DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, D.M.; Gerald, R.E.; Cody, G.D.
1997-04-01
Magnetic resonance microscopy (MRM) techniques have been employed to study the molecular architectures and properties of structural polymers, fossil fuels, microporous carbons and inorganic catalysts.
A combined confocal and magnetic resonance microscope for biological studies
NASA Astrophysics Data System (ADS)
Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Holtom, Gary R.; Hopkins, Derek F.; Parkinson, Christopher I.; Weber, Thomas J.; Wind, Robert A.
2002-12-01
Complementary data acquired with different microscopy techniques provide a basis for establishing a more comprehensive understanding of cell function in health and disease, particularly when results acquired with different methodologies can be correlated in time and space. In this article, a novel microscope is described for studying live cells simultaneously with both confocal scanning laser fluorescence optical microscopy and magnetic resonance microscopy. The various design considerations necessary for integrating these two complementary techniques are discussed, the layout and specifications of the instrument are given, and examples of confocal and magnetic resonance images of large frog cells and model tumor spheroids obtained with the compound microscope are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourne, Roger
2013-03-15
This commentary outlines how magnetic resonance imaging (MRI) microscopy studies of prostate tissue samples and whole organs have shed light on a number of clinical imaging mysteries and may enable more effective development of new clinical imaging methods.
NASA Astrophysics Data System (ADS)
Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert
2012-11-01
Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.
Ryan Wagner; Robert J. Moon; Arvind Raman
2016-01-01
Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
A mechanically tunable and efficient ceramic probe for MR-microscopy at 17 Tesla
NASA Astrophysics Data System (ADS)
Kurdjumov, Sergei; Glybovski, Stanislav; Hurshkainen, Anna; Webb, Andrew; Abdeddaim, Redha; Ciobanu, Luisa; Melchakova, Irina; Belov, Pavel
2017-09-01
In this contribution we propose and study numerically a new probe (radiofrequency coil) for magnetic resonance mi-croscopy in the field of 17T. The probe is based on two coupled donut resonators made of a high-permittivity and low-loss ceramics excited by a non-resonant inductively coupled loop attached to a coaxial cable. By full-wave numerical simulation it was shown that the probe can be precisely tuned to the Larmor frequency of protons (723 MHz) by adjusting a gap between the two resonators. Moreover, the impedance of the probe can be matched by varying the distance from one of the resonators to the loop. As a result, a compact and mechanically tunable resonant probe was demonstrated for 17 Tesla applications using no lumped capacitors for tuning and matching. The new probe was numerically compared to a conventional solenoidal probe showing better efficiency.
Magnetic Resonance Microscopy of the Lung
NASA Astrophysics Data System (ADS)
Johnson, G. Allan
1999-11-01
The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger
2015-08-01
Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.
Ramachandran, Gayathri
2017-01-01
Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.
Detection of internal fields in double-metal terahertz resonators
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...
2017-02-06
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico
2015-10-01
Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Contact resonance atomic force microscopy imaging in air and water using photothermal excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil
2015-08-15
Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.
Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I
2001-03-26
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.
Magnetic resonance investigation of magnetic-labeled baker's yeast cells
NASA Astrophysics Data System (ADS)
Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.
2004-05-01
In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.
Ultrafast photon counting applied to resonant scanning STED microscopy.
Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong
2015-01-01
To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Resonant tunneling through electronic trapping states in thin MgO magnetic junctions.
Teixeira, J M; Ventura, J; Araujo, J P; Sousa, J B; Wisniowski, P; Cardoso, S; Freitas, P P
2011-05-13
We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.
Center for Cement Composite Materials
1990-01-31
metal-oxygen structures G. Kordas MSE-Ceramics Electron paramagnetic resonance W. M. Kriven MSE-Ceramics Electron microscopy Microstructural...SPONSORING iSb. OFFICE SYMBOL 9. PROWIREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) C S(2is _ _ _- r_,__’ Contract F49620-87-C...novel in-situ technique involving nuclear magnetic resonance . Fiber- matrix interactions in MDF laminates were also studied. Characterization of DSP
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Pure optical photoacoustic microscopy
Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding
2011-01-01
The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution. PMID:21643156
Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco
2017-05-04
Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Langasite as a piezoelectric material for near-field microscopy resonant cantilevers.
Douchet, Gabrielle; Sthal, Fabrice; Leblois, Thérèse; Bigler, Emmanuel
2010-11-01
Quartz length-extension resonators have already been used to obtain atomically-resolved images by frequency-modulation atomic force microscopy. Other piezoelectric materials such as gallium orthophosphate (GaPO(4)), langatate (LGT), and langasite (LGS) could be appropriate for this application. In this paper, the advantages of langasite crystal are presented and the fabrication of similar microsensors in langasite temperature-compensated cuts by chemical etching is proved. A monolithic length extension resonator, with a tip at its end, is obtained which constitutes a real advantage in regard to the existing quartz devices.
Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica
Radecki, Guillaume; Nargeot, Romuald; Jelescu, Ileana Ozana; Le Bihan, Denis; Ciobanu, Luisa
2014-01-01
In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn2+ concentrations. We establish that Mn2+ accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus. We also show that we can distinguish between neuronal activities elicited by different types of stimuli. This method opens up a new avenue into probing the functional organization and plasticity of neuronal networks involved in goal-directed behaviors with single-cell resolution. PMID:24872449
Thali, M J; Dirnhofer, R; Becker, R; Oliver, W; Potter, K
2004-10-01
The study aimed to validate magnetic resonance microscopy (MRM) studies of forensic tissue specimens (skin samples with electric injury patterns) against the results from routine histology. Computed tomography and magnetic resonance imaging are fast becoming important tools in clinical and forensic pathology. This study is the first forensic application of MRM to the analysis of electric injury patterns in human skin. Three-dimensional high-resolution MRM images of fixed skin specimens provided a complete 3D view of the damaged tissues at the site of an electric injury as well as in neighboring tissues, consistent with histologic findings. The image intensity of the dermal layer in T2-weighted MRM images was reduced in the central zone due to carbonization or coagulation necrosis and increased in the intermediate zone because of dermal edema. A subjacent blood vessel with an intravascular occlusion supports the hypothesis that current traveled through the vascular system before arcing to ground. High-resolution imaging offers a noninvasive alternative to conventional histology in forensic wound analysis and can be used to perform 3D virtual histology.
Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.
Lumdee, Chatdanai; Toroghi, Seyfollah; Kik, Pieter G
2012-07-24
Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield microscopy reveals ring-shaped scattering images from individual Au nanoparticles, indicative of plasmon resonances with a dipole moment normal to the substrate. Single particle scattering spectra show narrow plasmon resonances that can be tuned from ~580 to ~550 nm as the anodization voltage increases to 12 V. All observed experimental trends could be reproduced in numerical simulations. The presented approach could be used as a general postfabrication resonance optimization step of plasmonic nanoantennas and devices.
Resonant antenna probes for tip-enhanced infrared near-field microscopy.
Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer
2013-03-13
We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.
High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy
2013-12-12
Micron- Size Ferromagnet . Physical Review Letters, 92(3) 037205 (2004) [22] A. Z. Genack and A. G. Redeld. Theory of nuclear spin diusion in a...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated
Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.
Donaldson, Paul M; Kelley, Chris S; Frogley, Mark D; Filik, Jacob; Wehbe, Katia; Cinque, Gianfelice
2016-02-08
In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.
NASA Astrophysics Data System (ADS)
Li, Tao; Zeng, Kaiyang
2014-01-01
The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05292c
Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.
Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai
2015-05-01
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.
A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics.
Mikhailovskaya, Anna A; Shchelokova, Alena V; Dobrykh, Dmitry A; Sushkov, Ivan V; Slobozhanyuk, Alexey P; Webb, Andrew
2018-06-01
Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM 11 ). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design. Copyright © 2018 Elsevier Inc. All rights reserved.
A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics
NASA Astrophysics Data System (ADS)
Mikhailovskaya, Anna A.; Shchelokova, Alena V.; Dobrykh, Dmitry A.; Sushkov, Ivan V.; Slobozhanyuk, Alexey P.; Webb, Andrew
2018-06-01
Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM11). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design.
Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter
2010-01-01
Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836
Limits to magnetic resonance microscopy
NASA Astrophysics Data System (ADS)
Glover, Paul; Mansfield, Peter, Sir
2002-10-01
The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.
Force-detected nuclear magnetic resonance: recent advances and future challenges.
Poggio, M; Degen, C L
2010-08-27
We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei.
Lee, Choong H; Bengtsson, Niclas; Chrzanowski, Stephen M; Flint, Jeremy J; Walter, Glenn A; Blackband, Stephen J
2017-01-03
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies.
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei
Lee, Choong H.; Bengtsson, Niclas; Chrzanowski, Stephen M.; Flint, Jeremy J.; Walter, Glenn A.; Blackband, Stephen J.
2017-01-01
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies. PMID:28045071
Microcavity surface plasmon resonance bio-sensors
NASA Astrophysics Data System (ADS)
Mosavian, Nazanin
This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.
Frank, Joachim; Gonzalez, Ruben L.
2015-01-01
At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describes transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy and single-molecule fluorescence resonance energy transfer studies of the bacterial ribosomal pretranslocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pretranslocation complex, which are observed in a cryogenic electron microscopy study, may not be observed in several single-molecule fluorescence resonance energy transfer studies. PMID:25785884
Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish
2015-08-27
At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.
Fu, Zhenrong; Lin, Lan; Tian, Miao; Wang, Jingxuan; Zhang, Baiwen; Chu, Pingping; Li, Shaowu; Pathan, Muhammad Mohsin; Deng, Yulin; Wu, Shuicai
2017-11-01
The development of genetically engineered mouse models for neuronal diseases and behavioural disorders have generated a growing need for small animal imaging. High-resolution magnetic resonance microscopy (MRM) provides powerful capabilities for noninvasive studies of mouse brains, while avoiding some limits associated with the histological procedures. Quantitative comparison of structural images is a critical step in brain imaging analysis, which highly relies on the performance of image registration techniques. Nowadays, there is a mushrooming growth of human brain registration algorithms, while fine-tuning of those algorithms for mouse brain MRMs is rarely addressed. Because of their topology preservation property and outstanding performance in human studies, diffeomorphic transformations have become popular in computational anatomy. In this study, we specially tuned five diffeomorphic image registration algorithms [DARTEL, geodesic shooting, diffeo-demons, SyN (Greedy-SyN and geodesic-SyN)] for mouse brain MRMs and evaluated their performance using three measures [volume overlap percentage (VOP), residual intensity error (RIE) and surface concordance ratio (SCR)]. Geodesic-SyN performed significantly better than the other methods according to all three different measures. These findings are important for the studies on structural brain changes that may occur in wild-type and transgenic mouse brains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Rohlfing, Torsten; Schaupp, Frank; Haddad, Daniel; Brandt, Robert; Haase, Axel; Menzel, Randolf; Maurer, Calvin R
2005-01-01
Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.
Continuous monitoring of dough fermentation and bread baking by magnetic resonance microscopy.
Bajd, Franci; Serša, Igor
2011-04-01
The consumer quality of baked products is closely related with dough structure properties. These are developed during dough fermentation and finalized during its baking. In this study, magnetic resonance microscopy (MRM) was employed in a study of dough fermentation and baking. A small hot air oven was installed inside a 2.35-T horizontal bore superconducting magnet. Four different samples of commercial bread mixes for home baking were used to prepare small samples of dough that were inserted in the oven and allowed to rise at 33 °C for 112 min; this was followed by baking at 180 °C for 49 min. The entire process was followed by dynamic T(1)-weighted 3D magnetic resonance imaging with 7 min of temporal resolution and 0.23×0.23×1.5 mm(3) of spatial resolution. Acquired images were analyzed to determine time courses of dough pore distribution, dough volume and bread crust thickness. Image analysis showed that both the number of dough pores and the normalized dough volume increased in a sigmoid-like fashion during fermentation and decreased during baking due to the bread crust formation. The presented magnetic resonance method was found to be efficient in analysis of dough structure properties and in discrimination between different dough types. Copyright © 2011 Elsevier Inc. All rights reserved.
Synthesis and properties of silver nanoparticles in sodium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Patwari, D. Rajeshree; Eraiah, B.
2018-04-01
Rare earth doped Sodium Bismuth Borate glass samples with silver chloride were prepared by melt quenching method. X-Ray diffraction pattern was used to confirm the amorphous nature of the samples. UV-Visible Spectra was recorded to study the optical properties. Surface plasmon resonance (SPR) peak was observed due to the formation of silver nanoparticles before and after heat treatment and the presence of silver nanoparticles were confirmed by UV-Visible Spectral studies and transmission electron microscopy. The surface plasmon resonance band became wider and red shifted after longer heat treatment.
Single-spin stochastic optical reconstruction microscopy
Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg
2014-01-01
We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655
ERIC Educational Resources Information Center
Gerrard, Donald L.
1984-01-01
Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…
Magnetic resonance microscopy: concepts, challenges, and state-of-the-art.
Gimi, Barjor
2006-01-01
Recent strides in targeted therapy and regenerative medicine have created a need to identify molecules and metabolic pathways implicated in a disease and its treatment. These molecules and pathways must be discerned at the cellular level to meaningfully reveal the biochemical underpinnings of the disease and to identify key molecular targets for therapy. Magnetic resonance (MR) techniques are well suited for molecular and functional imaging because of their noninvasive nature and their versatility in extracting physiological, biochemical, and functional information over time. However, MR is an insensitive technique; MR microscopy seeks to increase detection sensitivity, thereby localizing biochemical and functional information at the level of single cells or small cellular clusters. Here, we discuss some of the challenges facing MR microscopy and the technical and phenomenological strategies used to overcome these challenges. Some of the applications of MR microscopy are highlighted in this chapter.
In vivo magnetic resonance microscopy of brain structure in unanesthetized flies
NASA Astrophysics Data System (ADS)
Jasanoff, Alan; Sun, Phillip Z.
2002-09-01
We present near-cellular-resolution magnetic resonance (MR) images of an unanesthetized animal, the blowfly Sarcophaga bullata. Immobilized flies were inserted into a home-built gradient probe in a 14.1-T magnet, and images of voxel size (20-40 μm) 3—comparable to the diameter of many neuronal cell bodies in the fly's brain—were obtained in several hours. Use of applied field gradients on the order of 60 G/cm allowed minimally distorted images to be produced, despite significant susceptibility differences across the specimen. The images we obtained have exceptional contrast-to-noise levels; comparison with histology-based anatomical information shows that the MR microscopy faithfully represents patterns of nervous tissue and allows distinct brain regions to be clearly identified. Even at the highest resolutions we explored, morphological detail was pronounced in the apparent absence of instabilities or movement-related artifacts frequently observed during imaging of live animal specimens. This work demonstrates that the challenges of noninvasive in vivo MR microscopy can be overcome in a system amenable to studies of brain structure and physiology.
Methods of chemical and phase composition analysis of gallstones
NASA Astrophysics Data System (ADS)
Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.
2017-11-01
This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators
Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; ...
2016-04-22
We describe the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. Lastly, this application of the subwavelength aperturemore » THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.« less
Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators
NASA Astrophysics Data System (ADS)
Ruytenberg, Thomas; Webb, Andrew G.
2017-11-01
Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.
Through the looking glass: Unraveling the network structure of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, D. M.; Stec, D. F.; Botto, R. E.
1999-12-23
Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Postdoctoral Fellow | Center for Cancer Research
The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying the metabolic changes in brain tumors such as glioblastoma multiforme (GBMs). NOB’s Metabolomics program is interested in revealing the metabolic alterations of isocitrate dehydrogenase (IDH1)-mutated GBMs and in exploiting these deregulations for therapeutic applications. A combination of methods such as molecular biology, animal models, as well as in vitro and in vivo metabolomics using Raman Imaging Microscopy, Nuclear Magnetic Resonance spectroscopy (NMR), Mass Spectrometry (MS) and Magnetic Resonance Imaging (MRI) techniques are employed. The position will specifically focus on molecular biology and Raman Imaging Microscopy, which includes work in Western Blotting, mammalian cell culture and other common biomedical techniques used in cancer bio logy labs such as handling tissue samples, preparing tissue slides, staining, and extracting proteins from brain tissue.
The use of 1H NMR microscopy to study proton-exchange membrane fuel cells.
Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E
2006-01-16
To understand proton-exchange membrane fuel cells (PEMFCs) better, researchers have used several techniques to visualize their internal operation. This Concept outlines the advantages of using 1H NMR microscopy, that is, magnetic resonance imaging, to monitor the distribution of water in a working PEMFC. We describe what a PEMFC is, how it operates, and why monitoring water distribution in a fuel cell is important. We will focus on our experience in constructing PEMFCs, and demonstrate how 1H NMR microscopy is used to observe the water distribution throughout an operating hydrogen PEMFC. Research in this area is briefly reviewed, followed by some comments regarding challenges and anticipated future developments.
High-frequency electromechanical resonators based on thin GaTe
NASA Astrophysics Data System (ADS)
Chitara, Basant; Ya'akobovitz, Assaf
2017-10-01
Gallium telluride (GaTe) is a layered material, which exhibits a direct bandgap (˜1.65 eV) regardless of its thickness and therefore holds great potential for integration as a core element in stretchable optomechanical and optoelectronic devices. Here, we characterize and demonstrate the elastic properties and electromechanical resonators of suspended thin GaTe nanodrums. We used atomic force microscopy to extract the Young’s modulus of GaTe (average value ˜39 GPa) and to predict the resonance frequencies of suspended GaTe nanodrums of various geometries. Electromechanical resonators fabricated from suspended GaTe revealed fundamental resonance frequencies in the range of 10-25 MHz, which closely match predicted values. Therefore, this study paves the way for creating a new generation of GaTe based nanoelectromechanical devices with a direct bandgap vibrating element, which can serve as optomechanical sensors and actuators.
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
NASA Astrophysics Data System (ADS)
Chakravadhanula, V. S. K.; Elbahri, M.; Schürmann, U.; Takele, H.; Greve, H.; Zaporojtchenko, V.; Faupel, F.
2008-06-01
We report a strategy to achieve a material showing equal intensity double plasmon resonance (EIDPR) based on sandwich geometry. We studied the interaction between localized plasmon resonances associated with different metal clusters (Au/Ag) on Teflon AF (TAF) in sandwich geometry. Engineering the EIDPR was done by tailoring the amount of Au/Ag and changing the TAF thickness. The samples were investigated by transmission electron microscopy (TEM) and UV-visible spectroscopy. Interestingly, and in agreement with the dipole-surface interaction, the critical barrier thickness for an optimum EIDPR was observed at 3.3 nm. The results clearly show a plasmon sequence effect and visualize the role of plasmon decay.
Magnetic resonance force microscopy with a paramagnetic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Magnetic resonance force microscopy with a paramagnetic probe
NASA Astrophysics Data System (ADS)
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
2017-04-01
We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Magnetic resonance force microscopy with a paramagnetic probe
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
2017-04-01
Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Technology for fabrication of a micromagnet on a tip of a MFM/MRFM probe
Pelekhov, Denis V.; Hammel, P. Chris; Nunes, Jr., Geoffrey; Midzor, Melissa M.; Roukes, Michael
2004-01-13
A method for coating the tip of a mechanical resonator for use in magnetic force microscopy and magnetic resonance force microscopy in which the tip is coated with a ferromagnetic material and the cantilever is not, and the product resulting from the method. A cantilever and incorporated tip are coated with a photoresist, except that surface tension keeps photoresist off the tip. The cantilever and tip are then coated with a magnetic material. Next, acetone is used to lift off the magnetic material from the cantilever but not from the tip.
Label-free biosensing of Salmonella enterica serovars at single-cell level
USDA-ARS?s Scientific Manuscript database
Nanotechnology has greatly facilitated the development of label-free biosensors. The atomic force microscopy (AFM) has been used to study the molecular mechanism of the reactions for protein and aptamers. The surface plasmon resonance (SPR) have been used in fast detection of various pathogenic bact...
Effect of ferroelastic domain pattern changes on the EPR spectra in TDM
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.
2011-09-01
This article presents polarized light microscopy studies of the ferroelastic domain structure and the analysis of electron paramagnetic resonance spectra of Cr3+ admixture ions in trigonal double molybdates. The correlation has been found between abnormal EPR lineshape and domain structure in ferroelastic phases of these crystals.
Intracellular Osmolyte Distributions Assessed by ^1H and ^23Na Magnetic Resonance Microscopy
NASA Astrophysics Data System (ADS)
Grant, Samuel
2007-03-01
Recently, Magnetic Resonance Microscopy (MRM) has been applied to the high resolution imaging and localized spectroscopy of isolated cells^1,2. With resolutions <40 μm, these efforts have demonstrated the diverse intracellular environments that can be probed by proton MRM to provide insight into the compartmental diffusion and relaxation of intracellular water and metabolites. In this study, the intracellular distribution of the inorganic osmolyte sodium in isolated single neurons is assessed by MRM through the acquisition of three-dimensional (3D) microimages by direct observation of ^23Na. These efforts are made possible through (a) the use of a specially constructed, double-tuned Radio Frequency (RF) microcoil and (b) the application of a unique, ultra-widebore 21.1-T magnet. Results show an increased sodium signal in the nucleus of the L7 neuron of aplysia Californica. These ^23Na findings are compared with MR data that display a heterogeneous distribution of the organic osmolyte betaine, which appears to be localized at high concentrations to the cytoplasm. The link between the intracellular distributions of sodium and other osmolytes in this single neuron model may shed light on intracellular osmoregulatory processes, particularly in response to toxic or pathological perturbations. ^1S.C.Grant, et al., Magn. Reson. Med. 2000. ^2S.C.Grant, et al., Magn. Reson. Med. 2001.
Dark Field Microscopy for Analytical Laboratory Courses
ERIC Educational Resources Information Center
Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning
2014-01-01
An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…
Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE
NASA Astrophysics Data System (ADS)
Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.
2013-04-01
As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.
Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L
2015-02-01
Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.
Stress corrosion in titanium alloys and other metallic materials
NASA Technical Reports Server (NTRS)
Harkins, C. G. (Editor); Brotzen, F. R.; Hightower, J. W.; Mclellan, R. B.; Roberts, J. M.; Rudee, M. L.; Leith, I. R.; Basu, P. K.; Salama, K.; Parris, D. P.
1971-01-01
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC.
Atomic Force Microscopy | Materials Science | NREL
, the cantilever is oscillated close to its resonant frequency, while the amplitude of the oscillation resonant frequency, which in turns changes the oscillation amplitude. The change in the amplitude is the of photodiodes. Because it uses the force as interaction, AFM can generate high magnifications (up to
NASA Astrophysics Data System (ADS)
Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.
2011-12-01
Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.
Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens
Lee, Eun Seong; Lee, Sang-Won; Hsu, Julie; Potma, Eric O.
2014-01-01
We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens. PMID:25071953
Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H
2012-01-01
Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279
NASA Astrophysics Data System (ADS)
Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago
2015-08-01
Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made. Electronic supplementary information (ESI) available: The SERS spectra of ThT on A-E samples are provided at two different excitations: 532 and 785 nm (Fig. S1). See DOI: 10.1039/c5nr02819a
ERIC Educational Resources Information Center
Rosenberger, Robert
2005-01-01
The swiftly growing field of neurobiological research utilizes highly advanced technologies (e.g., magnetic resonance imaging, electron microscopy) to mediate between investigators and the brains they investigate. Here, the author analyzes a device called the "slam freezer" that quick-freezes neurons to be studied under the microscope. Employing…
Pereno, V; Aron, M; Vince, O; Mannaris, C; Seth, A; de Saint Victor, M; Lajoinie, G; Versluis, M; Coussios, C; Carugo, D; Stride, E
2018-05-01
The study of the effects of ultrasound-induced acoustic cavitation on biological structures is an active field in biomedical research. Of particular interest for therapeutic applications is the ability of oscillating microbubbles to promote both cellular and tissue membrane permeabilisation and to improve the distribution of therapeutic agents in tissue through extravasation and convective transport. The mechanisms that underpin the interaction between cavitating agents and tissues are, however, still poorly understood. One challenge is the practical difficulty involved in performing optical microscopy and acoustic emissions monitoring simultaneously in a biologically compatible environment. Here we present and characterise a microfluidic layered acoustic resonator ( μ LAR) developed for simultaneous ultrasound exposure, acoustic emissions monitoring, and microscopy of biological samples. The μ LAR facilitates in vitro ultrasound experiments in which measurements of microbubble dynamics, microstreaming velocity fields, acoustic emissions, and cell-microbubble interactions can be performed simultaneously. The device and analyses presented provide a means of performing mechanistic in vitro studies that may benefit the design of predictable and effective cavitation-based ultrasound treatments.
Day, Richard N.; Booker, Cynthia F.; Periasamy, Ammasi
2008-01-01
The genetically encoded fluorescent proteins (FP), used in combination with Förster resonance energy transfer (FRET) microscopy, provide the tools necessary for the direct visualization of protein interactions inside living cells. Typically, the Cerulean and Venus variants of the cyan and yellow FPs are used for FRET studies, but there are limitations to their use. Here, Cerulean and the newly developed monomeric Teal FP (mTFP) are compared as FRET donors for Venus using spectral and fluorescence lifetime measurements from living cells. The results demonstrate that when compared to Cerulean, mTFP has increased brightness, optimal excitation using the standard 458-nm laser line, increased photostability, and improved spectral overlap with Venus. In addition, the two-photon excitation and fluorescence lifetime characteristics are determined for mTFP. Together, these measurements indicate that mTFP is an excellent donor fluorophore for FRET studies, and that its use may improve the detection of interactions involving proteins that are difficult to express, or that need to be produced at low levels in cells. PMID:18601527
NASA Astrophysics Data System (ADS)
Novikov, A. S.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Gorshkov, O. N.
2018-03-01
We report on the experimental observation of the effect of optical excitation on resistive switching in ultrathin ZrO2(Y) films with single-layered arrays of Au nanoparticles. The samples were prepared by depositing nanometer-thick Au films sandwiched between two ZrO2(Y) layers by magnetron sputtering followed by annealing. Resistive switching was studied by conductive atomic force microscopy by measuring cyclic current-voltage curves of a probe-to-sample contact. The contact area was illuminated by radiation of a semiconductor laser diode with the wavelength corresponding to the plasmon resonance in an Au nanoparticle array. The enhancement of the hysteresis in cyclic current-voltage curves due to bipolar resistive switching under illumination was observed. The effect was attributed to heating of Au nanoparticles due to plasmonic optical absorption and a plasmon resonance, which enhances internal photoemission of electrons from the Fermi level in Au nanoparticles into the conduction band of ZrO2(Y). Both factors promote resistive switching in a ZrO2(Y) matrix.
Performance of a three-dimensional-printed microscanner in a laser scanning microscopy application
NASA Astrophysics Data System (ADS)
Oyman, Hilmi Artun; Gokdel, Yigit Daghan; Ferhanoglu, Onur; Yalcinkaya, Arda Deniz
2018-04-01
A magnetically actuated microscanner is used in a laser scanning microscopy application. Stress distribution along the circular-profiled flexure is compared with a rectangular counterpart in finite-element environment. Magnetic actuation mechanism of the scanning unit is explained in detail. Moreover, reliability of the scanner is tested for 3×106 cycle. The scanning device is designed to meet a confocal microscopy application providing 100 μm×100 μm field of view and <3-μm lateral resolution. The resonance frequencies of the device were analytically modeled, where we obtained 130- and 268-Hz resonance values for the out-of-plane and torsion modes, respectively. The scanning device provided an optical scan angle about 2.5 deg for 170-mA drive current, enabling the desired field of view for our custom built confocal microscope setup. Finally, imaging experiments were conducted on a resolution target, showcasing the desired scan area and resolution.
Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings.
Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B
2018-04-06
Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO 2 ) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.
Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.
Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H
2011-12-06
Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.
Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings
NASA Astrophysics Data System (ADS)
Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.
2018-04-01
Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.
Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan
2016-07-26
Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.
Scanning Tunneling Microscopy Observation of Phonon Condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less
Live cell refractometry based on non-SPR microparticle sensor.
Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong
2013-06-01
Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Haihua; Yang, Rong; Song, Baomin; Han, Qiusen; Li, Jingying; Zhang, Ying; Fang, Yan; Tenne, Reshef; Wang, Chen
2011-02-22
We report on the synthesis of inorganic fullerene-like molybdenum disulfide (MoS(2)) nanoparticles by pulsed laser ablation (PLA) in water. The final products were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and resonance Raman spectroscopy, etc. Cell viability studies show that the as-prepared MoS(2) nanoparticles have good solubility and biocompatibility, which may show a great potential in various biomedical applications. It is shown that the technique of PLA in water also provides a green and convenient method to synthesize novel nanomaterials, especially for biocompatible nanomaterials.
NASA Astrophysics Data System (ADS)
Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas
2016-05-01
Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).
Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic
NASA Astrophysics Data System (ADS)
Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng
2016-12-01
Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
Lee, Bo-Ram; Joo, Kyung-Il; Choi, Eun Sook; Jahng, Junghoon; Kim, Hyunmin
2017-01-01
We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS) microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB) dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature. PMID:29049299
Raz, Sabina Rebe; Marchesini, Gerardo R; Bremer, Maria G E G; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois
2012-11-21
We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices--the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave penetration depth, we have fabricated a non-fouling sieve above the sensing region. The sieve shields the evanescent wave from nonspecific interactions which interfere with SPR sensing by minimizing the fouled area of the polymeric gel and preventing the translocation of large particles, e.g. micelles or aggregates. The nanopatterned macropores were fabricated by means of colloidal lithography and plasma enhanced chemical vapor deposition of a polyethylene oxide-like film on top of a polymeric gel matrix commonly used in surface plasmon resonance analysis. The sieve was characterized using surface plasmon resonance imaging, contact angle, atomic force microscopy and scanning electron microscopy. The performance of the sieve was studied using an immunoassay for detection of antibiotic residues in full fat milk and porcine serum. The non-fouling membrane presented pores in the 92-138 nm range organized in a hexagonal crystal lattice with a clearance of about 5% of the total surface. Functionally, the membrane with the nanopatterned macropores showed significant improvements in immunoassay robustness and sensitivity in untreated complex samples. The utilization of the sensor built-in sieve for measurements in complex matrices offers reduction in pre-analytical sample preparation steps and thus shortens the total analysis time.
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
Multimodal Nonlinear Optical Microscopy
Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin
2013-01-01
Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747
Carbon nanotube-DNA nanoarchitectures and electronic functionality.
Wang, Xu; Liu, Fei; Andavan, G T Senthil; Jing, Xiaoye; Singh, Krishna; Yazdanpanah, Vahid R; Bruque, Nicolas; Pandey, Rajeev R; Lake, Roger; Ozkan, Mihrimah; Wang, Kang L; Ozkan, Cengiz S
2006-11-01
Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single-walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single-stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical-functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrical measurements (I-V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I-V characterization on platinum-metallized SWNT-ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.
Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus
Zhang, Fuming; Aguilera, Javier; Beaudet, Julie M.; Xie, Qing; Lerch, Thomas F.; Davulcu, Omar; Colón, Wilfredo; Chapman, Michael S.; Linhardt, Robert J.
2013-01-01
Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this report, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans. Surface plasmon resonance results revealed that heparin binds to AAV with extremely high affinity. Solution competition studies shows that AAV binding to heparin is chain length dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV- heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 complexed with heparin. PMID:23952613
Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com; Talwatkar, S. S.; Tamgadge, Y. S.
2016-05-06
We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.
NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy
NASA Astrophysics Data System (ADS)
Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil
2015-05-01
We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.
Thickness shear mode (TSM) resonators used for biosensing
NASA Astrophysics Data System (ADS)
Bailey, Claude A.; Fiebor, Ben; Yen, Wei; Vodyanoy, Vitaly; Cernosek, Richard W.; Chin, Bryan A.
2002-02-01
The Auburn University Detection and Food Safety Center has demonstrated real-time biosensor for the detection of Salmonella typimhurium, consisting of a thickness shear-mode (TSM) quartz resonator with antibodies immobilized in a Langmuir-Blodgett surface film. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Theoretical frequency shifts for unpolished TSM resonators predicted by the Sauerbrey equation are much smaller than experimentally measured frequency shift. The Salmonella detector operates in a liquid environment. The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media were studied as a function of temperature (0 to 50 degree(s)C). The chicken exudate samples with varying fat content show coagulation occurring at temperatures above 35 degree(s)C. Kinematic viscosity test were performed with buffer solutions containing varying quantities of Salmonella bacteria. Since the TSM resonators only entrain a boundary layer of fluid near the surface, they do not respond to these background viscous property changes. Bilk viscosity increases when bacteria concentrations are high. This paper describes investigations of TSM resonator surface acoustic interactions - mass, fluid viscosity, and viscoelasticity - that affect the sensor.
The potentials and challenges of electron microscopy in the study of atomic chains
NASA Astrophysics Data System (ADS)
Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu
2017-04-01
The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud
NASA Technical Reports Server (NTRS)
Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.
2007-01-01
A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. The method employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope engages the sample top surface. The cantilever is driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave at the sample surface generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create amplitude and phase-generated images of nanoscale near-surface and subsurface features. RDF-AFUM phase images of LaRC-CP2 polyimide polymer containing embedded nanostructures are presented. A RDF-AFUM micrograph of a 12.7 micrometer thick film of LaRC-CP2 containing a monolayer of gold nanoparticles embedded 7 micrometers below the specimen surface reveals the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer and a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles. A RDF-AFUM micrograph of LaRC-CP2 film containing randomly dispersed carbon nanotubes reveals the growth of an interphase region at certain nanotube-polymer interfaces.
Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.
2007-01-01
A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.
Deep ultraviolet resonant Raman imaging of a cell
NASA Astrophysics Data System (ADS)
Kumamoto, Yasuaki; Taguchi, Atsushi; Smith, Nicholas Isaac; Kawata, Satoshi
2012-07-01
We report the first demonstration of deep ultraviolet (DUV) Raman imaging of a cell. Nucleotide distributions in a HeLa cell were observed without any labeling at 257 nm excitation with resonant bands attributable to guanine and adenine. Obtained images represent DNA localization at nucleoli in the nucleus and RNA distribution in the cytoplasm. The presented technique extends the potential of Raman microscopy as a tool to selectively probe nucleic acids in a cell with high sensitivity due to resonance.
Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response.
Shcherbakov, Maxim R; Neshev, Dragomir N; Hopkins, Ben; Shorokhov, Alexander S; Staude, Isabelle; Melik-Gaykazyan, Elizaveta V; Decker, Manuel; Ezhov, Alexander A; Miroshnichenko, Andrey E; Brener, Igal; Fedyanin, Andrey A; Kivshar, Yuri S
2014-11-12
We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.
4D imaging of transient structures and morphologies in ultrafast electron microscopy.
Barwick, Brett; Park, Hyun Soon; Kwon, Oh-Hoon; Baskin, J Spencer; Zewail, Ahmed H
2008-11-21
With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics.
NASA Astrophysics Data System (ADS)
Esposito, Alessandro
2006-05-01
This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.
2014-03-24
of the aSIL microscopy for semiconductor failure analysis and is applicable to imaging in quantum optics [18], biophotonics [19] and metrology [20...is usually of interest, the model can be adapted to applications in fields such as quantum optics and biophotonics for which the non-resonant
NASA Astrophysics Data System (ADS)
Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.
GaN microwires as optical microcavities: whispering gallery modes Vs Fabry-Perot modes.
Coulon, Pierre-Marie; Hugues, Maxime; Alloing, Blandine; Beraudo, Emmanuel; Leroux, Mathieu; Zuniga-Perez, Jesus
2012-08-13
GaN microwires grown by metalorganic vapour phase epitaxy and with radii typically on the order of 1-5 micrometers exhibit a number of resonances in their photoluminescence spectra. These resonances include whispering gallery modes and transverse Fabry-Perot modes. A detailed spectroscopic study by polarization-resolved microphotoluminescence, in combination with electron microscopy images, has enabled to differentiate both kinds of modes and determined their main spectral properties. Finally, the dispersion of the ordinary and extraordinary refractive indices of strain-free GaN in the visible-UV range has been obtained thanks to the numerical simulation of the observed modes.
NASA Astrophysics Data System (ADS)
McAfee, Terry Richard
Due to the growing global need for cheap, flexible, and portable electronics, numerous research groups from mechanical and electrical engineering, material science, chemistry, and physics have increasingly turned to organic electronics research over the last ˜5--10 years. Largely, the focus of researchers in this growing field have sought to obtain the next record holding device, allowing a heuristic approach of trial and error to become dominant focus of research rather than a fundamental understanding. Rather than working with the latest high performance organic semiconducting materials and film processing techniques, I have chosen to investigate and control the fundamental self-assembly interactions of organic photovoltaic thin films using simplified systems. Specifically, I focus on organic photovoltaic research using two of the oldest and well studies semiconducting materials, namely "sphere-like" electron donor material Buckminsterfullerene C60 and "disklike" electron acceptor material Copper(II) Phthalocyanine. I manufactured samples using the well-known technique of physical vapor deposition using a high vacuum chamber that I designed and built to accommodate my need of precise material deposition control, with codeposition capability. Films were characterized using microscopy and spectroscopy techniques locally at NCSU, including Atomic Force Microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Ultraviolet-visible spectroscopy, as well as at National Laboratory based synchrotron x-ray techniques, including Carbon and Nitrogen k-edge Total Electron Yield and Transmission Near Edge X-ray absorption fine structure spectroscopy, Carbon k-edge Resonant Soft x-ray Microscopy, Resonant Soft x-ray reflectivity, and Grazing Incidence Wide-Angle X-ray scattering.
New developments in photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.
1981-07-01
There have been several important new developments in the fields of photoacoustics and photoacoustic spectroscopy. Photoactoustic techniques are now being used in ferromagnetic and electron spin resonance experiments, and there have been rapid advances in Fourier-transform infrared photoacoustic spectroscopy. In addition, the calorimetric aspects of photoacoustics are now being extensively exploited for phase transition studies, and to perform thermal-wave imaging and microscopy.
Quantitative intact specimen magnetic resonance microscopy at 3.0 T.
Bath, Kevin G; Voss, Henning U; Jing, Deqiang; Anderson, Stewart; Hempstead, Barbara; Lee, Francis S; Dyke, Jonathan P; Ballon, Douglas J
2009-06-01
In this report, we discuss the application of a methodology for high-contrast, high-resolution magnetic resonance microscopy (MRM) of murine tissue using a 3.0-T imaging system. We employed a threefold strategy that included customized specimen preparation to maximize image contrast, three-dimensional data acquisition to minimize scan time and custom radiofrequency resonator design to maximize signal sensitivity. Images had a resolution of 100 x 78 x 78 microm(3) with a signal-to-noise ratio per voxel greater than 25:1 and excellent contrast-to-noise ratios over a 30-min acquisition. We quantitatively validated the methods through comparisons of neuroanatomy across two lines of genetically engineered mice. Specifically, we were able to detect volumetric differences of as little as 9% between genetically engineered mouse strains in multiple brain regions that were predictive of underlying impairments in brain development. The overall methodology was straightforward to implement and provides ready access to basic MRM at field strengths that are widely available in both the laboratory and the clinic.
NASA Astrophysics Data System (ADS)
Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.
2012-12-01
Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.
The preparation of a plasmonically resonant VO2 thermochromic pigment.
Bai, Huaping; Cortie, Michael B; Maaroof, Abbas I; Dowd, Annette; Kealley, Catherine; Smith, Geoffrey B
2009-02-25
Vanadium dioxide (VO(2)) undergoes a reversible metal-insulator transition, normally at approximately 68 degrees C. While the properties of continuous semi-transparent coatings of VO(2) are well known, there is far less information available concerning the potential use of discrete VO(2) nanoparticles as a thermochromic pigment in opaque coatings. Individual VO(2) nanoparticles undergo a localized plasmon resonance with near-infrared light at about 1100 nm and this resonance can be switched on and off by simply varying the temperature of the system. Therefore, incorporation of VO(2) nanoparticles into a coating system imbues the coating with the ability to self-adaptively modulate its own absorptive efficiency in the near-infrared. Here we examine the magnitude and control of this phenomenon. Prototype coatings are described, made using VO(2) powder produced by an improved process. The materials are characterized using calorimetry, x-ray diffraction, high-resolution scanning electron microscopy, transmission electron microscopy, and by measurement of optical properties.
Li, Qian; Jesse, Stephen; Tselev, Alexander; ...
2015-01-05
In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less
Amplitude quantification in contact-resonance-based voltage-modulated force spectroscopy
NASA Astrophysics Data System (ADS)
Bradler, Stephan; Schirmeisen, André; Roling, Bernhard
2017-08-01
Voltage-modulated force spectroscopy techniques, such as electrochemical strain microscopy and piezoresponse force microscopy, are powerful tools for characterizing electromechanical properties on the nanoscale. In order to correctly interpret the results, it is important to quantify the sample motion and to distinguish it from the electrostatic excitation of the cantilever resonance. Here, we use a detailed model to describe the cantilever dynamics in contact resonance measurements, and we compare the results with experimental values. We show how to estimate model parameters from experimental values and explain how they influence the sensitivity of the cantilever with respect to the excitation. We explain the origin of different crosstalk effects and how to identify them. We further show that different contributions to the measured signal can be distinguished by analyzing the correlation between the resonance frequency and the measured amplitude. We demonstrate this technique on two representative test samples: (i) ferroelectric periodically poled lithium niobate, and (ii) the Na+-ion conducting soda-lime float glass. We extend our analysis to higher cantilever bending modes and show that non-local electrostatic excitation is strongly reduced in higher bending modes due to the nodes in the lever shape. Based on our analyses, we present practical guidelines for quantitative imaging.
Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping
2011-01-01
Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yishuai; Chiu, Janet; Miao, Lin
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Round, A N; Yan, B; Dang, S; Estephan, R; Stark, R E; Batteas, J D
2000-11-01
Atomic force microscopy and solid-state nuclear magnetic resonance have been used to investigate the effect of water absorption on the nanoscale elastic properties of the biopolyester, cutin, isolated from tomato fruit cuticle. Changes in the humidity and temperature at which fruits are grown or stored can affect the plant surface (cuticle) and modify its susceptibility to pathogenic attack by altering the cuticle's rheological properties. In this work, atomic force microscopy measurements of the surface mechanical properties of isolated plant cutin have been made as a first step to probing the impact of water uptake from the environment on surface flexibility. A dramatic decrease in surface elastic modulus (from approximately 32 to approximately 6 MPa) accompanies increases in water content as small as 2 wt %. Complementary solid-state nuclear magnetic resonance measurements reveal enhanced local mobility of the acyl chain segments with increasing water content, even at molecular sites remote from the covalent cross-links that are likely to play a crucial role in cutin's elastic properties.
Lee, Choong H; Flint, Jeremy J; Hansen, Brian; Blackband, Stephen J
2015-06-10
Magnetic resonance microscopy (MRM) is a non-invasive diagnostic tool which is well-suited to directly resolve cellular structures in ex vivo and in vitro tissues without use of exogenous contrast agents. Recent advances in its capability to visualize mammalian cellular structure in intact tissues have reinvigorated analytical interest in aquatic cell models whose previous findings warrant up-to-date validation of subcellular components. Even if the sensitivity of MRM is less than other microscopic technologies, its strength lies in that it relies on the same image contrast mechanisms as clinical MRI which make it a unique tool for improving our ability to interpret human diagnostic imaging through high resolution studies of well-controlled biological model systems. Here, we investigate the subcellular MR signal characteristics of isolated cells of Aplysia californica at an in-plane resolution of 7.8 μm. In addition, direct correlation and positive identification of subcellular architecture in the cells is achieved through well-established histology. We hope this methodology will serve as the groundwork for studying pathophysiological changes through perturbation studies and allow for development of disease-specific cellular modeling tools. Such an approach promises to reveal the MR contrast changes underlying cellular mechanisms in various human diseases, for example in ischemic stroke.
Biological phosphorus removal in wastewater treatment.
Timmerman, M W
1984-09-01
Several commercially available systems claim to remove phosphate biologically from municipal wastewater. Techniques such as scanning electron microscopy, transmission electron microscopy and 31P nuclear magnetic resonance (NMR) have demonstrated that the phosphate removed is stored within bacterial cells as polyphosphate. Acinetobacter species are usually isolated from phosphate-removing systems although there is a great deal of evidence which casts doubt on the exclusive role of these organisms.
Eter, Ali El; Grosjean, Thierry; Viktorovitch, Pierre; Letartre, Xavier; Benyattou, Taha; Baida, Fadi I
2014-06-16
We numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties. The proposed hybrid dielectric-plasmonic structure may open new avenues in the generation of deeply subwavelength intense optical sources, with direct applications in various domains such as data storage, non-linear optics, optical trapping and manipulation, microscopy, etc.
Exploratory Study of RNA Polymerase II Using Dynamic Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzanne; Ishikawa, Mitsuru; Fu, Jianhua
2002-03-01
An exploratory study of the microtopological dimensions and shape features of yeast RNA polymerase II (y-poly II) on freshly cleaved mica was made in phosphate aqueous buffer solution at room temperature following previous work by Hansma and others. The molecules were imaged by stabilization on freshly cleaved mica at a limiting resolution of 10 Å and scanned using dynamical atomic force microscopy with a 10 nm multi-wall carbon nanotube in the resonance frequency modulation mode. They indicated microtopological shape and dimensional features similar to those predicted by electron density plots derived from the X-ray crystallographic model. It is concluded that this is considered primarily a feasibility study with definitive conclusions subject to more detailed systematic measurements of the 3D microtopology. These measurements appear to establish validity of the noncontact atomic force microscopy (nc-AFM) approach into defining the primary microtopology and biochemical functionality of RNA polymerase II. Further nc-AFM studies at higher resolution using dynamical nc-AFM will be required to clearly define the detailed 3D microtopology of RNA polymerase II in anaerobic aqueous environments for both static and dynamic conditions.
Feng, Guo-Hua; Lee, Kuan-Yi
2017-12-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.
Lee, Kuan-Yi
2017-01-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal–oxide–semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air. PMID:29308260
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Lee, Kuan-Yi
2017-12-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.
Whole-Brain Microscopy Meets In Vivo Neuroimaging: Techniques, Benefits, and Limitations.
Aswendt, Markus; Schwarz, Martin; Abdelmoula, Walid M; Dijkstra, Jouke; Dedeurwaerdere, Stefanie
2017-02-01
Magnetic resonance imaging, positron emission tomography, and optical imaging have emerged as key tools to understand brain function and neurological disorders in preclinical mouse models. They offer the unique advantage of monitoring individual structural and functional changes over time. What remained unsolved until recently was to generate whole-brain microscopy data which can be correlated to the 3D in vivo neuroimaging data. Conventional histological sections are inappropriate especially for neuronal tracing or the unbiased screening for molecular targets through the whole brain. As part of the European Society for Molecular Imaging (ESMI) meeting 2016 in Utrecht, the Netherlands, we addressed this issue in the Molecular Neuroimaging study group meeting. Presentations covered new brain clearing methods, light sheet microscopes for large samples, and automatic registration of microscopy to in vivo imaging data. In this article, we summarize the discussion; give an overview of the novel techniques; and discuss the practical needs, benefits, and limitations.
Banik, Debasis; Dutta, Rupam; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni
2016-08-11
In this article, our aim is to investigate the interaction of l-phenylalanine (l-Phe) fibrils with crown ethers (CEs). For this purpose, two different CEs (15-Crown-5 (15C5) and 18-Crown-6 (18C6)) were used. Interestingly, we have observed that both CEs have the ability to arrest fibril formation. However, 18C6 was found to be a better candidate compared to 15C5. Field emission scanning electron microscopy and fluorescence lifetime imaging microscopy were used to monitor the fibril-arresting kinetics of CEs. The arresting process was further confirmed by fluorescence correlation spectroscopy and nuclear magnetic resonance studies.
NASA Astrophysics Data System (ADS)
Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing
2014-08-01
The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole.
Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.
Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu
2012-05-07
Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.
NASA Astrophysics Data System (ADS)
Kim, Geun Wan; Ha, Ji Won
2018-04-01
We present single particle studies on gold nanourchins (AuNUs) for their use as localized surface plasmon resonance (LSPR) biosensors under dark-field (DF) microscopy. First, the LSPR wavelength of single AuNUs was red-shifted as thiol molecules were attached onto the surface. AuNUs with sharp tips showed higher sensitivity for detecting thiol molecules than gold nanospheres (AuNSs) of similar size. Second, the degree of red shift was affected by the electrophilicity of adsorbate molecules on the nanoparticle surface. Last, real-time monitoring of molecular binding events on single AuNUs was achieved with introducing 1 μM of 4-aminothiophenol.
Tanitame, Keizo; Sasaki, Ko; Sone, Takashi; Uyama, Shinji; Sumida, Masumi; Ichiki, Toshio; Ito, Katsuhide
2008-10-01
The purpose of the study was to determine the accuracy of half-Fourier single-shot rapid acquisition with relaxation enhancement high-spatial-resolution magnetic resonance (MR) imaging performed with a microscopy coil in the diagnosis of narrow anterior chamber angle in patients with glaucoma. Slit-lamp biomicroscopy served as the reference standard. The institutional review board approved this study, and written informed consent was obtained from the 20 recruited patients. There was excellent agreement between MR gonioscopy and slit-lamp biomicroscopy in the classification of anterior chamber angles as narrow or open (kappa = 0.89 [95% confidence interval: 0.69, 1.10]). MR gonioscopy has substantial potential as a technique used to evaluate glaucoma. (c) RSNA, 2008.
Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang
2006-01-01
Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.
Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D
2014-03-01
The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.
Disorder enabled band structure engineering of a topological insulator surface
Xu, Yishuai; Chiu, Janet; Miao, Lin; ...
2017-02-03
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Parnell, Scott E.; Holloway, Hunter T.; O’Leary-Moore, Shonagh K.; Dehart, Deborah B.; Paniaqua, Beatriz; Oguz, Ipek; Budin, Francois; Styner, Martin A.; Johnson, G. Allan; Sulik, Kathleen K.
2013-01-01
Animal model-based studies have shown that ethanol exposure during early gestation induces developmental stage-specific abnormalities of the face and brain. The exposure time-dependent variability in ethanol’s teratogenic outcomes is expected to contribute significantly to the wide spectrum of effects observed in humans with fetal alcohol spectrum disorder (FASD). The work presented here employs a mouse FASD model and magnetic resonance microscopy (MRM; high resolution magnetic resonance imaging) in studies designed to further our understanding of the developmental stage-specific defects of the brain that are induced by ethanol. At neurulation stages, i.e. at the beginning of gestational day (GD) 9 and again 4 hours later, time-mated C57Bl/6J dams were intraperitoneally administered 2.9 g/kg ethanol or vehicle. Ethanol-exposed fetuses were collected on GD 17, processed for MRM analysis, and results compared to comparably staged controls. Linear and volume measurements as well as shape changes for numerous individual brain regions were determined. GD 9 ethanol exposure resulted in significantly increased septal region width, reduction of cerebellar volume, and enlargement of all of the ventricles. Additionally, the results of shape analyses showed that many areas of the ethanol-exposed brains including the cerebral cortex, hippocampus and right striatum were significantly misshapen. These data demonstrate that ethanol can induce dysmorphology that may not be obvious based on volumetric analyses alone, highlight the asymmetric aspects of ethanol-induced defects, and add to our understanding of ethanol’s developmental stage-dependent neuroteratogenesis. PMID:23911654
High quality factor indium oxide mechanical microresonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier
2015-11-09
The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect ofmore » extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.« less
Electron-beam generated porous dextran gels: experimental and quantum chemical studies.
Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta
2014-06-01
The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.
Du, Yan; Qin, Yubo; Li, Zizhen; Yang, Xiuying; Zhang, Jingchang; Westwick, Harrison; Tsai, Eve; Cao, Xudong
2017-12-01
A multifunctional nanobiomaterial has been developed by deliberately combining functions of superparamagnetism, fluorescence, and axonal tracing into one material. Superparamagnetic iron oxide nanoparticles were first synthesized and coated with a silica layer to prevent emission quenching through core-dye interactions; a fluorescent molecule, fluorescein isothiocyanate, was doped inside second layer of silica shell to improve photo-stability and to enable further thiol functionalization. Subsequently, biotinylated dextran amine, a sensitive axonal tracing reagent, was immobilized on the thiol-functionalized nanoparticle surfaces. The resulting nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, magnetic resonance imaging and fluorescence confocal microscopy. In vitro cell experiments using both undifferentiated and differentiated Neuro-2a cells showed that the cells were able to take up the nanoparticles intracellularly and that the nanoparticles showed good biocompatibilities. In summary, this new material demonstrated promising performances for both optical and magnetic resonance imaging modalities, suggesting its promising potentials in applications such as in non-invasive imaging, particularly in neuronal tracing.
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy
NASA Astrophysics Data System (ADS)
Ahmed, Syeed Ehsan
Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.
Littlejohn, George R.; Mansfield, Jessica C.; Christmas, Jacqueline T.; Witterick, Eleanor; Fricker, Mark D.; Grant, Murray R.; Smirnoff, Nicholas; Everson, Richard M.; Moger, Julian; Love, John
2014-01-01
Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the “negative space” within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells. PMID:24795734
Experimental proof of the existence of water clusters in fullerene-like PrF3 nanoparticles
NASA Astrophysics Data System (ADS)
Alakshin, E. M.; Blokhin, D. S.; Sabitova, A. M.; Klochkov, A. V.; Klochkov, V. V.; Kono, K.; Korableva, S. L.; Tagirov, M. S.
2012-10-01
Synthesized fullerene-like nanoparticles of the Van Vleck paramagnet PrF3 have been studied by nuclear magnetic resonance cryoporometry. Water clusters have been discovered in the internal cavities of the nanoparticles. The analysis of the experimental data indicates that the cluster radius is 1-2.3 nm. The obtained data agree well with the high-resolution transmission electron microscopy data.
NASA Astrophysics Data System (ADS)
Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi
Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Direct observation of resonance scattering patterns in single silicon nanoparticles
NASA Astrophysics Data System (ADS)
Valuckas, Vytautas; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Luk'yanchuk, Boris; Kuznetsov, Arseniy I.
2017-02-01
We present the first direct observation of the scattering patterns of electric and magnetic dipole resonances excited in a single silicon nanosphere. Almost perfectly spherical silicon nanoparticles were fabricated and deposited on a 30 nm-thick silicon nitride membrane in an attempt to minimize particle—substrate interaction. Measurements were carried out at visible wavelengths by means of the Fourier microscopy in a dark-field illumination setup. The obtained back-focal plane images clearly reveal the characteristic scattering patterns associated with each resonance and are found to be in a good agreement with the simulated results.
Dark Field Microscopy for Analytical Laboratory Courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augspurger, Ashley E; Stender, Anthony S; Marchuk, Kyle
2014-06-10
An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.
Three dimensional electron microscopy and in silico tools for macromolecular structure determination
Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru
2013-01-01
Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033
NASA Astrophysics Data System (ADS)
Natali, Marco; Passeri, Daniele; Reggente, Melania; Tamburri, Emanuela; Terranova, Maria Letizia; Rossi, Marco
2016-06-01
Characterization of mechanical properties at the nanometer scale at variable temperature is one of the main challenges in the development of polymer-based nanocomposites for application in high temperature environments. Contact resonance atomic force microscopy (CR-AFM) is a powerful technique to characterize viscoelastic properties of materials at the nanoscale. In this work, we demonstrate the capability of CR-AFM of characterizing viscoelastic properties (i.e., storage and loss moduli, as well as loss tangent) of polymer-based nanocomposites at variable temperature. CR-AFM is first illustrated on two polymeric reference samples, i.e., low-density polyethylene (LDPE) and polycarbonate (PC). Then, temperature-dependent viscoelastic properties (in terms of loss tangent) of a nanocomposite sample constituted by a epoxy resin reinforced with single-wall carbon nanotubes (SWCNTs) are investigated.
Calibration of fluorescence resonance energy transfer in microscopy
Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.
2003-12-09
Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.
Calibration of fluorescence resonance energy transfer in microscopy
Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.
2002-09-24
Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.
Label-free imaging of fatty acid content within yeast samples
NASA Astrophysics Data System (ADS)
Garrett, N.; Moger, J.
2013-02-01
Fungi have been found to be an underlying cause of 70% of all plant and animal extinctions caused by infectious diseases. Fungal infections are a growing problem affecting global health, food production and ecosystems. Lipid metabolism is a promising target for antifungal drugs and since effective treatment of fungal infections requires a better understanding of the effects of antifungal agents at the cellular level, new techniques are needed to investigate this problem. Recent advances in nonlinear microscopy allow chemically-specific contrast to be obtained non-invasively from intrinsic chemical bonds within live samples using advanced spectroscopy techniques probing Raman-active resonances. We present preliminary data using Stimulated Raman Scattering (SRS) microscopy as a means to visualise lipid droplets within individual living fungi by probing Raman resonances of the CH stretching region between 2825cm-1 and 3030cm-1.
