Science.gov

Sample records for resonance small angle

  1. Anomalous and resonance small angle scattering: Revision

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

  2. Anomalous and resonance small angle scattering

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

  3. Magnetic design evolution in perpendicular magnetic recording media as revealed by resonant small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Wang, Tianhan; Mehta, Virat; Ikeda, Yoshihiro; Do, Hoa; Takano, Kentaro; Florez, Sylvia; Terris, Bruce D.; Wu, Benny; Graves, Catherine; Shu, Michael; Rick, Ramon; Scherz, Andreas; Stöhr, Joachim; Hellwig, Olav

    2013-09-01

    We analyze the magnetic design for different generations of perpendicular magnetic recording (PMR) media using resonant soft x-ray small angle x-ray scattering. This technique allows us to simultaneously extract in a single experiment the key structural and magnetic parameters, i.e., lateral structural grain and magnetic cluster sizes as well as their distributions. We find that earlier PMR media generations relied on an initial reduction in the magnetic cluster size down to the grain level of the high anisotropy granular base layer, while very recent media designs introduce more exchange decoupling also within the softer laterally continuous cap layer. We highlight that this recent development allows optimizing magnetic cluster size and magnetic cluster size distribution within the composite media system for maximum achievable area density, while keeping the structural grain size roughly constant.

  4. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  5. Small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice

    2015-10-01

    Small Angle Neutron Scattering (SANS) is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ˜ 1 nm up to ˜ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ˜ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area…) through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer), form factor analysis (I(q→0), Guinier regime, intermediate regime, Porod regime, polydisperse system), structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates), and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast). It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of spectrometer

  6. Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamasaki, Y.; Morikawa, D.; Honda, T.; Nakao, H.; Murakami, Y.; Kanazawa, N.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-12-01

    Small-angle soft x-ray scattering in resonance with Fe L absorption edge has been investigated for helical magnetic order and magnetic skyrmion crystal (SkX) in B20-type cubic FeGe. Transformation of magnetic structures among helical, conical, SkX, and field-polarized spin-collinear forms is observed with the application of a magnetic field parallel to the incident soft x-ray. The resonant soft x-ray scattering with high q -resolution revealed a transient dynamics of SkX, such as rotation of SkX and variation of the SkX lattice constant, upon the change of magnetic field.

  7. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    SciTech Connect

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  8. Contact angle dependence of the resonant properties of sessile drops

    NASA Astrophysics Data System (ADS)

    Sharp, James

    2012-02-01

    A simple optical deflection technique was used to monitor the vibrations of microlitre sessile drops of glycerol/water mixtures with glycerol compositions ranging from 0% to 75%. A photodiode was used to detect time dependent variations in the intensity of laser light reflected from the droplets. The intensity variations were Fourier transformed to obtain information about the resonant properties of the drops (frequency and width of the resonance). These experiments were performed on a range of different substrates where the contact angle formed by the droplets varied between 38±2^o and 160±4^o. The measured resonant frequency values were found to be in agreement with a recently developed theory of vibrations which considers standing wave states along the profile length of the droplet. The widths of the resonances were also compared with theories which predict the influence of substrate effects, surface contamination effects and bulk viscous effects on the damping of capillary waves at the free surface of the droplets. These experiments indicate that the dominant source of damping in sessile liquid droplet is due to bulk viscous effects but that for small contact angles damping due to the droplet/substrate interaction becomes more important.

  9. Small Angle X-Ray Scattering Detector

    SciTech Connect

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  10. Small-Angle Scattering on Magnetoferritin Nanoparticles

    NASA Astrophysics Data System (ADS)

    Balejčíková Petrenko, L., VI; Avdeev, MV; Garamus, VM; Almásy, L.; Kopčanský, P.

    2017-05-01

    Magnetoferritin is a synthetically prepared magnetic bio-complex, consisting of apoferritin shell and iron-based nanoparticles. Superparamagnetic behaviour, nanoscale size (about 12 nm) and biological origin allow to use magnetoferritin in various applications. In this report, we present a general overview about basic physicochemical properties of magnetoferritin, as determined by small-angle X-ray and neutron scattering experiments and some interesting references on their potential bio-applications.

  11. The Pluto System At Small Phase Angles

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Buie, Marc W.; Binzel, Richard; Ennico, Kimberly; Grundy, William M.; Olkin, Catherine B.; Showalter, Mark Robert; Spencer, John R.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; New Horizons Science Team

    2016-10-01

    Hubble Space Telescope observations of the Pluto system acquired during the New Horizons encounter epoch (HST Program 13667, M. Buie, PI) span the phase angle range from 0.06 to 1.7 degrees, enabling the measurement and characterization of the opposition effect for Pluto and its satellites at 0.58 microns using HST WFC3/UVIS with the F350LP filter, which has a broadband response and a pivot wavelength of 0.58 microns. At these small phase angles, differences in the opposition effect width and amplitude appear. The small satellites Nix and Hydra both exhibit a very narrow opposition surge, while the considerably larger moon Charon has a broader opposition surge. Microtextural surface properties derived from the shape and magnitude of the opposition surge of each surface contain a record of the collisional history of the system. We combine these small phase angle observations with those made at larger phase angles by the New Horizons Long Range Reconnaissance Imager (LORRI), which also has a broadband response with a pivot wavelength of 0.61 microns, to produce the most complete disk-integrated solar phase curves that we will have for decades to come. Modeling these disk-integrated phase curves generates sets of photometric parameters that will inform spectral modeling of the satellite surfaces as well as terrains on Pluto from spatially resolved New Horizons Ralph Linear Etalon Imaging Spectral Array (LEISA) data from 1.2 to 2.5 microns. Rotationally resolved phase curves of Pluto reveal opposition effects that only appear at phase angles less than 0.1 degree and have widths and amplitudes that are highly dependent on longitude and therefore on Pluto's diverse terrains. The high albedo region informally known as Sputnik Planum dominates the disk-integrated reflectance of Pluto on the New Horizons encounter hemisphere. These results lay the groundwork for observations at true opposition in 2018, when the Pluto system will be observable at phase angles so small that

  12. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  13. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  14. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  15. Emerging applications of small angle solution scattering in structural biology.

    PubMed

    Chaudhuri, Barnali N

    2015-03-01

    Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.

  16. Emerging applications of small angle solution scattering in structural biology

    PubMed Central

    Chaudhuri, Barnali N

    2015-01-01

    Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu. PMID:25516491

  17. In situ small-angle x-ray and nuclear resonant scattering study of the evolution of structural and magnetic properties of an Fe thin film on MgO (001)

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ajay; Gupta, Mukul; Schlage, Kai; Wille, H.-C.

    2015-12-01

    Growth of magnetron sputtered Fe films on clean single crystalline MgO (001) substrate has been studied using in situ grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence nuclear resonant scattering (GINRS) measurements. While GISAXS provides information about morphological changes, GINRS provides information about structural and magnetic properties, thus making it possible to correlate the evolution of magnetic properties with that of morphology and structure of the film. The film exhibits a Volmer-Weber type growth, with percolation transition occurring around 2 nm film thickness. Presence of a finite quadrupole splitting, as seen in GINRS measurements, suggests a significant distortion from cubic symmetry up to a film thickness of 3.5 nm, which can be attributed to hybridization between Fe 3 d and O 2 p orbitals at the interface as well as in-plane tensile strain induced as a result of coalescence of islands. Initially Fe islands exhibit superparamagnetic relaxation, while finite magnetic moment appears upon formation of macroscopic percolation islands. The film exhibits a weak perpendicular magnetic anisotropy (PMA), which vanishes concurrently with disappearance of structural distortion, suggesting that the observed PMA at least partly originates from inherent strain in the film. No presence of any known oxide of Fe was detected at the interface. More precise information about topological and magnetic structure of the interfaces between Fe and MgO layers is obtained using combined x-ray reflectivity and nuclear resonance reflectivity measurements on a 57Fe/MgO multilayer. Measurements show that about two monolayers of Fe at the interface have a reduced hyperfine field, providing evidence for hybridization with O atoms, as predicted by theory.

  18. Nucleation of small-angle boundaries

    SciTech Connect

    Nabarro, F.R.N. |; Wilsdorf, D.K.

    1996-12-01

    The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition, the new boundaries having finite misorientations. The calculated misorientations both of the new boundaries and of the existing boundaries which provoke the transition agree well with observations.

  19. Interferometric 2D small angle generator for autocollimator calibration

    NASA Astrophysics Data System (ADS)

    Heikkinen, Ville; Byman, Ville; Palosuo, Ilkka; Hemming, Björn; Lassila, Antti

    2017-06-01

    Small angle generators are simple devices for providing small angles traceable to the definition of the SI-unit radian. The most accurate ones use a laser interferometer for measurement of angular displacement. Small angle generators used for autocollimator calibration usually create angles around a single axis. A two-directional angle generator would be preferable, as it could more efficiently reveal artefacts related to angular displacement across both axes, such as orthogonality of the autocollimator’s measuring axes. Characterizing errors depending on one axis only would also be easier, as the setup needs to be aligned only once for studying both axes of the autocollimator. We describe a novel interferometric two-directional small angle generator which we have built and tested for autocollimator calibration. The range is  ±1000″ for both axes. The estimated standard uncertainty for full range is 0.0036″ for the horizontal and 0.0053″ for the vertical direction.

  20. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  1. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances

  2. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  3. Modified sine bar device measures small angles with high accuracy

    NASA Technical Reports Server (NTRS)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  4. Design and manufacture of angle modulated surface plasmon resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Xinlei; Chen, Ke; Mao, Xuefeng; Yu, Qingxu; Peng, Wei

    2015-08-01

    As an emerging biosensing technology, Surface Plasmon Resonance (SPR) technique, characterized by high sensitivity, label-free detection and real-time monitoring, has been extensively applied in biochemical analysis, environmental monitoring and refractive index measurement. In this paper, an angle modulated SPR spectrometer with high resolution is designed and manufactured. First, according to the modeling and simulation for the SPR spectrometer, several key parameters such as the light source, the thickness of golden film and Cr film are determined. Then, an angle modulated SPR spectrometer system based on 5-layers Kretchmann prism structure is developed for biochemical analysis. System performance is tested after the SPR spectrometer established. We test the power stability of the laser first, which is up to 1.504% (5min). Different concentrations of glycerol are measured to demarcate the system. Then, we measured the deionized water ten times continuously, and a resolution of 1.5×10-5 RIU is achieved. At last, different concentrations of glucose solution are measured, and the resonance angles are used to calculate the refractive index of the glucose solutions, which is more accurate than the result of Abbe refractometer. The relationship between concentration and refractive index is presented by liner fitting.

