risk Prostate Cancer Based on Systematic Biopsies.

    PubMed

    Ouzzane, Adil; Renard-Penna, Raphaele; Marliere, François; Mozer, Pierre; Olivier, Jonathan; Barkatz, Johann; Puech, Philippe; Villers, Arnauld

    2015-08-01

    Current selection criteria for active surveillance based on systematic biopsy underestimate prostate cancer volume and grade. We investigated the role of additional magnetic resonance imaging targeted biopsy in reclassifying patients eligible for active surveillance based on systematic biopsy. We performed a study at 2 institutions in a total of 281 men with increased prostate specific antigen. All men met certain criteria, including 1) prebiopsy magnetic resonance imaging, 12-core transrectal systematic biopsy and 2 additional magnetic resonance imaging targeted biopsies of lesions suspicious for cancer during the same sequence as systematic biopsy, and 2) eligibility for active surveillance based on systematic biopsy results. Criteria for active surveillance were prostate specific antigen less than 10 ng/ml, no Gleason grade 4/5, 5 mm or less involvement of any biopsy core and 2 or fewer positive systematic biopsy cores. Patient characteristics were compared between reclassified and nonreclassified groups based on magnetic resonance imaging targeted biopsy results. On magnetic resonance imaging 58% of the 281 patients had suspicious lesions. Magnetic resonance imaging targeted biopsy was positive for cancer in 81 of 163 patients (50%). Of 281 patients 28 (10%) were reclassified by magnetic resonance imaging targeted biopsy as ineligible for active surveillance based on Gleason score in 8, cancer length in 20 and Gleason score plus cancer length in 9. Suspicious areas on magnetic resonance imaging were in the anterior part of the prostate in 15 of the 28 men (54%). Reclassified patients had a smaller prostate volume (37 vs 52 cc) and were older (66.5 vs 63 years) than those who were not reclassified (p < 0.05). Magnetic resonance imaging targeted biopsy reclassified 10% of patients who were eligible for active surveillance based on systematic biopsy. Its incorporation into the active surveillance eligibility criteria may decrease the risk of reclassification to higher stages during followup. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  8. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences.

    PubMed

    Reagan, Adrian C; Mallinson, Paul I; O'Connell, Timothy; McLaughlin, Patrick D; Krauss, Bernhard; Munk, Peter L; Nicolaou, Savvas; Ouellette, Hugue A

    2014-01-01

    Computed tomography (CT) is often used to assess the presence of occult fractures when plain radiographs are equivocal in the acute traumatic setting. While providing increased spatial resolution, conventional computed tomography is limited in the assessment of bone marrow edema, a finding that is readily detectable on magnetic resonance imaging (MRI).Dual-energy CT has recently been shown to demonstrate patterns of bone marrow edema similar to corresponding MRI studies. Dual-energy CT may therefore provide a convenient modality for further characterizing acute bony injury when MRI is not readily available. We report our initial experiences of 4 cases with imaging and clinical correlation.

  9. Neuroimaging in pedophilia.

    PubMed

    Wiebking, Christine; Northoff, Georg

    2013-04-01

    Paraphilia is a set of disorders characterized by abnormal sexual desires. Perhaps most discussed amongst them, pedophilia is a complex interaction of disturbances of the emotional, cognitive and sexual experience. Using new imaging techniques such as functional magnetic resonance imaging, neural correlates of emotional, sexual and cognitive abnormalities and interactions have been investigated. As described on the basis of current research, altered patterns of brain activity, especially in the frontal areas of the brain, are seen in pedophilia. Building on these results, the analysis of neural correlates of impaired psychological functions opens the opportunity to further explore sexual deviances, which may contribute ultimately to the development of tools for risk assessment, classification methods and new therapeutic approaches.

  10. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    PubMed

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  11. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  12. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  13. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    PubMed

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. [Hydrocephalus in childhood : causes and imaging patterns].

    PubMed

    Pomschar, A; Koerte, I; Peraud, A; Heinen, F; Herber-Jonat, S; Reiser, M; Ertl-Wagner, B

    2012-09-01

    Causes and imaging patterns of hydrocephalus differ depending on the age of the patient. Traditionally, hydrocephalus was classified into non-communicating and communicating hydrocephalus but more recent classifications also take the site of occlusion and the etiology into account. For the diagnostic work-up computed tomography (CT), sonography and magnetic resonance imaging (MRI) are available and MRI is the method of choice for children and adolescents as it allows determination of the cause and location of a possible obstruction. In the first 12-18 months sonography allows evaluation of the lateral ventricles and the third ventricle and CT is usually only chosen in children in emergency situations and/or if no other modality is available. We retrospectively evaluated a population of 785 children and adolescents (426 males aged 0-17 years) referred for MRI between April 2009 and March 2012 due to headaches, somnolence, concentration difficulties or developmental delay. Among these 80 (49 male) met the MRI criteria for hydrocephalus, 75 (46 male) had non-communicating hydrocephalus and 5 (3 male) communicating hydrocephalus. Of the patients 24 (15 male) had posthemorrhagic aqueductal stenosis, 16 (8 male) intracranial tumors, 9 (6 male) Chiari II malformations, 5 (4 male) other congenital malformations including malformations of the Dandy Walker spectrum, 9 (3 male) idiopathic aqueductal stenosis, 7 (5 male) arachnoidal cysts and 10 (8 male) other disorders, such as post-infections, macrocephaly cutis marmorata telangiectatica congenita (M-CMTC) syndrome, mesencephalic arteriovenous malformation (AVM), Langerhans cell histiocystosis. It is important to take the age of the patient and the imaging pattern into account and to exclude tumors when reporting MR images of children with hydrocephalus.

  15. Diagnosis of Nipple Discharge: Value of Magnetic Resonance Imaging and Ultrasonography in Comparison with Ductoscopy.

    PubMed

    Yılmaz, Ravza; Bender, Ömer; Çelik Yabul, Fatma; Dursun, Menduh; Tunacı, Mehtap; Acunas, Gülden

