Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik
2014-01-01
A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.
Yu, Jing; Huang, Dong-Ya; Xu, Hui-Xin; Li, Yang; Xu, Qing
2016-01-01
The aim of this study was to analyze the correlation between magnetic resonance imaging-based extramural vascular invasion (EMVI) and the prognostic clinical and histological parameters of stage T3 rectal cancers. Eighty-six patients with T3 stage rectal cancer who received surgical resection without neoadjuvant therapy were included. Magnetic resonance imaging-based EMVI scores were determined. Correlations between the scores and pretreatment carcinoembryonic antigen levels, tumor differentiation grade, nodal stage, and vascular endothelial growth factor expression were analyzed using Spearman rank coefficient analysis. Magnetic resonance imaging-based EMVI scores were statistically different (P = 0.001) between histological nodal stages (N0 vs N1 vs N2). Correlations were found between magnetic resonance imaging-based EMVI scores and tumor histological grade (rs = 0.227, P = 0.035), histological nodal stage (rs = 0.524, P < 0.001), and vascular endothelial growth factor expression (rs = 0.422; P = 0.016). Magnetic resonance imaging-based EMVI score is correlated with prognostic parameters of T3 stage rectal cancers and has the potential to become an imaging biomarker of tumor aggressiveness. Magnetic resonance imaging-based EMVI may be useful in helping the multidisciplinary team to stratify T3 rectal cancer patients for neoadjuvant therapies.
Vanderby, Sonia; Peña-Sánchez, Juan Nicolás; Kalra, Neil; Babyn, Paul
2015-11-01
Questions about the appropriateness of medical imaging exams, particularly related to magnetic resonance exams, have arisen in recent years. However, the prevalence of inappropriate imaging in Canada is unclear as inappropriate exam proportion estimates are often based on studies from other countries. Hence, we sought to compare and summarize Canadian studies related to magnetic resonance imaging appropriateness. We completed a systematic literature search identifying studies related to magnetic resonance appropriateness in Canada published between 2003 and 2013. Two researchers independently searched and evaluated the literature available. Articles that studied or discussed magnetic resonance appropriateness in Canada were selected based on titles, abstracts, and, where necessary, full article review. Articles relating solely to other modalities or countries were excluded, as were imaging appropriateness guidelines and reviews. Fourteen articles were included: 8 quantitative studies and 6 editorials/commentaries. The quantitative studies reported inappropriate proportions of magnetic resonance exams ranging from 2%-28.5%. Our review also revealed substantial variations among study methods and analyses. Common topics identified among editorials/commentaries included reasons for obtaining imaging in general and for selecting a specific modality, consequences of inappropriate imaging, factors contributing to demand, and suggested means of mitigating inappropriate medical imaging use. The available studies do not support the common claim that 30% of medical imaging exams in Canada are inappropriate. The actual proportion of inappropriate magnetic resonance exams has not yet been established conclusively in Canada. Further research, particularly on a widespread national scale, is needed to guide healthcare policies. Copyright © 2015 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Abreu, Pedro; Pedrosa, Rui; Sá, Maria José; Cerqueira, João; Sousa, Lívia; Da Silva, Ana Martins; Pinheiro, Joaquim; De Sá, João; Batista, Sónia; Simões, Rita Moiron; Pereira, Daniela Jardim; Vilela, Pedro; Vale, José
2018-05-30
Magnetic resonance imaging is established as a recognizable tool in the diagnosis and monitoring of multiple sclerosis patients. In the present, among multiple sclerosis centers, there are different magnetic resonance imaging sequences and protocols used to study multiple sclerosis that may hamper the optimal use of magnetic resonance imaging in multiple sclerosis. In this context, the Group of Studies of Multiple Sclerosis and the Portuguese Society of Neuroradiology, after a joint discussion, appointed a committee of experts to create recommendations adapted to the national reality on the use of magnetic resonance imaging in multiple sclerosis. The purpose of this document is to publish the first Portuguese consensus recommendations on the use of magnetic resonance imaging in multiple sclerosis in clinical practice. The Group of Studies of Multiple Sclerosis and the Portuguese Society of Neuroradiology, after discussion of the topic in national meetings and after a working group meeting held in Figueira da Foz on May 2017, have appointed a committee of experts that have developed by consensus several standard protocols on the use of magnetic resonance imaging in the diagnosis and follow-up of multiple sclerosis. The document obtained was based on the best scientific evidence and expert opinion. Subsequently, the majority of Portuguese multiple sclerosis consultants and departments of neuroradiology scrutinized and reviewed the consensus paper; comments and suggestions were considered. Technical magnetic resonance imaging protocols regarding diagnostic, monitoring and the recommended information to be included in the magnetic resonance imaging report will be published in a separate paper. We provide some practical guidelines to promote standardized strategies to be applied in the clinical practice setting of Portuguese healthcare professionals regarding the use of magnetic resonance imaging in multiple sclerosis. We hope that these first Portuguese magnetic resonance imaging guidelines, based in the best available clinical evidence and practices, will serve to optimize multiple sclerosis management and improve multiple sclerosis patient care across Portugal.
Siddiqui, M Minhaj; Truong, Hong; Rais-Bahrami, Soroush; Stamatakis, Lambros; Logan, Jennifer; Walton-Diaz, Annerleim; Turkbey, Baris; Choyke, Peter L; Wood, Bradford J; Simon, Richard M; Pinto, Peter A
2015-06-01
Multiparametric magnetic resonance imaging may be beneficial in the search for rational ways to decrease prostate cancer intervention in patients on active surveillance. We applied a previously generated nomogram based on multiparametric magnetic resonance imaging to predict active surveillance eligibility based on repeat biopsy outcomes. We reviewed the records of 85 patients who met active surveillance criteria at study entry based on initial biopsy and who then underwent 3.0 Tesla multiparametric magnetic resonance imaging with subsequent magnetic resonance imaging/ultrasound fusion guided prostate biopsy between 2007 and 2012. We assessed the accuracy of a previously published nomogram in patients on active surveillance before confirmatory biopsy. For each cutoff we determined the number of biopsies avoided (ie reliance on magnetic resonance imaging alone without rebiopsy) over the full range of nomogram cutoffs. We assessed the performance of the multiparametric magnetic resonance imaging active surveillance nomogram based on a decision to perform biopsy at various nomogram generated probabilities. Based on cutoff probabilities of 19% to 32% on the nomogram the number of patients who could be spared repeat biopsy was 27% to 68% of the active surveillance cohort. The sensitivity of the test in this interval was 97% to 71% and negative predictive value was 91% to 81%. Multiparametric magnetic resonance imaging based nomograms may reasonably decrease the number of repeat biopsies in patients on active surveillance by as much as 68%. Analysis over the full range of nomogram generated probabilities allows patient and caregiver preference based decision making on the risk assumed for the benefit of fewer repeat biopsies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Le Nobin, Julien; Rosenkrantz, Andrew B; Villers, Arnauld; Orczyk, Clément; Deng, Fang-Ming; Melamed, Jonathan; Mikheev, Artem; Rusinek, Henry; Taneja, Samir S
2015-08-01
We compared prostate tumor boundaries on magnetic resonance imaging and radical prostatectomy histological assessment using detailed software assisted co-registration to define an optimal treatment margin for achieving complete tumor destruction during image guided focal ablation. Included in study were 33 patients who underwent 3 Tesla magnetic resonance imaging before radical prostatectomy. A radiologist traced lesion borders on magnetic resonance imaging and assigned a suspicion score of 2 to 5. Three-dimensional reconstructions were created from high resolution digitalized slides of radical prostatectomy specimens and co-registered to imaging using advanced software. Tumors were compared between histology and imaging by the Hausdorff distance and stratified by the magnetic resonance imaging suspicion score, Gleason score and lesion diameter. Cylindrical volume estimates of treatment effects were used to define the optimal treatment margin. Three-dimensional software based registration with magnetic resonance imaging was done in 46 histologically confirmed cancers. Imaging underestimated tumor size with a maximal discrepancy between imaging and histological boundaries for a given tumor of an average ± SD of 1.99 ± 3.1 mm, representing 18.5% of the diameter on imaging. Boundary underestimation was larger for lesions with an imaging suspicion score 4 or greater (mean 3.49 ± 2.1 mm, p <0.001) and a Gleason score of 7 or greater (mean 2.48 ± 2.8 mm, p = 0.035). A simulated cylindrical treatment volume based on the imaging boundary missed an average 14.8% of tumor volume compared to that based on the histological boundary. A simulated treatment volume based on a 9 mm treatment margin achieved complete histological tumor destruction in 100% of patients. Magnetic resonance imaging underestimates histologically determined tumor boundaries, especially for lesions with a high imaging suspicion score and a high Gleason score. A 9 mm treatment margin around a lesion visible on magnetic resonance imaging would consistently ensure treatment of the entire histological tumor volume during focal ablative therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ouzzane, Adil; Renard-Penna, Raphaele; Marliere, François; Mozer, Pierre; Olivier, Jonathan; Barkatz, Johann; Puech, Philippe; Villers, Arnauld
2015-08-01
Current selection criteria for active surveillance based on systematic biopsy underestimate prostate cancer volume and grade. We investigated the role of additional magnetic resonance imaging targeted biopsy in reclassifying patients eligible for active surveillance based on systematic biopsy. We performed a study at 2 institutions in a total of 281 men with increased prostate specific antigen. All men met certain criteria, including 1) prebiopsy magnetic resonance imaging, 12-core transrectal systematic biopsy and 2 additional magnetic resonance imaging targeted biopsies of lesions suspicious for cancer during the same sequence as systematic biopsy, and 2) eligibility for active surveillance based on systematic biopsy results. Criteria for active surveillance were prostate specific antigen less than 10 ng/ml, no Gleason grade 4/5, 5 mm or less involvement of any biopsy core and 2 or fewer positive systematic biopsy cores. Patient characteristics were compared between reclassified and nonreclassified groups based on magnetic resonance imaging targeted biopsy results. On magnetic resonance imaging 58% of the 281 patients had suspicious lesions. Magnetic resonance imaging targeted biopsy was positive for cancer in 81 of 163 patients (50%). Of 281 patients 28 (10%) were reclassified by magnetic resonance imaging targeted biopsy as ineligible for active surveillance based on Gleason score in 8, cancer length in 20 and Gleason score plus cancer length in 9. Suspicious areas on magnetic resonance imaging were in the anterior part of the prostate in 15 of the 28 men (54%). Reclassified patients had a smaller prostate volume (37 vs 52 cc) and were older (66.5 vs 63 years) than those who were not reclassified (p < 0.05). Magnetic resonance imaging targeted biopsy reclassified 10% of patients who were eligible for active surveillance based on systematic biopsy. Its incorporation into the active surveillance eligibility criteria may decrease the risk of reclassification to higher stages during followup. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun
2002-02-01
We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.
Magnetic Resonance-Based Electrical Property Tomography (MR-EPT) for Prostate Cancer Grade Imaging
2016-07-01
Award Number: W81XWH-13-1-0127 TITLE: Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0127 Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...developing Magnetic Resonance – Electrical Property Tomography (MR-EPT) specifically for prostate imaging. MR-EPT is an imaging modality that may enable
Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.
2011-01-01
Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974
Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla
NASA Astrophysics Data System (ADS)
Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.
2014-11-01
Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.
Off-resonance artifacts correction with convolution in k-space (ORACLE).
Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne
2012-06-01
Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Measurement of temperature changes in cooling dead rats using magnetic resonance thermometry.
Kuribayashi, Hideto; Cui, Fanlai; Hirakawa, Keiko; Kanawaku, Yoshimasa; Ohno, Youkichi
2011-11-01
Magnetic resonance imaging thermometry has been introduced as a technique for measurement of temperature changes in cooling dead rats. Rat pelvic magnetic resonance images were acquired sequentially more than 2h after euthanasia by halothane overdose. A series of temperature difference maps in cooling dead rats was obtained with calculating imaging phase changes induced by the water proton frequency shift caused by temperature changes. Different cooling processes were monitored by the temperature difference maps in the rats. Magnetic resonance imaging thermometry applied in the study of laboratory animals could theoretically reproduce a variety of causes of death with different environmental conditions. Outcomes from experimental animal studies could be translated into a temperature-based time of death estimation in forensics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Label-free screening of foodborne Salmonella using surface plasmon resonance imaging
USDA-ARS?s Scientific Manuscript database
Since 15 pathogens cause approximately 95% of the foodborne infections, it is desirable to develop rapid and simultaneous screening methods for these major pathogens. In this study, we developed an immunoassay for Salmonella based on surface plasmon resonance imaging (SPRi). The sensor surface modif...
MRI (Magnetic Resonance Imaging)
... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...
Al Hares, Ghaith; Eschweiler, Jörg; Radermacher, Klaus
2015-06-01
The development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures has received increased attention in recent years. Stress magnetic resonance imaging techniques have been introduced in previous work to study knee kinematics under load conditions. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full-body weight-bearing conditions. In this work, we used a combined magnetic resonance imaging approach for measurement and assessment in knee kinematics under full-body weight-bearing in single legged stance. The proposed method is based on registration of high-resolution static magnetic resonance imaging data acquired in supine position with low-resolution data, quasi-static upright-magnetic resonance imaging data acquired in loaded positions for different degrees of knee flexion. The proposed method was applied for the measurement of tibiofemoral kinematics in 10 healthy volunteers. The combined magnetic resonance imaging approach allows the non-invasive measurement of knee kinematics in single legged stance and under physiological loading conditions. We believe that this method can provide enhanced understanding of the loaded knee kinematics. © IMechE 2015.
Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan
2017-08-01
The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.
A new imaging technique based on resonance for arterial vessels
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.
2003-04-01
Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for imaging of arterial vessels based on vibration resonance. The arterial vessel is excited remotely by ultrasound at a resonant frequency, at which the vibration of the vessel as well as its transmission to the body surface are large enough to be measured. By scanning the ultrasound beam across the vessel plane and measuring the vibration at one single point on the body or vessel surface, an image of the interior artery can be mapped. Theory is developed that predicts the measured velocity is proportional to the value of the mode shape at resonance. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom of large radius, which simulates a large artery and the surrounding body. The fundamental frequency was measured at which the ultrasound transducer scanned across the tube plane with velocity measurement at one single point on the tube or on the phantom by laser. The images obtained show clearly the interior tube and the modal shape of the tube. The present technique offers a new imaging method for arterial vessels.
Itsukage, Shizu; Sowa, Yoshihiro; Goto, Mariko; Taguchi, Tetsuya; Numajiri, Toshiaki
2017-01-01
Objective: Preoperative prediction of breast volume is important in the planning of breast reconstructive surgery. In this study, we prospectively estimated the accuracy of measurement of breast volume using data from 2 routine modalities, mammography and magnetic resonance imaging, by comparison with volumes of mastectomy specimens. Methods: The subjects were 22 patients (24 breasts) who were scheduled to undergo total mastectomy for breast cancer. Preoperatively, magnetic resonance imaging volume measurement was performed using a medical imaging system and the mammographic volume was calculated using a previously proposed formula. Volumes of mastectomy specimens were measured intraoperatively using a method based on Archimedes' principle and Newton's third law. Results: The average breast volumes measured on magnetic resonance imaging and mammography were 318.47 ± 199.4 mL and 325.26 ± 217.36 mL, respectively. The correlation coefficients with mastectomy specimen volumes were 0.982 for magnetic resonance imaging and 0.911 for mammography. Conclusions: Breast volume measurement using magnetic resonance imaging was highly accurate but requires data analysis software. In contrast, breast volume measurement with mammography requires only a simple formula and is sufficiently accurate, although the accuracy was lower than that obtained with magnetic resonance imaging. These results indicate that mammography could be an alternative modality for breast volume measurement as a substitute for magnetic resonance imaging.
Itsukage, Shizu; Goto, Mariko; Taguchi, Tetsuya; Numajiri, Toshiaki
2017-01-01
Objective: Preoperative prediction of breast volume is important in the planning of breast reconstructive surgery. In this study, we prospectively estimated the accuracy of measurement of breast volume using data from 2 routine modalities, mammography and magnetic resonance imaging, by comparison with volumes of mastectomy specimens. Methods: The subjects were 22 patients (24 breasts) who were scheduled to undergo total mastectomy for breast cancer. Preoperatively, magnetic resonance imaging volume measurement was performed using a medical imaging system and the mammographic volume was calculated using a previously proposed formula. Volumes of mastectomy specimens were measured intraoperatively using a method based on Archimedes’ principle and Newton's third law. Results: The average breast volumes measured on magnetic resonance imaging and mammography were 318.47 ± 199.4 mL and 325.26 ± 217.36 mL, respectively. The correlation coefficients with mastectomy specimen volumes were 0.982 for magnetic resonance imaging and 0.911 for mammography. Conclusions: Breast volume measurement using magnetic resonance imaging was highly accurate but requires data analysis software. In contrast, breast volume measurement with mammography requires only a simple formula and is sufficiently accurate, although the accuracy was lower than that obtained with magnetic resonance imaging. These results indicate that mammography could be an alternative modality for breast volume measurement as a substitute for magnetic resonance imaging. PMID:29308107
Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons. The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function. The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.
Influence of signal intensity non-uniformity on brain volumetry using an atlas-based method.
Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni
2012-01-01
Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.
Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method
Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni
2012-01-01
Objective Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials. PMID:22778560
Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E
2017-09-13
Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.
Mukherjee, Ankur; Morton, Simon; Fraser, Sioban; Salmond, Jonathan; Baxter, Grant; Leung, Hing Y
2014-11-01
Transperineal prostatic biopsy is firmly established as an important tool in the diagnosis of prostate cancer. The benefit of additional imaging (magnetic resonance imaging) to target biopsy remains to be fully addressed. Using a cohort of consecutive patients undergoing transperineal template mapping biopsies, we studied positive biopsies in the context of magnetic resonance imaging findings and examined the accuracy of magnetic resonance imaging in predicting the location of transperineal template mapping biopsies-detected prostate cancer. Forty-four patients (mean age: 65 years, range 53-78) underwent transperineal template mapping biopsies. Thirty-four patients had 1-2 and 10 patients had ≥3 previous transrectal ultrasound scan-guided biopsies. The mean prostate-specific antigen was 15 ng/mL (range 2.5-79 ng/mL). High-grade prostatic intraepithelial neoplasia was found in 12 (27%) patients and prostate cancer with Gleason <7, 7 and >7 in 13, 10 and 8 patients, respectively. Suspicious lesions on magnetic resonance imaging scans were scored from 1 to 5. In 28 patients, magnetic resonance imaging detected lesions with score ≥3. Magnetic resonance imaging correctly localised transperineal template mapping biopsies-detected prostate cancer in a hemi-gland approach, particularly in a right to left manner (79% positive prediction rate), but not in a quadrant approach (33% positive prediction rate). Our findings support the notion of magnetic resonance imaging-based selection of patients for transperineal template mapping biopsies and that lesions revealed by magnetic resonance imaging are likely useful for targeted biopsies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
The EM Method in a Probabilistic Wavelet-Based MRI Denoising
2015-01-01
Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959
The EM Method in a Probabilistic Wavelet-Based MRI Denoising.
Martin-Fernandez, Marcos; Villullas, Sergio
2015-01-01
Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.
Acoustic superlens using Helmholtz-resonator-based metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xishan; Yin, Jing; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn
2015-11-09
Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between themore » neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range.« less
Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi
2012-07-01
Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.
Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.
1996-12-01
PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image
Human tooth and root canal morphology reconstruction using magnetic resonance imaging.
Drăgan, Oana Carmen; Fărcăşanu, Alexandru Ştefan; Câmpian, Radu Septimiu; Turcu, Romulus Valeriu Flaviu
2016-01-01
Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. Magnetic resonance imaging offers 3D image datasets with more information than the conventional radiographic techniques. Due to its ability of imaging both hard and soft dental tissues, magnetic resonance imaging can be successfully used as a 3D diagnostic imaging technique in dentistry. When choosing the imaging method, dental clinicians should weight the benefit-risk ratio, taking into account the costs associated to magnetic resonance imaging and the harmful effects of ionizing radiations when cone beam computed tomography or conventional x-ray are used.
Current and potential imaging applications of ferumoxytol for magnetic resonance imaging.
Toth, Gerda B; Varallyay, Csanad G; Horvath, Andrea; Bashir, Mustafa R; Choyke, Peter L; Daldrup-Link, Heike E; Dosa, Edit; Finn, John Paul; Gahramanov, Seymur; Harisinghani, Mukesh; Macdougall, Iain; Neuwelt, Alexander; Vasanawala, Shreyas S; Ambady, Prakash; Barajas, Ramon; Cetas, Justin S; Ciporen, Jeremy; DeLoughery, Thomas J; Doolittle, Nancy D; Fu, Rongwei; Grinstead, John; Guimaraes, Alexander R; Hamilton, Bronwyn E; Li, Xin; McConnell, Heather L; Muldoon, Leslie L; Nesbit, Gary; Netto, Joao P; Petterson, David; Rooney, William D; Schwartz, Daniel; Szidonya, Laszlo; Neuwelt, Edward A
2017-07-01
Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Alghamdi, N. A.; Hankiewicz, J. H.; Anderson, N. R.; Stupic, K. F.; Camley, R. E.; Przybylski, M.; Żukrowski, J.; Celinski, Z.
2018-05-01
We investigate the use of Cu1 -xZnxFe2O4 ferrites (0.60
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
De Guio, François; Jouvent, Eric; Biessels, Geert Jan; Black, Sandra E; Brayne, Carol; Chen, Christopher; Cordonnier, Charlotte; De Leeuw, Frank-Eric; Dichgans, Martin; Doubal, Fergus; Duering, Marco; Dufouil, Carole; Duzel, Emrah; Fazekas, Franz; Hachinski, Vladimir; Ikram, M Arfan; Linn, Jennifer; Matthews, Paul M; Mazoyer, Bernard; Mok, Vincent; Norrving, Bo; O’Brien, John T; Pantoni, Leonardo; Ropele, Stefan; Sachdev, Perminder; Schmidt, Reinhold; Seshadri, Sudha; Smith, Eric E; Sposato, Luciano A; Stephan, Blossom; Swartz, Richard H; Tzourio, Christophe; van Buchem, Mark; van der Lugt, Aad; van Oostenbrugge, Robert; Vernooij, Meike W; Viswanathan, Anand; Werring, David; Wollenweber, Frank; Wardlaw, Joanna M
2016-01-01
Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these small vessel disease markers has received little attention despite being widely used in cross-sectional and longitudinal studies. This review focuses on the main small vessel disease-related markers on magnetic resonance imaging including: white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and brain volume. The aim is to summarize, for each marker, what is currently known about: (1) its reproducibility in studies with a scan–rescan procedure either in single or multicenter settings; (2) the acquisition-related sources of variability; and, (3) the techniques used to minimize this variability. Based on the results, we discuss technical and other challenges that need to be overcome in order for these markers to be reliably used as outcome measures in future clinical trials. We also highlight the key points that need to be considered when designing multicenter magnetic resonance imaging studies of small vessel disease. PMID:27170700
Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf
2012-04-01
Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.
Spondyloarthropathy: diagnostic imaging criteria for the detection of sacroiliitis
de Castro Jr., Moacir Ribeiro; Mitraud, Sonia de Aguiar Vilela; Francisco, Marina Celli; Fernandes, Artur da Rocha Corrêa; Fernandes, Eloy de Ávila
2017-01-01
Diagnostic imaging is crucial to the diagnosis and monitoring of spondyloarthropathies. Magnetic resonance imaging is the most relevant tool for the early detection of sacroiliitis, allowing the institution of therapeutic strategies to impede the progression of the disease. This study illustrates the major criteria for a magnetic resonance imaging-based diagnosis of spondyloarthropathy. The cases selected here present images obtained from the medical records of patients diagnosed with sacroiliitis over a two-year period at our facility, depicting the active and chronic, irreversible forms of the disease. Although computed tomography and conventional radiography can also identify structural changes, such as subchondral sclerosis, erosions, fat deposits, and ankylosis, only magnetic resonance imaging can reveal active inflammatory lesions, such as bone edema, osteitis, synovitis, enthesitis, and capsulitis. PMID:28894334
Magnetic resonance imaging based functional imaging in paediatric oncology.
Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C
2017-02-01
Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
2016-05-05
SECURITY CLASSIFICATION OF: The goal of this proposal is to purchase the GWC Technologies, Inc. Horizontal Surface Plasmon Resonance Imaging (SPRi...Unlimited UU UU UU UU 05-05-2016 1-Feb-2014 31-Jan-2016 Final Report: Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Surface Plasmon Resonance Imager, Digital
Shchelokova, Alena V; van den Berg, Cornelis A T; Dobrykh, Dmitry A; Glybovski, Stanislav B; Zubkov, Mikhail A; Brui, Ekaterina A; Dmitriev, Dmitry S; Kozachenko, Alexander V; Efimtcev, Alexander Y; Sokolov, Andrey V; Fokin, Vladimir A; Melchakova, Irina V; Belov, Pavel A
2018-02-09
Design and characterization of a new inductively driven wireless coil (WLC) for wrist imaging at 1.5 T with high homogeneity operating due to focusing the B 1 field of a birdcage body coil. The WLC design has been proposed based on a volumetric self-resonant periodic structure of inductively coupled split-loop resonators with structural capacitance. The WLC was optimized and studied regarding radiofrequency fields and interaction to the birdcage coil (BC) by electromagnetic simulations. The manufactured WLC was characterized by on-bench measurements and in vivo and phantom study in comparison to a standard cable-connected receive-only coil. The WLC placed into BC gave the measured B1+ increase of the latter by 8.6 times for the same accepted power. The phantom and in vivo wrist imaging showed that the BC in receiving with the WLC inside reached equal or higher signal-to-noise ratio than the conventional clinical setup comprising the transmit-only BC and a commercial receive-only flex-coil and created no artifacts. Simulations and on-bench measurements proved safety in terms of specific absorption rate and reflected transmit power. The results showed that the proposed WLC could be an alternative to standard cable-connected receive coils in clinical magnetic resonance imaging. As an example, with no cable connection, the WLC allowed wrist imaging on a 1.5 T clinical machine using a full-body BC for transmitting and receive with the desired signal-to-noise ratio, image quality, and safety. © 2018 International Society for Magnetic Resonance in Medicine.
Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History
NASA Astrophysics Data System (ADS)
Minati, Ludovico
2006-06-01
This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico
This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Givenmore » the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.« less
Pan, W R; Rozen, W M; Stretch, J; Thierry, B; Ashton, M W; Corlett, R J
2008-09-01
Lymphatic anatomy has become increasingly clinically important as surgical techniques evolve for investigating and treating cancer metastases. However, due to limited anatomical techniques available, research in this field has been insufficient. The techniques of computed tomography (CT) and magnetic resonance (MR) lymphangiography have not been described previously in the imaging of cadaveric lymphatic anatomy. This preliminary work describes the feasibility of these advanced imaging technologies for imaging lymphatic anatomy. A single, fresh cadaveric lower limb underwent lymphatic dissection and cannulation utilizing microsurgical techniques. Contrast materials for both CT and MR studies were chosen based on their suitability for subsequent clinical use, and imaging was undertaken with a view to mapping lymphatic anatomy. Microdissection studies were compared with imaging findings in each case. Both MR-based and CT-based contrast media in current clinical use were found to be suitable for demonstrating cadaveric lymphatic anatomy upon direct intralymphatic injection. MR lymphangiography and CT lymphangiography are feasible modalities for cadaveric anatomical research for lymphatic anatomy. Future studies including refinements in scanning techniques may offer these technologies to the clinical setting.
Recabal, Pedro; Assel, Melissa; Sjoberg, Daniel D; Lee, Daniel; Laudone, Vincent P; Touijer, Karim; Eastham, James A; Vargas, Hebert A; Coleman, Jonathan; Ehdaie, Behfar
2016-08-01
We determined whether multiparametric magnetic resonance imaging targeted biopsies may replace systematic biopsies to detect higher grade prostate cancer (Gleason score 7 or greater) and whether biopsy may be avoided based on multiparametric magnetic resonance imaging among men with Gleason 3+3 prostate cancer on active surveillance. We identified men with previously diagnosed Gleason score 3+3 prostate cancer on active surveillance who underwent multiparametric magnetic resonance imaging and a followup prostate biopsy. Suspicion for higher grade cancer was scored on a standardized 5-point scale. All patients underwent a systematic biopsy. Patients with multiparametric magnetic resonance imaging regions of interest also underwent magnetic resonance imaging targeted biopsy. The detection rate of higher grade cancer was estimated for different multiparametric magnetic resonance imaging scores with the 3 biopsy strategies of systematic, magnetic resonance imaging targeted and combined. Of 206 consecutive men on active surveillance 135 (66%) had a multiparametric magnetic resonance imaging region of interest. Overall, higher grade cancer was detected in 72 (35%) men. A higher multiparametric magnetic resonance imaging score was associated with an increased probability of detecting higher grade cancer (Wilcoxon-type trend test p <0.0001). Magnetic resonance imaging targeted biopsy detected higher grade cancer in 23% of men. Magnetic resonance imaging targeted biopsy alone missed higher grade cancers in 17%, 12% and 10% of patients with multiparametric magnetic resonance imaging scores of 3, 4 and 5, respectively. Magnetic resonance imaging targeted biopsies increased the detection of higher grade cancer among men on active surveillance compared to systematic biopsy alone. However, a clinically relevant proportion of higher grade cancer was detected using only systematic biopsy. Despite the improved detection of disease progression using magnetic resonance imaging targeted biopsy, systematic biopsy cannot be excluded as part of surveillance for men with low risk prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses
NASA Astrophysics Data System (ADS)
Wong, Stephen T. C.; Knowlton, Robert C.; Hoo, Kent S.; Huang, H. K.
1995-05-01
Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the brain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the noninvasive presurgical evaluation of epilepsy patients. These techniques include online access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitation of structural and functional information contained in the registered images. For illustration, we describe the use of these techniques in a patient case of nonlesional neocortical epilepsy. We also present out future work based on preliminary studies.
Son, Il Tae; Kim, Young Hoon; Lee, Kyoung Ho; Kang, Sung Il; Kim, Duck-Woo; Shin, Eun; Lee, Keun-Wook; Ahn, Soyeon; Kim, Jae-Sung; Kang, Sung-Bum
2017-07-01
The oncologic importance of threatened mesorectal fascia detected with magnetic resonance imaging is obscured by the heterogeneity of preoperative treatments. We evaluated the oncologic relevance of threatened mesorectal fascia detected with consecutive magnetic resonance imaging performed before and after long-course, concurrent chemoradiotherapy (LCRT) for mid or low rectal cancer. We evaluated 196 patients who underwent total mesorectal excision with LCRT. Threatened mesorectal fascia was defined as a shortest distance from tumor to mesorectal fascia of ≤ 1 mm on magnetic resonance imaging. Multivariate analyses for disease-free survival using magnetic resonance imaging-based parameters were conducted with a Cox proportional hazard model before and after LCRT, respectively. The pathologic positivity of the circumferential resection margin was greater for threatened mesorectal fascia than for clear mesorectal fascia (pre-LCRT, 14.8% vs 3.0%, P = .004; post-LCRT, 15.4% vs 4.5%, P = .025). At a median follow-up of 68 months, 3-year disease-free survival was worse for threatened mesorectal fascia than for clear mesorectal fascia (pre-LCRT, 77.0% vs 88.1%, P = .023; post-LCRT, 76.9% vs 86.6%, P = .029). On multivariate analyses, threatened mesorectal fascia on pre-LCRT magnetic resonance imaging was an independent factor for poor disease-free survival (hazard ratio = 2.153, 95% confidence interval, 1.07-4.32, P = .031), whereas threatened mesorectal fascia on post-LCRT magnetic resonance imaging was not (hazard ratio = 1.689, 95% confidence interval, 0.77-3.66, P = .189). This study confirms that magnetic resonance imaging-detected threatened mesorectal fascia predicts poor oncologic outcomes for mid or low rectal cancer and shows that the diagnostic performance of pre-LCRT magnetic resonance imaging is different from that of post-LCRT magnetic resonance imaging. Copyright © 2017 Elsevier Inc. All rights reserved.
[Magnetic resonance imaging of brain tumors].
Prayer, Daniela; Brugger, P C
2002-01-01
Investigating intracranial tumors, different MR-related methods permit not only morphological visualization of lesions but also give insights into their metabolism, resulting in information about the biological qualities of the respective tumor. Magnetic resonance protocols are selected based on the type and timing of onset of clinical signs. Combined information from imaging studies and spectroscopy facilitates the differential diagnosis between blastomatous and non-blastomatous lesions before and after therapy.
Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.
Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua
2018-03-01
To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Kuehle, Christiane A; Langhorst, Jost; Ladd, Susanne C; Zoepf, Thomas; Nuefer, Michael; Grabellus, Florian; Barkhausen, Joerg; Gerken, Guido; Lauenstein, Thomas C
2007-01-01
Background and aim To evaluate the diagnostic accuracy of magnetic resonance colonography (MRC) without bowel cleansing in a screening population and compare the results to colonoscopy as a standard of reference. Methods 315 screening patients, older than 50 years with a normal risk profile for colorectal cancer, were included in this study. For MRC, a tagging agent (5.0% Gastrografin, 1.0% barium sulphate, 0.2% locust bean gum) was ingested with each main meal within 2 days prior to MRC. No bowel cleansing was applied. For the magnetic resonance examination, a rectal water enema was administered. Data collection was based on contrast enhanced T1 weighted images and TrueFISP images. Magnetic resonance data were analysed for image quality and the presence of colorectal lesions. Conventional colonoscopy and histopathological samples served as reference. Results In 4% of all colonic segments, magnetic resonance image quality was insufficient because of untagged faecal material. Adenomatous polyps >5 mm were detected by means of MRC, with a sensitivity of 83.0%. Overall specificity was 90.2% (false positive findings in 19 patients). However, only 16 of 153 lesions <5 mm and 9 of 127 hyperplastic polyps could be visualised on magnetic resonance images. Conclusions Faecal tagging MRC is applicable for screening purposes. It provides good accuracy for the detection of relevant (ie, adenomatous) colorectal lesions >5 mm in a screening population. However, refinements to optimise image quality of faecal tagging are needed. PMID:17341542
Hintz, S R; Cheong, W F; van Houten, J P; Stevenson, D K; Benaron, D A
1999-01-01
Medical optical imaging (MOI) uses light emitted into opaque tissues to determine the interior structure. Previous reports detailed a portable time-of-flight and absorbance system emitting pulses of near infrared light into tissues and measuring the emerging light. Using this system, optical images of phantoms, whole rats, and pathologic neonatal brain specimens have been tomographically reconstructed. We have now modified the existing instrumentation into a clinically relevant headband-based system to be used for optical imaging of structure in the neonatal brain at the bedside. Eight medical optical imaging studies in the neonatal intensive care unit were performed in a blinded clinical comparison of optical images with ultrasound, computed tomography, and magnetic resonance imaging. Optical images were interpreted as correct in six of eight cases, with one error attributed to the age of the clot, and one small clot not seen. In addition, one disagreement with ultrasound, not reported as an error, was found to be the result of a mislabeled ultrasound report rather than because of an inaccurate optical scan. Optical scan correlated well with computed tomography and magnetic resonance imaging findings in one patient. We conclude that light-based imaging using a portable time-of-flight system is feasible and represents an important new noninvasive diagnostic technique, with potential for continuous monitoring of critically ill neonates at risk for intraventricular hemorrhage or stroke. Further studies are now underway to further investigate the functional imaging capabilities of this new diagnostic tool.
Chawla, S; Bowman, J; Gandhi, M; Panizza, B
2017-01-01
The skull base is a highly complex anatomical region that provides passage for important nerves and vessels as they course into and out of the cranial cavity. Key to the management of pathology in this region is a thorough understanding of the anatomy, with its variations, and the relationship of various neurovascular structures to the pathology in question. Targeted high-resolution magnetic resonance imaging on high field strength magnets can enable the skull base surgeon to understand this intricate relationship and deal with the pathology from a position of relative advantage. With the help of case studies, this paper illustrates the application of specialised magnetic resonance techniques to study pathology of the orbital apex in particular. The fine anatomical detail provided gives surgeons the ability to design an endonasal endoscopic procedure appropriate to the anatomy of the pathology.
NASA Astrophysics Data System (ADS)
Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong
2018-06-01
Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.
