Science.gov

Sample records for resonance ion source

  1. Fourth generation electron cyclotron resonance ion sources.

    PubMed

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development.

  2. Fullerenes in electron cyclotron resonance ion sources

    SciTech Connect

    Biri, S.; Fekete, E.; Kitagawa, A.; Muramatsu, M.; Janossy, A.; Palinkas, J.

    2006-03-15

    Fullerene plasmas and beams have been produced in our electron cyclotron resonance ion sources (ECRIS) originally designed for other purposes. The ATOMKI-ECRIS is a traditional ion source with solenoid mirror coils to generate highly charged ions. The variable frequencies NIRS-KEI-1 and NIRS-KEI-2 are ECR ion sources built from permanent magnets and specialized for the production of carbon beams. The paper summarizes the experiments and results obtained by these facilities with fullerenes. Continuous effort has been made to get the highest C{sub 60} beam intensities. Surprisingly, the best result was obtained by moving the C{sub 60} oven deep inside the plasma chamber, very close to the resonance zone. Record intensity singly and doubly charged fullerene beams were obtained (600 and 1600 nA, respectively) at lower C{sub 60} material consumption. Fullerene derivatives were also produced. We mixed fullerenes with other plasmas (N, Fe) with the aim of making new materials. Nitrogen encapsulated fullerenes (mass: 720+14=734) were successfully produced. In the case of iron, two methods (ferrocene, oven) were tested. Molecules with mass of 720+56=776 were detected in the extracted beam spectra.

  3. Electron-cyclotron-resonance ion sources (review)

    SciTech Connect

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  4. Electron cyclotron resonance (ECR) ion sources

    SciTech Connect

    Jongen, Y.

    1984-05-01

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources.

  5. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  6. A simple electron cyclotron resonance ion source (abstract)a)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-03-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  7. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  8. Application of compact electron cyclotron resonance ion source

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Ogawa, H.; Hojo, S.; Kubo, T.; Kato, Y.; Biri, S.; Fekete, E.; Yoshida, Y.; Drentje, A. G.

    2008-02-15

    The compact electron cyclotron resonance (ECR) ion source with a permanent magnet configuration (Kei2 source) has been developed at National Institute of Radiological Sciences for a new carbon therapy facility. The Kei2 source was designed for production of C{sup 4+} ions; its performance such as beam intensity and stability has already reached the medical requirements. Therefore, the prototype development of the source for medical use is essentially finished. Recently, we have started a few studies on other applications of the source. One is the production of fullerenes in the ECR plasma and modified fullerenes with various atoms for new materials. A second application is the production of multiply charged ions (not only carbon) for ion implantation. In this paper, some basic experiments for these applications are reported.

  9. A resonant ionization laser ion source at ORNL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Stracener, D. W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  10. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  11. Plasma ion dynamics and beam formation in electron cyclotron resonance ion sources

    SciTech Connect

    Mascali, D.; Neri, L.; Miracoli, R.; Gammino, S.; Celona, L.; Ciavola, G.; Gambino, N.; Chikin, S.

    2010-02-15

    In electron cyclotron resonance ion sources it has been demonstrated that plasma heating may be improved by means of different microwave to plasma coupling mechanisms, including the ''frequency tuning'' and the ''two frequency heating''. These techniques affect evidently the electron dynamics, but the relationship with the ion dynamics has not been investigated in details up to now. Here we will try to outline these relations: through the study of ion dynamics we may try to understand how to optimize the electron cyclotron resonance ion sources brightness. A simple model of the ion confinement and beam formation will be presented, based on particle-in-cell and single particle simulations.

  12. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  13. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  14. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  15. Fourth generation electron cyclotron resonance ion sources (invited)

    SciTech Connect

    Lyneis, Claude M.; Leitner, D.; Todd, D. S.; Sabbi, G.; Prestemon, S.; Caspi, S.; Ferracin, P.

    2008-02-15

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B{sub ECR} will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb{sub 3}Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development.

  16. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Muramatsu, M.; Sekiguchi, M.; Yamada, S.; Jincho, K.; Okada, T.; Yamamoto, M.; Hattori, T.; Biri, S.; Baskaran, R.; Sakata, T.; Sawada, K.; Uno, K.

    2000-02-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C4+ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e μA for C4+ and 1.1e mA for Ar8+, respectively.

  17. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  18. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  19. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    SciTech Connect

    Kato, Yushi Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  20. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  1. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  2. Model for the description of ion beam extraction from electron cyclotron resonance ion sources.

    PubMed

    Spädtke, P

    2010-02-01

    The finite difference method trajectory code KOBRA3-INP has been developed now for 25 years to perform the simulation of ion beam extraction in three dimensions. Meanwhile, the code has been validated for different applications: high current ion beam extraction from plasma sources for ion implantation technology, neutral gas heating in fusion devices, or ion thrusters for space propulsion. One major issue of the development of this code was to improve the flexibility of the applied model for the simulation of different types of particle sources. Fixed emitter sources might be simulated with that code as well as laser ion sources, Penning ion sources, electron cyclotron resonance ion sources (ECRISs), or H(-) sources, which require the simulation of negative ions, negative electrons, and positive charges simultaneously. The model which has been developed for ECRIS has now been used to explore the conditions for the ion beam extraction from a still nonexisting ion source, a so called ARC-ECRIS [P. Suominen and F. Wenander, Rev. Sci. Instrum. 79, 02A305 (2008)]. It has to be shown whether the plasma generator has similar properties like regular ECRIS. However, the emittance of the extracted beam seems to be much better compared to an ECRIS equipped with a hexapole.

  3. Model for the description of ion beam extraction from electron cyclotron resonance ion sources

    SciTech Connect

    Spaedtke, P.

    2010-02-15

    The finite difference method trajectory code KOBRA3-INP has been developed now for 25 years to perform the simulation of ion beam extraction in three dimensions. Meanwhile, the code has been validated for different applications: high current ion beam extraction from plasma sources for ion implantation technology, neutral gas heating in fusion devices, or ion thrusters for space propulsion. One major issue of the development of this code was to improve the flexibility of the applied model for the simulation of different types of particle sources. Fixed emitter sources might be simulated with that code as well as laser ion sources, Penning ion sources, electron cyclotron resonance ion sources (ECRISs), or H{sup -} sources, which require the simulation of negative ions, negative electrons, and positive charges simultaneously. The model which has been developed for ECRIS has now been used to explore the conditions for the ion beam extraction from a still nonexisting ion source, a so called ARC-ECRIS [P. Suominen and F. Wenander, Rev. Sci. Instrum. 79, 02A305 (2008)]. It has to be shown whether the plasma generator has similar properties like regular ECRIS. However, the emittance of the extracted beam seems to be much better compared to an ECRIS equipped with a hexapole.

  4. Production of molecular ion beams using an electron cyclotron resonance ion source

    SciTech Connect

    Draganić, I. N.; Bannister, M. E.; Meyer, F. W.; Vane, C. R.; Havener, C. C.

    2011-06-01

    An all-permanent magnet electron cyclotron resonance (ECR) ion source is tuned to create a variety of intense molecular ion beams for basic energy research. Based on simultaneous injection of several gases with spectroscopic high purity or enriched isotope content (e.g., H2, D2, N2, O2, or CO) and lower power microwave heating, the ECR ion source produces diatomic molecular ion beams of H2+, D2+, HD+, HO+, DO+, NH+, ND+, and more complex polyatomic molecular ions such as H3+, D3+, HD2+, H2O+, D2O+, H3O+, D3O+, and NHn+, NDn+ with n=2,3,4 and possibly higher. Molecular ion beams have been produced with very high current intensities compared to other molecular beam sources. The recorded molecular ion beam spectra are discussed.

  5. Anion formation in sputter ion sources by neutral resonant ionization

    SciTech Connect

    Vogel, J. S.

    2016-02-15

    Focused Cs{sup +} beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm{sup 2} C{sup −} current density compared to the 20 μA/mm{sup 2} from a 1 mm recess.

  6. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  7. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  8. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams.

    PubMed

    Kato, Yushi; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  9. An electron cyclotron resonance ion source based low energy ion beam platform

    SciTech Connect

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-02-15

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  10. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    NASA Astrophysics Data System (ADS)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C5+ ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C5+ ion beam was got when work gas was CH4 while about 262 eμA of C5+ ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  11. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    SciTech Connect

    Cao, Yun Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  12. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    PubMed

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  13. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  14. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup −3}, respectively.

  15. Optimization of a hot-cavity type resonant ionization laser ion source

    SciTech Connect

    Henares, J. L. Lecesne, N.; Hijazi, L.; Bastin, B.; Leroy, R.; Osmond, B.; Vignet, J. L.; Kron, T.; Naubereit, P.; Wendt, K.; Lassen, J.; Le Blanc, F.

    2016-02-15

    Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d’Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented.

  16. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  17. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  18. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  19. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  20. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook; Lee, Seung Wook

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  1. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  2. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  3. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    PubMed

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  4. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  5. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  6. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  7. Ion Sources

    NASA Astrophysics Data System (ADS)

    Haseroth, Helmut; Hora, Heinrich

    1993-03-01

    Ion sources for accelerators are based on plasma configurations with an extraction system in order to gain a very high number of ions within an appropriately short pulse and of sufficiently high charge number Z for advanced research. Beginning with the duoplasmatron, all established ion sources are based on low-density plasmas, of which the electron beam ionization source (EBIS) and the electron cyclotron resonance (ECR) source are the most advanced; for example they result in pulses of nearly 6 × 108 fully stripped sulfur ions per pulse in the Super Proton Synchrotron (SPS) at CERN with energies of 200 GeV/u. As an example of a forthcoming development, we are reporting about the lead ion source for the same purpose. Contrary to these cases of low-density plasmas, where a rather long time is always necessary to generate sufficiently high charge states, the laser ion source uses very high density plasmas and therefore produced, for example in 1983, single shots of Au51+ ions of high directivity with energies above 300 MeV within 2 ns irradiation time of a gold target with a medium-to-large CO2 laser. Experiments at Dubna and Moscow, using small-size lasers, produced up to one million shots with 1 Hz sequence. After acceleration by a linac or otherwise, ion pulses of up to nearly 5 × 1010 ions of C4+ or Mg12+ with energies in the synchrotrons of up to 2 GeV/u were produced. The physics of the laser generation of the ions is most complex, as we know from laser fusion studies, including non-linear dynamic and dielectric effects, resonances, self-focusing, instabilities, double layers, and an irregular pulsation in the 20 ps range. This explains not only what difficulties are implied with the laser ion source, but also why it opens up a new direction of ion sources.

  8. Solid-State Laser, Resonant Ionization Laser Ion Source (Rilis) and Laser Beam Transport at Radioactive Ion Beam Facilities

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Izdebski, F.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The inception of laser resonance ionization spectroscopy and its application as a resonant ionization laser ion source (RILIS) took place merely 20 years ago with pulsed dye lasers [1-5]. By now next generation radioactive ion beam (RIB) facilities are being planned or built. Understanding and considering the unique RILIS requirements in the layout of next generation RIB facilities will allow for cost-effective implementation of this versatile ion source. This discussion touches on laser beam transport and RILIS requirements not necessarily obvious to experts in conventional ion sources.

  9. Effect of pulse-modulated microwaves on fullerene ion production with electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Uchida, T; Minezaki, H; Oshima, K; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2012-02-01

    Fullerene plasmas generated by pulse-modulated microwaves have been investigated under typical conditions at the Bio-Nano electron cyclotron resonance ion source. The effect of the pulse modulation is distinct from that of simply structured gases, and then the density of the fullerene plasmas increased as decreasing the duty ratio. The density for a pulse width of 10 μs at the period of 100 μs is 1.34 times higher than that for CW mode. We have studied the responses of fullerene and argon plasmas to pulsed microwaves. After the turnoff of microwave power, fullerene plasmas lasted ∼30 times longer than argon plasmas.

  10. Ion Extraction from a Toroidal Electron Cyclotron Resonance Ion Source: a Numerical Feasibility Study

    NASA Astrophysics Data System (ADS)

    Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.

  11. Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P.

    2008-02-15

    The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

  12. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  13. Pure Material Vapor Source by Induction Heating Evaporator for an Electron Cyclotron Resonance Ion Source

    SciTech Connect

    Matsui, Y.; Watanabe, T.; Satani, T.; Sato, F.; Kato, Y.; Iida, T.; Muramatsu, M.; Kitagawa, A.; Tanaka, K.; Yoshida, Y.

    2008-11-03

    Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4} to 10{sup -3} Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.

  14. On-Line Commissioning of the HRIBF Resonant Ionization Laser Ion Source

    SciTech Connect

    Liu, Yuan; Jost, Carola U; Mendez, II, Anthony J; Stracener, Daniel W; Williams, Cecil L; Madurga, M; Miernik, Krzysztof A; Miller, D.; Padgett, S; Paulauskas, Stanley V; Gross, Carl J; Grzywacz, Robert Kazimierz; Rykaczewski, Krzysztof Piotr; Wolinska-Cichocka, Marzena

    2013-01-01

    A highly-selective resonant ionization laser ion source has been successfully commissioned at the Holifield Radioactive Ion Beam Facility, Oak Ridge National Laboratory, for the production of pure beams of short-lived nuclei for spectroscopic studies. The laser ion source provided beams of neutron-rich Ga isotopes to the Low-energy Radioactive Ion Beam Spectroscopy Station for beta decay measurements. The radioactive Ga isotopes were produced by 50-MeV proton induced fission of 238U and ionized by laser radiation using a two-step resonant ionization scheme. Isobarically pure 83Ga, 85Ga, and 86Ga beams were delivered to the experiment at approximate rates of 12000 ions/s, 100 ions/s, and 3 ions/s, respectively.

  15. A preliminary study of the electron cyclotron resonance ion source for the RAON injector

    NASA Astrophysics Data System (ADS)

    Hong, I. S.; Kim, Y.; Choi, S. J.; Heo, J. I.; Jin, H. C.; Park, B. S.

    2016-09-01

    We have built and tested an electron cyclotron resonance (ECR) ion source for the Rare Isotope Accelerator of Newness (RAON) injector. Fully superconducting magnets were developed for the ECR ion source. First, an oxygen plasma was ignited, and a preliminary highly-charged oxygen beam was extracted. Next, a 100 μA beam current of oxygen 5+ was extracted when a 1 kW microwave power was injected using a 28 GHz gyrotron. Finally, an off-site test facility was proposed to test the components of the injector by using heavy-ion beams generated by the ECR ion source.

  16. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  17. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  18. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    PubMed

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  19. The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Lyneis, C.; Leitner, D.; Leitner, M.; Taylor, C.; Abbott, S.

    2010-02-15

    VENUS is a third generation electron cyclotron resonance (ECR) ion source, which incorporates a high field superconducting NbTi magnet structure, a 28 GHz gryotron microwave source and a state of the art closed cycle cryosystem. During the decade from initial concept to regular operation, it has demonstrated both the feasibility and the performance levels of this new generation of ECR ion sources and required innovation on magnet construction, plasma chamber design, and beam transport. In this paper, the development, performance, and major innovations are described as well as a look to the potential to construct a fourth generation ECR ion source.

  20. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  1. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  2. Experimental study on the electric-sweep scanner and ion beam emittance of electron cyclotron resonance ion source

    SciTech Connect

    Cao, Y.; Sun, L.T.; Ma, L.; Ma, B.H.; Wang, H.; Feng, Y.C.; Li, J.Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; He, W.; Zhao, H.Y.; Guo, X.; Li, X.X.

    2006-03-15

    With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modern Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.

  3. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    PubMed

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.

  4. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    SciTech Connect

    Racz, R.; Biri, S.; Juhasz, Z.; Sulik, B.

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  5. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey; Maunoury, L.

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.

  6. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  7. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    SciTech Connect

    Uchida, T.; Minezaki, H.; Tanaka, K.; Asaji, T.; Muramatsu, M.; Kitagawa, A.; Kato, Y.; Biri, S.

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  8. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials productiona)

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Minezaki, H.; Tanaka, K.; Muramatsu, M.; Asaji, T.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2010-02-01

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C60 ion beam production.

  9. Simulation of parameter scaling in electron cyclotron resonance ion source plasmas using the GEM code

    SciTech Connect

    Cluggish, B.; Zhao, L.; Kim, J. S.

    2010-02-15

    Although heating power and gas pressure are two of the two of primary experimental ''knobs'' available to users of electron cyclotron resonance ion sources, there is still no clear understanding of how they interact in order to provide optimal plasma conditions. FAR-TECH, Inc. has performed a series of simulations with its generalized electron cyclotron resonance ion source model in which the power and pressure were varied over a wide range. Analysis of the numerical data produces scaling laws that predict the plasma parameters as a function of the power and pressure. These scaling laws are in general agreement with experimental data.

  10. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  11. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    NASA Astrophysics Data System (ADS)

    Lu, W.; Sun, L. T.; Qian, C.; Guo, J. W.; Fang, X.; Feng, Y. C.; Yang, Y.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Xiong, B.; Guo, S. Q.; Ruan, L.; Zhao, H. W.

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O6+, 1.7 emA of Ar8+, 1.07 emA of Ar9+, and 118 euA of Bi28+. The source has also successfully delivered O5+ and Ar8+ ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  12. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  13. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  14. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  15. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources

    SciTech Connect

    Dougar-Jabon, V.D.; Umnov, A.M.; Kutner, V.B.

    1996-03-01

    It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. {copyright} {ital 1996 American Institute of Physics.}

  16. X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas

    SciTech Connect

    Santos, J. P.; Martins, M. C.; Parente, F.; Costa, A. M.; Marques, J. P.; Indelicato, P.

    2010-12-15

    Analysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS) may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose, knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied to the analysis of a sulfur ECRIS plasma.

  17. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University.

    PubMed

    Uchida, T; Minezaki, H; Ishihara, S; Muramatsu, M; Rácz, R; Asaji, T; Kitagawa, A; Kato, Y; Biri, S; Drentje, A G; Yoshida, Y

    2014-02-01

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C60 using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  18. Development of Electron Cyclotron Resonance Ion Source for Synthesis of Endohedral Metallofullerenes

    SciTech Connect

    Tanaka, K.; Muramatsu, M.; Uchida, T.; Hanajiri, T.; Yoshida, Y.; Biri, S.; Kitagawa, A.; Kato, Y.