    2017-04-05

    Pathologic nipple discharge, which is a common reason for referral to the breast imaging service, refers to spontaneous or bloody nipple discharge that arises from a single duct. The most common cause of nipple discharge is benign breast lesions, such as solitary intraductal papilloma and papillomatosis. Nevertheless, in rare cases, a malignant cause of nipple discharge can be found. To study the diagnostic value of ultrasonography, magnetic resonance imaging, and ductoscopy in patients with pathologic nipple discharge, compare their efficacy, and investigate the importance of magnetic resonance imaging in the diagnosis of intraductal pathologies. Diagnostic accuracy study. Fifty patients with pathologic nipple discharge were evaluated by ultrasonography and magnetic resonance imaging. Of these, 44 ductoscopic investigations were made. The patients were classified according to magnetic resonance imaging, ultrasonography, and ductoscopy findings. A total of 25 patients, whose findings were reported as intraductal masses, underwent surgery oincluding endoscopic excision for two endoscopic excision. Findings were compared with the pathology results that were accepted as the gold standard in the description of the aetiology of nipple discharge. In addition, magnetic resonance imaging, ultrasonography and ductoscopy findings were analysed comparatively in patients who had no surgery. Intraductal masses were reported in 26 patients, 20 of whom operated and established accurate diagnosis of 18 patients on magnetic resonance imaging. According to the ultrasonography, intraductal masses were identified in 22 patients, 17 of whom underwent surgery. Ultrasonography established accurate diagnoses in 15 patients. Intraductal mass was identified in 22 patients and ductoscopy established accurate diagnoses based on histopathologic results in 16 patients. The sensitivities of methods were 75% in ultrasonography, 90% in magnetic resonance imaging, and 94.6% in ductoscopy. The specificities were 66.7% in ultrasonography, 66.7% in magnetic resonance imaging, and 40% in ductoscopy. Intraductal papillomas were mostly observed as oval nodules with well-circumscribed smooth margins within dilated ducts and persistant in the dynamic analysis. Lesions that protruded into the lumen of the ducts, either solitary or multiple, were characteristic ductoscopy findings of our patients who were diagnosed as having papilloma/papillomatosis. Magnetic resonance imaging and ductoscopy had no statistical superiority over each other, however they were superior to ultrasonography in the diagnosis of pathologic nipple discharge. Magnetic resonance imaging may be highly sensitive for diagnosing nipple discharge with new techniques and sequences and a non-invasive method that more advantageous for showing ductal tree visualization and is able to detect completely obstructed intraductal lesions.

  16. A Single Center Evaluation of the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging against Transperineal Prostate Mapping Biopsy: An Analysis of Men with Benign Histology and Insignificant Cancer following Transrectal Ultrasound Biopsy.

    PubMed

    Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J

    2018-03-01

    In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more accurate diagnostic test than transrectal ultrasound guided biopsy. However, a significant proportion of ISUP (International Society of Urological Pathology) Grade Group 2 prostate cancer remained undetected following multiparametric magnetic resonance imaging. Although multiparametric magnetic resonance imaging could avoid unnecessary biopsy in many patients with ISUP Grade Group 3 or greater prostate cancer, at less stringent definitions of significant cancer a substantial proportion of prostate cancer would remain undetected after multiparametric magnetic resonance imaging. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Identification of cortex in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    VanMeter, John W.; Sandon, Peter A.

    1992-06-01

    The overall goal of the work described here is to make available to the neurosurgeon in the operating room an on-line, three-dimensional, anatomically labeled model of the patient brain, based on pre-operative magnetic resonance (MR) images. A stereotactic operating microscope is currently in experimental use, which allows structures that have been manually identified in MR images to be made available on-line. We have been working to enhance this system by combining image processing techniques applied to the MR data with an anatomically labeled 3-D brain model developed from the Talairach and Tournoux atlas. Here we describe the process of identifying cerebral cortex in the patient MR images. MR images of brain tissue are reasonably well described by material mixture models, which identify each pixel as corresponding to one of a small number of materials, or as being a composite of two materials. Our classification algorithm consists of three steps. First, we apply hierarchical, adaptive grayscale adjustments to correct for nonlinearities in the MR sensor. The goal of this preprocessing step, based on the material mixture model, is to make the grayscale distribution of each tissue type constant across the entire image. Next, we perform an initial classification of all tissue types according to gray level. We have used a sum of Gaussian's approximation of the histogram to perform this classification. Finally, we identify pixels corresponding to cortex, by taking into account the spatial patterns characteristic of this tissue. For this purpose, we use a set of matched filters to identify image locations having the appropriate configuration of gray matter (cortex), cerebrospinal fluid and white matter, as determined by the previous classification step.

  18. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  19. Hamstring Muscle Use in Females During Hip-Extension and the Nordic Hamstring Exercise: An fMRI Study.

    PubMed

    Messer, Daniel J; Bourne, Matthew N; Williams, Morgan D; Al Najjar, Aiman; Shield, Anthony J

    2018-04-23

    Study Design Cross-sectional study. Background Understanding hamstring muscle activation patterns in resistance training exercises may have implications for the design of strength training and injury prevention programs. Unfortunately, surface electromyography studies have reported conflicting results with regard to hamstring muscle activation patterns in women. Objectives To determine the spatial patterns of hamstring muscle activity during the 45º hip-extension and Nordic hamstring exercises, in females using functional magnetic resonance imaging. Methods Six recreationally active females with no history of lower limb injury underwent functional magnetic resonance imaging (fMRI) on both thighs before and immediately after 5 sets of 6 bilateral eccentric contractions of the 45º hip-extension or Nordic exercises. Using fMRI, the transverse (T2) relaxation times were measured from pre- and post- exercise scans and the percentage increase in T2 was used as an index of muscle activation. Results fMRI revealed a significantly higher biceps femoris long head (BF LongHead ) to semitendinosus ratio during the 45° hip-extension than the Nordic exercise (P = .028). The T2 increase after 45° hip-extension was greater for BF LongHead (P < .001), semitendinosus and semimembranosus (P = .001) than that of biceps femoris short head (BF ShortHead ). During the Nordic exercise, the T2 increase for semitendinosus was greater than that of BF ShortHead (P < .001) and BF LongHead (P = .001). Conclusion While both exercises involve high levels of semitendinosus activation in women, the Nordic exercise preferentially recruits that muscle while the hip extension more evenly activates all of the biarticular hamstrings. J Orthop Sports Phys Ther, Epub 23 Apr 2018. doi:10.2519/jospt.2018.7748.

  20. Blood Oxygenation Level-Dependent Functional Magnetic Resonance Imaging in Early Days: Correlation between Passive Activation and Motor Recovery After Unilateral Striatocapsular Cerebral Infarction.

    PubMed

    Zhou, Long-Jiang; Wang, Wei; Zhao, Yi; Liu, Chun-Feng; Zhang, Xin-Jiang; Liu, Zhen-Sheng; Li, Hua-Dong

    2017-11-01

    This study aimed to investigate the correlation between the functional magnetic resonance imaging (fMRI) pattern and the motor function recovery of an affected limb during the passive movement of the affected limb at an early stage of the striatocapsular infarction (SCI). A total of 17 patients with an acute stage of SCI and 3 healthy volunteers as controls were included in this study. fMRI scans of passive movement were performed on the affected limbs of stroke patients within 1 week of onset. Follow-ups were carried out for the motor functions of the affected limbs (before fMRI scan, 1 month, and 3 months after the scan). The control group showed that the activation was mainly located in the contralateral sensorimotor cortex (SMC) and the bilateral supplementary motor area (SMA). The fMRI scan region of interest for stroke patients can be divided into 3 types: type I includes mainly the affected side, bilateral SMC, and SMA with activation; type II includes SMC on the affected side and SMA with activation; type III includes only SMC on the affected side or M1 with activation. The recovery of type I patients was better and faster, while the recovery of type II patients was better but slower, but recovery of type III patients was poorer and slower. Multiple cortical activation patterns were noted during the passive movement of the affected limbs at an early stage of SCI, and a correlation was found between the different activation patterns and the clinical prognosis of patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates.