Yılmaz, Ravza; Bender, Ömer; Çelik Yabul, Fatma; Dursun, Menduh; Tunacı, Mehtap; Acunas, Gülden
2017-04-05
Pathologic nipple discharge, which is a common reason for referral to the breast imaging service, refers to spontaneous or bloody nipple discharge that arises from a single duct. The most common cause of nipple discharge is benign breast lesions, such as solitary intraductal papilloma and papillomatosis. Nevertheless, in rare cases, a malignant cause of nipple discharge can be found. To study the diagnostic value of ultrasonography, magnetic resonance imaging, and ductoscopy in patients with pathologic nipple discharge, compare their efficacy, and investigate the importance of magnetic resonance imaging in the diagnosis of intraductal pathologies. Diagnostic accuracy study. Fifty patients with pathologic nipple discharge were evaluated by ultrasonography and magnetic resonance imaging. Of these, 44 ductoscopic investigations were made. The patients were classified according to magnetic resonance imaging, ultrasonography, and ductoscopy findings. A total of 25 patients, whose findings were reported as intraductal masses, underwent surgery oincluding endoscopic excision for two endoscopic excision. Findings were compared with the pathology results that were accepted as the gold standard in the description of the aetiology of nipple discharge. In addition, magnetic resonance imaging, ultrasonography and ductoscopy findings were analysed comparatively in patients who had no surgery. Intraductal masses were reported in 26 patients, 20 of whom operated and established accurate diagnosis of 18 patients on magnetic resonance imaging. According to the ultrasonography, intraductal masses were identified in 22 patients, 17 of whom underwent surgery. Ultrasonography established accurate diagnoses in 15 patients. Intraductal mass was identified in 22 patients and ductoscopy established accurate diagnoses based on histopathologic results in 16 patients. The sensitivities of methods were 75% in ultrasonography, 90% in magnetic resonance imaging, and 94.6% in ductoscopy. The specificities were 66.7% in ultrasonography, 66.7% in magnetic resonance imaging, and 40% in ductoscopy. Intraductal papillomas were mostly observed as oval nodules with well-circumscribed smooth margins within dilated ducts and persistant in the dynamic analysis. Lesions that protruded into the lumen of the ducts, either solitary or multiple, were characteristic ductoscopy findings of our patients who were diagnosed as having papilloma/papillomatosis. Magnetic resonance imaging and ductoscopy had no statistical superiority over each other, however they were superior to ultrasonography in the diagnosis of pathologic nipple discharge. Magnetic resonance imaging may be highly sensitive for diagnosing nipple discharge with new techniques and sequences and a non-invasive method that more advantageous for showing ductal tree visualization and is able to detect completely obstructed intraductal lesions.
NASA Astrophysics Data System (ADS)
Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš
2015-12-01
Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.
Bjurlin, Marc A; Meng, Xiaosong; Le Nobin, Julien; Wysock, James S; Lepor, Herbert; Rosenkrantz, Andrew B; Taneja, Samir S
2014-09-01
Optimization of prostate biopsy requires addressing the shortcomings of standard systematic transrectal ultrasound guided biopsy, including false-negative rates, incorrect risk stratification, detection of clinically insignificant disease and the need for repeat biopsy. Magnetic resonance imaging is an evolving noninvasive imaging modality that increases the accurate localization of prostate cancer at the time of biopsy, and thereby enhances clinical risk assessment and improves the ability to appropriately counsel patients regarding therapy. In this review we 1) summarize the various sequences that comprise a prostate multiparametric magnetic resonance imaging examination along with its performance characteristics in cancer detection, localization and reporting standards; 2) evaluate potential applications of magnetic resonance imaging targeting in prostate biopsy among men with no previous biopsy, a negative previous biopsy and those with low stage cancer; and 3) describe the techniques of magnetic resonance imaging targeted biopsy and comparative study outcomes. A bibliographic search covering the period up to October 2013 was conducted using MEDLINE®/PubMed®. Articles were reviewed and categorized based on which of the 3 objectives of this review was addressed. Data were extracted, analyzed and summarized. Multiparametric magnetic resonance imaging consists of anatomical T2-weighted imaging coupled with at least 2 functional imaging techniques. It has demonstrated improved prostate cancer detection sensitivity up to 80% in the peripheral zone and 81% in the transition zone. A prostate cancer magnetic resonance imaging suspicion score has been developed, and is depicted using the Likert or PI-RADS (Prostate Imaging Reporting and Data System) scale for better standardization of magnetic resonance imaging interpretation and reporting. Among men with no previous biopsy, magnetic resonance imaging increases the frequency of significant cancer detection to 50% in low risk and 71% in high risk patients. In low risk men the negative predictive value of a combination of negative magnetic resonance imaging with prostate volume parameters is nearly 98%, suggesting a potential role in avoiding biopsy and reducing over detection/overtreatment. Among men with a previous negative biopsy 72% to 87% of cancers detected by magnetic resonance imaging guidance are clinically significant. Among men with a known low risk cancer, repeat biopsy using magnetic resonance targeting demonstrates a high likelihood of confirming low risk disease in low suspicion score lesions and of upgrading in high suspicion score lesions. Techniques of magnetic resonance imaging targeted biopsy include visual estimation transrectal ultrasound guided biopsy; software co-registered magnetic resonance imaging-ultrasound, transrectal ultrasound guided biopsy; and in-bore magnetic resonance imaging guided biopsy. Although the improvement in accuracy and efficiency of visual estimation biopsy compared to systematic appears limited, co-registered magnetic resonance imaging-ultrasound biopsy as well as in-bore magnetic resonance imaging guided biopsy appear to increase cancer detection rates in conjunction with increasing suspicion score. Use of magnetic resonance imaging for targeting prostate biopsies has the potential to reduce the sampling error associated with conventional biopsy by providing better disease localization and sampling. More accurate risk stratification through improved cancer sampling may impact therapeutic decision making. Optimal clinical application of magnetic resonance imaging targeted biopsy remains under investigation. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Neuroimaging studies in schizophrenia: an overview of research from Asia.
Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N
2012-10-01
Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits.
Kulinowski, Piotr; Dorożyński, Przemysław; Młynarczyk, Anna; Węglarz, Władysław P
2011-05-01
The purpose of the study was to present a methodology for the processing of Magnetic Resonance Imaging (MRI) data for the quantification of the dosage form matrix evolution during drug dissolution. The results of the study were verified by comparison with other approaches presented in literature. A commercially available, HPMC-based quetiapine fumarate tablet was studied with a 4.7T MR system. Imaging was performed inside an MRI probe-head coupled with a flow-through cell for 12 h in circulating water. The images were segmented into three regions using threshold-based segmentation algorithms due to trimodal structure of the image intensity histograms. Temporal evolution of dry glassy, swollen glassy and gel regions was monitored. The characteristic features were observed: initial high expansion rate of the swollen glassy and gel layers due to initial water uptake, dry glassy core disappearance and maximum area of swollen glassy region at 4 h, and subsequent gel layer thickness increase at the expense of swollen glassy layer. The temporal evolution of an HPMC-based tablet by means of noninvasive MRI integrated with USP Apparatus 4 was found to be consistent with both the theoretical model based on polymer disentanglement concentration and experimental VIS/FTIR studies.
Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2004-01-01
We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.
Brück, N; Koskivuo, I; Boström, P; Saunavaara, J; Aaltonen, R; Parkkola, R
2018-03-01
Preoperative magnetic resonance imaging has become an important complementary imaging technique in patients with breast cancer, providing additional information for preoperative local staging. Magnetic resonance imaging is recommended selectively in lobular breast cancer and in patients with dense breast tissue in the case when mammography and ultrasound fail to fully evaluate the lesion, but the routine use of magnetic resonance imaging in all patients with invasive ductal carcinoma is controversial. The purpose of this randomized study was to investigate the diagnostic value of preoperative magnetic resonance imaging and its impact on short-term surgical outcome in newly diagnosed unifocal stage I invasive ductal carcinoma. A total of 100 patients were randomized to either receive preoperative breast magnetic resonance imaging or to be scheduled directly to operation without magnetic resonance imaging on a 1:1 basis. There were 50 patients in both study arms. In 14 patients (28%), breast magnetic resonance imaging detected an additional finding and seven of them were found to be malignant. Six additional cancer foci were found in the ipsilateral breast and one in the contralateral breast. Magnetic resonance imaging findings caused a change in planned surgical management in 10 patients (20%). Mastectomy was performed in six patients (12%) in the magnetic resonance imaging group and in two patients (4%) in the control group ( p = 0.140). The breast reoperation rate was 14% in the magnetic resonance imaging group and 24% in the control group ( p = 0.202). The mean interval between referral and first surgical procedure was 34 days in the magnetic resonance imaging group and 21 days in the control group ( p < 0.001). Preoperative magnetic resonance imaging may be beneficial for some patients with early-stage invasive ductal carcinoma, but its routine use is not recommended without specific indications.
Ability of Magnetic Resonance Elastography to Assess Taut Bands
Chen, Qingshan; Basford, Jeffery; An, Kai-Nan
2008-01-01
Background Myofascial taut bands are central to diagnosis of myofascial pain. Despite their importance, we still lack either a laboratory test or imaging technique capable of objectively confirming either their nature or location. This study explores the ability of magnetic resonance elastography to localize and investigate the mechanical properties of myofascial taut bands on the basis of their effects on shear wave propagation. Methods This study was conducted in three phases. The first involved the imaging of taut bands in gel phantoms, the second a finite element modeling of the phantom experiment, and the third a preliminary evaluation involving eight human subjects-four of whom had, and four of whom did not have myofascial pain. Experiments were performed with a 1.5 Tesla magnetic resonance imaging scanner. Shear wave propagation was imaged and shear stiffness was reconstructed using matched filtering stiffness inversion algorithms. Findings The gel phantom imaging and finite element calculation experiments supported our hypothesis that taut bands can be imaged based on its outstanding shear stiffness. The preliminary human study showed a statistically significant 50-100% (p=0.01) increase of shear stiffness in the taut band regions of the involved subjects relative to that of the controls or in nearby uninvolved muscle. Interpretation This study suggests that magnetic resonance elastography may have a potential for objectively characterizing myofascial taut bands that have been up to now detectable only by the clinician's fingers. PMID:18206282
Hegde, Vinayak A; Biederman, Robert Ww; Mikolich, J Ronald
2017-01-01
This study was designed to assess the clinical impact and cost-benefit of cardiovascular magnetic resonance imaging (CMR). In the face of current health care cost concerns, cardiac imaging modalities have come under focused review. Data related to CMR clinical impact and cost-benefit are lacking. Retrospective review of 361 consecutive patients (pts) who underwent CMR exams was conducted. Indications for CMR were tabulated for appropriateness criteria. Components of the CMR exam were identified along with evidence of clinical impact. The cost of each CMR exam was ascertained along with cost savings attributable to the CMR exam for calculation of an incremental cost-effectiveness ratio. A total of 354 of 361 pts (98%) had diagnostic quality studies. Of the 361 pts, 350 (97%) had at least 1 published Appropriateness Criterion for CMR. A significant clinical impact attributable to CMR exam results was observed in 256 of 361 pts (71%). The CMR exam resulted in a new diagnosis in 69 of 361 (27%) pts. Cardiovascular magnetic resonance imaging results avoided invasive procedures in 38 (11%) pts and prevented additional diagnostic testing in 26 (7%) pts. Comparison of health care savings using CMR as opposed to current standards of care showed a net cost savings of $833 037, ie, per patient cost savings of $2308. Cardiovascular magnetic resonance imaging provides diagnostic image quality in >98% of cases. Cardiovascular magnetic resonance imaging findings have documentable clinical impact on patient management in 71% of pts undergoing the exam, in a cost beneficial manner.
Kulinowski, Piotr; Dorozyński, Przemysław; Jachowicz, Renata; Weglarz, Władysław P
2008-11-04
Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-01-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-03-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy
NASA Astrophysics Data System (ADS)
Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing
1992-06-01
High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.
Task-oriented lossy compression of magnetic resonance images
NASA Astrophysics Data System (ADS)
Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques
1996-04-01
A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.
Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J
2015-06-01
The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Zeinali Sehrig, Fatemeh; Majidi, Sima; Asvadi, Sahar; Hsanzadeh, Arash; Rasta, Seyed Hossein; Emamverdy, Masumeh; Akbarzadeh, Jamshid; Jahangiri, Sahar; Farahkhiz, Shahrzad; Akbarzadeh, Abolfazl
2016-11-01
Today, technologies based on magnetic nanoparticles (MNPs) are regularly applied to biological systems with diagnostic or therapeutic aims. Nanoparticles made of the elements iron (Fe), gadolinium (Gd) or manganese (Mn) are generally used in many diagnostic applications performed under magnetic resonance imaging (MRI). Similar to molecular-based contrast agents, nanoparticles can be used to increase the resolution of imaging while offering well biocompatibility, poisonousness and biodistribution. Application of MNPs enhanced MRI sensitivity due to the accumulation of iron in the liver caused by discriminating action of the hepatobiliary system. The aim of this study is about the use, properties and advantages of MNPs in MRI.
Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.; Knowlton, R.; Hoo, K.S.
1995-12-31
Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the grain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstationmore » to aid the non-invasive presurgical evaluation of epilepsy patients. These techniques include on-line access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitative of structural and functional information contained in the registered images. For illustration, the authors describe the use of these techniques in a patient case of non-lesional neocortical epilepsy. They also present the future work based on preliminary studies.« less
NASA Astrophysics Data System (ADS)
Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi
Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.
2017-01-01
Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities. PMID:28901137
Schmidt, Rita; Webb, Andrew
2017-10-11
Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.
NASA Technical Reports Server (NTRS)
2002-01-01
Nuclear magnetic resonance (NMR) is a powerful and versatile, noninvasive method for studying fluid transport problems, However, its applications to these types of investigations have been limited. A primary factor that limits the application of NMR has been the lack of a user-friendly, versatile, and inexpensive NMR imaging apparatus that can be used by scientists who are not familiar with sophisticated NMR. To rectify this situation, we developed a user-friendly, NMR imager for projects of relevance to the MRD science community. To that end, we performed preliminary collaborative experiments between NASA, NCMR, and New Mexico Resonance in the high field NMR set up at New Mexico Resonance to track wetting front dynamics in foams under gravity. The experiments were done in a 30 cm, 1.9T Oxford magnet with a TECMAG Libra spectrometer (Tecmag, Inc., Houston, TX). We used two different imaging strategies depending on whether the water in the foam sample was static or moving. Stationary water distributions were imaged with the standard Fourier imaging method, as used in medical MRI, in which data are acquired from all parts of the region of interest at all times and Fourier transformed into a static spatial image.
Li, Linxin; Simoni, Michela; Küker, Wilhelm; Schulz, Ursula G; Christie, Sharon; Wilcock, Gordon K; Rothwell, Peter M
2013-11-01
White matter changes (WMC) are a common finding on brain imaging and are associated with an increased risk of ischemic stroke. They are most frequent in small vessel stroke; however, in the absence of comparisons with normal controls, it is uncertain whether WMC are also more frequent than expected in other stroke subtypes. Therefore, we compared WMC in pathogenic subtypes of ischemic stroke versus controls in a population-based study. We evaluated the presence and severity of WMC on computed tomography and on magnetic resonance brain imaging using modified Blennow/Fazekas scale and age-related white matter changes scale, respectively, in a population-based study of patients with incident transient ischemic attack or ischemic stroke (Oxford Vascular Study) and in a study of local controls (Oxford Project to Investigate Memory and Ageing) without history of transient ischemic attack or ischemic stroke, with stratification by stroke pathogenesis (Trial of Org10172 in Acute Stroke Treatment classification). Among 1601 consecutive eligible patients with first-ever ischemic events, 1453 patients had computed tomography brain imaging, 562 had magnetic resonance imaging, and 414 patients had both. Compared with 313 controls (all with computed tomography and 131 with magnetic resonance imaging) and after adjustment for age, sex, diabetes mellitus, and hypertension, moderate/severe WMC (age-related white matter changes scale) were more frequent in patients with small vessel events (odds ratio, 3.51 [95% confidence interval, 2.13-5.76]; P<0.0001) but not in large artery (odds ratio, 1.03 [95% confidence interval, 0.64-1.67]), cardioembolic (odds ratio, 0.87 [95% confidence interval, 0.56-1.34]), or undetermined (odds ratio, 0.90 [95% confidence interval, 0.62-1.30]) subtypes. Results were consistent for ischemic stroke and transient ischemic attack, for other scales, and for magnetic resonance imaging and computed tomography separately. In contrast to small vessel ischemic events, WMC were not independently associated with other pathogenic subtypes, suggesting that WMC are unlikely to be an independent risk factor for nonsmall vessel events.
Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.
Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R
2011-01-01
Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Rhee, H; Thomas, P; Shepherd, B; Gustafson, S; Vela, I; Russell, P J; Nelson, C; Chung, E; Wood, G; Malone, G; Wood, S; Heathcote, P
2016-10-01
Positron emission tomography using ligands targeting prostate specific membrane antigen has recently been introduced. Positron emission tomography imaging with (68)Ga-PSMA-HBED-CC has been shown to detect metastatic prostate cancer lesions at a high rate. In this study we compare multiparametric magnetic resonance imaging and prostate specific membrane antigen positron emission tomography of the prostate with whole mount ex vivo prostate histopathology to determine the true sensitivity and specificity of these imaging modalities for detecting and locating tumor foci within the prostate. In a prospective clinical trial setting 20 patients with localized prostate cancer and a planned radical prostatectomy were recruited. All patients underwent multiparametric magnetic resonance imaging and positron emission tomography before surgery, and whole mount histopathology slides were directly compared to the images. European Society of Urogenital Radiology guidelines for reporting magnetic resonance imaging were used as a template for regional units of analysis. The uropathologist and radiologists were blinded to individual components of the study, and the final correlation was performed by visual and deformable registration analysis. A total of 50 clinically significant lesions were identified from the whole mount histopathological analysis. Based on regional analysis the sensitivity, specificity, positive predictive value and negative predictive value for multiparametric magnetic resonance imaging were 44%, 94%, 81% and 76%, respectively. With prostate specific membrane antigen positron emission tomography the sensitivity, specificity, positive predictive value and negative predictive value were 49%, 95%, 85% and 88%, respectively. Prostate specific membrane antigen positron emission tomography yielded a higher specificity and positive predictive value. A significant proportion of cancers are potentially missed and underestimated by both imaging modalities. Prostate specific membrane antigen positron emission tomography may be used in addition to multiparametric magnetic resonance imaging to help improve local staging in those patients undergoing retropubic radical prostatectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert
2012-11-01
Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Hui-Lin, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn; Xiao, Shao-Qiu, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn
The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysismore » of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, S. E.; Centro de Investigacion e Instrumentacion e Imagenologia Medica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340; Hernandez, J. A.
Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour ofmore » the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.« less
Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.
Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe
2018-05-01
This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Hegde, Vinayak A; Biederman, Robert WW; Mikolich, J Ronald
2017-01-01
BACKGROUND This study was designed to assess the clinical impact and cost-benefit of cardiovascular magnetic resonance imaging (CMR). In the face of current health care cost concerns, cardiac imaging modalities have come under focused review. Data related to CMR clinical impact and cost-benefit are lacking. METHODS AND RESULTS Retrospective review of 361 consecutive patients (pts) who underwent CMR exams was conducted. Indications for CMR were tabulated for appropriateness criteria. Components of the CMR exam were identified along with evidence of clinical impact. The cost of each CMR exam was ascertained along with cost savings attributable to the CMR exam for calculation of an incremental cost-effectiveness ratio. A total of 354 of 361 pts (98%) had diagnostic quality studies. Of the 361 pts, 350 (97%) had at least 1 published Appropriateness Criterion for CMR. A significant clinical impact attributable to CMR exam results was observed in 256 of 361 pts (71%). The CMR exam resulted in a new diagnosis in 69 of 361 (27%) pts. Cardiovascular magnetic resonance imaging results avoided invasive procedures in 38 (11%) pts and prevented additional diagnostic testing in 26 (7%) pts. Comparison of health care savings using CMR as opposed to current standards of care showed a net cost savings of $833 037, ie, per patient cost savings of $2308. CONCLUSIONS Cardiovascular magnetic resonance imaging provides diagnostic image quality in >98% of cases. Cardiovascular magnetic resonance imaging findings have documentable clinical impact on patient management in 71% of pts undergoing the exam, in a cost beneficial manner. PMID:28579858
Maijers, Maria C; Niessen, Francisus B; Veldhuizen, Jacob F H; Ritt, Marco J P F; Manoliu, Radu A
2014-02-01
In a prospective cohort study, the authors followed 112 women whose Poly Implant Prothèse silicone breast implants were recalled. Magnetic resonance imaging results and clinical consequences were previously published. The authors compared magnetic resonance imaging screening with explantation results to study the diagnostic value of magnetic resonance imaging in this unique unselected and nonbiased group. women with 224 proven Poly Implant Prothèse implants after a mean implantation time of 10 years were enrolled in 2011. All women underwent magnetic resonance imaging screening and were offered explantation. The explantation details of 107 women could be compared with magnetic resonance imaging results. Of 107 women, 29 (27 percent) had at least one ruptured implant at explantation, and 44 of 214 explanted implants (21 percent) were ruptured. The magnetic resonance imaging results correctly diagnosed 154 intact and 35 ruptured implants. Sensitivity and specificity were 80 percent and 91 percent, respectively. The positive predictive value was 69 percent, and the negative predictive value was 95 percent. The accuracy of magnetic resonance imaging is comparable to previously published data from other manufacturers of modern silicone implants but lower than that of some recent validation studies in selected symptomatic women. The authors believe that this study is representative of common daily practice as they followed normal day-to-day magnetic resonance imaging protocol without using multiple independent readers. The authors hope that this study will contribute to the ongoing discussion to screen asymptomatic women with modern silicone breast implants. Diagnostic, II.
Hybrid nanotrimers for dual T 1 and T 2-weighted magnetic resonance imaging
Cheng, Kai; Yang, Meng; Zhang, Ruiping; ...
2014-10-04
Development of multifunctional nanoparticle-based probes for dual T 1- and T 2-weighted magnetic resonance imaging (MRI) could allow us to image and diagnose the tumors or other abnormalities in an exceptionally accurate and reliable manner. In this study, by fusing distinct nanocrystals via solid-state interfaces, we built hybrid heteronanostructures to combine both T 1 and T 2- weighted contrast agents together for MRI with high accuracy and reliability. The resultant hybrid heterotrimers showed high stability in physiological conditions and could induce both simultaneous positive and negative contrast enhancements in MR images. Small animal positron emission tomography imaging study revealed thatmore » the hybrid heterostructures displayed favorable biodistribution and were suitable for in vivo imaging. Furthermore, their potential as dual contrast agents for T 1 and T 2-weighted MRI was further demonstrated by in vitro and in vivo imaging and relaxivity measurements.« less
Liberman, Ava L; Kalani, Rizwan E; Aw-Zoretic, Jessie; Sondag, Matthew; Daruwalla, Vistasp J; Mitter, Sumeet S; Bernstein, Richard; Collins, Jeremy D; Prabhakaran, Shyam
2017-12-01
Background The use of cardiac magnetic resonance imaging is increasing, but its role in the diagnostic work-up following ischemic stroke has received limited study. We aimed to explore the added yield of cardiac magnetic resonance imaging to identify cardio-aortic sources not detected by transesophageal echocardiography among patients with cryptogenic stroke. Methods A retrospective single-center cohort study was performed from 01 January 2009 to 01 March 2013. Consecutive patients who had both a stroke protocol cardiac magnetic resonance imaging and a transesophageal echocardiography preformed during a single hospitalization were included. All cardiac magnetic resonance imaging studies underwent independent, blinded review by two investigators. We applied the causative classification system for ischemic stroke to all patients, first blinded to cardiac magnetic resonance imaging results; we then reapplied the causative classification system using cardiac magnetic resonance imaging. Standard statistical tests to evaluate stroke subtype reclassification rates were used. Results Ninety-three patients were included in the final analysis; 68.8% were classified as cryptogenic stroke after initial diagnostic evaluation. Among patients with cryptogenic stroke, five (7.8%) were reclassified due to cardiac magnetic resonance imaging findings: one was reclassified as "cardio-aortic embolism evident" due to the presence of a patent foramen ovale and focal cardiac infarct and four were reclassified as "cardio-aortic embolism possible" due to mitral valve thickening (n = 1) or hypertensive cardiomyopathy (n = 3). Overall, findings on cardiac magnetic resonance imaging reduced the percentage of patients with cryptogenic stroke by slightly more than 1%. Conclusion Our stroke subtype reclassification rate after the addition of cardiac magnetic resonance imaging results to a diagnostic work-up which includes transesophageal echocardiography was very low. Prospective studies evaluating the role of cardiac magnetic resonance imaging and transesophageal echocardiography among patients with cryptogenic stroke should be considered.
Thapa, S S; Lakhey, R B; Sharma, P; Pokhrel, R K
2016-05-01
Magnetic resonance imaging is routinely done for diagnosis of lumbar disc prolapse. Many abnormalities of disc are observed even in asymptomatic patient.This study was conducted tocorrelate these abnormalities observed on Magnetic resonance imaging and clinical features of lumbar disc prolapse. A This prospective analytical study includes 57 cases of lumbar disc prolapse presenting to Department of Orthopedics, Tribhuvan University Teaching Hospital from March 2011 to August 2012. All patientshad Magnetic resonance imaging of lumbar spine and the findings regarding type, level and position of lumbar disc prolapse, any neural canal or foraminal compromise was recorded. These imaging findings were then correlated with clinical signs and symptoms. Chi-square test was used to find out p-value for correlation between clinical features and Magnetic resonance imaging findings using SPSS 17.0. This study included 57 patients, with mean age 36.8 years. Of them 41(71.9%) patients had radicular leg pain along specific dermatome. Magnetic resonance imaging showed 104 lumbar disc prolapselevel. Disc prolapse at L4-L5 and L5-S1 level constituted 85.5%.Magnetic resonance imaging findings of neural foramina compromise and nerve root compression were fairly correlated withclinical findings of radicular pain and neurological deficit. Clinical features and Magnetic resonance imaging findings of lumbar discprolasehad faircorrelation, but all imaging abnormalities do not have a clinical significance.
Efficient bias correction for magnetic resonance image denoising.
Mukherjee, Partha Sarathi; Qiu, Peihua
2013-05-30
Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation from received frequency signals of a magnetic resonance scanner system. Previous research has demonstrated that random noise involved in the observed MRI images can be described adequately by the so-called Rician noise model. Under that model, the observed image intensity at a given pixel is a nonlinear function of the true image intensity and of two independent zero-mean random variables with the same normal distribution. Because of such a complicated noise structure in the observed MRI images, denoised images by conventional denoising methods are usually biased, and the bias could reduce image contrast and negatively affect subsequent image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias-correction procedures have been proposed in the literature. In this paper, we study the Rician noise model and the corresponding bias-correction problem systematically and propose a new and more effective bias-correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show that our proposed method works well in various applications. Copyright © 2012 John Wiley & Sons, Ltd.
Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.
Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania
2015-09-09
Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin
2018-06-15
The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.
Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2003-01-01
We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.
SPIRiT: Iterative Self-consistent Parallel Imaging Reconstruction from Arbitrary k-Space
Lustig, Michael; Pauly, John M.
2010-01-01
A new approach to autocalibrating, coil-by-coil parallel imaging reconstruction is presented. It is a generalized reconstruction framework based on self consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k-space sampling patterns. The formulation can flexibly incorporate additional image priors such as off-resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k-space domain are presented. These are based on a projection over convex sets (POCS) and a conjugate gradient (CG) algorithms. Phantom and in-vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off-resonance correction and nonlinear ℓ1-wavelet regularization are also demonstrated. PMID:20665790
Petite, A F B; Dennis, R
2006-09-01
Magnetic resonance imaging (MRI) is increasingly used in veterinary practice and, in some centres, is part of the diagnostic work-up of small animals with nasal disease. However, there are no published studies which critically evaluate the use of magnetic resonance imaging for this purpose. The purpose of this work was to assess the changes seen using magnetic resonance imaging and to compare them with radiography. The study included 12 dogs that had undergone both radiography and magnetic resonance imaging of the nasal cavity and had a histopathological diagnosis of malignant nasal neoplasia. Two pairs of board-certified radiologists scored the radiographs and the MRI scans, evaluating 10 signs of abnormality using a simple scoring system. Magnetic resonance imaging features were described in detail, and radiographic and magnetic resonance imaging scores for each sign as well as total scores were compared. Magnetic resonance imaging often showed that the tumour was more extensive than it had appeared on radiography but occasionally showed that radiographs had overestimated its size. Although radiography was reliable for assessment of the presence and size of a mass and for the extent of turbinate destruction, it usually failed to show occlusion of the major airway passages that were evident on magnetic resonance imaging. Extension of the tumour into the opposite nasal cavity, frontal sinus, orbit and cranial cavity was shown much better on magnetic resonance imaging. Minor but significant extension beyond the nasal cavity, which is important for treatment planning and prognosis, requires magnetic resonance imaging for demonstration, although radiography shows major changes reliably.
Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth
2016-06-01
To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
Application of optical coherence tomography based microangiography for cerebral imaging
NASA Astrophysics Data System (ADS)
Baran, Utku; Wang, Ruikang K.
2016-03-01
Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.
Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.
Atar, Eli
2004-07-01
Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.
Kolasinski, James; Chance, Steven A.; DeLuca, Gabriele C.; Esiri, Margaret M.; Chang, Eun-Hyuk; Palace, Jacqueline A.; McNab, Jennifer A.; Jenkinson, Mark; Miller, Karla L.; Johansen-Berg, Heidi
2012-01-01
Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional anatomical connectivity to the spread of multiple sclerosis pathology in a ‘tract-specific’ pattern. Furthermore, the persisting relationship between metrics from post-mortem diffusion-weighted magnetic resonance imaging and histological measures from fixed tissue further validates the potential of imaging for future neuropathological studies. PMID:23065787
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Turan, Nefize; Heider, Robert A; Roy, Anil K; Miller, Brandon A; Mullins, Mark E; Barrow, Daniel L; Grossberg, Jonathan; Pradilla, Gustavo
2018-05-01
Intracranial aneurysms (IAs) are pathologic dilatations of cerebral arteries. This systematic review summarizes and compares imaging techniques for assessing unruptured IAs (UIAs). This review also addresses their uses in different scopes of practice. Pathophysiologic mechanisms are reviewed to better understand the clinical usefulness of each imaging modality. A literature review was performed using PubMed with these search terms: "intracranial aneurysm," "cerebral aneurysm," "magnetic resonance angiography (MRA)," computed tomography angiography (CTA)," "catheter angiography," "digital subtraction angiography," "molecular imaging," "ferumoxytol," and "myeloperoxidase". Only studies in English were cited. Since the development and improvement of noninvasive diagnostic imaging (computed tomography angiography and magnetic resonance angiography), many prospective studies and meta-analyses have compared these tests with gold standard digital subtraction angiography (DSA). Although computed tomography angiography and magnetic resonance angiography have lower detection rates for UIAs, they are vital in the treatment and follow-up of UIAs. The reduction in ionizing radiation and lack of endovascular instrumentation with these modalities provide benefits compared with DSA. Novel molecular imaging techniques to detect inflammation within the aneurysmal wall with the goal of stratifying risk based on level of inflammation are under investigation. DSA remains the gold standard for preoperative planning and follow-up for patients with IA. Newer imaging modalities such as ferumoxytol-enhanced magnetic resonance imaging are emerging techniques that provide critical in vivo information about the inflammatory milieu within aneurysm walls. With further study, these techniques may provide aneurysm rupture risk and prediction models for individualized patient care. Copyright © 2018 Elsevier Inc. All rights reserved.
Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy.
Wolters, Martijn; Mohades, Seyede G; Hackeng, Tilman M; Post, Mark J; Kooi, Marianne E; Backes, Walter H
2013-05-01
The number of applications of fluorine 19 (19F) magnetic resonance (MR) imaging and spectroscopy in biomedical and clinical research is steadily growing. The 100% natural abundance of fluorine and its relatively high sensitivity for MR (83% to that of protons) make it an interesting nucleus for a wide range of MR applications. Fluorinated contrast media have a number of advantages over the conventionally used gadolinium-based or iron-based contrast agents. The absence of an endogenous fluorine background intensity in the human body facilitates reliable quantification of fluorinated contrast medium or drugs. Anatomy can be visualized separately with proton MR imaging, creating the application of hybrid hydrogen 1 (1H)/19F MR imaging. The availability of 2 channels (ie, the 1H and 19F channels) enables dual-targeted molecular imaging. Recently, novel developments have emerged on fluorine-based contrast media in preclinical studies and imaging techniques. The developments in fluorine MR seem promising for clinical applications, with contributions in therapy monitoring, assessment of lung function, angiography, and molecular imaging. This review outlines the translation from recent advances in preclinical MR imaging and spectroscopy to future perspectives of clinical hybrid 1H/19/F MR imaging applications.
Super-contrast photoacoustic resonance imaging
NASA Astrophysics Data System (ADS)
Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin
2018-02-01
In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.
Ntorkou, Alexandra A; Tsili, Athina C; Giannakis, Dimitrios; Batistatou, Anna; Stavrou, Sotirios; Sofikitis, Nikolaos; Argyropoulou, Maria I
2016-03-31
Cellular angiofibroma represents a rare mesenchymal tumor typically involving the inguinoscrotal area in middle-aged men. Although the origin of this benign tumor is unknown, it is histologically classified as an angiomyxoid tumor. Cellular angiofibroma is characterized by a diversity of pathological and imaging features. An accurate preoperative diagnosis is challenging. Magnetic resonance imaging examination of the scrotum has been reported as a valuable adjunct modality in the investigation of scrotal pathology. The technique by providing both structural and functional information is useful in the differentiation between extratesticular and intratesticular diseases and in the preoperative characterization of the histologic nature of various scrotal lesions. There are few reports in the English literature addressing the magnetic resonance imaging findings of cellular angiofibroma of the scrotum and no reports on functional magnetic resonance imaging data. Here we present the first case of a cellular angiofibroma arising from the tunica vaginalis of the testis and we discuss the value of a multiparametric magnetic resonance protocol, including diffusion-weighted imaging, magnetization transfer imaging and dynamic contrast-enhanced magnetic resonance imaging in the preoperative diagnosis of this rare neoplasm. A 47-year Greek man presented with a painless left scrotal swelling, which had gradually enlarged during the last 6 months. Magnetic resonance imaging of his scrotum displayed a left paratesticular mass, in close proximity to the tunica vaginalis, with heterogeneous high signal intensity on T2-weighted images and no areas of restricted diffusion. The tumor was hypointense on magnetization transfer images, suggestive for the presence of macromolecules. On dynamic contrast-enhanced magnetic resonance imaging the mass showed intense heterogeneous enhancement with a type II curve. Magnetic resonance imaging findings were strongly suggestive of a benign paratesticular tumor, which was confirmed on pathology following lesion excision. Magnetic resonance imaging of the scrotum by combining conventional and functional magnetic resonance data provides useful diagnostic information in the preoperative characterization of scrotal masses. A possible diagnosis of a benign paratesticular tumor based on magnetic resonance imaging features may improve patient care and decrease the number of unnecessary radical surgical explorations.
Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?
Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C
2018-06-18
Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.
Noyes, Julie A; Thomovsky, Stephanie A; Chen, Annie V; Owen, Tina J; Fransson, Boel A; Carbonneau, Kira J; Matthew, Susan M
2017-10-01
To determine the influence of preoperative computed tomography (CT) versus magnetic resonance (MR) on hemilaminectomies planned to treat thoracolumbar (TL) intervertebral disc (IVD) extrusions in chondrodystrophic dogs. Prospective clinical study. Forty chondrodystrophic dogs with TL IVD extrusion and preoperative CT and MR studies. MR and CT images were randomized and reviewed by 4 observers masked to the dog's identity and corresponding imaging studies. Observers planned the location along the spine, side, and extent (number of articular facets to be removed) based on individual reviews of CT and MR studies. Intra-observer agreement was determined between overall surgical plan, location, side, and size of the hemilaminectomy planned on CT versus MR of the same dog. Similar surgical plans were developed based on MR versus CT in 43.5%-66.6% of dogs, depending on the observer. Intra-observer agreement in location, side, and size of the planned hemilaminectomy based on CT versus MR ranged between 48.7%-66.6%, 87%-92%, and 51.2%-71.7% of dogs, respectively. Observers tended to plan larger laminectomy defects based on MR versus CT of the same dog. Findings from this study indicated considerable differences in hemilaminectomies planned on preoperative MR versus CT imaging. Surgical location and size varied the most; the side of planned hemilaminectomies was most consistent between imaging modalities. © 2017 The American College of Veterinary Surgeons.
Prendeville, Susan; Gertner, Mark; Maganti, Manjula; Pintilie, Melania; Perlis, Nathan; Toi, Ants; Evans, Andrew J; Finelli, Antonio; van der Kwast, Theodorus H; Ghai, Sangeet
2018-07-01
The aim of this study was to compare biopsy detection of intraductal and cribriform pattern invasive prostate carcinoma in multiparametric magnetic resonance imaging positive and negative regions of the prostate. We queried a prospectively maintained, single institution database to identify patients who underwent multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy and concurrent systematic sextant biopsy of magnetic resonance imaging negative regions between January 2013 and May 2016. All multiparametric magnetic resonance imaging targets were reviewed retrospectively by 2 readers for the PI-RADS™ (Prostate Imaging-Reporting and Data System), version 2 score, the maximum dimension, the apparent diffusion coefficient parameter and whether positive or negative on dynamic contrast enhancement sequence. Biopsy slides were reviewed by 2 urological pathologists for Gleason score/Grade Group and the presence or absence of an intraductal/cribriform pattern. A total of 154 patients were included in study. Multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy and systematic sextant biopsy of magnetic resonance imaging negative regions were negative for prostate carcinoma in 51 patients, leaving 103 available for the correlation of multiparametric magnetic resonance imaging and the intraductal/cribriform pattern. Prostate carcinoma was identified by multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy in 93 cases and by systematic sextant biopsy of magnetic resonance imaging negative regions in 76 (p = 0.008). Intraductal/cribriform positive tumor was detected in 23 cases, including at the multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy site in 22 and at the systematic sextant biopsy of magnetic resonance imaging negative region site in 3 (p <0.001). The intraductal/cribriform pattern was significantly associated with a PI-RADS score of 5 and a decreasing apparent diffusion coefficient value (p = 0.008 and 0.005, respectively). In 19 of the 23 cases with the intraductal/cribriform pattern prior 12-core standard systematic biopsy was negative in 8 and showed Grade Group 1 disease in 11. Multiparametric magnetic resonance imaging/ultrasound fusion targeted biopsy was associated with significantly increased detection of intraductal/cribriform positive prostate carcinoma compared to systematic sextant biopsy of multiparametric magnetic resonance imaging negative regions. This supports the role of magnetic resonance imaging to enhance the detection of clinically aggressive intraductal/cribriform positive prostate carcinoma. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Walter, Uwe; Niendorf, Thoralf; Graessl, Andreas; Rieger, Jan; Krüger, Paul-Christian; Langner, Sönke; Guthoff, Rudolf F; Stachs, Oliver
2014-05-01
A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. • Orbital magnetic resonance and colour Doppler ultrasound real-time fusion imaging is feasible • Fusion imaging combines the spatial and temporal resolution advantages of each modality • Magnetic resonance and ultrasound fusion imaging improves assessment of choroidal melanoma vascularisation.