    2008-11-03

    A new electron cyclotron resonance ion source (ECRIS) has been constructed for synthesis of endohedral metallofullerenes. The main purpose of the ion source is to produce new biological and medical materials. The design is based on ECRIS for production of multicharged ion beams with a traditional minimum-B magnetic field. An 8-10 GHz traveling wave tube (TWT) amplifier and a 2.45 GHz magnetron have been applied as microwave sources. Fullerene and metal vapor are introduced with a filament heating micro-oven and an induction heating oven, respectively. In preliminary ion-extraction test, Ar{sup +} is 54 {mu}A. Many broken fullerenes such as C{sub 58} and C{sub 56} are observed in fullerene ion beams.

  19. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    NASA Astrophysics Data System (ADS)

    Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Zhao, Y. Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Xie, D.

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe27+, 236 eμA Xe30+, and 64 eμA Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi30+ and 202 eμA U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  20. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    SciTech Connect

    Sun, L. Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Lu, W.; Zhao, Y. Y.; Xie, D.

    2014-02-15

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, and 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  1. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    PubMed

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  2. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  3. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  4. Design of a new electron cyclotron resonance ion source at Oshima National College of Maritime Technology

    SciTech Connect

    Asaji, T. Hirabara, N.; Izumihara, T.; Nakamizu, T.; Ohba, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Kato, Y.

    2014-02-15

    A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.

  5. Radiofrequency and 2.45 GHz electron cyclotron resonance H- volume production ion sources

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Peng, S. X.

    2016-10-01

    The volume production of negative hydrogen ions ({{{H}}}-) in plasma ion sources is based on dissociative electron attachment (DEA) to rovibrationally excited hydrogen molecules (H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the {{{H}}}- formation through DEA. Traditionally {{{H}}}- ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the {{{H}}}- formation volume. The main motivation to develop ion sources based on radiofrequency (RF) or electron cyclotron resonance (ECR) plasma discharges is to eliminate the apparent limitation of the cathode lifetime. In this paper we summarize the principles of {{{H}}}- volume production dictating the ion source design and highlight the differences between the arc discharge and RF/ECR ion sources from both, physics and technology point-of-view. Furthermore, we introduce the state-of-the-art RF and ECR {{{H}}}- volume production ion sources and review the challenges and future prospects of these yet developing technologies.

  6. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, O. Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  7. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  8. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  9. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  10. Integrated modeling of electron cyclotron resonance ion sources and charge breeders with GEM, MCBC, and IonEx

    SciTech Connect

    Kim, J. S.; Zhao, L.; Cluggish, B. P.; Galkin, S. A.; Grubert, J. E.; Pardo, R. C.; Vondrasek, R. C.

    2010-02-15

    A numerical toolset to help in understanding physical processes in the electron cyclotron resonance charge breeder (ECRCB) and further to help optimization and design of current and future machines is presented. The toolset consists of three modules (Monte Carlo charge breeding code, generalized electron cyclotron resonance ion source modeling, and ion extraction), each modeling different processes occurring in the ECRCB from beam injection to extraction. The toolset provides qualitative study, such as parameter studies, and scaling of the operation, and physical understanding in the ECRCB. The methodology and a sample integrated modeling are presented.

  11. Status of the pulsed magnetic field electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Mühle, C.; Ratzinger, U.; Bleuel, W.; Jöst, G.; Leible, K.; Schennach, S.; Wolf, B. H.

    1994-04-01

    Synchrotrons like the heavy-ion synchrotron SIS at GSI need an efficient low duty cycle injector (typical 1-pulse/s and 200-μs pulse length). To improve the peak current, an electron cyclotron resonance (ECR) ion source has been designed using a pulsed magnetic field (PuMa) to force ion extraction. We replaced the hexapole of a 10-GHz Minimafios ECR ion source by a vacuum chamber containing a water-cooled bilayered solenoid coil and a decapole permanent magnetic structure. A pulse line feeds the solenoid with a 250-μs pulse which increases the magnetic field in the minimum B region by 0.3 T. This process opens the magnetic bottle along the beam axis resulting in an extracted ion pulse. First tests of the PuMa ECR configuration in cw and pulsed operation are presented and analyzed.

  12. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Pardo, R.; Scott, R.

    2013-11-15

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of {sup 202}Hg{sup 29+} and 3.0 eμA of {sup 202}Hg{sup 31+} from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  13. Note: Production of a mercury beam with an electron cyclotron resonance ion source.

    PubMed

    Vondrasek, R; Pardo, R; Scott, R

    2013-11-01

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of (202)Hg(29+) and 3.0 eμA of (202)Hg(31+) from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  14. Production of beam of negative hydrogen and deuterium ions from source with electron cyclotron resonance

    SciTech Connect

    Golovanivskii, K.S.; Dzhayamanna, K.; Dugar-Zhabon, V.D.

    1988-09-01

    The GELIOS-H/sup /minus// ion source is described; it has electron cyclotron resonance and is designed for generation of negative hydrogen and deuterium ions. The source consumes up to 100 W of microwave power at a frequency of 2.4 GHz and provides a stationary beam of H/sup /minus// ions of up to 1.5 mA and D/sup /minus// ions of up to 1.0 mA for an exit-aperture diameter of 6.2 mm and an extraction voltage of 4.5 kV. The life of the source is limited only by the life of the microwave generator.

  15. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  16. Studies of emittance of multiply charged ions extracted from high temperature superconducting electron cyclotron resonance ion source, PKDELIS

    SciTech Connect

    Rodrigues, G.; Lakshmy, P. S.; Kumar, Sarvesh; Mandal, A.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2010-02-15

    For the high current injector project at Inter University Accelerator Centre, a high temperature superconducting electron cyclotron resonance (ECR) ion source, PKDELIS, would provide the high charge state ions. The emittance of the ECR ion source is an important parameter to design further beam transport system and to match the acceptances of the downstream radio frequency quadrupole and drift tube linac accelerators of the high current injector. The emittance of the analyzed beam of PKDELIS ECR source has been measured utilizing the three beam size technique. A slit and two beam profile monitors positioned at fixed distances from each other were used to measure the beam size. The digitized beam profiles have been analyzed to determine the emittance of various multiply charged ions. The variation of emittance with gas mixing, ultrahigh frequency power, and extraction energy are discussed in this presentation.

  17. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Lin, S. H.; Xie, D. Z.; Zhang, X. Z.; Sha, S.; Zhang, W. H.; Cao, Y.; Guo, J. W.; Fang, X.; Guo, X. H.; Li, X. X.; Ma, H. Y.; Wu, Q.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Zhu, Y. H.; Feng, Y. C.; Li, J. Y.; Li, J. Q.; and others

    2012-02-15

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  18. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics.

    PubMed

    Lu, W; Xie, D Z; Zhang, X Z; Xiong, B; Ruan, L; Sha, S; Zhang, W H; Cao, Y; Lin, S H; Guo, J W; Fang, X; Guo, X H; Li, X X; Ma, H Y; Yang, Y; Wu, Q; Zhao, H Y; Ma, B H; Wang, H; Zhu, Y H; Feng, Y C; Li, J Y; Li, J Q; Sun, L T; Zhao, H W

    2012-02-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  19. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2017-01-01

    The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS) plasma sustained in a mixture of Kr with O2 , N2 , Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (˜1 V ) compared to pure Kr plasma (˜0.01 V ), with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  20. Hot-cavity studies for the Resonance Ionization Laser Ion Source

    NASA Astrophysics Data System (ADS)

    Henares, J. L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Osmond, B.; Raeder, S.; Schneider, F.; Wendt, K.

    2016-09-01

    The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency and beam emittance. Furthermore, a low work function material was tested to reduce the contaminants and molecular sidebands generated inside the ion source. First results with ZrC ionizer tubes will be presented. Furthermore, a method to measure the energy distribution of the ion beam as a function of the time of flight will be discussed.

  1. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    SciTech Connect

    Uchiyama, A. Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-15

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  2. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Uchida, T.; Muramatsu, M.; Kato, Y.

    2016-02-15

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5–6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  3. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  4. A study on vacuum aspects of electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Taki, G. S.; Mallick, C.; Bhandari, R. K.

    2008-05-01

    The electron cyclotron resonance (ECR) ion source is special type hot plasma machine where the high temperature electrons co-exist with multiply charge state ions and neutrals. A few years ago 6.4 GHz. ECR ion source (VEC-ECR) was developed indigenously at VECC. This multiply charged ion source is being used continuously to inject heavy ion beams into the cyclotron. Vacuum plays the major role in ECR ion source. The water cooled plasma chamber is made from an oxygen free high conductivity copper billet to meet the suitable surface condition for vacuum purpose. The entire volume of the ion source is pumped by two 900 1/s special type oil diffusion pumps to achieve 5×10-8 Torr. Usually main plasma chamber is pumped by the plasma itself. Moreover a few 1/s additional pumping speed is provided through extraction hole and pumping slot on the extraction electrode. A study has been carried out to understand the role of vacuum on the multiply charged heavy ion production process. Considering the ion production and loss criteria, it is seen that for getting Ar18+ better vacuum is essential for lower frequency operation. So, an ECR ion source can give better charge state current output operating at higher frequency and stronger confining magnetic field under a specific vacuum condition. The low pressure condition is essential to minimize charge exchange loss due to recombination of multiply charged ions with the neutral atoms. A fixed ratio of neutral to electron density must be maintained for optimizing a particular charge state in the steady state condition. As the electron density is proportional to square of the injected microwave frequency (nevpropf2) a particular operating pressure is essential for a specific charge state. From the study, it has been obtained that the production of Ar18+ ions needs a pressure ~ 9.6×10-8 Torr for 6.4 GHz. ECR ion source. It is also obtained that an ECR ion source, works at a particular vacuum level, can give better charge state

  5. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  6. Broadband frequency ECR ion source concepts with large resonant plasma volumes

    SciTech Connect

    Alton, G.D.

    1995-12-31

    New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ``volume`` ECR sources. The creation of a large ECR plasma ``volume`` permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques.

  7. Roadmap for the design of a superconducting electron cyclotron resonance ion source for Spiral2

    SciTech Connect

    Thuillier, T.; Angot, J.; Lamy, T.; Peaucelle, C.

    2012-02-15

    A review of today achieved A/Q = 3 heavy ions beams is proposed. The daily operation A/Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

  8. Roadmap for the design of a superconducting electron cyclotron resonance ion source for Spiral2a)

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Barué, C.; Canet, C.; Lamy, T.; Lehérissier, P.; Lemagnen, F.; Maunoury, L.; Peaucelle, C.

    2012-02-01

    A review of today achieved A/Q = 3 heavy ions beams is proposed. The daily operation A/Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

  9. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  10. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    SciTech Connect

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  11. Gamma ray sources based on resonant backscattering of laser beams with relativistic heavy ion beams

    SciTech Connect

    Bessonov, E.G.; Kim, Kwang-Je

    1995-04-01

    Resonant backscattering of high-power laser beam with non-fully stripped, ultra-relativistic ion beams in storage rings is studied as a source for {gamma}-ray beams for elementary particle physics experiments. The laser frequency is chosen to be resonant with one of the transition frequencies of the moving ions, and the bandwidth is chosen to cover the full Doppler broadening of the ions in the beam. Due to the resonance, the scattering cross section is enhanced by a large factor compared to the Thomson cross section, of the order 10{sup 8} for some examples considered here. The performance of the LHC as a possible {gamma}-generator or a {gamma} {minus} {gamma} collider is estimated. We study the case where hydrogen-like Pb ions with 2.8 TeV per nucleon are scattered by a train of 1100 {Angstrom}, 20 mg laser pulses with the same pulse time format as the ion beam. A free electron laser can be designed satisfying the requirements. It is estimated that {gamma}-rays of maximum quantum energy of 0.4 give at an average rate of 0.67 10{sup 18} are generated in this scheme. The luminosity of the corresponding {gamma} {minus} {gamma} collider will be about 0.9 10{sup 33} cm{sup {minus}2}s{sup {minus}1}.

  12. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  13. Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source

    SciTech Connect

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

  14. Nb{sub 3}Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2010-02-15

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  15. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  16. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  17. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  18. Some aspects of electron dynamics in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2017-07-01

    Electron dynamics in an electron cyclotron resonance ion source is numerically simulated by using a particle-in-cell code combined with simulations of the ion dynamics. Mean electron energies are found to be around 70 keV, close to values that are derived from spectra of x-ray emission out of the source. The electron lifetime is defined by losses of low-energy electrons created in ionizing collisions; the losses are regulated by electron heating rate, which depends on the magnitude of the microwave electric field. Changes in the ion confinement with variations in the microwave electric field and gas flow are simulated. The influence of electron dynamics on the afterglow and two-frequency heating effects is discussed.

  19. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    PubMed

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  20. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  1. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Mishra, L.; Kewlani, H.; Patil, D. S.; Mittal, K. C.

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10-3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  2. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  3. The compact electron cyclotron resonance ion source KeiGM for the carbon ion therapy facility at Gunma Universitya)

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Drentje, A. G.; Hojo, S.; Ueda, T.; Miyazaki, H.; Yusa, K.; Tashiro, M.; Torikai, K.; Sakama, M.; Kanai, T.; Yamada, S.

    2010-02-01

    A high-energy carbon-ion radiotherapy facility is under construction at Gunma University Heavy Ion Medical Centre (GHMC). Its design was based on a study of the heavy ion radiotherapy at the National Institute of Radiological Sciences (NIRS) in order to reduce the size and construction cost of the facility. A compact electron cyclotron resonance ion source (ECRIS) for Gunma University, called KeiGM, was installed in 2008. It is almost a copy of the prototype ECRIS Kei2 which was developed by NIRS; meanwhile this prototype produced over 1 e mA of C4+ using C2H2 gas (660 W and 40 kV). The beam intensity of C4+ was 600 e μA with CH4 gas (250 W and 30 kV). The beam intensity satisfies the required value of 300 e μA.

  4. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  5. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-11-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.

  6. Production of charged (singly and multiply) phosphorous beams with electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Kantas, S.; Leroy, R.; Pacquet, J. Y.

    2006-03-01

    Within the framework of biological application linked to ion irradiation, the fabrication of radioactive stents by ion implantation provides a significant improvement of the recovery of arteries after a treatment of stenosed coronary arteries [P. Fehsenfeld et al., Semin Interv Cardiol. 3, 157 (1998); E. Huttel et al., Rev. Sci. Instrum. 73, 825 (2002); M.-A. Golombeck et al., Nucl. Instrum. Methods Phys. Res. B 206, 495 (2003)]. For this appliance, the suitable radioactive ion is P32. Obviously, in order to have a minimum loss of these radioactive ions through the ionization process, it is imperative to have high ionization efficiency. In this article, the production of such singly and multiply charged phosphorous beams is investigated using two different electron cyclotron resonance ion sources: MONO1000/1001 [P. Jardin et al., Rev. Sci. Instrum. 73, 789 (2002)] and SUPERSHyPIE [J. Y. Pacquet et al., EP Patent No. 97 401294 (pending); R. Leroy et al., 14th International Workshop on ECR Ion Sources, May 1999 (unpublished)]. Spectra and above all efficiencies [J. Y. Pacquet et al., GANIL R 02 07; GANIL R 03 08] (31% of ionization efficiency for phosphorous atoms and compound with MONO1000/1001 and 43% of ionization efficiency for phosphorous atoms with SUPERSHyPIE) of these beams will be presented as well as the intensities (227eμA for P+ with MONO1000/1001 and 145eμA for P7+ with SUPERSHyPIE) of such beams.

  7. A single-frequency ECR ion source with a large uniformly distributed resonant plasma volume

    SciTech Connect

    Alton, G.D.; Smithe, D.N.

    1995-12-01

    An innovative technique for increasing ion source intensity is described which, in principle, could lead to significant advances in ECR ion source technology for multiply charged ion beam formation. The advanced concept design uses a minimum-B magnetic mirror geometry which consists of a multi-cusp, magnetic field, to assist in confining the plasma radially, a flat central field for tuning to the ECR resonant condition, and specially tailored mirror fields in the end zones to confine the plasma in the axial direction. The magnetic field is designed to achieve an axially symmetric plasma {open_quotes}volume{close_quotes} with constant mod-B, which extends over the length of the central field region. This design, which strongly contrasts with the ECR {open_quotes}surfaces{close_quotes} characteristic of conventional ECR ion sources, results in dramatic increases in the absorption of RF power, thereby increasing the electron temperature and {open_quotes}hot{close_quotes} electron population within the ionization volume of the source.

  8. Progress towards the development of a realistic electron cyclotron resonance ion source extraction model

    SciTech Connect

    Winklehner, D.; Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Strohmeier, M. M.

    2012-02-15

    In this paper, an ongoing effort to provide a simulation and design tool for electron cyclotron resonance ion source extraction and low energy beam transport is described and benchmarked against experimental results. Utilizing the particle-in-cell code WARP, a set of scripts has been developed: A semiempirical method of generating initial conditions, a 2D-3D hybrid method of plasma extraction and a simple beam transport deck. Measured emittances and beam profiles of uranium and helium beams are shown and the influence of the sextupole part of the plasma confinement field is investigated. The results are compared to simulations carried out using the methods described above. The results show that the simulation model (with some additional refinements) represents highly charged, well-confined ions well, but that the model is less applicable for less confined, singly charged ions.

  9. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    SciTech Connect

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  10. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applicationsa)

    NASA Astrophysics Data System (ADS)

    Sortais, P.; Lamy, T.; Médard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm2 (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 μA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 π mm mrad at 15 kV (1σ) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams

  11. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)

    SciTech Connect

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Zhao, H. Y.; Feng, Y. C.; Li, J. Y.; Ma, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-02-15

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e {mu}A of {sup 129}Xe{sup 43+}, 22 e {mu}A of {sup 209}Bi{sup 41+}, and 1.5 e {mu}A of {sup 209}Bi{sup 50+}. To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e {mu}A of {sup 129}Xe{sup 27+} and 152 e {mu}A of {sup 129}Xe{sup 30+}, although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and {sup 129}Xe{sup 27+}, {sup 78}Kr{sup 19+}, {sup 209}Bi{sup 31+}, and {sup 58}Ni{sup 19+} beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of

  12. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  13. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  14. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.

  15. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Weichsel, T.; Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 1010 cm-3 to 1 × 1011 cm-3, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 1018 atoms/s for aluminum, which meets the demand for the production of a milliampere Al+ ion beam.