Ley, C J; Björnsdóttir, S; Ekman, S; Boyde, A; Hansson, K
2016-01-01
Validated noninvasive detection methods for early osteoarthritis (OA) are required for OA prevention and early intervention treatment strategies. To evaluate radiography and low-field magnetic resonance imaging (MRI) for the detection of early stage OA osteochondral lesions in equine centrodistal joints using microscopy as the reference standard. Prospective imaging of live horses and imaging and microscopy of cadaver tarsal joints. Centrodistal (distal intertarsal) joints of 38 Icelandic research horses aged 27-29 months were radiographed. Horses were subjected to euthanasia approximately 2 months later and cadaver joints examined with low-field MRI. Osteochondral joint specimens were classified as negative or positive for OA using light microscopy histology or scanning electron microscopy. Radiographs and MRIs were evaluated for osteochondral lesions and results compared with microscopy. Forty-two joints were classified OA positive with microscopy. Associations were detected between microscopic OA and the radiography lesion categories; mineralisation front defect (P<0.0001), joint margin lesion (P<0.0001), central osteophyte (P = 0.03) and the low-field MRI lesion categories; mineralisation front defect (P = 0.01), joint margin lesion (P = 0.02) and articular cartilage lesion (P = 0.0003). The most frequent lesion category detected in microscopic OA positive joints was the mineralisation front defect in radiographs (28/42 OA positive joints, specificity 97%, sensitivity 67%). No significant differences were detected between the sensitivity and specificity of radiography and low-field MRI pooled lesion categories, but radiography was often superior when individual lesion categories were compared. Early stage centrodistal joint OA changes may be detected with radiography and low-field MRI. Detection of mineralisation front defects in radiographs may be a useful screening method for detection of early OA in centrodistal joints of young Icelandic horses. © 2015 EVJ Ltd.
Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D
2010-01-01
Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269
Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi
2017-01-01
We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).
NASA Astrophysics Data System (ADS)
Alghamdi, N. A.; Hankiewicz, J. H.; Anderson, N. R.; Stupic, K. F.; Camley, R. E.; Przybylski, M.; Żukrowski, J.; Celinski, Z.
2018-05-01
We investigate the use of Cu1 -xZnxFe2O4 ferrites (0.60
Manganese-enhanced magnetic resonance microscopy of mineralization
Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.
2007-01-01
Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.
Functional cardiac magnetic resonance microscopy
NASA Astrophysics Data System (ADS)
Brau, Anja Christina Sophie
2003-07-01
The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.
NASA Astrophysics Data System (ADS)
Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Mariotto, Gino; Kalita, Patricia E.; Ohki, Yoshimichi
2005-09-01
The precipitation and growth of copper nanoparticles in an optically transparent aluminosilicate glass matrix was investigated. The size of particles in this heterophase glass-based composite was modified in a controlled manner by isothermal heat treatments. A multitechnique approach, consisting of Raman scattering spectroscopy, high-resolution transmission electron microscopy, x-ray diffraction technique, and optical absorption spectroscopy, has been used to study the nucleation and crystallization processes. Optical absorption spectroscopy revealed the presence of intense absorption bands attributed to oscillations of free electrons, known as the surface-plasmon resonance band of copper particles, and confirmed a gradual increase of the particles' mean size and density with annealing time. The Raman scattering on acoustical phonons from Cu quantum dots in the glass matrix measured for off-resonance conditions demonstrated the presence of intense, inhomogeneously broadened peaks that have been assigned to the confined acoustic eigenmodes of copper nanoparticles. The particle-size dependence of the acoustic peak energies and the relation between the size distribution and bandwidths of these peaks were derived. High-resolution transmission electron microscopy was used to monitor the nucleation of the nanoparticles and to estimate their mean size.
Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids
NASA Astrophysics Data System (ADS)
Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John
We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.
Tucker, Eric; D' Archangel, Jeffrey; Raschke, Markus B; Boreman, Glenn
2015-05-04
Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.
Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis
Clark, Andrea; Zhu, Aiping; Petty, Howard R.
2014-01-01
To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147
Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study
NASA Astrophysics Data System (ADS)
Reggente, Melania; Rossi, Marco; Angeloni, Livia; Tamburri, Emanuela; Lucci, Massimiliano; Davoli, Ivan; Terranova, Maria Letizia; Passeri, Daniele
2015-04-01
Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing.
Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis
NASA Astrophysics Data System (ADS)
Clark, Andrea; Zhu, Aiping; Petty, Howard R.
2013-12-01
To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Lee, Soon-Hyeong; Chang, Yun; Kim, Howon; Jang, Won; Kim, Yong-Hyun; Kahng, Se-Jong; Department Of Physics, Korea University. Collaboration; Graduate School Of Nanoscience; Technology (Wcu), Kaist Collaboration
2013-03-01
Axial bindings of diatomic molecules to metalloporphyrins involve in the dynamic processes of biological functions such as respiration, neurotransmission, and photosynthesis. The binding reactions are also useful in sensor applications and to control molecular spins in metalloporphyrins for spintronic applications. Here, we present the binding structures of diatomic molecules to surface-supported Co-porphyrins studied using scanning tunneling microscopy. Upon gas exposure, three-lobed structures of Co-porphyrins transformed to bright ring shapes on Au(111), whereas H2-porphyrins of dark rings remained intact. The bright rings are explained by the structures of reaction complexes where a diatomic ligand, tilted away from the axis normal to the porphyrin plane, is under precession. Our results are consistent with previous bulk experiments using X-ray diffraction and nuclear magnetic resonance spectroscopy.
Joseleau, J P; Ruel, K
1997-01-01
Noninvasive techniques were used for the study in situ of lignification in the maturing cell walls of the maize (Zea mays L.) stem. Within the longitudinal axis of a developing internode all of the stages of lignification can be found. The synthesis of the three types of lignins, p-hydroxyphenylpropane (H), guaiacyl (G), and syringyl (S), was investigated in situ by cross-polarization-magic angle spinning 13C-solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and immunocytochemical electron microscopy. The first lignin appearing in the parenchyma is of the G-type preceeding the incorporation of S nuclei in the later stages. However, in vascular bundles, typical absorption bands of S nuclei are visible in the Fourier transform infrared spectra at the earliest stage of lignification. Immunocytochemical determination of the three types of lignin in transmission electron microscopy was possible thanks to the use of antisera prepared against synthetic H, G, and the mixed GS dehydrogenative polymers (K. Ruel, O. Faix, J.P. Joseleau [1994] J Trace Microprobe Tech 12: 247-265). The specificity of the immunological probes demonstrated that there are differences in the relative temporal synthesis of the H, G, and GS lignins in the different tissues undergoing lignification. Considering the intermonomeric linkages predominating in the antigens used for the preparation of the immunological probes, the relative intensities of the labeling obtained provided, for the first time to our knowledge, information about the macromolecular nature of lignins (condensed versus noncondensed) in relation to their ultrastructural localization and development stage. PMID:9232887
Video-rate resonant scanning multiphoton microscopy
Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.
2013-01-01
The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926
Coherent Raman scattering microscopy for label-free imaging of live amphioxus
NASA Astrophysics Data System (ADS)
Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi
2012-03-01
The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.
Lucia, Federico S; Pacheco-Torres, Jesús; González-Granero, Susana; Canals, Santiago; Obregón, María-Jesús; García-Verdugo, José M; Berbel, Pere
2018-01-01
Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.
Mocan, Lucian; Ilie, Ioana; Matea, Cristian; Tabaran, Flaviu; Kalman, Ersjebet; Iancu, Cornel; Mocan, Teodora
2014-01-01
Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths worldwide, and much of this mortality is due to the rise of antibiotic-resistant organisms as a result of natural selection. Gold nanoparticles synthesized using the standard wet chemical procedure were photoexcited using an 808 nm 2 W laser diode and further administered to MRSA bacteria. Flow cytometry, transmission electron microscopy, contrast phase microscopy, and fluorescence microscopy combined with immunochemical staining were used to examine the interaction of the photoexcited gold nano-particles with MRSA bacteria. We show here that phonon–phonon interactions following laser photoexcitation of gold nanoparticles exhibit increased MRSA necrotic rates at low concentrations and short incubation times compared with MRSA treated with gold nanoparticles alone. These unique data may represent a step forward in the study of bactericidal effects of various nanomaterials, with applications in biology and medicine. PMID:24711697
A coarse-grained model for DNA origami.
Reshetnikov, Roman V; Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D
2018-02-16
Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.
Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.
Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao
2018-02-14
Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.
A coarse-grained model for DNA origami
Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D
2018-01-01
Abstract Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version. PMID:29267876
Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.
2013-09-01
Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).
Chudek, J A; Crook, A M; Hubbard, S F; Hunter, G
1996-01-01
Nuclear magnetic resonance microscopy was used to image the parasitoid wasp Venturia canescens (Hymenoptera: Ichneumonidae) within larval and pupal instars of its host, the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). The images were obtained using gradient-echo and chemical shift selective pulse sequences and clearly showed the location and shapes of the parasitoid as it developed from the L1 larva to a pupal stage within the host. The digestive, nervous, and tracheal systems of the host were identified and changes were observed as the host underwent metamorphosis. Destruction of the host tissues by the parasitoid was visible. It was found that the parasitoid first ate the fat body and digestive system of the host, allowing the host to continue to grow, and only progressed to the vital organs when its own development had neared pupation.
Semiclassical description of photoionization microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordas, Ch.; Lepine, F.; Nicole, C.
2003-07-01
Recently, experiments have been reported where a geometrical interference pattern was observed when photoelectrons ejected in the threshold photoionization of xenon were detected in a velocity-map imaging apparatus [C. Nicole et al., Phys. Rev. Lett. 88, 133001 (2002)]. This technique, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. Unlike previous predictions relevant to the hydrogenic case, the structure of the interference pattern evolves smoothly with the excess energy above the saddle point and is only weakly affected by the presence of continuum Starkmore » resonances. In this paper, we describe a semiclassical analysis of this process and present numerical simulations in excellent agreement with the experimental results. It is shown that the background contribution dominates in the observations, as opposed to the behavior expected for hydrogenic systems where the interference pattern is qualitatively different on quasidiscrete Stark resonances.« less
Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy
Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.
2010-01-01
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754
Knaak, Thomas; Gruber, Manuel; Lindström, Christoph; Bocquet, Marie-Laure; Heck, Jürgen; Berndt, Richard
2017-11-08
Magnetic sandwich complexes are of particular interest for molecular spintronics. Using scanning tunneling microscopy, we evidence the successful deposition of 1,3,5-tris(η 6 -borabenzene-η 5 -cyclopentadienylcobalt) benzene, a molecule composed of three connected magnetic sandwich units, on Cu(111). Scanning tunneling spectra reveal two distinct spatial-dependent narrow resonances close to the Fermi level for the trimer molecules as well as for molecular fragments composed of one and two magnetic units. With the help of density functional theory, these resonances are interpreted as two Kondo resonances originating from two distinct nondegenerate d-like orbitals. These Kondo resonances are found to have defined spatial extents dictated by the hybridization of the involved orbitals with that of the ligands. These results opens promising perspectives for investigating complex Kondo systems composed of several "Kondo" orbitals.
Nanomusical systems visualized and controlled in 4D electron microscopy.
Baskin, J Spencer; Park, Hyun Soon; Zewail, Ahmed H
2011-05-11
Nanomusical systems, nanoharp and nanopiano, fabricated as arrays of cantilevers by focused ion beam milling of a layered Ni/Ti/Si(3)N(4) thin film, have been investigated in 4D electron microscopy. With the imaging and selective femtosecond and nanosecond control combinations, full characterization of the amplitude and phase of the resonant response of a particular cantilever relative to the optical pulse train was possible. Using a high repetition rate, low energy optical pulse train for selective, resonant excitation, coupled with pulsed and steady-state electron imaging for visualization in space and time, both the amplitude on the nanoscale and resonance of motion on the megahertz scale were resolved for these systems. Tilting of the specimen allowed in-plane and out-of-plane cantilever bending and cantilever torsional motions to be identified in stroboscopic measurements of impulsively induced free vibration. Finally, the transient, as opposed to steady state, thermostat effect was observed for the layered nanocantilevers, with a sufficiently sensitive response to demonstrate suitability for in situ use in thin-film temperature measurements requiring resolutions of <10 K and 10 μm on time scales here mechanically limited to microseconds and potentially at shorter times.
Mode-splitting of a non-polarizing guided mode resonance filter by substrate overetching effect
NASA Astrophysics Data System (ADS)
Saleem, Muhammad Rizwan; Honkanen, Seppo; Turunen, Jari
2014-03-01
We investigate substrate overetch effect on resonance properties of sub-wavelength titanium oxide (TiO2) Guided Mode Resonance Filters (TiO2-GMRFs). The TiO2-GMRF is designed and fabricated to possess a non-polarizing behavior, which is strongly dependent on substrate (fused silica) overetch depth. For non-polarizing gratings at resonance, TE- and TM-modes have the same propagation constants. However, an overetch substrate effect results in splitting of the degenerate modes, which is studied theoretically and experimentally. The TiO2-SiO2 GMRFs are designed by Fourier Modal method (FMM) based on the rigorous calculation of electromagnetic diffraction theory at a designed wavelength of 850 nm. The TiO2-SiO2 gratings are fabricated by Atomic Layer Deposition (ALD), Electron Beam Lithography (EBL), and Reactive Ion Etching (RIE), and they are subsequently characterized structurally by Scanning Electron Microscopy (SEM) and optically by a spectroscopic ellipsometer. Several grating samples are fabricated by gradually increasing the overetch depth into fused silica and measuring the extent of TE- and TM-mode-splitting. A close agreement between the calculated and experimentally measured resonance wavelength spectral shift is found to describe the mode splitting of non-polarizing gratings.
Gallavardin, Thibault; Maurin, Mathieu; Marotte, Sophie; Simon, Timea; Gabudean, Ana-Maria; Bretonnière, Yann; Lindgren, Mikael; Lerouge, Frédéric; Baldeck, Patrick L; Stéphan, Olivier; Leverrier, Yann; Marvel, Jacqueline; Parola, Stéphane; Maury, Olivier; Andraud, Chantal
2011-07-01
The synthesis and photophysical properties of two lipophilic quadrupolar chromophores featuring anthracenyl (1) or dibromobenzene (2) were described. These two chromophores combined significant two-photon absorption cross-sections with high fluorescence quantum yield for 1 and improved singlet oxygen generation efficiency for 2, in organic solvents. The use of Pluronic nanoparticles allowed a simple and straightforward introduction of these lipophilic chromophores into biological cell media. Their internal distribution in various cell lines was studied using fluorescence microscopy and flow-cytometry following a successful staining that was achieved upon 2 h of incubation. Finally, multiphoton excitation microscopy and photodynamic therapy capability of the chromophores were demonstrated by cell exposure to a 820 nm fs laser and cell death upon one photon resonant irradiation at 436 ± 10 nm, respectively.
NASA Technical Reports Server (NTRS)
Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.
1992-01-01
The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.
Single-Molecule Three-Color FRET with Both Negligible Spectral Overlap and Long Observation Time
Hohng, Sungchul
2010-01-01
Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy. PMID:20808851
Three-dimensional molecular mapping of a multiple emulsion by means of CARS microscopy.
Meyer, Tobias; Akimov, Denis; Tarcea, Nicolae; Chatzipapadopoulos, Susana; Muschiolik, Gerald; Kobow, Jens; Schmitt, Michael; Popp, Jürgen
2008-02-07
Multiple emulsions consisting of water droplets dispersed in an oil phase containing emulsifier which is emulsified in an outer water phase (W/O/W) are of great interest in pharmacology for developing new drugs, in the nutrition sciences for designing functional food, and in biology as model systems for cell organelles such as liposomes. In the food industry multiple emulsions with high sugar content in the aqueous phase can be used for the production of sweets, because the high sugar content prevents deterioration. However, for these emulsions the refractive indexes of oil and aqueous phase are very similar. This seriously impedes the analysis of these emulsions, e.g., for process monitoring, because microscopic techniques based on transmission or reflection do not provide sufficient contrast. We have characterized the inner dispersed phase of concentrated W/O/W emulsions with the same refractive index of the three phases by micro Raman spectroscopy and investigated the composition and molecular distribution in water-oil-water emulsions by means of three-dimensional laser scanning CARS (coherent anti-Stokes Raman scattering) microscopy. CARS microscopy has been used to study water droplets dispersed in oil droplets at different Raman resonances to visualize different molecular species. Water droplets with a diameter of about 700 nm could clearly be visualized. The advantages of CARS microscopy for studying this particular system are emphasized by comparing this microscopic technique with conventional confocal reflection and transmission microscopies.
Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries
NASA Astrophysics Data System (ADS)
Elizabeth, Indu; Singh, Bhanu Pratap; Trikha, Sunil; Gopukumar, Sukumaran
2016-10-01
Nitrogen doped hierarchically porous carbon derived from prawn shells have been efficiently synthesized through a simple, economically viable and environmentally benign approach. The prawn shell derived carbon (PSC) has high inherent nitrogen content (5.3%) and possesses a unique porous structure with the co-existence of macro, meso and micropores which can afford facile storage and transport channels for both Li and Na ions. PSC is well characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron Microscopy (TEM), High resolution TEM (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Electron Paramagnetic Resonance (EPR) and Solid state-Nuclear Magnetic Resonance (NMR) studies have been conducted on pristine PSC and Li/Na interacted PSC. PSC as anode for Lithium ion batteries (LIBs) delivers superior electrochemical reversible specific capacity (740 mAh g-1 at 0.1 Ag-1 current density for 150 cycles) and high rate capability. When used as anode material for Sodium ion batteries (SIBs), PSC exhibits excellent reversible specific capacity of 325 mAh g-1 at 0.1 Ag-1 for 200 cycles and rate capability of 107 mAh g-1 at 2 Ag-1. Furthermore, this study demonstrates the employment of natural waste material as a potential anode for both LIB and SIB, which will definitively make a strike in the energy storage field.
2011-10-12
Periasamy, A. Fluorescence Resonance Energy Transfer (FRET) microscopy imaging of live cell protein localization. J . Cell. Biol. 2003, 5, 629-633. 4...tissues. Physiol. Rev. 2010, 90, 1103-1163. 10. Woehler, A.; Wlodarczyk, J .; Neher, E. Signal/noise analysis of FRET-based sensors. Biophys. J . 2010...99, 2344-2354. 11. Selvin, P.R. Lanthanide-based resonance energy transfer. IEEE J . Sel. Top. Quant. Electron. 1996, 2, 1077-1087. 12. Van der Meer
Controlling coherence using the internal structure of hard pi pulses.
Dong, Yanqun; Ramos, R G; Li, Dale; Barrett, S E
2008-06-20
The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.
Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita
2015-10-01
Green synthesis of metallic nanoparticles has lured the world from the chemical and physical approaches owing to its rapid, non-hazardous and economic aspect of production mechanism. In this study, silver nanoparticles (AgNPs) were synthesised using petal extracts of Hibiscus rosa-sinensis. The AgNPs displayed characteristic surface plasmon resonance peak at around 421 nm having a mean particle size of 76.25±0.17 nm and carried a charge of -41±0.2 mV. The X-ray diffraction patterns displayed typical peaks of face centred cubic crystalline silver. The surface morphology was characterised by scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy studies confirmed the surface modifications of the functional groups for the synthesis of AgNPs. Furthermore, the synthesised AgNPs displayed proficient antimicrobial activity against pathogenic strains of Vibrio cholerae, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus.
NASA Astrophysics Data System (ADS)
Csete, M.; Sipos, Á.; Kőházi-Kis, A.; Szalai, A.; Szekeres, G.; Mathesz, A.; Csákó, T.; Osvay, K.; Bor, Zs.; Penke, B.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Marti, O.
2007-12-01
Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-07-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.
NASA Astrophysics Data System (ADS)
Saffarzadeh, Alireza; Kirczenow, George
2012-06-01
Based on the standard tight-binding model of the graphene π-band electronic structure, the extended Hückel model for the adsorbate and graphene carbon atoms, and spin splittings estimated from density functional theory (DFT), the Dirac point resonances due to a single cobalt atom on graphene are studied. The relaxed geometry of the magnetic adsorbate and the graphene is calculated using DFT. The system shows strong spin polarization in the vicinity of the graphene Dirac point energy for all values of the gate voltage, due to the spin splitting of Co 3d orbitals. We also model the differential conductance spectra for this system that have been measured in the scanning tunneling microscopy (STM) experiments of Brar [Nat. Phys.1745-247310.1038/nphys1807 7, 43 (2011)]. We interpret the experimentally observed behavior of the S-peak in the STM differential conductance spectrum as evidence of tunneling between the STM tip and a cobalt-induced Dirac point resonant state of the graphene, via a Co 3d orbital. The cobalt ionization state which is determined by the energy position of the resonance can be tuned by gate voltage, similar to that seen in the experiment.
NASA Astrophysics Data System (ADS)
Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Grönbeck, Henrik; Ericson, Marica B.
2015-12-01
Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.
Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik
2017-07-24
We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borglin, Johan; Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg; Guldbrand, Stina
Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enablemore » studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camuzeaux, Barbara; Spriet, Corentin; Heliot, Laurent
2005-07-15
Physical interactions between transcription factors play important roles in modulating gene expression. Previous in vitro studies have shown a transcriptional synergy between Erg protein, an Ets family member, and Jun/Fos heterodimer, members of the bZip family, which requires direct Erg-Jun protein interactions. Visualization of protein interactions in living cells is a new challenge in biology. For this purpose, we generated fusion proteins of Erg, Fos, and Jun with yellow and cyan fluorescent proteins, YFP and CFP, respectively. After transient expression in HeLa cells, interactions of the resulting fusion proteins were explored by fluorescence resonance energy transfer microscopy (FRET) in fixedmore » and living cells. FRET between YFP-Erg and CFP-Jun was monitored by using photobleaching FRET and fluorescence lifetime imaging microscopy. Both techniques revealed the occurrence of intermolecular FRET between YFP-Erg and CFP-Jun. This is stressed by loss of FRET with an YFP-Erg version carrying a point mutation in its ETS domain. These results provide evidence for the interaction of Erg and Jun proteins in living cells as a critical prerequisite of their transcriptional synergy, but also for the essential role of the Y371 residue, conserved in most Ets proteins, in this interaction.« less
Coherent interaction with two-level fluctuators using near field scanning microwave microscopy.
de Graaf, S E; Danilov, A V; Kubatkin, S E
2015-11-24
Near field Scanning Microwave Microscopy (NSMM) is a scanning probe technique that non-invasively can obtain material properties on the nano-scale at microwave frequencies. While focus has been on developing room-temperature systems it was recently shown that this technique can potentially reach the quantum regime, opening up for applications in materials science and device characterization in solid state quantum information processing. In this paper we theoretically investigate this new regime of NSMM. Specifically we show that interaction between a resonant NSMM probe and certain types of two-level systems become possible when the NSMM probe operates in the (sub-) single photon regime, and we expect a high signal-to-noise ratio if operated under the right conditions. This would allow to detect single atomic material defects with energy splittings in the GHz range with nano-scale resolution, provided that individual defects in the material under study are well enough separated. We estimate that this condition is fulfilled for materials with loss tangents below tan δ ∼ 10(-3) which holds for materials used in today's quantum circuits and devices where typically tan δ < 10(-5). We also propose several extensions to a resonant NSMM that could improve sensitivity and functionality also for microscopes operating in a high power regime.
A macroscopic non-destructive testing system based on the cantilever-sample contact resonance
NASA Astrophysics Data System (ADS)
Fu, Ji; Lin, Lizhi; Zhou, Xilong; Li, Yingwei; Li, Faxin
2012-12-01
Detecting the inside or buried defects in materials and structures is always a challenge in the field of nondestructive testing (NDT). In this paper, enlightened by the operation principle of the contact resonance force microscopy or atomic force acoustic microscopy (AFAM), we proposed a macroscopic NDT system based on contact resonance of the cantilever-sample surface to detect the local stiffness variations in materials or structures. We fabricated a piezoelectric unimorph with the dimension typically of 150 mm × 8 mm × 2 mm to act as a macroscopic cantilever, whose flexural mode vibration was driven by a wideband power amplifier together with a signal generator. The vibration signal of the macroscopic cantilever is detected by a high sensitive strain gauge bonded on the cantilever surface which is much more stable than the laser diode sensor in AFAM, thus making it very suitable for outdoor operations. Scanning is realized by a three-dimensional motorized stage with the Z axis for pressing force setting. The whole system is controlled by a LabVIEW-based homemade software. Like the AFAM, this NDT system can also work in two modes, i.e., the single-frequency mode and the resonance-tracking mode. In the latter mode, the contact stiffness at each pixel of the sample can be obtained by using the measured contact resonance frequency and a beam dynamics model. Testing results of this NDT system on a grid structure with an opaque panel show that in both modes the prefabricated defect beneath the panel can be detected and the grid structures can be clearly "seen," which indicates the validity of this NDT system. The sensitivity of this NDT system was also examined.
D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn
2013-07-15
Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.
Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo
2014-01-01
Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690
Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.
Day, Richard N; Davidson, Michael W
2012-05-01
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. Copyright © 2012 WILEY Periodicals, Inc.
Zhang, Yu Shrike; Wang, Yu; Wang, Lidai; Wang, Yucai; Cai, Xin; Zhang, Chi; Wang, Lihong V.; Xia, Younan
2013-01-01
Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo. PMID:23946820
Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain
NASA Astrophysics Data System (ADS)
Nouls, John C.; Izenson, Michael G.; Greeley, Harold P.; Johnson, G. Allan
2008-04-01
We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4 T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B1 homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60 ± 0.1 K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10 × 10 × 20 μm for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5 h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20 μm.
Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.
Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan
2008-04-01
We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.
NASA Astrophysics Data System (ADS)
Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana
2014-06-01
A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.
NMR Microscopy - Micron-Level Resolution.
NASA Astrophysics Data System (ADS)
Kwok, Wing-Chi Edmund
1990-01-01
Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is to implement a higher static magnetic field which will increase signal strength. In the future, NMR microscopy should prove to be useful in the studies of cell linings, T1 & T2 relaxation mechanisms and NMR contrast agents.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-01-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234
Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy.
Heinrich, Christoph; Hofer, Alexander; Ritsch, Andreas; Ciardi, Christian; Bernet, Stefan; Ritsch-Marte, Monika
2008-02-18
Wide-field Coherent Anti-Stokes Raman Scattering (CARS) microscopy is employed to identify saturated and unsaturated fatty acids in micro-emulsions and cells, using the ratio between the strong -C-H CARS signal at 2850 cm(-1) and the weak signal of the =C-H vibration around 3015 cm(-1) for distinction. Quantitative CARS imaging at the =C-H resonance is challenging, since it yields only a low CARS signal, and small differences on the order of 5% in the concentration of polyunsaturated fatty lipids have to be detected. For this purpose we draw advantage of the high signal-to-noise ratio of wide-field CARS microscopy that is achieved by an excitation geometry involving a "sheet-of-light"-type illumination.
NASA Astrophysics Data System (ADS)
MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
2018-03-01
Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.
Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2006-11-01
Frequency modulation atomic force microscopy (FM-AFM) utilizes the principle of self-excitation to ensure the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this is achieved by fixing the phase difference between tip deflection and driving force at precisely 90° . This, in turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude, even while operating away from the resonant frequency with the use of appropriate replacements in the existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demonstrate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase detuning, particularly in liquid environments.
NASA Technical Reports Server (NTRS)
Housley, R. M.
1978-01-01
Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.
Sáfar, Gustavo A M; Malachias, Angelo; Magalhães-Paniago, Rogério; Martins, Dayse C S; Idemori, Ynara M
2013-12-21
The determination of the molecular structure of a porphyrin is achieved by using nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. Since macroscopic crystals cannot be obtained in this system, this combination of techniques is crucial to solve the molecular structure without the need for X-ray crystallography. For this purpose, previous knowledge of the flatness of the reagent molecules (a porphyrin and its functionalizing group, a naphthalimide) and the resulting molecular structure obtained by a force-field simulation are used. The exponents of the I-V curves obtained by scanning tunneling spectroscopy (STS) allow us to check whether the thickness of the film of molecules is greater than a monolayer, even when there is no direct access to the exposed surface of the metal substrate. Photoluminescence (PL), optical absorption, infrared (IR) reflectance and solubility tests are used to confirm the results obtained here with this NMR/STM/STS combination.
Scanning Tunneling Optical Resonance Microscopy Developed
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Raffaelle, Ryne P.; Lau, Janis E.; Jenkins, Phillip P.; Castro, Stephanie L.; Tin, Padetha; Wilt, David M.; Pal, Anna Maria; Fahey, Stephen D.
2004-01-01
The ability to determine the in situ optoelectronic properties of semiconductor materials has become especially important as the size of device architectures has decreased and the development of complex microsystems has increased. Scanning Tunneling Optical Resonance Microscopy, or STORM, can interrogate the optical bandgap as a function of its position within a semiconductor micro-structure. This technique uses a tunable solidstate titanium-sapphire laser whose output is "chopped" using a spatial light modulator and is coupled by a fiber-optic connector to a scanning tunneling microscope in order to illuminate the tip-sample junction. The photoenhanced portion of the tunneling current is spectroscopically measured using a lock-in technique. The capabilities of this technique were verified using semiconductor microstructure calibration standards that were grown by organometallic vapor-phase epitaxy. Bandgaps characterized by STORM measurements were found to be in good agreement with the bulk values determined by transmission spectroscopy and photoluminescence and with the theoretical values that were based on x-ray diffraction results.