Guermazi, Ali; Hunter, David J; Roemer, Frank W
2009-02-01
Osteoarthritis is the most common joint disorder worldwide, and it has an enormous socioeconomic impact both in the United States and throughout the world. Conventional radiography is the simplest and least expensive imaging method for assessing osteoarthritis of the knee. Radiography is able to directly visualize osseous features of osteoarthritis, including marginal osteophytes, subchondral sclerosis, and subchondral cysts, and it is used in clinical practice to confirm the diagnosis of osteoarthritis and to monitor progression of the disease. However, the assessment of joint-space width provides only an indirect estimate of cartilage thickness and meniscal integrity. Magnetic resonance imaging, with its unique ability to examine the joint as a whole organ, holds great promise with regard to the rapid advancement of knowledge about the disease and the evaluation of novel treatment approaches. Magnetic resonance imaging has been applied widely in quantitative morphometric cartilage assessment, and compositional measures have been introduced that evaluate chondral integrity. In addition, magnetic resonance imaging-based validated semiquantitative whole-organ scoring methods have been applied for cross-sectional and longitudinal joint evaluation. This review describes currently applied radiographic and magnetic resonance imaging staging and scoring methods for the assessment of osteoarthritis of the knee and focuses on the strengths and weaknesses of the two modalities with regard to their use in clinical trials and epidemiologic studies.
Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging
Fox, Matthew S.; Gaudet, Jeffrey M.; Foster, Paula J.
2015-01-01
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements. PMID:27042089
Magnetic resonance imaging of diabetic foot complications
Low, Keynes TA; Peh, Wilfred CG
2015-01-01
This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096
Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing
2018-01-17
In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
Amygdala Volumetry in Patients with Temporal Lobe Epilepsy and Normal Magnetic Resonance Imaging
Singh, Paramdeep; Kaur, Rupinderjeet; Saggar, Kavita; Singh, Gagandeep; Aggarwal, Simmi
2016-01-01
Summary Background It has been suggested that the pathophysiology of temporal lobe epilepsy may relate to abnormalities in various brain structures, including the amygdala. Patients with mesial temporal lobe epilepsy (MTLE) without MRI abnormalities (MTLE-NMRI) represent a challenge for diagnosis of the underlying abnormality and for presurgical evaluation. To date, however, only few studies have used quantitative structural Magnetic Resonance Imaging-based techniques to examine amygdalar pathology in these patients. Material/Methods Based on clinical examination, 24-hour video EEG recordings and MRI findings, 50 patients with EEG lateralized TLE and normal structural Magnetic Resonance Imaging results were included in this study. Volumetric magnetic resonance imaging (MRI) studies of the amygdalas and hippocampi were conducted in 50 non-epileptic controls (age 7–79 years) and 50 patients with MTLE with normal MRI on a 1.5-Tesla scanner. Visual assessment and amygdalar volumetry were performed on oblique coronal T2W and T1W MP-RAGE images respectively. The T2 relaxation times were measured using the 16-echo Carr-Purcell-Meiboom-Gill sequence (TE, 22–352). Volumetric data were normalized for variation in head size between individuals. Results were assessed by SSPS statistic program. Results Individual manual volumetric analysis confirmed statistically significant amygdala enlargement (AE) in eight (16%) patients. Overall, among all patients with AE and a defined epileptic focus, 7 had predominant increased volume ipsilateral to the epileptic focus. The T2 relaxometry demonstrated no hyperintense signal of the amygdala in any patient with significant AE. Conclusions This paper presented AE in a few patients with TLE and normal MRI. These findings support the hypothesis that there might be a subgroup of patients with MTLE-NMRI in which the enlarged amygdala could be related to the epileptogenic process. PMID:27231493
Reconstruction of pulse noisy images via stochastic resonance
Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan
2015-01-01
We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911
Interferometric detection of nanoparticles
NASA Astrophysics Data System (ADS)
Hayrapetyan, Karen
Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.
Birgül, Ozlem; Eyüboğlu, B Murat; Ider, Y Ziya
2003-11-07
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.
Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project
2011-10-01
promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L
2018-02-01
This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Biological Effects and Safety in Magnetic Resonance Imaging: A Review
Hartwig, Valentina; Giovannetti, Giulio; Vanello, Nicola; Lombardi, Massimo; Landini, Luigi; Simi, Silvana
2009-01-01
Since the introduction of Magnetic Resonance Imaging (MRI) as a diagnostic technique, the number of people exposed to electromagnetic fields (EMF) has increased dramatically. In this review, based on the results of a pioneer study showing in vitro and in vivo genotoxic effects of MRI scans, we report an updated survey about the effects of non-ionizing EMF employed in MRI, relevant for patients’ and workers’ safety. While the whole data does not confirm a risk hypothesis, it suggests a need for further studies and prudent use in order to avoid unnecessary examinations, according to the precautionary principle. PMID:19578460
Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.
2011-01-01
An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804
Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2001-01-01
We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.
ERIC Educational Resources Information Center
Richards, Todd L.
2001-01-01
This tutorial/review covers functional brain-imaging methods and results used to study language and reading disabilities. Although the emphasis is on magnetic resonance imaging and functional magnetic resonance spectroscopy, other imaging techniques are also discussed including positron emission tomography, electroencephalography,…
Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.
Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg
2014-12-01
The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.
Phase imaging in brain using SWIFT
NASA Astrophysics Data System (ADS)
Lehto, Lauri Juhani; Garwood, Michael; Gröhn, Olli; Corum, Curtis Andrew
2015-03-01
The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.
Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy
Boujraf, Saïd
2018-01-01
Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631
In Vivo Application of Proton-Electron Double-Resonance Imaging
Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo
2018-01-01
Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406
Kluijfhout, Wouter P; Venkatesh, Shriya; Beninato, Toni; Vriens, Menno R; Duh, Quan-Yang; Wilson, David M; Hope, Thomas A; Suh, Insoo
2016-09-01
Preoperative imaging in patients with primary hyperparathyroidism and a previous parathyroid operation is essential; however, performance of conventional imaging is poor in this subgroup. Magnetic resonance imaging appears to be a good alternative, though overall evidence remains scarce. We retrospectively investigated the performance of magnetic resonance imaging in patients with and without a previous parathyroid operation, with a separate comparison for dynamic gadolinium-enhanced magnetic resonance imaging. All patients undergoing magnetic resonance imaging prior to parathyroidectomy for primary hyperparathyroidism (first time or recurrent) between January 2000 and August 2015 at a high-volume, tertiary care, referral center for endocrine operations were included. We compared the sensitivity and positive predictive value of magnetic resonance imaging with conventional ultrasound and sestamibi on a per-lesion level. A total of 3,450 patients underwent parathyroidectomy, of which 84 patients with recurrent (n = 10) or persistent (n = 74) disease and 41 patients with a primary operation were included. Magnetic resonance imaging had a sensitivity and positive predictive value of 79.9% and 84.7%, respectively, and performance was good in both patients with and without a previous parathyroid operation. Adding magnetic resonance imaging to the combination of ultrasound and sestamibi resulted in a significant increase in sensitivity from 75.2% to 91.5%. Dynamic magnetic resonance imaging produced excellent results in the reoperative group, with sensitivity and a positive predictive value of 90.1%. Technologic advances have enabled faster and more accurate magnetic resonance imaging protocols, making magnetic resonance imaging an excellent alternative modality without associated ionizing radiation. Our study shows that the sensitivity of multimodality imaging for parathyroid adenomas improved significantly with the use of conventional and dynamic magnetic resonance imaging, even in the case of recurrent or persistent disease. Published by Elsevier Inc.
Magnetic resonance imaging of tablet dissolution.
Nott, Kevin P
2010-01-01
Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.
A Eu(II)-Containing Cryptate as a Redox Sensor in Magnetic Resonance Imaging of Living Tissue.
Ekanger, Levi A; Polin, Lisa A; Shen, Yimin; Haacke, E Mark; Martin, Philip D; Allen, Matthew J
2015-11-23
The Eu(II) ion rivals Gd(III) in its ability to enhance contrast in magnetic resonance imaging. However, all reported Eu(II)-based complexes have been studied in vitro largely because the tendency of Eu(II) to oxidize to Eu(III) has been viewed as a major obstacle to in vivo imaging. Herein, we present solid- and solution-phase characterization of a Eu(II)-containing cryptate and the first in vivo use of Eu(II) to provide contrast enhancement. The results indicate that between one and two water molecules are coordinated to the Eu(II) core upon dissolution. We also demonstrate that Eu(II)-based contrast enhancement can be observed for hours in a mouse. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.
Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J
2017-09-01
This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p < 0.0001) and 0.81 (p < 0.0001) for direct and reconstructed measurements, respectively. For magnetic resonance imaging, direct measures of tumour thickness (mean ± standard deviation, 18.2 ± 7.3 mm) did not significantly differ from the reconstructed measures (mean ± standard deviation, 17.9 ± 7.2 mm; r = 0.879). Moreover, 3 Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.
[Magnetic resonance compatibility research for coronary mental stents].
Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren
2015-01-01
The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.
Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions
2011-01-01
Magnetic resonance imaging contrast-enhanced relaxometry of breast tumors: an MRI multicenter investigation concerning 100 patients,” Mag. Res. Im., vol...The overall goal of this project was to develop, implement, and evaluate methods for im- proving image quality in dynamic magnetic resonance imaging ...Olafsson, H. R. Shi, and D. C. Noll, “Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity,” IEEE
Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M
1997-11-01
A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.
Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He
2017-03-01
To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju
2014-01-01
The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…
Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators
NASA Astrophysics Data System (ADS)
Ruytenberg, Thomas; Webb, Andrew G.
2017-11-01
Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.
Shielded microstrip array for 7T human MR imaging.
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.
Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.
Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J
2014-01-01
This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.
NASA Astrophysics Data System (ADS)
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Hair product artifact in magnetic resonance imaging.
Chenji, Sneha; Wilman, Alan H; Mah, Dennell; Seres, Peter; Genge, Angela; Kalra, Sanjay
2017-01-01
The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.
Drees, R; Forrest, L J; Chappell, R
2009-07-01
Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.
Carhart-Harris, Robin L; Williams, Tim M; Sessa, Ben; Tyacke, Robin J; Rich, Ann S; Feilding, Amanda; Nutt, David J
2011-11-01
This study sought to assess the tolerability of intravenously administered psilocybin in healthy, hallucinogen-experienced volunteers in a mock-magnetic resonance imaging environment as a preliminary stage to a controlled investigation using functional magnetic resonance imaging to explore the effects of psilocybin on cerebral blood flow and activity. The present pilot study demonstrated that up to 2 mg of psilocybin delivered as a slow intravenous injection produces short-lived but typical drug effects that are psychologically and physiologically well tolerated. With appropriate care, this study supports the viability of functional magnetic resonance imaging work with psilocybin.
Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei
2018-05-01
To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC and in predicting the degree of root compression. The VR image-based simulation correlated well with the real surgical view. Copyright © 2018 Elsevier Inc. All rights reserved.
Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar
2014-01-01
Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571
Chien-Ching Ma; Ching-Yuan Chang
2013-07-01
Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.
Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging
Washko, George R.; Parraga, Grace; Coxson, Harvey O.
2011-01-01
Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490
Functional Magnetic Resonance Imaging and Pediatric Anxiety
ERIC Educational Resources Information Center
Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew
2008-01-01
The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…
Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.
Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G
2013-08-01
To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance imaging should be included as part of the preoperative investigation in patients planned for breast-conserving surgery, in whom there are doubts about the extent of the tumours based on conventional assessment.
Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So
2009-01-01
Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...
NASA Astrophysics Data System (ADS)
Retico, A.
2018-02-01
Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of pathological conditions.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Diagnostic imaging of posterior fossa anomalies in the fetus.
Robinson, Ashley James; Ederies, M Ashraf
2016-10-01
Ultrasound and magnetic resonance imaging are the two imaging modalities used in the assessment of the fetus. Ultrasound is the primary imaging modality, whereas magnetic resonance is used in cases of diagnostic uncertainty. Both techniques have advantages and disadvantages and therefore they are complementary. Standard axial ultrasound views of the posterior fossa are used for routine scanning for fetal anomalies, with additional orthogonal views directly and indirectly obtainable using three-dimensional ultrasound techniques. Magnetic resonance imaging allows not only direct orthogonal imaging planes, but also tissue characterization, for example to search for blood breakdown products. We review the nomenclature of several posterior fossa anomalies using standardized criteria, and we review cerebellar abnormalities based on an etiologic classification. Copyright © 2016 Elsevier Ltd. All rights reserved.
Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai
2014-04-01
A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.
Falahati, Farshad; Westman, Eric; Simmons, Andrew
2014-01-01
Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.
Magnetic resonance imaging measurement of iron overload
Wood, John C.
2010-01-01
Purpose of review To highlight recent advances in magnetic resonance imaging estimation of somatic iron overload. This review will discuss the need and principles of magnetic resonance imaging-based iron measurements, the validation of liver and cardiac iron measurements, and the key institutional requirements for implementation. Recent findings Magnetic resonance imaging assessment of liver and cardiac iron has achieved critical levels of availability, utility, and validity to serve as the primary endpoint of clinical trials. Calibration curves for the magnetic resonance imaging parameters R2 and R2* (or their reciprocals, T2 and T2*) have been developed for the liver and the heart. Interscanner variability for these techniques has proven to be on the order of 5–7%. Summary Magnetic resonance imaging assessment of tissue iron is becoming increasingly important in the management of transfusional iron load because it is noninvasive, relatively widely available and offers a window into presymptomatic organ dysfunction. The techniques are highly reproducible within and across machines and have been chemically validated in the liver and the heart. These techniques will become the standard of care as industry begins to support the acquisition and postprocessing software. PMID:17414205
Crowell, Michael S; Dedekam, Erik A; Johnson, Michael R; Dembowski, Scott C; Westrick, Richard B; Goss, Donald L
2016-10-01
While advanced diagnostic imaging is a large contributor to the growth in health care costs, direct-access to physical therapy is associated with decreased rates of diagnostic imaging. No study has systematically evaluated with evidence-based criteria the appropriateness of advanced diagnostic imaging, including magnetic resonance imaging (MRI), when ordered by physical therapists. The primary purpose of this study was to describe the appropriateness of magnetic resonance imaging (MRI) or magnetic resonance arthrogram (MRA) exams ordered by physical therapists in a direct-access sports physical therapy clinic. Retrospective observational study of practice. Greater than 80% of advanced diagnostic imaging orders would have an American College of Radiology (ACR) Appropriateness Criteria rating of greater than 6, indicating an imaging order that is usually appropriate. A 2-year retrospective analysis identified 108 MRI/MRA examination orders from four physical therapists. A board-certified radiologist determined the appropriateness of each order based on ACR appropriateness criteria. The principal investigator and co-investigator radiologist assessed agreement between the clinical diagnosis and MRI/surgical findings. Knee (31%) and shoulder (25%) injuries were the most common. Overall, 55% of injuries were acute. The mean ACR rating was 7.7; scores from six to nine have been considered appropriate orders and higher ratings are better. The percentage of orders complying with ACR appropriateness criteria was 83.2%. Physical therapist's clinical diagnosis was confirmed by MRI/MRA findings in 64.8% of cases and was confirmed by surgical findings in 90% of cases. Physical therapists providing musculoskeletal primary care in a direct-access sports physical therapy clinic appropriately ordered advanced diagnostic imaging in over 80% of cases. Future research should prospectively compare physical therapist appropriateness and utilization to other groups of providers and explore the effects of physical therapist imaging privileging on outcomes. Diagnosis, Level 3.
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
Latourette, Matthew T; Siebert, James E; Barto, Robert J; Marable, Kenneth L; Muyepa, Anthony; Hammond, Colleen A; Potchen, Michael J; Kampondeni, Samuel D; Taylor, Terrie E
2011-08-01
As part of an NIH-funded study of malaria pathogenesis, a magnetic resonance (MR) imaging research facility was established in Blantyre, Malaŵi to enhance the clinical characterization of pediatric patients with cerebral malaria through application of neurological MR methods. The research program requires daily transmission of MR studies to Michigan State University (MSU) for clinical research interpretation and quantitative post-processing. An intercontinental satellite-based network was implemented for transmission of MR image data in Digital Imaging and Communications in Medicine (DICOM) format, research data collection, project communications, and remote systems administration. Satellite Internet service costs limited the bandwidth to symmetrical 384 kbit/s. DICOM routers deployed at both the Malaŵi MRI facility and MSU manage the end-to-end encrypted compressed data transmission. Network performance between DICOM routers was measured while transmitting both mixed clinical MR studies and synthetic studies. Effective network latency averaged 715 ms. Within a mix of clinical MR studies, the average transmission time for a 256 × 256 image was ~2.25 and ~6.25 s for a 512 × 512 image. Using synthetic studies of 1,000 duplicate images, the interquartile range for 256 × 256 images was [2.30, 2.36] s and [5.94, 6.05] s for 512 × 512 images. Transmission of clinical MRI studies between the DICOM routers averaged 9.35 images per minute, representing an effective channel utilization of ~137% of the 384-kbit/s satellite service as computed using uncompressed image file sizes (including the effects of image compression, protocol overhead, channel latency, etc.). Power unreliability was the primary cause of interrupted operations in the first year, including an outage exceeding 10 days.
De Los Ríos, F. A.; Paluszny, M.
2015-01-01
We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to define an alternative method of display that might facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique. For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of points, is significantly lower as compared with deterministic and other standard statistical techniques. PMID:25650281
Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.
Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen
2018-01-01
While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.
[A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].
Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong
2011-06-01
For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.
In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.
Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang
2014-11-01
Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shroff, Geeta
2017-02-01
Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.
Registration of 3D fetal neurosonography and MRI☆
Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.
2013-01-01
We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169
Liver Masses: What Physicians Need to Know About Ordering and Interpreting Liver Imaging.
Sheybani, Arman; Gaba, Ron C; Lokken, R Peter; Berggruen, Senta M; Mar, Winnie A
2017-10-18
This paper reviews diagnostic imaging techniques used to characterize liver masses and the imaging characteristics of the most common liver masses. The role of recently adopted ultrasound and magnetic resonance imaging contrast agents will be emphasized. Contrast-enhanced ultrasound is an inexpensive exam which can confirm benignity of certain liver masses without ionizing radiation. Magnetic resonance imaging using hepatocyte-specific gadolinium-based contrast agents can help confirm or narrow the differential diagnosis of liver masses.
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
Rakvongthai, Yothin; El Fakhri, Georges
2017-07-01
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.
Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael
Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Drees, R.; Forrest, L. J.; Chappell, R.
2009-01-01
Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490
Arterial Wall Imaging in Pediatric Stroke.
Dlamini, Nomazulu; Yau, Ivanna; Muthusami, Prakash; Mikulis, David J; Elbers, Jorina; Slim, Mahmoud; Askalan, Rand; MacGregor, Daune; deVeber, Gabrielle; Shroff, Manohar; Moharir, Mahendranath
2018-04-01
Arteriopathy is common in childhood arterial ischemic stroke (AIS) and predicts stroke recurrence. Currently available vascular imaging techniques mainly image the arterial lumen rather than the vessel wall and have a limited ability to differentiate among common arteriopathies. We aimed to investigate the value of a magnetic resonance imaging-based technique, namely noninvasive arterial wall imaging (AWI), for distinguishing among arteriopathy subtypes in a consecutive cohort of children presenting with AIS. Children with confirmed AIS and magnetic resonance angiography underwent 3-Tesla AWI including T1-weighted 2-dimensional fluid-attenuated inversion recovery fast spin echo sequences pre- and post-gadolinium contrast. AWI characteristics, including wall enhancement, wall thickening, and luminal stenosis, were documented for all. Twenty-six children with AIS had AWI. Of these, 9 (35%) had AWI enhancement. AWI enhancement was associated with anterior circulation magnetic resonance angiography abnormality and cortical infarction in 8 of 9 (89%) children and normal magnetic resonance angiography with posterior circulation subcortical infarction in 1 (1 of 9; 11%) child. AWI enhancement was not seen in 17 (65%), 10 (59%) of whom had an abnormal magnetic resonance angiography. Distinct patterns of pre- and postcontrast signal abnormality were demonstrated in the vessel wall in the region of interest in children with transient cerebral arteriopathy, arterial dissection, primary central nervous system angiitis, dissecting aneurysm, and cardioembolic stroke. AWI is a noninvasive, high-resolution magnetic resonance AWI technique, which can be successfully used in children presenting with AIS. Patterns of AWI enhancement are recognizable and associated with specific AIS pathogeneses. Further studies are required to assess the additional diagnostic utility of AWI over routine vascular imaging techniques, in childhood AIS. © 2018 American Heart Association, Inc.
Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine
2018-01-01
Background Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. Objective The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. Methods The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Results Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. Conclusions MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians’ skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. PMID:29720361
Wideband optical sensing using pulse interferometry.
Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis
2012-08-13
Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.
Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan
2015-03-18
To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.
Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan
2015-01-01
AIM: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. METHODS: The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). RESULTS: Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. CONCLUSION: Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery. PMID:25793170
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-08-01
The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.
Magnetic resonance imaging of mass transport and structure inside a phototrophic biofilm.
Ramanan, Baheerathan; Holmes, William M; Sloan, William T; Phoenix, Vernon R
2013-05-01
The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.
A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Dickenson, Reuben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.
1992-01-01
A new method for analyzing the kinematics of joint motion using magnetic resonance imaging (MRI) is described. The reconstruction of the metacarpalphalangeal joint of the left index finger into a 3D graphic display is shown. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones are obtained and processed by analyzing the screw motion of the joint. Landmark positions are chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily 2D planar motion of this joint is then studied using a method of constructing coordinate systems using three or more points. A transformation matrix based on a world coordinate system describes the location and orientation of the local target coordinate system. The findings show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove design for EVA.
Improved olefinic fat suppression in skeletal muscle DTI using a magnitude-based dixon method.
Burakiewicz, Jedrzej; Hooijmans, Melissa T; Webb, Andrew G; Verschuuren, Jan J G M; Niks, Erik H; Kan, Hermien E
2018-01-01
To develop a method of suppressing the multi-resonance fat signal in diffusion-weighted imaging of skeletal muscle. This is particularly important when imaging patients with muscular dystrophies, a group of diseases which cause gradual replacement of muscle tissue by fat. The signal from the olefinic fat peak at 5.3 ppm can significantly confound diffusion-tensor imaging measurements. Dixon olefinic fat suppression (DOFS), a magnitude-based chemical-shift-based method of suppressing the olefinic peak, is proposed. It is verified in vivo by performing diffusion tensor imaging (DTI)-based quantification in the lower leg of seven healthy volunteers, and compared to two previously described fat-suppression techniques in regions with and without fat contamination. In the region without fat contamination, DOFS produces similar results to existing techniques, whereas in muscle contaminated by subcutaneous fat signal moved due to the chemical shift artefact, it consistently showed significantly higher (P = 0.018) mean diffusivity (MD). Because fat presence lowers MD, this suggests improved fat suppression. DOFS offers superior fat suppression and enhances quantitative measurements in the muscle in the presence of fat. DOFS is an alternative to spectral olefinic fat suppression. Magn Reson Med 79:152-159, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Magnetic resonance imaging of amyloid plaques in transgenic mouse models of Alzheimer's disease
Chamberlain, Ryan; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.
2011-01-01
A major objective in the treatment of Alzheimer's disease is amyloid plaque reduction. Transgenic mouse models of Alzheimer's disease provide a controlled and consistent environment for studying amyloid plaque deposition in Alzheimer's disease. Magnetic resonance imaging is an attractive tool for longitudinal studies because it offers non-invasive monitoring of amyloid plaques. Recent studies have demonstrated the ability of magnetic resonance imaging to detect individual plaques in living mice. This review discusses the mouse models, MR pulse sequences, and parameters that have been used to image plaques and how they can be optimized for future studies. PMID:21499442
Temme, Sebastian; Grapentin, Christoph; Quast, Christine; Jacoby, Christoph; Grandoch, Maria; Ding, Zhaoping; Owenier, Christoph; Mayenfels, Friederike; Fischer, Jens W; Schubert, Rolf; Schrader, Jürgen; Flögel, Ulrich
2015-04-21
Noninvasive detection of deep venous thrombi and subsequent pulmonary thromboembolism is a serious medical challenge, since both incidences are difficult to identify by conventional ultrasound techniques. Here, we report a novel technique for the sensitive and specific identification of developing thrombi using background-free 19F magnetic resonance imaging, together with α2-antiplasmin peptide (α2AP)-targeted perfluorocarbon nanoemulsions (PFCs) as contrast agent, which is cross-linked to fibrin by active factor XIII. Ligand functionality was ensured by mild coupling conditions using the sterol-based postinsertion technique. Developing thrombi with a diameter<0.8 mm could be visualized unequivocally in the murine inferior vena cava as hot spots in vivo by simultaneous acquisition of anatomic matching 1H and 19F magnetic resonance images at 9.4 T with both excellent signal-to-noise and contrast-to-noise ratios (71±22 and 17±5, respectively). Furthermore, α2AP-PFCs could be successfully applied for the diagnosis of experimentally induced pulmonary thromboembolism. In line with the reported half-life of factor XIIIa, application of α2AP-PFCs>60 minutes after thrombus induction no longer resulted in detectable 19F magnetic resonance imaging signals. Corresponding results were obtained in ex vivo generated human clots. Thus, α2AP-PFCs can visualize freshly developed thrombi that might still be susceptible to pharmacological intervention. Our results demonstrate that 1H/19F magnetic resonance imaging, together with α2AP-PFCs, is a sensitive, noninvasive technique for the diagnosis of acute deep venous thrombi and pulmonary thromboemboli. Furthermore, ligand coupling by the sterol-based postinsertion technique represents a unique platform for the specific targeting of PFCs for in vivo 19F magnetic resonance imaging. © 2015 American Heart Association, Inc.
... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...
Kickhefel, Antje; Rosenberg, Christian; Weiss, Clifford R; Rempp, Hansjörg; Roland, Joerg; Schick, Fritz; Hosten, Norbert
2011-03-01
To assess the feasibility, precision, and accuracy of real-time temperature mapping (TMap) during laser-induced thermotherapy (LITT) for clinical practice in patients liver with a gradient echo (GRE) sequence using the proton resonance frequency (PRF) method. LITT was performed on 34 lesions in 18 patients with simultaneous real-time visualization of relative temperature changes. Correlative contrast-enhanced T1-weighted magnetic resonance (MR) images of the liver were acquired after treatment using the same slice positions and angulations as TMap images acquired during LITT. For each slice, TMap and follow-up images were registered for comparison. Afterwards, segmentation based on temperature (T) >52°C on TMap and based on necrosis seen on follow-up images was performed. These segmented structures were overlaid and divided into zones where the TMap was found to either over- or underestimate necrosis on the postcontrast images. Regions with T>52°C after 20 minutes were defined as necrotic tissue based on data received from two different thermal dose models. The average intersecting region of TMap and necrotic zone was 87% ± 5%, the overestimated 13% ± 4%, and the underestimated 13% ± 5%. This study demonstrates that MR temperature mapping appears reasonably capable of predicting tissue necrosis on the basis of indicating regions having greater temperatures than 52°C and could be used to monitor and adjust the thermal therapy appropriately during treatment. Copyright © 2011 Wiley-Liss, Inc.
Ahn, Hyo-Suk; Kim, Hyung-Kwan; Park, Eun-Ah; Lee, Whal; Park, Jae-Hyung; Sohn, Dae-Won
2013-10-01
In spite of the frequent involvement of many cardiac diseases, it is difficult to evaluate the left ventricular apex in detail with transthoracic echocardiography, a first-line imaging modality in cardiovascular diseases, because the apex is very closely located at the echocardiographic probe. Cardiac magnetic resonance enables us to evaluate the cardiac apex without any limitation to the image acquisition. We here present a case regarding a broad-based apical diverticulum, which was initially confused with apical aneurysm.
Wu, Jia; Gong, Guanghua; Cui, Yi; Li, Ruijiang
2016-11-01
To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). In this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65). The heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115. © 2016 International Society for Magnetic Resonance in Medicine.
Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q
2017-08-01
Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.
High-resolution dynamic 31 P-MRSI using a low-rank tensor model.
Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei
2017-08-01
To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Haraldsdóttir, K H; Jónsson, Þ; Halldórsdóttir, A B; Tranberg, K-G; Ásgeirsson, K S
2017-03-01
In Landspitali University Hospital, magnetic resonance imaging is used non-selectively in addition to mammogram and ultrasound in the preoperative assessment of breast cancer patients. The aim of this study was to assess invasive tumor size on imaging, compare with pathological size and evaluate the impact of magnetic resonance imaging on the type of surgery performed. All women with invasive breast cancer, diagnosed in Iceland, between 2007 and 2009 were reviewed retrospectively. In all, 438 of 641 (68%) patients diagnosed had preoperative magnetic resonance imaging. Twelve patients treated with neoadjuvant chemotherapy were excluded and 65 patients with multifocal or contralateral disease were assessed separately. Correlations between microscopic and radiologic tumor sizes were relatively weak. All imaging methods were inaccurate especially for large tumors, resulting in an overall underestimation of tumor size for these tumors. Magnetic resonance imaging under- and overestimated pathological tumor size by more than 10 mm in 16/348 (4.6%) and 26/348 patients (7.5%), respectively. In 19 patients (73%), overestimation of size was seen exclusively on magnetic resonance imaging. For tumors under- or overestimated by magnetic resonance imaging, the mastectomy rates were 56% and 65%, respectively, compared to an overall mastectomy rate of 43%. Of 51 patients diagnosed with multifocal disease on pathology, 19 (37%) were diagnosed by mammogram or ultrasound and 40 (78%) by magnetic resonance imaging resulting in a total detection rate of 84% (43 patients). Fourteen (3%) patients were diagnosed preoperatively with contralateral disease. Of those tumors, all were detected on magnetic resonance imaging but seven (50%) were also detected on mammogram or ultrasound or both. Our results suggest that routine use of magnetic resonance imaging may result in both under- and overestimation of tumor size and increase mastectomy rates in a small proportion of patients. Magnetic resonance imaging aids in the diagnosis of contralateral and multifocal disease.
Exploring the nonlinear regime of light-matter interaction using electronic spins in diamond
NASA Astrophysics Data System (ADS)
Alfasi, Nir; Masis, Sergei; Winik, Roni; Farfurnik, Demitry; Shtempluck, Oleg; Bar-Gill, Nir; Buks, Eyal
2018-06-01
The coupling between defects in diamond and a superconducting microwave resonator is studied in the nonlinear regime. Both negatively charged nitrogen-vacancy and P1 defects are explored. The measured cavity mode response exhibits strong nonlinearity near a spin resonance. Data is compared with theoretical predictions and a good agreement is obtained in a wide range of externally controlled parameters. The nonlinear effect under study in the current paper is expected to play a role in any cavity-based magnetic resonance imaging technique and to impose a fundamental limit upon its sensitivity.
Photonic crystal resonances for sensing and imaging
NASA Astrophysics Data System (ADS)
Pitruzzello, Giampaolo; Krauss, Thomas F.
2018-07-01
This review provides an insight into the recent developments of photonic crystal (PhC)-based devices for sensing and imaging, with a particular emphasis on biosensors. We focus on two main classes of devices, namely sensors based on PhC cavities and those on guided mode resonances (GMRs). This distinction is able to capture the richness of possibilities that PhCs are able to offer in this space. We present recent examples highlighting applications where PhCs can offer new capabilities, open up new applications or enable improved performance, with a clear emphasis on the different types of structures and photonic functions. We provide a critical comparison between cavity-based devices and GMR devices by highlighting strengths and weaknesses. We also compare PhC technologies and their sensing mechanism to surface plasmon resonance, microring resonators and integrated interferometric sensors.
Saha, Abhijoy; Banerjee, Sayantan; Kurtek, Sebastian; Narang, Shivali; Lee, Joonsang; Rao, Ganesh; Martinez, Juan; Bharath, Karthik; Rao, Arvind U K; Baladandayuthapani, Veerabhadran
2016-01-01
Tumor heterogeneity is a crucial area of cancer research wherein inter- and intra-tumor differences are investigated to assess and monitor disease development and progression, especially in cancer. The proliferation of imaging and linked genomic data has enabled us to evaluate tumor heterogeneity on multiple levels. In this work, we examine magnetic resonance imaging (MRI) in patients with brain cancer to assess image-based tumor heterogeneity. Standard approaches to this problem use scalar summary measures (e.g., intensity-based histogram statistics) that do not adequately capture the complete and finer scale information in the voxel-level data. In this paper, we introduce a novel technique, DEMARCATE (DEnsity-based MAgnetic Resonance image Clustering for Assessing Tumor hEterogeneity) to explore the entire tumor heterogeneity density profiles (THDPs) obtained from the full tumor voxel space. THDPs are smoothed representations of the probability density function of the tumor images. We develop tools for analyzing such objects under the Fisher-Rao Riemannian framework that allows us to construct metrics for THDP comparisons across patients, which can be used in conjunction with standard clustering approaches. Our analyses of The Cancer Genome Atlas (TCGA) based Glioblastoma dataset reveal two significant clusters of patients with marked differences in tumor morphology, genomic characteristics and prognostic clinical outcomes. In addition, we see enrichment of image-based clusters with known molecular subtypes of glioblastoma multiforme, which further validates our representation of tumor heterogeneity and subsequent clustering techniques.
Fukumitsu, Ryu; Yoshida, Kazumichi; Kurosaki, Yoshitaka; Torihashi, Koichi; Sadamasa, Nobutake; Koyanagi, Masaomi; Narumi, Osamu; Sato, Tsukasa; Chin, Masaki; Handa, Akira; Yamagata, Sen; Miyamoto, Susumu
2017-05-01
Although carotid artery stenting (CAS) has been gaining popularity as an alternative to carotid endarterectomy (CEA), perioperative stroke rate following contemporary CAS remains significantly higher than stroke rate after CEA. The purpose of this study was to assess perioperative (within 30 days) therapeutic results in patients with carotid stenosis (CS) after introduction of preoperative carotid magnetic resonance imaging plaque evaluation in a single center performing both CEA and CAS. Based on prospectively collected data for patients with CS who were scheduled for carotid revascularization, retrospective analysis was conducted of 295 consecutive patients with CS. An intervention was selected after consideration of periprocedural risks for both CEA and CAS. Concerning risk factors for CAS, results of magnetic resonance imaging plaque evaluation were emphasized with a view toward reducing embolic complications. CAS was performed in 114 patients, and CEA was performed in 181 patients. Comparing baseline characteristics of the 295 patients, age, T1 signal intensity of plaque, symptomatic CS, urgent intervention, and diabetes mellitus differed significantly between CAS and CEA groups. Among patients who underwent CAS, new hyperintense lesions on diffusion-weighted imaging were confirmed in 47 patients. New hyperintense lesions on diffusion-weighted imaging were recognized in 21.4% of patients who underwent CEA (n = 39), significantly less frequent than in patients who underwent CAS. The overall short-term outcome of CEA and CAS is acceptable. Preoperative carotid magnetic resonance imaging evaluation of plaque might contribute to low rates of ischemic complications in CAS. Copyright © 2017 Elsevier Inc. All rights reserved.