  16. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  17. Improvement of trace element analysis system using RIKEN electron cyclotron resonance ion source and linear accelerator

    SciTech Connect

    Kidera, M.; Nakagawa, T.; Takahashi, K.; Enomoto, S.; Igarashi, K.; Fujimaki, M.; Ikezawa, E.; Kamigaito, O.; Kase, M.; Goto, A.; Yano, Y.

    2006-03-15

    We have developed a new analytical system that consists of an electron cyclotron resonance ion source (RIKEN 18 GHz ECRIS) and a RIKEN heavy ion linear accelerator (RILAC). This system is called trace element analysis using electron cyclotron resonance ion source and RILAC (ECRIS-RILAC-TEA). ECRIS-RILAC-TEA has several advantages as described in the work of Kidera et al. [AIP Conf. Proc. 749, 85 (2005)]. However, many experimental results during the last several years revealed a few problems: (1) large background contamination in the ECRIS, particularly at the surface of the plasma chamber wall, (2) high counting of the ionization chamber and the data taking system that is monitored by the direct beam from the accelerator, and (3) difficulty in the selection of the pilot sample and pilot beam production from the ECRIS for the purpose of normalization. In order to overcome these problems, we conducted several test experiments over the past year. In this article, we report the experimental results in detail and future plans for improving this system.

  18. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  19. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  20. Design of coupled cavity with energy modulated electron cyclotron resonance ion source for materials irradiation research

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Chen, J. E.; Kang, M. L.; Lu, Y. R.; Xia, W. L.; Gao, S. L.; Guo, Z. Y.; Liu, G.; Peng, S. X.; Ren, H. T.; Yan, X. Q.; Zhao, J.; Zhu, K.

    2012-05-01

    The surface topography of samples after irradiation with heavy ions, protons, and helium ions based on accelerators is an important issue in the study of materials irradiation. We have coupled the separated function radio frequency quadrupole (SFRFQ) electrodes and the traditional RFQ electrodes into a single cavity that can provide a 0.8 MeV helium beam for our materials irradiation project. The higher accelerating efficiency has been verified by the successful commissioning of the prototype SFRFQ cavity. An energy modulated electron cyclotron resonance (ECR) ion source can achieve a well-bunched beam by loading a sine wave voltage onto the extracted electrodes. Bunching is achieved without the need for an external bunch cavity, which can substantially reduce the cost of the system and the length of the beam line. The coupled RFQ-SFRFQ with an energy modulated ECR ion source will lead to a more compact accelerator system. The conceptual design of this novel structure is presented in this paper.

  1. Experiments with biased side electrodes in electron cyclotron resonance ion sources.

    PubMed

    Drentje, A G; Kitagawa, A; Uchida, T; Rácz, R; Biri, S

    2014-02-01

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions - i.e., radial directions - that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six "side" electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  2. Experiments with biased side electrodes in electron cyclotron resonance ion sources

    SciTech Connect

    Drentje, A. G. Kitagawa, A.; Uchida, T.; Rácz, R.; Biri, S.

    2014-02-15

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions – i.e., radial directions – that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six “side” electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  3. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities

    SciTech Connect

    Tarvainen, O. Laulainen, J.; Komppula, J.; Kronholm, R.; Kalvas, T.; Koivisto, H.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2015-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum B{sub min}-field in single frequency heating mode is often ≤0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  4. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities.

    PubMed

    Tarvainen, O; Laulainen, J; Komppula, J; Kronholm, R; Kalvas, T; Koivisto, H; Izotov, I; Mansfeld, D; Skalyga, V

    2015-02-01

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum Bmin-field in single frequency heating mode is often ≤0.8BECR, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  5. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification.

    PubMed

    Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  6. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Rácz, R.; Muramatsu, M.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  7. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    SciTech Connect

    Uchida, T.; Rácz, R.; Biri, S.; Kato, Y.; Yoshida, Y.

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  8. H- ion production in electron cyclotron resonance driven multicusp volume source

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Rouillé, C.; Bacal, M.; Arnal, Y.; Béchu, S.; Pelletier, J.

    2004-05-01

    We have used the existing magnetic multicusp configuration of the large volume H- source Camembert III to confine the plasma created by seven elementary multidipolar electron cyclotron resonance (ECR) sources, operating at 2.45 GHz. We varied the pressure from 1 to 4 mTorr, while the total power of the microwave generator was varied between 500 W and 1 kW. We studied the plasma created by this system and measured the various plasma parameters, including the density and temperature of the negative hydrogen ions which are compared to the data obtained in a chamber with elementary ECR sources without multicusp magnetic confinement. The electron temperature is lower than that obtained with similar elementary sources in the absence of the magnetic multicusp field. We found that at pressures in the range from 2 to 4 mTorr and microwave power of up to 1 kW, the electron temperature is optimal for H- ion production (0.6-0.8 eV). This could indicate that the multicusp configuration effectively traps the fast electrons produced by the ECR discharge.

  9. Development of gas pulsing system for electron cyclotron resonance ion source.

    PubMed

    Hojo, S; Honma, T; Muramatsu, M; Sakamoto, Y; Sugiura, A

    2008-02-01

    A gas-pulsing system for an electron cyclotron resonance ion source with all permanent magnets (Kei2 source) at NIRS has been developed and tested. The system consists of a small vessel (30 ml) to reserve CH(4) gas and two fast solenoid valves that are installed at both sides of the vessel. They are connected to each other and to the Kei2 source by using a stainless-steel pipe (4 mm inner diameter), where the length of the pipe from the valve to the source is 60 cm and the conductance is 1.2 l/s. From the results of the test, almost 300 e microA for a pulsed (12)C(4+) beam was obtained at a Faraday cup in an extraction-beam channel with a pressure range of 4000 Pa in the vessel. At this time, the valve has an open time of 10 ms and the delay time between the valve open time and the application of microwave power is 100 ms. In experiments, the conversion efficiency for input CH(4) molecules to the quantity of extracted (12)C(4+) ions in one beam pulse was found to be around 3% and the ratio of the total amount of the gas requirement was only 10% compared with the case of continuous gas provided in 3.3 s of repetition in HIMAC.

  10. Development of a novel mass spectrometer equipped with an electron cyclotron resonance ion source.

    PubMed

    Kidera, Masanori; Takahashi, Kazuya; Enomoto, Shuichi; Mitsubori, Youhei; Goto, Akira; Yano, Yasushige

    2007-01-01

    The ionization efficiency of an electron cyclotron resonance ion source (ECRIS) is generally high, and all elements can be fundamentally ionized by the high-temperature plasma. We focused our attention on the high potentiality of ECRIS as an ion source for mass spectrometers and attempted to customize the mass spectrometer equipped with an ECRIS. Precise measurements were performed by using an ECRIS that was specialized and customized for elemental analysis. By using the charge-state distribution and the isotope ratio, the problem of overlap such as that observed in the spectra of isobars could be solved without any significant improvement in the mass resolution. When the isotope anomaly (or serious mass discrimination effect) was not observed in ECR plasma, the system was found to be very effective for isotope analysis. In this paper, based on the spectrum (ion current as a function of an analyzing magnet current) results of low charged state distributions (2+, 3+, 4+, ...) of noble gases, we discuss the feasibility of an elemental analysis system employing an ECRIS, particularly for isotopic analysis. The high-performance isotopic analysis obtained for ECRIS mass spectrometer in this study suggests that it can be widely applied to several fields of scientific study that require elemental or isotopic analyses with high sensitivity.

  11. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    SciTech Connect

    Kim, June Young Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae Hwang, Y. S.

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  12. Project of electro-cyclotron resonance ion source test-bench for material investigation.

    PubMed

    Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.

  13. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    PubMed

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  14. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source

    SciTech Connect

    Takenaka, T.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Yano, K.; Sato, F.; Kato, Y.; Iida, T.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.

    2012-02-15

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within {+-}15 deg. C around 1400 deg. C under the operation pressure about 10{sup -4} Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  15. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    SciTech Connect

    Mascali, D. Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G.; Torrisi, G.; Sorbello, G.

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  16. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  17. Bias voltage and corrosion effects in rf ovens in electron cyclotron resonance ion source

    SciTech Connect

    Cavenago, M.; Galata, A.; Kulevoy, T.; Petrenko, S.

    2006-03-15

    Induction-heated miniaturized ovens were successfully coupled to electron cyclotron resonance ion sources for the production of copper and silver ion beams. Experiments with tin and praseodymium ion beams are here presented; some preliminary tests for titanium are also described. In the latter case (and in general over a 1800 K temperature) a molybdenum rf coil is used. The results with tin show currents comparable to silver (after obvious correction for isotopic abundance), with some operational difficulty due to frequent pouring of liquid sample out of crucible. The effects of a bias voltage V{sub b} applied to the Sn sample are reported. Cold sputter probes are compared. The results with praseodymium show lower currents than tin and large sensitivity to mixing gas used: nitrogen emerged as the best compromise against oxygen (possibly because this oxidizes the sample) and against inert noble gases. Optimal bias voltage for Pr (V{sub b} from -50 to -300 V) is much smaller than for silver (V{sub b} congruent with -1 kV)

  18. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  19. Current density distributions and sputter marks in electron cyclotron resonance ion sources.

    PubMed

    Panitzsch, Lauri; Peleikis, Thies; Böttcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F

    2013-01-01

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then--induced by charged particles--mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  20. A Proposal for a Novel H{sup -} Ion Source Based on Electron Cyclotron Resonance Plasma Heating and Surface Ionization

    SciTech Connect

    Tarvainen, O.; Kurennoy, S.

    2009-03-12

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further ''self-extracted'' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  1. A proposal for a novel H ion source based on electron cyclotron resonance heating and surface ionization

    SciTech Connect

    Tarvainen, Ollie A; Kurennoy, Sergey

    2008-01-01

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further 'self-extracted' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  2. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  3. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Ohnishi, J. Higurashi, Y.; Nakagawa, T.

    2016-02-15

    We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS.

  4. Refractory rf ovens and sputter probes for electron cyclotron resonance ion source

    SciTech Connect

    Cavenago, M.; Galata, A.; Kulevoy, T.; Petrenko, S.; Sattin, M.; Facco, A.

    2008-02-15

    Beams from electron cyclotron resonance ion source (ECRIS) with radio frequency ovens for refractory material (using a Mo coil) were recently demonstrated; results for Ti and V are here discussed, with temperature T{sub s}{>=}2300 K stably maintained and extracted current of about 1000 nA for V{sup 8+} and V{sup 9+}. The status of sputter probes is also reported, and the reason why trapping efficiency may be lower than in the oven case are investigated. The simple tubular probe concept show typical currents of Sn{sup 18+} about 250 nA, for the most abundant isotopes, but an operating pressure of about 300 {mu}Pa may be required. Some preliminary experiments were performed with Penning probes, showing that transmission of Sn or Pr from Penning cathode to ECRIS plasma is limited. Placement of tin onto anticathode and use of collimator between Penning and ECRIS are also discussed.

  5. Electron cyclotron resonance ion source plasma characterization by energy dispersive x-ray imaging

    NASA Astrophysics Data System (ADS)

    Rácz, R.; Mascali, D.; Biri, S.; Caliri, C.; Castro, G.; Galatà, A.; Gammino, S.; Neri, L.; Pálinkás, J.; Romano, F. P.; Torrisi, G.

    2017-07-01

    Pinhole and CCD based quasi-optical x-ray imaging technique was applied to investigate the plasma of an electron cyclotron resonance ion source (ECRIS). Spectrally integrated and energy resolved images were taken from an axial perspective. The comparison of integrated images taken of argon plasma highlights the structural changes affected by some ECRIS setting parameters, like strength of the axial magnetic confinement, RF frequency and microwave power. Photon counting analysis gives precise intensity distribution of the x-ray emitted by the argon plasma and by the plasma chamber walls. This advanced technique points out that the spatial positions of the electron losses are strongly determined by the kinetic energy of the electrons themselves to be lost and also shows evidences how strongly the plasma distribution is affected by slight changes in the RF frequency.

  6. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  7. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source

    SciTech Connect

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Sato, Fuminobu; Iida, Toshiyuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu

    2010-02-15

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4}-10{sup -3} Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  8. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  9. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  10. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  11. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  12. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    SciTech Connect

    Kato, Yushi Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  13. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  14. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Watanabe, Takeyoshi; Matsui, Yuuki; Hirai, Yoshiaki; Kutsumi, Osamu; Sakamoto, Naoki; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  15. Development of Polarized Hydrogen Ion Source with Resonant Charge-Exchange Plasma Ionizer at INR, Moscow

    NASA Astrophysics Data System (ADS)

    Belov, A. S.; Netchaeva, L. P.; Turbabin, A. V.; Vasil'Ev, G. A.

    2002-04-01

    Density of unpolarized negative ions in a charge-exchange region of a plasma ionizer of polarized ion source of INR, Moscow has been increased significantly due to development of a two-stage converter of plasma particles into negative ions. Unpolarized D- ion current with a peak intensity of 45 mA has been obtained from the plasma ionizer with the two-stage converter. Respectively, polarized H- ion current of 2.5 mA peak with pulse duration of 150 μs at 5 Hz rep. rate has been obtained. Further increase of unpolarized negative ion density in the charge-exchange region has been achieved due to improvements in the plasma source design. 90 mA of unpolarized D- ion current and 150 mA of unpolarized H- ion current have been extracted recently from the ionizer. Problems that are necessary to overcome for corresponding increase of polarized ion beam intensity are discussed. It is expected that 4 mA of polarized H- ion current will be obtained from the source after implementation of the improvements described.

  16. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Küchler, D.

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  17. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  18. The effects of gas mixing and plasma electrode position on the emittance of an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Suominen, P.; Tarvainen, O.; Koivisto, H.

    2004-05-01

    Gas mixing is a commonly used method to improve the intensities and the charge state distribution of ion beams extracted from an electron cyclotron resonance ion source (ECRIS). At the same time, the emittance of the ion beam should be as small as possible. In this work we have studied the effect of the gas mixing method on the ion beam quality by measuring the emittance and brightness of different ion beams using helium, oxygen, and argon with several gas feeding ratios. All measurements were performed with the JYFL 6.4 GHz ECRIS. At the second stage of the experiments the emittance and the ion beam brightness were studied as a function of the plasma electrode position. The extraction system constructed for this experiment can be moved online.

  19. Effect of resonant microwave power on a PIG ion source. Revision

    SciTech Connect

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  20. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  1. Initial velocity distribution of MALDI/LDI ions measured by internal MALDI source Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vitaliy; Frankevich, Vladimir; Zenobi, Renato

    2014-11-01

    A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode.

  2. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  3. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    SciTech Connect

    Park, Bum-Sik Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-15

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  4. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  5. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.; Rodrigues, G.; Kanjilal, D.; Roy, A.

    2008-02-15

    From the ECR plasma, hot electrons leak across the magnetic lines of force and by striking the plasma chamber produce bremsstrahlung x-rays. The wall bremsstrahlung gives information on the confinement status of hot electron. In our studies, experimental measurements are carried out in NANOGAN electron cyclotron resonance (ECR) ion source for the wall bremsstrahlung x-rays and the results are presented. While optimizing a particular charge state in ECR ion source, experimental parameters are adjusted to get a maximum current. The wall bremsstrahlung components are studied in these cases for understanding the hot electron confinement conditions.

  6. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    SciTech Connect

    Strohmeier, M.; Benitez, J. Y.; Leitner, D.; Lyneis, C. M.; Todd, D. S.; Bantel, M.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data using ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.

  7. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  8. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    NASA Astrophysics Data System (ADS)

    Stamate, E.; Draghici, M.

    2012-04-01

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 × 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O2 mixtures was almost similar with that by positive ions reaching 700 nm/min.

  9. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    PubMed

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  10. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  11. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer.

    PubMed

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN(+) using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  12. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  13. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  14. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    SciTech Connect

    Thomae, R. Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  15. Note: Enhanced production of He{sup +} from the Versatile Ion Source (VIS) in off-resonance configuration

    SciTech Connect

    Castro, G.; Mascali, D.; Celona, L.; Gammino, S.; Mazzaglia, M.; Neri, L.; Altana, C.; Ciavola, G.; Caliri, C.; Bartolo, F. Di; Lanaia, D.; Miracoli, R.; Torrisi, G.

    2014-09-15

    The Versatile Ion Source (VIS) is a microwave discharge ion source installed at INFN-LNS and here used as test-bench for the production of high intensity low emittance proton beams and for studies on plasma physics. A series of measurements have been carried out with VIS in order to test the source with light ions. In particular a He{sup +} beam has been characterized in terms of plasma discharge parameters. The experiment has been triggered by the observation of X-radiation emission from the plasma for some configuration of the magnetic field profile. The plasma electron energy distribution function is in fact modified when in some regions of the plasma chamber under-resonance discharge takes place, fulfilling the condition that allows the electromagnetic wave to electrostatic wave conversion. These tests allowed obtaining more than 50 mA of He{sup +} beams.

  16. Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan David

    2011-12-01

    The goal of this dissertation was to gain an understanding on the relative importance of microwave power, neutral pressure, and magnetic field configuration on the behavior of the hot electrons within an Electron Cyclotron Resonance Ion Source (ECRIS) plasma. This was carried out through measurement of plasma bremsstrahlung with both NaI(Tl) (hv > 30 keV) and CdTe (2 keV < hv < 70 keV) x-ray detectors, and through measurement of the plasma energy density with a diamagnetic loop placed around the plasma chamber. We also examined the anisotropy in x-ray power by simultaneously measuring the x-ray spectra in two orthogonal directions: radially and axially, using NaI(Tl) detectors. We have seen that for a 6.4 GHz ECRIS, both the x-ray power produced by confined electrons and the plasma energy density behave logarithmically with microwave power. The x-ray flux created by electrons lost from the plasma, however, does not saturate. Thus, the small increase in plasma density that occurred at high microwave powers (> 150 W on a 6.4 GHz ECRIS) was accompanied by a large increase in total x-ray power. We suggest that the saturation of x-ray power and plasma energy density was due to rf-induced pitch-angle scattering of the electrons. X-ray power and plasma energy density were also shown to saturate with neutral pressure, and to increase nearly linearly as the gradient of the magnetic field in the resonance zone was decreased. All of these findings were in agreement with the theoretical models describing ECRIS plasmas. We have discussed the use of a diamagnetic loop as a means of exploring various plasma time scales on a relative basis. Specifically, we focused much of our attention on studying how changing ion source parameters, such as microwave power and neutral pressure, would effect the rise and decay of the integrated diamagnetic signal, which can be related to plasma energy density. We showed that increasing microwave power lowers the e-fold times at both the leading

  17. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    NASA Astrophysics Data System (ADS)

    Day Goodacre, T.; Chrysalidis, K.; Fedorov, D. V.; Fedosseev, V. N.; Marsh, B. A.; Molkanov, P. L.; Rossel, R. E.; Rothe, S.; Seiffert, C.