  5. An efficient magic state approach to small angle rotations

    NASA Astrophysics Data System (ADS)

    Campbell, Earl T.; O'Gorman, Joe

    2016-12-01

    Standard error-correction techniques only provide a quantum memory and need extra gadgets to perform computation. Central to quantum algorithms are small angle rotations, which can be fault-tolerantly implemented given a supply of an unconventional species of magic state. We present a low-cost distillation routine for preparing these small angle magic states. Our protocol builds on the work of Duclos-Cianci and Poulin (2015 Phys. Rev. A 91 042315) by compressing their circuit. Additionally, we present a method of diluting magic states that reduces costs associated with very small angle rotations. We quantify performance by the expected number of noisy magic states consumed per rotation, and compare with other protocols. For modest-sized angles, our protocols offer a factor 24 improvement over the best-known gate synthesis protocols and a factor 2 over the Duclos-Cianci and Poulin protocol. For very small angle rotations, the dilution protocol dramatically reduces costs, giving several orders magnitude improvement over competitors. There also exists an intermediary regime of small, but not very small, angles where our approach gives a marginal improvement over gate synthesis. We discuss how different performance metrics may alter these conclusions.

  6. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  7. Multiple quantum magic-angle spinning using rotary resonance excitation

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Florian, Pierre; Massiot, Dominique; Grandinetti, Philip J.

    2001-03-01

    We have discovered rotary resonances between rf field strength, ω1, and magic-angle spinning (MAS) frequency, ωR, which dramatically enhance the sensitivity of triple quantum preparation and mixing in the multiple-quantum MAS experiment, particularly for quadrupolar nuclei having low gyromagnetic ratios or experiencing strong quadrupole couplings. Triple quantum excitation efficiency minima occur when 2ω1=nωR, where n is an integer, with significant maxima occurring between these minima. For triple quantum mixing we observe maxima when ω1=nωR. In both preparation and mixing the pulse lengths required to reach maxima exceed one rotor period. We have combined these rotary resonance conditions into a new experiment called FASTER MQ-MAS, and have experimentally demonstrated a factor of 3 enhancement in sensitivity in comparison to conventional MQ-MAS.

  8. Small-angle neutron scattering from samples of expanded carbon

    SciTech Connect

    Bogdanov, S. G. Valiev, E. Z.; Dorofeev, Yu. A.; Pirogov, A. N.; Skryabin, Yu. N.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.

    2006-12-15

    The subatomic structure of expanded graphite has been investigated by small-angle neutron scattering. Samples were synthesized during quick thermal decomposition of intercalated compounds based on oxidized graphite. They had a low bulk density (up to 0.1 g/cm{sup 3}) and were characterized by considerable small-angle scattering. It has been established that majority of the volume of expanded graphite samples is occupied by participles with characteristic sizes in two ranges: from 6 to 8 nm and from 20 to 30 nm. Small particles have properties of a surface fractal with the dimension D{sub s} = 2.4-2.6, whereas the larger particles are mainly smooth and have the dimension D{sub s} = 2.0-2.1. The specific surface of the samples studied was determined from the small-angle scattering data.

  9. Precision angle-resolved autoionization resonances in Ar and Ne

    SciTech Connect

    Berrah, N.; Langer, B.; Gorczyca, T.W.

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  10. Enhancing the Surface Sensitivity of Metallic Nanostructures Using Oblique-Angle-Induced Fano Resonances

    PubMed Central

    Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen

    2016-01-01

    Surface sensitivity is an important factor that determines the minimum amount of biomolecules detected by surface plasmon resonance (SPR) sensors. We propose the use of oblique-angle-induced Fano resonances caused by two-mode coupling or three-mode coupling between the localized SPR mode and long-range surface plasmon polariton modes to increase the surface sensitivities of silver capped nanoslits. The results indicate that the coupled resonance between the split SPR (−kSPR) and cavity modes (two-mode coupling) has a high wavelength sensitivity for small-angle incidence (2°) due to its short decay length. Additionally, three-mode coupling between the split SPR (−kSPR), substrate (+kSub) and cavity modes has a high intensity sensitivity for large-angle incidence due to its short decay length, large resonance slope and enhanced transmission intensity. Compared to the wavelength measurement, the intensity measurement has a lower detectable (surface) concentration below 1 ng/ml (0.14 pg/mm2) and is reduced by at least 3 orders of magnitude. In addition, based on the calibration curve and current system noise, a theoretical detection limit of 2.73 pg/ml (0.38 fg/mm2) can be achieved. Such a surface concentration is close to that of prism-based SPR with phase measurement (0.1–0.2 fg/mm2 under a phase shift of 5 mdeg). PMID:27609431

  11. Impedance Scaling for Small-angle Tapers and Collimators

    SciTech Connect

    Stupakov, G.; /SLAC

    2010-02-11

    In this note I will prove that the impedance calculated for a small-angle collimator or taper, of arbitrary 3D profile, has a scaling property that can greatly simplify numerical calculations. This proof is based on the parabolic equation approach to solving Maxwell's equation developed in Refs. [1, 2]. We start from the parabolic equation formulated in [3]. As discussed in [1], in general case this equation is valid for frequencies {omega} >> c/a where a is a characteristic dimension of the obstacle. However, for small-angle tapers and collimators, the region of validity of this equation extends toward smaller frequencies and includes {omega} {approx} c/a.

  12. Magnetic Resonance Velocimetry analysis of an angled impinging jet

    NASA Astrophysics Data System (ADS)

    Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David

    2016-11-01

    Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.

  13. SMALL ANGLE CRAB COMPENSATION FOR LHC IR UPGRADE

    SciTech Connect

    CALAGA,R.; DORDA, U.; OHMI, D.; OIDE, K.; TOMAS, R.; ZIMMERMANN, F.

    2007-06-25

    A small angle (< 1 mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle [I]. The luminosity loss increases steeply to unacceptable levels as the IP beta function is reduced below its nominal value (see Fig. 1 in Ref. [2]). The crab compensation in the LHC can be accomplished using only two sets of deflecting RF cavities, placed in collision-free straight sections of the LHC to nullify the effective crossing angles at IPI & IP5. We also explore a 400 MHz superconducting cavity design and discuss the pertinent RF challenges. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, and crab RF noise sources.

  14. Structural analysis of uniformly (13)C-labelled solids from selective angle measurements at rotational resonance.

    PubMed

    Patching, Simon G; Edwards, Rachel; Middleton, David A

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of (13)C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Calpha and Cbeta of uniformly labelled L-[(13)C,(15)N]valine is obtained with 25% efficiency. The evolution of Calpha-Cbeta double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Halpha-Calpha-Cbeta-Hbeta torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [(13)C,(15)N]uridine is achieved with 12% efficiency for a (13)C-(13)C distance of 2.5A, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  15. Structural analysis of uniformly 13C-labelled solids from selective angle measurements at rotational resonance

    NASA Astrophysics Data System (ADS)

    Patching, Simon G.; Edwards, Rachel; Middleton, David A.

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of 13C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Cα and Cβ of uniformly labelled L-[ 13C, 15N]valine is obtained with 25% efficiency. The evolution of Cα-Cβ double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Hα-Cα-Cβ-Hβ torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [ 13C, 15N]uridine is achieved with 12% efficiency for a 13C- 13C distance of 2.5 Å, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  16. Implications of the small aspect angles of equatorial spread F

    SciTech Connect

    Hysell, D.L.; Farley, D.T.

    1996-03-01

    Small-scale equatorial spread F irregularities are almost perfectly aligned with the geomagnetic field. The authors develop here an analytic plasma kinetic theory of small-scale, quasi-field-aligned irregularities that include ion viscosity and finite Larmor radius effects. They conclude, for one thing, that the measured aspect angles are too small to be consistent with a dissipative drift wave source of 3-m irregularities. Nonlinearly driven flute modes appear to be the only available mechanism. The authors compare the relative influence of parallel and perpendicular dissipation and conclude that the aspect width depends only weakly on any single geophysical parameters, such as collision frequency, gradient length, temperature, etc. This finding is consistent with their observation that the measured aspect angles vary little with altitude and only weakly with instability level. 29 refs., 5 figs.

  17. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    SciTech Connect

    Tripathi, A. K. Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3

  18. Multiple small angle neutron scattering: A new two-dimensional ultrasmall angle neutron scattering technique

    SciTech Connect

    Gruenzweig, C.; Hils, T.; Muehlbauer, S.; Ay, M.; Lorenz, K.; Georgii, R.; Gaehler, R.; Boeni, P.

    2007-11-12

    We report on the demonstration experiment of the multiple small angle neutron scattering (MSANS) technique at a 5.6 m long neutron beam line, leading to a q resolution of 3x10{sup -4} A{sup -1}. The MSANS technique is based on two two-dimensional multihole apertures placed at the front end of the collimator and close to the sample, respectively. By choosing the proper MSANS geometry, individual diffraction patterns are superimposed leading to a large gain in intensity. Using MSANS as an option for standard small angle neutron scattering beam lines, the q resolution could be increased to 10{sup -5} A{sup -1} without dramatically sacrificing intensity.

  19. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  20. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOEpatents

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  1. SANS (small-angle neutron scattering) from polymers and colloids

    SciTech Connect

    Hayter, J.B.

    1987-01-01

    Small-angle neutron scattering (SANS) has been remarkably successful in providing detailed quantitative structural information on complex everyday materials, such as polymers and colloids, which are often of considerable industrial as well as academic interest. This paper reviews some recent SANS experiments on polymers and colloids, including ferrofluids, and discusses the use of these apparently complex systems as general physical models of the liquid or solid state.

  2. SASBDB, a repository for biological small-angle scattering data

    PubMed Central

    Valentini, Erica; Kikhney, Alexey G.; Previtali, Gianpietro; Jeffries, Cy M.; Svergun, Dmitri I.

    2015-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands. PMID:25352555

  3. Uncertainties in Small-Angle Measurement Systems Used to Calibrate Angle Artifacts

    PubMed Central

    Stone, Jack A.; Amer, Mohamed; Faust, Bryon; Zimmerman, Jay

    2004-01-01

    We have studied a number of effects that can give rise to errors in small-angle measurement systems when they are used to calibrate artifacts such as optical polygons. Of these sources of uncertainty, the most difficult to quantify are errors associated with the measurement of imperfect, non-flat faces of the artifact, causing the instrument to misinterpret the average orientation of the surface. In an attempt to shed some light on these errors, we have compared autocollimator measurements to angle measurements made with a Fizeau phase-shifting interferometer. These two instruments have very different operating principles and implement different definitions of the orientation of a surface, but (surprisingly) we have not yet seen any clear differences between results obtained with the autocollimator and with the interferometer. The interferometer is in some respects an attractive alternative to an autocollimator for small-angle measurement; it implements an unambiguous and robust definition of surface orientation in terms of the tilt of a best-fit plane, and it is easier to quantify likely errors of the interferometer measurements than to evaluate autocollimator uncertainty. PMID:27366616

  4. Critical electron pitch angle anisotropy necessary for chorus generation. [Doppler-shifted cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Burton, R. K.