    PubMed

    Bouts, Mark J R J; Westmoreland, Susan V; de Crespigny, Alex J; Liu, Yutong; Vangel, Mark; Dijkhuizen, Rick M; Wu, Ona; D'Arceuil, Helen E

    2015-12-15

    Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P < 0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P < 0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.

  2. Microwave nonlinearity and photoresponse of superconducting resonators with columnar defect micro-channels

    NASA Astrophysics Data System (ADS)

    Remillard, S. K.; Kirkendall, D.; Ghigo, G.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Yang, Z.; Mendelsohn, N. A.; Ghamsari, B. G.; Friedman, B.; Jung, P.; Anlage, S. M.

    2014-09-01

    Micro-channels of nanosized columnar tracks were planted by heavy-ion irradiation into superconducting microwave microstrip resonators that were patterned from YBa2Cu3O7 - x thin films on LaAlO3 substrates. Three different ion fluences were used, producing different column densities, with each fluence having a successively greater impact on the microwave nonlinearity of the device, as compared to a control sample. Photoresponse (PR) images made with a 638 nm rastered laser beam revealed that the channel is a location of enhanced PR and a hot spot for the generation of intermodulation distortion. The microwave PR technique was also advanced in this work by investigating the role of coupling strength on the distribution of PR between inductive and resistive components.

  3. Magnetic resonance imaging appearance of oxidized regenerated cellulose in breast cancer surgery.

    PubMed

    Giuliani, Michela; Rella, Rossella; Fubelli, Rita; Patrolecco, Federica; Di Giovanni, Silvia Eleonora; Buccheri, Chiara; Padovano, Federico; Belli, Paolo; Romani, Maurizio; Rinaldi, Pierluigi; Bufi, Enida; Franceschini, Gianluca; Bonomo, Lorenzo

    2016-09-01

    To describe magnetic resonance imaging (MRI) findings in patients who underwent breast-conserving surgery followed by oxidized regenerated cellulose (ORC) implantation in surgical cavity. We retrospectively reviewed 51 MRI examinations performed between January 2009 and January 2014 in 51 patients who underwent BCS with ORC implantation. In 29/51 (57 %) cases, MRIs showed abnormal findings with three main MRI patterns: (1) complex masses: hyperintense collections on T2-weighted (w) images with internal round hypointense nodules without contrast enhancement (55 %); (2) completely hyperintense collections (17 %); and (3) completely hypointense lesions (28 %). All lesions showed rim enhancement on T1w images obtained in the late phase of the dynamic study with a type 1 curve. Diffusion-weighted imaging was negative in all MRIs and, in particular, 22/29 (76 %) lesions were hyperintense but showing ADC values >1.4 × 10(-3) mm(2)/s, while the remaining 7/29 (24 %) lesions were hypointense. In four cases, linear non-mass-like enhancement was detected at the periphery of surgical cavity; these patients were addressed to a short-term follow-up, and the subsequent examinations showed the resolution of these findings. When applied to surgical residual cavity, ORC can lead alterations in surgical scar. This could induce radiologists to misinterpret ultrasonographic and mammographic findings, addressing patients to MRI or biopsy; so knowledge of MRI specific features of ORC, it is essential to avoid misdiagnosis of recurrence.

  4. Noncontrast Magnetic Resonance Lymphography.

    PubMed

    Arrivé, Lionel; Derhy, Sarah; El Mouhadi, Sanaâ; Monnier-Cholley, Laurence; Menu, Yves; Becker, Corinne

    2016-01-01

    Different imaging techniques have been used for the investigation of the lymphatic channels and lymph glands. Noncontrast magnetic resonance (MR) lymphography has significant advantages in comparison with other imaging modalities. Noncontrast MR lymphography uses very heavily T2-weighted fast spin echo sequences which obtain a nearly complete signal loss in tissue background and specific display of lymphatic vessels with a long T2 relaxation time. The raw data can be processed with different algorithms such as maximum intensity projection algorithm to obtain an anatomic representation. Standard T2-weighted MR images easily demonstrate the location of edema. It appears as subcutaneous infiltration of soft tissue with a classical honeycomb pattern. True collection around the muscular area may be demonstrated in case of severe lymphedema. Lymph nodes may be normal in size, number, and signal intensity; in other cases, lymph nodes may be smaller in size or number of lymph nodes may be restricted. MR lymphography allows a classification of lymphedema in aplasia (no collecting vessels demonstrated); hypoplasia (a small number of lymphatic vessels), and numerical hyperplasia or hyperplasia (with an increased number of lymphatic vessels of greater and abnormal diameter). Noncontrast MR lymphography is a unique noninvasive imaging modality for the diagnosis of lymphedema. It can be used for positive diagnosis, differential diagnosis, and specific evaluation of lymphedema severity. It may also be used for follow-up evaluation after treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    PubMed

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  6. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2010-09-01

    resonance imaging . We focus specifically on dynamic contrast-enhanced (DCE) imaging of breast cancer patients. The fundamental challenge in dynamic MRI is...Venkatesan, Magnetic resonance imaging : Physical principles and sequence design, Wiley, New York, 1999. 14 [7] P. S. Tofts and A. G. Kermode, “Measurement...10, no. 3, pp. 223–32, Sept. 1999. [12] D. C. Noll, D. G. Nishimura, and A. Macovski, “Homodyne detection in magnetic resonance imaging ,” IEEE Trans

  7. Serial Magnetic Resonance Imaging in Active Surveillance of Prostate Cancer: Incremental Value.

    PubMed

    Felker, Ely R; Wu, Jason; Natarajan, Shyam; Margolis, Daniel J; Raman, Steven S; Huang, Jiaoti; Dorey, Fred; Marks, Leonard S

    2016-05-01

    We assessed whether changes in serial multiparametric magnetic resonance imaging can help predict the pathological progression of prostate cancer in men on active surveillance. A retrospective cohort study was conducted of 49 consecutive men with Gleason 6 prostate cancer who underwent multiparametric magnetic resonance imaging at baseline and again more than 6 months later, each followed by a targeted prostate biopsy, between January 2011 and May 2015. We evaluated whether progression on multiparametric magnetic resonance imaging (an increase in index lesion suspicion score, increase in index lesion volume or decrease in index lesion apparent diffusion coefficient) could predict pathological progression (Gleason 3 + 4 or greater on subsequent biopsy, in systematic or targeted cores). Diagnostic performance of multiparametric magnetic resonance imaging was determined with and without clinical data using a binary logistic regression model. The mean interval between baseline and followup multiparametric magnetic resonance imaging was 28.3 months (range 11 to 43). Pathological progression occurred in 19 patients (39%). The sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging was 37%, 90%, 69% and 70%, respectively. Area under the receiver operating characteristic curve was 0.63. A logistic regression model using clinical information (maximum cancer core length greater than 3 mm on baseline biopsy or a prostate specific antigen density greater than 0.15 ng/ml(2) at followup biopsy) had an AUC of 0.87 for predicting pathological progression. The addition of serial multiparametric magnetic resonance imaging data significantly improved the AUC to 0.91 (p=0.044). Serial multiparametric magnetic resonance imaging adds incremental value to prostate specific antigen density and baseline cancer core length for predicting Gleason 6 upgrading in men on active surveillance. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Retrospective review of 50 canine nasal tumours evaluated by low-field magnetic resonance imaging.