NASA Astrophysics Data System (ADS)
Wagner, Ryan; Killgore, Jason P.; Tung, Ryan C.; Raman, Arvind; Hurley, Donna C.
2015-01-01
Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a recently developed, in situ laser scanning method to experimentally measure changes in cantilever eigenmodes as a function of tip-sample stiffness. Regions of maximum sensitivity for eigenvalues and eigenmodes are compared and found to occur at different values of contact stiffness. The results allow the development of practical guidelines for CR-AFM experiments, such as optimum laser spot positioning for different experimental conditions. These experiments provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation for enhanced nanomechanical measurements with CR-AFM.
Graphene quantum dot synthesis using nanosecond laser pulses and its comparison to Methylene Blue
NASA Astrophysics Data System (ADS)
Kholikov, Khomidkhodza; Thomas, Zachary; Seyitliyev, Dovletgeldi; Smith, Skylar
A biocompatible photodynamic therapy agent that generates a high amount of singlet oxygen with high water dispersibility and excellent photostability is desirable. In this work, a graphene based biomaterial which is a promising alternative to a standard photosensitizers was produced. Methylene blue was used as a reference photosensitizer. Bacteria deactivation by methylene blue was shown to be inhibited inside human blood due to protein binding. Graphene quantum dots (GQD) were synthesized by irradiating benzene and nickel oxide mixture using nanosecond laser pulses. High resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) were used for characterization of GQDs. Initial results show graphene quantum dots whose size less than 5 nm were successfully obtained. UV-VIS spectra shows absorption peak around 310 nm. The results of these studies can potentially be used to develop therapies for the eradication of pathogens in open wounds, burns, or skin cancers. New therapies for these conditions are particularly needed when antibiotic-resistant infections are present. NIH KBRIN.
Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles
NASA Astrophysics Data System (ADS)
Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat
2001-03-01
We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001
Magnetic resonance imaging of the rat Harderian gland
Sbarbati, Andrea; Calderan, Laura; Nicolato, Elena; Marzola, Pasquina; Lunati, Ernesto; Donatella, Benati; Bernardi, Paolo; Osculati, Francesco
2002-01-01
The intra-orbital lachrymal gland (Harderian gland, or HG) of the female rat was studied by magnetic resonance imaging (MRI) to evaluate whether MRI can be used to visualize the gland in vivo and localized-1H-spectroscopy detect its lipid content. The results were correlated with post-mortem anatomical sections, and with light and electron microscopy. On MRI, HG presented as a mass located between the ocular bulb and the orbit. In strongly T2W sequences the secretory structures had a reduced signal while intraparenchymal connective tissue was visible. T2-quantitative maps values of HG (60.12 ± 8.15 ms, mean ± SD) were different from other tissues (i.e. muscular tissue, T2 = 44.79 ± 3.43 ms and olfactory bulb, T2 = 79.26 ± 4.25 ms). In contrast-enhanced-MRI, HG had a signal-intensity-drop of 0.074 ± 0.072 (mean ± SD), after injection of AMI-25, significantly different from the muscle (0.17 ± 0.10). Localized MRI spectra gave a large part of the signal originating from fat protons, but with a significant percentage from water protons. At light and electron microscopy the lipid deposition appeared to be composed of low-density material filling a large part of the cytoplasm, and the porphyrin aggregates were easily recognizable. The data demonstrate that an in vivo study of the HG was feasible and that high-field MRI allowed analysis of the gross anatomy detecting the lipid content of the gland. PMID:12363274
Coherent Raman Imaging of Live Muscle Sarcomeres Assisted by SFG Microscopy.
Kim, Hyunmin; Kim, Do-Young; Joo, Kyung-Il; Kim, Jung-Hye; Jeong, Soon Moon; Lee, Eun Seong; Hahm, Jeong-Hoon; Kim, Kyuhyung; Moon, Dae Woon
2017-08-23
In this study, we used spectrally focused coherent anti-Stokes Raman scattering (spCARS) microscopy assisted by sum-frequency generation (SFG) to monitor the variations in the structural morphology and molecular vibrations of a live muscle of Caenorhabditis elegans. The subunits of the muscle sarcomeres, such as the M-line, myosin, dense body, and α-actinin, were alternatively observed using spCARS microscopy for different sample orientations, with the guidance of a myosin positional marker captured by SFG microscopy. Interestingly enough, the beam polarization dependence of the spCARS contrasts for two parallel subunits (dense body and myosin) showed a ~90° phase difference. The chemically sensitive spCARS spectra induced by the time-varying overlap of two pulses allowed (after a robust subtraction of the non-resonant background using a modified Kramers-Krönig transformation method) high-fidelity detection of various genetically modified muscle sarcomeres tuned to the C-H vibration (2800-3100 cm -1 ). Conversely, SFG image mapping assisted by phase-retrieved spCARS spectra also facilitated label-free monitoring of the changes in the muscle content of C. elegans that are associated with aging, based on the hypothesis that the C-H vibrational modes could serve as qualitative chemical markers sensitive to the amount and/or structural modulation of the muscle.
Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells
Chakraborty, Paramita; Bjork, Per; Källberg, Eva; Olsson, Anders; Riva, Matteo; Mörgelin, Matthias; Liberg, David; Ivars, Fredrik; Leanderson, Tomas
2015-01-01
We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway. PMID:26661255
NASA Astrophysics Data System (ADS)
Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji
2012-06-01
A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.
NASA Technical Reports Server (NTRS)
Howell, J. P.
1971-01-01
An investigation was conducted to determine the thermomechanical and thermochemical behavior of a high temperature, oxidation resistant, hafnium-20 percent tantalum alloy. The elastic and shear moduli of this alloy were determined in air up to 1000 C and in vacuum up to 2000 C using a mechanical resonance technique. The internal friction of the alloy was measured up to temperatures greater than 1400 C. Room temperature stress-strain behavior of the oxidized and unoxidized alloy was established. The effect of annealing on the elastic and shear moduli of the extruded rod material was investigated. The martensitic-type phase transformation occurring in the alloy was studied using hot stage metallography and electron microscopy. Static oxidation tests were conducted on the alloy at temperatures from 1000 C to 1700 C with weight gain measurements made as a function of time and temperatures. Surface morphology studies were conducted on the oxide coatings formed at the different temperatures using scanning electron microscopy and X-ray diffraction techniques.
Structural and magnetic properties of nanostructured composites (SrFe12O19)x(CaCu3Ti4O12)1-x
NASA Astrophysics Data System (ADS)
Gavrilova, T. P.; Deeva, J. A.; Yatsyk, I. V.; Yagfarova, A. R.; Gilmutdinov, I. F.; Lyadov, N. M.; Milovich, F. O.; Chupakhina, T. I.; Eremina, R. M.
2018-05-01
(SrFe12O19)x(CaCu3Ti4O12)1-x (x = 0.01, 0.03, 0.07, 0.1) composites were synthesized using a solid state method, while the pre-synthesized strontium hexaferrite SrFe12O19 (SFO) was added to the stoichiometric amount of CaO, CuO and TiO oxides to form the CaCu3Ti4O12 (CCTO) structure around SFO microinclusions. The structural and microstructural properties of obtained composites were studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The magnetic properties were studied by electron spin resonance and magnetometry methods. Based on all experimental data we can conclude, that SFOxCCTO1-x nanostructured composites were formed only for concentrations x = 0.03 and x = 0.07, where SFO nanoinclusions are inside CCTO matrix, that leads to the strong mutual influence of the magnetic properties of both component.
El-Gazayerly, O N; Makhlouf, A I A; Soelm, A M A; Mohmoud, M A
2014-01-01
Milk thistle extract is a well-known hepatoprotectant with low bioavailability (20-50%). The objective of the present study is to prepare and characterize silymarin phytosomes and to test the hepatoprotective effect of the phytosomes in CCl4 induced liver injury in rats compared to milk thistle extract. Phytosomes were prepared using lecithin from soybeans and from egg yolk. The prepared phytosomes were examined using scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (H(1)NMR). The loading efficiency was >85% in all phytosomal formulations. Formula P2 (with the molar ratio of soybean lecithin to silybin 1:1) and P4 (with the molar ratio of egg-yolk lecithin to silybin 0.25:1) exhibited significantly (p < 0.05) faster release than milk thistle extract. The in vivo study revealed that phytosomes significantly (p < 0.05) decreased glutamic pyruvic transaminase and super oxide dismutase activities compared to milk thistle extract.
NASA Astrophysics Data System (ADS)
Selvi, E. Thamarai; Sundar, S. Meenakshi
2017-05-01
This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.
Identification and super-resolution imaging of ligand-activated receptor dimers in live cells
NASA Astrophysics Data System (ADS)
Winckler, Pascale; Lartigue, Lydia; Giannone, Gregory; de Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent
2013-08-01
Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.
Visualisation of collagen fibrils in joint cartilage using STIM
NASA Astrophysics Data System (ADS)
Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.
2001-07-01
The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM.
Electron microscopy of electromagnetic waveforms.
Ryabov, A; Baum, P
2016-07-22
Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.
Murine fetal echocardiography.
Kim, Gene H
2013-02-15
Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.
Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram
ERIC Educational Resources Information Center
Hanley, Quentin S.
2012-01-01
Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…
Mainprize, Iain L; Beniac, Daniel R; Falkovskaia, Elena; Cleverley, Robert M; Gierasch, Lila M; Ottensmeyer, F Peter; Andrews, David W
2006-12-01
Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.
Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana
2014-06-05
A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Xiao-Ping; Chen, Tong-Sheng; Sun, Lei; Cai, Ji-Ye; Wu, Ming-Qian; Mok, Martin
2008-12-01
Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol. CCK-8 was used to assay the cell viability. Atomic force microscopy (AFM), plasmid transfection and confocal fluorescence microscopy were performed to image the cells morphological change induced by taxol. Fluorescence resonance energy transfer (FRET) was used to monitor the caspase-3 activation in living cells during taxol-induced cell death. Cells treated with taxol exhibited significant swelling and cytoplasmic vacuolization which may be due to endoplasmic reticulum (ER) vacuolization. Caspase-3 was not activated during taxol-induced cytoplasmic vacuolization and cell death. These findings suggest that taxol induces caspase-3-independent cytoplasmic vacuolization, cell swelling and cell death through ER vacuolization.
Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment
NASA Astrophysics Data System (ADS)
Cerrato, Erik; Gionco, Chiara; Berruti, Ilaria; Sordello, Fabrizio; Calza, Paola; Paganini, Maria Cristina
2018-08-01
This work reports the effect of doping zinc oxide with lanthanide ions on structural, EPR and UV visible properties. Bare and doped samples were synthesized using the simple and green hydrothermal process. Different rare earth ions (RE = La, Ce, Pr, Er and Yb) with 1% molar ratio RE/Zn were used. The samples have been studied using X Ray Diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV visible diffuse reflectance spectroscopy. Finally, electron paramagnetic resonance (EPR) spectroscopy, was used to assess the materials photoactivity under UV irradiation, both in solid state, to see the charge carriers' generation and in solution, evaluating the OH• radical formation using the DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide) spin trapping technique. The results suggest that the synthesized materials could be interesting systems for the photocatalytic abatement of emerging organic persistent pollutants in wastewater treatment plants.
Stimulated parametric emission microscopy.
Isobe, Keisuke; Kataoka, Shogo; Murase, Rena; Watanabe, Wataru; Higashi, Tsunehito; Kawakami, Shigeki; Matsunaga, Sachihiro; Fukui, Kiichi; Itoh, Kazuyoshi
2006-01-23
We propose a novel microscopy technique based on the four-wave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our proposed FWM technique can be used to obtain a one-dimensional image of ethanol-thinned Coumarin 120 solution sandwiched between a hole-slide glass and a cover slip, and a two-dimensional image of a leaf of Camellia sinensis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard
A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less
Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A
2015-01-01
High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.
Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bontempi, Alexia; Teyssieux, Damien; Thiery, Laurent
2014-10-13
A photo-thermal excitation of a Quartz Tuning Fork (QTF) for topographic studies is introduced. The non-invasive photo-thermal excitation presents practical advantages compared to QTF mechanical and electrical excitations, including the absence of the anti-resonance and its associated phase rotation. Comparison between our theoretical model and experiments validate that the optical transduction mechanism is a photo-thermal rather than photo-thermoacoustic phenomenon. Topographic maps in the context of near-field microscopy distance control have been achieved to demonstrate the performance of the system.
Control theory for scanning probe microscopy revisited.
Stirling, Julian
2014-01-01
We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.
Phase resolved near-field imaging of propagating waves in infrared tapered slot antennas
NASA Astrophysics Data System (ADS)
Florence, Louis A.; Kinzel, Edward C.; Olmon, Robert L.; Ginn, James C.; Raschke, Markus B.; Boreman, Glenn D.
2012-11-01
Tapered slot antennas (TSAs) consist of a planar non-resonant structure which couples incident radiation to a propagating waveguide mode. They are commonly used at microwave and radio frequencies because they are fundamentally broadband and have small profiles. Because of their planar layout and broadband response they have recently been scaled to infrared frequencies where they have advantages for sensing and energy harvesting. We use scattering-type scanning near-field optical microscopy (s-SNOM) to study the mode transformation of two types of TSA operating in the thermal infrared (λ0 = 10.6 μm) with respect to electric field amplitude and phase. The results agree well with simulation showing both the phase reversal across the tapered slot and the traveling of wave fronts along the tapered slot, yet they also reveal high sensitivity of device performance to inhomogeneities in the geometry or illumination. This study will aid future design and analysis of practical non-resonant antennas operating at optical and infrared frequencies.
Synthesis of cytocompatible Fe3O4@ZSM-5 nanocomposite as magnetic resonance imaging contrast agent
NASA Astrophysics Data System (ADS)
Atashi, Zahra; Divband, Baharak; Keshtkar, Ahmad; Khatamian, Maasoumeh; Farahmand-Zahed, Farzane; Nazarlo, Ali Kiani; Gharehaghaji, Nahideh
2017-09-01
In this study, ZSM-5 nano zeolite was used as a support material for iron oxide nanoparticles and the potential ability of the nanocomposite for magnetic resonance imaging (MRI) contrast agent was investigated. The nanocomposite was synthesized by hydrothermal method and characterized using X-ray diffraction and scanning electron microscopy. MRI was carried out by use of a 1.5 Tesla clinical scanner. The T2 weighted images were prepared and the r2 relaxivity was calculated. The sizes of Fe3O4 nanoparticles and related nanocomposite were 13-24 nm and 80-150 nm, respectively. Results of MTT assay confirmed that the prepared nanocomposite is cytocompatible. The r2 relaxivity of the Fe3O4@ZSM-5 nanocomposite was 457.1 mM-1 s-1. This study suggests that the Fe3O4@ZSM-5 nanocomposite has potential to use as an MRI T2 contrast agent.
Zhan, Pengfei; Dutta, Palash K; Wang, Pengfei; Song, Gang; Dai, Mingjie; Zhao, Shu-Xia; Wang, Zhen-Gang; Yin, Peng; Zhang, Wei; Ding, Baoquan; Ke, Yonggang
2017-02-28
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.
Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens
2018-04-03
While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.
Local field enhancement and thermoplasmonics in multimodal aluminum structures
NASA Astrophysics Data System (ADS)
Wiecha, Peter R.; Mennemanteuil, Marie-Maxime; Khlopin, Dmitry; Martin, Jérôme; Arbouet, Arnaud; Gérard, Davy; Bouhelier, Alexandre; Plain, Jérôme; Cuche, Aurélien
2017-07-01
Aluminum nanostructures have recently been at the focus of numerous studies due to their properties including oxidation stability and surface plasmon resonances covering the ultraviolet and visible spectral windows. In this article, we reveal a facet of this metal relevant for both plasmonic purposes and photothermal conversion. The field distribution of high-order plasmonic resonances existing in two-dimensional Al structures is studied by nonlinear photoluminescence microscopy in a spectral region where electronic interband transitions occur. The polarization sensitivity of the field intensity maps shows that the electric field concentration can be addressed and controlled on demand. We use a numerical tool based on the Green dyadic method to analyze our results and to simulate the absorbed energy that is locally converted into heat. The polarization-dependent temperature increase of the Al structures is experimentally quantitatively measured, and is in an excellent agreement with theoretical predictions. Our work highlights Al as a promising candidate for designing thermal nanosources integrated in coplanar geometries for thermally assisted nanomanipulation or biophysical applications.
Leung, Frankie Chi-Ming; Tam, Anthony Yiu-Yan; Au, Vonika Ka-Man; Li, Mei-Jin; Yam, Vivian Wing-Wah
2014-05-14
A number of ruthenium(II) and rhenium(I) bipyridine complexes functionalized with lipoic acid moieties have been synthesized and characterized. Functionalization of gold nanoparticles with these chromophoric ruthenium(II) and rhenium(I) complexes has resulted in interesting supramolecular assemblies with Förster resonance energy transfer (FRET) properties that could be modulated via esterase hydrolysis. The luminescence of the metal complex chromophores was turned on upon cleavage of the ester bond linkage by esterase to reduce the efficiency of FRET quenching. The prepared nanoassembly conjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy, and emission spectroscopy. The quenching mechanism has also been studied by transient absorption and time-resolved emission decay measurements. The FRET efficiencies were found to vary with the nature of the chromophores and the length of the spacer between the donor (transition metal complexes) and the acceptor (gold nanoparticles).
Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.
2009-01-01
The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516
2011-01-01
The dependence of interface roughness of pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes [RTDs] grown by molecular beam epitaxy on interruption time was studied by current-voltage [I-V] characteristics, photoluminescence [PL] spectroscopy, and transmission electron microscopy [TEM]. We have observed that a splitting in the quantum-well PL due to island formation in the quantum well is sensitive to growth interruption at the AlAs/In0.53Ga0.47As interfaces. TEM images also show flatter interfaces with a few islands which only occur by applying an optimum value of interruption time. The symmetry of I-V characteristics of RTDs with PL and TEM results is consistent because tunneling current is highly dependent on barrier thickness and interface roughness. PMID:22112249
2007-01-01
Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism.
NASA Astrophysics Data System (ADS)
Alam, Rabeka; Karam, Liliana M.; Doane, Tennyson L.; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.
2014-12-01
The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (˜5.5 nm). Due to this, high BRET efficiency ratios of ˜5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.
Finite element modeling of trolling-mode AFM.
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Yang; Guan, Min; Liu, Xingfang; Zeng, Yiping
2011-11-23
The dependence of interface roughness of pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes [RTDs] grown by molecular beam epitaxy on interruption time was studied by current-voltage [I-V] characteristics, photoluminescence [PL] spectroscopy, and transmission electron microscopy [TEM]. We have observed that a splitting in the quantum-well PL due to island formation in the quantum well is sensitive to growth interruption at the AlAs/In0.53Ga0.47As interfaces. TEM images also show flatter interfaces with a few islands which only occur by applying an optimum value of interruption time. The symmetry of I-V characteristics of RTDs with PL and TEM results is consistent because tunneling current is highly dependent on barrier thickness and interface roughness.
Thermoplasmonic Ignition of Metal Nanoparticles.
Mutlu, Mehmet; Kang, Ju-Hyung; Raza, Søren; Schoen, David; Zheng, Xiaolin; Kik, Pieter G; Brongersma, Mark L
2018-03-14
Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S.; Kalkur, T. S.
2016-08-01
A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.
Real-space mapping of Fano interference in plasmonic metamolecules.
Alonso-Gonzalez, Pablo; Schnell, Martin; Sarriugarte, Paulo; Sobhani, Heidar; Wu, Chihhui; Arju, Nihal; Khanikaev, Alexander; Golmar, Federico; Albella, Pablo; Arzubiaga, Libe; Casanova, Felix; Hueso, Luis E; Nordlander, Peter; Shvets, Gennady; Hillenbrand, Rainer
2011-09-14
An unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems. We observe in real space the interference of narrow (dark) and broad (bright) plasmonic resonances, yielding intensity and phase toggling between different portions of the plasmonic metamolecules when either their geometric sizes or the illumination wavelength is varied.
Wood, Bayden R; Hermelink, Antje; Lasch, Peter; Bambery, Keith R; Webster, Grant T; Khiavi, Mehdi Asghari; Cooke, Brian M; Deed, Samantha; Naumann, Dieter; McNaughton, Don
2009-06-01
Our goal is to produce a rapid and accurate diagnostic tool for malaria using resonance Raman spectroscopy to detect small inclusions of haemozoin in Plasmodium falciparum infected red blood cells. In pursuit of this aim we serendipitously discovered a partial dark-field effect generated by our experimental setup, which helps identify in thick blood films potential parasites that are normally difficult to see with conventional bright-field microscopy. The haemozoin deposits 'light up' and these can be selectively targeted with the Raman microscope to confirm the presence or absence of haemozoin by the strong 1569 cm(-1) band, which is a marker for haemozoin. With newly developed imaging Raman microscopes incorporating ultra-sensitive rapid readout CCDs it is possible to obtain spectra with a good signal-to-noise ratio in 1 second. Moreover, images from a smear of potentially infected cells can be recorded and analysed with multivariate methods. The reconstructed images show what appear to be sub-micron-inclusions of haemozoin in some cells indicating that the technique has potential to identify low pigmented forms of the parasite including early trophozoite-stage infected cells. Further work is required to unambiguously confirm the presence of such forms through systematic staining but the results are indeed promising and may lead to the development of a new Raman-based malaria diagnostic.
Kenworthy, A.K.; Edidin, M.
1998-01-01
Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins. PMID:9660864
Surface plasmon resonance microscopy: achieving a quantitative optical response
Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.
2016-01-01
Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng
2016-01-01
The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397
Wavelength-multiplexing surface plasmon holographic microscopy.
Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin
2018-05-14
Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.
NASA Astrophysics Data System (ADS)
Mitra, Debasis; Boutchko, Rostyslav; Ray, Judhajeet; Nilsen-Hamilton, Marit
2015-03-01
In this work we present a time-lapsed confocal microscopy image analysis technique for an automated gene expression study of multiple single living cells. Fluorescence Resonance Energy Transfer (FRET) is a technology by which molecule-to-molecule interactions are visualized. We analyzed a dynamic series of ~102 images obtained using confocal microscopy of fluorescence in yeast cells containing RNA reporters that give a FRET signal when the gene promoter is activated. For each time frame, separate images are available for three spectral channels and the integrated intensity snapshot of the system. A large number of time-lapsed frames must be analyzed to identify each cell individually across time and space, as it is moving in and out of the focal plane of the microscope. This makes it a difficult image processing problem. We have proposed an algorithm here, based on scale-space technique, which solves the problem satisfactorily. The algorithm has multiple directions for even further improvement. The ability to rapidly measure changes in gene expression simultaneously in many cells in a population will open the opportunity for real-time studies of the heterogeneity of genetic response in a living cell population and the interactions between cells that occur in a mixed population, such as the ones found in the organs and tissues of multicellular organisms.
Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract
NASA Astrophysics Data System (ADS)
Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.
2015-03-01
Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.
The Sounds of Nanoscience: Acoustic STM Analogues
ERIC Educational Resources Information Center
Euler, Manfred
2013-01-01
A hands-on model of scanning tunnelling microscopy (STM) is presented. It uses near-field imaging with sound and computer assisted visualization to create acoustic mappings of resonator arrangements. Due to the (partial) analogy of matter and sound waves the images closely resemble STM scans of atoms. Moreover, the method can be extended to build…
USDA-ARS?s Scientific Manuscript database
Nucleic acid aptamers have been widely used as binding reagents for the label free detections of biomolecules. Compare to antibodies, aptamers have demonstrated advantages such as easy synthesis, low cost, and better stability. Therefore, aptamers can be integrated into various detection platforms ...
Daniel Shechtman and Quasicrystals
toolbox that included transmission electron microscopy, X-ray diffraction and neutron diffraction. The searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Letters, Vol. 53, Issue 20: 1951-1953; November 12, 1984 Nuclear γ-ray resonance observations in an
A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.
Mehta, M M; Chandrasekhar, V
2014-01-01
Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.
A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy
NASA Astrophysics Data System (ADS)
Mehta, M. M.; Chandrasekhar, V.
2014-01-01
Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.
Royt, P.W.; Honeychuck, R.V.; Pant, R.R.; Rogers, M.L.; Asher, L.V.; Lloyd, J.R.; Carlos, W.E.; Belkin, H.E.; Patwardhan, S.
2007-01-01
Dark aggregated particles were seen on pellets of iron-rich, mid-logarithmic phase Pseudomonas aeruginosa. Transmission electron microscopy of these cells showed inclusion bodies in periplasmic vacuoles. Aggregated particles isolated from the spent medium of these cells contained iron as indicated by atomic absorption spectroscopy and by electron paramagnetic resonance spectroscopy that revealed Fe3+. Scanning electron microscopy/energy dispersive X-ray analysis of whole cells revealed the presence of iron-containing particles beneath the surface of the cell, indicating that the isolated aggregates were the intracellular inclusion bodies. Collectively, mass spectroscopy and nuclear magnetic resonance spectroscopy of the isolated inclusion bodies revealed the presence of 3,4-dihydroxy-2-heptylquinoline which is the Pseudomonas quinolone signaling compound (PQS) and an iron chelator; 4-hydroxy-2-heptylquinoline (pseudan VII), which is an iron chelator, antibacterial compound and precursor of PQS; 4-hydroxy-2-nonylquinoline (pseudan IX) which is an iron chelator and antibacterial compound; 4-hydroxy-2-methylquinoline (pseudan I), and 4-hydroxy-2-nonylquinoline N-oxide. ?? 2006 Elsevier Inc. All rights reserved.
Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E
2009-06-01
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Synthesis of gold nanoparticles using silk fibroin and their characterization
NASA Astrophysics Data System (ADS)
Gowda, Mahadeva; Harisha, K. S.; Ranjana, T.; Harish, K. V.; Narayana, B.; Byrappa, K.; Sangappa, Y.
2018-05-01
The synthesis of metal nanoparticales by environmentally friendly processes is an important aspect of nanotechnology today. One such approach that shows immense potential is based on the in situ synthesis of gold nanoparticles (AuNPs) using naturally available materials such as aqueous silk fibroin (SF) obtained from Bombyx mori silk. The UV-visible absorption study revealed the formation of AuNPs by showing characteristic surface plasmon resonance (SPR) band at 525 nm. The X-ray diffraction (XRD) analysis study suggests the synthesized gold nanoparticles are FCC crystal structure. The transmission electron microscopy (TEM) images showed that the formed AuNPs are spherical in shape with smooth edges.
A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments
NASA Astrophysics Data System (ADS)
Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.
2013-09-01
The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 μm diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.
Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs
NASA Astrophysics Data System (ADS)
Puchert, Robin P.; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J.; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M.
2017-07-01
Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.
Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs.
Puchert, Robin P; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M
2017-07-01
Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.
The development of optical microscopy techniques for the advancement of single-particle studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchuk, Kyle
2013-05-15
Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.« less
The development of optical microscopy techniques for the advancement of single-particle studies
NASA Astrophysics Data System (ADS)
Marchuk, Kyle
Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.
High resolution subsurface imaging using resonance-enhanced detection in 2nd-harmonic KPFM.
Cadena, Maria Jose; Reifenberger, Ronald G; Raman, Arvind
2018-06-28
Second harmonic Kelvin probe force microscopy is a robust mechanism for subsurface imaging at the nanoscale. Here we exploit resonance-enhanced detection as a way to boost the subsurface contrast with higher force sensitivity using lower bias voltages, in comparison to the traditional off-resonance case. In this mode, the second harmonic signal of the electrostatic force is acquired at one of the eigenmode frequencies of the microcantilever. As a result, high-resolution subsurface images are obtained in a variety of nanocomposites. To further understand the subsurface imaging detection upon electrostatic forces, we use a finite element model that approximates the geometry of the probe and sample. This allows the investigation of the contrast mechanism, the depth sensitivity and lateral resolution depending on tip-sample properties. © 2018 IOP Publishing Ltd.
Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range
2013-01-01
We report an adjustable magnetic resonance frequency from 1.45 to 2.54 GHz for NiFe2O4 nanoparticles which were prepared by a sol–gel process. X-ray diffraction and scanning electron microscopy results indicate that the samples are polycrystalline nanoparticles, and the size of the particles increases obviously with the thermal treatment temperature. The consequence of the surface composition suggests that the oxygen defects are present in the nanoparticle surface, and this surface magnetic state can show a strong surface anisotropy. With decreasing size of the particle, the surface magnetic effect is predominant, resulting in an increase of resonance frequency for NiFe2O4 nanoparticles. This finding provides a new route for NiFe2O4 materials that can be used in the gigahertz range. PMID:24083340
Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail
2014-03-01
We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.
Vibration compensation for high speed scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Croft, D.; Devasia, S.