    1976-01-01

    Simultaneous wave, resonant-particle, and ambient-plasma data from OGO 5 for chorus emissions on August 15, 1968, were found consistent with the theoretical critical pitch-angle-anisotropy condition for whistler-mode instability by Doppler-shifted electron cyclotron resonance. Local generation, as determined by wave normal measurements, occurred only when the pitch-angle anisotropy of resonant electrons required for instability substantially exceeded the critical anisotropy defined by Kennel and Petschek (1966).

  5. The Turbulent Flow in Diffusers of Small Divergence Angle

    NASA Technical Reports Server (NTRS)

    Gourzhienko, G. A.

    1947-01-01

    The turbulent flow in a conical diffuser represents the type of turbulent boundary layer with positive longitudinal pressure gradient. In contrast to the boundary layer problem, however, it is not necessary that the pressure distribution along the limits of the boundary layer(along the axis of the diffuser) be given, since this distribution can be obtained from the computation. This circumstance, together with the greater simplicity of the problem as a whole, provides a useful basis for the study of the extension of the results of semiempirical theories to the case of motion with a positive pressure gradient. In the first part of the paper,formulas are derived for the computation of the velocity and.pressure distributions in the turbulent flow along, and at right angles to, the axis of a diffuser of small cone angle. The problem is solved.

  6. Small-angle electron scattering from magnetic artificial lattice.

    PubMed

    Takayanagi, Kazuya; Koyama, Tsukasa; Mori, Shigeo; Harada, Ken; Togawa, Yoshihiko

    2012-01-01

    In this study, quantitative reciprocal-space analyses of magnetic domain structures in magnetic artificial lattices of patterned elements were performed by means of the small-angle electron scattering (SAES) technique. Using a conventional transmission electron microscope with a LaB(6) thermal-emission electron gun, Lorentz deflection due to magnetic moments in patterned elements and Bragg diffraction due to the lattice periodicity are simultaneously recorded at an angle of the order of less than 1 10(-)(6) rad when using electron waves with high spatial coherency and large camera length. The present SAES technique together with TEM real-space imaging methods such as Lorentz microscopy will be useful in analyzing electromagnetic fields in nano-scaled materials.

  7. Small-angle electron scattering of magnetic fine structures.

    PubMed

    Togawa, Yoshihiko

    2013-06-01

    Magnetic structures in magnetic artificial lattices and chiral magnetic orders in chiral magnets have been quantitatively analyzed in the reciprocal space by means of small-angle electron scattering (SAES) method. Lorentz deflection due to magnetic moments and Bragg diffraction due to periodicity are simultaneously recorded at an angle of the order of or less than 1 × 10(-6) rad, using a camera length of more than 100 m. The present SAES method, together with TEM real-space imaging methods such as in-situ Lorentz microscopy, is very powerful in analyzing magnetic fine structures in magnetic materials. Indeed, the existence of both a chiral helimagnetic structure and a chiral magnetic soliton lattice in a chiral magnet CrNb3S6 has been successfully verified for the first time using the present complementary methods.

  8. Disordered porous solids : from chord distributions to small angle scattering

    NASA Astrophysics Data System (ADS)

    Levitz, P.; Tchoubar, D.

    1992-06-01

    Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut

  9. Small Angle Physics at CDF: A Progress Report

    SciTech Connect

    Paoletti, Riccardo

    1989-12-16

    In 1989 CDF collected data in special high beta runs with a trigger selecting elastic and inelastic events in order to measure the total cross section ({sigma}{sub tot}) and the differential elastic cross section (d{sigma}{sub el}/dt). Data were taken at cms energies of 300, 540, 1000 and 1800 GeV. A double arm magnetic spectrometer located along the beam pipe tags the particles scattered at very small angles and tracking detectors surrounding the interaction point reveal particles produced at larger angles. We discuss the status of the analysis of elastic and inelastic events with emphasis on the event selection and the background subtraction. 5 refs., 14 figs., 3 tabs.

  10. ASIC for Small Angle Neutron Scattering Experiments at the SNS

    NASA Astrophysics Data System (ADS)

    De Geronimo, Gianluigi; Fried, Jack; Smith, Graham C.; Yu, Bo; Vernon, Emerson; Britton, Charles L.; Bryan, William L.; Clonts, Lloyd G.; Frank, Shane S.

    2007-06-01

    We present an ASIC for a 3He gas detector to be used in small angle neutron scattering experiments at the spallation neutron source in oak ridge. The ASIC is composed of 64 channels with low noise charge amplification, filtering, timing and amplitude measurement circuits, where an innovative current-mode peak-detector and digitizer (PDAD) is adopted. The proposed PDAD provides at the same time peak detection and A/D conversion in real time, at low power, and without requiring a clock signal. The channels share an efficient data sparsification and derandomization scheme, a 30-bit 256 deep FIFO, and low voltage differential signaling.

  11. Small-angle scattering and 3D structure interpretation.

    PubMed

    Trewhella, Jill

    2016-10-01

    This review focuses on advances in the application of solution small-angle scattering (SAS) in structural analysis of biomolecules and the complexes they form. Examples highlighted illustrate the unique contribution of SAS, using both X-rays and neutrons, in hybrid or integrative modelling methods. The increased information content when neutron scattering with contrast variation is used is a particular focus. Finally, progress toward an agreed reporting framework, the development of open data and model archives, and the importance of these initiatives is covered.

  12. Calculations of transonic boattail flow at small angle of attack

    NASA Technical Reports Server (NTRS)

    Nakayama, A.; Chow, W. L.

    1979-01-01

    A transonic flow past a boattailed afterbody under a small angle of attack was examined. It is known that the viscous effect offers significant modifications of the pressure distribution on the afterbody. Thus, the formulation for the inviscid flow was based on the consideration of a flow past a nonaxisymmetric body. The full three dimensional potential equation was solved through numerical relaxation, and quasi-axisymmetric boundary layer calculations were performed to estimate the displacement effect. It was observed again that the viscous effects were not negligible. The trend of the final results agreed well with the experimental data.

  13. Small Molecule Immunosensing Using Surface Plasmon Resonance

    PubMed Central

    Mitchell, John

    2010-01-01

    Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained. PMID:22163605

  14. Small angle neutron scattering using a triple axis spectrometer

    SciTech Connect

    Ahmend, F.U.; Kamal, I.; Yunus, S.M.

    1994-12-31

    SANS technique has been developed on a triple axis neutron spectrometer at TRIGA Mark II (3 MW) research reactor, AERE, Savar, Dhaka, Bangladesh. Double crystal (with very small mosaic spread {approximately} 1 min.) diffraction known as Bonse and Hart`s method has been employed in this technique. Such a device is a useful tool for small angle scattering in the Q range between 10{sup -5} and 10{sup -1} {Angstrom}{sup -1} and for real time experiments at short time scales. Therefore, large objects and large distance interparticle correlations can be investigated easily by this method. Test measurements using alumina (Al{sub 2}O{sub 3}) sample has been carried out to exploit this method. The radius of gyration has been determined and the data has been fitted to the scattering function of a sphere.

  15. Windows for small-angle X-ray scattering cryostats.

    PubMed

    Lurio, Laurence; Mulders, Norbert; Paetkau, Mark; Jemian, Pete R; Narayanan, Suresh; Sandy, Alec

    2007-11-01

    To determine the suitability of commonly used windows for small-angle X-ray scattering, a range of materials, including Kapton, (aluminized) Mylar, beryllium, high-purity aluminium foil, mica and silicon nitride have been studied. At small wavevector transfers, Q, in the range 2 x 10(-3) to 0.2 nm(-1), the scattering from Kapton, mica and beryllium is reasonably well described by power laws in Q with exponents of -3.25, -3.6 and -3.9, respectively. There are large variations in the scattering from mica, but a freshly cleaved natural mica window was by far the weakest scatterer. For applications where radiation in the infrared or visible range should be blocked, aluminized Mylar is the most suitable material. Both Mylar and Kapton can be used to make very simple demountable superfluid-tight windows using indium O-ring seals.

  16. Small-Angle Scattering from Nanoscale Fat Fractals.

    PubMed

    Anitas, E M; Slyamov, A; Todoran, R; Szakacs, Z

    2017-12-01

    Small-angle scattering (of neutrons, x-ray, or light; SAS) is considered to describe the structural characteristics of deterministic nanoscale fat fractals. We show that in the case of a polydisperse fractal system, with equal probability for any orientation, one obtains the fractal dimensions and scaling factors at each structural level. This is in agreement with general results deduced in the context of small-angle scattering analysis of a system of randomly oriented, non-interacting, nano-/micro-fractals. We apply our results to a two-dimensional fat Cantor-like fractal, calculating analytic expressions for the scattering intensities and structure factors. We explain how the structural properties can be computed from experimental data and show their correlation to the variation of the scaling factor with the iteration number. The model can be used to interpret recorded experimental SAS data in the framework of fat fractals and can reveal structural properties of materials characterized by a regular law of changing of the fractal dimensions. It can describe successions of power-law decays, with arbitrary decreasing values of the scattering exponents, and interleaved by regions of constant intensity.

  17. Analysis of PKR Structure by Small-Angle Scattering

    SciTech Connect

    VanOudenhove, Jennifer; Anderson, Eric; Krueger, Susan; Cole, James L.

    2009-04-27

    Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 {angstrom}. The p(r) distance distribution function exhibits a peak near 30 {angstrom}, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.

  18. Small-Angle Scattering from Nanoscale Fat Fractals

    NASA Astrophysics Data System (ADS)

    Anitas, E. M.; Slyamov, A.; Todoran, R.; Szakacs, Z.

    2017-06-01

    Small-angle scattering (of neutrons, x-ray, or light; SAS) is considered to describe the structural characteristics of deterministic nanoscale fat fractals. We show that in the case of a polydisperse fractal system, with equal probability for any orientation, one obtains the fractal dimensions and scaling factors at each structural level. This is in agreement with general results deduced in the context of small-angle scattering analysis of a system of randomly oriented, non-interacting, nano-/micro-fractals. We apply our results to a two-dimensional fat Cantor-like fractal, calculating analytic expressions for the scattering intensities and structure factors. We explain how the structural properties can be computed from experimental data and show their correlation to the variation of the scaling factor with the iteration number. The model can be used to interpret recorded experimental SAS data in the framework of fat fractals and can reveal structural properties of materials characterized by a regular law of changing of the fractal dimensions. It can describe successions of power-law decays, with arbitrary decreasing values of the scattering exponents, and interleaved by regions of constant intensity.