    2017-03-01

    This paper presents the results of an investigation into autoionizing states of atomic chromium, in the service of the resonance ionization laser ion source (RILIS): the principal ion source of the ISOLDE radioactive ion beam facility based at CERN. The multi-step resonance photo-ionization process enables element selective ionization which, in combination with mass separation, allows isotope specific selectivity in the production of radioactive ion beams at ISOLDE. The element selective nature of the process requires a multi-step "ionization scheme" to be developed for each element. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme originating from the 3d5(6S)4s a7S3 atomic ground state has been developed for chromium. The scheme uses an ionizing transition to one of the 15 newly observed autoionizing states reported here. Details of the spectroscopic studies are described and the new ionization scheme is summarized.

  18. Performance and operation of advanced superconducting electron cyclotron resonance ion source SECRAL at 24 GHz

    SciTech Connect

    Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.; Lu, W.; Cao, Y.

    2012-02-15

    SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as {sup 129}Xe{sup 35+} of 64 e{mu}A, {sup 129}Xe{sup 42+} of 3 e{mu}A, {sup 209}Bi{sup 41+} of 50 e{mu}A, {sup 209}Bi{sup 50+} of 4.3 e{mu}A and {sup 209}Bi{sup 54+} of 0.2 e{mu}A. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as {sup 209}Bi{sup 36+} and {sup 209}Bi{sup 41+}, SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.

  19. Investigation of a large power water-cooled microwave resonance window for application with the ECR ion source

    NASA Astrophysics Data System (ADS)

    Guo, Guo; Guo, Junwei; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu

    2017-06-01

    A large power water-cooled microwave resonance window used for the electron cyclotron resonance (ECR) ion source is investigated in this paper. The microwave characteristic simulation, thermal analysis, and structure design are deeply and successively carried out before fabrication. After the machining and welding of the components, the window is cold and hot tested. The application results demonstrate that when the input power is 2000 W, the reflected power is only 5 W. The vacuum is below 10-10 Pa, and the high power microwave operation can last 30 h continuously and reliably, which indicates that the design and assembling can achieve the high efficiency of the microwave transmission. Finally, the performance of the ECR ion source is enhanced by the improvement of the injected microwave power to the ECR plasma.

  20. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    NASA Astrophysics Data System (ADS)

    Lu, W.; Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W.

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H+, 40Ar8+, 129Xe30+, 209Bi33+, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  1. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    PubMed

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  2. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    PubMed

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  3. Operation status of the electron cyclotron resonance ion source at Gunma University

    NASA Astrophysics Data System (ADS)

    Souda, H.; Yamada, S.; Kanai, T.; Takeshita, E.; Muramatsu, M.; Kitagawa, A.; Kanazawa, M.; Izumiya, H.; Kano, Y.

    2014-02-01

    An ECR ion source of Gunma University Heavy Ion Medical Center, so-called KeiGM [M. Muramatsu, A. Kitagawa, Y. Sakamoto, S. Sato, Y. Sato, H. Ogawa, S. Yamada, H. Ogawa, Y. Yoshida, and A. G. Drentje, Rev. Sci. Instrum. 76, 113304 (2005)], has been operated for cancer therapy and physical/biological experiment since 2010. KeiGM produces typically 230 μA of 10 keV/u C4+ ions from CH4 gases. The vacuum pressure is kept between 1.2 × 10-4 and 1.7 × 10-4 Pa so as to suppress the pulse-to-pulse current fluctuation within ±10%. The extraction electrode is cleaned every 6-8 months in order to remove deposited carbon, which increases the leak current and discharge. In order to investigate the possibility of long-term operation without such maintenances, oxygen aging for the cleaning of the extraction electrode has been tested in the test bench. The same-designed ion sources at National Institute of Radiological Sciences and SAGA Heavy Ion Medical Accelerator in Tosu (SAGA-HIMAT) are also operated with stable C4+ current, which are suitable for the continuous operation for cancer therapy.

  4. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  5. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  6. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  7. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  8. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  9. Production of beams from solid materials at Center for Nuclear Study electron cyclotron resonance ion source.

    PubMed

    Ohshiro, Y; Yamaka, S; Watanabe, S; Kobayashi, K; Kotaka, Y; Nishimura, M; Kase, M; Muto, H; Yamaguchi, H; Shimoura, S

    2014-02-01

    Two methods for the feed of vapor from solid materials in the Center for Nuclear Study ECR ion source are described. A rod placed near the wall of the plasma chamber, operating up to a melting point of 2600 °C, has been used for CaO, SiO2, and FeO. An oven with a number of openings, operating up to 800 °C, has been used for P2O5, Li, and S. Typical ion beam intensities of (7)Li(2+), (6)Li(3+), (40)Ca(12+), and (56)Fe(15+) are achieved 280, 75, 28, and 7 eμA, respectively. High intensity heavy ion beams are stably supplied into the azimuthally varying field cyclotron.

  10. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.

    PubMed

    Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-07-01

    A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.

  11. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  12. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2(+) beam production.

    PubMed

    Jia, Xianlu; Zhang, Tianjue; Luo, Shan; Wang, Chuan; Zheng, Xia; Yin, Zhiguo; Zhong, Junqing; Wu, Longcheng; Qin, Jiuchang

    2010-02-01

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H(2)(+) beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of approximately 875 Gs [T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  13. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  14. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  15. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    SciTech Connect

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.

  16. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

    PubMed

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I(FC) by the mobile plate tuner. The I(FC) is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I(FC) and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I(FC) when we change the position of the mobile plate tuner.

  17. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al+ ion beam

    NASA Astrophysics Data System (ADS)

    Weichsel, T.; Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al+ ion current with a density of 167 μA/cm2 is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 109 cm-3 to 6 × 1010 cm-3 and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  18. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  19. Development of a high-temperature oven for the 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Ohnishi, J. Higurashi, Y.; Kidera, M.; Ozeki, K.; Nakagawa, T.

    2014-02-15

    We have been developing the 28 GHz ECR ion source in order to accelerate high-intensity uranium beams at the RIKEN RI-beam Factory. Although we have generated U{sup 35+} beams by the sputtering method thus far, we began developing a high-temperature oven with the aim of increasing and stabilizing the beams. Because the oven method uses UO{sub 2}, a crucible must be heated to a temperature higher than 2000 °C to supply an appropriate amount of UO{sub 2} vapor to the ECR plasma. Our high-temperature oven uses a tungsten crucible joule-heated with DC current of approximately 450 A. Its inside dimensions are ϕ11 mm × 13.5 mm. Since the crucible is placed in a magnetic field of approximately 3 T, it is subject to a magnetic force of approximately 40 N. Therefore, we used ANSYS to carefully design the crucible, which was manufactured by machining a tungsten rod. We could raise the oven up to 1900 °C in the first off-line test. Subsequently, UO{sub 2} was loaded into the crucible, and the oven was installed in the 28 GHz ECR ion source and was tested. As a result, a U{sup 35+} beam current of 150 μA was extracted successfully at a RF power of approximately 3 kW.

  20. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  1. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  2. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  3. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  4. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sources

    SciTech Connect

    Pierret, C.; Maunoury, L.; Biri, S.; Pacquet, J. Y.; Tuske, O.; Delferriere, O.

    2008-02-15

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICA coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.

  6. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  7. High intensity beams from electron cyclotron resonance ion sources: A study of efficient extraction and transport system (invited)

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.; Celona, L.; Andò, L.; Passarello, S.; Zhang, X. Zh.; Spädtke, P.; Winkler, M.

    2004-05-01

    A study of the design of extraction and transport system for high intensity beams that will be produced by the next generation electron cyclotron resonance ion source (ECRIS) was carried out in the frame of a European collaboration devoted to the definition of the main parameters of third generation ECRIS. High intensity production tests carried out in the previous years at INFN-LNS have shown evidence for the need to review the main concepts of the beam analysis and transport when high currents of low energy highly charged ions are extracted from the source. The transport of such low energy beams becomes critical as soon as the total current exceeds a few mA. The study reported here is based on the calculated parameters for the GyroSERSE source and the computer simulations have been carried out to obtain low emittance beams. The design of the extraction system was carried out by means of the KOBRA (three dimensional) code. The study of the beam line has been carried out with the codes GIOS, GICO, and TRANSPORT by taking into account both the phase space growth due to space charge and to the aberrations inside the magnets. The description of some different beam line options will be also given.

  8. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source.

    PubMed

    Rodrigues, G; Baskaran, R; Kukrety, S; Mathur, Y; Kumar, Sarvesh; Mandal, A; Kanjilal, D; Roy, A

    2012-03-01

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.

  9. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Baskaran, R.; Kukrety, S.; Mathur, Y.; Kumar, Sarvesh; Mandal, A.; Kanjilal, D.; Roy, A.

    2012-03-01

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005), 10.1016/j.nimb.2005.03.232; D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006), 10.1063/1.2164887]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.

  10. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source

    SciTech Connect

    Rodrigues, G.; Mathur, Y.; Kumar, Sarvesh; Mandal, A.; Kanjilal, D.; Roy, A.; Baskaran, R.; Kukrety, S.

    2012-03-15

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.

  11. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  12. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    SciTech Connect

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-17

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  13. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  14. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute.

    PubMed

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Kim, Byoung Chul; Shin, Chang Seouk; Ahn, Jung Keun; Won, Mi-Sook

    2014-02-01

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  15. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    NASA Astrophysics Data System (ADS)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  16. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  17. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  18. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  19. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  20. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  1. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    SciTech Connect

    Mascali, David Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Romano, Francesco Paolo; Torrisi, Giuseppe

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  2. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  3. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chanthamontri, C. Ken; Stopford, Andrew P.; Snowdon, Ryan W.; Oldenburg, Thomas B. P.; Larter, Stephen R.

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  4. Development of a new superconducting electron cyclotron resonance ion source for operations up to 18 GHz at LBNL

    SciTech Connect

    Xie, D. Z. Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Phair, L. W.; Strohmeier, M. M.; Thuillier, T. P.; Todd, D. S.; Caspi, S.; Prestemon, S. O.

    2014-02-15

    A new superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is under development at LBNL to harness the winding techniques of a closed-loop sextupole coil for the next generation ECRIS and to enhance the capability of the 88-in. cyclotron facility. The proposed ECRIS will use a superconducting closed-loop sextupole coil to produce the radial field and a substantial portion of the axial field. The field strengths of the injection, central and extraction regions are adjusted by a three solenoids outside the closed-loop sextupole coil. In addition to maintaining the typical ECRIS magnetic field configuration, this new source will also be able to produce a dustpan-like minimum-B field to explore possible ECRIS performance enhancement. The dustpan-like minimum-B field configuration has about the same strengths for the maximum axial field at the injection region and the maximum radial pole fields at the plasma chamber walls but it can be substantially lower at the extraction region. The dustpan-like minimum-B will have a field maximum B{sub max} ≥ 2.6 T for operations up to 18 GHz with a ratio of B{sub max}/B{sub res} ≥ 4 and higher ratios for lower frequencies. The field maxima of this new source can reach over 3 T both at the injection and the plasma chamber walls which could also support operation at 28 GHz. The source will be built of cryogen-free with the magnets directly cooled by cryo-coolers to simplify the cryostat structure. The source design features will be presented and discussed.

  5. Development of a new superconducting Electron Cyclotron Resonance Ion Source for operations up to 18 GHz at LBNL.

    PubMed

    Xie, D Z; Benitez, J Y; Caspi, S; Hodgkinson, A; Lyneis, C M; Phair, L W; Prestemon, S O; Strohmeier, M M; Thuillier, T P; Todd, D S

    2014-02-01

    A new superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is under development at LBNL to harness the winding techniques of a closed-loop sextupole coil for the next generation ECRIS and to enhance the capability of the 88-in. cyclotron facility. The proposed ECRIS will use a superconducting closed-loop sextupole coil to produce the radial field and a substantial portion of the axial field. The field strengths of the injection, central and extraction regions are adjusted by a three solenoids outside the closed-loop sextupole coil. In addition to maintaining the typical ECRIS magnetic field configuration, this new source will also be able to produce a dustpan-like minimum-B field to explore possible ECRIS performance enhancement. The dustpan-like minimum-B field configuration has about the same strengths for the maximum axial field at the injection region and the maximum radial pole fields at the plasma chamber walls but it can be substantially lower at the extraction region. The dustpan-like minimum-B will have a field maximum Bmax ≥ 2.6 T for operations up to 18 GHz with a ratio of Bmax/Bres ≥ 4 and higher ratios for lower frequencies. The field maxima of this new source can reach over 3 T both at the injection and the plasma chamber walls which could also support operation at 28 GHz. The source will be built of cryogen-free with the magnets directly cooled by cryo-coolers to simplify the cryostat structure. The source design features will be presented and discussed.

  6. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.

  7. Production of U beam from RIKEN 18 GHz electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Nakagawa, T.; Kidera, M.; Haba, H.; Aihara, T.; Kase, M.; Goto, A.; Yano, Y.

    2008-02-15

    For the RIKEN radio isotope factory (RIBF) project, we produced the multicharged uranium beam with two methods. To produce lower charge state U ion beams (14+-20+) we used the UF{sub 6} gas as an ionized gas. The typical beam intensity of U{sup 14+-20+} was 2-1 particle {mu}A at the extraction voltage of 14 kV. To produce higher charge state U ion beam (U{sup 35+}), we chose the sputtering method. The beam intensity was 70 particle nA at the extraction voltage of 5.4 kV. Using this method, we successfully produced multicharged U beam continuously for one month without break for RIBF commissioning.

  8. Upgrade of the resonance ionization laser ion source at ISOLDE on-line isotope separation facility: New lasers and new ion beamsa)

    NASA Astrophysics Data System (ADS)

    Fedosseev, V. N.; Berg, L.-E.; Fedorov, D. V.; Fink, D.; Launila, O. J.; Losito, R.; Marsh, B. A.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sjödin, A. M.; Wendt, K. D. A.

    2012-02-01

    The resonance ionization laser ion source (RILIS) produces beams for the majority of experiments at the ISOLDE on-line isotope separator. A substantial improvement in RILIS performance has been achieved through a series of upgrade steps: replacement of the copper vapor lasers by a Nd:YAG laser; replacement of the old homemade dye lasers by new commercial dye lasers; installation of a complementary Ti:Sapphire laser system. The combined dye and Ti:Sapphire laser system with harmonics is capable of generating beams at any wavelength in the range of 210-950 nm. In total, isotopes of 31 different elements have been selectively laser-ionized and separated at ISOLDE, including recently developed beams of samarium, praseodymium, polonium, and astatine.

  9. Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

    SciTech Connect

    Koivisto, H. Tarvainen, O.; Toivanen, V.; Komppula, J.; Kronholm, R.; Lamy, T.; Angot, J.; Delahaye, P.; Maunoury, L.; Patti, G.; Standylo, L.; Steczkiewicz, O.; Choinski, J.

    2014-02-15

    Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 GHz ECRIS and the LPSC-PHOENIX charge breeder. The first experiments were carried out with noble gases and they revealed, for example, that the effects of the gas mixing and 2-frequency heating on the production of high charge states appear to be additive for the conventional ECRIS. The results also indicate that at least in the case of noble gases the differences between the conventional ECRIS and the charge breeder cause only minor impact on the production efficiency of ion beams.

  10. ARTEMIS-B: A room-temperature test electron cyclotron resonance ion source for the National Superconducting Cyclotron Laboratory at Michigan State University

    SciTech Connect

    Machicoane, G.; Cole, D.; Ottarson, J.; Stetson, J.; Zavodszky, P.

    2006-03-15

    The current scheme for ion-beam injection into the coupled cyclotron accelerator at the NSCL involves the use of two electron cyclotron resonance (ECR) ion sources. The first one is a 6.4 GHz fully superconducting that will be replaced within two years by SUSI, a third generation 18 GHz superconducting ECR ion source. The other source, ARTEMIS, is a room-temperature source based on the AECR-U design and built in collaboration with the University of Jyvaeskylae in 1999. Due to cyclotron operation constraint, very little time can be allowed to ion source development and optics studies of the cyclotron injection beam line. In this context, NSCL has decided to build ARTEMIS-B an exact replica of its room-temperature ECR ion source. The goal of this project is threefold. One is to improve the overall reliability of cyclotron operation through tests and studies of various ion source parameters that could benefit beam stability, tuning reproducibility, and of course overall extracted currents performance. Second is to implement and test modifications or upgrade made to the ion source: extraction geometry, new resistive or rf oven design, dual frequency use, liner, etc. Finally, this test source will be used to study various ion optics schemes such as electrostatic quadrupole doublet or triplet at the source extraction or the use of a correction sextupole and assess their effect on the ion beam through the use of an emittance scanner and imaging viewer that will be incorporated into ARTEMIS-B beam line. This article reviews the design and construction of ARTEMIS-B along with some initial commissioning results.

  11. Reversal ion source - A new source of negative ion beams

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Alajajian, S. H.

    1985-01-01

    A new type of ion source utilizing beams of electrons and target molecules, rather than a diffuse, volume plasma, is described. The source utilizes an electrostatic electron 'mirror' which reverses trajectories in an electron beam, producing electrons at their turning point having a distribution of velocities centered at zero velocity. A gas which attaches zero-velocity electrons is introduced at this turning point. Negative ions are produced by an attachment or dissociative attachment process. For many of the thermal electron-attaching molecules the cross sections can be quite large, varying as the inverse square root of the electron energy or just the s-wave threshold law. The efficiency and current density of the ion source for production of Cl(-) through the large, thermal energy attachment process is estimated. It is argued that the source can be used for the production of negative ions through attachment resonances located at higher energies as well.

  12. Development of ion sources for materials processing in china

    SciTech Connect

    Zhao, W.J.; Ren, X.T.; Zhao, H.W.