1999-12-01
Low scanning speed is a fundamental limitation of scanning tunneling microscopes (STMs), making real time imaging of surface processes and nanofabrication impractical. The effective scanning bandwidth is currently limited by the smallest resonant vibrational frequency of the piezobased positioning system (i.e., scanner) used in the STM. Due to this limitation, the acquired images are distorted during high speed operations. In practice, the achievable scan rates are much less than 1/10th of the resonant vibrational frequency of the STM scanner. To alleviate the scanning speed limitation, this article describes an inversion-based approach that compensates for the structural vibrations in the scanner and thus, allows STM imaging at high scanning speeds (relative to the smallest resonant vibrational frequency). Experimental results are presented to show the increase in scanning speeds achievable by applying the vibration compensation methods.
A high-temperature superconducting Helmholtz probe for microscopy at 9.4 T.
Hurlston, S E; Brey, W W; Suddarth, S A; Johnson, G A
1999-05-01
The design and operation of a high-temperature superconducting (HTS) probe for magnetic resonance microscopy (MRM) at 400 MHz are presented. The design of the probe includes a Helmholtz coil configuration and a stable open-cycle cooling mechanism. Characterization of coil operating parameters is presented to demonstrate the suitability of cryo-cooled coils for MRM. Specifically, the performance of the probe is evaluated by comparison of signal-to-noise (SNR) performance with that of a copper Helmholtz pair, analysis of B1 field homogeneity, and quantification of thermal stability. Images are presented to demonstrate the SNR advantage of the probe for typical MRM applications.
Yang, Linglu; Yan, Bo; Reinhard, Björn M.
2009-01-01
The optical spectra of individual Ag-Au alloy hollow particles were correlated with the particles’ structures obtained by transmission electron microscopy (TEM). The TEM provided direct experimental access to the dimension of the cavity, thickness of the metal shell, and the interparticle distance of hollow particle dimers with high spatial resolution. The analysis of correlated spectral and structural information enabled the quantification of the influence of the core-shell structure on the resonance energy, plasmon lifetime, and plasmon coupling efficiency. Electron beam exposure during TEM inspection was observed to affect plasmon wavelength and lifetime, making optical inspection prior to structural characterization mandatory. PMID:19768108
Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P
2013-07-09
An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
NASA Astrophysics Data System (ADS)
Kaggwa, G. B.; Kilpatrick, J. I.; Sader, J. E.; Jarvis, S. P.
2008-07-01
We present definitive interaction measurements of a simple confined liquid (octamethylcyclotetrasiloxane) using artifact-free frequency modulation atomic force microscopy. We use existing theory to decouple the conservative and dissipative components of the interaction, for a known phase offset from resonance (90° phase shift), that has been deliberately introduced into the experiment. Further we show the qualitative influence on the conservative and dissipative components of the interaction of a phase error deliberately introduced into the measurement, highlighting that artifacts, such as oscillatory dissipation, can be readily observed when the phase error is not compensated for in the force analysis.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Takeda, Seiji; Ptak, Arkadiusz; Nakamura, Chikashi; Jarvis, Suzanne P.; Tokumoto, Hiroshi; Miyake, Jun
2004-12-01
A method for measuring intramolecular energy dissipation as well as stiffness variation in a single biomolecule in situ by atomic force microscopy (AFM) is presented. An AFM cantilever is magnetically modulated at an off-resonance frequency while it elongates a single peptide molecule in buffer solution. The molecular stiffness and the energy dissipation are measured via the amplitude and phase lag in the response signal. Data showing a peculiar feature in both profiles of stiffness and dissipation is presented. This suggests that the present method is more sensitive to the state of the molecule than the conventional force-elongation measurement is.
One-Pot Silver Nanoring Synthesis
NASA Astrophysics Data System (ADS)
Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre
2010-03-01
Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.
One-pot silver nanoring synthesis.
Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre
2009-12-16
Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.
One-Pot Silver Nanoring Synthesis
2010-01-01
Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation. PMID:20672109
Resonance fluorescence microscopy via three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar
2018-02-01
A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.
Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface
NASA Astrophysics Data System (ADS)
Sun, Zhixiang; Maldonado, Ana; Paz, Wendel S.; Inosov, Dmytro S.; Schnyder, Andreas P.; Palacios, J. J.; Shitsevalova, Natalya Yu.; Filipov, Vladimir B.; Wahl, Peter
2018-06-01
The rise of topology in condensed-matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between 5 d and 4 f bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultralow-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about 8 meV and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point toward a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at 100 mK reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.
NASA Astrophysics Data System (ADS)
Chabot, Vincent
L'elaboration de nouveaux medicaments repose sur les etudes pharmacologiques, dont le role est d'identifier de nouveaux composes actifs ou de nouvelles cibles pharmacologiques agissant entre autres au niveau cellulaire. Recemment, la detection basee sur la resonance des plasmons de surface (SPR) a ete appliquee a l'etude de reponses cellulaires. Cette methode de detection, permettant d'observer des variations d'indice de refraction associes a de faibles changements de masse a la surface d'un metal, a l'avantage de permettre l'etude d'une population de cellules vivantes en temps reel, sans necessiter l'introduction d'agents de marquage. Pour effectuer la detection au niveau de cellules individuelles, on peut employer la microscopie SPR, qui consiste a localiser spatialement la detection par un systeme d'imagerie. Cependant, la detection basee sur la SPR est une mesure sans marquage et les signaux mesures sont attribues a une reponse moyennee des differentes sources cellulaires. Afin de mieux comprendre et identifier les composantes cellulaires generant le signal mesure en SPR, il est pertinent de combiner la microscopie SPR avec une modalite complementaire, soit l'imagerie de fluorescence. C'est dans cette problematique que s'insere ce projet de these, consistant a concevoir deux plates-formes distinctes de microscopie SPR et de fluorescence optimisees pour l'etude cellulaire, de sorte a evaluer les possibilites d'integration de ces deux modalites en un seul systeme. Des substrats adaptes pour chaque plate-forme ont ete concus et realises. Ces substrats employaient une couche d'argent passivee par l'ajout d'une mince couche d'or. La stabilite et la biocompatibilite des substrats ont ete validees pour l'etude cellulaire. Deux configurations permettant d'ameliorer la sensibilite en sondant les cellules plus profondement ont ete evaluees, soit l'emploi de plasmons de surface a longue portee et de guides d'onde a gaine metallique. La sensibilite accrue de ces configurations a aussi ete demontree pour un usage en biodetection cellulaire. Une plate-forme permettant de mesurer la spectroscopie SPR simultanement avec l'acquisition d'images de fluorescence a ete realisee. Cette plate-forme a ensuite ete validee par l'etude de reponses cellulaires suite a une stimulation pharmacologique. Puis, un systeme base sur la microscopie SPR a ete concu et caracterise. Son emploi pour l'etude de reponses au niveau de cellules individuelles a ete demontre. Finalement, les forces et faiblesses des substrats et des plates-formes realisees au cours de la these ont ete evaluees. Des possibilites d'amelioration sont mises de l'avant et l'integration des modalites de microscopie SPR et de fluorescence suite aux travaux de la these est discutee. Les realisations au cours de cette etude ont donc permis d'identifier les composantes cellulaires impliquees dans la generation du signal mesure en biodetection SPR. Mots-cles : Resonance des plasmons de surface, microscopie SPR, plasmons de surface a longue portee LRSPR, guide d'onde a gaine metallique MCWG, fluorescence exaltee par plasmons de surface SPEF, biodetection cellulaire, imagerie SPR.
NASA Technical Reports Server (NTRS)
Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.
2002-01-01
We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellin, M. J.; Veryovkin, I. V.; Levine, J.
2010-01-01
There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.
Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro
Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo
2010-01-01
Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368
Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping
NASA Astrophysics Data System (ADS)
Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung
2017-08-01
Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.
A study of the UV and VUV degradation of FEP
NASA Technical Reports Server (NTRS)
George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1993-01-01
UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.
Nonlinear nonlocal infrared plasmonic arrays for pump-probe studies on protein monolayers
NASA Astrophysics Data System (ADS)
Erramilli, Shyamsunder; Adato, Ronen; Gabel, Alan; Yanik, Ahmet Ali; Altug, Hatice; Hong, Mi K.
2010-03-01
Infrared spectroscopy is an exquisite bond-specific tool for studying biomolecules with characteristic vibrational normal modes that serve as a molecular ``fingerprint''. Intrinsic absorption cross-sections for proteins are significant (˜10-19 -10-21 cm^2), although small compared to label-based fluorescence methods. We have shown that carefully designed plasmonic nanoantenna arrays can enhance the vibrational signatures by ˜ 10^5 (Adato et al, Proc Natl Acad Sci USA, 2009). Theoretical modeling combined with polarized FTIR-microscopy show that enhancement is due both to localized effects and nonlocal collective effects, governed by the dielectric properties of silicon and gold nanoantennae, coupled to protein molecules. The resonance properties can be modulated by photoinduced excitation of charge carriers and excitons, causing both a shift in the resonance frequency and a change in the enhancement factor. An ultrafast visible pump laser can then be used to extend visible pump-infrared probe studies to protein molecules even when the molecules lack a chromophore. This provides a toolkit for biophysical studies in which the nonlinear, nonlocal interaction between a 35-fs visible or near-infrared laser and the designed plasmonic nanoantenna arrays are used to study dynamics of protein molecules.
Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles
NASA Astrophysics Data System (ADS)
Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.
2017-05-01
In-situ detection and characterization of nanoparticles in biological media as well as in food or other complex samples is still a big challenge for existing analytical methods. Here we describe a label-free and cost-effective analytical method for detection of nanoparticles in the concentration range 106 -1010 NPs/ml. The proposed method is based on the surface plasmon resonance microscopy (SPRM) with a large field of view ( 1.3mm2 ). It is able to detect and count adsorbing nanoparticles individually, totally up to the hundreds of thousands of NPs on the sensor surface. At constant diffusion conditions the detection rate is proportional to the number concentration of NPs, this provides an approach to determine the NPs concentration. The adsorption of nanoparticle can be manipulated by the surface functionalization, pH and electrolyte concentration of suspensions. Images of detected nanoparticles can be quantified in order to characterize them individually. The image intensity grows quasi-linearly with nanoparticle size for the given material. However, the size and material of nanoparticle cannot be resolved directly from the image. For determination of chemical composition, SPRM can be assisted by electrochemical analysis. In this case, the gold sensor surface is used both as a resonant media for plasmon microscopy and as a working electrode. Under potential sweep, the adsorbed NPs can be subjected to electrochemical dissolution, which is detected optically. The potential of this conversion characterizes the material of NPs.
Reactive thin polymer films as platforms for the immobilization of biomolecules.
Feng, Chuan Liang; Zhang, Zhihong; Förch, Renate; Knoll, Wolfgang; Vancso, G Julius; Schönherr, Holger
2005-01-01
Spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and gold surfaces were investigated as reactive layers for obtaining platforms for biomolecule immobilization with high molecular loading. The surface reactivity of PNHSMA films in coupling reactions with various primary amines, including amine-terminated poly(ethylene glycol) (PEG-NH2) and fluoresceinamine, was determined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and ellipsometry measurements, respectively. The rate constants of PEG-NH2 attachment on the PNHSMA films were found to be significantly increased compared to the coupling on self-assembled monolayers (SAMs) of 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) on gold under the same conditions. More significantly, the PEG loading observed was about 3 times higher for the polymer thin films. These data indicate that the coupling reactions are not limited to the very surface of the polymer films, but proceed into the near-surface regions of the films. PNHSMA films were shown to be stable in contact with aqueous buffer; the swelling analysis, as performed by atomic force microscopy (AFM), indicated a film thickness independent swelling of approximately 2 nm. An increased loading was also observed by surface plasmon resonance for the covalent immobilization of amino-functionalized probe DNA. Hybridization of fluorescently labeled target DNA was successfully detected by fluorescence microscopy and surface plasmon resonance enhanced fluorescence spectroscopy (SPFS), thereby demonstrating that thin films of PNHSMA comprise an attractive and simple platform for the immobilization of biomolecules with high densities.
Zhao, Xin; Ciovati, G.; Bieler, T. R.
2010-12-15
The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less
NASA Astrophysics Data System (ADS)
Xu, Xuan; Sun, Yaofang; Fan, Zihong; Zhao, Deqiang; Xiong, Shimin; Zhang, Bingyao; Zhou, Shiyu; Liu, Guotao
2018-03-01
Many studies have focused on the use of BiVO4 as a photocatalyst, but few have investigated the production of free radicals during the photocatalytic process. Following synthesis of flowerlike BiVO4 and characterization by X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) Scanning electron microscopy (EDX), UV-Vis and XPS, we successfully prepared BiVO4. Then we used electron spin resonance (ESR) to determine the production and degradation of individual active free radicals, including the superoxide radical (•O2‑) and the hydroxyl radical (•OH). In the first experiment, we used ESR to detect the signals of free radicals (•O2‑ and •OH) under varying oxygen conditions. The results shown that in addition to production by •O2‑, •OH could also be produced by oxidation of h+ to OH‑. In the next experiment, we detected •OH under varying pH to identify the result of the first experiment, and found that signal intensities increased with increasing pH, indicating the mechanism for •OH production. Finally, we conducted a trapping experiment to examine free radical degradation mechanisms. We identified •OH and h+ as the main active free radicals and showed the complete production about •OH. These results improve current knowledge of free radical production mechanisms, which can be used to enhance the photocatalytic performance of BiVO4.
Pan, Jianjun; Sahoo, Prasana K; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M; Teng, Peng; Cai, Jianfeng; Rodriguez Gutierrez, Humberto; Song, Likai
2017-05-18
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.
Pan, Jianjun; Sahoo, Prasana K.; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M.; Teng, Peng; Cai, Jianfeng; Gutierrez, Humberto Rodriguez; Song, Likai
2018-01-01
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. Force spectroscopy experiment shows that PrP106-126 reduces Young’s modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intra-chain conformation, while the inter-chain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the inter-chain interaction, while the intra-chain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs. PMID:28459565
NASA Astrophysics Data System (ADS)
Cao Van, Phuoc; Surabhi, Srivathsava; Dongquoc, Viet; Kuchi, Rambabu; Yoon, Soon-Gil; Jeong, Jong-Ryul
2018-03-01
We report high-quality yttrium-iron-garnet (YIG; Y3Fe5O12) ultrathin films grown on {111} gadolinium-gallium-garnet (GGG; Gd3Ga5O12) substrates using RF sputtering deposition on an off-stoichiometric target and optimized thermal treatments. We measured a narrow peak-to-peak ferromagnetic resonance linewidth (ΔH) whose minimum value was 1.9 Oe at 9.43 GHz for a 60-nm-thick YIG film. This value is comparable to the most recently published value for a YIG thin film grown by pulsed laser deposition. The temperature dependence of the ΔH was investigated systematically, the optimal annealing condition for our growing condition was 875 °C. Structural analysis revealed that surface roughness and crystallinity played an important role in the observed ΔH broadening. Furthermore, the thickness dependence of the ΔH, which indicated that 60 nm thickness was optimal to obtain narrow ΔH YIG films, was also investigated. The thickness dependence of ΔH was understood on the basis of contributions of surface-associated magnon scattering and magnetic inhomogeneities to the ΔH broadening. Other techniques such as transmission electron microscopy, scanning electron microscopy, and X-ray diffraction were used to study the crystalline structure of the YIG films. The high quality of the films in terms of their magnetic properties was expressed through a very low coercivity and high saturation magnetization measured using a vibration sample magnetometer.
Seshadri, Mukund; Spernyak, Joseph A; Maiery, Patricia G; Cheney, Richard T; Mazurchuk, Richard; Bellnier, David A
2007-01-01
Abstract The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) were investigated in vivo using intravital microscopy (IVM) and magnetic resonance imaging (MRI). Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p.) and correlated with induction of tumor necrosis factor-α (TNF-α), endothelial damage [CD31/terminal deoxynucleotidyl transferase (TdT)], and treatment outcome. Intravital imaging revealed a marked increase in vascular permeability 4 hours after treatment, consistent with increases in intratumoral mRNA and protein levels of TNF-α. Parallel contrast-enhanced MRI studies showed a ∼ 4-fold increase in longitudinal relaxation rates (ΔR1), indicative of increased contrast agent accumulation within the tumor. Dual immunostained tumor sections (CD31/TdT) revealed evidence of endothelial apoptosis at this time point. Twenty-four hours after treatment, extensive hemorrhage and complete disruption of vascular architecture were observed with IVM, along with a significant reduction in ΔR1; and virtual absence of CD31 immunostaining. DMXAA-induced tumor vascular damage resulted in significant long-term (60-day) cures compared to untreated controls. Multimodality imaging approaches are useful in visualizing the effects of antivascular therapy in vivo. Such approaches allow cross validation and correlation of findings with underlying molecular changes contributing to treatment outcome. PMID:17356709
Surface modification of cellulose fibers: towards wood composites by biomimetics.
Gradwell, Sheila E; Renneckar, Scott; Esker, Alan R; Heinze, Thomas; Gatenholm, Paul; Vaca-Garcia, Carlos; Glasser, Wolfgang
2004-01-01
A biomimetic approach was taken for studying the adsorption of a model copolymer (pullulan abietate, DS 0.027), representing the lignin-carbohydrate complex, to a model surface for cellulose fibers (Langmuir-Blodgett thin films of regenerated cellulose). Adsorption results were assayed using surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM). Rapid, spontaneous, and desorption-resistant surface modification resulted. This effort is viewed as a critical first step towards the permanent surface modification of cellulose fibers with a layer of molecules amenable to either enzymatic crosslinking for improved wood composites or thermoplastic consolidation.
Aquatic Fern (Azolla Sp.) Assisted Synthesis of Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Jha, Anal K.; Prasad, K.
2016-02-01
Aquatic pteridophyte (Azolla sp.) was taken to assess its potential to synthesize the metal (Au) nanoparticles. The synthesized particles were characterized using X-ray, UV-visible, scanning and transmission electron microscopy analyses. Nanoparticles almost spherical in shape having the sizes of 5-17nm are found. UV-visible study revealed the surface plasmon resonance at 538nm. Responsible phytochemicals for the transformation were principally phenolics, tannins, anthraquinone glycosides and sugars present abundantly in the plant thereby bestowing it adaptive prodigality. Also, the use of Azolla sp. for the synthesis of gold nanoparticles offers the benefit of eco-friendliness.
Application of optical coherence tomography based microangiography for cerebral imaging
NASA Astrophysics Data System (ADS)
Baran, Utku; Wang, Ruikang K.
2016-03-01
Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.
Tankhiwale, Rasika; Bajpai, S K
2012-02-01
The present work describes the preparation of ZnO nanoparticles loaded starch-coated polyethylene film. The presence of ZnO nanoparticles was confirmed by surface plasmon resonance (SPR), X-ray diffraction (XRD) studies and transmission electron microscopy (TEM). The ZnO loaded film was tested for its biocidal action against model bacteria Escherichia coli using zone inhibition and killing kinetics of bacterial growth methods. This newly developed material bears potential to be used as food packaging material to prevent food stuff from bacterial contamination. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bailey, Claude Albert
This dissertation outlines the developmental procedure for a real-time food-borne pathogen detector that uses a thickness shear mode (TSM) quartz resonator. A theory is discussed which provides some understanding of the measured signals obtained from the TSM resonator-based Salmonella detector. The theory explains surface viscosity and mass effects, but has yet to be fully implemented for anomalous bacterial interactions. An equivalent circuit model for an immunochemical coating and its effect on the TSM resonator frequency is presented. The latter part of this dissertation describes immunological experiments with precoated piezoelectric quartz crystals. A highly purified immunological system was used to optimize the immobilization procedure. The use of biosensors is becoming a viable alternative to conventional analysis and promises to experience dramatic growth, especially after their true potential is realized and more cost-effective assays are developed. Concern about the safety of our food and water supplies will undoubtedly stimulate further research, and miniaturized biosensors will be developed for use by safety inspectors, and concerned personnel. A Salmonella detector has been demonstrated consisting of a TSM resonator with antibodies immobilized in a Langmuir Blodgett (LB) film on the surface [3]. Scanning Electron Microscopy (SEM) images of bound Salmonella bacteria to both polished and unpolished TSM resonators were taken to correlate the mass of the bound organism to the Sauerbrey equation. Antigen-antibody interactions change the acoustic resonant properties that are reflected in the sensor frequency response. The Salmonella detector operates in a liquid environment (Salmonella suspended in a phosphate buffered saline solution). The viscous properties of this liquid overlayer could influence the TSM resonator's response. Various liquid media (buffer solutions, chicken exudate, and varying fat contents of milk) were studied as a function of temperature (0 to 50°C). Kinematic viscosity test were performed with buffer solutions and fat free milk with varying quantities of Salmonella bacteria. The response of the TSM quartz resonator is examined theoretically by modeling the sensor load as a viscoelastic film with a semi-infinite Newtonian liquid overlayer. This study analyzes the surface mechanical impedance of the TSM resonator using a Butterworth Van-Dyke equivalent circuit model [4, 5], modified to describe the surface load as lumped circuit elements [6, 7]. The sensor's impedance parameters are first modeled as a generic surface load, and then decomposed into individual impedance parameters that describe the films viscoelastic properties and liquid overlayer behavior [7]. This document describes investigations of TSM resonator surface acoustic interactions---mass, fluid viscosity, and viscoelasticity---that affect the sensor. (Abstract shortened by UMI.)
de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E
2013-02-01
We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.
Sylvester, Peter T.; Evans, John A.; Zipfel, Gregory J.; Chole, Richard A.; Uppaluri, Ravindra; Haughey, Bruce H.; Getz, Anne E.; Silverstein, Julie; Rich, Keith M.; Kim, Albert H.; Dacey, Ralph G.
2014-01-01
Purpose The clinical benefit of combined intraoperative magnetic resonance imaging (iMRI) and endoscopy for transsphenoidal pituitary adenoma resection has not been completely characterized. This study assessed the impact of microscopy, endoscopy, and/or iMRI on progression-free survival, extent of resection status (gross-, near-, and subtotal resection), and operative complications. Methods Retrospective analyses were performed on 446 transsphenoidal pituitary adenoma surgeries at a single institution between 1998 and 2012. Multivariate analyses were used to control for baseline characteristics, differences during extent of resection status, and progression-free survival analysis. Results Additional surgery was performed after iMRI in 56/156 cases (35.9 %), which led to increased extent of resection status in 15/156 cases (9.6 %). Multivariate ordinal logistic regression revealed no increase in extent of resection status following iMRI or endoscopy alone; however, combining these modalities increased extent of resection status (odds ratio 2.05, 95 % CI 1.21–3.46) compared to conventional transsphenoidal microsurgery. Multivariate Cox regression revealed that reduced extent of resection status shortened progression-free survival for near- versus gross-total resection [hazard ratio (HR) 2.87, 95 % CI 1.24–6.65] and sub- versus near-total resection (HR 2.10; 95 % CI 1.00–4.40). Complication comparisons between microscopy, endoscopy, and iMRI revealed increased perioperative deaths for endoscopy versus microscopy (4/209 and 0/237, respectively), but this difference was non-significant considering multiple post hoc comparisons (Fisher exact, p = 0.24). Conclusions Combined use of endoscopy and iMRI increased pituitary adenoma extent of resection status compared to conventional transsphenoidal microsurgery, and increased extent of resection status was associated with longer progression-free survival. Treatment modality combination did not significantly impact complication rate. PMID:24599833
Wang, Xiao-Lei; Zeng, Yu; Zheng, Yan-Zhen; Chen, Jian-Feng; Tao, Xia; Wang, Ling-Xuan; Teng, Yan
2011-09-26
Rose bengal-grafted chitosan (RB-CHI), synthesized through dehydration between amino and carboxyl functional groups under mild conditions, was coated onto the outer layer of preformed biodegradable microcapsules consisting of sodium alginate and chitosan. The fabricated photosensitive microcapsules were characterized by optical microscopy, scanning electron microscopy, and confocal laser scanning microscopy. The assembled materials maintained intact spherical morphology and thus showed good ability to form thin films. Electron spin resonance spectroscopy allowed direct observation of the generation of singlet oxygen ((1)O(2)) from photosensitive microcapsules under light excitation at about 545 nm. Furthermore, with increasing light radiation, the content of (1)O(2) increased, as detected by a chemical probe. In vitro cellular toxicity assays showed that RB-CHI-coated photosensitive microcapsules exhibit good biocompatibility in darkness and high cytotoxicity after irradiation, and could provide new photoresponsive drug-delivery vehicles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomedical Applications of Nanodiamonds: An Overview.
Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C
2015-02-01
Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.
Mazet, Lucie; Jesse, Stephen; Niu, Gang; ...
2016-06-20
Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO 3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging andmore » hysteresis loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.« less
NASA Astrophysics Data System (ADS)
Liu, Jinglin; Ouyang, Liangqi; Wu, Jinghang; Kuo, Chin-Chen; Wei, Bin; Martin, David
2013-03-01
Conjugated polymers are widely used in organic solar cells, biomedical devices, and chemical sensors. Both chemical and electrochemical methods have been developed for preparing conducting polymers, but the extent of crystalline order is usually modest. Here we synthesized highly-ordered brominated (3,4-ethylenedioxythiophene) (EDOT-Br) monomer crystals via electrochemical methods. The kinetics of the synthesis was studied with a Quartz Crystal Microbalance (QCM) and Cyclic Voltammetry (CV). The chemical structure of the EDOT-Br monomer has been confirmed by Nuclear Magnetic Resonance (NMR), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Mass Spectrometry (MS). The EDOT-Br monomer crystals can be in-situ polymerized into highly ordered PEDOT conjugated polymer crystals by annealing at temperatures below the EDOT-Br melting point. The crystalline structure was studied by optical microscopy, electron microscopy and X-Ray analysis. The conductivity and electrochemical properties of both the EDOT-Br monomer and corresponding PEDOT polymer crystals were examined with electrochemical impedance spectroscopy (EIS) and CV. This work was supported by NSF, DMR- 1103027.
Optical micro-bubble resonators as promising biosensors
NASA Astrophysics Data System (ADS)
Giannetti, A.; Barucci, A.; Berneschi, S.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Tombelli, S.; Trono, C.; Righini, G. C.; Baldini, F.
2015-05-01
Recently, optical micro-bubble resonators (OMBRs) have gained an increasing interest in many fields of photonics thanks to their particular properties. These hollow microstructures can be suitable for the realization of label - free optical biosensors by combining the whispering gallery mode (WGM) resonator properties with the intrinsic capability of integrated microfluidics. In fact, the WGMs are morphology-dependent modes: any change on the OMBR inner surface (due to chemical and/or biochemical binding) causes a shift of the resonance position and reduces the Q factor value of the cavity. By measuring this shift, it is possible to obtain information on the concentration of the analyte to be detected. A crucial step for the development of an OMBR-based biosensor is constituted by the functionalization of its inner surface. In this work we report on the development of a physical and chemical process able to guarantee a good homogeneity of the deposed bio-layer and, contemporary, to preserve a high quality factor Q of the cavity. The OMBR capability of working as bioassay was proved by different optical techniques, such as the real time measurement of the resonance broadening after each functionalization step and fluorescence microscopy.
Song, Yu; Van Dyke, John; Lum, I. K.; ...
2016-09-28
Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less
Wu, Changyu; Rehman, Fawad Ur; Li, Jingyuan; Ye, Jing; Zhang, Yuanyuan; Su, Meina; Jiang, Hui; Wang, Xuemei
2015-11-11
This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR. It is evident that the extracellular concentration of DNR residue can be readily determined through electrochemical measurements. The decreases in the magnitudes of SPR signals were linearly related to cell survival rates, and the combination of SPR with electrochemical study could be utilized to evaluate the potential therapeutic efficiency of bioactive agents to cells. Thus, this label-free, real-time SPR-electrochemical detection technique has great promise in bioanalysis or monitoring of relevant treatment processes in clinical applications.
Kuchel, Philip W; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H; Naumann, Christoph; Chapman, Bogdan E
2015-12-01
(133)Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on (133)Cs(+) in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular (133)Cs(+) signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of (133)Cs(+) reported here opens up applications of this K(+) congener for studies of cation-handling by metabolically-active cells and tissues in aligned states. Copyright © 2015 Elsevier Inc. All rights reserved.
Mattle, Eveline; Weiger, Markus; Schmidig, Daniel; Boesiger, Peter; Fey, Michael
2009-06-01
Hair care for humans is a major world industry with specialised tools, chemicals and techniques. Studying the effect of hair care products has become a considerable field of research, and besides mechanical and optical testing numerous advanced analytical techniques have been employed in this area. In the present work, another means of studying the properties of hair is added by demonstrating the feasibility of magnetic resonance imaging (MRI) of the human hair. Established dedicated nuclear magnetic resonance microscopy hardware (solenoidal radiofrequency microcoils and planar field gradients) and methods (constant time imaging) were adapted to the specific needs of hair MRI. Images were produced at a spatial resolution high enough to resolve the inner structure of the hair, showing contrast between cortex and medulla. Quantitative evaluation of a scan series with different echo times provided a T*(2) value of 2.6 ms for the cortex and a water content of about 90% for hairs saturated with water. The demonstration of the feasibility of hair MRI potentially adds a new tool to the large variety of analytical methods used nowadays in the development of hair care products.