  19. Small-angle scattering model for multilamellar vesicles

    SciTech Connect

    Frielinghaus, Henrich

    2007-11-15

    A small-angle neutron-x-ray-light-scattering model for multilamellar vesicles is developed on the basis of a simple geometry. N spherical shells with radii of an arithmetic series are allowed for displacements {delta}R which are limited by {delta}Rsmall displacements {delta}R, but no second order peak is predicted. Only for rather large displacements the correlation peak widens up and shifts to smaller scattering angles. Then the important bilayer spacing is larger. The predictive power of the model lies in the connection of the compactness with N and in the maximum correlation peak sharpness. This model considers many length scales at a time while existing theories focus on length scales of the bilayer spacing and the bilayer itself.

  20. Flat lens criterion by small-angle phase.

    PubMed

    Ott, Peter; Al Shakhs, Mohammed H; Lezec, Henri J; Chau, Kenneth J

    2014-12-01

    We show that a classical imaging criterion based on angular dependence of small-angle phase can be applied to any system composed of planar, uniform media to determine if it is a flat lens capable of forming a real paraxial image and to estimate the image location. The real paraxial image location obtained by this method shows agreement with past demonstrations of far-field flat-lens imaging and can even predict the location of super-resolved images in the near-field. The generality of this criterion leads to several new predictions: flat lenses for transverse-electric polarization using dielectric layers, a broadband flat lens working across the ultraviolet-visible spectrum, and a flat lens configuration with an image plane located up to several wavelengths from the exit surface. These predictions are supported by full-wave simulations. Our work shows that small-angle phase can be used as a generic metric to categorize and design flat lenses.

  1. Design of a small angle spectrometer: Application to food systems

    NASA Astrophysics Data System (ADS)

    Alexander, Marcela

    This thesis describes the design of a new class of spectrometer developed for the study of light scattering phenomena at very low angles. Its detection system is a state of the art Charged Couple Device (CCD) camera of short data gathering time and very high sensitivity and dynamic range. The Small Angle Light Scattering technique in this work is shown to be a useful tool for determining size distributions of particles whose diameter is larger than approximately 300 nm. For particles smaller than this size, the technique is a sensitive probe of Rayleigh scattering. The advantages presented by the use of a solid state camera enables the study of relatively fast dynamic phenomena such as aggregation. In this particular work, we followed the aggregation of casein micelles caused by the addition of rennet, and the aggregation of β- Lactoglobulin stabilized oil in water emulsions caused by the addition of CaCl2. For this last case, a discrete inversion technique, incorporating the Mie scattering theory, was applied to obtain size distribution histograms of the emulsion droplets as a function of aggregation time.

  2. Small angle neutron scattering studies of vesicle stability

    SciTech Connect

    Mang, J.T.; Hjelm, R.P.

    1997-10-01

    Small angle neutron scattering (SANS) was used to investigate the structure of mixed colloids of egg yolk phosphatidylcholine (EYPC) with the bile salt, cholylglycine (CG), in D{sub 2}O as a function of pressure (P) and temperature (T). At atmospheric pressure, the system forms an isotropic phase of mixed, single bilayer vesicles (SLV`s). Increasing the external hydrostatic pressure brought about significant changes in particle morphology. At T = 25 C, application of a pressure of 3.5 MPa resulted in the collapse of the SLV`s. Further increase of P, up to 51.8 MPa, resulted in a transition from a phase of ordered (stacked), collapsed vesicles to one of stacked, ribbon-like particles. A similar collapse of the vesicles was observed at higher temperature (T = 37 C) with increasing P, but at this temperature, no ribbon phase was found at the highest pressure explored.

  3. Small Angle Elastic Scattering of Protons off of Spinless Nuclei.

    NASA Astrophysics Data System (ADS)

    Ling, Alan Graham

    1988-12-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on ^ {12}C, ^{40} Ca, and ^{208}Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay -line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude alpha_{rm n}(0) = Ref_{rm n}(0)/Imf_{rm n }(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed.

  4. Radiation damage study using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  5. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    NASA Astrophysics Data System (ADS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  6. A novel small-angle neutron scattering detector geometry

    PubMed Central

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H.

    2013-01-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3He, the new concept utilizes gaseous detectors with 10B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument. PMID:24046504

  7. Small angle scattering from protein/sugar conjugates

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  8. Small-angle neutron scattering study of polymeric micellar structures

    SciTech Connect

    Wu, G.; Chu, B. ); Schneider, D.K. )

    1994-11-17

    Polymeric micellar structures formed by a PEO-PPO-PEO copolymer in o-xylene in the presence of water were investigated by small-angle neutron scattering. In order to reveal the detailed micellar structure, different contrasts among the micellar core, the micellar shell, and the dispersing medium (background) were constructed by selectively changing the protonated/deuterated combination of water and xylene. The micellar structure could be well described by a core-shell structure with the scattering behavior of the micellar shell being very similar to that of a star polymer. The solubilized water existed not only in the micellar core but also in the micellar shell. The volume fraction of a copolymer segments in the micellar shell was rather low, being of the order of 0.2. There seemed to be no sharp interface between the micellar core and the micellar shell. 25 refs., 11 figs., 4 tabs.

  9. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    SciTech Connect

    Schmidt, A. E. Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  10. Photometric Study Of 28978 Ixion At Small Phase Angle

    NASA Astrophysics Data System (ADS)

    Rousselot, Philippe; Petit, J.

    2010-10-01

    Discovered in 2001, the Kuiper Belt Object 28978 Ixion belongs to the dynamical class of Plutinos. Because of its brightness (R magnitude about 19.5) it has been extensively studied, its diameter and albedo being estimated by Spitzer to be about 570 km and 15% (Stansberry et al., 2008). Absorption feature of cristalline water ice has been detected (Merlin et al., 2010) and negative linear polarisation has been measured (Boehnhardt et al., 2004). So far no lightcurve nor phase curve at very small phase angle has been published, the only information being that the lightcurve amplitude was inferior to 0.15 magnitude (Ortiz et al., 2003). We present new photometric observations obtained with the 3.5-m telescope NTT at the European Southern Observatory with broad band filters (B, V, R and I). These observations permit to derive a rotation period of 15.9+/-0.5 hr (if a single-peaked lightcurve is assumed) with a peak to peak amplitude of 0.06+/-0.03 magnitude. The phase curve does not reveal any bright opposition surge even for very small phase angle (α=0.02 deg). When our data are combined with the one of Boehnhardt et al. (up to α=1.34 deg) a linear fit provides a slope of 0.201+/-0.014 mag/deg. References : Boehnhardt H., Bagnulo S., Muinonen K. et al., 2004, A&A 415, L21-L25 Merlin F., Barucci M.A., de Bergh C. et al., 2010, Icarus 208, 945-954 Ortiz J.L., Gutiérrez P.J., Casanova V., Sota A., 2003, A&A 407, 1149-1155 Stansberry J., Grundy W., Brown M. et al., 2008, The Solar System Beyond Neptune, Univ. of Arizona Press, pp161-179

  11. Design and construction of a contactless mobile RF coil for double resonance variable angle spinning NMR.

    PubMed

    Qian, Chunqi; Pines, Alex; Martin, Rachel W

    2007-09-01

    Variable angle spinning (VAS) experiments can be used to measure long-range dipolar couplings and provide structural information about molecules in oriented media. We present a probe design for this type of experiment using a contactless resonator. In this circuit, RF power is transmitted wirelessly via coaxial capacitive coupling where the coupling efficiency is improved by replacing the ordinary sample coil with a double frequency resonator. Our probe constructed out of this design principle has shown favorable properties at variable angle conditions. Moreover, a switched angle spinning correlation experiment is performed to demonstrate the probe's capability to resolve dipolar couplings in strongly aligned molecules.

  12. Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors.

    PubMed

    Gao, Hanwei; Yang, Jiun-Chan; Lin, Julia Y; Stuparu, Andreea D; Lee, Min Hyung; Mrksich, Milan; Odom, Teri W

    2010-07-14

    This paper describes how angle-dependent resonances from molded plasmonic crystals can be used to improve real-time biosensing. First, an inexpensive and massively parallel approach to create single-use, two-dimensional metal nanopyramidal gratings was developed. Second, although constant in bulk dielectric environments, the sensitivities (resonance wavelength shift and resonance width) of plasmonic crystals to adsorbed molecular layers of varying thickness were found to depend on incident excitation angle. Third, protein binding at dilute concentrations of protein was carried out at an angle that optimized the signal to noise of our plasmonic sensing platform. This angle-dependent sensitivity, which is intrinsic to grating-based sensors, is a critical parameter that can assist in maximizing signal to noise.

  13. Small Angle X-ray Scattering for Nanoparticle Research

    SciTech Connect

    Lee, Byeongdu; Senesi-Good, Andrew J.; Li, Tao

    2016-09-28

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution, shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. We conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.

  14. New Very Small Angle Neutron Scattering (VSANS) Instrument

    NASA Astrophysics Data System (ADS)

    Van Every, E.; Deyhim, A.; Kulesza, J.

    2016-09-01

    The design of a new Very Small Angle Neutron Scattering (VSANS) Instrument for use in National Institute of Standards And Technology (NIST) will be discussed. This instrument is similar to a shorter instrument we designed and delivered to ANSTO in Australia called the Bilby SANS instrument. The NIST VSANS and the ANSTO Bilby SANS instruments have very similar dimensions for length and diameter and have similar requirements for internal detector motion, top access port, walkway supports, and ports; however, the Bilby SANS instrument vacuum requirement was lower (7.5×10-5 Torr) and the entire (60,000 pound) vessel was required to move 1.5 meters on external rails with a repeatability of 100 um, which ADC achieved. The NIST VSANS length is 24 meter, internal diameter 2.3 meter with three internal carriages. The NIST VSANS instrument, which covers the usual SANS range will also allow configuration to cover the range between q ∼⃒ 10-4 A-1 to 10-3 A-1 with a sample beam current of (104 neutrons/s). The key requirements are a second position-sensitive detector system having a 1 mm pixel size and a longer sample-detector flight path of 20 m (i.e., a 40 m instrument).

  15. Small Angle X-ray Scattering for Nanoparticle Research

    SciTech Connect

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution, shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.

  16. Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering

    SciTech Connect

    Tiede, D.M.; Marone, P.; Wagner, A.M.; Thiyagarajan, P.