    2006-03-15

    This article reviews the development of ion sources for materials processing and the progress of commercial product of ion sources in China. The various ion-beam processing and the relative needs to ion sources are mentioned and discussed, such as ion sources with ion implantation, plasma immersion ion implantation, ion-beam-assisted deposition, ion-beam deposition, and so on. The states of progress for different kinds of ion sources specially for electron cyclotron resonance/microwave, metal vapor vacuum arc, radio frequency (rf) ion source, end-Hall ion source, and cluster ion source, are given and discussed.

  13. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  14. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  15. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  16. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Lyneis, C. Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.; Plaum, B.; Thuillier, T.

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  17. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  18. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  19. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  20. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  1. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  2. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  3. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  4. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    SciTech Connect

    Dorf, M. A.; Zorin, V. G.; Sidorov, A. V.; Bokhanov, A. F.; Izotov, I. V.; Razin, S. V.; Skalyga, V. A.

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  5. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  6. Resonant Ionization Laser Ion Source (RILIS) With Improved Selectivity Achieved By Ion Pulse Compression Using In-Source Time-of-flight Technique

    SciTech Connect

    Mishin, V. I.; Malinovsky, A. L.; Mishin, D. V.

    2009-03-17

    This paper describes for the first time the improved selectivity of the RILIS made possible by the time-of-flight (TOF) ion bunch compression. Brief description of the compression principles and some preliminary experimental results are presented. In the off-line experiments short ion peaks of natural Li, Na, K, Tm and Yb are observed as ions leave the RILIS-TOF structure. For Tm the ion peaks of 5 {mu}s half-height duration are detected and 1 {mu}s peaks for Sn are predicted. In view of the repetition rate of the ISOLDE-RILIS lasers it is hoped that the selectivity of Sn isotopes production may be improved as much as 100 employing the RILIS with the TOF ion bunch compression and a gating technique.

  7. RF synchronized short pulse laser ion source

    SciTech Connect

    Fuwa, Yasuhiro Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji; Okamura, Masahiro; Yamazaki, Atsushi

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  8. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  9. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  10. Effect of the gas mixing technique on the plasma potential and emittance of the JYFL 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Suominen, P.; Ropponen, T.; Kalvas, T.; Heikkinen, P.; Koivisto, H.

    2005-09-01

    The effect of the gas mixing technique on the plasma potential, energy spread, and emittance of ion beams extracted from the JYFL 14 GHz electron cyclotron resonance ion source has been studied under various gas mixing conditions. The plasma potential and energy spread of the ion beams were studied with a plasma potential instrument developed at the Department of Physics, University of Jyväskylä (JYFL). With the instrument the effects of the gas mixing on different plasma parameters such as plasma potential and the energy distribution of the ions can be studied. The purpose of this work was to confirm that ion cooling can explain the beneficial effect of the gas mixing on the production of highly charged ion beams. This was done by measuring the ion-beam current as a function of a stopping voltage in conjunction with emittance measurements. It was observed that gas mixing affects the shape of the beam current decay curves measured with low charge-state ion beams indicating that the temperature and/or the spatial distribution of these ions is affected by the mixing gas. The results obtained in the emittance measurements support the conclusion that the ion temperature changes due to the gas mixing. The effect of the energy spread on the emittance of different ion beams was also studied theoretically. It was observed that the emittance depends considerably on the dispersive matrix elements of the beam line transfer matrix. This effect is due to the fact that the dipole magnet is a dispersive ion optical component. The effect of the energy spread on the measured emittance in the bending plane of the magnet can be several tens of percent.

  11. Microwave ion source

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  12. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  13. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  14. Effect of a metal-dielectric structure introduced in the plasma chamber of the Frankfurt 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Schächter, L.; Stiebing, K. E.; Dobrescu, S.; Badescu-Singureanu, Al. I.; Schmidt, L.; Hohn, O.; Runkel, S.

    1999-02-01

    A new approach of the possibility to significantly increase the high charge state ion beams delivered by electron cyclotron resonance (ECR) ion sources by using metal-dielectric (MD) structures characterized by high secondary electron emission properties is presented. The intensities of argon ion beams extracted from the 14 GHz electron cyclotron resonance ion source of the Institut für Kernphysik (IKF) der Johann Wolfgang Goethe-Universität in Frankfurt/Main were measured when a 26 mm diam disk of a specially treated MD structure (Al-Al2O3) was introduced axially close to the ECR plasma. The Ar beam intensities and charge-state distributions obtained with this disk are compared to measurements with disks of iron and pure aluminum at the same position relative to the plasma. All measurements were performed with the disk at the plasma chamber potential. The results with the MD structure show a net shift of the beam intensity towards higher charge states as compared with the other disk materials. Enhancement factors of the beam current of up to 10 (for Ar12+) when using a MD disk compared to the output when using an aluminum disk and up to 40 (for Ar11+) when using an iron disk were measured.

  15. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  16. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  17. ECR ion source with electron gun

    DOEpatents

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  18. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transporta)

    NASA Astrophysics Data System (ADS)

    Zhang, W. H.; Ma, H. Y.; Yang, Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Cao, Y.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Sha, S.; Lu, W.; Lin, S. H.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Peng, S. X.; Liu, Z. W.; Zhao, H. W.

    2012-02-01

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  19. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transport

    SciTech Connect

    Zhang, W. H.; Ma, H. Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Liu, Z. W.; Zhao, H. W.; Yang, Y.; Cao, Y.; and others

    2012-02-15

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  20. High performance detection of biomolecules using a high magnetic field electrospray ionization source/Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Guan, Ziqiang; Campbell, Victoria L.; Drader, Jared J.; Hendrickson, Christopher L.; Laude, David A., Jr.

    1995-09-01

    An improved, high-performance version of the concentric vacuum chamber design is shown for forming ions at high pressure in a strong magnetic field and detecting them in an adjacent Fourier transform ion cyclotron resonance mass spectrometry (FTICR) trapped ion cell. Improvements in system design, including primarily the addition of a mechanical shutter to halt the flow of neutrals to the trapped ion cell during FTICR detection, allow a more than 100-fold improvement in pressure drop between the source and analyzer chamber to be realized. Within a 20 cm distance, ions formed in an electrospray ion source at atmosphere are transported across five concentric tube conductance limits to a trapped ion cell at a shuttered pressure below 2×10-9 Torr. High resolution detection of electrosprayed proteins is demonstrated and, for example, mass resolutions of 1×105 for the +14 charge state of horse heart myoglobin (at m/z 1211) and 2×105 for +5 charge state of bovine insulin (at m/z 1147) are obtained. The original advantages of the concentric tube vacuum chamber are retained. Forming the ions within the magnetic field permits a 40-fold enhancement in sensitivity to be obtained. Narrow kinetic energy distributions are achieved because magnetic field confinement eliminates the need for complex electric focusing assemblies that exhibit mass discrimination and broaden the kinetic energy distribution. Finally, the shutter is demonstrated to serve effectively as an alternative to pulsed valve assemblies for the transient introduction of a collision gas to the trapped ion cell.

  1. Lithium ion sources

    NASA Astrophysics Data System (ADS)

    Roy, Prabir K.; Greenway, Wayne G.; Grote, Dave P.; Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L.

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ˜100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm2 was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40-50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10-7, at an operating temperature of 1250-1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10-15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  2. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  3. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  4. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  5. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  6. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H{sub 2}{sup +} beam production

    SciTech Connect

    Jia Xianlu; Zhang Tianjue; Wang Chuan; Zheng Xia; Yin Zhiguo; Zhong Junqing; Wu Longcheng; Qin Jiuchang; Luo Shan

    2010-02-15

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H{sub 2}{sup +} beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of {approx}875 Gs[T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  7. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  8. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the “hot liner” method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  9. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  10. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Laulainen, Janne; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2016-02-01

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  11. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Laulainen, Janne Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2016-02-15

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  12. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  13. Design aspects of a compact, single-frequency, permanent magnet ECR ion source with a large uniformly distributed resonant plasma volume

    SciTech Connect

    Liu, Y.; Alton, G.D.; Mills, G.D.; Reed, C.A.; Haynes, D.L.

    1997-09-01

    A compact, all-permanent-magnet single-frequency ECR ion source with a large uniformly distributed ECR plasma volume has been designed and is presently under construction at the Oak Ridge National Laboratory (ORNL). The central region of the field is designed to achieve a flat-field (constant mod-B) which extends over the length of the central field region along the axis of symmetry and radially outward to form a uniformly distributed ECR plasma volume. The magnetic field design strongly contrasts with those used in conventional ECR ion sources where the central field regions are approximately parabolic and the consequent ECR zones are surfaces. The plasma confinement magnetic field mirror has a mirror ratio B{sub max}/B{sub ECR} of slightly greater than two. The source is designed to operate at a nominal RF frequency of 6 GHz. The central flat magnetic field region can be easily adjusted by mechanical means to tune the source to the resonant conditions within the limits of 5.5 to 6.8 GHz. The RF injection system is broadband to ensure excitation of transverse electric (TE) modes so that the RF power is largely concentrated in the resonant plasma volume which lies along and surrounds the axis of symmetry of the source. Because of the much larger ECR zone, the probability for absorption of microwave power is dramatically increased thereby increasing the probability for acceleration of electrons, the electron temperature of the plasma and, consequently, the hot electron population within the plasma volume of the source. The creation of an ECR volume rather than a surface is commensurate with higher charge states and higher beam intensities within a particular charge state.

  14. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    DOE PAGES

    Liu, Y.; Gottwald, T.; Mattolat, C.; ...

    2015-05-08

    We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d54s5s f6S5/2 level at 49 415.35 cm-1, while Rydberg transitions were reached from the 3d54s4d e 6D9/2,7/2,5/2) levels at around 47 210 cm-1. Analyses of the strong Rydberg transitions associated with the 3d54s4d e 6D7/2 lower level indicate that they belong to the dipole-allowed 4d → nf6F°9/2,7/2,5/2 series converging to the 3d54s 7S3 groundmore » state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm-1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf8F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less

  15. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    SciTech Connect

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2015-05-08

    We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d54s5s f6S5/2 level at 49 415.35 cm-1, while Rydberg transitions were reached from the 3d54s4d e 6D9/2,7/2,5/2) levels at around 47 210 cm-1. Analyses of the strong Rydberg transitions associated with the 3d54s4d e 6D7/2 lower level indicate that they belong to the dipole-allowed 4d → nf69/2,7/2,5/2 series converging to the 3d54s 7S3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm-1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf8F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.

  16. Surface morphology changes to tungsten under exposure to He ions from an electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Donovan, David; Buchenauer, Dean; Whaley, Josh; Friddle, Raymond; Wright, Graham

    2014-10-01

    Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We are exploring the potential for using a compact ECR plasma in situ with scanning tunneling microscopy (STM) to investigate the early stages of helium induced tungsten migration. Here we report on characterization of the plasma source for helium plasmas with a desired ion flux of ~1 × 1019 ions m-2 s-1 and the surface morphology changes seen on the exposed tungsten surfaces. Exposures of polished tungsten discs have been performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons are made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.

  17. An overview of LINAC ion sources

    SciTech Connect

    Keller, Roderich

    2008-01-01

    This paper discusses ion sources used in high-duty-factor proton and H{sup -} Linacs as well as in accelerators utilizing multi-charged heavy ions, mostly for nuclear physics applications. The included types are Electron Cyclotron Resonance (ECR) sources as well as filament and rf driven multicusp sources. The paper does not strive to attain encyclopedic character but rather to highlight major lines of development, peak performance parameters and type-specific limitations and problems of these sources. The main technical aspects being discussed are particle feed, plasma generation and ion production by discharges, and plasma confinement.

  18. Surface morphology changes to tungsten under exposure to He ions from an electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Donovan, David; Maan, Anurag; Duran, Jonah; Buchenauer, Dean; Whaley, Josh

    2015-11-01

    Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We used a relatively low flux (2.5x1019 ions m-2 s-1) compact ECR plasma source at Sandia-California to investigate the early stages of helium induced tungsten damage. Exposures of polished tungsten discs were performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons were made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. A similar He plasma exposure stage has now been developed at the University of Tennessee-Knoxville with an improved compact ECR plasma source. Status of the new UTK exposure stage will be discussed as well as planned experiments and new material characterization techniques (EBSD, GIXRD). Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.

  19. Hydrogen negative ion production in a 14 GHz electron cyclotron resonance compact ion source with a cone-shaped magnetic filter.

    PubMed

    Ichikawa, T; Kasuya, T; Kenmotsu, T; Maeno, S; Nishiura, M; Shimozuma, T; Yamaoka, H; Wada, M

    2014-02-01

    The plasma electrode structure of a 14 GHz ECR ion source was modified to enlarge the plasma volume of low electron temperature region. The result shows that the extracted beam current reached about 0.6 mA/cm(2) with about 40 W microwave power. To investigate the correlation between the volume of the low electron temperature region and the H(-) current, a vacuum ultraviolet (VUV) spectrometer had been installed to observe light emission in the VUV wavelength range from the plasma. From the results of the negative ion beam current and that from VUV spectrometry, production rate of vibrationally excited hydrogen molecule seems to be enhanced by increasing the volume of low electron temperature region.

  20. Negative ion source

    DOEpatents

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  1. Improved negative ion source

    DOEpatents

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  2. Tandem Terminal Ion Source

    SciTech Connect

    2000-10-23

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the {sup 7}Be({gamma}){sup 8}B experiment. Most of the runs used {sup 1}H{sup +} at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used {sup 2}H{sup +} at terminal voltage of 1.4 MV. The other run used {sup 4}He{sup +} at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal.

  3. A new 14 GH{sub z} electron-cyclotron-resonance ion source (ECRIS) for the heavy ion accelerator facility ATLAS

    SciTech Connect

    Schlapp, M.; Vondrasek, R.C.; Szczech, J.; Biliquist, P.J.; Pardo, R.C.; Xie, Z.Q.; Harkewicz, R.

    1997-09-01

    A new 14 GHz ECRIS has been designed and built over the last two years. The source design incorporates the latest results from ECR developments to produce intense beams of highly charged ions. An improved magnetic electron confinement is achieved from a large mirror ratio and strong hexapole field. The aluminum plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donate additional electrons to the plasma, making use of the large secondary electron yields from aluminum oxide. The source will be capable of ECR plasma heating using two different frequencies simultaneously to increase the electron energy gain. To be able to deliver usable intensities of the heaviest ion beams the design will also allow axial access for metal evaporation ovens and solid material. The main design goal is to produce several e{mu}A of at least {sup 238}U{sup 34+} in order to accelerate the beam to coulomb-barrier energies without further stripping. First charge state distributions for {sup 16}O and {sup 40}Ar have been measured.

  4. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  5. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, O. Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H.; Izotov, I.; Skalyga, V.; Toivanen, V.

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  6. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H.; Izotov, I.; Skalyga, V.; Toivanen, V.

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O3+-O7+ were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  7. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Orpana, J; Kronholm, R; Kalvas, T; Laulainen, J; Koivisto, H; Izotov, I; Skalyga, V; Toivanen, V

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O(3+)-O(7+) were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  8. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  9. Highly Polarized Ion Sources for Electron Ion Colliders (EIC)

    SciTech Connect

    V.G. Dudnikov, R.P. Johnson, Y.S. Derbenev, Y. Zhang

    2010-03-01

    The operation of the RHIC facility at BNL and the Electron Ion Colliders (EIC) under development at Jefferson Laboratory and BNL need high brightness ion beams with the highest polarization. Charge exchange injection into a storage ring or synchrotron and Siberian snakes have the potential to handle the needed polarized beam currents, but first the ion sources must create beams with the highest possible polarization to maximize collider productivity, which is proportional to a high power of the polarization. We are developing one universal H-/D- ion source design which will synthesize the most advanced developments in the field of polarized ion sources to provide high current, high brightness, ion beams with greater than 90% polarization, good lifetime, high reliability, and good power efficiency. The new source will be an advanced version of an atomic beam polarized ion source (ABPIS) with resonant charge exchange ionization by negative ions. An integrated ABPIS design will be prepared based on new materials and an optimized magnetic focusing system. Polarized atomic and ion beam formation, extraction, and transport for the new source will be computer simulated.

  10. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  11. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K.; Havener, C.; Liu, Y.; Lassen, J.; Rothe, S.

    2010-02-15

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  12. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Havener, Charles C; Lassen, J.; Liu, Yuan; Mattolat, C.; Raeder, S.; Rothe, S.; Wendt, K.

    2010-01-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  13. Note: Development of ESS Bilbao's proton ion source: Ion Source Hydrogen Positive

    SciTech Connect

    Miracoli, R. Feuchtwanger, J.; Arredondo, I.; Belver, D.; Gonzalez, P. J.; Corres, J.; Djekic, S.; Echevarria, P.; Eguiraun, M.; Garmendia, N.; Muguira, L.

    2014-02-15

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported.

  14. Note: development of ESS Bilbao's proton ion source: Ion Source Hydrogen positive.

    PubMed

    Miracoli, R; Feuchtwanger, J; Arredondo, I; Belver, D; Gonzalez, P J; Corres, J; Djekic, S; Echevarria, P; Eguiraun, M; Garmendia, N; Muguira, L

    2014-02-01

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported.

  15. Ion sources for ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-01

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  16. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  17. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  18. Ion implantation technology and ion sources

    NASA Astrophysics Data System (ADS)

    Sugitani, Michiro

    2014-02-01

    Ion implantation (I/I) technology has been developed with a great economic success of industries of VLSI (Very Large-Scale Integrated circuit) devices. Due to its large flexibility and good controllability, the I/I technology has been assuming various challenging requirements of VLSI evolutions, especially in advanced evolutional characteristics of CMOSFET. Here, reviewing the demands of VLSI manufacturing to the I/I technology, required characteristics of ion implanters, and their ion sources are discussed.

  19. ECR ion source with electron gun

    DOEpatents

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  20. Single-Ion Two-Photon Source

    SciTech Connect

    Dubin, F.; Rotter, D.; Mukherjee, M.; Gerber, S.; Blatt, R.

    2007-11-02

    A single trapped ion is converted into a pseudo-two-photon source by splitting its resonance fluorescence, delaying part of it and by recombining both parts on a beam splitter. A destructive two-photon interference is observed with a contrast reaching 83(5)%. The spectral brightness of our two-photon source is quantified and shown to be comparable to parametric down-conversion devices.