Li, Han-Yin; Sun, Shao-Ni; Zhou, Xia; Peng, Feng; Sun, Run-Cang
2015-06-05
Eucalyptus was sequentially extracted with 70% ethanol containing 0.4, 1.0, 2.0, 3.0, and 5.0% NaOH for 2h at 80°C. The chemical composition and structural features of the hemicellulosic fractions obtained were comparatively characterized by the combination of high-performance anion-exchange chromatography, gel permeation chromatography, Fourier transform infrared, and nuclear magnetic resonance spectroscopies. Furthermore, the main component distribution and their changes in cell wall were investigated by confocal Raman microscopy. Based on the Fourier transform infrared and nuclear magnetic resonance analyses, the hemicelluloses extracted from Eucalyptus mainly have a linear backbone of (1→4)-linked-β-d-xylopyranosyl residues decorated with branch at O-2 of 4-O-methyl-α-glucuronic acid unit. Raman analysis revealed that the dissolution of hemicelluloses was different in the morphological regions, and the hemicelluloses released mainly originated from the secondary wall. The information obtained from the study conducted by combining chemical characterization with ultrastructure provides important basis for studying the mechanism of the alkali treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kovalev, A I; Wainstein, D L; Vakhrushev, V O; Gago, R; Soldera, F; Endrino, J L; Fox-Rabinovich, G S; Veldhuis, S
2017-12-06
Plasmon resonance heterogeneities were identified and studied along Ag and TiAlN layers within a multilayer stack in nanolaminate TiAlN/Ag coatings. For this purpose, a high-resolution plasmon microscopy was used. The plasmons intensity, energy, and depth of interface plasmon-polariton penetration were studied by scanning reflected electron energy loss spectroscopy. The heat conductivity of such metal-insulator-metal (MIM) nanolaminate coatings was measured by laser reflectometry. Dependencies of thermal conductivity coefficient of coatings, MIM interfaces, and resistivity of Ag layers as a function of the Ag-TiAlN bilayer thickness were calculated on the basis of experimental data. The contribution of plasmon resonance confinement to the abnormal lower thermal conductivity in the MIM metamaterial with Ag layer thickness below 25 nm is discussed. In particular, the results highlight the relevant role of different heat transfer mechanisms between MI and IM interfaces: asymmetry of plasmon-polariton interactions on upper and lower boundaries of Ag layer and asymmetry of LA and TA phonons propagation through interfaces.
NASA Astrophysics Data System (ADS)
Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan
2014-09-01
The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.
Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena
2013-06-01
Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell. Copyright © 2013 Elsevier B.V. All rights reserved.
Ali, Anjum A; Dale, Anders M; Badea, Alexandra; Johnson, G Allan
2005-08-15
We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acquired at 90-microm isotropic resolution. Probabilistic information used in the segmentation is extracted from training datasets of T2-weighted, proton density-weighted, and diffusion-weighted acquisitions. Spatial information is employed in the form of prior probabilities of occurrence of a structure at a location (location priors) and the pairwise probabilities between structures (contextual priors). Validation using standard morphometry indices shows good consistency between automatically segmented and manually traced data. Results achieved in the mouse brain are comparable with those achieved in human brain studies using similar techniques. The segmentation algorithm shows excellent potential for routine morphological phenotyping of mouse models.
NASA Astrophysics Data System (ADS)
Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick
2018-03-01
In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.
Lopez-Sanchez, Patricia; Wang, Dongjie; Zhang, Zhiyan; Flanagan, Bernadine; Gidley, Michael J
2016-10-20
The interactions between heteroxylans and mixed linkage glucans determine the architecture and mechanical properties of cereal endosperm cell walls. In this work hydrogels made of cross-linked arabinoxylan with addition of β-glucan were synthesised by cryogelation as a biomimetic tool to investigate endosperm walls. Molecular and microstructural properties were characterised by nuclear magnetic resonance ((13)C NMR), scanning electron microscopy (SEM) and immunolabelling/confocal laser scanning microscopy (CLSM). The response to mechanical stress was studied by compression-relaxation experiments. The hydrogels consisted of a scaffold characterised by dense walls interconnected by macropores with both hemicelluloses co-localised and homogeneously distributed. The gels showed a high degree of elasticity reflected in their ability to resist compression without developing cracks and recover 60-80% of their original height. Our results highlight the compatibility of these hemicelluloses to coexist in confined environments such as cell walls and their potential role in determining mechanical properties in the absence of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chakravarty, Paroma; Kothari, Sanjeev; Deese, Alan; Lubach, Joseph W
2015-07-06
The purpose of this study was to identify and characterize precipitates obtained from a liquid formulation of GNE068.HCl, a Genentech developmental compound, and lipophilic excipients, such as propylene glycol monocaprylate, and monolaurate. Precipitates were characterized using powder X-ray diffractometry (PXRD), differential scanning calorimetry, thermogravimetry, microscopy, nuclear magnetic resonance spectroscopy (NMR; solution and solid-state) and water sorption analysis. PXRD and NMR revealed the precipitates to be crystalline solvates of propylene glycol esters. The solvates (capryolate and lauroglycolate) were isomorphic and stable up to 70 °C, beyond which melting of the lattice occurred with subsequent dissolution of the active ingredient in the melt (microscopy and variable temperature PXRD). They were found to be mechanically stable (no change in PXRD pattern upon compression) and were nonhygroscopic up to ∼70% RH (25 °C). Our results highlight the outcome of inadvertent drug-excipient interactions in two separate lipid solution formulations with good solid-state properties and, thus, potential for further development.
Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla
2016-03-15
The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.
2016-08-01
Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
Total internal reflection and dynamic light scattering microscopy of gels
NASA Astrophysics Data System (ADS)
Gregor, Brian F.
Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third section incorporating previous research on simulations of complex fluids is included. Two dimensional simulations of oil, water, and surfactant mixtures were computed with a lattice gas method. The simulated systems were randomly mixed and then the temperature was quenched to a predetermined point. Spontaneous micellization is observed for a narrow range of temperature quenches, and the overall growth rate of macroscopic structure is found to follow a Vogel-Fulcher growth law.
NASA Astrophysics Data System (ADS)
Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.
2018-05-01
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
Harnessing the damping properties of materials for high-speed atomic force microscopy.
Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E
2016-02-01
The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.
Chu, Jun; Oh, Young-Hee; Sens, Alex; Ataie, Niloufar; Dana, Hod; Macklin, John J.; Laviv, Tal; Welf, Erik S.; Dean, Kevin M.; Zhang, Feijie; Kim, Benjamin B.; Tang, Clement Tran; Hu, Michelle; Baird, Michelle A.; Davidson, Michael W.; Kay, Mark A.; Fiolka, Reto; Yasuda, Ryohei; Kim, Douglas S.; Ng, Ho-Leung; Lin, Michael Z.
2016-01-01
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals due to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright engineered orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins. PMID:27240196
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Saboo, Sugandha; Taylor, Lynne S
2017-08-30
The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.
Prathna, T C; Chandrasekaran, N; Raichur, Ashok M; Mukherjee, Amitava
2011-01-01
In the present study, silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract. The effect of various process parameters like the reductant concentration, mixing ratio of the reactants and the concentration of silver nitrate were studied in detail. In the standardized process, 10(-2)M silver nitrate solution was interacted for 4h with lemon juice (2% citric acid concentration and 0.5% ascorbic acid concentration) in the ratio of 1:4 (vol:vol). The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. We found that citric acid was the principal reducing agent for the nanosynthesis process. FT-IR spectral studies demonstrated citric acid as the probable stabilizing agent. Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy. The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing "MiePlot v. 3.4". The theoretical particle size corresponding to 2% citric acid concentration was compared to those obtained by various experimental techniques like X-ray diffraction analysis, atomic force microscopy, and transmission electron microscopy. Copyright © 2010 Elsevier B.V. All rights reserved.
Self-organization of gold nanoparticles on silanated surfaces.
Kyaw, Htet H; Al-Harthi, Salim H; Sellai, Azzouz; Dutta, Joydeep
2015-01-01
The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications.
Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe
2015-03-01
The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less
NASA Astrophysics Data System (ADS)
Ghosh, Goutam; Panicker, Lata; Naveen Kumar, N.; Mallick, Vivek
2018-05-01
Silver nanoparticles (SNPs) play very significant roles in biomedical applications, e.g., biosensors in numerous assays for quantitative detection, and the surface chemistry adds an important factor in that. In this investigation, we coated SNPs either by anionic citrates, like tri-lithium citrate (TLC) or tri-potassium citrate (TKC) which are associated with Li+ or K+ counterions, respectively; or by cationic surfactants, like cetylpyridinium chloride (CPC) or cetylpyridinium iodide (CPI) which are associated with Cl‑ or I‑ counterions, respectively, at the surface of nanoparticles. Our aim was to study (i) how the counterions affect the optical property of SNPs and (ii) the interaction of coated SNPs with a protein, hen egg white lysozyme (HEWL). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were used to measure the size, and UV absorption spectroscopy was used to characterize the surface plasmon resonance (SPR) band of SNPs. ζ-potential, fluorescence quenching and circular dichroism (CD) spectroscopy techniques were used for characterizing the protein-nanoparticles interaction.
NASA Astrophysics Data System (ADS)
Korobkin, D.; Urzhumov, Y. A.; Neuner, B., III; Zorman, C.; Zhang, Z.; Mayergoyz, I. D.; Shvets, G.
2007-09-01
We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity ɛeff(ω) of the perforated film. The value of ɛeff(ω) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify ɛeff(ω) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources.
Time-resolved spectroscopy of self-assembly of CCMV protein capsids
NASA Astrophysics Data System (ADS)
Moore, Jelyn; Aronzon, Dina; Manoharan, V. N.
2008-10-01
In order to gain a deeper understanding of the process a virus undergoes to assemble; the purpose of this study to time resolve the self-assembly of a virus. Cowpea Chlorotic Mottle virus (CCMV), an icosahedral type virus, can assemble without its genetic code (RNA) depending on its chemical and physical surroundings. The surface plasmon resonance (SPR) of colloidal gold particles is known to display a shift when the gold interacts with the proteins of a virus. Surface plasmon resonance is the free electron oscillation occurring at the surface of the gold particle resulting in a characteristic peak location at maximal absorbance and peak width. The shift results from the change in the refractive index of the particles as induced by the presence of the proteins. We hope to detect this shift through total internal reflection microscopy (TIRM). The accomplishments of this research are the completion of the TIR setup and the purification of the virus and its proteins.
NASA Astrophysics Data System (ADS)
Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru
2012-12-01
We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.
Layer-Dependent Ultrafast Carrier and Coherent Phonon Dynamics in Black Phosphorus.
Miao, Xianchong; Zhang, Guowei; Wang, Fanjie; Yan, Hugen; Ji, Minbiao
2018-05-09
Black phosphorus is a layered semiconducting material, demonstrating strong layer-dependent optical and electronic properties. Probing the photophysical properties on ultrafast time scales is of central importance in understanding many-body interactions and nonequilibrium quasiparticle dynamics. Here, we applied temporally, spectrally, and spatially resolved pump-probe microscopy to study the transient optical responses of mechanically exfoliated few-layer black phosphorus, with layer numbers ranging from 2 to 9. We have observed layer-dependent resonant transient absorption spectra with both photobleaching and red-shifted photoinduced absorption features, which could be attributed to band gap renormalization of higher subband transitions. Surprisingly, coherent phonon oscillations with unprecedented intensities were observed when the probe photons were in resonance with the optical transitions, which correspond to the low-frequency layer-breathing mode. Our results reveal strong Coulomb interactions and electron-phonon couplings in photoexcited black phosphorus, providing important insights into the ultrafast optical, nanomechanical, and optoelectronic properties of this novel two-dimensional material.
NASA Astrophysics Data System (ADS)
Lu, Shin-Ming; Chan, Wen-Yuan; Su, Wei-Bin; Pai, Woei Wu; Liu, Hsiang-Lin; Chang, Chia-Seng
2018-04-01
The form of the external potential (FEP) for generating field emission resonance (FER) in a scanning tunneling microscopy (STM) junction is usually assumed to be triangular. We demonstrate that this assumption can be examined using a plot that can characterize FEP. The plot is FER energies versus the corresponding distances between the tip and sample. Through this energy–distance relationship, we discover that the FEP is nearly triangular for a blunt STM tip. However, the assumption of a triangular potential form is invalid for a sharp tip. The disparity becomes more severe as the tip is sharper. We demonstrate that the energy–distance plot can be exploited to determine the barrier width in field emission and estimate the effective sharpness of an STM tip. Because FERs were observed on Pb islands grown on the Cu(111) surface in this study, determination of the tip sharpness enabled the derivation of the subtle expansion deformation of Pb islands due to electrostatic force in the STM junction.
van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J.; Goedhart, Joachim; Bruchas, Michael R.; Bouvier, Michel
2015-01-01
The last frontier for a complete understanding of G-protein–coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)–based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. PMID:25972446
Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.
Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo
2013-04-23
Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.
On the origin of amplitude reduction mechanism in tapping mode atomic force microscopy
NASA Astrophysics Data System (ADS)
Keyvani, Aliasghar; Sadeghian, Hamed; Goosen, Hans; van Keulen, Fred
2018-04-01
The origin of amplitude reduction in Tapping Mode Atomic Force Microscopy (TM-AFM) is typically attributed to the shift in resonance frequency of the cantilever due to the nonlinear tip-sample interactions. In this paper, we present a different insight into the same problem which, besides explaining the amplitude reduction mechanism, provides a simple reasoning for the relationship between tip-sample interactions and operation parameters (amplitude and frequency). The proposed formulation, which attributes the amplitude reduction to an interference between the tip-sample and dither force, only deals with the linear part of the system; however, it fully agrees with experimental results and numerical solutions of the full nonlinear model of TM-AFM.
Pump-probe nonlinear phase dispersion spectroscopy.
Robles, Francisco E; Samineni, Prathyush; Wilson, Jesse W; Warren, Warren S
2013-04-22
Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed.
Pump-probe nonlinear phase dispersion spectroscopy
Robles, Francisco E.; Samineni, Prathyush; Wilson, Jesse W.; Warren, Warren S.
2013-01-01
Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed. PMID:23609646
Near-edge X-ray refraction fine structure microscopy
Farmand, Maryam; Celestre, Richard; Denes, Peter; ...
2017-02-06
We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less
An automated real-time microscopy system for analysis of fluorescence resonance energy transfer
NASA Astrophysics Data System (ADS)
Bernardini, André; Wotzlaw, Christoph; Lipinski, Hans-Gerd; Fandrey, Joachim
2010-05-01
Molecular imaging based on Fluorescence Resonance Energy Transfer (FRET) is widely used in cellular physiology both for protein-protein interaction analysis and detecting conformational changes of single proteins, e.g. during activation of signaling cascades. However, getting reliable results from FRET measurements is still hampered by methodological problems such as spectral bleed through, chromatic aberration, focal plane shifts and false positive FRET. Particularly false positive FRET signals caused by random interaction of the fluorescent dyes can easily lead to misinterpretation of the data. This work introduces a Nipkow Disc based FRET microscopy system, that is easy to operate without expert knowledge of FRET. The system automatically accounts for all relevant sources of errors and provides various result presentations of two, three and four dimensional FRET data. Two examples are given to demonstrate the scope of application. An interaction analysis of the two subunits of the hypoxia-inducible transcription factor 1 demonstrates the use of the system as a tool for protein-protein interaction analysis. As an example for time lapse observations, the conformational change of the fluorophore labeled heat shock protein 33 in the presence of oxidant stress is shown.
Experiments with Coler magnetic current apparatus
NASA Astrophysics Data System (ADS)
Ludwig, T.
Experiments with a replica of the famous Coler "Magnetstromapparat" (magnetic current apparatus) were conducted. The replica was built at the same institute at the Technical University of Berlin where the original was tested by Prof. Kloss in 1925. The details of the setup will be presented in this paper. The investigation of the Coler device was done with modern methods. The output was measured with a digital multi meter (DMM) and a digital storage oscilloscope (DSO). The results of the measurements will be presented. Did Coler convert vacuum fluctuations via magnetic, electric and acoustic resonance into electricity? There is a strong connection between magnetism and quantum field radiation energy. The magnetic moment of the electron is in part an energy exchange with the radiation field. The energy output of the Coler apparatus is measured. Furthermore the dynamics of the ferromagnetic magnets that Coler reported as the working principle of his device was investigated with magnetic force microscopy (MFM) and the spectroscopy mode of an atomic force microscope (AFM). The magnetic and acoustic resonance was investigated with magnetic force microscopy (MFM). The connection between ZPE and magnetism will be discussed as well as the perspective of using magnetic systems as a means to convert vacuum fluctuations into usable electricity.
Molinaro, Céline; Marguet, Sylvie; Douillard, Ludovic; Charra, Fabrice; Fiorini-Debuisschert, Céline
2018-05-07
Two-photon luminescence (TPL) turn-off in small single gold nanorods (GNRs) exposed to increased resonant femtosecond laser excitation (800 nm wavelength, pulse energy density varying from 125 μJ cm -2 to 2.5 mJ cm -2 ) is investigated. The origin is shown to be a photo-induced decrease of the rod aspect ratio. This aspect ratio reduction could reasonably be assigned to gold atom diffusion away from the rod tips, where hot spots are localized. The two-photon luminescence signal can be recovered after a blue-shift of the incident excitation wavelength. No change in the excitation wavelength results in an out of resonance excitation of the rods and thus a reduced absorption, acting as feedback to stabilize the GNR shape and size. A theoretical analysis is presented evidencing limited thermal effects in the femtosecond regime for small nanoparticles, in good agreement with complementary topographic characterizations using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show finally that TPL reveals itself as a highly sensitive tool to follow tiny changes resulting from the photo-induced reshaping of GNRs.
A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.
Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael
2009-09-01
We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet.
Loganathan, Muthukumaran; Bristow, Douglas A
2014-04-01
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.
Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.
An Implantable RF Solenoid for Magnetic Resonance Microscopy and Microspectroscopy
Cohen, Mark S.; Clark, W. Gilbert; Chu, Allen C.; Nunnally, Ray L.; Smith, Jolinda; Mills, Dixie; Judy, Jack W.
2014-01-01
Miniature solenoids routinely enhance small volume nuclear magnetic resonance imaging and spectroscopy; however, no such techniques exist for patients. We present an implantable microcoil for diverse clinical applications, with a microliter coil volume. The design is loosely based on implantable depth electrodes, in which a flexible tube serves as the substrate, and a metal stylet is inserted into the tube during implantation. The goal is to provide enhanced signal-to-noise ratio (SNR) of structures that are not easily accessed by surface coils. The first-generation prototype was designed for implantation up to 2 cm, and provided initial proof-of-concept for microscopy. Subsequently, we optimized the design to minimize the influence of lead inductances, and to thereby double the length of the implantable depth (4 cm). The second-generation design represents an estimated SNR improvement of over 30% as compared to the original design when extended to 4 cm. Impedance measurements indicate that the device is stable for up to 24 h in body temperature saline. We evaluated the SNR and MR-related heating of the device at 3T. The implantable microcoil can differentiate fat and water peaks, and resolve submillimeter features. PMID:22156945
Laboratory technology and cosmochemistry
Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.
2011-01-01
Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689
Sustarsic, Marko; Kapanidis, Achillefs N
2015-10-01
Single-molecule Förster resonance energy transfer (smFRET) serves as a molecular ruler that is ideally posed to study static and dynamic heterogeneity in living cells. Observing smFRET in cells requires appropriately integrated labeling, internalization and imaging strategies, and significant progress has been made towards that goal. Pioneering studies have demonstrated smFRET detection in both prokaryotic and eukaryotic systems, using both wide-field and confocal microscopies, and have started to answer exciting biological questions. We anticipate that future technical developments will open the door to smFRET for the study of structure, conformational changes and kinetics of biomolecules in living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.
Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device
NASA Astrophysics Data System (ADS)
Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
NASA Astrophysics Data System (ADS)
Xu, Zhiwang; Zheng, Hui; Han, Mangui
2017-07-01
In this work, yttrium iron garnet nanodot array has been deposited on Gd3Ga5O12 substrate by pulsed laser deposition through an ultrathin alumina mask. The morphology and magnetic properties of YIG nanodot array have been investigated. Scanning electron microscopy displays the prepared nanodot array has a sharp distribution in diameter centered at 330 nm with standard deviation of 20 nm. X-ray diffraction θ-2θ and pole figure analysis show the yttrium iron garnet nanodot array has oriented growth. Moreover, typical hysteresis loops and ferromagnetic resonance spectra display larger coercivity and multi-resonance peaks which are ascribed to this unique structure.
Thompson, Karen J; Harley, Cynthia M; Barthel, Grant M; Sanders, Mark A; Mesce, Karen A
2015-01-01
The staining of neurons with silver began in the 1800s, but until now the great resolving power of the laser scanning confocal microscope has not been utilized to capture the in-focus and three-dimensional cytoarchitecture of metal-impregnated cells. Here, we demonstrate how spectral confocal microscopy, typically reserved for fluorescent imaging, can be used to visualize metal-labeled tissues. This imaging does not involve the reflectance of metal particles, but rather the excitation of silver (or gold) nanoparticles and their putative surface plasmon resonance. To induce such resonance, silver or gold particles were excited with visible-wavelength laser lines (561 or 640 nm), and the maximal emission signal was collected at a shorter wavelength (i.e., higher energy state). Because the surface plasmon resonances of noble metal nanoparticles offer a superior optical signal and do not photobleach, our novel protocol holds enormous promise of a rebirth and further development of silver- and gold-based cell labeling protocols. DOI: http://dx.doi.org/10.7554/eLife.09388.001 PMID:26670545
Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range
Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; ...
2015-09-10
In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less
NASA Astrophysics Data System (ADS)
Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi
2009-02-01
Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine
2014-09-29
In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magneticmore » phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.« less
Potential of Fluorescence Imaging Techniques To Monitor Mutagenic PAH Uptake by Microalga
2015-01-01
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is one of the major environmental pollutants that causes mutagenesis and cancer. BaP has been shown to accumulate in phytoplankton and zooplankton. We have studied the localization and aggregation of BaP in Chlorella sp., a microalga that is one of the primary producers in the food chain, using fluorescence confocal microscopy and fluorescence lifetime imaging microscopy with the phasor approach to characterize the location and the aggregation of BaP in the cell. Our results show that BaP accumulates in the lipid bodies of Chlorella sp. and that there is Förster resonance energy transfer between BaP and photosystems of Chlorella sp., indicating the close proximity of the two molecular systems. The lifetime of BaP fluorescence was measured to be 14 ns in N,N-dimethylformamide, an average of 7 ns in Bold’s basal medium, and 8 ns in Chlorella cells. Number and brightness analysis suggests that BaP does not aggregate inside Chlorella sp. (average brightness = 5.330), while it aggregates in the supernatant. In Chlorella grown in sediments spiked with BaP, in 12 h the BaP uptake could be visualized using fluorescence microscopy. PMID:25020149
NASA Astrophysics Data System (ADS)
McNerney, Gregory Paul
Human immunodeficiency virus 1 (HIV-1) is a human retrovirus that efficiently, albeit gradually, overruns the immune system. An already infected T lymphocyte can latch onto another T lymphocyte whereby creating a virological synapse (VS); this junction drives viral assembly and transfer to the target cell in batches in an efficient, protective manor. My Ph.D. doctoral thesis focused on studying this transmission mechanism using advanced optical imaging modalities and the fully infectious fluorescent clone HIV Gag-iGFP. T lymphocytes are non-adherent cells (˜10 um thick) and the viral transmission process is fairly dynamic, hence we employed a custom spinning disk confocal microscope that revealed many interesting characteristics of this cooperative event. This methodology has low throughput as cell contact and transfer is at random. Optical tweezers was then added to the microscope to directly initiate cell contact at will. To assess when viral maturation occurs post-transfer, an optical assay based off of Forster resonance energy transfer was developed to monitor maturation. Structured illumination microscopy was further used to image the process at higher resolution and it showed that viral particles are not entering existing degradative compartments. Non-HIV-1 applications of the optical technologies are also reviewed.
Sennerby, Lars; Persson, Leif G; Berglundh, Tord; Wennerberg, Ann; Lindhe, Jan
2005-01-01
Histologic studies have demonstrated the possibility to reestablish direct bone-implant contacts after ligature-induced periimplantitis. The influence of the reosseointegration on the stability of implants is not known. The aim of the present investigation was to study bone tissue and associated implant stability alterations that occurred during induction and resolution of periimplantitis using resonance frequency analysis (RFA), radiography, and histology. Three implants with smooth (turned) or roughened (SLA) surfaces were placed in each side of the edentulous mandible of four dogs. Experimental periimplantitis was induced for 3 months. Five weeks later, the animals were treated with antibiotics and surgical therapy and were followed for another 6 months. Periapical radiographs and RFA were used to evaluate marginal bone levels and implant stability throughout the study period. After termination, the tissue-implant interface was evaluated by light microscopy in ground sections. There was a linear relationship between radiographic and RFA findings because continuous loss of marginal bone and a decrease in implant stability were observed for both implant surfaces during the periimplantitis period. Antibiotic treatment and surgical therapy resulted in some reosseointegration, which was more marked for the SLA surface. The resonance frequency values corresponded well to the histometric measurements because reosseointegration resulted in an increase in implant stability. The findings from the present study indicate a linear relationship between marginal bone level and resonance frequency value. It is suggested that the RFA technique is sensitive and may be used to detect even a minor change in the level of bone-implant contact.
Abbass, A E; Swart, H C; Kroon, R E
2016-09-01
Although noble metal nanoparticles (NPs) have attracted some attention for potentially enhancing the luminescence of rare earth ions for phosphor lighting applications, the absorption of energy by NPs can also be beneficial in biological and polymer applications where local heating is desired, e.g. photothermal applications. Strong interaction between incident laser light and NPs occurs only when the laser wavelength matches the NP plasmon resonance. Although lasers with different wavelengths are available and the NP plasmon resonance can be tuned by changing its size and shape or the dielectric medium (host material), in this work, we consider exciting the plasmon resonance of Ag NPs indirectly with a He-Cd UV laser using the down-conversion properties of Tb(3+) ions in ZnO. The formation of Ag NPs was confirmed by X-ray diffraction, transmission electron microscopy and UV-vis diffuse reflectance measurements. Radiative energy transfer from the Tb(3+) ions to the Ag NPs resulted in quenching of the green luminescence of ZnO:Tb and was studied by means of spectral overlap and lifetime measurements. The use of a down-converting phosphor, possibly with other rare earth ions, to indirectly couple a laser to the plasmon resonance wavelength of metal NPs is therefore successfully demonstrated and adds to the flexibility of such systems. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Böhm, Ingrid
2011-08-01
The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).
Soorappan, Rajasekaran Namakkal; Ahmad, Shama; Mariappan, Nithya; Litovsky, Silvio; Gupta, Himanshu; Lloyd, Steven G; Denney, Thomas S; Powell, Pamela Cox; Aban, Inmaculada; Collawn, James; Davies, James E; McGiffin, David C; Dell’Italia, Louis J
2016-01-01
Objective Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral valvular regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. Methods Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for Class I indications was evaluated for desmin, the voltage-dependent anion channel, αβ-crystallin, and α, β unsaturated aldehyde 4-hydroxynonelal by fluorescence microscopy and in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients pre- and 6 months post-mitral valve repair. Results LV end-diastolic volume was 1.5-fold (p<0.0001) higher and LV mass to volume ratio was lower in MR (p=0.004) vs. normal and improvement six months after mitral valve surgery. However, LV ejection fraction decreased from 65 ± 7 to 52 ± 9% (p<0.0001) and LV circumferential (p<0.0001) and longitudinal strain decreased significantly below normal values (p=0.002) post-surgery. MR hearts had a 53% decrease in desmin (p<0.0001) and a 2.6-fold increase in desmin aggregates (p<0.0001) vs. normal along with significant, intense perinuclear staining of α, β unsaturated aldehyde 4-hydroxynonelal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron dense deposits, myofibrillar loss, Z-line abnormalities and extensive granulofilamentous debris identified as desmin positive by immunogold transmission electron microscopy. Conclusion Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain post-operative LV functional decline and further supports the move toward earlier surgical intervention. PMID:27464577
Spatiotemporally resolved magnetic dynamics in B20 chiral FeGe
NASA Astrophysics Data System (ADS)
Gray, Isaiah; Turgut, Emrah; Bartell, Jason; Fuchs, Gregory
Chiral magnetic materials have shown promise for ultra-low-power memory devices exploiting low critical currents for manipulation of spin textures. This motivates systematic studies of chiral dynamics in thin films, both for understanding magnetic properties and for developing devices. We use time-resolved anomalous Nernst effect (TRANE) microscopy to examine ferromagnetic resonance modes in 170 nm thin films of B20 chiral FeGe. Using 3 ps laser pulses with 1.2 μm resolution to generate a local thermal gradient, we measure the resulting Nernst voltage, which is proportional to the in-plane component of the magnetization. We first characterize and image the static magnetic moment as a function of temperature near the helical phase transition at 273 K. We then excite ferromagnetic resonance with microwave current and study the dynamical modes as a function of temperature, spatial position, and frequency. We identify both the uniform field-polarized mode and the helical spin-polarized mode and study the different spatial structures of the two modes. This work was supported by the Cornell Center for Materials Science with funding from the NSF MRSEC program (DMR-1120296), and also by the DOE Office of Science (Grant No. DE-SC0012245).