    1995-12-31

    We are using small angle neutron scattering (SANS) to resolve structural features of supramolecular assemblies of photosynthetic proteins in liquid and frozen solutions. SANS resolves the size, shape, and structural homogeneity of macromolecular assemblies in samples identical to those used for spectroscopic assays of photosynthetic function. Likely molecular structures of the supramolecular assemblies can be identified by comparing experimental scattering data with scattering profiles calculated for model supramolecular assemblies built from crystal structures of the individual proteins. SANS studies of the Rhodobacter sphaeroides reaction center, RC, presented here, show that the detergent solubilized RC exists in a variety of monomeric and aggregation states. The distribution between monomer and aggregate was found to depend strongly upon detergent, temperature and nature of additives, such as ethylene glycol used for low temperature spectroscopy and polyethylene glycol used for crystallization. Likely aggregate structures are being identified by fitting the experimental scattering profiles with those calculated for model aggregates built-up using the RC crystal structure. This work establishes the foundation for using SANS to identify intermediates in the RC crystallization pathways, and for determining likely structures of complexes formed between the RC and its physiological reaction partners, cytochrome c, and the LHI antenna complex.

  17. Heparin's solution structure determined by small-angle neutron scattering.

    PubMed

    Rubinson, Kenneth A; Chen, Yin; Cress, Brady F; Zhang, Fuming; Linhardt, Robert J

    2016-12-01

    Heparin is a linear, anionic polysaccharide that is widely used as a clinical anticoagulant. Despite its discovery 100 years ago in 1916, the solution structure of heparin remains unknown. The solution shape of heparin has not previously been examined in water under a range of concentrations, and here is done so in D2 O solution using small-angle neutron scattering (SANS). Solutions of 10 kDa heparin-in the millimolar concentration range-were probed with SANS. Our results show that when sodium concentrations are equivalent to the polyelectrolyte's charge or up to a few hundred millimoles higher, the molecular structure of heparin is compact and the shape could be well modeled by a cylinder with a length three to four times its diameter. In the presence of molar concentrations of sodium, the molecule becomes extended to nearly its full length estimated from reported X-ray measurements on stretched fibers. This stretched form is not found in the presence of molar concentrations of potassium ions. In this high-potassium environment, the heparin molecules have the same shape as when its charges were mostly protonated at pD ≈ 0.5, that is, they are compact and approximately half the length of the extended molecules.

  18. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  19. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  20. Cryocup - Compact spherical neutron polarimetry device for small angle measurement

    NASA Astrophysics Data System (ADS)

    Wang, Tianhao

    In my thesis I describe my research work of developing a compact device for Spherical Neutron Polarimetry (SNP) measurements at small neutron scattering angles. The thesis first introduced the purpose of this research project, which is developing an easy to use and maintain version of an advanced neutron experiment technique (SNP). After the introduction, the design principle and construction detail of the prototype device is demonstrated. The design principle is based on our finite element simulation of the device's magnetic field profile, and is later verified by the performance test experiment. The prototype device is tested at the SESAME neutron beamline at Indiana University and the HB-2D beamline at Oak Ridge National laboratory. The performance test data are analyzed and proof that the design is successful and the prototype is capable of perform accurate SNP measurement. Based on the test result, the prototype device is utilized to perform SNP measurement on two types of magnetic film sample: Permalloy and Metglas. Combined with other characterization method such as SQUID and MFM, I study the magnetization of these two samples both at zero magnetic field environment and in external field. The SNP data provided by the prototype device is discussed in the thesis and provide detailed information about the magnetization, which is also not accessible through other method. In the end, the possible improvement and the future application of the device is discussed.

  1. Small angle elastic scattering of protons off of spinless nuclei

    SciTech Connect

    Ling, A.G.

    1988-07-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on /sup 12/C, /sup 40/Ca, and /sup 208/Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay-line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude ..cap alpha../sub n/(0) = Ref/sub n/(0)/Imf/sub n/(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed. 130 refs., 60 figs., 12 tabs.

  2. Ultra-small-angle neutron scattering with azimuthal asymmetry.

    PubMed

    Gu, X; Mildner, D F R

    2016-06-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.

  3. Small Angle X-ray Scattering for Nanoparticle Research.

    PubMed

    Li, Tao; Senesi, Andrew J; Lee, Byeongdu

    2016-09-28

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and angstrom length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle's size, size distribution, shape, and organization into hierarchical structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well as the combination of SAXS with other X-ray and non-X-ray characterization tools. We conclude with an examination of several key areas of research where X-ray scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.

  4. Branch Content in Hybrid Materials using Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Beaucage, Greg

    2005-03-01

    Inorganic/organic hybrid materials often display ramified mass- fractal structures characterized by primary particle size, aggregate size, and mass-fractal dimension. Physical properties, such as mechanical and dynamic mechanical properties and electrical conductivity (in carbon composites for instance), can not be predicted using only these structural features since such properties are intimately tied to the degree and type of branching as shown by Witten [1]. Witten suggested the use of the minimum dimension, or the related connectivity dimension, to calculate mechanical response in these hybrid systems. A viable technique to quantify the minimum dimension and connectivity dimension in hybrid materials has, until recently, been absent from the literature. This presentation will discuss the use of small-angle x-ray and neutron scattering to describe branch content in hybrid materials [2] and will outline an approach to use the minimum dimension and connectivity dimension to predict static and dynamic mechanical properties for hybrid materials based on structure [1, 3]. 1. Witten TA, Rubinstein M, Colby RH Reinforcement of Rubber by Fractal Aggregates J Phys II 3 (3): 367-383 (1993). 2. Beaucage G Determination of branch fraction and minimum dimension of mass-fractal aggregates Phys Rev E 70 (3): art. no. 031401 Part 1 (2004). 3. Kohls DJ, Beaucage G Rational design of reinforced rubber Curr Opin Solid St M 6 (3): 183-194 (2002).

  5. Ultra-small-angle neutron scattering with azimuthal asymmetry

    PubMed Central

    Gu, X.; Mildner, D. F. R.

    2016-01-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry. PMID:27275140

  6. Ultra-small-angle neutron scattering with azimuthal asymmetry

    SciTech Connect

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.

  7. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  8. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  9. ON THE CONTACT-ANGLES OF SMALL DROPLETS,

    DTIC Science & Technology

    a liquid film which becomes unstable within a certain interval of thickness, droplets which have a certain finite contact - angle and a thin stable film...of liquid which may exceed monomolecular dimensions. It is assumed that the magnitude of the contact - angle for any given solid surface and liquid

  10. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  11. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  12. High-pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide.

  13. High-pressure magic angle spinning nuclear magnetic resonance

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  14. Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study.

    PubMed

    Luchette, P A; Vetman, T N; Prosser, R S; Hancock, R E; Nieh, M P; Glinka, C J; Krueger, S; Katsaras, J

    2001-08-06

    Bilayered micelles, or bicelles, which consist of a mixture of long- and short-chain phospholipids, are a popular model membrane system. Depending on composition, concentration, and temperature, bicelle mixtures may adopt an isotropic phase or form an aligned phase in magnetic fields. Well-resolved (1)H NMR spectra are observed in the isotropic or so-called fast-tumbling bicelle phase, over the range of temperatures investigated (10-40 degrees C), for molar ratios of long-chain lipid to short-chain lipid between 0.20 and 1.0. Small angle neutron scattering data of this phase are consistent with the model in which bicelles were proposed to be disk-shaped. The experimentally determined dimensions are roughly consistent with the predictions of R.R. Vold and R.S. Prosser (J. Magn. Reson. B 113 (1996)). Differential paramagnetic shifts of head group resonances of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC), induced by the addition of Eu(3+), are also consistent with the bicelle model in which DHPC is believed to be primarily sequestered to bicelle rims. Selective irradiation of the DHPC aliphatic methyl resonances results in no detectable magnetization transfer to the corresponding DMPC methyl resonances (and vice versa) in bicelles, which also suggests that DHPC and DMPC are largely sequestered in the bicelle. Finally, (1)H spectra of the antibacterial peptide indolicidin (ILPWKWPWWPWRR-NH(2)) are compared, in a DPC micellar phase and the above fast-tumbling bicellar phases for a variety of compositions. The spectra exhibit adequate resolution and improved dispersion of amide and aromatic resonances in certain bicelle mixtures.

  15. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  16. Comparative research on the methods for measuring the mode deflection angle of cylindrical resonator gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Fan, Zhenfang; Wang, Dongya; Wang, Yanyan; Pan, Yao; Qu, Tianliang; Xu, Guangming

    2016-10-01

    The existence of mode deflection angle in the cylindrical resonator gyroscope (CRG) leads to the signal drift on the detecting nodes of the gyro vibration and significantly decreases the performance of the CRG. Measuring the mode deflection angle efficiently is the foundation of tuning for the imperfect cylindrical shell resonator. In this paper, an optical method based on the measuring gyroscopic resonator's vibration amplitude with the laser Doppler vibrometer and an electrical method based on measuring the output voltage of the electrodes on the resonator are both presented to measure the mode deflection angle. Comparative experiments were implemented to verify the methodology and the results show that both of the two methods could recognize the mode deflection angle efficiently. The precision of the optical method relies on the number and position of testing points distributed on the resonator. The electrical method with simple circuit shows high accuracy of measuring in a less time compared to the optical method and its error source arises from the influence of circuit noise as well as the inconsistent distribution of the piezoelectric electrodes.

  17. Angle-Resolved Resonant Photoemission as a Probe of Spatial Localization and Character of Electron States

    NASA Astrophysics Data System (ADS)

    Molodtsov, S. L.; Richter, M.; Danzenbächer, S.; Wieling, S.; Steinbeck, L.; Laubschat, C.

    1997-01-01

    Resonant photoemission (PE) in the angle-resolved mode is proposed as a method to determine the spatial localization and the angular momentum character of valence band states from on-resonance PE signals across the Brillouin zone. This technique is applied to study ordered films of La metal. The obtained experimental data agree well with the results of band-structure calculations and related eigenvector analysis.

  18. Detection of methane by a surface plasmon resonance sensor based on polarization interferometry and angle modulation

    NASA Astrophysics Data System (ADS)

    Liu, Le; Hu, Zhaoxu; Ma, Suihua; Zhang, Ying; He, Yonghong; Guo, Jihua

    2010-12-01

    A novel methane sensor based on surface plasmon resonance is presented. An isoprene rubber (IPR) film is used as the sensing layer for methane. With the technologies of polarization interferometry and angle modulation, a detecting resolution of 700 ppm is achieved, which is better than previously reported methane sensors based on surface plasmon resonance and has a potential to be improved. The technique could have potential applications in monitoring methane concentrations.

  19. Solution structures of calcium regulating proteins: A small-angle scattering study

    SciTech Connect

    Trewhella, J.; Heidorn, D.B.; Seeger, P.A.