  1. Ion sources for heavy ion fusion (invited)

    NASA Astrophysics Data System (ADS)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  2. ECR ion source

    SciTech Connect

    Billquist, P.J.; Harkewicz, R.; Pardo, R.C.

    1995-08-01

    The feasibility of using a 30-watt pulsed NdYAG laser to ablate or evaporate material directly into the ECR had some initial exploratory runs and produced two distinctly interesting results. This technique holds the possibility of using small quantities of material, with a high efficiency, and being applicable to all solids. The laser illuminates a sample through one of the radial ports in the ECR main plasma chamber. The off-line tests indicated that our surplus (free) laser is capable of ablating significant quantities of interesting materials. The first tests of the laser ablation idea were carried out using a bismuth sample. The inherent pulsed nature of the technique allowed us to immediately study the time evolution of charge states in the ECR plasma. The results are directly comparable to model calculations and are completely consistent with the sequential stepwise stripping process which was assumed to dominate the high charge state production process. A paper describing our results will be presented at the 1995 International Ion Source Conference.

  3. Resonance methods in quadrupole ion traps

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Peng, Wen-Ping; Cooks, R. Graham

    2017-01-01

    The quadrupole ion trap is widely used in the chemical physics community for making measurements on dynamical systems, both intramolecular (e.g. ion fragmentation reactions) and intermolecular (e.g. ion/molecule reactions). In this review, we discuss linear and nonlinear resonances in quadrupole ion traps, an understanding of which is critical for operation of these devices and interpretation of the data which they provide. The effect of quadrupole field nonlinearity is addressed, with important implications for promoting fragmentation and achieving unique methods of mass scanning. Methods that depend on ion resonances (i.e. matching an external perturbation with an ion's induced frequency of motion) are discussed, including ion isolation, ion activation, and ion ejection.

  4. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    SciTech Connect

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Hellbusch, F.; Teigelhoefer, A.; Voss, A.; Gottwald, T.; Wendt, K. D. A.

    2009-03-17

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  5. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  6. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    SciTech Connect

    Cortazar, O. D.

    2012-10-15

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 {mu}s are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  7. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma.

    PubMed

    Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  8. Three chamber negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  9. Resonance microwave volume plasma source

    SciTech Connect

    Berezhetskaya, N. K.; Kop'ev, V. A.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, M. I.; Temchin, S. M.; Lee, Young Dong

    2007-07-15

    A conceptual design of a microwave gas-discharge plasma source is described. The possibility is considered of creating conditions under which microwave energy in the plasma resonance region would be efficiently converted into the energy of thermal and accelerated (fast) electrons. Results are presented from interferometric and probe measurements of the plasma density in a coaxial microwave plasmatron, as well as the data from probe measurements of the plasma potential and electron temperature. The dynamics of plasma radiation was recorded using a streak camera and a collimated photomultiplier. The experimental results indicate that, at relatively low pressures of the working gas, the nonlinear interaction between the microwave field and the inhomogeneous plasma in the resonance region of the plasmatron substantially affects the parameters of the ionized gas in the reactor volume.

  10. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  11. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  12. Negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  13. Advanced penning ion source

    DOEpatents

    Schenkel, Thomas; Ji, Qing; Persaud, Arun; Sy, Amy V.

    2016-11-01

    This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.

  14. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  15. ION SOURCE UNIT FOR CALUTRON

    DOEpatents

    Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.

    1959-04-14

    An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.

  16. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  17. Pulsed reflex ion source studies

    SciTech Connect

    Bickes, Jr., R. W.; O'Hagan, J. B.

    1980-11-01

    Parametric studies of demountable versions of the pulsed ion source used in Controlatron and Zetatron neutron tubes were carried out. The goal of these experiments, a continuation of earlier work by Bacon and O'Hagan, was to investigate the deuteron beam intensity as a function of source geometry, electrode materials, operating conditions and pulse length. Geometric variations produced only modest changes in the ion beam intensity; the most sensitive parameter was the length of the secondary cathode. There is some evidence that the addition of oxygen either in the gas feed or using alumina on the cathode surfaces can increase the atomic ion fraction. The lowest reliable operating source pressure was approximately 1.33 Pa. The longest pulse length was about 1.2 ms. Difficulties in measuring the ion currents are discussed and suggestions for future experiments are briefly outlined.

  18. Negative-ion plasma sources

    NASA Astrophysics Data System (ADS)

    Sheehan, D. P.; Rynn, N.

    1988-08-01

    Three designs for negative-ion plasma sources are described. Two sources utilize metal hexafluorides such as SF6 and WF6 to scavenge electrons from electron-ion plasmas and the third relies upon surface ionization of alkali halide salts on heated alumina and zirconia. SF6 introduced into electron-ion plasmas yielded negative-ion plasma densities of 10 to the 10th/cu cm with low residual electron densities. On alumina, plasma densities of 10 to the 9th/cu cm were obtained for CsCl, CsI, and KI and 10 to the 9th/cu cm for KCl. On zirconia 10 to the 10th/cu cm densities were obtained for CsCl. For alkali halide sources, electron densities of less than about 10 to the -4th have been achieved.

  19. Low-pressure ion source

    SciTech Connect

    Bacon, F.M.; Brainard, J.P.; O'Hagan, J.B.; Walko, R.J.

    1982-10-27

    A low pressure ion source for a neutron source comprises a filament cathode and an anode ring. Approximately 150V is applied between the cathode and the anode. Other electrodes, including a heat shield, a reflector and an aperture plate with a focus electrode, are placed at intermediate potentials. Electrons from the filament drawn out by the plasma and eventually removed by the anode are contained in a magnetic field created by a magnet ring. Ions are formed by electron impact with deuterium or tritium and are extracted at the aperture in the focus electrode. The ion source will typically generate a 200 mA beam through a 1.25 cm/sup 2/ aperture for an arc current of 10A. For deuterium gas, the ion beam is over 50 percent D/sup +/ with less than 1% impurity. The current density profile across the aperture will typically be uniform to within 20%.

  20. Investigation of an ion-ion hybrid Alfven wave resonator

    SciTech Connect

    Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.

    2013-01-15

    A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.

  1. A study on prevention of an electric discharge at an extraction electrode of an electron cyclotron resonance ion source for cancer therapy.

    PubMed

    Kishii, Y; Kawasaki, S; Kitagawa, A; Muramatsu, M; Uchida, T

    2014-02-01

    A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.

  2. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  3. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  4. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  5. HIMAC PIG ion source development

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Sato, Y.; Ogawa, H.; Kimura, T.

    1989-02-01

    The HIMAC (Heavy-Ion Medical Accelerator in Chiba) project is in progress. Necessary characteristics for the HIMAC ion source are high current ( 130-630 μA with a q/A of{1}/{7}) from He to Ar, good stability, long life and easy maintenance. To attain these characteristics, an indirectly heated PIG ion source test bench has been designed and constructed since 1985. A low-energy beam transport line has also been installed in order to test the beam quality and the matching condition with an RFQ linac (8-800 keV/u). For N, Ne and Ar, preliminary experiments have been carried out on the arc characteristics, ion extraction and charge spectra since 1987. The radial emittance has also been measured and is 150 π mm mrad for a 40 μA Ar 3+ beam (0.64 keV/u).

  6. Solenoid and monocusp ion source

    SciTech Connect

    Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley

    1997-01-01

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  7. Solenoid and monocusp ion source

    SciTech Connect

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1995-12-31

    An ion source which generates ions having high atomic purity incorporates a solenoidal magnetic field to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  8. Solenoid and monocusp ion source

    DOEpatents

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  9. Status of ITEP decaborane ion source program

    SciTech Connect

    Kulevoy, T. V.; Petrenko, S. V.; Kuibeda, R. P.; Seleznev, D. N.; Koshelev, V. A.; Kozlov, A. V.; Stasevich, Yu. B.; Sitnikov, A. L.; Shamailov, I. M.; Pershin, V. I.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Poole, H. P.; Masunov, E. S.; Polozov, S. M.

    2008-02-15

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bernas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented.

  10. STATUS OF ITEP DECABORANE ION SOURCE PROGRAM.

    SciTech Connect

    KULEVOY,T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; KOZLOV, A.V.; STASEVICH, YU.B.; SITNIKOV, A.L.; SHAMAILOV, I.M.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.; MASUNOV, E.S.; POLOZOV, S.M.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bemas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented.

  11. Ion source development for ultratrace detection of uranium and thorium

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Batchelder, J. C.; Galindo-Uribarri, A.; Chu, R.; Fan, S.; Romero-Romero, E.; Stracener, D. W.

    2015-10-01

    Efficient ion sources are needed for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). Two positive ion sources, a hot-cavity surface ionization source and a resonant ionization laser ion source, are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials with sample sizes between 20 and 40 μg of U or Th. For the surface ion source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. With the laser ion source, three-step resonant photoionization of U atoms has been studied and only atomic U ions are observed. An ionization efficiency of about 9% has been demonstrated. The performances of both ion sources are expected to be further improved.

  12. Improved Multiple-Species Cyclotron Ion Source

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1990-01-01

    Use of pure isotope 86Kr instead of natural krypton in multiple-species ion source enables source to produce krypton ions separated from argon ions by tuning cylcotron with which source used. Addition of capability to produce and separate krypton ions at kinetic energies of 150 to 400 MeV necessary for simulation of worst-case ions occurring in outer space.

  13. Performance of the LBL ECR ion source

    SciTech Connect

    Lyneis, C.M.

    1984-10-01

    The LBL Electron Cyclotron Resonance (ECR) ion source in test operation since January 1984 has produced a wide variety of high charge state ion beams suitable for injection into the 88-Inch Cyclotron. Two recent developments have dramatically improved the capability of the ECR source. The first development was the production of metallic ions. The intensities of aluminum ions produced were 36, 22, 10, and .065 e..mu..A for charge states 6, 7, 8, and 11, respectively. Calcium ion intensities were 36, 31, 4.6, and 0.20 e..mu..A for charge states 8, 9, 12, and 14, respectively. The second development was the replacement of the sextupole magnet used in of all other high charge state ECR sources with an octupole structure. This modification resulted in a dramatic improvement in the intensities of the high charge state beams and a significant upward shift in the charge state distribution (C.S.D.). The ECR-octupole or OCTIGUN has produced 89, 52, 9, and 2.5 e..mu..A of Ar/sup 8,9,11,12+/ and 21, 10, and 0.34 e..mu..A of Kr/sup 10,14,18+/, respectively. For the high charge states of argon and krypton the improvement gained by using the octupole is typically a factor of 5 to 10.

  14. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  15. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barrow, Mark P.; Peru, Kerry M.; Fahlman, Brian; Hewitt, L. Mark; Frank, Richard A.; Headley, John V.

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  16. Bernas ion source discharge simulation.

    PubMed

    Roudskoy, I; Kulevoy, T V; Petrenko, S V; Kuibeda, R P; Seleznev, D N; Pershin, V I; Hershcovitch, A; Johnson, B M; Gushenets, V I; Oks, E M; Poole, H P

    2008-02-01

    As the technology and applications continue to grow up, the development of plasma and ion sources with clearly specified characteristic is required. Therefore comprehensive numerical studies at the project stage are the key point for ion implantation source manufacturing (especially for low energy implantation). Recently the most commonly encountered numerical approach is the Monte Carlo particle-in-cell (MCPIC) method also known as particle-in-cell method with Monte Carlo collisions. In ITEP the 2D3V numerical code PICSIS-2D realizing MCPIC method was developed in the framework of the joint research program. We present first results of the simulation for several materials interested in semiconductors. These results are compared with experimental data obtained at the ITEP ion source test bench.

  17. Bernas ion source discharge simulation

    SciTech Connect

    Roudskoy, I.; Kulevoy, T. V.; Petrenko, S. V.; Kuibeda, R. P.; Seleznev, D. N.; Pershin, V. I.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Poole, H. P.

    2008-02-15

    As the technology and applications continue to grow up, the development of plasma and ion sources with clearly specified characteristic is required. Therefore comprehensive numerical studies at the project stage are the key point for ion implantation source manufacturing (especially for low energy implantation). Recently the most commonly encountered numerical approach is the Monte Carlo particle-in-cell (MCPIC) method also known as particle-in-cell method with Monte Carlo collisions. In ITEP the 2D3V numerical code PICSIS-2D realizing MCPIC method was developed in the framework of the joint research program. We present first results of the simulation for several materials interested in semiconductors. These results are compared with experimental data obtained at the ITEP ion source test bench.

  18. Multi-source ion funnel

    DOEpatents

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  19. Survey of ion plating sources

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Ion plating is a plasma deposition technique where ions of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be ion plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gaseous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  20. Effect of frequency tuning on bremsstrahlung spectra, beam intensity, and shape in the 10 GHz NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Rodrigues, G. Mal, Kedar; Kumar, Narender; Lakshmy, P. S.; Mathur, Y.; Kumar, P.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2014-02-15

    Studies on the effect of the frequency tuning on the bremsstrahlung spectra, beam intensities, and beam shape of various ions have been carried out in the 10 GHz NANOGAN ECR ion source. The warm and cold components of the electrons were found to be directly correlated with beam intensity enhancement in case of Ar{sup 9+} but not so for O{sup 5+}. The warm electron component was, however, much smaller compared to the cold component. The effect of the fine tuning of the frequency on the bremsstrahlung spectrum, beam intensities and beam shape is presented.

  1. The DCU laser ion source

    SciTech Connect

    Yeates, P.; Costello, J. T.; Kennedy, E. T.

    2010-04-15

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I{approx}10{sup 8}-10{sup 11} W cm{sup -2}) and fluences (F=0.1-3.9 kJ cm{sup -2}) from a Q-switched ruby laser (full-width half-maximum pulse duration {approx}35 ns, {lambda}=694 nm) were used to generate a copper plasma. In ''basic operating mode,'' laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I{approx}600 {mu}A for Cu{sup +} to Cu{sup 3+} ions were recorded. The maximum collected charge reached 94 pC (Cu{sup 2+}). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a ''continuous einzel array'' were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at ''high pressure.'' In ''enhanced operating mode,'' peak currents of 3.26 mA (Cu{sup 2+}) were recorded. The collected currents of more highly charged ions (Cu{sup 4+}-Cu{sup 6+}) increased considerably

  2. The DCU laser ion source.

    PubMed

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation.

  3. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  4. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  5. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    SciTech Connect

    Liu, Yuan; Batchelder, Jon Charles; Galindo-Uribarri, Alfredo {nmn}; Stracener, Daniel W

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  6. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  7. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.

    2010-02-15

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  8. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    SciTech Connect

    Biri, S.; Rácz, R.; Sasaki, N.; Takasugi, W.

    2014-02-15

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1–18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1–18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  9. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    Biri, S.; Kitagawa, A.; Muramatsu, M.; Drentje, A. G.; Rácz, R.; Yano, K.; Kato, Y.; Sasaki, N.; Takasugi, W.

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  10. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  11. Status of ECR (Electron Cyclotron Resonance) source technology

    SciTech Connect

    Lyneis, C.M.

    1987-03-01

    ECR (Electron Cyclotron Resonance) ion sources are now in widespread use for the production of high quality multiply charged ion beams for accelerators and atomic physics experiments, and industrial applications are being explored. Several general characteristics of ECR sources explain their widespread acceptance. For use with cyclotrons which require CW multiply charged ion beams, the ECR source has many advantages over heavy-ion PIG sources. Most important is the ability to produce higher charge states at useful intensities for nuclear physics experiments. Since the maximum energy set by the bending limit of a cyclotron scales with the square of the charge state, the installation of ECR sources on cyclotrons has provided an economical path to raise the energy. Another characteristic of ECR sources is that the discharge is produced without cathodes, so that only the source material injected into an ECR source is consumed. As a result, ECR sources can be operated continuously for periods of weeks without interruption. Techniques have been developed in the last few years, which allow these sources to produce beams from solid materials. The beam emittance from ECR sources is in the range of 50 to 200 ..pi.. mm-mrad at 10 kV. The principles of ECR ion sources are discussed, and present and future ECR sources are reviewed.

  12. Cross-field potential hill arisen eccentrically in toroidal electron cyclotron resonance plasmas in the Low Aspect ratio Torus Experiment device to regulate electron and ion flows from source to boundary

    NASA Astrophysics Data System (ADS)

    Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi

    2015-07-01

    We have investigated the electron and ion flows in toroidal electron cyclotron resonance (ECR) plasmas maintained by a 2.45 GHz microwave power around 1 kW under a simple toroidal field in the low aspect ratio torus experiment (LATE) device. We have found that a vertically uniform ridge of electron pressure that also constitutes the source belt of electron impact ionization is formed along just lower field side of the ECR layer and a cross-field potential hill ({{V}S}\\cong 30 V while {{T}e}\\cong 10 eV), eccentrically shifted toward the corner formed by the top panel and the ECR layer, arises. Combination of the hill-driven E× B drift and the vertical drift due to the field gradient and curvature, being referred to as vacuum toroidal field (VTF) drift, realizes steady flows of electrons and ions from the source to the boundary. In particular, the ions, of which VTF drift velocity is much slower than the electron VTF drift velocity near the source belt, are carried by the E× B drift around the hill to the vicinity of the top panel, where the ion VTF drift is enhanced on the steep down slope of potential toward the top panel. On the other hand the electron temperature strongly decreases in this area. Thus the carrier of VTF drift current is replaced from the electrons to the ions before the top panel, enabling the current circulation through the top and bottom panels and the vessel (electrons mainly to the bottom and ions mainly to the top) that keeps the charge neutrality very high. A few percent of electrons from the source turn around the hill by 360 degree and reentry the source belt from the high field side as seed electrons for the impact ionization, keeping the discharge stable.

  13. ION SOURCE FOR A CALUTRON

    DOEpatents

    Backus, J.G.

    1957-12-24

    This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

  14. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  15. ION SOURCE FOR A CALUTRON

    DOEpatents

    Lofgren, E.J.

    1959-04-14

    This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.