Steenweg, Marjan E; Ghezzi, Daniele; Haack, Tobias; Abbink, Truus E M; Martinelli, Diego; van Berkel, Carola G M; Bley, Annette; Diogo, Luisa; Grillo, Eugenio; Te Water Naudé, Johann; Strom, Tim M; Bertini, Enrico; Prokisch, Holger; van der Knaap, Marjo S; Zeviani, Massimo
2012-05-01
In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical signature. In an isolated patient, we found two mutant alleles for EARS2, the gene encoding mitochondrial glutamyl-tRNA synthetase. The brain magnetic resonance imaging of this patient was hallmarked by extensive symmetrical cerebral white matter abnormalities sparing the periventricular rim and symmetrical signal abnormalities of the thalami, midbrain, pons, medulla oblongata and cerebellar white matter. Proton magnetic resonance spectroscopy showed increased lactate. We matched this magnetic resonance imaging pattern with that of a cohort of 11 previously selected unrelated cases. We found mutations in the EARS2 gene in all. Subsequent detailed clinical and magnetic resonance imaging based phenotyping revealed two distinct groups: mild and severe. All 12 patients shared an infantile onset and rapidly progressive disease with severe magnetic resonance imaging abnormalities and increased lactate in body fluids and proton magnetic resonance spectroscopy. Patients in the 'mild' group partially recovered and regained milestones in the following years with striking magnetic resonance imaging improvement and declining lactate levels, whereas those of the 'severe' group were characterized by clinical stagnation, brain atrophy on magnetic resonance imaging and persistent lactate increases. This new neurological disease, early-onset leukoencephalopathy with thalamus and brainstem involvement and high lactate, is hallmarked by unique magnetic resonance imaging features, defined by a peculiar biphasic clinical course and caused by mutations in a single gene, EARS2, expanding the list of medically relevant defects of mitochondrial DNA translation.
Magnetic resonance imaging for the study of mummies.
Giovannetti, Giulio; Guerrini, Andrea; Carnieri, Emiliano; Salvadori, Piero A
2016-07-01
Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology. More recently, multinuclear magnetic resonance spectroscopy (MRS) was demonstrated able to detect numerous organic biochemicals from such remains. Although the quality of these images is not yet comparable to that of clinical magnetic resonance (MR) images, and further research will be needed for determining the full capacity of MR in this topic, the information obtained with MR can be viewed as complementary to the one provided by CT and useful for paleoradiological studies of mummies. This work contains an overview of the state of art of the emerging uses of MRI in paleoradiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Boog, G; Le Vaillant, C; Winer, N; David, A; Quere, M P; Nomballais, M F
1999-01-01
A diagnosis of Apert syndrome, suspected at 24 weeks' gestation after conventional sonography showing turribrachycephaly and syndactyly of hands and feet, was confirmed at 26 weeks' gestation by tridimensional sonography and magnetic resonance imaging. This is only the second prenatal diagnosis reported at mid-trimester, excluding cases published from affected mothers or in connection with a context of recurrence. Additional findings have been collected from tridimensional sonography (mid-facial hypoplasia, downslanting palpebral fissures) and from magnetic resonance imaging (verticalization of the clivus and flattened angle of the cranial base).
Jordan, Andrew; Lyne, Jonathan; Wong, Tom
2010-04-01
A case of cardiomyopathy and ventricular tachycardia previously assumed to be idiopathic in origin is described. Investigation with cardiac magnetic resonance imaging prompted the diagnosis and successful treatment of an underlying disorder based on typical scarring patterns seen with late gadolinium enhancement. The present report suggests that clinicians should have a low threshold for actively excluding this condition in patients presenting with cardiomyopathy, even in the absence of other disease features, particularly if typical scarring patterns are found on cardiac magnetic resonance imaging because disease-specific therapy appears to significantly improve both symptoms and prognosis.
Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging
Cabrera-García, Alejandro; Vidal-Moya, Alejandro; Bernabeu, Ángela; Pacheco-Torres, Jesús; Checa-Chavarria, Elisa; Fernández, Eduardo; Botella, Pablo
2016-01-01
We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images. PMID:28335240
Zhang, Xiaoliang
2017-04-01
Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.
Shielded Microstrip Array for 7T Human MR Imaging
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A. C.; Xu, Duan; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or “cable resonance” behavior. PMID:19822470
USDA-ARS?s Scientific Manuscript database
A rapid, sensitive and multiplexed imaging surface plasmon resonance (iSPR) biosensor assay was developed and validated for three Fusarium toxins, deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin. The iSPR assay was based on a competitive inhibition format with secondary antibodies (Ab2) conjug...
Lee, Eun Sook; Deepagan, V G; You, Dong Gil; Jeon, Jueun; Yi, Gi-Ra; Lee, Jung Young; Lee, Doo Sung; Suh, Yung Doug; Park, Jae Hyung
2016-03-18
Overproduction of hydrogen peroxide is involved in the pathogenesis of inflammatory diseases such as cancer and arthritis. To image hydrogen peroxide via chemiluminescence resonance energy transfer in the near-infrared wavelength range, we prepared quantum dots functionalized with a luminol derivative.
Milidonis, Xenios; Marshall, Ian; Macleod, Malcolm R; Sena, Emily S
2015-03-01
Because the new era of preclinical stroke research demands improvements in validity and generalizability of findings, moving from single site to multicenter studies could be pivotal. However, the conduct of magnetic resonance imaging (MRI) in stroke remains ill-defined. We sought to assess the variability in the use of MRI for evaluating lesions post stroke and to examine the possibility as an alternative to gold standard histology for measuring the infarct size. We identified animal studies of ischemic stroke reporting lesion sizes using MRI. We assessed the degree of heterogeneity and reporting of scanning protocols, postprocessing methods, study design characteristics, and study quality. Studies performing histological evaluation of infarct size were further selected to compare with corresponding MRI using meta-regression. Fifty-four articles undertaking a total of 78 different MRI scanning protocols met the inclusion criteria. T2-weighted imaging was most frequently used (83% of the studies), followed by diffusion-weighted imaging (43%). Reporting of the imaging parameters was adequate, but heterogeneity between studies was high. Twelve studies assessed the infarct size using both MRI and histology at corresponding time points, with T2-weighted imaging-based treatment effect having a significant positive correlation with histology (; P<0.001). Guidelines for standardized use and reporting of MRI in preclinical stroke are urgently needed. T2-weighted imaging could be used as an effective in vivo alternative to histology for estimating treatment effects based on the extent of infarction; however, additional studies are needed to explore the effect of individual parameters. © 2015 American Heart Association, Inc.
Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images
NASA Astrophysics Data System (ADS)
Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.
2012-10-01
Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.
Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M
2012-01-01
In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.
Magnetic resonance imaging without field cycling at less than earth's magnetic field
NASA Astrophysics Data System (ADS)
Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min
2015-03-01
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.
Hiasat, Jamila G; Saleh, Alaa; Al-Hussaini, Maysa; Al Nawaiseh, Ibrahim; Mehyar, Mustafa; Qandeel, Monther; Mohammad, Mona; Deebajah, Rasha; Sultan, Iyad; Jaradat, Imad; Mansour, Asem; Yousef, Yacoub A
2018-06-01
To evaluate the predictive value of magnetic resonance imaging in retinoblastoma for the likelihood of high-risk pathologic features. A retrospective study of 64 eyes enucleated from 60 retinoblastoma patients. Contrast-enhanced magnetic resonance imaging was performed before enucleation. Main outcome measures included demographics, laterality, accuracy, sensitivity, and specificity of magnetic resonance imaging in detecting high-risk pathologic features. Optic nerve invasion and choroidal invasion were seen microscopically in 34 (53%) and 28 (44%) eyes, respectively, while they were detected in magnetic resonance imaging in 22 (34%) and 15 (23%) eyes, respectively. The accuracy of magnetic resonance imaging in detecting prelaminar invasion was 77% (sensitivity 89%, specificity 98%), 56% for laminar invasion (sensitivity 27%, specificity 94%), 84% for postlaminar invasion (sensitivity 42%, specificity 98%), and 100% for optic cut edge invasion (sensitivity100%, specificity 100%). The accuracy of magnetic resonance imaging in detecting focal choroidal invasion was 48% (sensitivity 33%, specificity 97%), and 84% for massive choroidal invasion (sensitivity 53%, specificity 98%), and the accuracy in detecting extrascleral extension was 96% (sensitivity 67%, specificity 98%). Magnetic resonance imaging should not be the only method to stratify patients at high risk from those who are not, eventhough it can predict with high accuracy extensive postlaminar optic nerve invasion, massive choroidal invasion, and extrascleral tumor extension.
Souto Bayarri, M; Masip Capdevila, L; Remuiñan Pereira, C; Suárez-Cuenca, J J; Martínez Monzonís, A; Couto Pérez, M I; Carreira Villamor, J M
2015-01-01
To compare the methods of right ventricle segmentation in the short-axis and 4-chamber planes in cardiac magnetic resonance imaging and to correlate the findings with those of the tricuspid annular plane systolic excursion (TAPSE) method in echocardiography. We used a 1.5T MRI scanner to study 26 patients with diverse cardiovascular diseases. In all MRI studies, we obtained cine-mode images from the base to the apex in both the short-axis and 4-chamber planes using steady-state free precession sequences and 6mm thick slices. In all patients, we quantified the end-diastolic volume, end-systolic volume, and the ejection fraction of the right ventricle. On the same day as the cardiac magnetic resonance imaging study, 14 patients also underwent echocardiography with TAPSE calculation of right ventricular function. No statistically significant differences were found in the volumes and function of the right ventricle calculated using the 2 segmentation methods. The correlation between the volume estimations by the two segmentation methods was excellent (r=0,95); the correlation for the ejection fraction was slightly lower (r=0,8). The correlation between the cardiac magnetic resonance imaging estimate of right ventricular ejection fraction and TAPSE was very low (r=0,2, P<.01). Both ventricular segmentation methods quantify right ventricular function adequately. The correlation with the echocardiographic method is low. Copyright © 2012 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Scanning properties of a resonant fiber-optic piezoelectric scanner
NASA Astrophysics Data System (ADS)
Li, Zhi; Yang, Zhe; Fu, Ling
2011-12-01
We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.
McCarthy, G; Blamire, A M; Rothman, D L; Gruetter, R; Shulman, R G
1993-01-01
Nine subjects were studied by high-speed magnetic resonance imaging while performing language-based tasks. Subjects were asked either to repeat or to generate verbs associated with nouns read by an experimenter while magnetic resonance images were obtained of the left inferior frontal lobe. The echo-planar imaging sequence was used with a gradient echo time of 70 ms to give an apparent transverse relaxation time weighting (T2* that is sensitive to local hemoglobin levels. Images were acquired every 3 s (repetition time) in series of 32. In plane resolution was 6 x 4.5 mm and slice thickness was 10 mm. An increase in signal accompanied performance of the tasks, with significantly more activation for verb generation than for repeating. The activation effect occurred within 3 s after task onset and could be observed in single images from individual subjects. The primary focus of activation appeared in gray matter along a sulcus anterior to the lateral sulcus that included the anterior insula, Brodmann's area 47, and extending to area 10. Little or no activation of this region was found for a passive listening, covert generation, or mouth-movement control tasks. Significant activation was also found for a homologous region in the right frontal cortex but not for control regions in calcarine cortex. These results are consistent with prior studies that have used positron emission tomography imaging with 15O-labeled water as a blood flow tracer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8506340
Velopharyngeal Anatomy in 22q11.2 Deletion Syndrome: A Three-Dimensional Cephalometric Analysis
Ruotolo, Rachel A.; Veitia, Nestor A.; Corbin, Aaron; McDonough, Joseph; Solot, Cynthia B.; McDonald-McGinn, Donna; Zackai, Elaine H.; Emanuel, Beverly S.; Cnaan, Avital; LaRossa, Don; Arens, Raanan; Kirschner, Richard E.
2010-01-01
Objective 22q11.2 deletion syndrome is the most common genetic cause of velopharyngeal dysfunction (VPD). Magnetic resonance imaging (MRI) is a promising method for noninvasive, three-dimensional (3D) assessment of velopharyngeal (VP) anatomy. The purpose of this study was to assess VP structure in patients with 22q11.2 deletion syndrome by using 3D MRI analysis. Design This was a retrospective analysis of magnetic resonance images obtained in patients with VPD associated with a 22q11.2 deletion compared with a normal control group. Setting This study was conducted at The Children’s Hospital of Philadelphia, a pediatric tertiary care center. Patients, Participants The study group consisted of 5 children between the ages of 2.9 and 7.9 years, with 22q11.2 deletion syndrome confirmed by fluorescence in situ hybridization analysis. All had VPD confirmed by nasendoscopy or videofluoroscopy. The control population consisted of 123 unaffected patients who underwent MRI for reasons other than VP assessment. Interventions Axial and sagittal T1- and T2-weighted magnetic resonance images with 3-mm slice thickness were obtained from the orbit to the larynx in all patients by using a 1.5T Siemens Visions system. Outcome Measures Linear, angular, and volumetric measurements of VP structures were obtained from the magnetic resonance images with VIDA image- processing software. Results The study group demonstrated greater anterior and posterior cranial base and atlanto-dental angles. They also demonstrated greater pharyngeal cavity volume and width and lesser tonsillar and adenoid volumes. Conclusion Patients with a 22q11.2 deletion demonstrate significant alterations in VP anatomy that may contribute to VPD. PMID:16854203
Near-Resonant Imaging of Trapped Cold Atomic Samples
You, L.; Lewenstein, Maciej
1996-01-01
We study the formation of diffraction patterns in the near-resonant imaging of trapped cold atomic samples. We show that the spatial imaging can provide detailed information on the trapped atomic clouds. PMID:27805110
Multishot cartesian turbo spin-echo diffusion imaging using iterative POCSMUSE Reconstruction.
Zhang, Zhe; Zhang, Bing; Li, Ming; Liang, Xue; Chen, Xiaodong; Liu, Renyuan; Zhang, Xin; Guo, Hua
2017-07-01
To report a diffusion imaging technique insensitive to off-resonance artifacts and motion-induced ghost artifacts using multishot Cartesian turbo spin-echo (TSE) acquisition and iterative POCS-based reconstruction of multiplexed sensitivity encoded magnetic resonance imaging (MRI) (POCSMUSE) for phase correction. Phase insensitive diffusion preparation was used to deal with the violation of the Carr-Purcell-Meiboom-Gill (CPMG) conditions of TSE diffusion-weighted imaging (DWI), followed by a multishot Cartesian TSE readout for data acquisition. An iterative diffusion phase correction method, iterative POCSMUSE, was developed and implemented to eliminate the ghost artifacts in multishot TSE DWI. The in vivo human brain diffusion images (from one healthy volunteer and 10 patients) using multishot Cartesian TSE were acquired at 3T and reconstructed using iterative POCSMUSE, and compared with single-shot and multishot echo-planar imaging (EPI) results. These images were evaluated by two radiologists using visual scores (considering both image quality and distortion levels) from 1 to 5. The proposed iterative POCSMUSE reconstruction was able to correct the ghost artifacts in multishot DWI. The ghost-to-signal ratio of TSE DWI using iterative POCSMUSE (0.0174 ± 0.0024) was significantly (P < 0.0005) smaller than using POCSMUSE (0.0253 ± 0.0040). The image scores of multishot TSE DWI were significantly higher than single-shot (P = 0.004 and 0.006 from two reviewers) and multishot (P = 0.008 and 0.004 from two reviewers) EPI-based methods. The proposed multishot Cartesian TSE DWI using iterative POCSMUSE reconstruction can provide high-quality diffusion images insensitive to motion-induced ghost artifacts and off-resonance related artifacts such as chemical shifts and susceptibility-induced image distortions. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:167-174. © 2016 International Society for Magnetic Resonance in Medicine.
Electromagnetic induction imaging of concealed metallic objects by means of resonating circuits
NASA Astrophysics Data System (ADS)
Guilizzoni, R.; Watson, J. C.; Bartlett, P. A.; Renzoni, F.
2016-05-01
An electromagnetic induction system, suitable for 2D imaging of metallic samples of different electrical conductivities, has been developed. The system is based on a parallel LCR circuit comprising a ferrite-cored coil (7.8 mm x 9.5 mm, L=680 μH at 1 KHz), a variable resistor and capacitor. The working principle of the system is based on eddy current induction inside a metallic sample when this is introduced into the AC magnetic field created by the coil. The inductance of the LCR circuit is modified due to the presence of the sample, to an extent that depends on its conductivity. Such modification is known to increase when the system is operated at its resonant frequency. Characterizing different metals based on their values of conductivity is therefore possible by utilizing a suitable system operated at resonance. Both imaging and material characterization were demonstrated by means of the proposed electromagnetic induction technique. Furthermore, the choice of using a system with an adjustable resonant frequency made it possible to select resonances that allow magnetic-field penetration through conductive screens. Investigations on the possibility of imaging concealed metals by penetrating such shields have been carried out. A penetration depth of δ~3 mm through aluminium (Al) was achieved. This allowed concealed metallic samples- having conductivities ranging from 0.54 to 59.77 MSm-1 and hidden behind 1.5-mm-thick Al shields- to be imaged. Our results demonstrate that the presence of the concealed metallic objects can be revealed. The technique was thus shown to be a promising detection tool for security applications.
Joint water-fat separation and deblurring for spiral imaging.
Wang, Dinghui; Zwart, Nicholas R; Pipe, James G
2018-06-01
Most previous approaches to spiral Dixon water-fat imaging perform the water-fat separation and deblurring sequentially based on the assumption that the phase accumulation and blurring as a result of off-resonance are separable. This condition can easily be violated in regions where the B 0 inhomogeneity varies rapidly. The goal of this work is to present a novel joint water-fat separation and deblurring method for spiral imaging. The proposed approach is based on a more accurate signal model that takes into account the phase accumulation and blurring simultaneously. A conjugate gradient method is used in the image domain to reconstruct the deblurred water and fat iteratively. Spatially varying convolutions with a local convergence criterion are used to reduce the computational demand. Both simulation and high-resolution brain imaging have demonstrated that the proposed joint method consistently improves the quality of reconstructed water and fat images compared with the sequential approach, especially in regions where the field inhomogeneity changes rapidly in space. The loss of signal-to-noise-ratio as a result of deblurring is minor at optimal echo times. High-quality water-fat spiral imaging can be achieved with the proposed joint approach, provided that an accurate field map of B 0 inhomogeneity is available. Magn Reson Med 79:3218-3228, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.
Quality evaluation of no-reference MR images using multidirectional filters and image statistics.
Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik
2018-09-01
This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Advances in Magnetic Resonance Imaging of the Skull Base
Kirsch, Claudia F.E.
2014-01-01
Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137
Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning
NASA Astrophysics Data System (ADS)
Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun
2017-06-01
Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.
PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method.
Haddadpour, Mozhdeh; Daneshvar, Sabalan; Seyedarabi, Hadi
2017-08-01
The process of medical image fusion is combining two or more medical images such as Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) and mapping them to a single image as fused image. So purpose of our study is assisting physicians to diagnose and treat the diseases in the least of the time. We used Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) as input images, so fused them based on combination of two dimensional Hilbert transform (2-D HT) and Intensity Hue Saturation (IHS) method. Evaluation metrics that we apply are Discrepancy (D k ) as an assessing spectral features and Average Gradient (AG k ) as an evaluating spatial features and also Overall Performance (O.P) to verify properly of the proposed method. In this paper we used three common evaluation metrics like Average Gradient (AG k ) and the lowest Discrepancy (D k ) and Overall Performance (O.P) to evaluate the performance of our method. Simulated and numerical results represent the desired performance of proposed method. Since that the main purpose of medical image fusion is preserving both spatial and spectral features of input images, so based on numerical results of evaluation metrics such as Average Gradient (AG k ), Discrepancy (D k ) and Overall Performance (O.P) and also desired simulated results, it can be concluded that our proposed method can preserve both spatial and spectral features of input images. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
MR Imaging-based Semi-quantitative Methods for Knee Osteoarthritis
JARRAYA, Mohamed; HAYASHI, Daichi; ROEMER, Frank Wolfgang; GUERMAZI, Ali
2016-01-01
Magnetic resonance imaging (MRI)-based semi-quantitative (SQ) methods applied to knee osteoarthritis (OA) have been introduced during the last decade and have fundamentally changed our understanding of knee OA pathology since then. Several epidemiological studies and clinical trials have used MRI-based SQ methods to evaluate different outcome measures. Interest in MRI-based SQ scoring system has led to continuous update and refinement. This article reviews the different SQ approaches for MRI-based whole organ assessment of knee OA and also discuss practical aspects of whole joint assessment. PMID:26632537
Magnetic resonance image segmentation using multifractal techniques
NASA Astrophysics Data System (ADS)
Yu, Yue-e.; Wang, Fang; Liu, Li-lin
2015-11-01
In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.
Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People
ERIC Educational Resources Information Center
Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi
2011-01-01
This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; Read, Paul W.; Baisden, Joseph M.
Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less
Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke
2007-11-01
To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourne, Roger
2013-03-15
This commentary outlines how magnetic resonance imaging (MRI) microscopy studies of prostate tissue samples and whole organs have shed light on a number of clinical imaging mysteries and may enable more effective development of new clinical imaging methods.
Huang, Pei; Tan, Yu-Yan; Liu, Dong-Qiang; Herzallah, Mohammad M; Lapidow, Elizabeth; Wang, Ying; Zang, Yu-Feng; Gluck, Mark A; Chen, Sheng-Di
2017-07-01
Asymmetric onset of motor symptoms in PD can affect cognitive function. We examined whether motor-symptom laterality could affect feedback-based associative learning and explored its underlying neural mechanism by functional magnetic resonance imaging in PD patients. We recruited 63 early-stage medication-naïve PD patients (29 left-onset medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched normal controls. Subjects completed an acquired equivalence task (including acquisition, retention, and generalization) and resting-state functional magnetic resonance imaging scans. Learning accuracy and response time in each phase of the task were recorded for behavioral measures. Regional homogeneity was used to analyze resting-state functional magnetic resonance imaging data, with regional homogeneity lateralization to evaluate hemispheric functional asymmetry in the striatum. Left-onset patients made significantly more errors in acquisition (feedback-based associative learning) than right-onset patients and normal controls, whereas right-onset patients performed as well as normal controls. There was no significant difference among these three groups in the accuracy of either retention or generalization phase. The three groups did not show significant differences in response time. In the left-onset group, there was an inverse relationship between acquisition errors and regional homogeneity in the right dorsal rostral putamen. There were no significant regional homogeneity changes in either the left or the right dorsal rostral putamen in right-onset patients when compared to controls. Motor-symptom laterality could affect feedback-based associative learning in PD, with left-onset medication-naïve patients being selectively impaired. Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in associative learning in patients with left-sided onset.© 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
SIMULTANEOUS MULTISLICE MAGNETIC RESONANCE FINGERPRINTING WITH LOW-RANK AND SUBSPACE MODELING
Zhao, Bo; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A.; Wald, Lawrence L.; Setsompop, Kawin
2018-01-01
Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T1, T2, and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3x speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice. PMID:29060594
Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.
Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin
2017-07-01
Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.
Lin, Chu-Hsu; Tsai, Yuan-Hsiung; Chang, Chia-Hao; Chen, Chien-Min; Hsu, Hung-Chih; Wu, Chun-Yen; Hong, Chang-Zern
2013-09-01
The aims of this study were to investigate the correlation of the findings of multiple median and ulnar F-wave variables and magnetic resonance imaging examinations in the prediction of cervical radiculopathy. The data of 68 patients who underwent both nerve conduction studies of the upper extremities and cervical spine magnetic resonance imaging within 3 mos of the nerve conduction studies were retrospectively reviewed and reinterpreted. The associations between multiple median and ulnar F-wave variables (including persistence, chronodispersion, and minimal, maximal, and mean latencies) and magnetic resonance imaging evidence of lower cervical spondylotic radiculopathy (i.e., C7, C8, and T1 radiculopathy) were investigated. Patients with lower cervical radiculopathy exhibited reduced right median F-wave persistence (P = 0.011), increased right ulnar F-wave chronodispersion (P = 0.041), and a trend toward increased left ulnar F-wave chronodispersion (P = 0.059); however, there were no other consistent significant differences in the F-wave variables between patients with and patients without magnetic resonance imaging evidence of lower cervical radiculopathy. In comparison with normal reference values established previously, the sensitivity and positive predictive value of F-wave variable abnormalities for predicting lower cervical radiculopathy were low. There was a low correlation between F-wave studies and magnetic resonance imaging examinations. The diagnostic utility of multiple F-wave variables in the prediction of cervical radiculopathy was not supported by this study.
Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine
2014-01-01
Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331
Onuki, Yoshinori; Horita, Akihiro; Kuribayashi, Hideto; Okuno, Yoshihide; Obata, Yasuko; Takayama, Kozo
2014-07-01
A non-destructive method for monitoring creaming of emulsion-based formulations is in great demand because it allows us to understand fully their instability mechanisms. This study was aimed at demonstrating the usefulness of magnetic resonance (MR) techniques, including MR imaging (MRI) and MR spectroscopy (MRS), for evaluating the physicochemical stability of emulsion-based formulations. Emulsions that are applicable as the base of practical skin creams were used as test samples. Substantial creaming was developed by centrifugation, which was then monitored by MRI. The creaming oil droplet layer and aqueous phase were clearly distinguished by quantitative MRI by measuring T1 and the apparent diffusion coefficient. Components in a selected volume in the emulsions could be analyzed using MRS. Then, model emulsions having different hydrophilic-lipophilic balance (HLB) values were tested, and the optimal HLB value for a stable dispersion was determined. In addition, the MRI examination enables the detection of creaming occurring in a polyethylene tube, which is commonly used for commercial products, without losing any image quality. These findings strongly indicate that MR techniques are powerful tools to evaluate the physicochemical stability of emulsion-based formulations. This study will make a great contribution to the development and quality control of emulsion-based formulations.
Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans.
Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth
2006-10-01
This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given.
Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans (L)
Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth
2007-01-01
This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given. PMID:17069275
Todt, I; Mittmann, P; Ernst, A; Mutze, S; Rademacher, G
2018-05-01
To observe the effects of magnetic resonance imaging scans in Vibrant Soundbridge 503 implantees at 1.5T in vivo. In a prospective case study of five Vibrant Soundbridge 503 implantees, 1.5T magnetic resonance imaging scans were performed with and without a headband. The degree of pain was evaluated using a visual analogue scale. Scan-related pure tone audiogram and audio processor fitting changes were assessed. In all patients, magnetic resonance imaging scans were performed without any degree of pain or change in pure tone audiogram or audio processor fitting, even without a headband. In this series, 1.5T magnetic resonance imaging scans were performed with the Vibrant Soundbridge 503 without complications. Limitations persist in terms of magnetic artefacts.
Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla
Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.
2011-01-01
Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3′-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history. PMID:22171355
ERIC Educational Resources Information Center
Berg, Anne T.; Mathern, Gary W.; Bronen, Richard A.; Fulbright, Robert K.; DiMario, Francis; Testa, Francine M.; Levy, Susan R.
2009-01-01
The epidemiology of lesions identified by magnetic resonance imaging (MRI), along with the use of pre-surgical evaluations and surgery in childhood-onset epilepsy patients has not previously been described. In a prospectively identified community-based cohort of children enrolled from 1993 to 1997, we examined (i) the frequency of lesions…
An acousto-optic sensor based on resonance grating waveguide structure
Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo
2014-01-01
This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203
Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.
1989-01-01
OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases... PMID:2506965
Surface plasmon resonance sensing: from purified biomolecules to intact cells.
Su, Yu-Wen; Wang, Wei
2018-04-12
Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.
Whole-body MRI in pediatric patients with cancer.
Guimarães, Marcos Duarte; Noschang, Julia; Teixeira, Sara Reis; Santos, Marcel Koenigkam; Lederman, Henrique Manoel; Tostes, Vivian; Kundra, Vikas; Oliveira, Alex Dias; Hochhegger, Bruno; Marchiori, Edson
2017-02-10
Cancer is the leading cause of natural death in the pediatric populations of developed countries, yet cure rates are greater than 70% when a cancer is diagnosed in its early stages. Recent advances in magnetic resonance imaging methods have markedly improved diagnostic and therapeutic approaches, while avoiding the risks of ionizing radiation that are associated with most conventional radiological methods, such as computed tomography and positron emission tomography/computed tomography. The advent of whole-body magnetic resonance imaging in association with the development of metabolic- and function-based techniques has led to the use of whole-body magnetic resonance imaging for the screening, diagnosis, staging, response assessment, and post-therapeutic follow-up of children with solid sporadic tumours or those with related genetic syndromes. Here, the advantages, techniques, indications, and limitations of whole-body magnetic resonance imaging in the management of pediatric oncology patients are presented.
NASA Astrophysics Data System (ADS)
Liu, Xin; Samil Yetik, Imam
2012-04-01
Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.
Virtual reality neurosurgery: a simulator blueprint.
Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J
2004-04-01
This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.
Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K; Oguz, Ipek
2013-01-01
Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations.
Kaushik, S Sivaram; Karr, Robin; Runquist, Matthew; Marszalkowski, Cathy; Sharma, Abhishiek; Rand, Scott D; Maiman, Dennis; Koch, Kevin M
2017-01-01
To evaluate magnetic resonance imaging (MRI) artifacts near metallic spinal instrumentation using both conventional metal artifact reduction sequences (MARS) and 3D multispectral imaging sequences (3D-MSI). Both MARS and 3D-MSI images were acquired in 10 subjects with titanium spinal hardware on a 1.5T GE 450W scanner. Clinical computed tomography (CT) images were used to measure the volume of the implant using seed-based region growing. Using 30-40 landmarks, the MARS and 3D-MSI images were coregistered to the CT images. Three independent users manually segmented the artifact volume from both MR sequences. For five L-spine subjects, one user independently segmented the nerve root in both MARS and 3D-MSI images. For all 10 subjects, the measured artifact volume for the 3D-MSI images closely matched that of the CT implant volume (absolute error: 4.3 ± 2.0 cm 3 ). The MARS artifact volume was ∼8-fold higher than that of the 3D-MSI images (30.7 ± 20.2, P = 0.002). The average nerve root volume for the MARS images was 24 ± 7.3% lower than the 3D-MSI images (P = 0.06). Compared to 3D-MSI images, the higher-resolution MARS images may help study features farther away from the implant surface. However, the MARS images retained substantial artifacts in the slice-dimension that result in a larger artifact volume. These artifacts have the potential to obscure physiologically relevant features, and can be mitigated with 3D-MSI sequences. Hence, MR study protocols may benefit with the inclusion both MARS and 3D-MSI sequences to accurately study pathology near the spine. 2 J. Magn. Reson. Imaging 2017;45:51-58. © 2016 International Society for Magnetic Resonance in Medicine.
Psychological reactions in women undergoing fetal magnetic resonance imaging.
Leithner, Katharina; Pörnbacher, Susanne; Assem-Hilger, Eva; Krampl, Elisabeth; Ponocny-Seliger, Elisabeth; Prayer, Daniela
2008-02-01
To investigate women's psychological reactions when undergoing fetal magnetic resonance imaging (MRI), and to estimate whether certain groups, based on clinical and sociodemographic variables, differ in their subjective experiences with fetal MRI and in their anxiety levels related to the scanning procedure. This study is a prospective cohort investigation of 62 women before and immediately after fetal MRI. Anxiety levels and subjective experiences were measured by questionnaires. Groups based on clinical and sociodemographic variables were compared with regard to anxiety levels and to the scores on the Prescan and Postscan Imaging Distress Questionnaire. Anxiety scores before fetal MRI were 8.8 points higher than those of the female, nonclinical, norm population (P<.001). The severity of the referral diagnosis showed a linearly increasing effect on anxiety level before MRI (weighted linear term: F1,59=5.325, P=.025). Magnetic resonance imaging was experienced as unpleasant by 33.9% (95% confidence interval [CI] 21.2-46.6%) and as hardly bearable by 4.8% (95% CI 0-17.5%) of the women. Physical restraint (49.9%, 95% CI 37.4-62.4%), noise level (53.2%, 95% CI 40.7-65.7%), anxiety for the infant (53.2%, 95% CI 40.7-65.7%), and the duration of the examination (51.6%, 95% CI 39.1-64.1%) were major distressing factors. Women who undergo fetal magnetic resonance imaging experience considerable distress, especially those with poor fetal prognoses. Ongoing technical developments, such as a reduction of noise, shortening the duration of the MRI, and a more comfortable position in open MRI machines, may have the potential to improve the subjective experiences of women during fetal MRI. III.
ERIC Educational Resources Information Center
Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara
2012-01-01
A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…
Lee, Daniel J; Recabal, Pedro; Sjoberg, Daniel D; Thong, Alan; Lee, Justin K; Eastham, James A; Scardino, Peter T; Vargas, Hebert Alberto; Coleman, Jonathan; Ehdaie, Behfar
2016-09-01
We compared the diagnostic outcomes of magnetic resonance-ultrasound fusion and visually targeted biopsy for targeting regions of interest on prostate multiparametric magnetic resonance imaging. Patients presenting for prostate biopsy with regions of interest on multiparametric magnetic resonance imaging underwent magnetic resonance imaging targeted biopsy. For each region of interest 2 visually targeted cores were obtained, followed by 2 cores using a magnetic resonance-ultrasound fusion device. Our primary end point was the difference in the detection of high grade (Gleason 7 or greater) and any grade cancer between visually targeted and magnetic resonance-ultrasound fusion, investigated using McNemar's method. Secondary end points were the difference in detection rate by biopsy location using a logistic regression model and the difference in median cancer length using the Wilcoxon signed rank test. We identified 396 regions of interest in 286 men. The difference in the detection of high grade cancer between magnetic resonance-ultrasound fusion biopsy and visually targeted biopsy was -1.4% (95% CI -6.4 to 3.6, p=0.6) and for any grade cancer the difference was 3.5% (95% CI -1.9 to 8.9, p=0.2). Median cancer length detected by magnetic resonance-ultrasound fusion and visually targeted biopsy was 5.5 vs 5.8 mm, respectively (p=0.8). Magnetic resonance-ultrasound fusion biopsy detected 15% more cancers in the transition zone (p=0.046) and visually targeted biopsy detected 11% more high grade cancer at the prostate base (p=0.005). Only 52% of all high grade cancers were detected by both techniques. We found no evidence of a significant difference in the detection of high grade or any grade cancer between visually targeted and magnetic resonance-ultrasound fusion biopsy. However, the performance of each technique varied in specific biopsy locations and the outcomes of both techniques were complementary. Combining visually targeted biopsy and magnetic resonance-ultrasound fusion biopsy may optimize the detection of prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
[Gadolinium-based contrast agents for magnetic resonance imaging].
Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J
2014-06-01
Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.
2012-05-01
Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.
High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity
NASA Astrophysics Data System (ADS)
Ferrie, Ann M.; Wu, Qi; Deichmann, Oberon D.; Fang, Ye
2014-05-01
We report a high-frequency resonant waveguide grating imager for assessing compound-induced cardiotoxicity. The imager sweeps the wavelength range from 823 nm to 838 nm every 3 s to identify and monitor compound-induced shifts in resonance wavelength and then switch to the intensity-imaging mode to detect the beating rhythm and proarrhythmic effects of compounds on induced pluripotent stem cell-derived cardiomyocytes. This opens possibility to study cardiovascular biology and compound-induced cardiotoxicity.
Ting, Samuel T; Ahmad, Rizwan; Jin, Ning; Craft, Jason; Serafim da Silveira, Juliana; Xue, Hui; Simonetti, Orlando P
2017-04-01
Sparsity-promoting regularizers can enable stable recovery of highly undersampled magnetic resonance imaging (MRI), promising to improve the clinical utility of challenging applications. However, lengthy computation time limits the clinical use of these methods, especially for dynamic MRI with its large corpus of spatiotemporal data. Here, we present a holistic framework that utilizes the balanced sparse model for compressive sensing and parallel computing to reduce the computation time of cardiac MRI recovery methods. We propose a fast, iterative soft-thresholding method to solve the resulting ℓ1-regularized least squares problem. In addition, our approach utilizes a parallel computing environment that is fully integrated with the MRI acquisition software. The methodology is applied to two formulations of the multichannel MRI problem: image-based recovery and k-space-based recovery. Using measured MRI data, we show that, for a 224 × 144 image series with 48 frames, the proposed k-space-based approach achieves a mean reconstruction time of 2.35 min, a 24-fold improvement compared a reconstruction time of 55.5 min for the nonlinear conjugate gradient method, and the proposed image-based approach achieves a mean reconstruction time of 13.8 s. Our approach can be utilized to achieve fast reconstruction of large MRI datasets, thereby increasing the clinical utility of reconstruction techniques based on compressed sensing. Magn Reson Med 77:1505-1515, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Hu, J H; Wang, Y; Cahill, P T
1997-01-01
This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.
Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F
2009-11-01
There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the histology sections (P > .1). These results demonstrate that 7.0-T magnetic resonance imaging provides an alternative method to histology to evaluate early osteoarthritic changes in articular cartilage in a canine model by detecting increases in articular cartilage area. The noninvasive nature of 7.0-T magnetic resonance imaging will allow for in vivo monitoring of osteoarthritis progression and intervention in animal models and humans for osteoarthritis.
MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.
Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian
2018-03-08
Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert
2014-11-01
Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a significantly higher percent of cancer involvement per biopsy core. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi
2009-03-20
The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.
McGraw, P; Mathews, V P; Wang, Y; Phillips, M D
2001-05-01
Functional MR imaging (fMRI) has been a useful tool in the evaluation of language both in normal individuals and patient populations. The purpose of this article is to use various models of language as a framework to review fMRI studies. Specifically, fMRI language studies are subdivided into the following categories: word generation or fluency, passive listening, orthography, phonology, semantics, and syntax.