    PubMed

    Avner, A; Dobson, J M; Sales, J I; Herrtage, M E

    2008-05-01

    Low-field magnetic resonance imaging machines are being used more often in veterinary practice for the investigation of sinonasal disease. The aim of this retrospective study was to describe and characterise the low-field magnetic resonance imaging features of nasal tumours in dogs. The Queen's Veterinary School Hospital magnetic resonance imaging database (2001-2005) was searched for dogs with a magnetic resonance imaging diagnosis of a nasal tumour. Fifty cases with histological diagnosis of nasal tumour were found. The appearance and extent of the nasal tumour as well as the involvement of adjacent anatomic structures were examined against a checklist. The most common magnetic resonance imaging findings were as follows. (1) Soft tissue mass replacing the destroyed nasal conchae and/or ethmoturbinates (98 per cent of cases). (2) Nasal septum destruction (68 per cent of cases). (3) Retained secretions with or without mass caudally in frontal sinuses (62 per cent of cases). (4) Nasal/frontal bone destruction (52 per cent of cases). Low-field magnetic resonance imaging allowed differentiation of tumour tissue from retained secretions or necrotic tissue. Magnetic resonance imaging was invaluable in assessing the extension of the tumour into the maxillary recesses, caudal recesses, nasopharynx, adjacent bones and cranial cavity. The tumour often extended caudally into the frontal sinuses, nasopharynx and perhaps most importantly into the caudal recesses. Tumour extension into the cranial cavity was not common (16 per cent), and only three of these cases showed neurological signs. However, 54 per cent of cases showed focal meningeal (dural) hyperintensity, although the significance of this is unclear. A significant difference (P<0.05) in tumour signal intensity between the sarcomas and carcinomas was found. The use of a low-field magnetic resonance imaging technique is excellent for the diagnosis and determination of extent of sinonasal tumours.

  9. Polarization-resolved optical response of plasmonic particle-on-film nanocavities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.

    2018-02-01

    Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.

  10. The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas.

    PubMed

    Guo, Jun; Yao, Chengjun; Chen, Hong; Zhuang, Dongxiao; Tang, Weijun; Ren, Guang; Wang, Yin; Wu, Jinsong; Huang, Fengping; Zhou, Liangfu

    2012-08-01

    The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. Eighteen patients with different grades of glioma were examined using (1)H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. HGG and LGG exhibit different spectroscopic patterns. Using (1)H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.

  11. Functional magnetic resonance imaging of working memory in Huntington's disease: cross-sectional data from the IMAGE-HD study.

    PubMed

    Georgiou-Karistianis, Nellie; Stout, Julie C; Domínguez D, Juan F; Carron, Sarah P; Ando, Ayaka; Churchyard, Andrew; Chua, Phyllis; Bohanna, India; Dymowski, Alicia R; Poudel, Govinda; Egan, Gary F

    2014-05-01

    We used functional magnetic resonance imaging (fMRI) to investigate spatial working memory (WM) in an N-BACK task (0, 1, and 2-BACK) in premanifest Huntington's disease (pre-HD, n = 35), early symptomatic Huntington's disease (symp-HD, n = 23), and control (n = 32) individuals. Overall, both WM conditions (1-BACK and 2-BACK) activated a large network of regions throughout the brain, common to all groups. However, voxel-wise and time-course analyses revealed significant functional group differences, despite no significant behavioral performance differences. During 1-BACK, voxel-wise blood-oxygen-level-dependent (BOLD) signal activity was significantly reduced in a number of regions from the WM network (inferior frontal gyrus, anterior insula, caudate, putamen, and cerebellum) in pre-HD and symp-HD groups, compared with controls; however, time-course analysis of the BOLD response in the dorsolateral prefrontal cortex (DLPFC) showed increased activation in symp-HD, compared with pre-HD and controls. The pattern of reduced voxel-wise BOLD activity in pre-HD and symp-HD, relative to controls, became more pervasive during 2-BACK affecting the same structures as in 1-BACK, but also incorporated further WM regions (anterior cingulate gyrus, parietal lobe and thalamus). The DLPFC BOLD time-course for 2-BACK showed a reversed pattern to that observed in 1-BACK, with a significantly diminished signal in symp-HD, relative to pre-HD and controls. Our findings provide support for functional brain reorganisation in cortical and subcortical regions in both pre-HD and symp-HD, which are modulated by task difficulty. Moreover, the lack of a robust striatal BOLD signal in pre-HD may represent a very early signature of change observed up to 15 years prior to clinical diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  12. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.

    PubMed

    Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia

    2014-06-01

    Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Computed tomography and magnetic resonance imaging findings of intraorbital granular cell tumor (Abrikossoff's tumor): a case report.

    PubMed

    Yuan, Wei-Hsin; Lin, Tai-Chi; Lirng, Jiing-Feng; Guo, Wan-You; Chang, Fu-Pang; Ho, Donald Ming-Tak

    2016-05-13

    Granular cell tumors are rare neoplasms which can occur in any part of the body. Granular cell tumors of the orbit account for only 3 % of all granular cell tumor cases. Computed tomography and magnetic resonance imaging of the orbit have proven useful for diagnosing orbital tumors. However, the rarity of intraorbital granular cell tumors poses a significant diagnostic challenge for both clinicians and radiologists. We report a case of a 37-year-old Chinese woman with a rare intraocular granular cell tumor of her right eye presenting with diplopia, proptosis, and restriction of ocular movement. Preoperative orbital computed tomography and magnetic resonance imaging with contrast enhancement revealed an enhancing solid, ovoid, well-demarcated, retrobulbar nodule. In addition, magnetic resonance imaging features included an intraorbital tumor which was isointense relative to gray matter on T1-weighted imaging and hypointense on T2-weighted imaging. No diffusion restriction of water was noted on either axial diffusion-weighted images or apparent diffusion coefficient maps. Both computed tomography and magnetic resonance imaging features suggested an intraorbital hemangioma. However, postoperative pathology (together with immunohistochemistry) identified an intraorbital granular cell tumor. When intraorbital T2 hypointensity and free diffusion of water are observed on magnetic resonance imaging, a granular cell tumor should be included in the differential diagnosis of an intraocular tumor.