    1987-11-01

    Small-angle X-ray scattering (SAXS) experiments have shown that the solution structures of two calcium-binding regulatory proteins, calmodulin and troponin C, are significantly different from their crystal structure forms. The structural differences occur in a region of calmodulin that is thought to bind to target enzymes;the calmodulin-enzyme complex is an initiator for many important biochemical processes. Calcium binding to calmodulin induces a conformational change that is a prerequisite for calmodulin binding to a target enzyme. SAXS data can characterize this conformational change and give insight into the mechanism of enzyme binding. Neutron resonance scattering promises to determine accurately the distances between calcium binding sites, thus providing important constraints on the structure of calmodulin in solution. 24 refs., 5 figs., 1 tab.

  20. Electrically small, complementary electric-field-coupled resonator antennas

    NASA Astrophysics Data System (ADS)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka <1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  1. Monte Carlo calculation of large and small-angle electron scattering in air

    DOE PAGES

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...

    2017-08-12

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  2. Direct detection of resonant electron pitch angle scattering by whistler waves in a laboratory plasma.

    PubMed

    Van Compernolle, B; Bortnik, J; Pribyl, P; Gekelman, W; Nakamoto, M; Tao, X; Thorne, R M

    2014-04-11

    Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.

  3. Tunable and angle-insensitive plasmon resonances in graphene ribbon arrays with multispectral diffraction response

    SciTech Connect

    Li, Kangwen; Ma, Xunpeng; Zhang, Zuyin; Xu, Yun Song, Guofeng

    2014-03-14

    Plasmon resonances in graphene ribbon arrays are investigated numerically by means of the Finite Element Method. Numerical analysis shows that a series of multipolar resonances take place when graphene ribbon arrays are illuminated by a TM polarized electromagnetic wave. Moreover, these resonances are angle-independent, and can be tuned greatly by the width and the doping level of the graphene ribbons. Specifically, we demonstrate that for graphene arrays with several sets of graphene ribbons, which have different widths or doping levels, each of these multipolar resonances will be split into several ones. In addition, as plasmon resonances can confine electromagnetic field at the ribbon edges, graphene ribbons with different widths or doping levels offer intriguing application for electrically tunable spectral imaging.

  4. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    SciTech Connect

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  5. Electrically small resonators for energy harvesting in the infrared regime

    NASA Astrophysics Data System (ADS)

    AlShareef, Mohammed R.; Ramahi, Omar M.

    2013-12-01

    A novel structure based on electrically small resonators is proposed for harvesting the infrared energy and yielding more than 80% harvesting efficiency. The dispersion effect of the dielectric and conductor materials of the resonators is taken into account by applying the Drude model. A new scheme to channel the infrared waves from an array of split ring resonators is proposed, whereby a wide-bandwidth collector is utilized by employing this new channeling concept.

  6. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  7. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  8. Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Using Silver Nanoparticles by Frederick L Beyer Approved for public release; distribution is unlimited. NOTICES...Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles by Frederick L Beyer Weapons and Materials...2016 4. TITLE AND SUBTITLE Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles 5a. CONTRACT

  9. Small Angle X ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Using Silver Nanoparticles by Frederick L Beyer Approved for public release; distribution is unlimited. NOTICES...Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles by Frederick L Beyer Weapons and Materials...2016 4. TITLE AND SUBTITLE Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles 5a. CONTRACT

  10. Versatile wide angle diffraction setup for simultaneous wide and small angle x-ray scattering measurements with synchrotron radiation

    SciTech Connect

    Rueda, D.R.; Garcia-Gutierrez, M.C.; Nogales, A.; Capitan, M.J.; Ezquerra, T.A.; Labrador, A.; Fraga, E.; Beltran, D.; Juanhuix, J.; Herranz, J.F.; Bordas, J.

    2006-03-15

    Here we present a novel, simple, and versatile experimental setup aimed to perform wide angle x-ray scattering (WAXS) measurements alone or in simultaneous combination with small angle x-ray scattering measurements. The design of the WAXS goniometer allows one to obtain high resolution diffraction patterns in a broad angular range. The setup can incorporate a hot stage in order to evaluate temperature resolved experiments. The performance of the equipment has been verified in the BM16 beam line of the European Synchrotron Radiation Facility with different well known samples such as alumina, isotropic film of high density polyethylene (HDPE), and oriented HPDE fiber.

  11. Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Ni, B.; Bortnik, J.; Thorne, R. M.; Ma, Q.; Chen, L.

    2013-12-01

    Adopting several realistic models for the wave distribution and ambient plasmaspheric density, we perform a comprehensive analysis to evaluate hiss-induced scattering coefficients, the relative role of each resonant harmonic, and the overall effect of hiss scattering on the pitch angle evolution and associated decay (loss) processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique component of the hiss emission is negligible. A quasi-parallel propagating wave model of hiss emissions provides a good approximation for evaluation of scattering rates of ≤ 2 MeV electrons. However, realistic wave propagation angles as a function of latitude along the field line must be taken into account to accurately quantify the rates of hiss scattering above 2 MeV. Ambient plasma density is also a critical parameter that can influence hiss scattering rates and resultant pitch angle evolution of electron flux. While the first order cyclotron and the Landau resonances are dominant for hiss-induced scattering of less than 2 MeV electrons, higher order resonances become important and even dominant at intermediate equatorial pitch angles for ultra-relativistic (≥ 3 MeV) electrons. Hiss induced electron pitch angle evolution consistently shows a relatively rapid initial transport of electrons from high to lower pitch angles, with a gradual approach towards an equilibrium shape, and a final state where the entire distribution decays exponentially with time. Although hiss scattering rates near the loss cone control the pitch angle evolution and the ultimate loss of ultra-relativistic electrons, the presence of a scattering bottleneck (a pronounced drop in diffusion rate at intermediate pitch angles) significantly affects the loss rate and leads to characteristic top hat shaped pitch angle distributions at energies below ~1 MeV. Decay timescales are determined to be on the order of a few days, tens of days, and > 100 days for 500 keV, 2 Me

  12. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  13. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  14. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  15. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  16. A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering.

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Lynn, Gary W; Cole, David R

    2009-12-01

    In this paper we report the results of a study using small angle and ultra-small angle neutron scattering techniques (SANS and USANS) to examine the evolution of carbonates during contact metamorphism. Data were obtained from samples collected along two transects in the metamorphosed Hueco limestone at the Marble Canyon, Texas, contact aureole. These samples were collected from the igneous contact out to {approx}1700 m. Scattering curves obtained from these samples show mass fractal behavior at low scattering vectors, and surface fractal behavior at high scattering vectors. Significant changes are observed in the surface and mass fractal dimensions as well as the correlation lengths (pore and grain sizes), surface area to volume ratio and surface Gibbs Free energy as a function of distance, including regions of the aureole outside the range of classic metamorphic petrology. A change from mass-fractal to non-fractal behavior is observed at larger scales near the outer boundary of the aureole that implies significant reorganization of pore distributions early in the metamorphic history. Surface fractal results suggest significant smoothing of grain boundaries, coupled with changes in pore sizes. A section of the scattering curve with a slope less than -4 appears at low-Q in metamorphosed samples, which is not present in unmetamorphosed samples. A strong spike in the surface area to volume ratio is observed in rocks near the mapped metamorphic limit, which is associated with reaction of small amounts of organic material to graphite. It may also represent an increase in pore volume or permeability, suggesting that a high permeability zone forms at the boundary of the aureole and moves outwards as metamorphism progresses. Neutron scattering data also correlate well with transmission electron microscopic (TEM) observations, which show formation of micro- and nanopores and microfractures during metamorphism. The scattering data are, however, quantifiable for a bulk rock

  17. Resonant spin tunneling in small antiferromagnetic particles

    NASA Astrophysics Data System (ADS)

    Luis, F.; del Barco, E.; Hernández, J. M.; Remiro, E.; Bartolomé, J.; Tejada, J.

    1999-05-01

    The paper reports a detailed experimental study on magnetic relaxation of natural horse-spleen ferritin. ac susceptibility measurements performed on three samples of different concentration show that dipole-dipole interactions between uncompensated moments play no significant role. Furthermore, the distribution of relaxation times in these samples has been obtained from a scaling of experimental χ'' data, obtained at different frequencies. The average uncompensated magnetic moment per protein is compatible with a disordered arrangement of atomic spins throughout the core, rather than with surface disorder. The observed field dependence of the blocking temperature suggests that magnetic relaxation is faster at zero field than at intermediate field values. This is confirmed by the fact that the magnetic viscosity peaks at zero field, too. Using the distribution of relaxation times obtained independently, we show that these results cannot be explained in terms of classical relaxation theory. The most plausible explanation of these results is the existence, near zero field, of resonant magnetic tunneling between magnetic states of opposite orientation, which are thermally populated.

  18. Magic angle magnetic resonance imaging of diode laser induced and naturally occurring lesions in equine tendons.

    PubMed

    Spriet, Mathieu; Murphy, Brian; Vallance, Stuart A; Vidal, Martin A; Whitcomb, Mary Beth; Wisner, Erik R

    2012-01-01

    Magic angle magnetic resonance (MR) imaging consists of imaging tendons at 55° to the magnetic field. In people, magic angle MR imaging is valuable for detection of chronic tendon lesions and allows calculation of tendon T1 values. Increased T1 values occur in people with chronic tendinopathy. The T1 values of normal equine tendons have been reported but there are no available data for abnormal equine tendons. Twelve limbs were studied. Two limbs had diode laser tendon lesions induced postmortem, four limbs had diode laser tendon lesions induced in vivo and six limbs had naturally occurring tendon lesions. The limbs were imaged at 1.5 T using both conventional MR imaging and magic angle MR imaging. The post-mortem laser induced lesions were identified only with magic angle MR imaging. The in vivo induced lesions and naturally occurring lesions were identified with both techniques but had a different appearance with the two imaging techniques. Magic angle imaging was helpful at identifying lesions that were hypointense on conventional imaging. Increased T1 values were observed in all abnormal tendons and in several tendons with a subjectively normal MR appearance. The increased T1 value may reflect diffuse changes in the biochemical composition of tendons. Magic angle imaging has potential as a useful noninvasive tool to assess the changes of the extracellular tendon matrix using T1 values.

  19. Observations of ULF oscillations in the ion fluxes at small pitch angles with ATS 6. [low energy particle detection

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.

    1980-01-01

    The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.

  20. Analysis of a wedge prism to perform small-angle beam deviation

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Strba, Anton

    2003-07-01

    The contribution is to present both the theoretical and experimental analysis of a wedge prism, which allows us to perform very small angle deviation of a passing beam in a simply way. No high precise steering element is necessary. The results of the theoretical analysis, i.e. the dependence of the propagation vector on the angle of incidence had been verified experimentally, using both Mach-Zehnder interferometer and a holographic grating. The results obtained have proved the advantage of the method proposed, which may be of great importance anywhere if small-angle deviation of propagation wave vector is needed.