  16. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  17. Ion effects on ionospheric electron resonance phenomena

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1974-01-01

    Ion effects are often observed on topside-sounder stimulated electron plasma wave phenomena. A commonly observed effect is a spur, appearing after a time delay corresponding to the proton gyro period, attached to the low frequency side of an electron plasma resonance. The spurs are often observed on the resonances at the electron plasma frequency f sub N, the harmonics nf sub H of the electron cyclotron frequency f sub H (n = 2, 3, 4, ...), and occasionally on the upper hybrid frequency. The spurs on the f sub N resonance are usually quite small unless the f sub N resonance overlaps with an nf sub H resonance; very large spurs are observed during such overlap conditions. Proton spurs are only observed on the nf sub H resonances when the electron plasma waves associated with these resonances are susceptible to the Harris instability and when the electromagnetic z wave can be initiated by the sounderpulse. This instability is the result of a sounder stimulated anisotropic electron velocity distribution. The observations suggest that energy is fed into the nf sub H longitudinal plasma wave from the z wave via wave-mode coupling. The magnitude of the nf sub H spurs for large n is much greater than for small n.

  18. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  19. Laser ion sources for highly charged ions (invited)

    NASA Astrophysics Data System (ADS)

    Sherwood, T. R.

    1992-04-01

    The development of laser ion sources is reviewed in the light of possible future requirement for highly charged ions at CERN. After the advent of high power Q-switched pulsed lasers in the 1960's, there were a number of proposals to use the laser produced plasma as sources of ions. Such ion sources have been constructed for a number of uses, and in particular, for injection of ions into particle accelerators. At CERN, a new test facility has recently started operation. Initial results indicate ion currents in excess of 5 mA for lead ions with charge state about 20.

  20. Optically pumped polarized ion sources

    SciTech Connect

    Anderson, L.W.

    1995-04-01

    Polarized negative hydrogen ions are produced in an optically pumped polarized ion source (OPPIS) as follows. A proton beam is extracted from an ECR ion source, accelerated to an energy of a few kilovolts, and focused into a parallel beam. The proton beam is passed through an optically pumped electron spin polarized alkali vapor target in a large magnetic field where the proton beam is partially neutralized by the pick-up of a polarized electron. The optically pumped alkali vapor target must be in a magnetic field large enough to decouple L and S in the n=2 level of atomic hydrogen so that the radiative decay to the ground level does not result in the loss of electron spin polarization. The large magnetic field also helps avoid radiation trapping limitations on the alkali density. The resulting fast atomic hydrogen beam passes through zero field where Sona transitions convert the electron spin polarization into nuclear spin polarization. The beam then is partially converted into polarized negative hydrogen ions in a sodium vapor target. At the present time the best dc OPPIS (at TRIUMF) produces 120 {mu}A with a polarization of 0.8. The best pulsed OPPIS (at INR in Moscow) produces 400 {mu}A. The use of OPPIS with deuterium has been pioneered at KEK in Japan. There is current research at TRIUMF on the possibility of using multiple spin/charge exchange collisions to increase the available current into the mA range, and there is current research at Osaka in the use of the technique with heavier ions such as helium.

  1. Nanobeam production with the multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Ji, Q.; Leung, K. N.; Zahir, N.

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne+, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe+ or Kr+ ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of ˜100 nm.

  2. Multicusp sources for ion beam projection lithography

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Vujic, J.; Williams, M. D.; Wutte, D.; Zahir, N.

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved.

  3. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  4. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    SciTech Connect

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  5. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    NASA Astrophysics Data System (ADS)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  6. New theoretical treatment of ion resonance phenomena.

    PubMed

    Vincze, G; Szasz, A; Liboff, A R

    2008-07-01

    Despite experimental evidence supporting ICR-like interactions in biological systems, to date there is no reasonable theoretical explanation for this phenomenon. The parametric resonance approach introduced by Lednev has enjoyed limited success in predicting the response as a function of the ratio of AC magnetic intensity to that of the DC field, explaining the results in terms of magnetically induced changes in the transition probability of calcium binding states. In the present work, we derive an expression for the velocity of a damped ion with arbitrary q/m under the influence of the Lorentz force. Series solutions to the differential equations reveal transient responses as well as resonance-like terms. One fascinating result is that the expressions for ionic drift velocity include a somewhat similar Bessel function dependence as was previously obtained for the transition probability in parametric resonance. However, in the present work, not only is there an explicit effect due to damping, but the previous Bessel dependence now occurs as a subset of a more general solution, including not only the magnetic field AC/DC ratio as an independent variable, but also the ratio of the cyclotronic frequency Omega to the applied AC frequency omega. In effect, this removes the necessity to explain the ICR interaction as stemming from ion-protein binding sites. We hypothesize that the selectively enhanced drift velocity predicted in this model can explain ICR-like phenomena as resulting from increased interaction probabilities in the vicinity of ion channel gates.

  7. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  8. Status of ion sources at National Institute of Radiological Sciences

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-15

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  9. Some plasma aspects and plasma diagnostics of ion sources.

    PubMed

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  10. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    PubMed

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  11. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  12. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  13. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  14. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  15. Laser ion source for isobaric heavy ion collider experiment

    SciTech Connect

    Kanesue, T. Okamura, M.; Kumaki, M.; Ikeda, S.

    2016-02-15

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is {sup 96}Ru + {sup 96}Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  16. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Lassen, Jens Teigelhöfer, Andrea

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  17. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  18. Design and fabrication of a superconducting magnet for an 18 GHz electron cyclotron resonance ion/photon source NFRI-ECRIPS

    SciTech Connect

    You, H.-J.; Jang, S.-W.; Jung, Y.-H.; Lho, T.-H.; Lee, S.-J.

    2012-02-15

    A superconducting magnet was designed and fabricated for an 18 GHz ECR ion/photon source, which will be installed at National Fusion Research Institute (NFRI) in South Korea. The magnetic system consists of a set of four superconducting coils for axial mirror field and 36 pieces of permanent magnets for hexapolar field. The superconducting coils with a cryocooler (1.5 W - 4.2 K) allow one to reach peak mirror fields of 2.2 T in the injection and those of 1.5 T in the extraction regions on the source axis, and the resultant hexapolar field gives 1.35 T on the plasma chamber wall. The unbalanced magnetic force between the coils and surrounding yoke has been minimized to 16 ton by a coil arrangement and their electrical connection, and then was successfully suspended by 12 strong thermal insulating supports made of large numbers of carbon fibers. In order to block radiative thermal losses, multilayer thermal insulations are covered on the coil windings as well as 40-K aluminum thermal shield. Also new schemes of quench detection and safety system (coil divisions, quench detection coils, and heaters) were employed. For impregnation of the windings a special epoxy has been selected and treated to have a higher breaking strength and a higher thermal conductivity, which enables the superconductors to be uniformly and rapidly cooled down or heated during a quench.

  19. Emittance improvement of the electron cyclotron resonance high intensity light ion source proton beam by gas injection in the low energy beam transport

    NASA Astrophysics Data System (ADS)

    Beauvais, P.-Y.; Ferdinand, R.; Gobin, R.; Lagniel, J. M.; Leroy, P.-A.; Celona, L.; Ciavola, G.; Gammino, S.; Pottin, B.; Sherman, J.

    2000-03-01

    SILHI is the ECR high intensity light ion source studied in France at C.E.A. Saclay. This is the source for the injector of the high intensity proton injector prototype developed by a CNRS-IN2P3 collaboration. 80 mA at 95 keV beams with a rms normalized r-r' emittance lower than 0.3 π mm mrad and a proton fraction better than 85% are currently produced. Recently, it has been found that the injection in the low energy beam transport of a buffer gas had a strong effect on the emittance measured 1 m downstream of the focusing solenoid. By adding several gases (H2, N2, Ar, Kr), improvements as great as a factor of 3 have been observed. The emittance has been measured by means of an r-r' emittance measurement unit equipped with a sampling hole and a wire profile monitor, both moving across the beam. Simultaneously, the space charge compensation factor is measured using a four-grid analyzer unit. In this article all results of these experiments are presented and discussed. A first explanation of the emittance reduction phenomenon and possible consequences on the injector operation is given.

  20. Ion heating and flows in a high power helicon source

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.

    2017-06-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.

  1. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  2. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  3. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Hattori, T.; Sugimoto, S.; Sasai, K.

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  4. Compact RF ion source for industrial electrostatic ion accelerator

    SciTech Connect

    Kwon, Hyeok-Jung Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  5. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  6. Simple, high current, antimony ion source.

    PubMed

    Sugiura, H

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 muA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6x10(-4) Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8x10(-9) and 1.8x10(11) cm(-3), respectively.

  7. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  8. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  9. Ion source for radioactive isotopes - IRIS ECR

    SciTech Connect

    Burke, J.T.; Freedman, S.J.; Lyneis, C.M.; Wutte, D.

    2001-01-01

    A compact electron cyclotron resonance ion source for radioactive isotopes (IRIS ECR) has been developed for the {sup 14}O experiment at the 88-Inch Cyclotron. The {sup 14}O experiment is a joint effort between the Nuclear Science Division's Weak Interaction Group and the 88-Inch Cyclotron ECR ion source group. The initial goal of the experimentalists is to measure {sup 14}O half-life and the shape of the beta decay spectrum. The 70 second half-life of {sup 14}O requires producing the isotope on-line at the 88-Inch Cyclotron. The {sup 14}O is generated in the form of {sup 12}C{sup 14}O in a high temperature carbon aerogel target using a 20 MeV {sup 3}He{sup +} beam from the LBNL 88-Inch Cyclotron via the reaction {sup 12}C({sup 3}He,n){sup 14}O. The {sup 14}O atoms are then separated from the other radioactive isotopes produced in the target and then implanted into a thin foil. The implanted target serves to minimize the radiation background and maximize the signal in the beta spectrometer by concentrating the{sup 14}O into a 5mm diameter spot. An 8 meter long stainless steel transfer line connects the target chamber to the IRIS ECR through a turbo molecular pump. The gas coming from the turbo pump is fed into the ion source and ionized, extracted at energies of 20 to 30 keV and mass separated by an analyzing magnet. The ion source started operation in spring 1999 and achieved a beam intensity of 3 x 10{sup 5} {sup 14}O{sup +} ions/second. Extensive developments on the production target were made to increase extraction efficiency of the {sup 14}O. A liquid nitrogen trap was installed between the ECR and the turbo pump to minimize the gas load to the ion source. An improved support gas injection system was installed so that multiple support gases can be introduced. A bias disk is used to stabilize the plasma. A quartz liner in the plasma chamber is used to reduce the hold-up time for oxygen and increase the overall ionization efficiency. The extraction system was

  10. Production and ion-ion cooling of highly charged ions in electron string ion source.

    PubMed

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  11. Laser ion source with solenoid field

    DOE PAGES

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; ...

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, whichmore » was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  12. Laser ion source with solenoid field

    NASA Astrophysics Data System (ADS)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  13. Laser ion source with solenoid field

    SciTech Connect

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  14. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  15. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  16. High-charge-state ion sources

    SciTech Connect

    Clark, D.J.

    1983-06-01

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed. (WHK)

  17. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  18. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  19. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  20. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  1. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  2. Multicharged iron ions produced by using induction heating vapor source.

    PubMed

    Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.

  3. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  4. Transverse coupling property of beam from ECR ion sources

    SciTech Connect

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  5. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  6. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  8. The ATLAS PII-ECR ion source project

    SciTech Connect

    Pardo, R.C.; Billquist, P.J.; Dey, J.E.

    1988-01-01

    The Argonne PII-ECR ion source has been operating for ten months. Beam development has proceeded well and has included the first beams from solid materials as well as gases. High voltage operation has been accomplished and beams to an atomic physics program have been provided for a total of four months. Problems with the high voltage transformer has limited run time at high voltage. A test of ion cyclotron resonance heating has occurred, demonstrating the possibility of selectively enhancing certain charge states in the extracted beam distributions. First beam from the Phase I Positive Ion Injector (PII) project is scheduled for February, 1989. 7 refs., 6 figs., 4 tabs.

  9. Negative Ion Confinement in the Multicusp Ion Source

    NASA Astrophysics Data System (ADS)

    Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood

    2010-04-01

    To optimize the negative ion source and generate intense beams of negative ions, understanding of transport properties of both electrons and negative ions is indispensable. Transport process of negative hydrogen ions (H-) in a multicusp H- source, has been simulated by three-dimensional Femlab simulation software. Multipolar plasma confinement is known to result in enhanced plasma density, homogeneous plasma of a large volume, and quiescent plasmas. The effect of plasma confinement by applying multi-polar magnetic field was investigated. Results are obtained for ten different configurations of permanent magnet and discussed. Full line cusps are found to give optimum plasma density. Negative ions created on the sidewall hardly can reach the center of the source due to trapping by the multicusp magnetic field. As a result, H- ions created on the sidewall do not have a significant effect on the H- current.

  10. Ion sources for energy extremes of ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Johnson, B. M.; Batalin, V. A.; Kropachev, G. N.; Kuibeda, R. P.; Kulevoy, T. V.; Kolomiets, A. A.; Pershin, V. I.; Petrenko, S. V.; Rudskoy, I.; Seleznev, D. N.; Bugaev, A. S.; Gushenets, V. I.; Litovko, I. V.; Oks, E. M.; Yushkov, G. Yu.; Masunov, E. S.; Polozov, S. M.; Poole, H. J; Storozhenko, P. A.

    2008-02-15

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P{sup 2+} [8.6 pmA (particle milliampere)], P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+}Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  11. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  12. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Megía-Macías, A.; Cortázar, O. D.; Vizcaíno-de-Julián, A.

    2014-03-01

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  13. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz electron cyclotron resonance plasma reactor.

    PubMed

    Megía-Macías, A; Cortázar, O D; Vizcaíno-de-Julián, A

    2014-03-01

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  14. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Ridgeway, Mark E; Wolff, Jeremy J; Silveira, Joshua A; Lin, Cheng; Costello, Catherine E; Park, Melvin A

    2016-09-01

    Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed "Gated TIMS" that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.

  15. Use of a duoplasmatron ion source for negative ion generation

    NASA Astrophysics Data System (ADS)

    Pillatsch, L.; Wirtz, T.; Migeon, H.-N.; Scherrer, H.

    2011-05-01

    The use of electronegative species as primary ions considerably enhances the emission of positive secondary ions in SIMS. Considering furthermore that negative primary ions can be required due to instrumental configurations (e.g. the Cameca NanoSIMS 50 requires an opposite polarity of the primary and secondary ions), O - ion bombardment is employed in SIMS analysis. These O - ions are typically created in a duoplasmatron source, which suffers however from its low brightness and which is thus not suited for high resolution imaging applications. The development of new (electro)negative ion sources is thus necessary to optimize the analysis of electropositive elements in terms of lateral resolution and sensitivity. In this paper, we present the performance of a duoplasmatron ion source generating F -, Cl -, Br - and I - ion beams. In particular, we experimentally determine on a dedicated test bench the brightness of the source in the F -, Cl -, Br - and I - modes as a function of the gas pressure, the magnetic field strength and the arc current in the source. The obtained results are compared to the performances of the duoplasmatron in the standard O - mode. In this context, a five times higher brightness was found for F - (200 A/cm 2 sr) compared to the standard O - (42 A/cm 2 sr).

  16. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  17. Inner Source Pickup Ions Observed by Ulysses

    NASA Astrophysics Data System (ADS)

    Gloeckler, G.

    2016-12-01

    The existence of an inner source of pickup ions close to the Sun was proposed in order to explain the unexpected discovery of C+ in the high-speed polar solar wind. Here I report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C+ intensity drops off with radial distance R as R-1.53, peaks at mid latitudes and drops to its lowest value in the ecliptic. Not only was C+ observed, but also N+, O+, Ne+, Na+, Mg+, Ar+, S+, K+, CH+, NH+, OH+, H2O+, H3O+, MgH+, HCN+, C2H4+, SO+ and many other singly-charged heavy ions and molecular ions. The measured velocity distributions of inner source pickup C+ and O+ indicate that these inner source pickup ions are most likely produced by charge exchange, photoionization and electron impact ionization of neutrals close to the Sun (within 10 to 30 solar radii). Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions as well as plausible production mechanisms for inner source pickup ions will be discussed.

  18. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  19. ECR Ion Source for a High-Brightness Cyclotron

    NASA Astrophysics Data System (ADS)

    Comeaux, Justin; McIntyre, Peter; Assadi, Saeed

    2011-10-01

    New technology is being developed for high-brightness, high-current cyclotrons with performance benefits for accelerator-driven subcritical fission power, medical isotope production, and proton beam cancer therapy. This paper describes the design for a 65 kV electron cyclotron resonance (ECR) ion source that will provide high-brightness beam for injection into the cyclotron. The ion source is modeled closely upon the one that is used at the Paul Scherrer Institute. Modifications are being made to provide enhanced brightness and compatibility for higher-current operation.

  20. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  1. Peltier Refrigerators for Molecular Ion Sources

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2008-11-01

    Molecular ion sources have been considered for various applications. In particular, there is considerable effort to develop decaborane and octadecaborane ion sources for the semiconductor industry. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. These problems associated with lower energy ion beams limit implanter ion currents, thus leading to low production rates. One way to tackle the space charge problem is to use singly charged molecular ions. A crucial aspect in generating large molecular ion beam currents is ion source temperature control. Peltier coolers, which have in the past successfully utilized in BaF2 and CSI gamma ray detectors, may be ideal for this application. Clogging prevention of molecular ion sources is also a hurdle, which was overcome with special slots. Both topics are to be presented.

  2. Primary ion sources for EBIS devices

    SciTech Connect

    Keller, R. )

    1989-06-01

    The ion-optical conditions for primary ion sources that could be installed in an EBIS injector are derived, assuming a realistic set of fixed parameters to be imposed by the EBIS. It is shown how these requirements may be met, and that beam currents of up to 2 mA can be generated with the postulated emittance. This derivation, even though carried out for one specific case, gives general guide lines how to proceede for other conditions as well. In the second part, different types of ion sources are presented that are likely candidates for EBIS injector sources. Beam current examples are given and the basic features of the sources discussed. The emphasis of this paper is put on the reliable production of ion beams, rather than attempting to furnish a representative cross section of the existing ion source varieties.