Paliwal, Bhudatt; Hill, Patrick; Bayouth, John E; Geurts, Mark W; Baschnagel, Andrew M; Bradley, Kristin A; Harari, Paul M; Rosenberg, Stephen; Brower, Jeffrey V; Wojcieszynski, Andrzej P; Hullett, Craig; Bayliss, R A; Labby, Zacariah E; Bassetti, Michael F
2018-01-01
Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy. PMID:29872602
Magnetic resonance imaging of the saccular otolithic mass.
Sbarbati, A; Leclercq, F; Antonakis, K; Osculati, F
1992-01-01
The frog's inner ear was studied in vivo by high spatial resolution magnetic resonance imaging at 7 Tesla. The vestibule, the internal acoustic meatus, and the auditory tube have been identified. The large otolithic mass contained in the vestibule showed a virtual absence of magnetic resonance signal probably due to its composition of closely packed otoconia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:1295875
Sargent, J; Connolly, D J; Watts, V; Mõtsküla, P; Volk, H A; Lamb, C R; Fuentes, V Luis
2015-11-01
Echocardiography is used routinely to assess mitral regurgitation severity, but echocardiographic measures of mitral regurgitation in dogs have not been compared with other quantitative methods. The study aim was to compare echocardiographic measures of mitral regurgitation with cardiac magnetic resonance imaging-derived mitral regurgitant fraction in small-breed dogs. Dogs with myxomatous mitral valve disease scheduled for magnetic resonance imaging assessment of neurological disease were recruited. Correlations were tested between cardiac magnetic resonance imaging-derived mitral regurgitant fraction and the following echocardiographic measures: vena contracta/aortic diameter, transmitral E-wave velocity, amplitude of mitral prolapse/aortic diameter, diastolic left ventricular diameter:aortic diameter, left atrium:aortic diameter, mitral regurgitation jet area ratio and regurgitant fraction calculated using the proximal isovelocity surface area method. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction was attempted in 21 dogs. Twelve consecutive, complete studies were obtained and 10 dogs were included in the final analysis: vena contracta/aortic diameter (r = 0 · 89, p = 0 · 001) and E-wave velocity (r = 0 · 86, p = 0 · 001) had the strongest correlations with cardiac magnetic resonance imaging-derived mitral regurgitant fraction. E velocity had superior repeatability and could be measured in all dogs. The presence of multiple jets precluded vena contracta/aortic diameter measurement in one dog. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction is feasible but technically demanding. The echocardiographic measures that correlated most closely with cardiac magnetic resonance imaging-derived mitral regurgitant fraction were vena contracta/aortic diameter and E-wave velocity. © 2015 British Small Animal Veterinary Association.
NASA Astrophysics Data System (ADS)
Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi
2013-05-01
Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.
Brain Morphometry Using Anatomical Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.
2008-01-01
The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…
ERIC Educational Resources Information Center
Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique
2013-01-01
Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…
Magnetic Resonance Microscopy of Human and Porcine Neurons and Cellular Processes
Flint, Jeremy J.; Hansen, Brian; Portnoy, Sharon; Lee, Choong-Heon; King, Michael A.; Fey, Michael; Vincent, Franck; Stanisz, Greg J; Vestergaard-Poulsen, Peter; Blackband, Stephen J
2012-01-01
With its unparalleled ability to safely generate high-contrast images of soft tissues, magnetic resonance imaging (MRI) has remained at the forefront of diagnostic clinical medicine. Unfortunately due to resolution limitations, clinical scans are most useful for detecting macroscopic structural changes associated with a small number of pathologies. Moreover, due to a longstanding inability to directly observe magnetic resonance (MR) signal behavior at the cellular level, such information is poorly characterized and generally must be inferred. With the advent of the MR microscope in 1986 came the ability to measure MR signal properties of theretofore unobservable tissue structures. Recently, further improvements in hardware technology have made possible the ability to visualize mammalian cellular structure. In the current study, we expand upon previous work by imaging the neuronal cell bodies and processes of human and porcine α-motor neurons. Complimentary imaging studies are conducted in pig tissue in order to demonstrate qualitative similarities to human samples. Also, apparent diffusion coefficient (ADC) maps were generated inside porcine α-motor neuron cell bodies and portions of their largest processes (mean = 1.7±0.5 μm2/ms based on 53 pixels) as well as in areas containing a mixture of extracellular space, microvasculature, and neuropil (0.59±0.37 μm2/ms based on 33 pixels). Three-dimensional reconstruction of MR images containing α-motor neurons shows the spatial arrangement of neuronal projections between adjacent cells. Such advancements in imaging portend the ability to construct accurate models of MR signal behavior based on direct observation and measurement of the components which comprise functional tissues. These tools would not only be useful for improving our interpretation of macroscopic MRI performed in the clinic, but they could potentially be used to develop new methods of differential diagnosis to aid in the early detection of a multitude of neuropathologies. PMID:22281672
NASA Astrophysics Data System (ADS)
Eggers, Georg; Cosgarea, Raluca; Rieker, Marcus; Kress, Bodo; Dickhaus, Hartmut; Mühling, Joachim
2009-02-01
An oral imaging template was developed to address the shortcomings of MR image data for image guided dental implant planning and placement. The template was conctructed as a gadolinium filled plastic shell to give contrast to the dentition and also to be accurately re-attachable for use in image guided dental implant placement. The result of segmentation and modelling of the dentition from MR Image data with the template was compared to plaster casts of the dentition. In a phantom study dental implant placement was performed based on MR image data. MR imaging with the contrast template allowed complete representation of the existing dentition. In the phantom study, a commercially available system for image guided dental implant placement was used. Transformation of the imaging contrast template into a surgical drill guide based on the MR image data resulted in pilot burr hole placement with an accuracy of 2 mm. MRI based imaging of the existing dentition for proper image guided planning is possible with the proposed template. Using the image data and the template resulted in less accurate pilot burr hole placement in comparison to CT-based image guided implant placement.
Baum, K. G.; Menezes, G.; Helguera, M.
2011-01-01
Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.
Baum, K G; Menezes, G; Helguera, M
2011-01-01
Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256(3) voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.
The advantages of using a Lucky Imaging camera for observations of microlensing events
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus
2016-05-01
In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.
Garcia-Reyes, Kirema; Nguyen, Hao G; Zagoria, Ronald J; Shinohara, Katsuto; Carroll, Peter R; Behr, Spencer C; Westphalen, Antonio C
2017-09-20
The purpose of this study was to estimate the impact of lesion visibility with transrectal ultrasound on the prediction of clinically significant prostate cancer with transrectal ultrasound-magnetic resonance imaging fusion biopsy. This HIPAA (Health Insurance Portability and Accountability Act) compliant, institutional review board approved, retrospective study was performed in 178 men who were 64.7 years old with prostate specific antigen 8.9 ng/ml. They underwent transrectal ultrasound-magnetic resonance imaging fusion biopsy from January 2013 to September 2016. Visible lesions on magnetic resonance imaging were assigned a PI-RADS™ (Prostate Imaging Reporting and Data System), version 2 score of 3 or greater. Transrectal ultrasound was positive when a hypoechoic lesion was identified. We used a 3-level, mixed effects logistic regression model to determine how transrectal ultrasound-magnetic resonance imaging concordance predicted the presence of clinically significant prostate cancer. The diagnostic performance of the 2 methods was estimated using ROC curves. A total of 1,331 sextants were targeted by transrectal ultrasound-magnetic resonance imaging fusion or systematic biopsies, of which 1,037 were negative, 183 were Gleason score 3 + 3 and 111 were Gleason score 3 + 4 or greater. Clinically significant prostate cancer was diagnosed by transrectal ultrasound and magnetic resonance imaging alone at 20.5% and 19.7% of these locations, respectively. Men with positive imaging had higher odds of clinically significant prostate cancer than men without visible lesions regardless of modality (transrectal ultrasound OR 14.75, 95% CI 5.22-41.69, magnetic resonance imaging OR 12.27, 95% CI 6.39-23.58 and the 2 modalities OR 28.68, 95% CI 14.45-56.89, all p <0.001). The ROC AUC to detect clinically significant prostate cancer using the 2 methods (0.85, 95% CI 0.81-0.89) was statistically greater than that of transrectal ultrasound alone (0.80, 95% CI 0.76-0.85, p = 0.001) and magnetic resonance imaging alone (0.83, 95% CI 0.79-0.87, p = 0.04). The sensitivity and specificity of transrectal ultrasound were 42.3% and 91.6%, and the sensitivity and specificity of magnetic resonance imaging were 62.2% and 84.1%, respectively. Lesion visibility on magnetic resonance imaging or transrectal ultrasound denotes a similar probability of clinically significant prostate cancer. This probability is greater when each examination is positive. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics.
Mikhailovskaya, Anna A; Shchelokova, Alena V; Dobrykh, Dmitry A; Sushkov, Ivan V; Slobozhanyuk, Alexey P; Webb, Andrew
2018-06-01
Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM 11 ). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design. Copyright © 2018 Elsevier Inc. All rights reserved.
A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics
NASA Astrophysics Data System (ADS)
Mikhailovskaya, Anna A.; Shchelokova, Alena V.; Dobrykh, Dmitry A.; Sushkov, Ivan V.; Slobozhanyuk, Alexey P.; Webb, Andrew
2018-06-01
Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM11). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design.
Breed-Specific Magnetic Resonance Imaging Characteristics of Necrotizing Encephalitis in Dogs
Flegel, Thomas
2017-01-01
Diagnosing necrotizing encephalitis, with its subcategories of necrotizing leukoencephalitis and necrotizing meningoencephalitis, based on magnetic resonance imaging alone can be challenging. However, there are breed-specific imaging characteristics in both subcategories that allow establishing a clinical diagnosis with a relatively high degree of certainty. Typical breed specific imaging features, such as lesion distribution, signal intensity, contrast enhancement, and gross changes of brain structure (midline shift, ventriculomegaly, and brain herniation) are summarized here, using current literature, for the most commonly affected canine breeds: Yorkshire Terrier, French Bulldog, Pug, and Chihuahua. PMID:29255715
Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G
2015-11-03
Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Contribution of the Insula to Motor Aspects of Speech Production: A Review and a Hypothesis
ERIC Educational Resources Information Center
Ackermann, Hermann; Riecker, Axel
2004-01-01
Based on clinical and functional imaging data, the left anterior insula has been assumed to support prearticulatory functions of speech motor control such as the ''programming'' of vocal tract gestures. In order to further elucidate this model, a recent functional magnetic resonance imaging (fMRI) study of our group (Riecker, Ackermann,…
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A
2011-07-01
To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Li, Ning; Jie, Meng-Meng; Yang, Min; Tang, Li; Chen, Si-Yuan; Sun, Xue-Mei; Tang, Bo; Yang, Shi-Ming
2018-04-01
Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.
NASA Astrophysics Data System (ADS)
Ng, Thian C.
2012-06-01
It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.
Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine; Peet, Andrew
2018-05-02
Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians' skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. ©Niloufar Zarinabad, Emma M Meeus, Karen Manias, Katharine Foster, Andrew Peet. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 02.05.2018.
Bahl, Gautam; Cruite, Irene; Wolfson, Tanya; Gamst, Anthony C.; Collins, Julie M.; Chavez, Alyssa D.; Barakat, Fatma; Hassanein, Tarek; Sirlin, Claude B.
2016-01-01
Purpose To demonstrate a proof of concept that quantitative texture feature analysis of double contrast-enhanced magnetic resonance imaging (MRI) can classify fibrosis noninvasively, using histology as a reference standard. Materials and Methods A Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved retrospective study of 68 patients with diffuse liver disease was performed at a tertiary liver center. All patients underwent double contrast-enhanced MRI, with histopathology-based staging of fibrosis obtained within 12 months of imaging. The MaZda software program was used to compute 279 texture parameters for each image. A statistical regularization technique, generalized linear model (GLM)-path, was used to develop a model based on texture features for dichotomous classification of fibrosis category (F ≤2 vs. F ≥3) of the 68 patients, with histology as the reference standard. The model's performance was assessed and cross-validated. There was no additional validation performed on an independent cohort. Results Cross-validated sensitivity, specificity, and total accuracy of the texture feature model in classifying fibrosis were 91.9%, 83.9%, and 88.2%, respectively. Conclusion This study shows proof of concept that accurate, noninvasive classification of liver fibrosis is possible by applying quantitative texture analysis to double contrast-enhanced MRI. Further studies are needed in independent cohorts of subjects. PMID:22851409
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-11-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-01-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857
Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M; Zukley, Linda M; Ferrucci, Luigi; Resnick, Susan M; Spencer, Richard G
2018-04-18
We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using magnetic resonance imaging of myelin. Brains of young and old controls and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed. MCI subjects showed decreased MWF compared with old controls. Demyelination was greater in Alzheimer's disease or vascular dementia. As expected, decreased MWF was accompanied by decreased magnetization transfer ratio and increased relaxation times. The young subjects showed greater myelin content than the old subjects. We believe this to be the first demonstration of myelin loss in MCI, Alzheimer's disease, and vascular dementia using a method that provides a quantitative magnetic resonance imaging-based measure of myelin. Our findings add to the emerging evidence that myelination may represent an important biomarker for the pathology of MCI and dementia. This study supports the investigation of the role of myelination in MCI and dementia through use of this quantitative magnetic resonance imaging approach in clinical studies of disease progression, relationship of functional status to myelination status, and therapeutics. Furthermore, mapping MWF may permit myelin to serve as a therapeutic target in clinical trials. Copyright © 2018. Published by Elsevier Inc.
van Veluw, Susanne J.; Charidimou, Andreas; van der Kouwe, Andre J.; Lauer, Arne; Reijmer, Yael D.; Costantino, Isabel; Gurol, M. Edip; Biessels, Geert Jan; Frosch, Matthew P.; Viswanathan, Anand; Greenberg, Steven M.
2016-01-01
Cerebral amyloid angiopathy is a common neuropathological finding in the ageing human brain, associated with cognitive impairment. Neuroimaging markers of severe cerebral amyloid angiopathy are cortical microbleeds and microinfarcts. These parenchymal brain lesions are considered key contributors to cognitive impairment. Therefore, they are important targets for therapeutic strategies and may serve as surrogate neuroimaging markers in clinical trials. We aimed to gain more insight into the pathological basis of magnetic resonance imaging-defined microbleeds and microinfarcts in cerebral amyloid angiopathy, and to explore the pathological burden that remains undetected, by using high and ultra-high resolution ex vivo magnetic resonance imaging, as well as detailed histological sampling. Brain samples from five cases (mean age 85 ± 6 years) with pathology-proven cerebral amyloid angiopathy and multiple microbleeds on in vivo clinical magnetic resonance imaging were subjected to high-resolution ex vivo 7 T magnetic resonance imaging. On the obtained high-resolution (200 μm isotropic voxels) ex vivo magnetic resonance images, 171 microbleeds were detected compared to 66 microbleeds on the corresponding in vivo magnetic resonance images. Of 13 sampled microbleeds that were matched on histology, five proved to be acute and eight old microhaemorrhages. The iron-positive old microhaemorrhages appeared approximately four times larger on magnetic resonance imaging compared to their size on histology. In addition, 48 microinfarcts were observed on ex vivo magnetic resonance imaging in three out of five cases (two cases exhibited no microinfarcts). None of them were visible on in vivo 1.5 T magnetic resonance imaging after a retrospective analysis. Of nine sampled microinfarcts that were matched on histology, five were confirmed as acute and four as old microinfarcts. Finally, we explored the proportion of microhaemorrhage and microinfarct burden that is beyond the detection limits of ex vivo magnetic resonance imaging, by scanning a smaller sample at ultra-high resolution, followed by serial sectioning. At ultra-high resolution (75 μm isotropic voxels) magnetic resonance imaging we observed an additional 48 microbleeds (compared to high resolution), which proved to correspond to vasculopathic changes (i.e. morphological changes to the small vessels) instead of frank haemorrhages on histology. After assessing the serial sections of this particular sample, no additional haemorrhages were observed that were missed on magnetic resonance imaging. In contrast, nine microinfarcts were found in these sections, of which six were only retrospectively visible at ultra-high resolution. In conclusion, these findings suggest that microbleeds on in vivo magnetic resonance imaging are specific for microhaemorrhages in cerebral amyloid angiopathy, and that increasing the resolution of magnetic resonance images results in the detection of more ‘non-haemorrhagic’ pathology. In contrast, the vast majority of microinfarcts currently remain under the detection limits of clinical in vivo magnetic resonance imaging. PMID:27645801
Detection of bondline delaminations in multilayer structures with lossy components
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Winfree, William P.; Smith, B. T.; Heyman, Joseph H.
1988-01-01
The detection of bondline delaminations in multilayer structures using ultrasonic reflection techniques is a generic problem in adhesively bonded composite structures such as the Space Shuttles's Solid Rocket Motors (SRM). Standard pulse echo ultrasonic techniques do not perform well for a composite resonator composed of a resonant layer combined with attenuating layers. Excessive ringing in the resonant layer tends to mask internal echoes emanating from the attenuating layers. The SRM is made up of a resonant steel layer backed by layers of adhesive, rubber, liner and fuel, which are ultrasonically attenuating. The structure's response is modeled as a lossy ultrasonic transmission line. The model predicts that the acoustic response of the system is sensitive to delaminations at the interior bondlines in a few narrow frequency bands. These predictions are verified by measurements on a fabricated system. Successful imaging of internal delaminations is sensitive to proper selection of the interrogating frequency. Images of fabricated bondline delaminations are presented based on these studies.
Smith, Toby O; Simpson, Michael; Ejindu, Vivian; Hing, Caroline B
2013-04-01
The purpose of this study was to assess the diagnostic test accuracy of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and multidetector arrays in CT arthrography (MDCT) for assessing chondral lesions in the hip joint. A review of the published and unpublished literature databases was performed to identify all studies reporting the diagnostic test accuracy (sensitivity/specificity) of MRI, MRA or MDCT for the assessment of adults with chondral (cartilage) lesions of the hip with surgical comparison (arthroscopic or open) as the reference test. All included studies were reviewed using the quality assessment of diagnostic accuracy studies appraisal tool. Pooled sensitivity, specificity, likelihood ratios and diagnostic odds ratios were calculated with 95 % confidence intervals using a random-effects meta-analysis for MRI, MRA and MDCT imaging. Eighteen studies satisfied the eligibility criteria. These included 648 hips from 637 patients. MRI indicated a pooled sensitivity of 0.59 (95 % CI: 0.49-0.70) and specificity of 0.94 (95 % CI: 0.90-0.97), and MRA sensitivity and specificity values were 0.62 (95 % CI: 0.57-0.66) and 0.86 (95 % CI: 0.83-0.89), respectively. The diagnostic test accuracy for the detection of hip joint cartilage lesions is currently superior for MRI compared with MRA. There were insufficient data to perform meta-analysis for MDCT or CTA protocols. Based on the current limited diagnostic test accuracy of the use of magnetic resonance or CT, arthroscopy remains the most accurate method of assessing chondral lesions in the hip joint.
Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Voos, Avery; Pelphrey, Kevin
2013-01-01
Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…
A Scalable Framework For Segmenting Magnetic Resonance Images
Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar
2009-01-01
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893
Semkina, A S; Abakumov, M A; Grinenko, N F; Lipengolts, A A; Nukolova, N V; Chekhonin, V P
2017-04-01
We studied the possibility of using BSA-coated magnetic iron oxide nanoparticles for magnetic resonance imaging diagnosis of C6 glioblastoma, 4T1 mammary adenocarcinoma, and RS-1 hepatic mucous carcinoma. In all three cases, magnetic nanoparticles accumulated in the tumor and its large vessels. Magnetic resonance imaging with contrast agent allows visualization of the tumor tissue and its vascularization.
Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2013-01-01
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsager, Anne Sofie, E-mail: asko@hst.aau.dk; Østergaard, Lasse Riis; Fortunati, Valerio
2015-04-15
Purpose: An automatic method for 3D prostate segmentation in magnetic resonance (MR) images is presented for planning image-guided radiotherapy treatment of prostate cancer. Methods: A spatial prior based on intersubject atlas registration is combined with organ-specific intensity information in a graph cut segmentation framework. The segmentation is tested on 67 axial T{sub 2}-weighted MR images in a leave-one-out cross validation experiment and compared with both manual reference segmentations and with multiatlas-based segmentations using majority voting atlas fusion. The impact of atlas selection is investigated in both the traditional atlas-based segmentation and the new graph cut method that combines atlas andmore » intensity information in order to improve the segmentation accuracy. Best results were achieved using the method that combines intensity information, shape information, and atlas selection in the graph cut framework. Results: A mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance (MSD) of 1.45 mm with respect to the manual delineation were achieved. Conclusions: This approaches the interobserver DSC of 0.90 and interobserver MSD 0f 1.15 mm and is comparable to other studies performing prostate segmentation in MR.« less
Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.
Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali
2017-06-01
The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.
Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field
ERIC Educational Resources Information Center
Grey, Michael L.
2009-01-01
This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…
D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn
2013-07-15
Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.
Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.
Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V
2018-07-01
Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J
2018-03-01
In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more accurate diagnostic test than transrectal ultrasound guided biopsy. However, a significant proportion of ISUP (International Society of Urological Pathology) Grade Group 2 prostate cancer remained undetected following multiparametric magnetic resonance imaging. Although multiparametric magnetic resonance imaging could avoid unnecessary biopsy in many patients with ISUP Grade Group 3 or greater prostate cancer, at less stringent definitions of significant cancer a substantial proportion of prostate cancer would remain undetected after multiparametric magnetic resonance imaging. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Rohlfing, Torsten; Schaupp, Frank; Haddad, Daniel; Brandt, Robert; Haase, Axel; Menzel, Randolf; Maurer, Calvin R
2005-01-01
Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.
Kwon, Heejin; Reid, Scott; Kim, Dongeun; Lee, Sangyun; Cho, Jinhan; Oh, Jongyeong
2018-01-04
This study aimed to evaluate image quality and diagnostic performance of a recently developed navigated three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) with compressed sensing (CS) based on parallel imaging (PI) and conventional 3D-MRCP with PI only in patients with abnormal bile duct dilatation. This institutional review board-approved study included 45 consecutive patients [non-malignant common bile duct lesions (n = 21) and malignant common bile duct lesions (n = 24)] who underwent MRCP of the abdomen to evaluate bile duct dilatation. All patients were imaged at 3T (MR 750, GE Healthcare, Waukesha, WI) including two kinds of 3D-MRCP using 352 × 288 matrices with and without CS based on PI. Two radiologists independently and blindly assessed randomized images. CS acceleration reduced the acquisition time on average 5 min and 6 s to a total of 2 min and 56 s. The all CS cine image quality was significantly higher than standard cine MR image for all quantitative measurements. Diagnostic accuracy for benign and malignant lesions is statistically different between standard and CS 3D-MRCP. Total image quality and diagnostic accuracy at biliary obstruction evaluation demonstrates that CS-accelerated 3D-MRCP sequences can provide superior quality of diagnostic information in 42.5% less time. This has the potential to reduce motion-related artifacts and improve diagnostic efficacy.
Leung, Doris G
2017-07-01
A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.
ERIC Educational Resources Information Center
Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino
2013-01-01
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…
Gao, Xuechuan; Zhai, Manjue; Guan, Weihua; Liu, Jingjuan; Liu, Zhiliang; Damirin, Alatangaole
2017-02-01
As a result of their extraordinarily large surfaces and well-defined pores, the design of a multifunctional metal-organic framework (MOF) is crucial for drug delivery but has rarely been reported. In this paper, a novel drug delivery system (DDS) based on nanoscale MOF was developed for use in cancer diagnosis and therapy. This MOF-based tumor targeting DDS was fabricated by a simple postsynthetic surface modification process. First, magnetic mesoporous nanomaterial Fe-MIL-53-NH 2 was used for encapsulating the drug and served as a magnetic resonance contrast agent. Moreover, the Fe-MIL-53-NH 2 nanomaterial exhibited a high loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, the fluorescence imaging agent 5-carboxyfluorescein (5-FAM) and the targeting reagent folic acid (FA) were conjugated to the 5-FU-loaded Fe-MIL-53-NH 2 , resulting in the advanced DDS Fe-MIL-53-NH 2 -FA-5-FAM/5-FU. Owing to the multifunctional surface modification, the obtained DDS Fe-MIL-53-NH 2 -FA-5-FAM/5-FU shows good biocompatibility, tumor enhanced cellular uptake, strong cancer cell growth inhibitory effect, excellent fluorescence imaging, and outstanding magnetic resonance imaging capability. Taken together, this study integrates diagnostic and treatment aspects into a single platform by a simple and efficient strategy, aiming for facilitating new possibilities for MOF use for multifunctional drug delivery.
Pauchard, Y; Smith, M; Mintchev, M
2004-01-01
Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.
Brain lesions in septic shock: a magnetic resonance imaging study.
Sharshar, Tarek; Carlier, Robert; Bernard, Francis; Guidoux, Céline; Brouland, Jean-Philippe; Nardi, Olivier; de la Grandmaison, Geoffroy Lorin; Aboab, Jérôme; Gray, Françoise; Menon, David; Annane, Djillali
2007-05-01
Understanding of sepsis-induced brain dysfunction remains poor, and relies mainly on data from animals or post-mortem studies in patients. The current study provided findings from magnetic resonance imaging of the brain in septic shock. Nine patients with septic shock and brain dysfunction [7 women, median age 63 years (interquartile range 61-79 years), SAPS II: 48 (44-56), SOFA: 8 (6-10)] underwent brain magnetic resonance imaging including gradient echo T1-weighted, fluid-attenuated inversion recovery (FLAIR), T2-weighted and diffusion isotropic images, and mapping of apparent diffusion coefficient. Brain imaging was normal in two patients, showed multiple ischaemic strokes in two patients, and in the remaining patients showed white matter lesions at the level of the centrum semiovale, predominating around Virchow-Robin spaces, ranging from small multiple areas to diffuse lesions, and characterised by hyperintensity on FLAIR images. The main lesions were also characterised by reduced signal on diffusion isotropic images and increased apparent diffusion coefficient. The lesions of the white matter worsened with increasing duration of shock and were correlated with Glasgow Outcome Score. This preliminary study showed that sepsis-induced brain lesions can be documented by magnetic resonance imaging. These lesions predominated in the white matter, suggesting increased blood-brain barrier permeability, and were associated with poor outcome.
Ahlander, Britt-Marie; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth
2018-03-01
To evaluate the effect of video information given before cardiovascular magnetic resonance imaging on patient anxiety and to compare patient experiences of cardiovascular magnetic resonance imaging versus myocardial perfusion scintigraphy. To evaluate whether additional information has an impact on motion artefacts. Cardiovascular magnetic resonance imaging and myocardial perfusion scintigraphy are technically advanced methods for the evaluation of heart diseases. Although cardiovascular magnetic resonance imaging is considered to be painless, patients may experience anxiety due to the closed environment. A prospective randomised intervention study, not registered. The sample (n = 148) consisted of 97 patients referred for cardiovascular magnetic resonance imaging, randomised to receive either video information in addition to standard text-information (CMR-video/n = 49) or standard text-information alone (CMR-standard/n = 48). A third group undergoing myocardial perfusion scintigraphy (n = 51) was compared with the cardiovascular magnetic resonance imaging-standard group. Anxiety was evaluated before, immediately after the procedure and 1 week later. Five questionnaires were used: Cardiac Anxiety Questionnaire, State-Trait Anxiety Inventory, Hospital Anxiety and Depression scale, MRI Fear Survey Schedule and the MRI-Anxiety Questionnaire. Motion artefacts were evaluated by three observers, blinded to the information given. Data were collected between April 2015-April 2016. The study followed the CONSORT guidelines. The CMR-video group scored lower (better) than the cardiovascular magnetic resonance imaging-standard group in the factor Relaxation (p = .039) but not in the factor Anxiety. Anxiety levels were lower during scintigraphic examinations compared to the CMR-standard group (p < .001). No difference was found regarding motion artefacts between CMR-video and CMR-standard. Patient ability to relax during cardiovascular magnetic resonance imaging increased by adding video information prior the exam, which is important in relation to perceived quality in nursing. No effect was seen on motion artefacts. Video information prior to examinations can be an easy and time effective method to help patients cooperate in imaging procedures. © 2017 John Wiley & Sons Ltd.
Raven, Erika P.; Duyn, Jeff H.
2016-01-01
Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994
Chang, Catie; Raven, Erika P; Duyn, Jeff H
2016-05-13
Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).
Xu, Wei-Hai; Liu, Jia; Li, Ming-Li; Sun, Zhao-Yong; Chen, Jie; Wu, Jian-Huang
2014-08-01
Three dimensional (3D) printing techniques for brain diseases have not been widely studied. We attempted to 'print' the segments of intracranial arteries based on magnetic resonance imaging. Three dimensional magnetic resonance angiography (MRA) was performed on two patients with middle cerebral artery (MCA) stenosis. Using scale-adaptive vascular modeling, 3D vascular models were constructed from the MRA source images. The magnified (ten times) regions of interest (ROI) of the stenotic segments were selected and fabricated by a 3D printer with a resolution of 30 µm. A survey to 8 clinicians was performed to evaluate the accuracy of 3D printing results as compared with MRA findings (4 grades, grade 1: consistent with MRA and provide additional visual information; grade 2: consistent with MRA; grade 3: not consistent with MRA; grade 4: not consistent with MRA and provide probable misleading information). If a 3D printing vessel segment was ideally matched to the MRA findings (grade 2 or 1), a successful 3D printing was defined. Seven responders marked "grade 1" to 3D printing results, while one marked "grade 4". Therefore, 87.5% of the clinicians considered the 3D printing were successful. Our pilot study confirms the feasibility of using 3D printing technique in the research field of intracranial artery diseases. Further investigations are warranted to optimize this technique and translate it into clinical practice.
Nuclear Magnetic Resonance Technology for Medical Studies.
ERIC Educational Resources Information Center
Budinger, Thomas F.; Lauterbur, Paul C.
1984-01-01
Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…
Magnetic resonance imaging as a tool for extravehicular activity analysis
NASA Technical Reports Server (NTRS)
Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.
1992-01-01
The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.
Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo
2014-01-01
In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.
Fast magnetic resonance imaging based on high degree total variation
NASA Astrophysics Data System (ADS)
Wang, Sujie; Lu, Liangliang; Zheng, Junbao; Jiang, Mingfeng
2018-04-01
In order to eliminating the artifacts and "staircase effect" of total variation in Compressive Sensing MRI, high degree total variation model is proposed for dynamic MRI reconstruction. the high degree total variation regularization term is used as a constraint to reconstruct the magnetic resonance image, and the iterative weighted MM algorithm is proposed to solve the convex optimization problem of the reconstructed MR image model, In addtion, one set of cardiac magnetic resonance data is used to verify the proposed algorithm for MRI. The results show that the high degree total variation method has a better reconstruction effect than the total variation and the total generalized variation, which can obtain higher reconstruction SNR and better structural similarity.
Vos, Eline K; Sambandamurthy, Sriram; Kamel, Maged; McKenney, Robert; van Uden, Mark J; Hoeks, Caroline M A; Yakar, Derya; Scheenen, Tom W J; Fütterer, Jurgen J
2014-01-01
The objectives of this study were to test the feasibility of an investigational dual-channel next-generation endorectal coil (NG-ERC) in vivo, to quantitatively assess signal-to-noise ratio (SNR), and to get an impression of image quality compared with the current clinically available single-loop endorectal coil (ERC) for prostate magnetic resonance imaging at both 1.5 and 3 T. The study was approved by the institutional review board, and written informed consent was obtained from all patients. In total, 8 consecutive patients with prostate cancer underwent a local staging magnetic resonance examination with the successive use of both coils in 1 session (4 patients at 1.5 T and 4 other patients at 3 T). Quantitative comparison of both coils was performed for the apex, mid-gland and base levels at both field strengths by calculating SNR profiles in the axial plane on an imaginary line in the anteroposterior direction perpendicular to the coil surface. Two radiologists independently assessed the image quality of the T2-weighted and apparent diffusion coefficient maps calculated from diffusion-weighted imaging using a 5-point scale. Improvement of geometric distortion on diffusion-weighted imaging with the use of parallel imaging was explored. Statistical analysis included a paired Wilcoxon signed rank test for SNR and image quality evaluation as well as κ statistics for interobserver agreement. No adverse events were reported. The SNR was higher for the NG-ERC compared with the ERC up to a distance of approximately 40 mm from the surface of the coil at 1.5 T (P < 0.0001 for the apex, the mid-gland, and the base) and approximately 17 mm (P = 0.015 at the apex level) and 30 mm at 3 T (P < 0.0001 for the mid-gland and base). Beyond this distance, the SNR profiles of both coils were comparable. Overall, T2-weighted image quality was considered better for NG-ERC at both field strengths. Quality of apparent diffusion coefficient maps with the use of parallel imaging was rated superior with the NG-ERC at 3 T. The investigational NG-ERC for prostate imaging outperforms the current clinically available ERC in terms of SNR and is feasible for continued development for future use as the next generation endorectal coil for prostate imaging in clinical practice.
Optical nanoscopy with contact Mie-particles: Resolution analysis
NASA Astrophysics Data System (ADS)
Maslov, Alexey V.; Astratov, Vasily N.
2017-06-01
The theoretical limits of resolution available in microspherical nanoscopy are explored using incoherent point emitters in the air. The images are calculated using a two-dimensional model and solving the Maxwell equations which account for the wave effects on the sub-wavelength scale of the emitter-microsphere interaction. Based on our results, we propose to use small dielectric particles with diameters λ ≲ D ≲ 2 λ made of a high-refractive-index material n ˜2 for imaging sub-wavelength objects. It is shown that such particles form virtual images below and real images above them. At wavelengths of the Mie resonances, these images have slightly better than ˜λ/4 resolution that can be attributed to the image magnification in close proximity to the object and contributions of its near field. The resonant super-resolution imaging of various point-like objects, such as dye molecules, fluorophores, or nanoplasmonic particles, can be realized by using narrow bandpass optical filters spectrally aligned with the Mie resonances.
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Surface impact on nanoparticle-based magnetic resonance imaging contrast agents
Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin
2018-01-01
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097
Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.
Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke
2017-01-18
Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.
Sub-THz Imaging Using Non-Resonant HEMT Detectors.
Delgado-Notario, Juan A; Velazquez-Perez, Jesus E; Meziani, Yahya M; Fobelets, Kristel
2018-02-10
Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging.
Modern Micro and Nanoparticle-Based Imaging Techniques
Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene
2012-01-01
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187
Canter, C E; Gutierrez, F R; Molina, P; Hartmann, A F; Spray, T L
1991-04-01
Right-sided extracardiac conduits are frequently complicated by obstruction over time. We compared the utility of two-dimensional and Doppler echocardiography and magnetic resonance imaging in the diagnosis of postoperative right-sided obstruction with cardiac catheterization and angiography in 10 patients with xenograft or homograft conduits. Correlation (r = 0.95) between continuous-wave Doppler estimates and catheter pullback pressure gradients across the conduits was excellent. Echocardiography could only visualize five of 10 conduits in their entirety. Magnetic resonance imaging visualized all conduits and showed statistically significant (kappa = 0.58) agreement with angiography in the localization and estimation of severity of a variety of right-sided obstructions in these patients. However, flow voids created by the metallic ring around xenograft valves led to a false negative diagnosis of valvular stenosis in four patients when magnetic resonance imaging was used alone. Doppler studies correctly indicated obstruction in these patients. The combination of magnetic resonance imaging studies and continuous-wave Doppler echocardiography can be useful to noninvasively evaluate right-sided obstruction in postoperative patients with right-sided extracardiac conduits.
Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard
2017-01-01
Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814
Gupta, Surya N; Gupta, Vikash S; White, Andrew C
2016-01-01
Intracranial incidental findings on magnetic resonance imaging (MRI) of the brain continue to generate interest in healthy control, research, and clinical subjects. However, in clinical practice, the discovery of incidental findings acts as a “distractor”. This review is based on existing heterogeneous reports, their clinical implications, and how the results of incidental findings influence clinical management. This draws attention to the followings: (1) the prevalence of clinically significant incidental findings is low; (2) there is a lack of a systematic approach to classification; and discusses (3) how to deal with the detected incidental findings based a proposed common clinical profile. Individualized neurological care requires an active discussion regarding the need for neuroimaging. Clinical significance of incidental findings should be decided based on lesion’s neuroradiologic characteristics in the given clinical context. Available evidence suggests that the outcome of an incidentally found “serious lesion in children” is excellent. Future studies of intracranial incidental findings on pediatric brain MRI should be focused on a homogeneous population. The study should address this clinical knowledge based review powered by the statistical analyses. PMID:27610341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S.; Domowicz, Miriam
Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflectmore » local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.« less
NASA Astrophysics Data System (ADS)
Choi, Jin-Sil; Kim, Soojin; Yoo, Dongwon; Shin, Tae-Hyun; Kim, Hoyoung; Gomes, Muller D.; Kim, Sun Hee; Pines, Alexander; Cheon, Jinwoo
2017-05-01
Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic `enhancer' and a superparamagnetic `quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.
Breast Cancer Screening (PDQ®)—Patient Version
Breast cancer screening is performed using mammogram, clinical breast exam (CBE), and MRI (magnetic resonance imaging) tests. Learn about these and other tests that have been studied to detect or screen for breast cancer in this expert-reviewed and evidence-based summary.