  1. The dynamic duo: Combining NMR and small angle scattering in structural biology

    PubMed Central

    Hennig, Janosch; Sattler, Michael

    2014-01-01

    Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution. PMID:24687405

  2. Coherence Resonance of Small World Networks with Adaptive Coupling

    NASA Astrophysics Data System (ADS)

    Miyakawa, Kenji

    2015-06-01

    The phenomenon of coherence resonance (CR) in small world networks with adaptive coupling is investigated by modeling a real experimental situation with a photosensitive Belousov-Zhabotinsky reaction. We show that both spatial synchronization and temporal coherence of noise-induced firings can be considerably improved by adjusting control parameters, such as the degree of connectivity and the coupling strength. A small fraction of possible long-range connections is enough to obtain a great enhancement in CR.

  3. Small-angle approximation to the transfer of narrow laser beams in anisotropic scattering media

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1981-01-01

    The broadening and the signal power detected of a laser beam traversing an anisotropic scattering medium were examined using the small-angle approximation to the radiative transfer equation in which photons suffering large-angle deflections are neglected. To obtain tractable answers, simple Gaussian and non-Gaussian functions for the scattering phase functions are assumed. Two other approximate approaches employed in the field to further simplify the small-angle approximation solutions are described, and the results obtained by one of them are compared with those obtained using small-angle approximation. An exact method for obtaining the contribution of each higher order scattering to the radiance field is examined but no results are presented.

  4. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

    SciTech Connect

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

    2011-04-01

    A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

  5. Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering

    PubMed Central

    2014-01-01

    Background X-ray scattering is a well-established method for measuring cellulose microfibril angles in secondary cell walls. However, little data is available on the much thinner primary cell walls. Here, we show that microfibril orientation distributions can be determined by small angle X-ray scattering (SAXS) even in primary cell walls. The technique offers a number of advantages: samples can be analyzed in the native hydrated state without any preparation which minimizes the risk of artifacts and allows for fast data acquisition. The method provides data averaged over a specimen region, determined by the size of the used X-ray beam and, thus, yields the microfibril orientation distribution within this region. Results Cellulose microfibril orientation distributions were obtained for single cells of the alga Chara corallina, as well as for the multicellular hypocotyl of Arabidopsis thaliana. In both, Chara and Arabidopsis, distributions with a broad scattering around mean microfibril angles of approximately 0° and 90° towards the longitudinal axis of the cells were found. Conclusions With SAXS, the structure of primary cell walls can be analysed in their native state and new insights into the cellulose microfibril orientation of primary cell walls can be gained. The data shows that SAXS can serve as a valuable tool for the analysis of cellulose microfibril orientation in primary cell walls and, in consequence, add to the understanding of its mechanical behaviour and the intriguing mechanisms behind cell growth. PMID:25170343

  6. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  7. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  8. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    NASA Astrophysics Data System (ADS)

    Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  9. Pitch angle scattering of relativistic electrons near electromagnetic ion cyclotron resonances in diverging magnetic fields

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Papadopoulos, K.

    2017-10-01

    A theoretical study of the propagation of left-hand polarized shear Alfvén waves in spatially decreasing magnetic field geometries near the EMIC resonance, including the spectrum and amplitude of the mode converted EMIC waves and the pitch angle scattering of relativistic electrons transiting the resonant region, is presented. The objective of the paper is to motivate an experimental study of the subject using the UCLA LAPD chamber. The results are relevant in exploring the possibility that shear Alfvén waves strategically injected into the radiation belts using either ionospheric heating from ground based RF transmitters or injected by transmitters based on space platforms can enhance the precipitation rate of trapped relativistic electrons. Effects of multi-ionic composition are also investigated.

  10. Resonant interaction between two Cu quantum wells investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Y. Z.; Won, C.; Rotenberg, E.; Zhao, H. W.; Xue, Qi-Kun; Kim, W.; Owens, T. L.; Smith, N. V.; Qiu, Z. Q.

    2006-03-01

    Double quantum wells (QWs) of Cu thin films were investigated using angle-resolved photoemission spectroscopy. The thickness ratio of the two Cu QW films was chosen to be 1:1 and 2:1 to purposely group the QW states of the two Cu films into degenerate and nondegenerate states. The energy spectra of the valence band show that only the degenerate QW states interact resonantly to split each degenerate state into two separate states. Furthermore, by investigating the interaction of two Cu films across a Ni/Cu [14 monolayer (ML)]/Ni QW, we show clearly that resonant splitting occurs at the quantized energy levels of the middle 14 ML Cu QW film.

  11. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution

    NASA Astrophysics Data System (ADS)

    Zhou, Xinlei; Chen, Ke; Li, Li; Peng, Wei; Yu, Qingxu

    2017-01-01

    We design and manufacture an angle modulated surface plasmon resonance (SPR) spectrometer with high detection resolution for refractive index sensing. The presented SPR spectrometer is based on a five-layer Kretchmann configuration. To enhance the sensitivity and resolution of the SPR spectrometer, we introduce a reference beam into the system, which has improved the stability of the system by nearly one order of magnitude. Numerical simulation and experimental study are presented and the results show that a sensitivity of 85 degrees/RIU (refractive index unit) and a good repeatability (standard deviation=3.7×10-6 RIU) have been achieved.

  12. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    PubMed Central

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-01-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506

  13. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    NASA Astrophysics Data System (ADS)

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-02-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors.

  14. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  15. An analytical solution for determination of small contact angles from sessile drops of arbitrary size.

    PubMed

    Allen, Jeffrey S

    2003-05-15

    An analytical solution to the capillary equation of Young and Laplace is derived that allows determination of the static contact angle based on the volume of a sessile drop and the wetted area of the substrate. This solution does not require numerical integration to determine the drop profile and accounts for surface deformation due to gravitational effects. Calculation of the static contact angle by this method is remarkably simple and accurate when the contact angle is less than 30 degrees. A natural scaling arises in the solution, which provides indication of when a drop is small enough so as to neglect gravitational influences on the surface shape which, for small contact angles, is generally less than 1 microl. The technique described has the simplicity of the spherical cap approximation but remains accurate for any size of sessile drop.

  16. Loss-improved electroacoustical modeling of small Helmholtz resonators.

    PubMed

    Starecki, Tomasz

    2007-10-01

    Modeling of small Helmholtz resonators based on electroacoustical analogies often results in significant disagreement with measurements, as existing models do not take into account some losses that are observed in practical implementations of such acoustical circuits, e.g., in photoacoustic Helmholtz cells. The paper presents a method which introduces loss corrections to the transmission line model, resulting in substantial improvement of simulations. Values of the loss corrections obtained from comparison of frequency responses of practically implemented resonators with computer simulations are presented in tabular and graphical form. A simple analytical function that can be used for interpolation or extrapolation of the loss corrections for other dimensions of the Helmholtz resonators is also given. Verification of such a modeling method against an open two-cavity Helmholtz structure shows very good agreement between measurements and simulations.

  17. Magic-angle sample spinning electron paramagnetic resonance--instrumentation, performance, and limitations.

    PubMed

    Hessinger, D; Bauer, C; Hubrich, M; Jeschke, G; Spiess, H W

    2000-12-01

    An electron paramagnetic resonance (EPR) setup for line narrowing experiments with fast sample spinning at variable angles between the rotation axis and the static magnetic field is described and applied in the magic-angle sample spinning (MAS) EPR experiment at X-band frequencies (9.5 GHz). Sample spinning speeds up to 17 kHz at temperatures down to 200 K can be achieved with rotors of 4-mm outer and 2.5-mm inner diameter without severe losses in microwave amplitude compared to standard pulse EPR probeheads. A phase cycle is introduced that provides pure absorption MAS EPR spectra and allows one to distinguish between positive and negative frequency offsets (pseudo-quadrature detection). Possible broadening mechanisms in MAS EPR spectra are discussed. It is demonstrated both by theory and by experiment that the MAS EPR experiment requires excitation bandwidths that are comparable to the total spectral width, since otherwise destructive interference between contributions of spins with similar resonance offsets suppresses the signal. Experimental observations on the E(1) center in gamma-irradiated silica glass and on the SO(-)(3) radical in gamma-irradiated sulfamic acid are reported.

  18. Small-angle scattering gives direct structural information about a membrane protein inside a lipid environment.

    PubMed

    Kynde, Søren A R; Skar-Gislinge, Nicholas; Pedersen, Martin Cramer; Midtgaard, Søren Roi; Simonsen, Jens Baek; Schweins, Ralf; Mortensen, Kell; Arleth, Lise

    2014-02-01

    Monomeric bacteriorhodopsin (bR) reconstituted into POPC/POPG-containing nanodiscs was investigated by combined small-angle neutron and X-ray scattering. A novel hybrid approach to small-angle scattering data analysis was developed. In combination, these provided direct structural insight into membrane-protein localization in the nanodisc and into the protein-lipid interactions. It was found that bR is laterally decentred in the plane of the disc and is slightly tilted in the phospholipid bilayer. The thickness of the bilayer is reduced in response to the incorporation of bR. The observed tilt of bR is in good accordance with previously performed theoretical predictions and computer simulations based on the bR crystal structure. The result is a significant and essential step on the way to developing a general small-angle scattering-based method for determining the low-resolution structures of membrane proteins in physiologically relevant environments.

  19. Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martin, Rachel W.; Paulson, Eric K.; Zilm, Kurt W.

    2003-06-01

    Standard design and construction practices used in building nuclear magnetic resonance (NMR) probes for the study of solid state samples become difficult if not entirely impractical to implement as the 1H resonance frequency approaches the self resonance frequency of commercial capacitors. We describe an approach that utilizes short variable transmission line segments as tunable reactances. Such an approach effectively controls stray reactances and provides a higher Q alternative to ceramic chip capacitors. The particular probe described is built to accommodate a 2.5 mm magic angle spinning rotor system, and is triply tuned to 13C, 15N, and 1H frequencies for use at 18.8 T (200, 80, and 800 MHz, respectively). Isolation of the three radio frequency (rf) channels is achieved using both a rejection trap and a transmission line notch filter. The compact geometry of this design allows three channels with high power handling capability to fit in a medium bore (63 mm) magnet. Extended time variable temperature operation is integral to the mechanical design, enabling the temperature control necessary for investigation of biological macromolecules. Accurate measurement of the air temperature near the sample rotor is achieved using a fiber optic thermometer, which does not interfere with the rf electronics. We also demonstrate that acceptable line shapes are only readily achieved using zero magnetic susceptibility wire in construction of the sample coil. Computer simulation of the circuit aided in the physical design of the probe. Representative data illustrating the efficiency, rf homogeneity, and signal to noise factor of the probe are presented.