  3. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  4. Radio frequency multicusp ion source development (invited)

    SciTech Connect

    Leung, K.N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H{sup {minus}} beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory. {copyright} {ital 1996 American Institute of Physics.}

  5. Performance of an inverted ion source

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-01

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an "inverted ion source." This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  6. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  7. Development of ion beams for space effects testing using an ECR ion source

    NASA Astrophysics Data System (ADS)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry

    2013-04-01

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide "cocktails", a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  8. Development of ion beams for space effects testing using an ECR ion source

    SciTech Connect

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  9. Polarized 3He− ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, Vasiliy; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He− ion source. This report discusses a polarized 3He− ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He− ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He− ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He− beam polarization of 90% can be achieved. Such a method of polarized 3He− production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He− ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of 3He− ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He− ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge

  10. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  11. Electron string ion sources for carbon ion cancer therapy accelerators

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  12. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons.

  13. Cold atomic beam ion source for focused ion beam applications

    NASA Astrophysics Data System (ADS)

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-01

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 107 A m-2 sr-1 eV-1 and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 107 A m-2 sr-1 eV-1. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  14. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  15. Observation of a shape resonance of the positronium negative ion

    PubMed Central

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-01-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps− (e−e+e−). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps−, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496

  16. Negative Decaborane Ion Beam from ITEP Bernas Ion Source

    SciTech Connect

    Petrenko, S. V.; Kuibeda, R. P.; Kulevoy, T. V.; Batalin, V. A.; Pershin, V. I.; Koslov, A. V.; Stasevich, Yu. B.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Oks, E. M.; Gushenets, V. I.; Poole, H. J.

    2007-08-10

    A joint research and development effort focusing on the design of steady state, intense ion sources has been in progress for the past two and a half years with a couple of Russian institutions. The ultimate goal of the effort is to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of higher charge state antimony and phosphorous ions to meet high-energy implantation requirements. For low energy ion implantation, R and D efforts have involved molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive decaborane ions were extracted at 10 keV and a smaller current of negative decaborane ions were also extracted. Though of scientific interest, negative decaborane ions did not attract interest from industry, since the semiconductor ion implant industry seems to have solved the wafer-charging problem. This paper describes conditions under which negative decaborane ions are formed and extracted from a Bernas ion source.

  17. The MEVVA ion source for high current metal ion implantation

    NASA Astrophysics Data System (ADS)

    Brown, Ian; Washburn, Jack

    The MEVVA (Metal Vapor Vacuum Arc) ion source is a new kind of source which can produce high current beams of metal ions. Beams of a wide range of elements have been produced, spanning the periodic table from lithium up to and including uranium. The source extraction voltage is up to 60 kV, and we are increasing this up to 120 kV. A total ion beam current of over 1 A has been extracted from the present embodiment of the concept, and this is not an inherent limit. The ion charge state distribution varies with cathode material and are current, and beams like Li +, Co +.2+.3+ and U 3+.4+.5+.6+ for example, are typical; thus the implantation energy can be up to several hundred kV without additional acceleration. The ion source has potential applications for ion implantation and ion beam mixing for achievement of improved corrosion resistance or wear resistance in metals or surface modification of ceramic materials and semiconductors. Here we outline the source and its performance, and describe some very preliminary implantation work using this source.

  18. Nuclear Resonance Fluorescence Using Different Photon Sources

    SciTech Connect

    Warren, Glen A.; Caggiano, Joseph A.; Ahmed, Mohammad; Bertozzi, William; Hunt, Alan W.; Johnson, James; Jones, James L.; Korbly, Steve; Reedy, Edward; Seipel, Heather; Stave, Sean; Watson, Scott; Weller, Henry

    2008-11-14

    Abstract–Nuclear resonance fluorescence (NRF) is a photon-based active interrogation approach that provides isotope-specific signatures that can be used to detect and characterize samples. As NRF systems are designed to address specific appli¬cations, an obvious first question to address is the type of photon source to be employed for the application. Our collaboration has conducted a series of NRF measurements using different photon sources to begin to examine this issue. The measurements were designed to be as similar as possible to facilitate a straightforward comparison of the different sources. Measurements were conducted with a high-duty factor electron accelerator using bremsstrahlung photons, with a pulsed linear accelerator using bremsstrahlung photons, and with a narrow bandwidth photon source using Compton backscattered photons. We present our observations on the advantages and disadvantages of each photon source type. Issues such as signal rate, the signal-to-noise ratio, and absorbed dose are discussed.

  19. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    NASA Astrophysics Data System (ADS)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  20. Proceedings of the 10th international workshop on ECR ion sources

    SciTech Connect

    Meyer, F W; Kirkpatrick, M I

    1991-01-01

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.

  1. Ion source studies for particle beam accelerators

    SciTech Connect

    Bieg, K.W.; Burns, E.J.T.; Olsen, J.N.; Dorrell, L.R.

    1985-05-01

    High power particle beam accelerators are being developed for use in inertial confinement fusion applications. These pulsed power accelerators require sources of low atomic number ions (e.g., protons, deuterons, carbon, or lithium). The sources must be of high purity for efficient accelerator operation and proper target coupling, must have a rapid ''turn-on,'' and must be compatible with ion diode configurations under development. A particular type of source presently being investigated is the flashover ion source which generates ions by means of the vacuum flashover of an insulating anode material when the high voltage pulse arrives at the diode. We have developed an applied-magnetic-field, extraction ion diode for the 0.03 TW Nereus accelerator specifically to investigate these sources. Extracted ion species are measured by means of a Thomson-parabola ion analyzer, dB/dt current monitors, and Faraday cups. Experiments have been performed to investigate the surface flashover mechanism and the effects of various dielectric source materials, anode preparation methods (including rf glow discharge cleaning), and vacuum conditions on ion species and diode operation.

  2. Thirty-centimeter-diameter ion milling source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1978-01-01

    A 30-cm beam diameter ion source has been designed and fabricated for micromachining and sputtering applications. An argon ion current density of 1 mA/cu cm at 500 eV ion energy was selected as a design operating condition. The completed ion source met the design criteria at this operating condition with a uniform and well-collimated beam having an average variation in current density of + or - 5% over the center of 20 cm of the beam. This ion source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. Langmuir probe surveys of the source plasma support the design concepts of a multipole field and a circumferential cathode to enhance plasma uniformity.

  3. Beam emittance measurements on multicusp ion sources

    NASA Astrophysics Data System (ADS)

    Sarstedt, M.; Lee, Y.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Weber, M.; Williams, M. D.

    1996-03-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source is planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of a rf-generated plasma.

  4. Thirty-centimeter-diameter ion milling source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1978-01-01

    A 30-cm beam diameter ion source has been designed and fabricated for micromachining and sputtering applications. An argon ion current density of 1 mA/cu cm at 500 eV ion energy was selected as a design operating condition. The completed ion source met the design criteria at this operating condition with a uniform and well-collimated beam having an average variation in current density of + or - 5% over the center of 20 cm of the beam. This ion source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. Langmuir probe surveys of the source plasma support the design concepts of a multipole field and a circumferential cathode to enhance plasma uniformity.

  5. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The design of broad-beam industrial ion sources is described. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, cathodes, and magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. There are other ways of designing most ion source components, but the designs presented are representative of current technology and adaptable to a wide range of configurations.

  6. Inert gas ion source program

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1978-01-01

    THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.

  7. An ion-optical bench for testing ion source lenses

    NASA Astrophysics Data System (ADS)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  8. Laser plasma as an effective ion source

    NASA Astrophysics Data System (ADS)

    Masek, Karel; Krasa, Josef; Laska, Leos; Pfeifer, Miroslav; Rohlena, Karel; Kralikova, Bozena; Skala, Jiri; Woryna, Eugeniusz; Farny, J.; Parys, Piotr; Wolowski, Jerzy; Mraz, W.; Haseroth, H.; Sharkov, B.; Korschinek, G.

    1998-09-01

    Ions in different charge state and with different energy distribution are generated in the process of interaction of intense laser radiation with solid targets. Multiply charged ions of medium- and high-Z elements (Al, Co, Ni, Cu, Sn, Ta, W, Pt, Au, Pb, Bi), produced by photodissociation iodine laser system PERUN ((lambda) equals 1.315 micrometer, EL approximately 40 J, (tau) approximately 500 ps) are reported. Corpuscular diagnostics based on time-of-flight method (ion collectors and a cylindrical electrostatic ion energy analyzer) as well as Thomson parabola spectrometer were used in the experiments. The ions in maximum charge state up to about 55+ and with energies of several MeV were registered at a distance of about 2 m from the plasma plume. Measured ion current densities higher than 10 mA/cm2 in about 1 m from the target demonstrate the performance of laser ion source. A theoretical interpretation of ion spectra is attempted.

  9. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    SciTech Connect

    Winklehner, D.; Leitner, D. Cole, D.; Machicoane, G.; Tobos, L.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  10. Injected 1+ ion beam as a diagnostics tool of charge breeder ECR ion source plasmas

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Lamy, T.; Angot, J.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Choinski, J.; Standylo, L.; Galatà, A.; Patti, G.; Koivisto, H.

    2015-06-01

    Charge breeder electron cyclotron resonance ion sources (CB-ECRIS) are used as 1+  →n+  charge multiplication devices of post-accelerated radioactive ion beams. The charge breeding process involves thermalization of the injected 1+  ions with the plasma ions in ion-ion collisions, subsequent ionization by electron impact and extraction of the n+  ions. Charge breeding experiments of 85Rb and 133Cs ion beams with the 14.5 GHz PHOENIX CB-ECRIS operating with oxygen gas demonstrate the plasma diagnostics capabilities of the 1+  injection method. Two populations can be distinguished in the m/q-spectrum of the extracted ion beams, the low (1+  and 2+) charge states representing the uncaptured fraction of the incident 1+  ion beam and the high charge states that have been captured in ion-ion collisions and subsequently charge bred through electron impact ionization. Identification of the uncaptured fraction of the 1+  ions allows estimating the lower limit of ion-ion collision frequency of various charge states in the ECRIS plasma. The collision frequencies of highly charged ions (˜107 Hz) are shown to exceed their gyrofrequencies (˜106 Hz) at least by an order of magnitude, which implies that the dynamics of high charge state ions are dictated by magnetically confined electrons and ambipolar diffusion and only low charge state ions can be considered magnetized. Furthermore, it is concluded that the plasma density of the ECRIS charge breeder is most likely on the order of 1011 cm-3 i.e. well below the critical density for 14.5 GHz microwaves.

  11. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  12. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  13. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  14. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  15. Development of a compact ECR ion source for various ion production

    SciTech Connect

    Muramatsu, M. Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Kitagawa, A.; Takahashi, N.; Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T.; Uchida, T.; Yoshida, Y.; Hagino, S.; Nishiokada, T.; Kato, Y.

    2016-02-15

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  16. Development of a compact ECR ion source for various ion production

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Takahashi, N.; Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T.; Uchida, T.; Yoshida, Y.; Hagino, S.; Nishiokada, T.; Kato, Y.; Kitagawa, A.

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  17. Sources of polyatomic ions of organic liquids.

    PubMed

    Takaoka, G H; Takeuchi, M; Ryuto, H

    2010-02-01

    We have developed two types of liquid ion sources, one of which was a polyatomic ion source using liquid organic materials with a high-vapor pressure. Liquid materials such as octane and ethanol could be heated up to a maximum temperature of 100 degrees C, and the vapors were introduced into an ion source. They were ionized by an electron bombardment method and extracted from the ionizer. The ion current obtained at an extraction voltage of 2 kV was 230 microA for octane and several fragment ions such as alkyl ions were produced. On the other hand, another type of polyatomic ion source using alkyl naphthalene mixed with ionic liquid such as imidazolium dicyanamide has been developed. Instead of the electron bombardment method, a high-electric field method was used for the ion-emission from a sharp tip, because the vapor pressure of the liquid materials was relatively low. The threshold voltage was approximately 4.5 kV and the ion current of approximately 250 nA was obtained at an extraction voltage of 9.5 kV.

  18. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  19. Development of a microwave ion source for ion implantations

    SciTech Connect

    Takahashi, N. Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  20. Development of a microwave ion source for ion implantations

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-01

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P+ beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P+ beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH3 gas.

  1. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  2. ION SOURCE (R.F. INDUCTION TYPE)

    DOEpatents

    Mills, C.B.

    1963-04-01

    A method is given for producing energetic ions by ionizing a gas with an oscillating electric field which is parallel to a confining magnetic field, then reorienting the fields perpendicular to each other to accelerate the ions to higher energies. An ion source is described wherein a secondary coil threads the bottom of a rectangular ionization chamber and induces an oscillating field parallel to a fixed intense magnetic field through the chamber. (AEC)

  3. A negative ion source test facility

    NASA Astrophysics Data System (ADS)

    Melanson, S.; Dehnel, M.; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Philpott, C.; Stewart, T.; Jackle, P.; Williams, P.; Brown, S.; Jones, T.; Coad, B.; Withington, S.

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  4. A negative ion source test facility.

    PubMed

    Melanson, S; Dehnel, M; Potkins, D; Theroux, J; Hollinger, C; Martin, J; Philpott, C; Stewart, T; Jackle, P; Williams, P; Brown, S; Jones, T; Coad, B; Withington, S

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  5. A negative ion source test facility

    SciTech Connect

    Melanson, S.; Dehnel, M. Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S.; Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B.

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  6. An advanced negative hydrogen ion source

    SciTech Connect

    Goncharov, Alexey A. Dobrovolsky, Andrey N.; Goretskii, Victor P.

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  7. Comparison of particle-in-cell simulation with experiment for the transport system of the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, D.S.; Leitner, D.; Leitner, M.; Lyneis, C.M.; Qiang, J.; Grote, D.P.

    2006-03-15

    The three-dimensional, particle-in-cell code WARP has been enhanced to allow end-to-end beam dynamics simulations of the VENUS beam transport system from the extraction region, through a mass-analyzing magnet, and up to a two-axis emittance scanner. This article presents the first results of comparisons between the simulation and experimental data. A helium beam (He{sup +} and He{sup 2+}) is chosen as an initial comparison beam due to its simple mass spectrum. Although a number of simplifications are made for the initial extracted beam, aberration characteristics appear in simulations that are also present in experimental phase-space current-density measurements. Further, measurements of phase-space tilt indicate that simulations must have little or no space-charge neutralization along the transport system to best agree with experiment. In addition, recent measurements of triangular beam structure immediately after the source are presented. This beam structure is related to the source magnetic confinement fields and will need to be taken into account as the initial beam approximations are lifted.

  8. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  9. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  10. Molecular ion sources for low energy semiconductor ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.; Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Dugin, S.; Alexeyenko, O.

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  11. Laser generated neutron source for neutron resonance spectroscopy

    SciTech Connect

    Higginson, D. P.; Bartal, T.; McNaney, J. M.; Swift, D. C.; Hey, D. S.; Le Pape, S.; Mackinnon, A.; Kodama, R.; Tanaka, K. A.; Mariscal, D.; Beg, F. N.; Nakamura, H.; Nakanii, N.

    2010-10-15

    A neutron source for neutron resonance spectroscopy has been developed using high-intensity, short-pulse lasers. This technique will allow robust measurement of interior ion temperature of laser-shocked materials and provide insight into material equation of state. The neutron generation technique uses laser-accelerated protons to create neutrons in LiF through (p,n) reactions. The incident proton beam has been diagnosed using radiochromic film. This distribution is used as the input for a (p,n) neutron prediction code which is validated with experimentally measured neutron yields. The calculation infers a total fluence of 1.8x10{sup 9} neutrons, which are expected to be sufficient for neutron resonance spectroscopy temperature measurements.

  12. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  13. Recent Development of IMP ECR Ion Sources

    SciTech Connect

    Zhao, H.W.; Zhang, Z.M.; Sun, L.T.; Cao, Y.; He, W.; Zhang, X.Z.; Guo, X.H.; Ma, L.; Yuan, P.; Song, M.T.; Zhan, W.L.; Wei, B.W.

    2005-03-15

    Great efforts have been made to develop highly charged ECR ion sources for application of heavy ion accelerator and atomic physics research at IMP in the past few years. The latest development of ECR ion sources at IMP is briefly reviewed. Intense beams with high and intermediate charge states have been produced from IMP LECR3 by optimization of the ion source conditions including rf frequency extended up to 18GHz. 1.1 emA of Ar8+ and 325 e{mu} A of Ar11+ were produced. Dependence of beam emittance on those key parameters of ECR ion source, beam extraction and space charge compensation were experimentally studied at LECR3. Furthermore, an advanced superconducting ECR ion source named SECRAL is being constructed. SECRAL is designed to operate at rf frequency 18-28GHz with axial mirror magnetic fields 3.6-4.0 Tesla at injection, 2.2 Tesla at extraction and sextupole field 2.0 Tesla at the wall. The superconducting magnet with sextupole and three solenoids was tested in a test-cryostat and 95% of designed fields were reached. Construction status and planed schedule of SECRAL are presented.

  14. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  15. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  16. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications.

    PubMed

    Belykh, S F; Palitsin, V V; Veryovkin, I V; Kovarsky, A P; Chang, R J H; Adriaens, A; Dowsett, M G; Adams, F

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si(n)(-) and Cu(n)(-). Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  17. Mode conversion of fast Alfvén waves at the ion-ion hybrid resonance

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Bers, A.; Schultz, S. D.; Fuchs, V.

    1996-05-01

    Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion-ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvén waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvén waves in the immediate vicinity of the ion-ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvén waves on the high magnetic-field side of the ion-ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvén wave power incident on the ion-ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvén waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion-ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvén waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters.

  18. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  19. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  20. High Current Ion Source Development for Heavy Ion Fusion

    SciTech Connect

    Westenskow, G A; Grote, D P; Kwan, J W

    2003-09-04

    We are developing high-current-density high-brightness sources for Heavy Ion Fusion applications. Heavy ion driven inertial fusion requires beams of high brightness in order to achieve high power density at the target for high target gain. At present, there are no existing ion source types that can readily meet all the driver HIF requirements, though sources exist which are adequate for present experiments and which with further development may achieve driver requirements. Our two major efforts have been on alumino-silicate sources and RF plasma sources. Experiments being performed on a 10-cm alumino-silicate source are described. To obtain a compact system for a HIF driver we are studying RF plasma sources where low current beamlets are combined to produce a high current beam. A 80-kV 20-{micro}s source has produced up to 5 mA of Ar{sup +} in a single beamlet. The extraction current density was 100 mA/cm{sup 2}. We present measurements of the extracted current density as a function of RF power and gas pressure, current density uniformity, emittance, and energy dispersion (due to charge exchange).