Anastasi, Giuseppe; Bramanti, Placido; Di Bella, Paolo; Favaloro, Angelo; Trimarchi, Fabio; Magaudda, Ludovico; Gaeta, Michele; Scribano, Emanuele; Bruschetta, Daniele; Milardi, Demetrio
2007-01-01
The choice of medical imaging techniques, for the purpose of the present work aimed at studying the anatomy of the knee, derives from the increasing use of images in diagnostics, research and teaching, and the subsequent importance that these methods are gaining within the scientific community. Medical systems using virtual reality techniques also offer a good alternative to traditional methods, and are considered among the most important tools in the areas of research and teaching. In our work we have shown some possible uses of three-dimensional imaging for the study of the morphology of the normal human knee, and its clinical applications. We used the direct volume rendering technique, and created a data set of images and animations to allow us to visualize the single structures of the human knee in three dimensions. Direct volume rendering makes use of specific algorithms to transform conventional two-dimensional magnetic resonance imaging sets of slices into see-through volume data set images. It is a technique which does not require the construction of intermediate geometric representations, and has the advantage of allowing the visualization of a single image of the full data set, using semi-transparent mapping. Digital images of human structures, and in particular of the knee, offer important information about anatomical structures and their relationships, and are of great value in the planning of surgical procedures. On this basis we studied seven volunteers with an average age of 25 years, who underwent magnetic resonance imaging. After elaboration of the data through post-processing, we analysed the structure of the knee in detail. The aim of our investigation was the three-dimensional image, in order to comprehend better the interactions between anatomical structures. We believe that these results, applied to living subjects, widen the frontiers in the areas of teaching, diagnostics, therapy and scientific research. PMID:17645453
2018-01-01
Background Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. Objective The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Methods Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. Results All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable leading researchers in the field of Alzheimer’s Disease and epilepsy have used the interface to access and process the data and visualize the results. Tabulated results with unique visualization mechanisms help guide more informed diagnosis and expert rating, providing a truly unique multimodal imaging platform that combines magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and resting state functional magnetic resonance imaging. A quality control component was reinforced through expert visual rating involving at least 2 experts. Conclusions To our knowledge, there is no validated Web-based system offering all the services that Neuroimaging Web Services Interface offers. The intent of Neuroimaging Web Services Interface is to create a tool for clinicians and researchers with keen interest on multimodal neuroimaging. More importantly, Neuroimaging Web Services Interface significantly augments the Alzheimer’s Disease Neuroimaging Initiative data, especially since our data contain a large cohort of Hispanic normal controls and Alzheimer’s Disease patients. The obtained results could be scrutinized visually or through the tabulated forms, informing researchers on subtle changes that characterize the different stages of the disease. PMID:29699962
NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator
NASA Astrophysics Data System (ADS)
Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian
2018-04-01
The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.
Preclinical Magnetic Resonance Imaging and Systems Biology in Cancer Research
Albanese, Chris; Rodriguez, Olga C.; VanMeter, John; Fricke, Stanley T.; Rood, Brian R.; Lee, YiChien; Wang, Sean S.; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F.; Wang, Yue
2014-01-01
Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. PMID:23219428
Daumann, Jörg; Fischermann, Thomas; Heekeren, Karsten; Thron, Armin; Gouzoulis-Mayfrank, Euphrosyne
2004-09-01
Working memory processing in ecstasy (3,4-methylenedioxymethamphetamine) users is associated with neural alterations as measured by functional magnetic resonance imaging. Here, we examined whether cortical activation patterns change after prolonged periods of continued use or abstinence from ecstasy and amphetamine. We used an n-back task and functional magnetic resonance imaging in 17 ecstasy users at baseline (t(1)) and after 18 months (t(2)). Based on the reported drug use at t(2) we separated subjects with continued ecstasy and amphetamine use from subjects reporting abstinence during the follow-up period (n = 9 and n = 8, respectively). At baseline both groups had similar task performance and similar cortical activation patterns. Task performance remained unchanged in both groups. Furthermore, there were no detectable functional magnetic resonance imaging signal changes from t(1) to t(2) in the follow-up abstinent group. However, the continuing users showed a dose-dependent increased parietal activation for the 2-back task after the follow-up period. Our data suggest that ecstasy use, particularly in high doses, is associated with greater parietal activation during working memory performance. An altered activation pattern might appear before changes in cognitive performance become apparent and, hence, may reflect an early stage of neuronal injury from the neurotoxic drug ecstasy.
Hara, Tomohiko; Nakanishi, Hiroyuki; Nakagawa, Tohru; Komiyama, Motokiyo; Kawahara, Takashi; Manabe, Tomoko; Miyake, Mototaka; Arai, Eri; Kanai, Yae; Fujimoto, Hiroyuki
2013-10-01
Recent studies have shown an improvement in prostate cancer diagnosis with the use of 3.0-Tesla magnetic resonance imaging. We retrospectively assessed the ability of this imaging technique to predict side-specific extracapsular extension of prostate cancer. From October 2007 to August 2011, prostatectomy was carried out in 396 patients after preoperative 3.0-Tesla magnetic resonance imaging. Among these, 132 (primary sample) and 134 patients (validation sample) underwent 12-core prostate biopsy at the National Cancer Center Hospital of Tokyo, Japan, and at other institutions, respectively. In the primary dataset, univariate and multivariate analyses were carried out to predict side-specific extracapsular extension using variables determined preoperatively, including 3.0-Tesla magnetic resonance imaging findings (T2-weighted and diffusion-weighted imaging). A prediction model was then constructed and applied to the validation study sample. Multivariate analysis identified four significant independent predictors (P < 0.05), including a biopsy Gleason score of ≥8, positive 3.0-Tesla diffusion-weighted magnetic resonance imaging findings, ≥2 positive biopsy cores on each side and a maximum percentage of positive cores ≥31% on each side. The negative predictive value was 93.9% in the combination model with these four predictors, meanwhile the positive predictive value was 33.8%. Good reproducibility of these four significant predictors and the combination model was observed in the validation study sample. The side-specific extracapsular extension prediction by the biopsy Gleason score and factors associated with tumor location, including a positive 3.0-Tesla diffusion-weighted magnetic resonance imaging finding, have a high negative predictive value, but a low positive predictive value. © 2013 The Japanese Urological Association.
Plewes, Donald B; Kucharczyk, Walter
2012-05-01
This article is based on an introductory lecture given for the past many years during the "MR Physics and Techniques for Clinicians" course at the Annual Meeting of the ISMRM. This introduction is not intended to be a comprehensive overview of the field, as the subject of magnetic resonance imaging (MRI) physics is large and complex. Rather, it is intended to lay a conceptual foundation by which magnetic resonance image formation can be understood from an intuitive perspective. The presentation is nonmathematical, relying on simple models that take the reader progressively from the basic spin physics of nuclei, through descriptions of how the magnetic resonance signal is generated and detected in an MRI scanner, the foundations of nuclear magnetic resonance (NMR) relaxation, and a discussion of the Fourier transform and its relation to MR image formation. The article continues with a discussion of how magnetic field gradients are used to facilitate spatial encoding and concludes with a development of basic pulse sequences and the factors defining image contrast. Copyright © 2012 Wiley Periodicals, Inc.
Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D; DeRosa, Janet T; Kinney, Patrick L; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S
2017-07-01
Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort. © 2017 American Heart Association, Inc.
Tang, Haiying; Kukral, Daniel; Li, Yu-Wen; Fronheiser, Matthew; Malone, Harold; Pena, Adrienne; Pieschl, Rick; Sidik, Kurex; Tobon, Gabriel; Chow, Patrick L; Bristow, Linda J; Hayes, Wendy; Luo, Feng
2018-02-01
Major depressive disorder is a leading cause of disability globally. Improvements in the efficacy of antidepressant therapy are needed as a high proportion (>40%) of individuals with major depressive disorder fail to respond adequately to current treatments. The non-selective N-methyl-D-aspartate receptor channel blocker, (±)-ketamine, has been reported to produce a rapid and long-lasting antidepressant response in treatment-resistant major depressive disorder patients, which provides a unique opportunity for investigation of mechanisms that mediate its therapeutic effect. Efforts have also focused on the development of selective N-methyl-D-aspartate receptor subtype 2B antagonists which may retain antidepressant activity but have lower potential for dissociative/psychotomimetic effects. In the present study, we examined the central nervous system effects of acute, intravenous administration of (±)-ketamine or the N-methyl-D-aspartate receptor subtype 2B antagonist, traxoprodil, in awake rats using pharmacological magnetic resonance imaging. The study contained five treatment groups: vehicle, 3 mg/kg (±)-ketamine, and three doses of traxoprodil (0.3 mg/kg, 5 mg/kg, and 15 mg/kg). Non-linear model fitting was performed on the temporal hemodynamic pharmacological magnetic resonance imaging data to generate brain activation maps as well as regional responses based on blood oxygen level dependent signal changes for group analysis. Traxoprodil at 5 mg/kg and 15 mg/kg produced a dose-dependent pharmacological magnetic resonance imaging signal in rat forebrain regions with both doses achieving >80% N-methyl-D-aspartate receptor subtype 2B occupancy determined by ex vivo [ 3 H]Ro 25-6981 binding. The middle dose of traxoprodil (5 mg/kg) generated region-specific activations in medial prefrontal cortex, ventral orbital cortex, and anterior cingulate cortex whereas the high dose (15 mg/kg) produced a widespread pharmacological magnetic resonance imaging response in both cortical and subcortical brain regions which was similar to that produced by (±)-ketamine (3 mg/kg, intravenous).
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging.
Combs, Stephanie E; Nüsslin, Fridtjof; Wilkens, Jan J
2016-04-01
Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.
Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor
2015-03-01
In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development of analytical procedures for individual dose estimates.
Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.
Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid
2013-03-01
Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.
Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury
2011-10-01
Outcomes 6 Conclusions 6 References 6-29 Appendices Introduction During the first year we pursued studies of Magnetic Resonance q-space imaging...QSI) of the spinal cord and myelin imaging. The QSI studies extended our previous work establishing our ability to define the distribution of axon...Conventional MR imaging of the central nervous systems studies water protons exclusively. Although other compounds, such a lipid and proteins, have
NASA Astrophysics Data System (ADS)
Kaittanis, Charalambos; Santra, Santimukul; Asati, Atul; Perez, J. Manuel
2012-03-01
Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration, distinguishing physiological from abnormal levels. As a result under physiological and transient inflammatory conditions, the device's fluorescence and magnetic resonance signals, emanating from multimodal iron oxide nanoparticles, were similar. However, under chronic inflammatory conditions that are usually associated with high local concentrations of reactive oxygen species and pH decrease, the device's output was considerably different. Specifically, the device's fluorescence emission significantly decreased, while the magnetic resonance signal T2 increased. Further studies identified that the changes in the device's output are attributed to inactivation of the sensing component's nanoceria that prevents it from successfully scavenging the generated free radicals. Interestingly, the buildup of free radical excess led to polymerization of the iron oxide nanoparticle's coating, with concomitant formation of micron size aggregates. Our studies indicate that a nanoceria-based device can be utilized for the monitoring of pro-inflammatory biomarkers, having important applications in the management of numerous ailments while eliminating nanoparticle toxicity issues.Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration, distinguishing physiological from abnormal levels. As a result under physiological and transient inflammatory conditions, the device's fluorescence and magnetic resonance signals, emanating from multimodal iron oxide nanoparticles, were similar. However, under chronic inflammatory conditions that are usually associated with high local concentrations of reactive oxygen species and pH decrease, the device's output was considerably different. Specifically, the device's fluorescence emission significantly decreased, while the magnetic resonance signal T2 increased. Further studies identified that the changes in the device's output are attributed to inactivation of the sensing component's nanoceria that prevents it from successfully scavenging the generated free radicals. Interestingly, the buildup of free radical excess led to polymerization of the iron oxide nanoparticle's coating, with concomitant formation of micron size aggregates. Our studies indicate that a nanoceria-based device can be utilized for the monitoring of pro-inflammatory biomarkers, having important applications in the management of numerous ailments while eliminating nanoparticle toxicity issues. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c2nr11956k
Proton magnetic resonance spectroscopy of tubercular breast abscess: report of a case.
Das, Chandan Jyoti; Medhi, Kunjahari
2008-01-01
In vivo proton magnetic resonance spectroscopy (H-MRS) is a functional imaging modality. When magnetic resonance imaging is coupled with H-MRS, it results in accurate metabolic characterization of various lesions. Proton magnetic resonance spectroscopy has an established role in evaluating malignant breast lesions, and the increasing number of published literature supports the role of H-MRS in patients with breast cancer. However, H-MRS can be of help in evaluating benign breast disease. We present a case of tubercular breast abscess, initial diagnosis of which was suggested based on characteristic lipid pick on H-MRS and was subsequently confirmed by fine needle aspiration biopsy of the breast lesion.
Classifying magnetic resonance image modalities with convolutional neural networks
NASA Astrophysics Data System (ADS)
Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis
2018-02-01
Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.
Ultrasonic computed tomography imaging of iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Perlman, Or; Azhari, Haim
2017-02-01
Iron oxide nanoparticles (IONPs) are becoming increasingly used and intensively investigated in the field of medical imaging. They are currently FDA approved for magnetic resonance imaging (MRI), and it would be highly desirable to visualize them by ultrasound as well. Previous reports using the conventional ultrasound B-scan (pulse-echo) imaging technique have shown very limited detectability of these particles. The aim of this study is to explore the feasibility of imaging IONPs using the through-transmission ultrasound methodology and demonstrate their detectability using ultrasonic computed tomography (UCT). Commercially available IONPs were acoustically analysed to quantify their effect on the speed of sound (SOS) and acoustic attenuation as a function of concentration. Next, through-transmission projection and UCT imaging were performed on a breast mimicking phantom and on an ex vivo tissue model, to which IONPs were injected. Finally, an MRI scan was performed to verify that the same particles examined in the ultrasound experiment can be imaged by magnetic resonance, using the same clinically relevant concentrations. The results have shown a consistent concentration dependent speed of sound increase (1.86 \\text{m}{{\\text{s}}^{-1}} rise per 100 µg · ml-1 IONPs). Imaging based on this property has shown a substantial contrast-to-noise ratio improvement (up to 5 fold, p < 0.01). The SOS-related effect generated a well discernible image contrast and allowed the detection of the particles existence and location, in both raster-scan projection and UCT imaging. Conversely, no significant change in the acoustic attenuation coefficient was noted. Based on these findings, it is concluded that IONPs can be used as an effective SOS-based contrast agent, potentially useful for ultrasonic breast imaging. Furthermore, the particle offers the capacity of significantly enhancing diagnosis accuracy using multimodal MRI-ultrasound imaging capabilities.
NASA Astrophysics Data System (ADS)
López, M.; Vázquez, F.; Solís-Nájera, S.; Rodriguez, A. O.
2015-01-01
The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions.
Costa, Daniel N; Lotan, Yair; Rofsky, Neil M; Roehrborn, Claus; Liu, Alexander; Hornberger, Brad; Xi, Yin; Francis, Franto; Pedrosa, Ivan
2016-01-01
We assess the performance of prospectively assigned magnetic resonance imaging based Likert scale scores for the detection of clinically significant prostate cancer, and analyze the pre-biopsy imaging variables associated with increased cancer detection using targeted magnetic resonance imaging-transrectal ultrasound fusion biopsy. In this retrospective review of prospectively generated data including men with abnormal multiparametric prostate magnetic resonance imaging (at least 1 Likert score 3 or greater lesion) who underwent subsequent targeted magnetic resonance imaging-transrectal ultrasound fusion biopsy, we determined the association between different imaging variables (Likert score, lesion size, lesion location, prostate volume, radiologist experience) and targeted biopsy positivity rate. We also compared the detection of clinically significant cancer according to Likert scale scores. Tumors with high volume (50% or more of any core) Gleason score 3+4 or any tumor with greater Gleason score were considered clinically significant. Each lesion served as the elementary unit for analysis. We used logistic regression for univariate and multivariate (stepwise selection) analysis to assess for an association between targeted biopsy positivity rate and each tested variable. The relationship between Likert scale and Gleason score was evaluated using the Spearman correlation coefficient. A total of 161 men with 244 lesions met the study eligibility criteria. Targeted biopsies diagnosed cancer in 41% (66 of 161) of the men and 41% (99 of 244) of the lesions. The Likert score was the strongest predictor of targeted biopsy positivity (OR 3.7, p <0.0001). Other imaging findings associated with a higher targeted biopsy positivity rate included smaller prostate volume (OR 0.7, p <0.01), larger lesion size (OR 2.2, p <0.001) and anterior location (OR 2.0, p=0.01). On multiple logistic regression analysis Likert score, lesion size and prostate volume were significant predictors of targeted biopsy positivity. Higher Likert scores were also associated with increased detection of clinically significant tumors (p <0.0001). The Likert scale score used to convey the degree of suspicion on multiparametric magnetic resonance imaging is the strongest predictor of targeted biopsy positivity and of the presence of clinically significant tumor. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A
2008-12-01
Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.
[Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].
Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir
2006-01-01
Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.
Comparison of fMRI and PEPSI during language processing in children.
Serafini, S; Steury, K; Richards, T; Corina, D; Abbott, R; Dager, S R; Berninger, V
2001-02-01
The present study explored the correlation between lactate as detected by MR spectroscopy (MRS) and blood oxygenation level dependent (BOLD) responses in male children during auditory-based language tasks. All subjects (N = 8) participated in one proton echo planar spectroscopic imaging (PEPSI) and one functional magnetic resonance imaging (fMRI) session that required phonological and lexical judgments to aurally presented stimuli. Valid PEPSI data was limited in the frontal areas of the brain due to the magnetic susceptibility of the eye orbits and frontal sinuses. Findings from the remainder of the brain indicate that subjects show a significant consistency across imaging techniques in the left temporal area during the lexical task, but not in any other measurable area or during the phonological task. Magn Reson Med 45:217-225, 2001. Copyright 2001 Wiley-Liss, Inc.
2014-01-01
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583
Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin
2014-07-25
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.
Chen, Weitian; Sica, Christopher T.; Meyer, Craig H.
2008-01-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method. PMID:18956462
Approaches to inspecting computed tomographic and magnetic resonance studies.
Lamb, Christopher R; Dale, Vicki H M
2013-01-01
There is a need to better understand how to optimally inspect large image datasets. The aim of the present study was to complement experimental studies of visual perception by using an online questionnaire to collect opinions of practicing veterinary radiologists about the approaches they use when inspecting clinical computed X-ray tomography (CT) and/or magnetic resonance (MR) studies, and to test associations between radiologist's approaches and their training, experience, or caseload. Questionnaires were received from 90/454 (20%) American College of Veterinary Radiology (ACVR) Diplomates and 58/156 (37%) European College of Veterinary Diagnostic Imaging (ECVDI) Diplomates, providing 139 complete responses for CT studies and 116 for MR. Questionnaire responses differed for the following variables: specialty college, years since Board Certification, CT and MR caseload, and type of practice. ACVR Diplomates more frequently inspected multiple anatomic structures in CT and MR images before moving on to the next image, and ECVDI Diplomates more frequently inspected a specific anatomic structure through a series, then went back and checked another structure. A significant number of radiologists indicated that they initially ignore the history, adopt relatively rigid search patterns with emphasis on viewing images in a predetermined order with minimal deviation, and arrange series of images to facilitate comparisons between images, such as pre- and postcontrast images. Radiologists tended to adopt similar approaches for both CT and MR studies. Findings from this study could be used as foci for teaching novices how to approach large imaging studies, and provide guidance for case-based assessment of trainees. © 2013 Veterinary Radiology & Ultrasound.
Natarajan, Shyam; Jones, Tonye A; Priester, Alan M; Geoghegan, Rory; Lieu, Patricia; Delfin, Merdie; Felker, Ely; Margolis, Daniel J A; Sisk, Anthony; Pantuck, Allan; Grundfest, Warren; Marks, Leonard S
2017-10-01
Focal laser ablation is a potential treatment in some men with prostate cancer. Currently focal laser ablation is performed by radiologists in a magnetic resonance imaging unit (in bore). We evaluated the safety and feasibility of performing focal laser ablation in a urology clinic (out of bore) using magnetic resonance imaging-ultrasound fusion for guidance. A total of 11 men with intermediate risk prostate cancer were enrolled in this prospective, institutional review board approved pilot study. Magnetic resonance imaging-ultrasound fusion was used to guide laser fibers transrectally into regions of interest harboring intermediate risk prostate cancer. Thermal probes were inserted for real-time monitoring of intraprostatic temperatures during laser activation. Multiparametric magnetic resonance imaging (3 Tesla) was done immediately after treatment and at 6 months along with comprehensive fusion biopsy. Ten of 11 patients were successfully treated while under local anesthesia. Mean procedure time was 95 minutes (range 71 to 105). Posttreatment magnetic resonance imaging revealed a confined zone of nonperfusion in all 10 men. Mean zone volume was 4.3 cc (range 2.1 to 6.0). No CTCAE grade 3 or greater adverse events developed and no changes were observed in urinary or sexual function. At 6 months magnetic resonance imaging-ultrasound fusion biopsy of the treatment site showed no cancer in 3 patients, microfocal Gleason 3 + 3 in another 3 and persistent intermediate risk prostate cancer in 4. Focal laser ablation of prostate cancer appears safe and feasible with the patient under local anesthesia in a urology clinic using magnetic resonance imaging-ultrasound fusion for guidance and thermal probes for monitoring. Further development is necessary to refine out of bore focal laser ablation and additional studies are needed to determine appropriate treatment margins and oncologic efficacy. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN
NASA Astrophysics Data System (ADS)
Pradhan, Nandita; Sinha, A. K.
2008-03-01
This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.
NASA Astrophysics Data System (ADS)
Mertz, Damien; Affolter-Zbaraszczuk, Christine; Barthès, Julien; Cui, Jiwei; Caruso, Frank; Baumert, Thomas F.; Voegel, Jean-Claude; Ogier, Joelle; Meyer, Florent
2014-09-01
In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing.In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing. Electronic supplementary information (ESI) available: Experimental details and supporting Fig. S1-S4. See DOI: 10.1039/c4nr02623c
Thompson, J E; van Leeuwen, P J; Moses, D; Shnier, R; Brenner, P; Delprado, W; Pulbrook, M; Böhm, M; Haynes, A M; Hayen, A; Stricker, P D
2016-05-01
We assess the accuracy of multiparametric magnetic resonance imaging for significant prostate cancer detection before diagnostic biopsy in men with an abnormal prostate specific antigen/digital rectal examination. A total of 388 men underwent multiparametric magnetic resonance imaging, including T2-weighted, diffusion weighted and dynamic contrast enhanced imaging before biopsy. Two radiologists used PI-RADS to allocate a score of 1 to 5 for suspicion of significant prostate cancer (Gleason 7 with more than 5% grade 4). PI-RADS 3 to 5 was considered positive. Transperineal template guided mapping biopsy of 18 regions (median 30 cores) was performed with additional manually directed cores from magnetic resonance imaging positive regions. The anatomical location, size and grade of individual cancer areas in the biopsy regions (18) as the primary outcome and in prostatectomy specimens (117) as the secondary outcome were correlated to the magnetic resonance imaging positive regions. Of the 388 men who were enrolled in the study 344 were analyzed. Multiparametric magnetic resonance imaging was positive in 77.0% of patients, 62.5% had prostate cancer and 41.6% had significant prostate cancer. The detection of significant prostate cancer by multiparametric magnetic resonance imaging had a sensitivity of 96%, specificity of 36%, negative predictive value of 92% and positive predictive value of 52%. Adding PI-RADS to the multivariate model, including prostate specific antigen, digital rectal examination, prostate volume and age, improved the AUC from 0.776 to 0.879 (p <0.001). Anatomical concordance analysis showed a low mismatch between the magnetic resonance imaging positive regions and biopsy positive regions (4 [2.9%]), and the significant prostate cancer area in the radical prostatectomy specimen (3 [3.3%]). In men with an abnormal prostate specific antigen/digital rectal examination, multiparametric magnetic resonance imaging detected significant prostate cancer with an excellent negative predictive value and moderate positive predictive value. The use of multiparametric magnetic resonance imaging to diagnose significant prostate cancer may result in a substantial number of unnecessary biopsies while missing a minimum of significant prostate cancers. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael
2017-08-01
The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.
[Present status and trend of heart fluid mechanics research based on medical image analysis].
Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo
2014-06-01
With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.
Magnetic resonance imaging of the fetal brain.
Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C
2016-06-01
This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.
Li, Shuo; Zhu, Yanchun; Xie, Yaoqin; Gao, Song
2018-01-01
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...
Holcombe, Andrea; Ammann, Eric; Espeland, Mark A; Kelley, Brendan J; Manson, JoAnn E; Wallace, Robert; Robinson, Jennifer
2017-10-01
To investigate the relationship between aspirin and subclinical cerebrovascular heath, we evaluated the effect of chronic aspirin use on white matter lesions (WML) volume among women. Chronic aspirin use was assessed in 1365 women who participated in the Women's Health Initiative Memory Study of Magnetic Resonance Imaging. Differences in WML volumes between aspirin users and nonusers were assessed with linear mixed models. A number of secondary analyses were performed, including lobe-specific analyses, subgroup analyses based on participants' overall risk of cerebrovascular disease, and a dose-response relationship analysis. The mean age of the women at magnetic resonance imaging examination was 77.6 years. Sixty-one percent of participants were chronic aspirin users. After adjusting for demographic variables and comorbidities, chronic aspirin use was nonsignificantly associated with 4.8% (95% CI: -6.8%, 17.9%) larger WML volumes. These null findings were confirmed in secondary and sensitivity analyses, including an active comparator evaluation where aspirin users were compared to users of nonaspirin nonsteroidal anti-inflammatory drugs or acetaminophen. There was a nonsignificant difference in WML volumes between aspirin users and nonusers. Further, our results suggest that chronic aspirin use may not have a clinically significant effect on WML volumes in women. Published by Elsevier Inc.
Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria; Alcalá, Héctor E; Yu, Weixia; Hsu, William; Reiter, Robert E; Lu, David Y; Raman, Steven S
2018-05-01
We sought to identify the clinical and magnetic resonance imaging variables predictive of biochemical recurrence after robotic assisted radical prostatectomy in patients who underwent multiparametric 3 Tesla prostate magnetic resonance imaging. We performed an institutional review board approved, HIPAA (Health Insurance Portability and Accountability Act) compliant, single arm observational study of 3 Tesla multiparametric magnetic resonance imaging prior to robotic assisted radical prostatectomy from December 2009 to March 2016. Clinical, magnetic resonance imaging and pathological information, and clinical outcomes were compiled. Biochemical recurrence was defined as prostate specific antigen 0.2 ng/cc or greater. Univariate and multivariate regression analysis was performed. Biochemical recurrence had developed in 62 of the 255 men (24.3%) included in the study at a median followup of 23.5 months. Compared to the subcohort without biochemical recurrence the subcohort with biochemical recurrence had a greater proportion of patients with a high grade biopsy Gleason score, higher preoperative prostate specific antigen (7.4 vs 5.6 ng/ml), intermediate and high D'Amico classifications, larger tumor volume on magnetic resonance imaging (0.66 vs 0.30 ml), higher PI-RADS® (Prostate Imaging-Reporting and Data System) version 2 category lesions, a greater proportion of intermediate and high grade radical prostatectomy Gleason score lesions, higher pathological T3 stage (all p <0.01) and a higher positive surgical margin rate (19.3% vs 7.8%, p = 0.016). On multivariable analysis only tumor volume on magnetic resonance imaging (adjusted OR 1.57, p = 0.016), pathological T stage (adjusted OR 2.26, p = 0.02), positive surgical margin (adjusted OR 5.0, p = 0.004) and radical prostatectomy Gleason score (adjusted OR 2.29, p = 0.004) predicted biochemical recurrence. In this cohort tumor volume on magnetic resonance imaging and pathological variables, including Gleason score, staging and positive surgical margins, significantly predicted biochemical recurrence. This suggests an important new imaging biomarker. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Garcia, J.; Hidalgo, S. S.; Solis, S. E.; Vazquez, D.; Nuñez, J.; Rodriguez, A. O.
2012-10-01
The susceptibility artifacts can degrade of magnetic resonance image quality. Electrodes are an important source of artifacts when performing brain imaging. A dedicated phantom was built using a depth electrode to study the susceptibility effects under different pulse sequences. T2-weighted images were acquired with both gradient-and spin-echo sequences. The spin-echo sequences can significantly attenuate the susceptibility artifacts allowing a straightforward visualization of the regions surrounding the electrode.
Towards Development of a Field-Deployable Imaging Device for TBI
2012-03-01
centers such as in Germany for those studies, as well as additional medical care. This is because magnetic resonance imaging is unavailable in or near...detection of stroke in areas 283 where CAT scans and magnetic resonance imaging are not readily available or appropriate. 284 285 ACKNOWLEDGEMENTS...Task (3): MR image rodent brains. 3) UVA has performed its first round of MRI studies of CCI rats – Figures 1a,b,c. Task (4): Immunohistochemical
Einerson, Brett D; Rodriguez, Christina E; Kennedy, Anne M; Woodward, Paula J; Donnelly, Meghan A; Silver, Robert M
2018-06-01
Magnetic resonance imaging is reported to have good sensitivity and specificity in the diagnosis of placenta accreta spectrum disorders, and is often used as an adjunct to ultrasound. But the additional utility of obtaining magnetic resonance imaging to assist in the clinical management of patients with placenta accreta spectrum disorders, above and beyond the information provided by ultrasound, is unknown. We aimed to determine whether magnetic resonance imaging provides data that may inform clinical management by changing the sonographic diagnosis of placenta accreta spectrum disorders. In all, 78 patients with sonographic evidence or clinical suspicion of placenta accreta spectrum underwent magnetic resonance imaging of the abdomen and pelvis in orthogonal planes through the uterus utilizing T1- and T2-weighted imaging sequences at the University of Utah and the University of Colorado from 1997 through 2017. The magnetic resonance imaging was interpreted by radiologists with expertise in diagnosis of placenta accreta spectrum who had knowledge of the sonographic interpretation and clinical risk factors for placenta accreta spectrum disorders. The primary outcome was a change in diagnosis from sonographic interpretation that could alter clinical management, which was defined a priori. Diagnostic accuracy was verified by surgical and histopathologic diagnosis at the time of delivery. A change in diagnosis that could potentially alter clinical management occurred in 28 (36%) cases. Magnetic resonance imaging correctly changed the diagnosis in 15 (19%), and correctly confirmed the diagnosis in 34 (44%), but resulted in an incorrect change in diagnosis in 13 (17%), and an incorrect confirmation of ultrasound diagnosis in 15 (21%). Magnetic resonance imaging was not more likely to change a diagnosis in the 24 cases of posterior and lateral placental location compared to anterior location (33% vs 37%, P = .84). Magnetic resonance imaging resulted in overdiagnosis in 23% and in underdiagnosis in 14% of all cases. When ultrasound suspected severe disease (percreta) in 14 cases, magnetic resonance imaging changed the diagnosis in only 2 cases. Lastly, the proportion of accurate diagnosis with magnetic resonance imaging did not improve over time (61-65%, P = .96 for trend) despite increasing volume and increasing numbers of changed diagnoses. Magnetic resonance imaging resulted in a change in diagnosis that could alter clinical management of placenta accreta spectrum disorders in more than one third of cases, but when changed, the diagnosis was often incorrect. Given its high cost and limited clinical value, magnetic resonance imaging should not be used routinely as an adjunct to ultrasound in the diagnosis of placenta accreta spectrum until evidence for utility is clearly demonstrated by more definitive prospective studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Immobilization of human papillomavirus DNA probe for surface plasmon resonance imaging
NASA Astrophysics Data System (ADS)
Chong, Xinyuan; Ji, Yanhong; Ma, Suihua; Liu, Le; Liu, Zhiyi; Li, Yao; He, Yonghong; Guo, Jihua
2009-08-01
Human papillomavirus (HPV) is a kind of double-stranded DNA virus whose subspecies have diversity. Near 40 kinds of subspecies can invade reproductive organ and cause some high risk disease, such as cervical carcinoma. In order to detect the type of the subspecies of the HPV DNA, we used the parallel scan spectral surface plasmon resonance (SPR) imaging technique, which is a novel type of two- dimensional bio-sensing method based on surface plasmon resonance and is proposed in our previous work, to study the immobilization of the HPV DNA probes on the gold film. In the experiment, four kinds of the subspecies of the HPV DNA (HPV16, HPV18, HPV31, HPV58) probes are fixed on one gold film, and incubate in the constant temperature condition to get a HPV DNA probe microarray. We use the parallel scan spectral SPR imaging system to detect the reflective indices of the HPV DNA subspecies probes. The benefits of this new approach are high sensitive, label-free, strong specificity and high through-put.
Shih, Yen-Yu I; Chen, You-Yin; Chen, Chiao-Chi V; Chen, Jyh-Cheng; Chang, Chen; Jaw, Fu-Shan
2008-06-01
Nociceptive neuronal activation in subcortical regions has not been well investigated in functional magnetic resonance imaging (fMRI) studies. The present report aimed to use the blood oxygenation level-dependent (BOLD) fMRI technique to map nociceptive responses in both subcortical and cortical regions by employing a refined data processing method, the atlas registration-based event-related (ARBER) analysis technique. During fMRI acquisition, 5% formalin (50 mul) was injected into the left hindpaw to induce nociception. ARBER was then used to normalize the data among rats, and images were analyzed using automatic selection of the atlas-based region of interest. It was found that formalin-induced nociceptive processing increased BOLD signals in both cortical and subcortical regions. The cortical activation was distributed over the cingulate, motor, somatosensory, insular, and visual cortices, and the subcortical activation involved the caudate putamen, hippocampus, periaqueductal gray, superior colliculus, thalamus, and hypothalamus. With the aid of ARBER, the present study revealed a detailed activation pattern that possibly indicated the recruitment of various parts of the nociceptive system. The results also demonstrated the utilization of ARBER in establishing an fMRI-based whole-brain nociceptive map. The formalin induced nociceptive images may serve as a template of central nociceptive responses, which can facilitate the future use of fMRI in evaluation of new drugs and preclinical therapies for pain. (c) 2008 Wiley-Liss, Inc.
Zhang, Qilei; Gladden, Lynn; Avalle, Paolo; Mantle, Michael
2011-12-20
Swellable polymeric matrices are key systems in the controlled drug release area. Currently, the vast majority of research is still focused on polymer swelling dynamics. This study represents the first quantitative multi-nuclear (((1))H and ((19))F) fast magnetic resonance imaging study of the complete dissolution process of a commercial (Lescol® XL) tablet, whose formulation is based on the hydroxypropyl methylcellulose (HPMC) polymer under in vitro conditions in a standard USP-IV (United States Pharmacopeia apparatus IV) flow-through cell that is incorporated into high field superconducting magnetic resonance spectrometer. Quantitative RARE ((1))H magnetic resonance imaging (MRI) and ((19))F nuclear magnetic resonance (NMR) spectroscopy and imaging methods have been used to give information on: (i) dissolution media uptake and hydrodynamics; (ii) active pharmaceutical ingredient (API) mobilisation and dissolution; (iii) matrix swelling and dissolution and (iv) media activity within the swelling matrix. In order to better reflect the in vivo conditions, the bio-relevant media Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF) were used. A newly developed quantitative ultra-fast MRI technique was applied and the results clearly show the transport dynamics of media penetration and hydrodynamics along with the polymer swelling processes. The drug dissolution and mobility inside the gel matrix was characterised, in parallel to the ((1))H measurements, by ((19))F NMR spectroscopy and MRI, and the drug release profile in the bulk solution was recorded offline by UV spectrometer. We found that NMR spectroscopy and 1D-MRI can be uniquely used to monitor the drug dissolution/mobilisation process within the gel layer, and the results from ((19))F NMR spectra indicate that in the gel layer, the physical mobility of the drug changes from "dissolved immobilised drug" to "dissolved mobilised drug". Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki; Kawakami, Kazunori; Kikuchi, Keiichi; Miki, Hitoshi; Mochizuki, Teruhito; Ikezoe, Junpei
2001-10-01
The purpose of this study was to present an application of a novel denoising technique for improving the accuracy of cerebral blood flow (CBF) images generated from dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI). The method presented in this study was based on anisotropic diffusion (AD). The usefulness of this method was firstly investigated using computer simulations. We applied this method to patient data acquired using a 1.5 T MR system. After a bolus injection of Gd-DTPA, we obtained 40-50 dynamic images with a 1.32-2.08 s time resolution in 4-6 slices. The dynamic images were processed using the AD method, and then the CBF images were generated using pixel-by-pixel deconvolution analysis. For comparison, the CBF images were also generated with or without processing the dynamic images using a median or Gaussian filter. In simulation studies, the standard deviation of the CBF values obtained after processing by the AD method was smaller than that of the CBF values obtained without any processing, while the mean value agreed well with the true CBF value. Although the median and Gaussian filters also reduced image noise, the mean CBF values were considerably underestimated compared with the true values. Clinical studies also suggested that the AD method was capable of reducing the image noise while preserving the quantitative accuracy of CBF images. In conclusion, the AD method appears useful for denoising DSC-MRI, which will make the CBF images generated from DSC-MRI more reliable.
Nash, R; Lingam, R K; Chandrasekharan, D; Singh, A
2018-03-01
To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma. A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7-79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a 'gold standard'. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma. The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p < 0.001). Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.