  15. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns.

    PubMed

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C

    2016-04-05

    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.

  16. Possibility of transrectal photoacoustic imaging-guided biopsy for detection of prostate cancer

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Shinchi, Masayuki; Horiguchi, Akio; Shinmoto, Hiroshi; Tsuda, Hitoshi; Irisawa, Kaku; Wada, Takatsugu; Asano, Tomohiko

    2017-03-01

    A transrectral ultrasonography (TRUS) guided prostate biopsy is mandatory for histological diagnosis in patients with an elevated serum prostate-specific antigen (PSA), but its diagnostic accuracy is not satisfactory; therefore, a considerable number of patients are forced to have an unnecessary repeated biopsy. Photoacoustic (PA) imaging has the ability to visualize the distribution of hemoglobin clearly. Thus, there is the potential to acquire different maps of small vessel networks between cancerous and normal tissue. We developed an original TRUS-type PA probe consisting of a microconvex array transducer with an optical illumination system providing coregistered PA and ultrasound images. The purpose of this study is to demonstrate the clinical possibility of a transrectral PA image. The prostate biopsy cores obtained by transrectal systemic biopsies under TRUS guidance were stained with HE staining and anti-CD34 antibodies as a marker of the endothelium of the blood vessel in order to find a pattern in the map of a small vessel network, which allows for imaging-based identification of prostate cancer. We analyzed the association of PA signal patterns, the cancer location by a magnetic resonance imaging (MRI) study, and the pathological diagnosis with CD34 stains as a prospective intervention study. In order to demonstrate the TRUS-merged-with-PA imaging guided targeted biopsy combined with a standard biopsy for capturing the clinically significant tumors, we developed a puncture needle guide attachment for the original TRUS-type PA probe.

  17. A comparison of functional magnetic resonance imaging findings in children with and without a history of early exposure to general anesthesia.

    PubMed

    Taghon, Thomas A; Masunga, Abigail N; Small, Robert H; Kashou, Nasser H

    2015-03-01

    Functional magnetic resonance imaging (fMRI) has been used to evaluate the long-term consequences of early exposure to neurotoxic agents. fMRI shows that different patterns of brain activation occur in ethanol-exposed subjects performing a go/no-go response inhibition task. Pharmacologically, ethanol and general anesthetics have similar receptor-level activity in the brain. This study utilizes fMRI to examine brain activation patterns in children exposed to general anesthesia and surgery during early brain development. After obtaining Nationwide Children's Hospital IRB approval, a surgical database was utilized to identify children aged 10-17 years with a history of at least 1 h of exposure to general anesthetics and surgery when they were between 0 and 24 months of age. Age- and gender-matched children without anesthesia exposure were recruited as a control group. All subjects were scanned while being presented with a go/no-go response inhibition task. Reaction time and accuracy data were acquired, and the blood-oxygen-level-dependent (BOLD) fMRI signal was measured as a biomarker for regional neuronal activity. There were no differences in terms of performance accuracy and response time. The analysis did not reveal any significant activation differences in the primary region of interest (prefrontal cortex and caudate nucleus); however, activation differences were seen in other structures, including the cerebellum, cingulate gyrus, and paracentral lobule. Early anesthetic exposure and surgery did not affect accuracy, response time, or activation patterns in the primary region of interest during performance of the task. Intergroup differences in activation patterns in other areas of the brain were observed, and the significance of these findings is unknown. fMRI appears to be a useful tool in evaluating the long-term effects of early exposure to general anesthesia. © 2015 John Wiley & Sons Ltd.

  18. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.

  19. Intra-epiphyseal stress injury of the proximal tibial epiphysis: preliminary experience of magnetic resonance imaging findings.

    PubMed

    Tony, G; Charran, A; Tins, B; Lalam, R; Tyrrell, P N M; Singh, J; Cool, P; Kiely, N; Cassar-Pullicino, V N

    2014-11-01

    Stress induced injuries affecting the physeal plate or cortical bone in children and adolescents, especially young athletes, have been well described. However, there are no reports in the current English language literature of stress injury affecting the incompletely ossified epiphyseal cartilage. We present four cases of stress related change to the proximal tibial epiphysis (PTE) along with their respective magnetic resonance imaging (MRI) appearances ranging from subtle oedema signal to a pseudo-tumour like appearance within the epiphyseal cartilage. The site and pattern of intra-epiphyseal injury is determined by the type of tissue that is affected, the maturity of the skeleton and the type of forces that are transmitted through the tissue. We demonstrate how an awareness of the morphological spectrum of MRI appearances in intra-epiphyseal stress injury and the ability to identify concomitant signs of stress in other nearby structures can help reduce misdiagnosis, avoid invasive diagnostic procedures like bone biopsy and reassure patients and their families. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging

    PubMed Central

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  1. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes

    PubMed Central

    Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B.; Hu, Xiaoping; Herndon, James G.; Preuss, Todd M.; Rilling, James K.

    2013-01-01

    Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. PMID:23623601

  2. Functional MRI of a child with Alice in Wonderland syndrome during an episode of micropsia

    PubMed Central

    Brumm, Kathleen; Walenski, Matthew; Haist, Frank; Robbins, Shira L.; Granet, David B.; Love, Tracy

    2010-01-01

    Background Alice in Wonderland syndrome is a perceptual disorder involving brief, transient episodes of visual distortions (metamorphopsia) and can occur in conjunction with certain viral infections. We used functional magnetic resonance imaging to examine visual processing in a 12-year-old boy with viral-onset Alice in Wonderland syndrome during an episode of micropsia (reduction in the perceived size of a form). Methods Functional magnetic resonance imaging was conducted in response to a passive viewing task (reversing checkerboard) and an active viewing task (line-length decisions in the context of the Ponzo illusion). Results In both tasks, the child with Alice in Wonderland syndrome showed reduced activation in primary and extrastriate visual cortical regions but increased activation in parietal lobe cortical regions as compared to a matched control participant. Conclusions The active experience of micropsia in viral-onset Alice in Wonderland syndrome reflects aberrant activity in primary and extrastriate visual cortical regions as well as parietal cortices. The disparate patterns of activity in these regions are discussed in detail. PMID:20598927

  3. Paralinguistic mechanisms of production in human "beatboxing": a real-time magnetic resonance imaging study.

    PubMed

    Proctor, Michael; Bresch, Erik; Byrd, Dani; Nayak, Krishna; Narayanan, Shrikanth

    2013-02-01

    Real-time magnetic resonance imaging (rtMRI) was used to examine mechanisms of sound production by an American male beatbox artist. rtMRI was found to be a useful modality with which to study this form of sound production, providing a global dynamic view of the midsagittal vocal tract at frame rates sufficient to observe the movement and coordination of critical articulators. The subject's repertoire included percussion elements generated using a wide range of articulatory and airstream mechanisms. Many of the same mechanisms observed in human speech production were exploited for musical effect, including patterns of articulation that do not occur in the phonologies of the artist's native languages: ejectives and clicks. The data offer insights into the paralinguistic use of phonetic primitives and the ways in which they are coordinated in this style of musical performance. A unified formalism for describing both musical and phonetic dimensions of human vocal percussion performance is proposed. Audio and video data illustrating production and orchestration of beatboxing sound effects are provided in a companion annotated corpus.