Kulinowski, Piotr; Młynarczyk, Anna; Dorożyński, Przemysław; Jasiński, Krzysztof; Gruwel, Marco L H; Tomanek, Bogusław; Węglarz, Władysław P
2012-12-01
To resolve contradictions found in morphology of hydrating hydroxypropylmethyl cellulose (HPMC) matrix as studied using Magnetic Resonance Imaging (MRI) techniques. Until now, two approaches were used in the literature: either two or three regions that differ in physicochemical properties were identified. Multiparametric, spatially and temporally resolved T(2) MR relaxometry in situ was applied to study the hydration progress in HPMC matrix tablets using a 11.7 T MRI system. Two spin-echo based pulse sequences-one of them designed to specifically study short T(2) signals-were used. Two components in the T(2) decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T(2) values, were obtained. Based on the data, five different regions and their temporal evolution were identified: dry glassy, hydrated solid like, two interface layers and gel layer. The regions were found to be separated by four evolving fronts identified as penetration, full hydration, total gelification and apparent erosion. The MRI results showed morphological details of the hydrating HPMC matrices matching compound theoretical models. The proposed method will allow for adequate evaluation of controlled release polymeric matrix systems loaded with drug substances of different solubility.
Green's function approach to the Kondo effect in nanosized quantum corrals
NASA Astrophysics Data System (ADS)
Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.
2018-04-01
We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.
NASA Astrophysics Data System (ADS)
Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua
2017-02-01
Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.
Schaufele, Fred
2013-01-01
Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839
Molecular specificity in photoacoustic microscopy by time-resolved transient absorption.
Shelton, Ryan L; Mattison, Scott P; Applegate, Brian E
2014-06-01
We have recently harnessed transient absorption, a resonant two-photon process, for ultrahigh resolution photoacoustic microscopy, achieving nearly an order of magnitude improvement in axial resolution. The axial resolution is optically constrained due to the two-photon process unlike traditional photoacoustic microscopy where the axial resolution is inversely proportional to the frequency bandwidth of the detector. As a resonant process, the arrival time of the two photons need not be instantaneous. Systematically recording the signal as a function of the delay between two pulses will result in the measurement of an exponential decay whose time constant is related to the molecular dynamics. This time constant, analogous to the fluorescence lifetime, but encompassing nonradiative decay as well, can be used to differentiate between molecular systems with overlapping absorption spectra. This is frequently the situation for closely related yet distinct molecules such as redox pairs. In order to enable the measure of the exponential decay, we have reconfigured our transient absorption ultrasonic microscopy (TAUM) system to incorporate two laser sources with precisely controlled pulse trains. The system was tested by measuring Rhodamine 6G, an efficient laser dye where the molecular dynamics are dominated by the fluorescence pathway. As expected, the measured exponential time constant or ground state recovery time, 3.3±0.7 ns, was similar to the well-known fluorescence lifetime, 4.11±0.05 ns. Oxy- and deoxy-hemoglobin are the quintessential pair whose relative concentration is related to the local blood oxygen saturation. We have measured the ground state recovery times of these two species in fully oxygenated and deoxygenated bovine whole blood to be 3.7±0.8 ns and 7.9±1.0 ns, respectively. Hence, even very closely related pairs of molecules may be differentiated with this technique.
Yarema, Maksym; Wörle, Michael; Rossell, Marta D; Erni, Rolf; Caputo, Riccarda; Protesescu, Loredana; Kravchyk, Kostiantyn V; Dirin, Dmitry N; Lienau, Karla; von Rohr, Fabian; Schilling, Andreas; Nachtegaal, Maarten; Kovalenko, Maksym V
2014-09-03
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.
2015-01-01
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g–1, 50% higher than those achieved for bulk Ga under identical testing conditions. PMID:25133552
Wu, Lina; Wen, Xiaofei; Wang, Xiance; Wang, Chunan; Sun, Xilin; Wang, Kai; Zhang, Huiying; Williams, Todd; Stacy, Allen J.; Chen, Junjie; Schmieder, Anne H.; Lanza, Gregory M.; Shen, Baozhong
2018-01-01
Eighty percent of lung cancers originate as subtle premalignant changes in the airway mucosal epithelial layer of bronchi and alveoli, which evolve and penetrate deeper into the parenchyma. Liquid-ventilation, with perfluorocarbons (PFC) was first demonstrated in rodents in 1966 then subsequently applied as lipid-encapsulated PFC emulsions to improve pulmonary function in neonatal infants suffering with respiratory distress syndrome in 1996. Subsequently, PFC nanoparticles (NP) were extensively studied as intravenous (IV) vascular-constrained nanotechnologies for diagnostic imaging and targeted drug delivery applications. Methods: This proof-of-concept study compared intratumoral localization of fluorescent paramagnetic (M) PFC NP in the Vx2 rabbit model using proton (1H) and fluorine (19F) magnetic resonance (MR) imaging (3T) following intratracheal (IT) or IV administration. MRI results were corroborated by fluorescence microscopy. Results: Dynamic 1H-MR and 19F-MR images (3T) obtained over 72 h demonstrated marked and progressive accumulation of M-PFC NP within primary lung Vx2 tumors during the first 12 h post IT administration. Marked 1H and 19F MR signal persisted for over 72 h. In contradistinction, IV M-PFC NP produced a modest transient signal during the initial 2 h post-injection that was consistent circumferential blood pool tumor enhancement. Fluorescence microscopy of excised tumors corroborated the MR results and revealed enormous intratumor NP deposition on day 3 after IT but not IV treatment. Rhodamine-phospholipid incorporated into the PFC nanoparticle surfactant was distributed widely within the tumor on day 3, which is consistent with a hemifusion-based contact drug delivery mechanism previously reported. Fluorescence microscopy also revealed similar high concentrations of M-PFC NP given IT for metastatic Vx2 lung tumors. Biodistribution studies in mice revealed that M-PFC NP given IV distributed into the reticuloendothelial organs, whereas, the same dosage given IT was basically not detected beyond the lung itself. PFC NP given IT did not impact rabbit behavior or impair respiratory function. PFC NP effects on cells in culture were negligible and when given IV or IT no changes in rabbit hematology nor serum clinical chemistry parameters were measured. Conclusion: IT delivery of PFC NP offered unique opportunity to locally deliver PFC NP in high concentrations into lung cancers with minimal extratumor systemic exposure. PMID:29290827
High-Resolution Methods for Diagnosing Cartilage Damage In Vivo
Novakofski, Kira D.; Pownder, Sarah L.; Koff, Matthew F.; Williams, Rebecca M.; Potter, Hollis G.; Fortier, Lisa A.
2016-01-01
Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics. PMID:26958316
NASA Astrophysics Data System (ADS)
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Growth and characterization of manganese doped gallium nitride nanowires.
Kumar, V Suresh; Kesavamoorthy, R; Kumar, J
2008-08-01
Manganese doped GaN nanowires have been grown by chemical vapour transport method on sapphire (0001) substrates in the temperature range of 800-1050 degrees C. The surface features of nanowires have been investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDAX), Raman scattering studies and Electron Paramagnetic Resonance (EPR). SEM images showed that the morphology of the one dimensional materials included straight nanorods and nanowires around 70-80 nm. Raman spectrum showed the GaMnN vibrational modes at 380, 432 and 445 cm(-1). EPR measurements were performed on Mn doped GaN nanowires in order to evaluate the magnetic behaviour.
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
NASA Astrophysics Data System (ADS)
Ivanova, A. K.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Zayarny, D. A.; Nguyen, L. V.; Nguyen, T. T. H.; Pham, M. H.; Pham, D. V.; Do, T. H.
2017-06-01
Hybrid plasmonic-dielectric antennae are fabricated by laser ablation of gold in water sols of micro-diamonds. Electron microscopy and energy-dispersive x-ray spectroscopy of their deposits on a silicon wafer surface indicate close proximity of gold nanoparticles and micro-diamonds, which is supported by photoluminescence studies demonstrating strong (eight-fold) damping of micro-diamond luminescence owing to the attachment of the gold nanoparticles. UV-near-IR spectroscopy of their sols reveals a considerable plasmonic effect, related to red spectral shifts of surface plasmon resonance for the gold nanoparticles in the laser-ablation-fabricated antennae.
Wang, Wenwen; Wang, Weiyu; Lu, Xinyi; ...
2014-10-23
For this study, comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight massmore » spectrometry and 1H nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by 1H nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 26–32 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. In conclusion, these findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Hongchen; Sun, Yao; Zhou, Xilong
Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower thanmore » the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.« less
Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura
2005-12-01
The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.
D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen
2013-01-01
Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold-silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron-surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron-surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron-surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances-approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron-surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping.
Alonso-González, P; Albella, P; Neubrech, F; Huck, C; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R
2013-05-17
Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.
Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen
2011-01-01
Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy. PMID:22140560
Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio
Summary One of the most fascinating challenges in neuroscience is the reconstruction of the connectivity map of the brain. Recent years have seen a rapid expansion in the field of connectomics, whose aim is to trace this map and understand its relationship with neural computation. Many different approaches, ranging from electron and optical microscopy to magnetic resonance imaging, have been proposed to address the connectomics challenge on various spatial scales and in different species. Here, we review the main technological advances in the microscopy techniques applied to connectomics, highlighting the potential and limitations of the different methods. Finally, we briefly discuss the role of connectomics in the Human Brain Project, the Future and Emerging Technologies (FET) Flagship recently approved by the European Commission. PMID:24139653
Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors.
Lu, Maryia; Tay, Li Wei Rachel; He, Jingquan; Du, Guangwei
2016-01-01
Phospholipids are important signaling molecules that regulate cell proliferation, death, migration, and metabolism. Many phospholipid signaling cascades are altered in breast cancer. To understand the functions of phospholipid signaling molecules, genetically encoded phospholipid biosensors have been developed to monitor their spatiotemporal dynamics. Compared to other phospholipids, much less is known about the subcellular production and cellular functions of phosphatidic acid (PA), partially due to the lack of a specific and sensitive PA biosensor in the past. This chapter describes the use of a newly developed PA biosensor, PASS, in two applications: regular fluorescent microscopy and fluorescence lifetime imaging microscopy-Förster/fluorescence resonance energy transfer (FLIM-FRET). These protocols can be also used with other phospholipid biosensors.
Multiphoton, confocal, and lifetime microscopy for molecular imaging in cartilage
NASA Astrophysics Data System (ADS)
Wachsmann-Hogiu, Sebastian; Krakow, Deborah; Kirilova, Veneta T.; Cohn, Daniel H.; Bertolotto, Cristina; Acuna, Dora; Fang, Qiyin; Krivorov, Nikola; Farkas, Daniel L.
2005-03-01
It has recently been shown that mutations in Filamin A and B genes produce a large spectrum of skeletal disorders in developing fetuses. However, high-resolution optical microscopy in cartilage growth plate using fluorescent antibody assays, which should elucidate molecular aspects of these disorders, is extremely difficult due to the high level of autofluoresce in this tissue. We apply multiphoton, confocal, lifetime and spectral microscopy to (i) image and characterize autofluorophores in chondrocytes and subtract their contributions to obtain a corrected antibody-marker fluorescence signal, and (ii) measure the interaction between Filamin A and B proteins by detecting the fluorescence resonance energy transfer (FRET) between markers of the two proteins. Taking advantage of the different fluorescence spectra of the endogenous and exogenous markers, we can significantly reduce the autofluorescence background. Preliminary results of the FRET experiments suggest no interaction between Filamin A and B proteins. However, developing of new antibodies targeting the carboxy-terminal immunoglobulin-like domain may be necessary to confirm this result.
2014-01-01
Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278
All-optical optoacoustic microscopy based on probe beam deflection technique.
Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A
2016-09-01
Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.
Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.
Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas
2012-09-10
An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.
Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control
NASA Astrophysics Data System (ADS)
Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.
2018-01-01
In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.
CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma
NASA Astrophysics Data System (ADS)
Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai
2015-11-01
Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.
Tunable optical metamaterial based on liquid crystal-gold nanosphere composite.
Pratibha, R; Park, K; Smalyukh, I I; Park, W
2009-10-26
Effect of the surrounding anisotropic liquid crystal medium on the surface plasmon resonance (SPR) exhibited by concentrated suspensions of gold nanospheres has been investigated experimentally and compared with the Mie scattering theory. The observed polarization-sensitive SPR and the red-shift in the SPR wavelength with increasing concentration of the gold nanospheres in the liquid crystal matrix have been explained using calculations based on the Maxwell Garnet effective medium theory. Agglomeration of the gold nanospheres that could also lead to such a red-shift has been ruled out using Atomic force microscopy study of thin nanoparticle-doped smectic films obtained on solid substrates. Our study demonstrates feasibility of obtaining tunable optical bulk metamaterials based on smectic liquid crystal - nanoparticle composites.
Self-organization of gold nanoparticles on silanated surfaces
Kyaw, Htet H; Sellai, Azzouz; Dutta, Joydeep
2015-01-01
Summary The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV–visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications. PMID:26734526
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
NASA Astrophysics Data System (ADS)
Turpin, Terry M.; Lafuse, James L.
1993-02-01
ImSynTM is an image synthesis technology, developed and patented by Essex Corporation. ImSynTM can provide compact, low cost, and low power solutions to some of the most difficult image synthesis problems existing today. The inherent simplicity of ImSynTM enables the manufacture of low cost and reliable photonic systems for imaging applications ranging from airborne reconnaissance to doctor's office ultrasound. The initial application of ImSynTM technology has been to SAR processing; however, it has a wide range of applications such as: image correlation, image compression, acoustic imaging, x-ray tomographic (CAT, PET, SPECT), magnetic resonance imaging (MRI), microscopy, range- doppler mapping (extended TDOA/FDOA). This paper describes ImSynTM in terms of synthetic aperture microscopy and then shows how the technology can be extended to ultrasound and synthetic aperture radar. The synthetic aperture microscope (SAM) enables high resolution three dimensional microscopy with greater dynamic range than real aperture microscopes. SAM produces complex image data, enabling the use of coherent image processing techniques. Most importantly SAM produces the image data in a form that is easily manipulated by a digital image processing workstation.
Optimal Background Estimators in Single-Molecule FRET Microscopy.
Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria
2016-09-20
Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Phonon shift in chemically exfoliated WS2 nanosheet
NASA Astrophysics Data System (ADS)
Sarkar, Abdus Salam; Pal, Suman Kalyan
2018-04-01
We have synthesized few layer WS2 nanosheets in a low boiling point solvent. Few layer of WS2 sheets are characterized by various techniques such as UV-visible and Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). UV-Vis absorption spectra confirm the well dispersed in isopropyl alcohol. SEM and TEM images indicate the sheet like morphology of WS2. Atomic force microscopy image and room temperature Raman spectroscopy confirm the exfoliation of few layer (4-5 layer) of WS2. Further, Raman spectroscopy was used as a meteorology tool to determine the temperature co-efficient. We have systematically investigated the temperature dependent Raman spectroscopic behavior of few layer WS2. Our results depict the softening of the Raman modes E12g in plane vibration and A1g out of plane vibration with increasing the temperature from 77 K to 300 K. Softening of the Raman modes could be explained in terms of the double resonance which is active in the layered materials. The observed temperature coefficients for two Raman peaks E12g and A1g, are - 0.022 cm-1 and -0.009 cm-1, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seymour, Joseph D.
2005-06-01
The magnetic resonance microscopy (MRM) work at Montana State University has extended the imaging of a single biofilm in a 1 mm capillary reactor to correlate T2 magnetic relaxation maps displaying biofilm structure with the corresponding velocity patterns in three dimensions in a Staphylococcus epidermidis biofilm fouled square capillary. A square duct geometry is chosen to provide correlation with existing experiments and simulations, as research bioreactors tend to be of square or rectangular cross section for optical or microelectrode access. The spatially resolved velocity data provide details on the impact of biofilm induced advection on mass transport from the bulkmore » fluid to the biofilm and through the capillary bioreactor.« less
Alonso-González, Pablo; Albella, Pablo; Golmar, Federico; Arzubiaga, Libe; Casanova, Félix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer
2013-01-14
We directly visualize and identify the capacitive coupling of infrared dimer antennas in the near field by employing scattering-type scanning near-field optical microscopy (s-SNOM). The coupling is identified by (i) resolving the strongly enhanced nano-localized near fields in the antenna gap and by (ii) tracing the red shift of the dimer resonance when compared to the resonance of the single antenna constituents. Furthermore, by modifying the illumination geometry we break the symmetry, providing a means to excite both the bonding and the "dark" anti-bonding modes. By spectrally matching both modes, their interference yields an enhancement or suppression of the near fields at specific locations, which could be useful in nanoscale coherent control applications.
Dynamical backaction cooling with free electrons.
Niguès, A; Siria, A; Verlot, P
2015-09-18
The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.
NASA Astrophysics Data System (ADS)
Jyothikumar, Vinod; Sun, Yuansheng; Periasamy, Ammasi
2013-06-01
A method to investigate the metabolic activity of intracellular tryptophan (TRP) and coenzyme-NADH using three-photon (3P) fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) is presented. Through systematic analysis of FLIM data from tumorigenic and nontumorigenic cells, a statistically significant decrease in the fluorescence lifetime of TRP was observed in response to the increase in protein-bound NADH as cells were treated with glucose. The results demonstrate the potential use of 3P-FLIM-FRET as a tool for label-free screening of the change in metabolic flux occurring in human diseases or other clinical conditions.
Reversible and oriented immobilization of ferrocene-modified proteins.
Yang, Lanti; Gomez-Casado, Alberto; Young, Jacqui F; Nguyen, Hoang D; Cabanas-Danés, Jordi; Huskens, Jurriaan; Brunsveld, Luc; Jonkheijm, Pascal
2012-11-21
Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.
High Frequency Electromechanical Imaging of Ferroelectrics in a Liquid Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen; Chu, Ying-Hao; Kalinin, Sergei V
The coupling between electrical and mechanical phenomena is a ubiquitous feature of many information and energy storage materials and devices. In addition to involvement in performance and degradation mechanisms, electromechanical effects underpin a broad spectrum of nanoscale imaging and spectroscopies including piezoresponse force and electrochemical strain microscopies. Traditionally, these studies are conducted under ambient conditions. However, applications related to imaging energy storage and electrophysiological phenomena require operation in a liquid phase and therefore the development of electromechanical probing techniques suitable to liquid environments. Due to the relative high conductivity of most liquids and liquid decomposition at low voltages, the transfermore » of characterization techniques from ambient to liquid is not straightforward. Here we present a detailed study of ferroelectric domain imaging and manipulation in thin film BiFeO{sub 3} using piezoresponse force microscopy in liquid environments as model systems for electromechanical phenomena in general. We explore the use of contact resonance enhancement and the application of multifrequency excitation and detection principles to overcome the experimental problems introduced by a liquid environment. Understanding electromechanical sample characterization in liquid is a key aspect not only for ferroelectric oxides but also for biological and electrochemical sample systems.« less
Growth of hydroxyapatite in a biocompatible mesoporous ordered silica.
Díaz, A; López, T; Manjarrez, J; Basaldella, E; Martínez-Blanes, J M; Odriozola, J A
2006-03-01
A novel biomaterial (HA-SBA-15) has been developed based on the growth of calcium phosphate hydroxyapatite (HA) nanoparticles within an organized silica structure (SBA-15). Characterization of the material was carried out using a combination of X-ray diffraction, X-ray fluorescence, transmission electron microscopy, N2 adsorption-desorption isotherms and nuclear magnetic resonance. Transmission electron microscopy observations and N2 porosimetry revealed the crystallization of hydroxyapatite nanoparticles inside the mesopore cavities of the silica structure. Specific surface areas of 760 m2 g(-1) and 260 m2 g(-1) were measured for the SBA-15 and the HA-SBA-15 material, respectively. The hydroxyl groups present in the silica nanostructure surface have brought about cationic defects in the silicium sites, mainly with those of tetrahedral symmetry, and promoted the formation of siloxanes. 29Si MAS-NMR analysis shows a significant reduction of the silanol groups concentration with HA growing within the base (SBA-15) material. Studies and brain tissue biocompatibility tests were carried out. Histopathological studies on the SBA-15 implant material showed no changes to the tissue nearby. The results confirmed the synthesis of a silica-based composite containing HA nanoparticles with the potential for biomedical applications.
Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.
Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel
2016-02-01
In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase.
Analysis of Roman age wall paintings found in Pordenone, Trieste and Montegrotto.
Mazzocchin, G A; Agnoli, F; Salvadori, M
2004-10-20
The aim of the present work is the study of many fragments of wall painting from archaeological excavations in three different Roman age sites dating back to the I Century before Common Era: Pordenone (località Torre); Trieste (Crosada) and Padova (Montegrotto). The techniques used were optical microscopy, scanning electron microscopy (SEM), equipped with a EDS microanalysis detector, X-rays powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Fourier transform Raman spectroscopy (FT-Raman) and electron paramagnetic resonance (EPR) spectroscopy. The identified pigments were: cinnabar, hematite, celadonite, glauconite, cuprorivaite (Egyptian blue), yellow and red ochre, calcite, limonite, coal black. In general, the mortar preparation did not correspond to the complex procedure suggested by Vitruvius (De Architectura), but generally showed a porous layer, with crushed grains under the pigment layer. In some cases, two superimposed pigment layers were found: yellow superimposed on both red and pink, black on pink, green on black. The slight differences we found in the use of the pigments in the three studied sites might show that the same technology, culture and taste spread all over the Roman Empire in North Eastern Italy (X(a) Regio Venetia et Histria).
Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre
2010-08-01
Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.
Trache, Andreea; Meininger, Gerald A
2005-01-01
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
NASA Astrophysics Data System (ADS)
Wu, Chia-Yun
High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques developed here open a path to the fabrication of cantilevers with unconventional cross sections.
Thaha, Khaleel Ahamed; Varma, R Luxmi; Nair, Mali G; Sam Joseph, V G; Krishnan, Unni
2017-01-01
Octenisept (OCT; Schülke & Mayr, Nordersdedt, Germany), an antimicrobial, antibiofilm agent and a promising root canal irrigant, can be potentially combined with sodium hypochlorite (NaOCl) during endodontic treatment. The aim of this study was first to identify the precipitate formed on the interaction between OCT and NaOCl and secondly to compare its effect on dentinal tubules with that of precipitate formed on combining chlorhexidine (CHX) and NaOCl. This observational study was conducted in 3 stages. Initially, the color changes and precipitate formation were assessed when the test solution 0.1% OCT and 5.2% NaOCl were mixed. Color changes were compared with those observed when 2% CHX was mixed with 5.2% NaOCl. The residue obtained on combining OCT and NaOCl was subjected to proton nuclear magnetic resonance ( 1 H NMR) and mass spectrometric (MS) analysis. In the final stage, dentinal surfaces irrigated alternatively with OCT and NaOCl were compared using scanning electron microscopy (SEM) with the dentinal surface irrigated with CHX and NaOCl. The OCT-NaOCl mixture changed in color from initial milky white to transparent over time, whereas the CHX-NaOCl mixture showed an immediate peach-brown discoloration. 1 H NMR and MS analysis established that the whitish precipitate obtained on combining OCT and NaOCl solutions correlated with the structure of phenoxyethanol (PE). SEM revealed dense precipitate occluding the dentinal tubules with the CHX and NaOCl group, whereas the precipitate was sparse and partially occluded in the OCT and NaOCl group. The whitish precipitate formed with the OCT-NaOCl mixture was identified as PE, a compound already present in OCT, and it partly occluded the dentinal tubules. Copyright © 2016 American Association of Endodontists. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin
2011-03-15
The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less
Thermal infrared near-field spectroscopy.
Jones, Andrew C; Raschke, Markus B
2012-03-14
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society
Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays
Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A.; Dew, Steven K.; McDermott, Mark T.; Evoy, Stephane
2015-01-01
Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings. PMID:26263989
Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays.
Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A; Dew, Steven K; McDermott, Mark T; Evoy, Stephane
2015-07-30
Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.
Surface density mapping of natural tissue by a scanning haptic microscope (SHM).
Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide
2013-02-01
To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.
De Santis, D; Menchini Fabris, G B; Lotti, J; Palumbo, C; Ferretti, M; Castellani, R; Lotti, T; Zanotti, G; Gelpi, F; Covani, C; Nocini, P F
Collagen Matrix (CM) 10826 is a nanostructured bi-layered collagen membrane obtained from type I and III porcine collagen, which in vitro has shown to have the potential to be a substitute and/or stimulant for soft oral tissue regeneration. The objective of this study was to evaluate the in vivo potential and safety of this membrane for soft tissue regeneration in the early stage of wound healing. Two soft tissue wounds (test and control) were created on the back skin of 5 rabbits (female New Zealand White Rabbits specific pathogen free). All wounds were protected by a special poly-tetra-fluoro-ethylene (PTFE) healing camera. On each rabbit on the test side CM-10826 was used, while on the control side conventional treatment (an autologous pedicle graft) was performed. The healing process was observed clinically after 2 and 6 days, and Magnetic Resonance Imaging (MRI) was performed after this period. After 7 days, animals were sacrificed and specimens were analyzed with light optic microscopy (LM), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These in vivo trials on rabbits confirmed that CM-10826 is well tolerated, without signs of histological inflammatory reaction and proved to be able to accelerate the spontaneous repair of the skin defect taken as the control. The light-optic and ultra-microscopy of serial biopsies showed that the new matrix is biocompatible and is able to function as a scaffold inducing soft tissue regeneration. In conclusion this study demonstrates that CM-10826 promote early soft tissue regeneration and suggests it is a potential constituent for human autologous keratinocytes seeded derma bioequivalent. It protects the wound from injuries and bacterial contamination accelerating healing process. As a clinical relevance, we consider that the quality of life of patients will be improved avoiding the use of major autologous grafts, reducing the hospitalization time and morbidity.
Bakele, Martina; Lotz-Havla, Amelie S; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C; Gersting, Soeren W; Hartl, Dominik
2014-07-25
CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.
Bakele, Martina; Lotz-Havla, Amelie S.; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C.; Gersting, Soeren W.; Hartl, Dominik
2014-01-01
CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis. PMID:24914212
Single-Spin Magnetic Resonance Force Microscopy
2005-08-31
computational load and noise outside the passband and generating lock-in (synchronous detection) signals for online diagnostics, system identification... Online . 20. We thank J. Sidles, K. Holczer, and A. Hero for discussions and D. Pearson and M. Sherwood for technical assistance. This work was...Office. Supporting Online Material www.sciencemag.org/cgi/content/full/307/5708/408/ DC1 Materials and Methods Figs. S1 and S2 References 25 October 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atie, Elie M.; Xie, Zhihua; El Eter, Ali
2015-04-13
Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, andmore » background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.« less
Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim
2005-02-04
Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn2+, was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maroufi, Mohammad, E-mail: Mohammad.Maroufi@uon.edu.au; Fowler, Anthony G., E-mail: Anthony.Fowler@uon.edu.au; Bazaei, Ali, E-mail: Ali.Bazaei@newcastle.edu.au
A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10 μm. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics ofmore » the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20 μm × 20 μm. The maximum scan rate demonstrated is 1 kHz.« less
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes
Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857
Zakerin, Marjan; Novak, Antonin; Toda, Masaya; Emery, Yves; Natalio, Filipe; Butt, Hans-Jürgen; Berger, Rüdiger
2017-01-01
In this paper, we apply a digital holographic microscope (DHM) in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (S1(T)) and Young’s elastic modulus (E1(T)) of silicon micromechanical cantilever sensors (MCSs) are measured. To perform these measurements, the MCSs are uniformly heated from T0 = 298 K to T = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies. At each temperature, the DHM records the time-sequence of the 3D topographies for the given frequency range. Such holographic data allow for the extracting of the out-of-plane vibrations at any relevant area of the MCSs. Next, the Bode and Nyquist diagrams are used to determine the resonant frequencies with a precision of 0.1 Hz. Our results show that the decrease of resonance frequency is a direct consequence of the reduction of the silicon elastic modulus upon heating. The measured temperature dependence of the Young’s modulus is in very good accordance with the previously-reported values, validating the reliability and applicability of this method for micromechanical sensing applications. PMID:28545236
Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips.