The role of body image and self-perception in anorexia nervosa: the neuroimaging perspective.
Esposito, Roberto; Cieri, Filippo; di Giannantonio, Massimo; Tartaro, Armando
2018-03-01
Anorexia nervosa is a severe psychiatric illness characterized by intense fear of gaining weight, relentless pursuit of thinness, deep concerns about food and a pervasive disturbance of body image. Functional magnetic resonance imaging tries to shed light on the neurobiological underpinnings of anorexia nervosa. This review aims to evaluate the empirical neuroimaging literature about self-perception in anorexia nervosa. This narrative review summarizes a number of task-based and resting-state functional magnetic resonance imaging studies in anorexia nervosa about body image and self-perception. The articles listed in references were searched using electronic databases (PubMed and Google Scholar) from 1990 to February 2016 using specific key words. All studies were reviewed with regard to their quality and eligibility for the review. Differences in brain activity were observed using body image perception and body size estimation tasks showing significant modifications in activity of specific brain areas (extrastriate body area, fusiform body area, inferior parietal lobule). Recent studies highlighted the role of emotions and self-perception in anorexia nervosa and their neural substrate involving resting-state networks and particularly frontal and posterior midline cortical structures within default mode network and insula. These findings open new horizons to understand the neural substrate of anorexia nervosa. © 2016 The British Psychological Society.
Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents
ERIC Educational Resources Information Center
Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.
2009-01-01
Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.
Leiner, Tim; Vink, Eva E.; Blankestijn, Peter J.; van den Berg, Cornelis A.T.
2017-01-01
Purpose Renal dynamic contrast‐enhanced (DCE) MRI provides information on renal perfusion and filtration. However, clinical implementation is hampered by challenges in postprocessing as a result of misalignment of the kidneys due to respiration. We propose to perform automated image registration using the fat‐only images derived from a modified Dixon reconstruction of a dual‐echo acquisition because these provide consistent contrast over the dynamic series. Methods DCE data of 10 hypertensive patients was used. Dual‐echo images were acquired at 1.5 T with temporal resolution of 3.9 s during contrast agent injection. Dixon fat, water, and in‐phase and opposed‐phase (OP) images were reconstructed. Postprocessing was automated. Registration was performed both to fat images and OP images for comparison. Perfusion and filtration values were extracted from a two‐compartment model fit. Results Automatic registration to fat images performed better than automatic registration to OP images with visible contrast enhancement. Median vertical misalignment of the kidneys was 14 mm prior to registration, compared to 3 mm and 5 mm with registration to fat images and OP images, respectively (P = 0.03). Mean perfusion values and MR‐based glomerular filtration rates (GFR) were 233 ± 64 mL/100 mL/min and 60 ± 36 mL/minute, respectively, based on fat‐registered images. MR‐based GFR correlated with creatinine‐based GFR (P = 0.04) for fat‐registered images. For unregistered and OP‐registered images, this correlation was not significant. Conclusion Absence of contrast changes on Dixon fat images improves registration in renal DCE MRI and enables automated postprocessing, resulting in a more accurate estimation of GFR. Magn Reson Med 80:66–76, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29134673
Padhye, Preeti; Alam, Aftab; Ghorai, Suvankar; Chattopadhyay, Samit; Poddar, Pankaj
2015-12-14
Herein, we report the fabrication of a multifunctional nanoprobe based on highly monodispersed, optically and magnetically active, biocompatible, PEI-functionalized, highly crystalline β-NaYF4:Gd(3+)/Tb(3+) nanorods as an excellent multi-modal optical/magnetic imaging tool and a pH-triggered intracellular drug delivery nanovehicle. The static and dynamic photoluminescence spectroscopy showed the presence of sharp emission peaks, with long lifetimes (∼3.5 milliseconds), suitable for optical imaging. The static magnetic susceptibility measurements at room temperature showed a strong paramagnetic signal (χ∼ 3.8 × 10(-5) emu g(-1) Oe(-1)). The nuclear magnetic resonance (NMR) measurements showed fair T1 relaxivity (r1 = 1.14 s(-1) mM(-1)) and magnetic resonance imaging gave enhanced T1-weighted MRI images with increased concentrations of β-NaYF4:Gd(3+)/Tb(3+) making them suitable for simultaneous magnetic resonance imaging. In addition, an anticancer drug, doxorubicin (DOX) was conjugated to the amine-functionalized β-NaYF4:Gd(3+)/Tb(3+) nanorods via pH-sensitive hydrazone bond linkages enabling them as a pH-triggered, site-specific drug delivery nanovehicle for DOX release inside tumor cells. A comparison between in vitro DOX release studies undertaken in normal physiological (pH 7.4) and acidic (pH 5.0) environments showed an enhanced DOX dissociation (∼80%) at pH 5.0. The multifunctional material was also applied as an optical probe to confirm the conjugation of DOX and to monitor DOX release via a fluorescence resonance energy transfer (FRET) mechanism. The DOX-conjugated β-NaYF4:Gd(3+)/Tb(3+) nanorods exhibited a cytotoxic effect on MCF-7 breast cancer cells and their uptake by MCF-7 cells was demonstrated using confocal laser scanning microscopy and flow cytometry. The comparative cellular uptakes of free DOX and DOX-conjugated β-NaYF4:Gd(3+)/Tb(3+) nanorods were studied in tumor microenvironment conditions (pH 6.5) using confocal imaging, which showed an increased uptake of DOX-conjugated β-NaYF4:Gd(3+)/Tb(3+) nanorods. Thus, DOX-conjugated β-NaYF4:Gd(3+)/Tb(3+) nanorods combining pH-triggered drug delivery, efficient luminescence and paramagnetic properties are promising for a potential multifunctional platform for cancer therapy, biodetection, and optical and magnetic resonance imaging.
Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor
... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Small-tip fast recovery imaging using non-slice-selective tailored tip-up pulses and RF-spoiling
Nielsen, Jon-Fredrik; Yoon, Daehyun; Noll, Douglas C.
2012-01-01
Small-tip fast recovery (STFR) imaging is a new steady-state imaging sequence that is a potential alternative to balanced steady-state free precession (bSSFP). Under ideal imaging conditions, STFR may provide comparable signal-to-noise ratio (SNR) and image contrast as bSSFP, but without signal variations due to resonance offset. STFR relies on a tailored “tip-up”, or “fast recovery”, RF pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip-up pulse is based on the acquisition of a separate off-resonance (B0) map. Unfortunately, the design of fast (a few ms) slice- or slab-selective RF pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on non-slice-selective tip-up pulses, which simplifies the RF design problem significantly. Out-of-slice magnetization pathways are suppressed using RF-spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady-state T2/T1-weighted imaging with intrinsic suppression of cerebrospinal fluid, through-plane vessel signal, and off-resonance artifacts. In the future we expect STFR imaging to benefit significantly from parallel excitation hardware and high-order gradient shim systems. PMID:22511367
Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco
2017-05-04
Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.
Granular convection observed by magnetic resonance imaging.
Ehrichs, E E; Jaeger, H M; Karczmar, G S; Knight, J B; Kuperman, V Y; Nagel, S R
1995-03-17
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.
NASA Astrophysics Data System (ADS)
Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong
2018-04-01
We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
Saroha, Kartik; Pandey, Anil Kumar; Sharma, Param Dev; Behera, Abhishek; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
The detection of abdomino-pelvic tumors embedded in or nearby radioactive urine containing 18F-FDG activity is a challenging task on PET/CT scan. In this study, we propose and validate the suprathreshold stochastic resonance-based image processing method for the detection of these tumors. The method consists of the addition of noise to the input image, and then thresholding it that creates one frame of intermediate image. One hundred such frames were generated and averaged to get the final image. The method was implemented using MATLAB R2013b on a personal computer. Noisy image was generated using random Poisson variates corresponding to each pixel of the input image. In order to verify the method, 30 sets of pre-diuretic and its corresponding post-diuretic PET/CT scan images (25 tumor images and 5 control images with no tumor) were included. For each sets of pre-diuretic image (input image), 26 images (at threshold values equal to mean counts multiplied by a constant factor ranging from 1.0 to 2.6 with increment step of 0.1) were created and visually inspected, and the image that most closely matched with the gold standard (corresponding post-diuretic image) was selected as the final output image. These images were further evaluated by two nuclear medicine physicians. In 22 out of 25 images, tumor was successfully detected. In five control images, no false positives were reported. Thus, the empirical probability of detection of abdomino-pelvic tumors evaluates to 0.88. The proposed method was able to detect abdomino-pelvic tumors on pre-diuretic PET/CT scan with a high probability of success and no false positives.
Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents
Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter
2010-01-01
Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365
Clinical diagnostic dilemma of intracranial germinoma manifesting as wide skull base extension.
Zhou, Zhi-hang; Zhang, Hai-bo; Rao, Jun; Bian, Xiu-wu
2014-09-01
The aims of this study were to present an uncommon intracranial germinoma manifesting as skull base extension and analyze its clinical characteristics to give valuable insight into such uncommon radiologic variant. This is a clinical study of a 15-year-old girl with intracranial germinoma manifesting as skull base extension. Clinical characteristics, magnetic resonance imaging scan observations, pathologic findings, and flow of the treatment procedure were presented and analyzed. She had a 5-month history of diuresis and diplopia. magnetic resonance imaging observation displayed a neoplasm located in the right-side central skull base and suprasellar area with wide extension into the cavernous sinus, intraorbital region, ethmoidal sinus, sphenoid sinus, and pituitary fossa. After administration of contrast medium, strong and heterogeneous enhancement of the mass was observed, with a dural tail sign along the right cerebellar tentorial. Right pterional approach was performed, and intraoperative histologic examination suspected the diagnosis of germinoma; partial resection was achieved, and postoperative radiotherapy was administered. Cranial nerve palsy improved greatly 6 months postoperatively. Although highly unusual, germinoma should be included in the differential diagnosis of all masses with extension along the midline region of skull base, especially when it happens in young female patients.
Wade, Ryckie G; Itte, Vinay; Rankine, James J; Ridgway, John P; Bourke, Grainne
2018-03-01
Identification of root avulsions is of critical importance in traumatic brachial plexus injuries because it alters the reconstruction and prognosis. Pre-operative magnetic resonance imaging is gaining popularity, but there is limited and conflicting data on its diagnostic accuracy for root avulsion. This cohort study describes consecutive patients requiring brachial plexus exploration following trauma between 2008 and 2016. The index test was magnetic resonance imaging at 1.5 Tesla and the reference test was operative exploration of the supraclavicular plexus. Complete data from 29 males was available. The diagnostic accuracy of magnetic resonance imaging for root avulsion(s) of C5-T1 was 79%. The diagnostic accuracy of a pseudomeningocoele as a surrogate marker of root avulsion(s) of C5-T1 was 68%. We conclude that pseudomeningocoles were not a reliable sign of root avulsion and magnetic resonance imaging has modest diagnostic accuracy for root avulsions in the context of adult traumatic brachial plexus injuries. III.
Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair.
Potter, Hollis G; Foo, Li F
2006-04-01
The assessment of articular cartilage using magnetic resonance imaging has seen considerable advances in recent years. Cartilage morphologic characteristics can now be evaluated with a high degree of accuracy and reproducibility using dedicated pulse sequences, which are becoming standard at many institutions. These techniques detect clinically unsuspected traumatic cartilage lesions, allowing the physician to study their natural history with longitudinal evaluation and also to assess disease status in degenerative osteoarthritis. Magnetic resonance imaging also provides a more objective assessment of cartilage repair to augment the information obtained from more subjective clinical outcome instruments. Newly developed methods that provide detail at an ultrastructural level offer an important addition to cartilage evaluation, particularly in the detection of early alterations in the extracellular matrix. These methods have created an undeniably important role for magnetic resonance imaging in the reproducible, noninvasive, and objective evaluation and monitoring of cartilage. An overview of the advances, current techniques, and impact of magnetic resonance imaging in the setting of trauma, degenerative arthritides, and surgical treatment for cartilage injury is presented.
Sparse magnetic resonance imaging reconstruction using the bregman iteration
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo
2013-01-01
Magnetic resonance imaging (MRI) reconstruction needs many samples that are sequentially sampled by using phase encoding gradients in a MRI system. It is directly connected to the scan time for the MRI system and takes a long time. Therefore, many researchers have studied ways to reduce the scan time, especially, compressed sensing (CS), which is used for sparse images and reconstruction for fewer sampling datasets when the k-space is not fully sampled. Recently, an iterative technique based on the bregman method was developed for denoising. The bregman iteration method improves on total variation (TV) regularization by gradually recovering the fine-scale structures that are usually lost in TV regularization. In this study, we studied sparse sampling image reconstruction using the bregman iteration for a low-field MRI system to improve its temporal resolution and to validate its usefulness. The image was obtained with a 0.32 T MRI scanner (Magfinder II, SCIMEDIX, Korea) with a phantom and an in-vivo human brain in a head coil. We applied random k-space sampling, and we determined the sampling ratios by using half the fully sampled k-space. The bregman iteration was used to generate the final images based on the reduced data. We also calculated the root-mean-square-error (RMSE) values from error images that were obtained using various numbers of bregman iterations. Our reconstructed images using the bregman iteration for sparse sampling images showed good results compared with the original images. Moreover, the RMSE values showed that the sparse reconstructed phantom and the human images converged to the original images. We confirmed the feasibility of sparse sampling image reconstruction methods using the bregman iteration with a low-field MRI system and obtained good results. Although our results used half the sampling ratio, this method will be helpful in increasing the temporal resolution at low-field MRI systems.
Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.
Roy, Snehashis; Chou, Yi-Yu; Jog, Amod; Butman, John A; Pham, Dzung L
2016-10-01
Different magnetic resonance imaging pulse sequences are used to generate image contrasts based on physical properties of tissues, which provide different and often complementary information about them. Therefore multiple image contrasts are useful for multimodal analysis of medical images. Often, medical image processing algorithms are optimized for particular image contrasts. If a desirable contrast is unavailable, contrast synthesis (or modality synthesis) methods try to "synthesize" the unavailable constrasts from the available ones. Most of the recent image synthesis methods generate synthetic brain images, while whole head magnetic resonance (MR) images can also be useful for many applications. We propose an atlas based patch matching algorithm to synthesize T 2 -w whole head (including brain, skull, eyes etc) images from T 1 -w images for the purpose of distortion correction of diffusion weighted MR images. The geometric distortion in diffusion MR images due to in-homogeneous B 0 magnetic field are often corrected by non-linearly registering the corresponding b = 0 image with zero diffusion gradient to an undistorted T 2 -w image. We show that our synthetic T 2 -w images can be used as a template in absence of a real T 2 -w image. Our patch based method requires multiple atlases with T 1 and T 2 to be registeLowRes to a given target T 1 . Then for every patch on the target, multiple similar looking matching patches are found on the atlas T 1 images and corresponding patches on the atlas T 2 images are combined to generate a synthetic T 2 of the target. We experimented on image data obtained from 44 patients with traumatic brain injury (TBI), and showed that our synthesized T 2 images produce more accurate distortion correction than a state-of-the-art registration based image synthesis method.
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi
2005-08-01
This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.
Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu
2014-10-01
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
Technological Advances in the Study of Reading: An Introduction.
ERIC Educational Resources Information Center
Henk, William A.
1991-01-01
Describes the purpose and functional operation of new computer-driven technologies such as computerized axial tomography, positron emissions transaxial tomography, regional cerebral blood flow monitoring, magnetic resonance imaging, and brain electrical activity mapping. Outlines their current contribution to the knowledge base. Speculates on the…
Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol
2009-01-01
Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.
NASA Astrophysics Data System (ADS)
Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.
2013-03-01
Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.
Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C
2017-09-01
To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Serial Magnetic Resonance Imaging in Active Surveillance of Prostate Cancer: Incremental Value.
Felker, Ely R; Wu, Jason; Natarajan, Shyam; Margolis, Daniel J; Raman, Steven S; Huang, Jiaoti; Dorey, Fred; Marks, Leonard S
2016-05-01
We assessed whether changes in serial multiparametric magnetic resonance imaging can help predict the pathological progression of prostate cancer in men on active surveillance. A retrospective cohort study was conducted of 49 consecutive men with Gleason 6 prostate cancer who underwent multiparametric magnetic resonance imaging at baseline and again more than 6 months later, each followed by a targeted prostate biopsy, between January 2011 and May 2015. We evaluated whether progression on multiparametric magnetic resonance imaging (an increase in index lesion suspicion score, increase in index lesion volume or decrease in index lesion apparent diffusion coefficient) could predict pathological progression (Gleason 3 + 4 or greater on subsequent biopsy, in systematic or targeted cores). Diagnostic performance of multiparametric magnetic resonance imaging was determined with and without clinical data using a binary logistic regression model. The mean interval between baseline and followup multiparametric magnetic resonance imaging was 28.3 months (range 11 to 43). Pathological progression occurred in 19 patients (39%). The sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging was 37%, 90%, 69% and 70%, respectively. Area under the receiver operating characteristic curve was 0.63. A logistic regression model using clinical information (maximum cancer core length greater than 3 mm on baseline biopsy or a prostate specific antigen density greater than 0.15 ng/ml(2) at followup biopsy) had an AUC of 0.87 for predicting pathological progression. The addition of serial multiparametric magnetic resonance imaging data significantly improved the AUC to 0.91 (p=0.044). Serial multiparametric magnetic resonance imaging adds incremental value to prostate specific antigen density and baseline cancer core length for predicting Gleason 6 upgrading in men on active surveillance. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Retrospective review of 50 canine nasal tumours evaluated by low-field magnetic resonance imaging.
Avner, A; Dobson, J M; Sales, J I; Herrtage, M E
2008-05-01
Low-field magnetic resonance imaging machines are being used more often in veterinary practice for the investigation of sinonasal disease. The aim of this retrospective study was to describe and characterise the low-field magnetic resonance imaging features of nasal tumours in dogs. The Queen's Veterinary School Hospital magnetic resonance imaging database (2001-2005) was searched for dogs with a magnetic resonance imaging diagnosis of a nasal tumour. Fifty cases with histological diagnosis of nasal tumour were found. The appearance and extent of the nasal tumour as well as the involvement of adjacent anatomic structures were examined against a checklist. The most common magnetic resonance imaging findings were as follows. (1) Soft tissue mass replacing the destroyed nasal conchae and/or ethmoturbinates (98 per cent of cases). (2) Nasal septum destruction (68 per cent of cases). (3) Retained secretions with or without mass caudally in frontal sinuses (62 per cent of cases). (4) Nasal/frontal bone destruction (52 per cent of cases). Low-field magnetic resonance imaging allowed differentiation of tumour tissue from retained secretions or necrotic tissue. Magnetic resonance imaging was invaluable in assessing the extension of the tumour into the maxillary recesses, caudal recesses, nasopharynx, adjacent bones and cranial cavity. The tumour often extended caudally into the frontal sinuses, nasopharynx and perhaps most importantly into the caudal recesses. Tumour extension into the cranial cavity was not common (16 per cent), and only three of these cases showed neurological signs. However, 54 per cent of cases showed focal meningeal (dural) hyperintensity, although the significance of this is unclear. A significant difference (P<0.05) in tumour signal intensity between the sarcomas and carcinomas was found. The use of a low-field magnetic resonance imaging technique is excellent for the diagnosis and determination of extent of sinonasal tumours.
Acoustic noise and functional magnetic resonance imaging: current strategies and future prospects.
Amaro, Edson; Williams, Steve C R; Shergill, Sukhi S; Fu, Cynthia H Y; MacSweeney, Mairead; Picchioni, Marco M; Brammer, Michael J; McGuire, Philip K
2002-11-01
Functional magnetic resonance imaging (fMRI) has become the method of choice for studying the neural correlates of cognitive tasks. Nevertheless, the scanner produces acoustic noise during the image acquisition process, which is a problem in the study of auditory pathway and language generally. The scanner acoustic noise not only produces activation in brain regions involved in auditory processing, but also interferes with the stimulus presentation. Several strategies can be used to address this problem, including modifications of hardware and software. Although reduction of the source of the acoustic noise would be ideal, substantial hardware modifications to the current base of installed MRI systems would be required. Therefore, the most common strategy employed to minimize the problem involves software modifications. In this work we consider three main types of acquisitions: compressed, partially silent, and silent. For each implementation, paradigms using block and event-related designs are assessed. We also provide new data, using a silent event-related (SER) design, which demonstrate higher blood oxygen level-dependent (BOLD) response to a simple auditory cue when compared to a conventional image acquisition. Copyright 2002 Wiley-Liss, Inc.
Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao
2016-06-01
An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.
A Compressive Sensing Approach for Glioma Margin Delineation Using Mass Spectrometry
Gholami, Behnood; Agar, Nathalie Y. R.; Jolesz, Ferenc A.; Haddad, Wassim M.; Tannenbaum, Allen R.
2013-01-01
Surgery, and specifically, tumor resection, is the primary treatment for most patients suffering from brain tumors. Medical imaging techniques, and in particular, magnetic resonance imaging are currently used in diagnosis as well as image-guided surgery procedures. However, studies show that computed tomography and magnetic resonance imaging fail to accurately identify the full extent of malignant brain tumors and their microscopic infiltration. Mass spectrometry is a well-known analytical technique used to identify molecules in a given sample based on their mass. In a recent study, it is proposed to use mass spectrometry as an intraoperative tool for discriminating tumor and non-tumor tissue. Integration of mass spectrometry with the resection module allows for tumor resection and immediate molecular analysis. In this paper, we propose a framework for tumor margin delineation using compressive sensing. Specifically, we show that the spatial distribution of tumor cell concentration can be efficiently reconstructed and updated using mass spectrometry information from the resected tissue. In addition, our proposed framework is model-free, and hence, requires no prior information of spatial distribution of the tumor cell concentration. PMID:22255629
Serial diffusion-weighted imaging in subacute sclerosing panencephalitis.
Kanemura, Hideaki; Aihara, Masao
2008-06-01
Subacute sclerosing panencephalitis may be associated with clinical features of frontal lobe dysfunction. We previously reported that frontal lobe volume falls significantly as clinical stage progresses, using three-dimensional magnetic resonance imaging-based brain volumetry. The hypothesis that frontal volume increases correlate with clinical improvement, however, was not tested in our previous study. Therefore, we reevaluated our patient with subacute sclerosing panencephalitis, to determine whether apparent diffusion coefficient maps can characterize the clinical course of subacute sclerosing panencephalitis. We studied an 8-year-old boy with subacute sclerosing panencephalitis, using serial diffusion-weighted imaging magnetic resonance imaging, and measured the regional apparent diffusion coefficient. The regional apparent diffusion coefficient of the frontal lobe decreased significantly with clinical progression, whereas it increased to within normal range during clinical improvements. The apparent diffusion coefficient of the other regions did not change. These results suggest that the clinical signs of patients with subacute sclerosing panencephalitis are attributable to frontal lobe dysfunction, and that apparent diffusion coefficient measurements may be useful in predicting the clinical course of subacute sclerosing panencephalitis.
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives
Ngen, Ethel J.; Artemov, Dmitri
2017-01-01
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions. PMID:28106829
MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity
Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.
2016-01-01
Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977
Pena-Garijo, Josep; Ruipérez-Rodríguez, M Angeles; Barros-Loscertales, Alfonso
2010-05-01
In recent years, neuroscience has shown a growing interest in applying its methods to furthering the knowledge of psychiatric disorders, and one of the fundamental tools used to do so are neuroimaging techniques. Yet, in general, few studies have been conducted in which functional magnetic resonance has been applied in this field and findings are sometimes contradictory. In this study we review the specialised bibliography and present a critical discussion on the scientific literature published to date on the application of functional magnetic resonance and diffusion tensor imaging to one of the most widely studied disorders, from a neurobiological point of view, namely, obsessive-compulsive disorder. The study reviews the articles on the use of functional magnetic resonance imaging, as well as those dealing with neural connectivity, that have been indexed in the most commonly used medical databases on the topic since 1996. Most studies suggest that the prefrontal cortex (orbitofrontal and cingulate), the basal ganglia and the thalamus are involved in the pathogenesis of obsessive-compulsive disorder. Likewise, alterations in the white matter that affect neural connectivity have also been found. The contributions made by neuroimaging and, more specifically, by functional magnetic resonance imaging are and will undoubtedly continue to be a particularly interesting tool for explaining the aetiology of this disorder.
Opening the black box: imaging nanoparticle transport with MRI
NASA Astrophysics Data System (ADS)
Phoenix, V.; Holmes, W. M.
2009-12-01
While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was prepared and connected to a 30 mm diameter flow cell containing rose quartz. GadoCELLTrack is a 30 nm diameter, neutrally charged gadolinium colloid. MR images were collected as the nanoparticle solution was pumped through the flow cell. These images were calibrated to provide fully quantitative maps of nanoparticle concentration at regular time intervals throughout the column. Such data can be used to help develop predictive models of nanoparticulate transport. [1] Holmes WM, Packer KJ (2003) Magnetic Resonance Imaging 21,389-391 [2] Seymour JD et al., (2004) Journal of Magnetic Resonance 167, 322-327 [3] McLean JS et al., (2008) ISME, 2, 121-131 [4] Phoenix et al., (2008) Applied and Environmental Microbiology, 74, 4934-4943
Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner.
van Gelderen, P; Ramsey, N F; Liu, G; Duyn, J H; Frank, J A; Weinberger, D R; Moonen, C T
1995-01-01
Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested. Images Fig. 2 Fig. 3 PMID:7624341
Foodomics imaging by mass spectrometry and magnetic resonance.
Canela, Núria; Rodríguez, Miguel Ángel; Baiges, Isabel; Nadal, Pedro; Arola, Lluís
2016-07-01
This work explores the use of advanced imaging MS (IMS) and magnetic resonance imaging (MRI) techniques in food science and nutrition to evaluate food sensory characteristics, nutritional value and health benefits. Determining the chemical content and applying imaging tools to food metabolomics offer detailed information about food quality, safety, processing, storage and authenticity assessment. IMS and MRI are powerful analytical systems with an excellent capability for mapping the distribution of many molecules, and recent advances in these platforms are reviewed and discussed, showing the great potential of these techniques for small molecule-based food metabolomics research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sheriff, Mohammed J; Mouline, Omar; Hsu, Chijen; Grieve, Stuart M; Wilson, Michael K; Bannon, Paul G; Vallely, Michael P; Puranik, Rajesh
2016-06-01
The euroSCORE II is a widely used pre-coronary artery bypass graft surgery (CAGS) risk score, but its predictive power lacks the specificity to predict outcomes in high-risk patients (
Neumann, M; Cuvillon, L; Breton, E; de Matheli, M
2013-01-01
Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.
Zhang, Shu; Keupp, Jochen; Wang, Xinzeng; Dimitrov, Ivan; Madhuranthakam, Ananth J; Lenkinski, Robert E; Vinogradov, Elena
2018-05-01
Chemical exchange saturation transfer (CEST) MRI is increasingly evolving from brain to body applications. One of the known problems in the body imaging is the presence of strong lipid signals. Although their influence on the CEST effect is acknowledged, there was no study that focuses on the interplay among echo time, fat fraction, and Z-spectrum. This study strives to address these points, with the emphasis on the application in the breast. Z-spectra were simulated in phase and out of phase of the main fat peak at -3.4 ppm, with the fat fraction varying from 0 to 100%. The magnetization transfer ratio asymmetry in two ranges, centering at the exchanging pool and at 3.5 ppm approximately opposite the nonexchanging fat pool, were calculated and were plotted against fat fraction. The results were verified in phantoms and in vivo. The results demonstrate the combined influence of fat fraction and echo time on the Z-spectrum for gradient echo based CEST acquisitions. The influence is straightforward in the in-phase images, but it is more complicated in the out-of-phase images, potentially leading to erroneous CEST contrast. This study provides a basis for understanding the origin and appearance of lipid artifacts in CEST imaging, and lays the foundation for their efficient removal. Magn Reson Med 79:2731-2737, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Schmidt, M J; Langen, N; Klumpp, S; Nasirimanesh, F; Shirvanchi, P; Ondreka, N; Kramer, M
2012-01-01
Although magnetic resonance imaging has been used to examine the brain of domestic ruminants, detailed information relating the precise anatomical features in these species is lacking. In this study the brain structures of calves (Bos taurus domesticus), sheep (Ovis aries), goats (Capra hircus) and a mesaticephalic dog (Canis lupis familiaris) were examined using T2-weighed Turbo Spin Echo sequences; three-dimensional models based on high-resolution gradient echo scans were used to identify brain sulci and gyri in two-dimensional images. The ruminant brains examined were similar in structure and organisation to those of other mammals but particular features included the deep depression of the insula and the pronounced gyri of the cortices, the dominant position of the visual (optic nerve, optic chiasm and rostral colliculus) and olfactory (olfactory bulb, olfactory tracts and piriform lobe) systems, and the relatively large size of the diencephalon. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min
2014-06-01
We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Gijsen, Frank J H; Nieuwstadt, Harm A; Wentzel, Jolanda J; Verhagen, Hence J M; van der Lugt, Aad; van der Steen, Antonius F W
2015-08-01
Two approaches to target plaque vulnerability-a histopathologic classification scheme and a biomechanical analysis-were compared and the implications for noninvasive risk stratification of carotid plaques using magnetic resonance imaging were assessed. Seventy-five histological plaque cross sections were obtained from carotid endarterectomy specimens from 34 patients (>70% stenosis) and subjected to both a Virmani histopathologic classification (thin fibrous cap atheroma with <0.2-mm cap thickness, presumed vulnerable) and a peak cap stress computation (<140 kPa: presumed stable; >300 kPa: presumed vulnerable). To demonstrate the implications for noninvasive plaque assessment, numeric simulations of a typical carotid magnetic resonance imaging protocol were performed (0.62×0.62 mm(2) in-plane acquired voxel size) and used to obtain the magnetic resonance imaging-based peak cap stress. Peak cap stress was generally associated with histological classification. However, only 16 of 25 plaque cross sections could be labeled as high-risk (peak cap stress>300 kPa and classified as a thin fibrous cap atheroma). Twenty-eight of 50 plaque cross sections could be labeled as low-risk (a peak cap stress<140 kPa and not a thin fibrous cap atheroma), leading to a κ=0.39. 31 plaques (41%) had a disagreement between both classifications. Because of the limited magnetic resonance imaging voxel size with regard to cap thickness, a noninvasive identification of only a group of low-risk, thick-cap plaques was reliable. Instead of trying to target only vulnerable plaques, a more reliable noninvasive identification of a select group of stable plaques with a thick cap and low stress might be a more fruitful approach to start reducing surgical interventions on carotid plaques. © 2015 American Heart Association, Inc.
Quiet echo planar imaging for functional and diffusion MRI
Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.
2017-01-01
Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363
Kyung, Eun Jung; Kim, Hyun Bum; Hwang, Eun Sang; Lee, Seok; Choi, Bup Kyung; Lim, Sang Moo; Kwon, Oh In
2018-01-01
In oriental medicine, curcumin is used to treat inflammatory diseases, and its anti-inflammatory effect has been reported in recent research. In this feasibility study, the hepatoprotective effect of curcumin was investigated using a rat liver cirrhosis model, which was induced with dimethylnitrosamine (DMN). Together with biochemical analysis, we used a magnetic resonance-based electrical conductivity imaging method to evaluate tissue conditions associated with a protective effect. The effects of curcumin treatment and lactulose treatment on liver cirrhosis were compared. Electrical conductivity images indicated that liver tissues damaged by DMN showed decreased conductivity compared with normal liver tissues. In contrast, cirrhotic liver tissues treated with curcumin or lactulose showed increased conductivity than tissues in the DMN-only group. Specifically, conductivity of cirrhotic liver after curcumin treatment was similar to that of normal liver tissues. Histological staining and immunohistochemical examination showed significant levels of attenuated fibrosis and decreased inflammatory response after both curcumin and lactulose treatments compared with damaged liver tissues by DMN. The conductivity imaging and biochemical examination results indicate that curcumin's anti-inflammatory effect can prevent the progression of irreversible liver dysfunction. PMID:29887757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarma, Manoj; Department of Radiation Oncology, University of California, Los Angeles, California; Hu, Peng
Purpose: To evaluate a low-rank decomposition method to reconstruct down-sampled k-space data for the purpose of tumor tracking. Methods and Materials: Seven retrospective lung cancer patients were included in the simulation study. The fully-sampled k-space data were first generated from existing 2-dimensional dynamic MR images and then down-sampled by 5 × -20 × before reconstruction using a Cartesian undersampling mask. Two methods, a low-rank decomposition method using combined dynamic MR images (k-t SLR based on sparsity and low-rank penalties) and a total variation (TV) method using individual dynamic MR frames, were used to reconstruct images. The tumor trajectories were derived on the basis ofmore » autosegmentation of the resultant images. To further test its feasibility, k-t SLR was used to reconstruct prospective data of a healthy subject. An undersampled balanced steady-state free precession sequence with the same undersampling mask was used to acquire the imaging data. Results: In the simulation study, higher imaging fidelity and low noise levels were achieved with the k-t SLR compared with TV. At 10 × undersampling, the k-t SLR method resulted in an average normalized mean square error <0.05, as opposed to 0.23 by using the TV reconstruction on individual frames. Less than 6% showed tracking errors >1 mm with 10 × down-sampling using k-t SLR, as opposed to 17% using TV. In the prospective study, k-t SLR substantially reduced reconstruction artifacts and retained anatomic details. Conclusions: Magnetic resonance reconstruction using k-t SLR on highly undersampled dynamic MR imaging data results in high image quality useful for tumor tracking. The k-t SLR was superior to TV by better exploiting the intrinsic anatomic coherence of the same patient. The feasibility of k-t SLR was demonstrated by prospective imaging acquisition and reconstruction.« less
Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru
2016-10-11
An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T 1 -weighted images (3D-T 1 WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.
NASA Astrophysics Data System (ADS)
Rosen, M.; Coulter, K. P.; Chupp, T. E.; Swanson, S. D.; Agranoff, B. W.
1996-05-01
One of the most exciting prospects for the application of laser polarized noble gas magnetic resonance imaging and spectroscopy of ^129Xe is the quantitative measurement of cerebral blood flow changes in response to various stimuli. Development of this new modality of functional imaging requires tracking the transport of inspirated laser polarized ^129Xe from the lungs to the blood and to the brain. We describe a series of experiments with rats that include producing noble gas magnetic resonance images and study of the uptake and transport of polarized ^129Xe in the blood and to the head. We have observed spectral components of the ^129Xe at about -200 ppm relative to the free gas and confirmed their transport to the head. The time dependence of this component in the head has been studied. Current efforts are to spatially localize the polarized ^129Xe and image the magnetization in the steady state.
Lizarraga, Gabriel; Li, Chunfei; Cabrerizo, Mercedes; Barker, Warren; Loewenstein, David A; Duara, Ranjan; Adjouadi, Malek
2018-04-26
Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable leading researchers in the field of Alzheimer’s Disease and epilepsy have used the interface to access and process the data and visualize the results. Tabulated results with unique visualization mechanisms help guide more informed diagnosis and expert rating, providing a truly unique multimodal imaging platform that combines magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and resting state functional magnetic resonance imaging. A quality control component was reinforced through expert visual rating involving at least 2 experts. To our knowledge, there is no validated Web-based system offering all the services that Neuroimaging Web Services Interface offers. The intent of Neuroimaging Web Services Interface is to create a tool for clinicians and researchers with keen interest on multimodal neuroimaging. More importantly, Neuroimaging Web Services Interface significantly augments the Alzheimer’s Disease Neuroimaging Initiative data, especially since our data contain a large cohort of Hispanic normal controls and Alzheimer’s Disease patients. The obtained results could be scrutinized visually or through the tabulated forms, informing researchers on subtle changes that characterize the different stages of the disease. ©Gabriel Lizarraga, Chunfei Li, Mercedes Cabrerizo, Warren Barker, David A Loewenstein, Ranjan Duara, Malek Adjouadi. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 26.04.2018.
ERIC Educational Resources Information Center
Tian, Wei; Yin, Heng; Redett, Richard J.; Shi, Bing; Shi, Jin; Zhang, Rui; Zheng, Qian
2010-01-01
Purpose: Recent applications of the magnetic resonance imaging (MRI) technique introduced accurate 3-dimensional measurements of the velopharyngeal mechanism. Further standardization of the data acquisition and analysis protocol was successfully applied to imaging adults at rest and during phonation. This study was designed to test and modify a…
Albanese, Chris; Rodriguez, Olga C; VanMeter, John; Fricke, Stanley T; Rood, Brian R; Lee, YiChien; Wang, Sean S; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F; Wang, Yue
2013-02-01
Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Glover, Gary H.; Mueller, Bryon A.; Turner, Jessica A.; van Erp, Theo G.M.; Liu, Thomas T.; Greve, Douglas N.; Voyvodic, James T.; Rasmussen, Jerod; Brown, Gregory G.; Keator, David B.; Calhoun, Vince D.; Lee, Hyo Jong; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Gadde, Syam; Preda, Adrian; Lim, Kelvin O.; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.
2011-01-01
This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery. PMID:22314879
NASA Astrophysics Data System (ADS)
Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin
2015-08-01
An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging.
Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo
2009-07-21
Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a range of nanosized carriers (micelles, liposomes, microemulsions, and the like, as well as biological structures such as apoferritin and lipoproteins) properly loaded with Gd-based chelates. Furthermore, the sensitivity of Gd-based agents can be markedly affected either by their interactions with biological structures or by their cellular localization. For CEST agents, a huge sensitivity enhancement has been obtained by using the water molecules contained in the inner cavity of liposomes as the exchangeable source of protons for magnetization transfer. Several "tricks" (for example, the use of multimeric lanthanide(III) shift reagents, changes in the shape of the liposome container, and so forth) have been devised to improve the chemical shift separation between the intraliposomal water and the "bulk" water resonances. Overall, excellent sensitivity enhancements have been obtained for both classes of agents, enabling their use in MR molecular imaging applications.
Bian, Wei; Li, Yan; Crane, Jason C; Nelson, Sarah J
2018-02-01
To implement a fully automated atlas-based method for prescribing 3D PRESS MR spectroscopic imaging (MRSI). The PRESS selected volume and outer-volume suppression bands were predefined on the MNI152 standard template image. The template image was aligned to the subject T 1 -weighted image during a scan, and the resulting transformation was then applied to the predefined prescription. To evaluate the method, H-1 MRSI data were obtained in repeat scan sessions from 20 healthy volunteers. In each session, datasets were acquired twice without repositioning. The overlap ratio of the prescribed volume in the two sessions was calculated and the reproducibility of inter- and intrasession metabolite peak height and area ratios was measured by the coefficient of variation (CoV). The CoVs from intra- and intersession were compared by a paired t-test. The average overlap ratio of the automatically prescribed selection volumes between two sessions was 97.8%. The average voxel-based intersession CoVs were less than 0.124 and 0.163 for peak height and area ratios, respectively. Paired t-test showed no significant difference between the intra- and intersession CoVs. The proposed method provides a time efficient method to prescribe 3D PRESS MRSI with reproducible imaging positioning and metabolite measurements. Magn Reson Med 79:636-642, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
A Genome-Wide Association Study of Amygdala Activation in Youths with and without Bipolar Disorder
ERIC Educational Resources Information Center
Liu, Xinmin; Akula, Nirmala; Skup, Martha; Brotman, Melissa A.; Leibenluft, Ellen; McMahon, Francis J.
2010-01-01
Objective: Functional magnetic resonance imaging is commonly used to characterize brain activity underlying a variety of psychiatric disorders. A previous functional magnetic resonance imaging study found that amygdala activation during a face-processing task differed between pediatric patients with bipolar disorder (BD) and healthy controls. We…
Hayashi, Koichiro; Ono, Kenji; Suzuki, Hiromi; Sawada, Makoto; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu
2010-11-05
Red blood cells (RBCs) are able to avoid filtration in the spleen to prolong their half-time in the body because of their flexibility and unique shape, or a concave disk with diameter of some 10 μm. In addition, they can flow through capillary blood vessels, which are smaller than the diameter of RBCs, by morphing into a parachute-like shape. In this study, flexible RBC-like polymer particles are synthesized by electrospraying based on electrospinning. Furthermore, magnetite nanoparticles and fluorescent dye are encapsulated in the particles via in situ hydrolysis of an iron-organic compound in the presence of celluloses. The superparamagnetic behavior of the particles is confirmed by low-temperature magnetic measurements. The particles exhibited not only a dark contrast in magnetic resonance imaging (MRI), but also effective fluorescence. The RBC-like particles with flexibility are demonstrated to have a dual-modality for MRI and fluorescence imaging.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
Downie, Jeanine; Kaspar, Miroslav
2016-04-01
Noninvasive body shaping methods seem to be an ascending part of the aesthetics market. As a result, the pressure to develop reliable methods for the collection and presentation of their results has also increased. The most used techniques currently include ultrasound measurements of fat thickness in the treated area, caliper measurements, bioimpedance-based scale measurements or circumferential tape measurements. Although these are the most used techniques, almost all of them have some limitations in reproducibility and/or accuracy. This study shows Magnetic Resonance Imaging (MRI) as the new method for the presentation of results in the body shaping industry. Six subjects were treated by a contactless selective radiofrequency device (BTL Vanquish ME, BTL Industries Inc., Boston, MA). The MRI fat thickness was measured at the baseline and at 4-weeks following the treatment. In addition to MRI images and measurements, digital photographs and anthropometric evaluations such as weight, abdominal circumference, and caliper fat thickness measurements were recorded. Abdominal fat thickness measurements from the MRI were performed from the same slices determined by the same tissue artefacts. The MRI fat thickness difference between the baseline measurement and follow up visit showed an average reduction of 5.36 mm as calculated from the data of 5 subjects. One subject dropped out of study due to non-study related issues. The results were statistically significant based on the Student's T-test evaluation. Magnetic resonance imaging abdominal fat thickness measurements seems to be the best method for the evaluation of fat thickness reduction after non-invasive body shaping treatments. In this study, this method shows average fat thickness reduction of 5.36 mm while the weight of the subjects didn't change significantly. A large spot size measuring 1317 cm(2) (204 square inches) covers the abdomen flank to flank. The average thickness of 5.36 mm of the fat layer reduced under the applicator translates into significant cumulative circumferential reduction. The reduction was not related with dieting.
Reitmeir, Raluca; Eyding, Jens; Oertel, Markus F; Wiest, Roland; Gralla, Jan; Fischer, Urs; Giquel, Pierre-Yves; Weber, Stefan; Raabe, Andreas; Mattle, Heinrich P; Z'Graggen, Werner J; Beck, Jürgen
2017-04-01
In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson's chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.
Delakis, Ioannis; Hammad, Omer; Kitney, Richard I
2007-07-07
Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.
Magnetic resonance imaging-ultrasound fusion biopsy for prediction of final prostate pathology.
Le, Jesse D; Stephenson, Samuel; Brugger, Michelle; Lu, David Y; Lieu, Patricia; Sonn, Geoffrey A; Natarajan, Shyam; Dorey, Frederick J; Huang, Jiaoti; Margolis, Daniel J A; Reiter, Robert E; Marks, Leonard S
2014-11-01
We explored the impact of magnetic resonance imaging-ultrasound fusion prostate biopsy on the prediction of final surgical pathology. A total of 54 consecutive men undergoing radical prostatectomy at UCLA after fusion biopsy were included in this prospective, institutional review board approved pilot study. Using magnetic resonance imaging-ultrasound fusion, tissue was obtained from a 12-point systematic grid (mapping biopsy) and from regions of interest detected by multiparametric magnetic resonance imaging (targeted biopsy). A single radiologist read all magnetic resonance imaging, and a single pathologist independently rereviewed all biopsy and whole mount pathology, blinded to prior interpretation and matched specimen. Gleason score concordance between biopsy and prostatectomy was the primary end point. Mean patient age was 62 years and median prostate specific antigen was 6.2 ng/ml. Final Gleason score at prostatectomy was 6 (13%), 7 (70%) and 8-9 (17%). A tertiary pattern was detected in 17 (31%) men. Of 45 high suspicion (image grade 4-5) magnetic resonance imaging targets 32 (71%) contained prostate cancer. The per core cancer detection rate was 20% by systematic mapping biopsy and 42% by targeted biopsy. The highest Gleason pattern at prostatectomy was detected by systematic mapping biopsy in 54%, targeted biopsy in 54% and a combination in 81% of cases. Overall 17% of cases were upgraded from fusion biopsy to final pathology and 1 (2%) was downgraded. The combination of targeted biopsy and systematic mapping biopsy was needed to obtain the best predictive accuracy. In this pilot study magnetic resonance imaging-ultrasound fusion biopsy allowed for the prediction of final prostate pathology with greater accuracy than that reported previously using conventional methods (81% vs 40% to 65%). If confirmed, these results will have important clinical implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.
2002-09-01
Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.
NASA Astrophysics Data System (ADS)
Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard
2018-05-01
Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.
2016-03-01
The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.
Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.
Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus
We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
Magnetic resonance image compression using scalar-vector quantization
NASA Astrophysics Data System (ADS)
Mohsenian, Nader; Shahri, Homayoun
1995-12-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.
3-D in vivo brain tumor geometry study by scaling analysis
NASA Astrophysics Data System (ADS)
Torres Hoyos, F.; Martín-Landrove, M.
2012-02-01
A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.
Resonance energy transfer process in nanogap-based dual-color random lasing
NASA Astrophysics Data System (ADS)
Shi, Xiaoyu; Tong, Junhua; Liu, Dahe; Wang, Zhaona
2017-04-01
The resonance energy transfer (RET) process between Rhodamine 6G and oxazine in the nanogap-based random systems is systematically studied by revealing the variations and fluctuations of RET coefficients with pump power density. Three working regions stable fluorescence, dynamic laser, and stable laser are thus demonstrated in the dual-color random systems. The stable RET coefficients in fluorescence and lasing regions are generally different and greatly dependent on the donor concentration and the donor-acceptor ratio. These results may provide a way to reveal the energy distribution regulars in the random system and to design the tunable multi-color coherent random lasers for colorful imaging.
Medrano-Gracia, Pau; Cowan, Brett R; Bluemke, David A; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Suinesiaputra, Avan; Young, Alistair A
2013-09-13
Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies. A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols. Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias. Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.
A possible application of magnetic resonance imaging for pharmaceutical research.
Kowalczuk, Joanna; Tritt-Goc, Jadwiga
2011-03-18
Magnetic resonance imaging (MRI) is a non-destructive and non-invasive method, the experiment can be conducted in situ and allows the studying of the sample and the different processes in vitro or in vivo. 1D, 2D or 3D imaging can be undertaken. MRI is nowadays most widely used in medicine as a clinical diagnostic tool, but has still seen limited application in the food and pharmaceutical sciences. The different imaging pulse sequences of MRI allow to image the processes that take place in a wide scale range from ms (dissolution of compact tablets) to hours (hydration of drug delivery systems) for mobile as well as for rigid spins, usually protons. The paper gives examples of MRI application of in vitro imaging of pharmaceutical dosage based on hydroxypropyl methylcellulose which have focused on water-penetration, diffusion, polymer swelling, and drug release, characterized with respect to other physical parameters such as pH and the molecular weight of polymer. Tetracycline hydrochloride was used as a model drug. NMR imaging of density distributions and fast kinetics of the dissolution behavior of compact tablets is presented for paracetamol tablets. Copyright © 2010 Elsevier B.V. All rights reserved.
High-frame-rate full-vocal-tract 3D dynamic speech imaging.
Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P
2017-04-01
To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume
2013-09-01
The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho
2018-06-01
Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.
Surface-based hemangioma of bone: three case studies and a review of the literature.
Rougraff, B T; Deters, M L; Ivancevich, S
1998-04-01
Three cases of surface-based hemangiomas were reviewed. The cases illustrate the plain film and magnetic resonance imaging findings of these benign tumors, which can appear quite aggressive, mimicking more aggressive neoplasms. Each of the patients underwent en bloc excision, and pathologic evaluation to determine the diagnosis. To date, there has been no evidence of recurrence.
ERIC Educational Resources Information Center
Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.
2013-01-01
Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…
Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon
2017-01-01
Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563
Sub-THz Imaging Using Non-Resonant HEMT Detectors
Delgado-Notario, Juan A.; Meziani, Yahya M.; Fobelets, Kristel
2018-01-01
Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging. PMID:29439437
Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.
2011-01-01
Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638
Mapping immune cell infiltration using restricted diffusion MRI.
Yeh, Fang-Cheng; Liu, Li; Hitchens, T Kevin; Wu, Yijen L
2017-02-01
Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Degirmenci, Eylem; Erdogan, Cagdas; Bir, Levent Sinan
2013-09-01
This study investigates the correlation between brain magnetic resonance imaging findings and blink reflex abnormalities in patients with relapsing remitting multiple sclerosis. Twenty-six patients and 17 healthy subjects were included in this study. Blink reflex test (BRT) results were obtained using right and left stimulations; thus, 52 BRT results were recorded for the patient group, and 34 BRT results were recorded for the control group. The magnetic resonance imaging (MRI) findings were classified based on the existence of brainstem lesions (hyperintense lesion on T2 weighted (W) and fast fluid-attenuated inversion recovery MRI or contrast-enhancing lesion on T1W MRI). Correlation analysis was performed for the BRT and MRI findings. The percentage of individuals with abnormal BRT results (including R1 latency, ipsilateral R2 latency, and contralateral R2 latency) was significantly higher in the patient group as compared to the control group (p values: 0.015, 0.001, and 0.002, respectively). Correlation analysis revealed significant correlations between contralateral R2 latency abnormalities and brainstem lesions (p value: 0.011). Our results showed significant correlation correlations between contralateral R2 latency abnormalities and brainstem lesions and these results may be explained the effects of multiple demyelinating lesions of the brain stem of patients with relapsing remitting multiple sclerosis.
Sowers, Maryfran; Karvonen-Gutierrez, Carrie A; Jacobson, Jon A; Jiang, Yebin; Yosef, Matheos
2011-02-02
The prevalence of knee osteoarthritis is traditionally based on radiographic findings, but magnetic resonance imaging is now being used to provide better visualization of bone, cartilage, and soft tissues as well as the patellar compartment. The goal of this study was to estimate the prevalences of knee features defined on magnetic resonance imaging in a population and to relate these abnormalities to knee osteoarthritis severity scores based on radiographic findings, physical functioning, and reported knee pain in middle-aged women. Magnetic resonance images of the knee were evaluated for the location and severity of cartilage defects, bone marrow lesions, osteophytes, subchondral cysts, meniscal and/or ligamentous tears, effusion, and synovitis among 363 middle-aged women (724 knees) from the Michigan Study of Women's Health Across the Nation. These findings were related to Kellgren-Lawrence osteoarthritis severity scores from radiographs, self-reported knee pain, self-reported knee injury, perception of physical functioning, and physical performance measures to assess mobility. Radiographs, physical performance assessment, and interviews were undertaken at the 1996 study baseline and again (with the addition of magnetic resonance imaging assessment) at the follow-up visit during 2007 to 2008. The prevalence of moderate-to-severe knee osteoarthritis changed from 3.7% at the baseline assessment to 26.7% at the follow-up visit eleven years later. Full-thickness cartilage defects of the medial, lateral, and patellofemoral compartments were present in 14.5% (105 knees), 4.6% (thirty-three knees), and 26.2% (190 knees), respectively. Synovitis was identified in 24.7% (179) of the knees, and joint effusions were observed in 70% (507 knees); 21.7% (157) of the knees had complex or macerated meniscal tears. Large osteophytes, marked synovitis, macerated meniscal tears, and full-thickness tibial cartilage defects were associated with increased odds of knee pain and with 30% to 40% slower walking and stair-climbing times. Middle-aged women have a high prevalence of moderate-to-severe knee osteoarthritis corroborated by strong associations with cartilage defects, complex and macerated meniscal tears, osteophytes and synovitis, knee pain, and lower mobility levels.
Castellano, Antonella; Papinutto, Nico; Cadioli, Marcello; Brugnara, Gianluca; Iadanza, Antonella; Scigliuolo, Graziana; Pareyson, Davide; Uziel, Graziella; Köhler, Wolfgang; Aubourg, Patrick; Falini, Andrea; Henry, Roland G; Politi, Letterio S; Salsano, Ettore
2016-06-01
Adrenomyeloneuropathy is the late-onset form of X-linked adrenoleukodystrophy, and is considered the most frequent metabolic hereditary spastic paraplegia. In adrenomyeloneuropathy the spinal cord is the main site of pathology. Differently from quantitative magnetic resonance imaging of the brain, little is known about the feasibility and utility of advanced neuroimaging in quantifying the spinal cord abnormalities in hereditary diseases. Moreover, little is known about the subtle pathological changes that can characterize the brain of adrenomyeloneuropathy subjects in the early stages of the disease. We performed a cross-sectional study on 13 patients with adrenomyeloneuropathy and 12 age-matched healthy control subjects who underwent quantitative magnetic resonance imaging to assess the structural changes of the upper spinal cord and brain. Total cord areas from C2-3 to T2-3 level were measured, and diffusion tensor imaging metrics, i.e. fractional anisotropy, mean, axial and radial diffusivity values were calculated in both grey and white matter of spinal cord. In the brain, grey matter regions were parcellated with Freesurfer and average volume and thickness, and mean diffusivity and fractional anisotropy from co-registered diffusion maps were calculated in each region. Brain white matter diffusion tensor imaging metrics were assessed using whole-brain tract-based spatial statistics, and tractography-based analysis on corticospinal tracts. Correlations among clinical, structural and diffusion tensor imaging measures were calculated. In patients total cord area was reduced by 26.3% to 40.2% at all tested levels (P < 0.0001). A mean 16% reduction of spinal cord white matter fractional anisotropy (P ≤ 0.0003) with a concomitant 9.7% axial diffusivity reduction (P < 0.009) and 34.5% radial diffusivity increase (P < 0.009) was observed, suggesting co-presence of axonal degeneration and demyelination. Brain tract-based spatial statistics showed a marked reduction of fractional anisotropy, increase of radial diffusivity (P < 0.001) and no axial diffusivity changes in several white matter tracts, including corticospinal tracts and optic radiations, indicating predominant demyelination. Tractography-based analysis confirmed the results within corticospinal tracts. No significant cortical volume and thickness reduction or grey matter diffusion tensor imaging values alterations were observed in patients. A correlation between radial diffusivity and disease duration along the corticospinal tracts (r = 0.806, P < 0.01) was found. In conclusion, in adrenomyeloneuropathy patients quantitative magnetic resonance imaging-derived measures identify and quantify structural changes in the upper spinal cord and brain which agree with the expected histopathology, and suggest that the disease could be primarily caused by a demyelination rather than a primitive axonal damage. The results of this study may also encourage the employment of quantitative magnetic resonance imaging in other hereditary diseases with spinal cord involvement. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.
2010-03-01
We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.
Magnetic resonance imaging and cross-sectional anatomy of the normal bovine tarsus.
Ehlert, A; Ferguson, J; Gerlach, K
2011-06-01
The aim of the study was to describe the anatomy of the bovine tarsus using magnetic resonance imaging in a low-field scanner. T1-weighted transverse and sagittal images of five isolated hindlimbs were evaluated using a 0.5 Tesla magnet and a knee coil. The MR images were compared to corresponding frozen sections of cadaver limbs. Anatomical structures were labelled at each level. The resulting images provided excellent detail of the bovine tarsus. This study should serve as a basic reference for orthopaedic problems related to the tarsus in cattle. © 2011 Blackwell Verlag GmbH.
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging
NASA Astrophysics Data System (ADS)
Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata
2007-01-01
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.
Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla
NASA Astrophysics Data System (ADS)
Solis-Najera, S. E.; Rodriguez, A. O.
2014-11-01
Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.
In vivo magnetic resonance microscopy of brain structure in unanesthetized flies
NASA Astrophysics Data System (ADS)
Jasanoff, Alan; Sun, Phillip Z.
2002-09-01
We present near-cellular-resolution magnetic resonance (MR) images of an unanesthetized animal, the blowfly Sarcophaga bullata. Immobilized flies were inserted into a home-built gradient probe in a 14.1-T magnet, and images of voxel size (20-40 μm) 3—comparable to the diameter of many neuronal cell bodies in the fly's brain—were obtained in several hours. Use of applied field gradients on the order of 60 G/cm allowed minimally distorted images to be produced, despite significant susceptibility differences across the specimen. The images we obtained have exceptional contrast-to-noise levels; comparison with histology-based anatomical information shows that the MR microscopy faithfully represents patterns of nervous tissue and allows distinct brain regions to be clearly identified. Even at the highest resolutions we explored, morphological detail was pronounced in the apparent absence of instabilities or movement-related artifacts frequently observed during imaging of live animal specimens. This work demonstrates that the challenges of noninvasive in vivo MR microscopy can be overcome in a system amenable to studies of brain structure and physiology.
Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus
2016-04-01
Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.
Hayashi, Norio; Sanada, Shigeru; Suzuki, Masayuki; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Matsui, Osamu
2008-02-01
The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: (1) segmentation of the brain region; (2) separation between the cerebrum and the cerebellum-brain stem; and (3) segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain.
A rapid and robust gradient measurement technique using dynamic single-point imaging.
Jang, Hyungseok; McMillan, Alan B
2017-09-01
We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.
Karayiannis, N B; Pai, P I
1999-02-01
This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.
It's like being in another world--patients' lived experience of magnetic resonance imaging.
Törnqvist, Erna; Månsson, Asa; Larsson, Elna-Marie; Hallström, Inger
2006-08-01
The aim of this study was to illuminate patients' lived experience during magnetic resonance imaging. Magnetic resonance imaging has increased in importance since the early 1980s and is today a common useful diagnostic tool. Although magnetic resonance imaging are non-invasive and considered painless, many patients experience anxiety, sometimes so strong that the scan has to be terminated. The study had an inductive design and a hermeneutic phenomenological methodology was used. The essential theme of going through magnetic resonance imaging was a feeling of being in another world. The strange environment and isolation inside the scanner made the participants' experiences unusual, with varying degrees of difficulty dealing with it. Being in the other world caused a threat to the participants' self-control. There was a relation between threat to self-control, effort and need for support in the sense that the magnitude of threat to self-control had an impact on the effort it took to handle the situation and on the need for support, and conversely that the support received could affect the effort and threat to self-control. The study shows that the information received and the interaction between patients and staff have a significant influence on patients' lived experiences. The individual experience of threat to self-control requires the need for support to be individualized and care need to be adjusted for each patient.
Nesteruk, Marta; Nesteruk, Tomasz; Styczyńska, Maria; Barczak, Anna; Mandecka, Monika; Walecki, Jerzy; Barcikowska-Kotowicz, Maria
2015-01-01
Mild cognitive impairment (MCI) is defined as abnormal cognitive state, but does not meet the criteria for the diagnosis of dementia. According to the new guidelines Alzheimer's disease (AD) involves not only dementia's phase but also predementia phase which is asymptomatic and pathological process in the brain is already present. For this reason it is very important to determine the suitability of markers which should be positive before onset of the first symptoms. One of these biomarkers is a structural magnetic resonance imaging with hippocampal volumetric assessment. The aim of this study was to investigate the usefulness of structural brain magnetic resonance imaging with volumetric assessment of the hippocampus and entorhinal cortex, posterior cingulate gyrus, parahippocampal gyrus, temporal gyri: superior, medial and inferior, to predict the conversion of MCI to AD. Magnetic resonance imaging of brain was performed at the baseline visit in 101 patients diagnosed with MCI. Clinic follow-ups were scheduled after 6.12 and 24 months. Amongst 101 patients with MCI, 17 (16.8%) converted into AD within two years of observation. All measured volumes were lower in converters than non-converters. Discriminant analysis was conducted and sensitivity for MCI conversion to AD was 64.7%, specificity 96.4%. 91% of patients were correctly classified (converter or non-converter). Volumetric measurements may help clinicians to predict MCI conversion to AD but due to low sensitivity it cannot be use separately. The study group requires further observation. Copyright © 2015 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.
Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R
2011-08-01
Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.
Zaharchuk, Greg; Busse, Reed F; Rosenthal, Guy; Manley, Geoffery T; Glenn, Orit A; Dillon, William P
2006-08-01
The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.
Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography
NASA Astrophysics Data System (ADS)
Liang, Chia-Pin; Yang, Bo; Kim, Il Kyoon; Makris, George; Desai, Jaydev P.; Gullapalli, Rao P.; Chen, Yu
2013-04-01
We develop a novel platform based on a tele-operated robot to perform high-resolution optical coherence tomography (OCT) imaging under continuous large field-of-view magnetic resonance imaging (MRI) guidance. Intra-operative MRI (iMRI) is a promising guidance tool for high-precision surgery, but it may not have sufficient resolution or contrast to visualize certain small targets. To address these limitations, we develop an MRI-compatible OCT needle probe, which is capable of providing microscale tissue architecture in conjunction with macroscale MRI tissue morphology in real time. Coregistered MRI/OCT images on ex vivo chicken breast and human brain tissues demonstrate that the complementary imaging scales and contrast mechanisms have great potential to improve the efficiency and the accuracy of iMRI procedure.
Accuracy improvement of multimodal measurement of speed of sound based on image processing
NASA Astrophysics Data System (ADS)
Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu
2017-07-01
Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
Functional Neuroimaging Studies of Written Sentence Comprehension
ERIC Educational Resources Information Center
Caplan, David
2004-01-01
Sentences convey relationships between the meanings of words, such as who is accomplishing an action or receiving it. Functional neuroimaging based on positron-emission tomography and functional magnetic resonance imaging has been used to identify areas of the brain involved in structuring sentences and determining aspects of meaning associated…
NASA Astrophysics Data System (ADS)
Li, Bo; Dong, Hui; Huang, Xiao-Lei; Qiu, Yang; Tao, Quan; Zhu, Jian-Ming
2018-02-01
Not Available Project supported in part by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200) and in part by the National Natural Science Foundation of China (Grant No. 11204339).
Spinning in the Scanner: Neural Correlates of Virtual Reorientation
ERIC Educational Resources Information Center
Sutton, Jennifer E.; Joanisse, Marc F.; Newcombe, Nora S.
2010-01-01
Recent studies have used spatial reorientation task paradigms to identify underlying cognitive mechanisms of navigation in children, adults, and a range of animal species. Despite broad interest in this task across disciplines, little is known about the brain bases of reorientation. We used functional magnetic resonance imaging to examine neural…
Early Development of Subcortical Regions Involved in Non-Cued Attention Switching
ERIC Educational Resources Information Center
Casey, B. J.; Davidson, Matthew C.; Hara, Yuko; Thomas, Kathleen M.; Martinez, Antigona; Galvan, Adriana; Halperin, Jeffrey M.; Rodriguez-Aranda, Claudia E.; Tottenham, Nim
2004-01-01
This study examined the cognitive and neural development of attention switching using a simple forced-choice attention task and functional magnetic resonance imaging. Fourteen children and adults made discriminations among stimuli based on either shape or color. Performance on these trials was compared to performance during blocked trials…
Personal and Impersonal Stimuli Differentially Engage Brain Networks during Moral Reasoning
ERIC Educational Resources Information Center
Xue, Shao-Wei; Wang, Yan; Tang, Yi-Yuan
2013-01-01
Moral decision making has recently attracted considerable attention as a core feature of all human endeavors. Previous functional magnetic resonance imaging studies about moral judgment have identified brain areas associated with cognitive or emotional engagement. Here, we applied graph theory-based network analysis of event-related potentials…
Diagnostic imaging of the lower genitourinary tract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rifkin, M.D.
1985-01-01
Dr. Rifkin analyzes the relative merits of ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine, and radiography. He correlates ultrasound findings with those of computed tomography, radiography, and nuclear medicine and assesses the potential benefits of magnetic resonance imaging as compared with ultrasound and other imaging modalities. Each imaging modality is discussed in terms of its role as the primary, secondary, or complementary study for diagnoses involving the urinary bladder and perivesical spaces, the prostate and seminal vesicles, the urethra and penis, and the scrotal sac.
Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans
USDA-ARS?s Scientific Manuscript database
Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...
Imaging Stem Cells Implanted in Infarcted Myocardium
Zhou, Rong; Acton, Paul D.; Ferrari, Victor A.
2008-01-01
Stem cell–based cellular cardiomyoplasty represents a promising therapy for myocardial infarction. Noninvasive imaging techniques would allow the evaluation of survival, migration, and differentiation status of implanted stem cells in the same subject over time. This review describes methods for cell visualization using several corresponding noninvasive imaging modalities, including magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and bioluminescent imaging. Reporter-based cell visualization is compared with direct cell labeling for short- and long-term cell tracking. PMID:17112999
ERIC Educational Resources Information Center
Jacola, L. M.; Byars, A. W.; Hickey, F.; Vannest, J.; Holland, S. K.; Schapiro, M. B.
2014-01-01
Background: Previous studies have documented differences in neural activation during language processing in individuals with Down syndrome (DS) in comparison with typically developing individuals matched for chronological age. This study used functional magnetic resonance imaging (fMRI) to compare activation during language processing in young…
ERIC Educational Resources Information Center
Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook
2017-01-01
Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…
de Francisco, Olga Nicolas; Feeney, Daniel; Armién, Anibal G; Wuenschmann, Arno; Redig, Patrick T
2016-04-01
Six bald eagles with severe, acute lead poisoning based on blood lead values were analyzed by Magnetic Resonance Imaging (MRI) of the brain and histopathology. The aims of the study were to use MRI to locate brain lesions and correlate the changes in MRI signal with the histological character of the lesions at necropsy. All of the bald eagles presented with neurologic and non-neurologic signs suggestive of severe lead poisoning and had blood lead levels in excess of 1.0 ppm. Areas of change in image intensity in the brainstem, midbrain and cerebellum were detected in the MRI scans. Histopathology confirmed the presence of all suspected lesions. The character of the lesions suggested vascular damage as the primary insult. MRI was useful for detecting lesions and defining their three-dimensional distribution and extent. Future studies are needed to evaluate the utility of MRI for detection of lesions in less severely lead poisoned eagles and determining prognosis for treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of Neural Systems for Processing Social Exclusion from Childhood to Adolescence
ERIC Educational Resources Information Center
Bolling, Danielle Z.; Pitskel, Naomi B.; Deen, Ben; Crowley, Michael J.; Mayes, Linda C.; Pelphrey, Kevin A.
2011-01-01
Adolescence is a period of development in which peer relationships become especially important. A computer-based game (Cyberball) has been used to explore the effects of social exclusion in adolescents and adults. The current functional magnetic resonance imaging (fMRI) study used Cyberball to extend prior work to the cross-sectional study of…
Vonnemann, Jonathan; Beziere, Nicolas; Böttcher, Christoph; Riese, Sebastian B.; Kuehne, Christian; Dernedde, Jens; Licha, Kai; von Schacky, Claudio; Kosanke, Yvonne; Kimm, Melanie; Meier, Reinhard; Ntziachristos, Vasilis; Haag, Rainer
2014-01-01
We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied. PMID:24723984
Magnetic resonance imaging findings in Ménière's disease.
Patel, V A; Oberman, B S; Zacharia, T T; Isildak, H
2017-07-01
To identify and evaluate cranial magnetic resonance imaging findings associated with Ménière's disease. Seventy-eight patients with a documented diagnosis of Ménière's disease and 35 controls underwent 1.5 T or 3 T magnetic resonance imaging of the brain. Patients also underwent otological, vestibular and audiometric examinations. Lack of visualisation of the left and right vestibular aqueducts was identified as statistically significant amongst Ménière's disease patients (left, p = 0.0001, odds ratio = 0.02; right, p = 0.0004, odds ratio = 0.03). Both vestibular aqueducts were of abnormal size in the Ménière's disease group, albeit with left-sided significance (left, p = 0.008, odds ratio = 10.91; right, p = 0.49, odds ratio = 2.47). Lack of vestibular aqueduct visualisation on magnetic resonance imaging was statistically significant in Ménière's disease patients compared to the general population. The study findings suggest that magnetic resonance imaging can be useful to rule out retrocochlear pathology and provide radiological data to support the clinical diagnosis of Ménière's disease.
Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.
Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C
2005-11-01
Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.
Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K
2014-02-01
Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Rabe, Tiffany M; Yokoo, Takeshi; Meyer, Jeffrey; Kernstine, Kemp H; Wang, David; Khatri, Gaurav
2016-01-01
Post-radiation therapy evaluation of distal esophageal cancers with positron emission tomography/computed tomography can be problematic. Differentiation of recurrent neoplasm from postradiation changes is difficult in areas of fluorodeoxyglucose avidity in adjacent, incidentally irradiated organs. Few studies have described the magnetic resonance imaging appearance of radiation-induced hepatic injury. We report a case of focal radiation-induced liver injury with a new focus of fluorodeoxyglucose uptake on posttreatment positron emission tomography as well as masslike enhancement and signal abnormality on magnetic resonance imaging, thus mimicking new liver metastasis. Correlation with radiation planning images suggested the correct diagnosis, which was confirmed on follow-up imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach,more » the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.« less
Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials
NASA Astrophysics Data System (ADS)
Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.
2013-08-01
Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).
Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A
2017-08-16
Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.
Echo planar imaging at 4 Tesla with minimum acoustic noise.
Tomasi, Dardo G; Ernst, Thomas
2003-07-01
To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.
Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S
2016-03-01
Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.
Volumetric MRI of the lungs during forced expiration.
Berman, Benjamin P; Pandey, Abhishek; Li, Zhitao; Jeffries, Lindsie; Trouard, Theodore P; Oliva, Isabel; Cortopassi, Felipe; Martin, Diego R; Altbach, Maria I; Bilgin, Ali
2016-06-01
Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Banzato, T; Cherubini, G B; Atzori, M; Zotti, A
2018-05-01
An established deep neural network (DNN) based on transfer learning and a newly designed DNN were tested to predict the grade of meningiomas from magnetic resonance (MR) images in dogs and to determine the accuracy of classification of using pre- and post-contrast T1-weighted (T1W), and T2-weighted (T2W) MR images. The images were randomly assigned to a training set, a validation set and a test set, comprising 60%, 10% and 30% of images, respectively. The combination of DNN and MR sequence displaying the highest discriminating accuracy was used to develop an image classifier to predict the grading of new cases. The algorithm based on transfer learning using the established DNN did not provide satisfactory results, whereas the newly designed DNN had high classification accuracy. On the basis of classification accuracy, an image classifier built on the newly designed DNN using post-contrast T1W images was developed. This image classifier correctly predicted the grading of 8 out of 10 images not included in the data set. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Schloß, Manuel; Heckrodt, Jan; Schneider, Christian; Discher, Thomas; Krombach, Gabriele Anja
2015-05-01
We report a case of a pregnant 21-year-old woman with pulmonary tuberculosis in which magnetic resonance imaging of the lung was used to assess the extent and characteristics of the pathological changes. Although the lung has been mostly ignored in magnetic resonance imaging for many decades, today technical development enables detailed examinations of the lung. The technique is now entering the clinical arena and its indications are increasing. Magnetic resonance imaging of the lung is not only an alternative method without radiation exposure, it can provide additional information in pulmonary imaging compared to other modalities including computed tomography. We describe a successful application of magnetic resonance imaging of the lung and the imaging appearance of post-primary tuberculosis. This case report indicates that magnetic resonance imaging of the lung can potentially be the first choice imaging technique in pregnant women with suspected pulmonary tuberculosis.
Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.
Assländer, Jakob; Cloos, Martijn A; Knoll, Florian; Sodickson, Daniel K; Hennig, Jürgen; Lattanzi, Riccardo
2018-01-01
The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Kim, Tae Hyung; Setsompop, Kawin; Haldar, Justin P
2017-03-01
Parallel imaging and partial Fourier acquisition are two classical approaches for accelerated MRI. Methods that combine these approaches often rely on prior knowledge of the image phase, but the need to obtain this prior information can place practical restrictions on the data acquisition strategy. In this work, we propose and evaluate SENSE-LORAKS, which enables combined parallel imaging and partial Fourier reconstruction without requiring prior phase information. The proposed formulation is based on combining the classical SENSE model for parallel imaging data with the more recent LORAKS framework for MR image reconstruction using low-rank matrix modeling. Previous LORAKS-based methods have successfully enabled calibrationless partial Fourier parallel MRI reconstruction, but have been most successful with nonuniform sampling strategies that may be hard to implement for certain applications. By combining LORAKS with SENSE, we enable highly accelerated partial Fourier MRI reconstruction for a broader range of sampling trajectories, including widely used calibrationless uniformly undersampled trajectories. Our empirical results with retrospectively undersampled datasets indicate that when SENSE-LORAKS reconstruction is combined with an appropriate k-space sampling trajectory, it can provide substantially better image quality at high-acceleration rates relative to existing state-of-the-art reconstruction approaches. The SENSE-LORAKS framework provides promising new opportunities for highly accelerated MRI. Magn Reson Med 77:1021-1035, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Shen, Mark D; Nordahl, Christine W; Young, Gregory S; Wootton-Gorges, Sandra L; Lee, Aaron; Liston, Sarah E; Harrington, Kayla R; Ozonoff, Sally; Amaral, David G
2013-09-01
Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic resonance imaging study to prospectively evaluate brain growth trajectories from infancy in children who develop autism spectrum disorder. The presence of excessive extra-axial fluid detected as early as 6 months and the lack of resolution by 24 months is a hitherto unreported brain anomaly in infants who later develop autism spectrum disorder. This is also the first magnetic resonance imaging evidence of brain enlargement in autism before age 2. These findings raise the potential for the use of structural magnetic resonance imaging to aid in the early detection of children at risk for autism spectrum disorder or other neurodevelopmental disorders.
de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye
2015-05-01
New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.
The use of innovative gadolinium-based contrast agent for MR-diagnosis of cancer in the experiment
NASA Astrophysics Data System (ADS)
Chernov, V.; Medvedeva, A.; Sinilkin, I.; Zelchan, R.; Grigorev, E.; Frolova, I.; Nam, I.
2016-02-01
The present study of the functional suitability and specific activity of the contrast agent gadolinium-based for magnetic resonance imaging demonstrated that the investigated contrast agent intensively accumulates in organs and anatomical structures of the experimental animals. In the model of tumor lesions in animals, study have shown that investigational contrast agent accumulates in the tumor tissue and retained there in for a long enough time.