  4. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  5. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  6. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla

    PubMed Central

    Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3′-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history. PMID:22171355

  7. Soft tissue examination of the fetal rat and rabbit head by magnetic resonance imaging.

    PubMed

    French, Julian M; Woodhouse, Neil

    2013-01-01

    The use of magnetic resonance imaging of the fetal rat and rabbit head, as an alternative to the traditional methods of fixation and preparation of serial sections, is described. Labeled magnetic resonance images of normal head anatomy have been provided as a reference for use when evaluating the internal structures of the head.

  8. A dual flip angle 3D bSSFP magnetization transfer-like method to differentiate between recent and old myocardial infarction.

    PubMed

    Germain, Philippe; El Ghannudi, Soraya; Labani, Aissam; Jeung, Mi Y; Gangi, Afshin; Ohlmann, Patrick; Roy, Catherine

    2018-03-01

    Magnetic resonance imaging (MRI) tissue signal is modulated by magnetization transfer (MT) phenomena, intrinsically induced by balanced steady-state free precession (bSSFP) imaging. To investigate the possible value of such a MT-like bSSFP approach in two clinical settings involving focal myocardial lesions highligthed by late gadolinium enhancement (LGE+): edema induced by recent myocardial infarction (MI) and fibrotic scar related to chronic infarction. Population: 48 LGE + patients were studied: 26 with recent MI, 22 with chronic MI. 20 LGE-normal subjects were considered the control group. Field strength/sequence: Navigator-based short axis 3D-bSSFP sequences with 20° and 90° excitation flip angles were acquired (1.5T). Pixel-wise normalized MT Ratio (nMTR) parametric images were calculated according to: nMTR = 100*(S 20 -S 90 *k)/S 20 , with S 20 and S 90 signal intensity in 20° and 90° flip angle images and k = Blood 20 /Blood 90 as a normalization ratio. Statistical tests: analysis of variance (ANOVA), receiver operating characteristic (ROC) analysis. Overall normal myocardial nMTR was 50.2 ± 3.6%. In recent MI, nMTR values were significantly reduced in LGE + regions (-22.3 ± 9.9%, P < 0.0001). In cases of chronic infarct, nMTR was significantly increased in LGE + regions (14.2 ± 11.4%, P < 0.0001). Comparison between observed results and theoretical values obtained with the Freeman-Hill formula showed that most variations observed in MI are related to MT effects instead of relaxation effects. In contrast to LGE imaging, which may show a similar hyperenhancement in recent and old infarctions, nMTR imaging demonstrates an opposite pattern: decreased values for recent infarction and increased values for old infarction, thus allowing to discriminate between these two clinical conditions without gadolinium injection. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:798-808. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary-function generator (that is, a signal generator), an oscilloscope, a trigger filter, and an advanced charge-coupled-device (CCD) camera. The optical components are positioned to form a pupil image of the mirror under test on the CCD chip, so that the interference pattern representative of the instantaneous mirror shape is imaged on the CCD chip.

  10. Use of muscle functional magnetic resonance imaging to compare cervical flexor activity between patients with whiplash-associated disorders and people who are healthy.

    PubMed

    Cagnie, Barbara; Dolphens, Mieke; Peeters, Ian; Achten, Eric; Cambier, Dirk; Danneels, Lieven

    2010-08-01

    Chronic whiplash-associated disorders (WAD) have been shown to be associated with motor dysfunction. Increased electromyographic (EMG) activity in neck and shoulder girdle muscles has been demonstrated during different tasks in participants with persistent WAD. Muscle functional magnetic resonance imaging (mfMRI) is an innovative technique to evaluate muscle activity and differential recruitment of deep and superficial muscles following exercise. The purpose of this study was to compare the recruitment pattern of deep and superficial neck flexors between patients with WAD and controls using mfMRI. A cross-sectional design was used. The study was conducted in a physical and rehabilitation medicine department. The participants were 19 controls who were healthy (10 men, 9 women; mean [+/-SD] age=22.2+/-0.6 years) and 16 patients with WAD (5 men, 11 women; mean [+/-SD] age=32.9+/-12.7 years). The T2 values were calculated for the longus colli (Lco), longus capitis (Lca), and sternocleidomastoid (SCM) muscles at rest and following cranio-cervical flexion (CCF). In the overall statistical model for T2 shift, there was a significant main effect for muscle (F=3.906, P=.033) but not for group (F=2.855, P=.101). The muscle x group interaction effect was significant (F=3.618, P=.041). Although not significant, there was a strong trend for lesser Lco (P=.061) and Lca (P=.060) activity for the WAD group compared with the control group. Although the SCM showed higher T2 shifts, this difference was not significant (P=.291). Although mfMRI is an innovative and useful technique for the evaluation of deep cervical muscles, consideration is required, as this method encompasses a postexercise evaluation and is limited to resistance types of exercises. Muscle functional magnetic resonance imaging demonstrated a difference in muscle recruitment between the Lco, Lca, and SCM during CCF in the control group, but failed to demonstrate a changed activity pattern in the WAD group compared with the control group. The mild symptoms in the WAD group and the wide variability in T2 values may explain the lack of significance.