Mastel, Stefan; Lundeberg, Mark B; Alonso-González, Pablo; Gao, Yuanda; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Koppens, Frank H L; Nikitin, Alexey Y; Hillenbrand, Rainer
2017-11-08
We developed THz-resonant scanning probe tips, yielding strongly enhanced and nanoscale confined THz near fields at their tip apex. The tips with length in the order of the THz wavelength (λ = 96.5 μm) were fabricated by focused ion beam (FIB) machining and attached to standard atomic force microscopy (AFM) cantilevers. Measurements of the near-field intensity at the very tip apex (25 nm radius) as a function of tip length, via graphene-based (thermoelectric) near-field detection, indicate their first and second order geometrical antenna resonances for tip length of 33 and 78 μm, respectively. On resonance, we find that the near-field intensity is enhanced by one order of magnitude compared to tips of 17 μm length (standard AFM tip length), which is corroborated by numerical simulations that further predict remarkable intensity enhancements of about 10 7 relative to the incident field. Because of the strong field enhancement and standard AFM operation of our tips, we envision manifold and straightforward future application in scattering-type THz near-field nanoscopy and THz photocurrent nanoimaging, nanoscale nonlinear THz imaging, or nanoscale control and manipulation of matter employing ultrastrong and ultrashort THz pulses.
Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.
Song, Maowen; Wang, Changtao; Zhao, Zeyu; Pu, Mingbo; Liu, Ling; Zhang, Wei; Yu, Honglin; Luo, Xiangang
2016-01-21
The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ(2) at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy.
Optical properties of embedded metal nanoparticles at low temperatures
NASA Astrophysics Data System (ADS)
Heilmann, A.; Kreibig, U.
2000-06-01
Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.
NASA Astrophysics Data System (ADS)
Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José
2017-11-01
The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.
Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik
2015-01-01
Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521
Diamond-Based Magnetic Imaging with Fourier Optical Processing
NASA Astrophysics Data System (ADS)
Backlund, Mikael P.; Kehayias, Pauli; Walsworth, Ronald L.
2017-11-01
Diamond-based magnetic field sensors have attracted great interest in recent years. In particular, wide-field magnetic imaging using nitrogen-vacancy (NV) centers in diamond has been previously demonstrated in condensed matter, biological, and paleomagnetic applications. Vector magnetic imaging with NV ensembles typically requires a significant applied field (>10 G ) to resolve the contributions from four crystallographic orientations, hindering studies of magnetic samples that require measurement in low or independently specified bias fields. Here we model and measure the complex amplitude distribution of NV emission at the microscope's Fourier plane and show that by modulating this collected light at the Fourier plane, one can decompose the NV ensemble magnetic resonance spectrum into its constituent orientations by purely optical means. This decomposition effectively extends the dynamic range at a given bias field and enables wide-field vector magnetic imaging at arbitrarily low bias fields, thus broadening potential applications of NV imaging and sensing. Our results demonstrate that NV-based microscopy stands to benefit greatly from Fourier optical approaches, which have already found widespread utility in other branches of microscopy.
Third-harmonic generation susceptibility spectroscopy in free fatty acids
NASA Astrophysics Data System (ADS)
Chen, Yu-Cheng; Hsu, Hsun-Chia; Lee, Chien-Ming; Sun, Chi-Kuang
2015-09-01
Lipid-correlated disease such as atherosclerosis has been an important medical research topic for decades. Many new microscopic imaging techniques such as coherent anti-Stokes Raman scattering and third-harmonic generation (THG) microscopy were verified to have the capability to target lipids in vivo. In the case of THG microscopy, biological cell membranes and lipid bodies in cells and tissues have been shown as good sources of contrast with a laser excitation wavelength around 1200 nm. We report the THG excitation spectroscopy study of two pure free fatty acids including oleic acid and linoleic acid from 1090 to 1330 nm. Different pure fatty acids presented slightly-different THG χ(3) spectra. The measured peak values of THG third-order susceptibility χ(3) in both fatty acids were surprisingly found not to match completely with the resonant absorption wavelengths around 1190 to 1210 nm, suggesting possible wavelengths selection for enhanced THG imaging of lipids while avoiding laser light absorption. Along with the recent advancement in THG imaging, this new window between 1240 to 1290 nm may offer tremendous new opportunities for sensitive label-free lipid imaging in biological tissues.
Pang, Jinhui; Liu, Xin; Zhang, Xueming; Wu, Yuying; Sun, Runcang
2013-01-01
More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties. PMID:28809209
Liu, Aifeng; Che, Hongwei; Liu, Chuanzhi; Fu, Quanrong; Jiang, Ruijiao; Wang, Cheng; Wang, Liang
2014-06-01
Ordered hexagonal mesoporous aluminosilicates with lower Si/Al ratio below 5 have been successfully synthesized via the co-assembly of preformed aluminosilicate precursors with Gemini surfactant [C12H25N+(CH3)2(CH2)6N+(CH3)2C12H25] x 2Br(-) as the template. Powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N2 adsorption-desorption isotherm measurements, Fourier transform infrared spectroscopy, 27Al nuclear magnetic resonance, thermogravimetric analysis, and temperature-programmed desorption of cyclohexylamine are employed to characterize the resulting samples. The phenol alkylation reaction is carried out to evaluate their catalytic performances. These studies indicate that the sample with a low Si/Al ratio of 3 still retains a highly ordered hexagonal mesoporous structure. And it also possesses the highest acidity of 0.96 mmol among the samples with lower Si/Al ratios below 5 due to its higher specific surface area together with more content of tetrahedrally coordinated Al in the framework. The catalytic tests confirm that the acidity of the samples plays a key role in determining their catalytic performances.
Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Thamarai Selvi, E.; Meenakshi Sundar, S.
2017-07-01
Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.
NASA Astrophysics Data System (ADS)
Nysten, Bernard; Fretigny, Christian; Cuenot, Stephane
2005-05-01
Resonant contact atomic force microscopy (resonant C-AFM) is used to quantitatively measure the elastic modulus of polymer nanotubes and metallic nanowires. To achieve this, an oscillating electric field is applied between the sample holder and the microscope head to excite the oscillation of the cantilever in contact with the nanostructures suspended over the pores of a membrane. The resonance frequency of the cantilever with the tip in contact with a nanostructure is shifted to higher values with respect to the resonance frequency of the free cantilever. It is demonstrated that the system can simply be modeled by a cantilever with the tip in contact with two springs. The measurement of the frequency shift enables the direct determination of the spring stiffness, i.e. the nanowires or nanotube stiffness. The method also enables the determination of the boundary conditions of the nanobeam on the membrane. The tensile elastic modulus is then simply determined using the classical theory of beam deflection. The obtained results for the larger nanostructures fairly agree to the values reported in the literature for the macroscopic elastic modulus of the corresponding materials. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The increase of the apparent elastic modulus for the smaller diameters is attributed to the surface tension effects. It is thus demonstrated that resonant C-AFM enables the measurement of the elastic modulus and of the surface tension of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus
2014-02-28
Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less
Image-based overlay measurement using subsurface ultrasonic resonance force microscopy
NASA Astrophysics Data System (ADS)
Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.
2018-03-01
Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.
Optical magnetic imaging of living cells
Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.
2013-01-01
Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694
NASA Astrophysics Data System (ADS)
Clarke, David T.; Botchway, Stanley W.; Coles, Benjamin C.; Needham, Sarah R.; Roberts, Selene K.; Rolfe, Daniel J.; Tynan, Christopher J.; Ward, Andrew D.; Webb, Stephen E. D.; Yadav, Rahul; Zanetti-Domingues, Laura; Martin-Fernandez, Marisa L.
2011-09-01
Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.
Baskaran, Balraj; Muthukumarasamy, Arulmozhi; Chidambaram, Siva; Sugumaran, Abimanyu; Ramachandran, Krithikadevi; Rasu Manimuthu, Thaneswari
2017-04-01
Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time . The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20-50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC 50 ) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.
Yan, Yuling; Petchprayoon, Chutima; Mao, Shu; Marriott, Gerard
2013-01-01
Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell culture. In particular, a highly fluorescent cyanine probe (Cy or Cy3) is directly or indirectly linked to naphthoxazine (NISO), a highly efficient optical switch that undergoes robust, 405/532 nm-driven transitions between a colourless spiro (SP) state and a colourful merocyanine (MC) state. The intensity of Cy fluorescence in these Cy/Cy3-NISO probes is reversibly modulated between a low and high value in SP and MC states, respectively, as a result of Förster resonance energy transfer. Cy/Cy3-NISO probes are targeted to specific proteins in living cells where defined waveforms of Cy3 fluorescence are generated by optical switching of the SP and MC states. Finally, we introduce a new imaging technique (called OLID-immunofluorescence microscopy) that combines optical modulation of Cy3 fluorescence from Cy3/NISO co-labelled antibodies within fixed cells and OLID analysis to significantly improve image contrast in samples having high background or rare antigens. PMID:23267183
NASA Astrophysics Data System (ADS)
Kouyoumdjian, Hovig
The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.
Cheng, Kwok Kin; Chan, Pui Shan; Fan, Shujuan; Kwan, Siu Ming; Yeung, King Lun; Wáng, Yì-Xiáng J; Chow, Albert Hee Lum; Wu, Ed X; Baum, Larry
2015-03-01
Diagnosis of Alzheimer's disease (AD) can be performed with the assistance of amyloid imaging. The current method relies on positron emission tomography (PET), which is expensive and exposes people to radiation, undesirable features for a population screening method. Magnetic resonance imaging (MRI) is cheaper and is not radioactive. Our approach uses magnetic nanoparticles (MNPs) made of superparamagnetic iron oxide (SPIO) conjugated with curcumin, a natural compound that specifically binds to amyloid plaques. Coating of curcumin-conjugated MNPs with polyethylene glycol-polylactic acid block copolymer and polyvinylpyrrolidone by antisolvent precipitation in a multi-inlet vortex mixer produces stable and biocompatible curcumin magnetic nanoparticles (Cur-MNPs) with mean diameter <100 nm. These nanoparticles were visualized by transmission electron microscopy and atomic force microscopy, and their structure and chemistry were further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Fourier transform infrared spectroscopy. Cur-MNPs exhibited no cytotoxicity in either Madin-Darby canine kidney (MDCK) or differentiated human neuroblastoma cells (SH-SY5Y). The Papp of Cur-MNPs was 1.03 × 10(-6) cm/s in an in vitro blood-brain barrier (BBB) model. Amyloid plaques could be visualized in ex vivo T2*-weighted magnetic resonance imaging (MRI) of Tg2576 mouse brains after injection of Cur-MNPs, and no plaques could be found in non-transgenic mice. Immunohistochemical examination of the mouse brains revealed that Cur-MNPs were co-localized with amyloid plaques. Thus, Cur-MNPs have the potential for non-invasive diagnosis of AD using MRI. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nonlinear Polarimetric Microscopy for Biomedical Imaging
NASA Astrophysics Data System (ADS)
Samim, Masood
A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical susceptibilities. The developed nonlinear optical polarimetric microscopy is applicable to a wide variety of structural studies on ordered materials, and provides a non-invasive possibility to study the structural organization and dynamics within biological samples. For example, the technique is well suited for studies of a muscle contraction, histopathology of collagen structure for cancer tissue diagnostics, investigations of the polysacharide structural organization within a starch granule of a plant, or developmental study of the retina in an eye, among other applications.
Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber composites
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Memory, J. D.
1981-01-01
Studies on the effects of high energy radiation on graphite fiber reinforced composites are summarized. Studies of T300/5208 and C6000/PMR15 composites, T300 fibers and the resin system MY720/DDS (tetraglycidyl-4,4'-diaminodiphenyl methane cured with diaminodiphenyl sulfone) are included. Radiation dose levels up to 8000 Mrads were obtained with no deleterious effects on the breaking stress or modulus. The effects on the structure and morphology were investigated using mechanical tests, electron spin resonance, X-ray diffraction, and electron spectroscopy for chemical analysis (ESCA or X-ray photoelectron spectroscopy). Details of the experiments and results are given. Studies of the fracture surfaces of irradiated samples were studied with scanning electron microscopy; current results indicate no differences in the morphology of irradiated and control samples.
Kenworthy, Anne K.; Petranova, Nadezda; Edidin, Michael
2000-01-01
“Lipid rafts” enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface. PMID:10793141
de Faria, Dalva L A; Edwards, Howell G M; Careaga, Valeria; Walt, Nicholas; Maier, Marta S
2017-02-01
The Raman spectrum of tartrazine has been mistakenly reported as being that of Indian yellow in the literature, which has serious consequences for the identification of this pigment in art works regarding their authentication. Unlike tartrazine, Indian yellow (a natural mixture of the magnesium and calcium salts of euxanthic acid) exhibits in its Raman spectrum a strong fluorescent background when visible excitation is used, however, excitation in the near infrared (1064nm) permitted the observation of the Raman bands from the raw pigment with the main features placed at 1346, 1368, 1425, 1441 and 1626cm -1 . Indian yellow identification was assured by 1 H and 13 C Nuclear Magnetic Resonance characterization and the complete assignment of the proton and carbon resonances was accomplished using heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), nuclear overhauser effect spectroscopy (NOESY) and 1 H- 1 H correlation spectroscopy (COSY). Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) analyzes were also conducted on a genuine sample of this historical pigment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cr3+-Doped Yb3Ga5O12 Nanophosphor: Synthesis, Optical, EPR, Studies
NASA Astrophysics Data System (ADS)
Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Pathak, M. S.; Jirimali, H. D.; Singh, Pramod K.; Srivastava, Anoop K.; Dhoble, S. J.; Mohapatra, M.
2016-08-01
Gallium garnets of lanthanides are multifunctional materials especially known for their complicated structure and magnetic properties. In addition, with a suitable transition metal dopant ion, these matrices have been proved to be excellent materials for lasers. In particular, gallium garnet of ytterbium (Yb3Ga5O12) is known to possess excellent properties with regards to these applications. In this connection, Yb3Ga5O12 doped with Cr3+ nanophosphors were synthesized by a solution combustion route. The synthesized material was characterized by powder x-ray diffraction and scanning electron microscopy for phase purity and homogenous morphology. In order to ascertain the oxidation state of the doped ion, diffuse reflectance (DRF), photoluminescence (PL) and electron paramagnetic resonance (EPR) experiments were performed on the sample. The DRF and PL data suggested the stabilisation of the trivalent Cr ion in the matrix. The EPR spectra exhibited two resonance signals with effective g values at g ≈ 7.6 and 4. The EPR data corroborated the DRF and PL results, suggesting the stabilisation of Cr3+ in the matrix at octahedral-type geometries.
van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W
2015-09-01
The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O.
Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui
2018-07-20
By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag 2 O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.
Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM
Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger
2015-01-01
Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455
Development of In-situ Resonant Soft X-ray Scattering for Soft Materials at Advanced Light Source
NASA Astrophysics Data System (ADS)
Wang, Cheng; Hexemer, Alexander; Young, Anthony; Padmore, Howard
2014-03-01
Resonant Soft X-ray Scattering was developed at ALS over the past a few years. It combines soft x-ray spectroscopy with x-ray scattering and offers statistical information for 3D chemical morphology over a large sample area. Its unique chemical sensitivity, large accessible size scale, polarization control and high coherence make it a powerful tool for mesoscale chemical/morphological structure characterization for many classes of materials. However, in order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, we will report our development of customize design liquid/gas environmental cells that will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Initial RSoXS result of solar fuel membrane assembly/fuel-cell membrane structure in wet cell will be presented.
Martin-Jaular, Lorena; Ferrer, Mireia; Calvo, Maria; Rosanas-Urgell, Anna; Kalko, Susana; Graewe, Stefanie; Soria, Guadalupe; Cortadellas, Núria; Ordi, Jaume; Planas, Anna; Burns, James; Heussler, Volker; del Portillo, Hernando A
2011-01-01
Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria. PMID:20923452
Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing
2018-01-17
In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.
Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg
2014-05-01
Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Hauenstein, R. J.; Bandić, Z. Z.; Feenstra, R. M.; Hwang, S. J.; McGill, T. C.
1996-03-01
GaN is a robust semiconducting material offering a large, direct bandgap appropriate for use in blue-green to UV light emitting diodes and laser diodes. Attainment of device quality GaN has been difficult due to the lack of substrate materials that are suitably matched to the unusually small lattice parameter of GaN. To better control heteroepitaxial growth quality, a fundamental study of the initial stages of GaN growth by Electron Cyclotron Resonance Nitrogen Plasma-Assisted Molecular Beam Epitaxy (ECR-MBE) has been performed. The effect of an ECR Nitrogen plasma on a GaAs (100) surface is examined through time resolved reflection high energy electron diffraction, high resolution x-ray diffraction, and cross-sectional scanning tunneling microscopy. Fully commensurate GaN_yAs_1-y/GaAs heterostructures involving ultrathin GaN_yAs_1-y layers are obtained, and thermally activated microscopic growth processes are identified and quantitatively characterized through the aid of a specially developed kinetic model. The implications for ECR-MBE growth of GaN/GaAs mutilayers is discussed.
NASA Astrophysics Data System (ADS)
Stefanakis, Dimitrios; Seimenis, Ioannis; Ghanotakis, Demetrios
2014-11-01
Gadolinium (Gd) is a trivalent paramagnetic element, making it useful as a contrast agent for magnetic resonance imaging (MRI). Gd2(OH)5NO3· xH2O belongs to a new family of nanosheets. The advantages of these materials are their relatively small size, paramagnetic behavior, stability, lack of toxicity and highly ordered structure. In the present study, Gd2(OH)5NO3 nanosheets were functionalized with amino groups and modified with the photosensitiser rose bengal (RB). This surface modification makes possible the use of the nanosheets in photodynamic therapy. The coated nanosheets were characterized with X-ray diffraction, fourier transform infrared spectroscopy and UV-Vis spectroscopy, as well as transmission electron microscopy. The possibility of using these nanosheets as potential spin-lattice ( T 1) and spin-spin relaxation ( T 2) contrast agents in MRI was evaluated at 1.5 T. Finally, the ability of Gd2(OH)5NO3-RB to catalyze photooxidization reactions was examined using nuclear magnetic resonance (1H NMR) and gas chromatography-mass spectrometry (GC/MS).
Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O
NASA Astrophysics Data System (ADS)
Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui
2018-07-01
By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag2O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.
Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain
Cleary, Jon O.; Wiseman, Frances K.; Norris, Francesca C.; Price, Anthony N.; Choy, ManKin; Tybulewicz, Victor L.J.; Ordidge, Roger J.; Brandner, Sebastian; Fisher, Elizabeth M.C.; Lythgoe, Mark F.
2011-01-01
Extensive worldwide efforts are underway to produce knockout mice for each of the ~ 25,000 mouse genes, which may give new insights into the underlying pathophysiology of neurological disease. Microscopic magnetic resonance imaging (μMRI) is a key method for non-invasive morphological phenotyping, capable of producing high-resolution 3D images of ex-vivo brains, after fixation with an MR contrast agent. These agents have been suggested to act as active-stains, enhancing structures not normally visible on MRI. In this study, we investigated the structural correlates of the MRI agent Gd-DTPA, together with the optimal preparation and scan parameters for contrast-enhanced gradient-echo imaging of the mouse brain. We observed that in-situ preparation was preferential to ex-situ due to the degree of extraction damage. In-situ brains scanned with optimised parameters, enabled images with a high signal-to-noise-ratio (SNR ~ 30) and comprehensive anatomical delineation. Direct correlation of the MR brain structures to histology, detailed fine histoarchitecture in the cortex, cerebellum, olfactory bulb and hippocampus. Neurofilament staining demonstrated that regions of negative MR contrast strongly correlated to myelinated white-matter structures, whilst structures of more positive MR contrast corresponded to areas with high grey matter content. We were able to identify many sub-regions, particularly within the hippocampus, such as the unmyelinated mossy fibres (stratum lucidum) and their region of synapse in the stratum pyramidale, together with the granular layer of the dentate gyrus, an area of densely packed cell bodies, which was clearly visible as a region of hyperintensity. This suggests that cellular structure influences the site-specific distribution of the MR contrast agent, resulting in local variations in T2*, which leads to enhanced tissue discrimination. Our findings provide insights not only into the cellular distribution and mechanism of MR active-staining, but also allow for three dimensional analysis, which enables interpretation of magnetic resonance microscopy brain data and highlights cellular structure for investigation of disease processes in development and disease. PMID:21310249
Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco
2018-04-17
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Plasmonics and SERS activity of post-transition metal nanoparticles
NASA Astrophysics Data System (ADS)
Bezerra, A. G.; Machado, T. N.; Woiski, T. D.; Turchetti, D. A.; Lenz, J. A.; Akcelrud, L.; Schreiner, W. H.
2018-05-01
Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.
Najafpour, Mohammad Mahdi; Feizi, Hadi
2018-05-08
Herein, the water-oxidation reaction by Ni(1,4,8,11-tetraazacyclotetradecane)2+ in the presence of carbonate was reinvestigated by scanning electron microscopy, energy dispersive spectrometry, electrochemistry, and high-resolution spectroelectrochemical and hydrogen nuclear magnetic resonance spectroscopy methods. These methods showed that the complex was not stable under water-oxidation conditions. The role of nanosized particles or Ni ions on the surface of the electrode for water oxidation was studied and it is proposed that Ni ions or Ni oxides on the surface of the electrode are at least one of the candidates contributing to the observed catalysis.
Synthesis and study of the synthetic hydroxyapatite doped with aluminum
NASA Astrophysics Data System (ADS)
Goldberg, M.; Smirnov, V.; Antonova, O.; Konovalov, A.; Fomina, A.; Komlev, V. S.; Barinov, S.; Rodionov, A.; Gafurov, M.; Orlinskii, S.
2018-05-01
Powders of synthetic hydroxyapatite doped with aluminium (Al) ions in concentrations 0 and 20 mol. % were synthesized by the precipitation method from the nitrate solutions and investigated by atomic emission spectrometry with inductively coupled plasma (AES-ICP), X-ray diffraction (XRD), scanning electron microscopy (SEM), gas absorption and conventional electron paramagnetic resonance (EPR). It is shown that for the chosen synthesis route an introduction of Al provokes formation of highly anisotropic phase, leads to the decrease in the crystallinity while no significant changes in the EPR spectra of the radiation-induced defects is observed. The results could be used for understanding the structural transformations with Al doping of the mineralized materials for geological and biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, D. S.; Mikhaylov, A. N.; Belov, A. I.
The composition and structure of silicon surface layers subjected to combined gallium and nitrogen ion implantation with subsequent annealing have been studied by the X-ray photoelectron spectroscopy, Rutherford backscattering, electron spin resonance, Raman spectroscopy, and transmission electron microscopy techniques. A slight redistribution of the implanted atoms before annealing and their substantial migration towards the surface during annealing depending on the sequence of implantations are observed. It is found that about 2% of atoms of the implanted layer are replaced with gallium bonded to nitrogen; however, it is impossible to detect the gallium-nitride phase. At the same time, gallium-enriched inclusions containingmore » ∼25 at % of gallium are detected as candidates for the further synthesis of gallium-nitride inclusions.« less
NASA Astrophysics Data System (ADS)
Liu, C.; Ong, H. C.
2018-01-01
We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.
Holm, Jason; Roberts, Jeffrey T
2009-06-16
Isotopic labeling techniques were employed to study alkene addition to hydrogen- and deuterium-terminated silicon nanoparticles. Deuterium-terminated silicon nanoparticle synthesis is described, as is the characterization of fresh deuterium-terminated particles by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and in situ Fourier transform infrared spectroscopy (FTIR). Particles were refluxed in pure 1-dodecene and subsequently characterized by FTIR and nuclear magnetic resonance (NMR) spectroscopy. (1)H NMR results showed features consistent with dodecyl-terminated nanoparticles. Infrared absorption spectra of refluxed particles showed strong evidence of new C-D bond formation, which is consistent with a radical chain mechanism for alkene addition by hydrosilylation.
Visualization of gas flow and diffusion in porous media
Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander
2000-01-01
The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617
Calcium ions function as a booster of chromosome condensation
Phengchat, Rinyaporn; Takata, Hideaki; Morii, Kenichi; Inada, Noriko; Murakoshi, Hideji; Uchiyama, Susumu; Fukui, Kiichi
2016-01-01
Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca2+, to chromosome condensation in vitro and in vivo. Ca2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca2+. Chromosomes had compact globular structures when exposed to Ca2+ and expanded fibrous structures without Ca2+. Therefore, we have clearly demonstrated a role for Ca2+ in the compaction of chromatin fibres. PMID:27910894
Calcium ions function as a booster of chromosome condensation.
Phengchat, Rinyaporn; Takata, Hideaki; Morii, Kenichi; Inada, Noriko; Murakoshi, Hideji; Uchiyama, Susumu; Fukui, Kiichi
2016-12-02
Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca 2+ , to chromosome condensation in vitro and in vivo. Ca 2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca 2+ . Chromosomes had compact globular structures when exposed to Ca 2+ and expanded fibrous structures without Ca 2+ . Therefore, we have clearly demonstrated a role for Ca 2+ in the compaction of chromatin fibres.
Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab
2014-12-01
Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
Guise, Catarina; Fernandes, Margarida M; Nóbrega, João M; Pathak, Sudhir; Schneider, Walter; Fangueiro, Raul
2016-11-09
Current brain imaging methods largely fail to provide detailed information about the location and severity of axonal injuries and do not anticipate recovery of the patients with traumatic brain injury. High-definition fiber tractography appears as a novel imaging modality based on water motion in the brain that allows for direct visualization and quantification of the degree of axons damage, thus predicting the functional deficits due to traumatic axonal injury and loss of cortical projections. This neuroimaging modality still faces major challenges because it lacks a "gold standard" for the technique validation and respective quality control. The present work aims to study the potential of hollow polypropylene yarns to mimic human white matter axons and construct a brain phantom for the calibration and validation of brain diffusion techniques based on magnetic resonance imaging, including high-definition fiber tractography imaging. Hollow multifilament polypropylene yarns were produced by melt-spinning process and characterized in terms of their physicochemical properties. Scanning electronic microscopy images of the filaments cross section has shown an inner diameter of approximately 12 μm, confirming their appropriateness to mimic the brain axons. The chemical purity of polypropylene yarns as well as the interaction between the water and the filament surface, important properties for predicting water behavior and diffusion inside the yarns, were also evaluated. Restricted and hindered water diffusion was confirmed by fluorescence microscopy. Finally, the yarns were magnetic resonance imaging scanned and analyzed using high-definition fiber tractography, revealing an excellent choice of these hollow polypropylene structures for simulation of the white matter brain axons and their suitability for constructing an accurate brain phantom.
Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George S
2015-06-01
Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells. © 2015 International Society for Advancement of Cytometry.
Gopi, D; Kanimozhi, K; Bhuvaneshwari, N; Indira, J; Kavitha, L
2014-01-24
Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy ((1)H NMR) and carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopi, D.; Kanimozhi, K.; Bhuvaneshwari, N.; Indira, J.; Kavitha, L.
2014-01-01
Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy (1H NMR) and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications.
Nuclear Transport and Accumulation of Smad Proteins Studied by Single-Molecule Microscopy.
Li, Yichen; Luo, Wangxi; Yang, Weidong
2018-05-08
Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Super-multiplex vibrational imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.
Super-multiplex vibrational imaging
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-01-01
The ability to directly visualize a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have been used successfully to explore structural-functional relationships in nervous systems, profile RNA in situ, reveal tumor microenvironment heterogeneity or study dynamic macromolecular assembly1–4, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a “color barrier” due to the intrinsically broad (~1500 cm−1) and featureless nature of fluorescence spectra5 that limits the number of resolvable colors to 2 to 5 (or 7-9 if using complicated instrumentation and analysis)6–8. Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width ~10 cm−1) and thus doesn’t suffer this problem, but its feeble signals make many demanding bio-imaging applications impossible. And while surface-enhanced Raman scattering offers remarkable sensitivity and multiplicity, it cannot be readily used to quantitatively image specific molecular targets inside live cells9. Here we show that carrying out stimulated Raman scattering under electronic pre-resonance conditions (epr-SRS) enables imaging with exquisite vibrational selectivity and sensitivity (down to 250 nM with 1-ms) in living cells. We also create a palette of triple-bond-conjugated near-infrared dyes that each display a single epr-SRS peak in the cell-silent spectral window, and that with available fluorescent probes give 24 resolvable colors with potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this super-multiplex optical imaging approach for untangling intricate interactions in complex biological systems. PMID:28424513
‘Living cantilever arrays’ for characterization of mass of single live cells in fluids†
Park, Kidong; Jang, Jaesung; Irimia, Daniel; Sturgis, Jennifer; Lee, James; Robinson, J. Paul; Toner, Mehmet; Bashir, Rashid
2013-01-01
The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of ‘living cantilever arrays’, an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells. PMID:18584076
NASA Astrophysics Data System (ADS)
Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang
2018-02-01
The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.
Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents
NASA Astrophysics Data System (ADS)
Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang
2010-12-01
Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.