  11. Finding the imposter: brain connectivity of lesions causing delusional misidentifications.

    PubMed

    Darby, R Ryan; Laganiere, Simon; Pascual-Leone, Alvaro; Prasad, Sashank; Fox, Michael D

    2017-02-01

    SEE MCKAY AND FURL DOI101093/AWW323 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Focal brain injury can sometimes lead to bizarre symptoms, such as the delusion that a family member has been replaced by an imposter (Capgras syndrome). How a single brain lesion could cause such a complex disorder is unclear, leading many to speculate that concurrent delirium, psychiatric disease, dementia, or a second lesion is required. Here we instead propose that Capgras and other delusional misidentification syndromes arise from single lesions at unique locations within the human brain connectome. This hypothesis is motivated by evidence that symptoms emerge from sites functionally connected to a lesion location, not just the lesion location itself. First, 17 cases of lesion-induced delusional misidentifications were identified and lesion locations were mapped to a common brain atlas. Second, lesion network mapping was used to identify brain regions functionally connected to the lesion locations. Third, regions involved in familiarity perception and belief evaluation, two processes thought to be abnormal in delusional misidentifications, were identified using meta-analyses of previous functional magnetic resonance imaging studies. We found that all 17 lesion locations were functionally connected to the left retrosplenial cortex, the region most activated in functional magnetic resonance imaging studies of familiarity. Similarly, 16 of 17 lesion locations were functionally connected to the right frontal cortex, the region most activated in functional magnetic resonance imaging studies of expectation violation, a component of belief evaluation. This connectivity pattern was highly specific for delusional misidentifications compared to four other lesion-induced neurological syndromes (P < 0.0001). Finally, 15 lesions causing other types of delusions were connected to expectation violation (P < 0.0001) but not familiarity regions, demonstrating specificity for delusion content. Our results provide potential neuroanatomical correlates for impaired familiarity perception and belief evaluation in patients with delusional misidentifications. More generally, we demonstrate a mechanism by which a single lesion can cause a complex neuropsychiatric syndrome based on that lesion's unique pattern of functional connectivity, without the need for pre-existing or hidden pathology. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Finding the imposter: brain connectivity of lesions causing delusional misidentifications

    PubMed Central

    Darby, R Ryan; Laganiere, Simon; Pascual-Leone, Alvaro; Prasad, Sashank; Fox, Michael D

    2017-01-01

    Abstract See McKay and Furl (doi:10.1093/aww323) for a scientific commentary on this article. Focal brain injury can sometimes lead to bizarre symptoms, such as the delusion that a family member has been replaced by an imposter (Capgras syndrome). How a single brain lesion could cause such a complex disorder is unclear, leading many to speculate that concurrent delirium, psychiatric disease, dementia, or a second lesion is required. Here we instead propose that Capgras and other delusional misidentification syndromes arise from single lesions at unique locations within the human brain connectome. This hypothesis is motivated by evidence that symptoms emerge from sites functionally connected to a lesion location, not just the lesion location itself. First, 17 cases of lesion-induced delusional misidentifications were identified and lesion locations were mapped to a common brain atlas. Second, lesion network mapping was used to identify brain regions functionally connected to the lesion locations. Third, regions involved in familiarity perception and belief evaluation, two processes thought to be abnormal in delusional misidentifications, were identified using meta-analyses of previous functional magnetic resonance imaging studies. We found that all 17 lesion locations were functionally connected to the left retrosplenial cortex, the region most activated in functional magnetic resonance imaging studies of familiarity. Similarly, 16 of 17 lesion locations were functionally connected to the right frontal cortex, the region most activated in functional magnetic resonance imaging studies of expectation violation, a component of belief evaluation. This connectivity pattern was highly specific for delusional misidentifications compared to four other lesion-induced neurological syndromes (P < 0.0001). Finally, 15 lesions causing other types of delusions were connected to expectation violation (P < 0.0001) but not familiarity regions, demonstrating specificity for delusion content. Our results provide potential neuroanatomical correlates for impaired familiarity perception and belief evaluation in patients with delusional misidentifications. More generally, we demonstrate a mechanism by which a single lesion can cause a complex neuropsychiatric syndrome based on that lesion’s unique pattern of functional connectivity, without the need for pre-existing or hidden pathology. PMID:28082298

  13. Patterns of lumbar disc degeneration are different in degenerative disc disease and disc prolapse magnetic resonance imaging analysis of 224 patients.

    PubMed

    Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S

    2014-02-01

    Existing research on lumbar disc degeneration has remained inconclusive regarding its etiology, pathogenesis, symptomatology, prevention, and management. Degenerative disc disease (DDD) and disc prolapse (DP) are common diseases affecting the lumbar discs. Although they manifest clinically differently, existing studies on disc degeneration have included patients with both these features, leading to wide variations in observations. The possible relationship or disaffect between DDD and DP is not fully evaluated. To analyze the patterns of lumbar disc degeneration in patients with chronic back pain and DDD and those with acute DP. Prospective, magnetic resonance imaging-based radiological study. Two groups of patients (aged 20-50 years) were prospectively studied. Group 1 included patients requiring a single level microdiscectomy for acute DP. Group 2 included patients with chronic low back pain and DDD. Discs were assessed by magnetic resonance imaging through Pfirmann grading, Schmorl nodes, Modic changes, and the total end-plate damage score for all the five lumbar discs. Group 1 (DP) had 91 patients and group 2 (DDD) had 133 patients. DP and DDD patients differed significantly in the number, extent, and severity of degeneration. DDD patients had a significantly higher number of degenerated discs than DP patients (p<.000). The incidence of multilevel and pan-lumbar degeneration was also significantly higher in DDD group. The pattern of degeneration also differed in both the groups. DDD patients had predominant upper lumbar involvement, whereas DP patients had mainly lower lumbar degeneration. Modic changes were more common in DP patients, especially at the prolapsed level. Modic changes were present in 37% of prolapsed levels compared with 9.9% of normal discs (p<.00). The total end-plate damage score had a positive correlation with disc degeneration in both the groups. Further the mean total end-plate damage score at prolapsed level was also significantly higher. The results suggest that patients with disc prolapse, and those with back pain with DDD are clinically and radiologically different groups of patients with varying patterns, severity, and extent of disc degeneration. This is the first study in literature to compare and identify significant differences in these two commonly encountered patient groups. In patients with single-level DP, the majority of the other discs are nondegenerate, the lower lumbar spine is predominantly involved and the end-plate damage is higher. Patients with back pain and DDD have larger number of degenerate discs, early multilevel degeneration, and predominant upper lumbar degeneration. The knowledge that these two groups of patients are different clinically and radiologically is critical for our improved understanding of the disease and for future studies on disc degeneration and disc prolapse. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  15. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.

    PubMed

    Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M

    2009-12-22

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

  16. Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging.

    PubMed

    Hooley, Regina J; Andrejeva, Liva; Scoutt, Leslie M

    2011-03-01

    Although mammography is the mainstay of early breast cancer detection, it has known limitations, particularly in women with dense breasts. As a result, additional imaging modalities, including ultrasound and contrast-enhanced magnetic resonance imaging, are also being used to supplement mammography in the early detection of occult breast cancer. This article reviews the indications and efficacy of mammography, ultrasound, and magnetic resonance imaging as both screening and diagnostic tools.

  17. High-dose rosuvastatin treatment for multifocal stroke in trauma-induced cerebral fat embolism syndrome: a case report.

    PubMed

    Whalen, Lesta D; Khot, Sandeep P; Standage, Stephen W

    2014-09-01

    Fat embolism syndrome is a life-threatening condition with treatment centering on the provision of excellent supportive care and early fracture fixation. No pharmacologic intervention has yet shown any clear benefit. We used high-dose rosuvastatin specifically for its anti-inflammatory effects to treat a patient with severe fat embolism syndrome. We also suggest that magnetic resonance imaging and transcranial Doppler studies are helpful in establishing the diagnosis and for monitoring the patient's course. A 17-year-old boy developed severe cerebral fat embolism syndrome with multifocal strokes after sustaining bilateral femur fractures. In spite of profound and prolonged neurological impairment, our patient experienced dramatic recovery by the time he was discharged from inpatient rehabilitation several weeks after his initial injury. Magnetic resonance imaging revealed the classic "starfield" pattern of infarcts on diffusion-weighted sequences early in the illness. Additionally, serial transcranial Doppler studies demonstrated dramatically elevated microembolic events that resolved completely during the course of treatment. We feel that the acute administration of high-dose rosuvastatin early in the development of our patient's illness may have contributed to his ultimate recovery. Therapeutic guidelines cannot be extrapolated from a single patient, but our experience suggests that statin therapy could be potentially beneficial for individuals with severe fat embolism syndrome, and this approach deserves further clinical evaluation. Additionally, the diagnosis and monitoring of cerebral involvement in fat embolism syndrome is facilitated by both magnetic resonance imaging and transcranial Doppler studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Multimodal Magnetic Resonance Imaging in Alzheimer's Disease Patients at Prodromal Stage.

    PubMed

    Eustache, Pierre; Nemmi, Federico; Saint-Aubert, Laure; Pariente, Jeremie; Péran, Patrice

    2016-01-01

    One objective of modern neuroimaging is to identify markers that can aid in diagnosis, monitor disease progression, and impact long-term drug analysis. In this study, physiopathological modifications in seven subcortical structures of patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) were characterized by simultaneously measuring quantitative magnetic resonance parameters that are sensitive to complementary tissue characteristics (e.g., volume atrophy, shape changes, microstructural damage, and iron deposition). Fourteen MCI patients and fourteen matched, healthy subjects underwent 3T-magnetic resonance imaging with whole-brain, T1-weighted, T2*-weighted, and diffusion-tensor imaging scans. Volume, shape, mean R2*, mean diffusivity (MD), and mean fractional anisotropy (FA) in the thalamus, hippocampus, putamen, amygdala, caudate nucleus, pallidum, and accumbens were compared between MCI patients and healthy subjects. Comparisons were then performed using voxel-based analyses of R2*, MD, FA maps, and voxel-based morphometry to determine which subregions showed the greatest difference for each parameter. With respect to the micro- and macro-structural patterns of damage, our results suggest that different and distinct physiopathological processes are present in the prodromal phase of AD. MCI patients had significant atrophy and microstructural changes within their hippocampi and amygdalae, which are known to be affected in the prodromal stage of AD. This suggests that the amygdala is affected in the same, direct physiopathological process as the hippocampus. Conversely, atrophy alone was observed within the thalamus and putamen, which are not directly involved in AD pathogenesis. This latter result may reflect another mechanism, whereby atrophy is linked to indirect physiopathological processes.

  19. Assessment of mitral regurgitation in dogs: comparison of results of echocardiography with magnetic resonance imaging.

    PubMed

    Sargent, J; Connolly, D J; Watts, V; Mõtsküla, P; Volk, H A; Lamb, C R; Fuentes, V Luis

    2015-11-01

    Echocardiography is used routinely to assess mitral regurgitation severity, but echocardiographic measures of mitral regurgitation in dogs have not been compared with other quantitative methods. The study aim was to compare echocardiographic measures of mitral regurgitation with cardiac magnetic resonance imaging-derived mitral regurgitant fraction in small-breed dogs. Dogs with myxomatous mitral valve disease scheduled for magnetic resonance imaging assessment of neurological disease were recruited. Correlations were tested between cardiac magnetic resonance imaging-derived mitral regurgitant fraction and the following echocardiographic measures: vena contracta/aortic diameter, transmitral E-wave velocity, amplitude of mitral prolapse/aortic diameter, diastolic left ventricular diameter:aortic diameter, left atrium:aortic diameter, mitral regurgitation jet area ratio and regurgitant fraction calculated using the proximal isovelocity surface area method. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction was attempted in 21 dogs. Twelve consecutive, complete studies were obtained and 10 dogs were included in the final analysis: vena contracta/aortic diameter (r = 0 · 89, p = 0 · 001) and E-wave velocity (r = 0 · 86, p = 0 · 001) had the strongest correlations with cardiac magnetic resonance imaging-derived mitral regurgitant fraction. E velocity had superior repeatability and could be measured in all dogs. The presence of multiple jets precluded vena contracta/aortic diameter measurement in one dog. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction is feasible but technically demanding. The echocardiographic measures that correlated most closely with cardiac magnetic resonance imaging-derived mitral regurgitant fraction were vena contracta/aortic diameter and E-wave velocity. © 2015 British Small Animal Veterinary Association.

  20. Clinical implications of a multiparametric magnetic resonance imaging based nomogram applied to prostate cancer active surveillance.

    PubMed

    Siddiqui, M Minhaj; Truong, Hong; Rais-Bahrami, Soroush; Stamatakis, Lambros; Logan, Jennifer; Walton-Diaz, Annerleim; Turkbey, Baris; Choyke, Peter L; Wood, Bradford J; Simon, Richard M; Pinto, Peter A

    2015-06-01

    Multiparametric magnetic resonance imaging may be beneficial in the search for rational ways to decrease prostate cancer intervention in patients on active surveillance. We applied a previously generated nomogram based on multiparametric magnetic resonance imaging to predict active surveillance eligibility based on repeat biopsy outcomes. We reviewed the records of 85 patients who met active surveillance criteria at study entry based on initial biopsy and who then underwent 3.0 Tesla multiparametric magnetic resonance imaging with subsequent magnetic resonance imaging/ultrasound fusion guided prostate biopsy between 2007 and 2012. We assessed the accuracy of a previously published nomogram in patients on active surveillance before confirmatory biopsy. For each cutoff we determined the number of biopsies avoided (ie reliance on magnetic resonance imaging alone without rebiopsy) over the full range of nomogram cutoffs. We assessed the performance of the multiparametric magnetic resonance imaging active surveillance nomogram based on a decision to perform biopsy at various nomogram generated probabilities. Based on cutoff probabilities of 19% to 32% on the nomogram the number of patients who could be spared repeat biopsy was 27% to 68% of the active surveillance cohort. The sensitivity of the test in this interval was 97% to 71% and negative predictive value was 91% to 81%. Multiparametric magnetic resonance imaging based nomograms may reasonably decrease the number of repeat biopsies in patients on active surveillance by as much as 68%. Analysis over the full range of nomogram generated probabilities allows patient and caregiver preference based decision making on the risk assumed for the benefit of fewer repeat biopsies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

Top