  20. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  1. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires

    NASA Astrophysics Data System (ADS)

    Lai, Xuandi; Feng, Xiumei; Zhang, Menghuan; Hong, Ruijin; Chen, Yongxiang; Li, Aiqing; Deng, Xiulong; Hu, Jianqiang

    2014-03-01

    Angled silver/silver (Ag/Ag) homojunction nanowires (HNWs) with an average diameter of about 72 nm have been prepared by a straightforward and effective solvothermal method. The synthesis involves a one-step, non-seed, and template-less process to large-scale Ag/Ag HNWs, which is low-cost and proceeds at moderate temperatures. Two neighboring Ag nanorods or nanowires were connected into obtuse angle by Ag/Ag homojunction. It was found that synthesizing Ag/Ag HNWs were very sensitive to reaction temperature and polyvinylpyrrolidone concentration. Only through finely controlling these reaction parameters, the high-quality Ag/Ag HNWs could be formed in large scale and their surface plasmon resonance properties could be effectively tailored. High-resolution transmission electron microscopy and selected area electron diffraction investigations showed that the Ag/Ag HNWs were generated with a twinned crystalline structure. We also proposed a primary experimental model to illustrate the growth mechanism of the angled Ag/Ag HNWs.

  2. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    SciTech Connect

    Baltisberger, Jay Harvey

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  3. Determination of T1 relaxation time of normal equine tendons using magic angle magnetic resonance imaging.

    PubMed

    Spriet, Mathieu; Wisner, Erik R; Anthenill, Lucy A; Buonocore, Michael H

    2011-01-01

    Seven isolated equine front limbs were used to establish the normal T1 relaxation time of equine superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT), and suspensory ligament (SL) using magic angle magnetic resonance (MR) imaging. MR imaging of the metacarpi was performed with the limbs positioned at 55° (the magic angle) relative to the main magnetic field. Transverse spin-echo proton density and inversion recovery images were acquired. T1 relaxation time was calculated based on ratios of signal intensity determined from the different pulse sequences. T1 relaxation times for SDFT, DDFT, and SL were 288 (± 17), 244 (± 14), and 349 (± 16) ms, respectively. The difference in T1 values between SDFT, DDFT, and SL was statistically significant. T1 values of equine tendons can be determined with magic angle imaging on a clinical MR system using < 10 min total scan time. The knowledge of the normal range of T1 values may be useful to identify horses with chronic tendinopathy, where based on the human literature, an increased T1 value may be expected. © 2010 Veterinary Radiology & Ultrasound.

  4. Analysis of photopolarimetric data of comets at small phase angles by rough surface scattering

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Mukai, T.

    1990-07-01

    A comparison of cometary rough surface scattering model calculation results with observations has indicated that negative polarization is produced, over a phase-angle range of less than 20 deg, by the variation of polarization angle of reflected light due to a contribution from (1) different sites on large, rough particles, and/or (2) multiple internal reflection within small dielectric particles. The opposition effect in cometary comas is caused by large, rough particle reflection. The mixing model for cometary grains, encompassing small particles and large rough ones composed in both cases of slightly absorbing material, is seen as explaining the photopolarimetric data of comets in the backward-scattering region.

  5. Small Angle Neutron Scattering at the National Institute of Standards and Technology

    PubMed Central

    Hammouda, B.; Krueger, S.; Glinka, C. J.

    1993-01-01

    The small angle neutron scattering technique is a valuable method for the characterization of morphology of various materials. It can probe inhomogeneities in the sample (whether occurring naturally or introduced through isotopic substitution) at a length scale from the atomic size (nanometers) to the macroscopic (micrometers) size. This work provides an overview of the small angle neutron scattering facilities at the National Institute of Standards and Technology and a review of the technique as it has been applied to polymer systems, biological macromolecules, ceramic, and metallic materials. Specific examples have been included. PMID:28053456

  6. A small-angle large-acceptance detection system for hadrons

    NASA Astrophysics Data System (ADS)

    Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.

    2000-04-01

    The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.

  7. Experimental methods in the study of neutron scattering at small angles

    SciTech Connect

    Dragolici, Cristian A.

    2014-11-24

    Small angle scattering (SAS) is the collective name given to the techniques of small angle neutron (SANS) and X-ray (SAXS) scattering. They offer the possibility to analyze particles without disturbing their natural environment. In each of these techniques radiation is elastically scattered by a sample and the resulting scattering pattern is analyzed to provide information about the size, shape and orientation of some component of the sample. Accordingly, a large number of methods and experimental patterns have been developed to ease the investigation of condensed matter by use of these techniques. Some of them are the discussed in this paper.

  8. Molecular shapes from small-angle X-ray scattering: extension of the theory to higher scattering angles.

    PubMed

    Shneerson, V L; Saldin, D K

    2009-03-01

    A low-resolution shape of a molecule in solution may be deduced from measured small-angle X-ray scattering I(q) data by exploiting a Hankel transform relation between the coefficients of a multipole expansion of the scattered amplitude and corresponding coefficients of the electron density. In the past, the radial part of the Hankel transform has been evaluated with the aid of a truncated series expansion of a spherical Bessel function. It is shown that series truncation may be avoided by analytically performing the radial integral over an entire Bessel function. The angular part of the integral involving a spherical harmonic kernel is performed by quadrature. Such a calculation also allows a convenient incorporation of a molecular hydration shell of constant density intermediate between that of the protein and the solvent. Within this framework, we determine the multipole coefficients of the shape function by optimization of the agreement with experimental data by simulated annealing.

  9. Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State.

    PubMed

    Liu, Tingyi Leo; Kim, Chang-Jin Cj

    2017-04-07

    The difficulty of measuring very large contact angles (>150 degrees) has become more relevant with the increased popularity of super-repellent surfaces. Measurement is more difficult for dynamic contact angles, for which theoretical profiles do not fit well, and small capillary length liquids, whose sessile droplets sag by gravity. Here, we expand the issue to the limit by investigating dynamic contact angles of liquids with an extremely small capillary length (<1.0 mm), empowered by the superomniphobic surface that can super-repel even fluorinated solvents, which highly wet all materials. Numerically simulating and experimentally testing 13 different liquids on the superomniphobic surface, we discover their dynamic contact angles can be measured with a consistent accuracy despite their vastly different capillary lengths if one keeps the lens magnification inversely proportional to the capillary length. Verifying the droplet equator height is a key parameter, we propose a new Bond number defined by the equator height and optical resolution to represent the measurement accuracy of large contact angles. Despite negligible improvement for most liquids today, the proposed approach teaches how to measure very large contact angles with consistent accuracy when any of the liquids in consideration has a capillary length below 1.0 mm.

  10. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI)

    PubMed Central

    Zhao, Yanyu; Tabassum, Syeda; Piracha, Shaheer; Nandhu, Mohan Sobhana; Viapiano, Mariano; Roblyer, Darren

    2016-01-01

    Spatial frequency domain imaging (SFDI) is a widefield imaging technique that allows for the quantitative extraction of tissue optical properties. SFDI is currently being explored for small animal tumor imaging, but severe imaging artifacts occur for highly curved surfaces (e.g. the tumor edge). We propose a modified Lambertian angle correction, adapted from the Minnaert correction method for satellite imagery, to account for tissue surface angles up to 75°. The method was tested in a hemisphere phantom study as well as a small animal tumor model. The proposed method reduced µa and µs` extraction errors by an average of 64% and 16% respectively compared to performing no angle correction, and provided more physiologically agreeable optical property and chromophore values on tumors. PMID:27375952

  11. Limits of applicability of the concept of scattering amplitude in small-angle scattering problems

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.; Lvov, D. V.

    2014-01-01

    The applicability of the concept of scattering amplitude to the description of small-angle scattering experiments has been considered. An expression has been obtained for a scattered radiation flux on a detector under much milder conditions than the condition of Fraunhofer diffraction. The influence of incoherence of the source on the results has been evaluated.

  12. Studying fractal geometry on submicron length scales by small-angle scattering

    SciTech Connect

    Wong, P.; Lin, J.

    1988-08-01

    Recent studies have shown that internal surfaces of porous geological materials, such as rocks and lignite coals, can be described by fractals down to atomic length scales. In this paper, the basic properties of self-similar and self-affine fractals are reviewed and how fractal dimensions can be measured by small-angle scattering experiments are discussed.

  13. Informing the improvement of forest products durability using small angle neutron scattering

    Treesearch

    Nayomi Plaza-Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  14. Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack

    NASA Technical Reports Server (NTRS)

    Sims, Joseph L.

    1964-01-01

    The solution of supersonic flow fields by the method of characteristics requires that starting conditions be known. Ferri, in reference 1, developed a method-of-characteristics solution for axially symmetric bodies of revolution at small angles of attack. With computing machinery that is now available, this has become a feasible method for computing the aerodynamic characteristics of bodies near zero angle of attack. For sharp-nosed bodies of revolution, the required starting line may be obtained by computing the flow field about a cone at a small angle of attack. This calculation is readily performed using Stone's theory in reference 2. Some solutions of this theory are available in reference 3. However, the manner in which these results are presented, namely in a wind-fixed coordinate system, makes their use somewhat cumbersome. Additionally, as pointed out in reference 4, the flow component perpendicular to the meridian planes was computed incorrectly. The results contained herein have been computed in the same basic manner as those of reference 3 with the correct velocity normal to the meridian planes. Also, all results have been transferred into the body-fixed coordinate system. Therefore, the values tabulated herein may be used, in conjunction with the respective zero-angle-of-attack results of reference 5, as starting conditions for the method-of-characteristics solution of the flow field about axially symmetric bodies of revolution at small angles of attack. As in the zero-angle-of-attack case (ref. 5) the present results have been computed using the ideal gas value of 1.4 for the ratio of the specific heats of air. Solutions are given for cone angles from 2.5 deg to 30 deg in increments of 2.5 deg. For each cone angle, results were computed for a constant series of free-stream Mach numbers from 1.5 to 20. In addition, a solution was computed which yielded the minimum free-stream Mach number for a completely supersonic conical flow field. For cone angles of

  15. Angle resolved photo-emission spectroscopy signature of the resonant excitonic state

    NASA Astrophysics Data System (ADS)

    Montiel, X.; Kloss, T.; Pépin, C.

    2016-09-01

    We calculate the angle resolved photo-emission spectroscopy (ARPES) signature of the resonant excitonic state (RES) that was proposed as the pseudo-gap state of cuprate superconductors (Kloss T. et al., arXiv:1510.03038 (2015)). This new state can be described as a set of excitonic (particle-hole) patches with an internal checkerboard modulation. Here, we modelize the RES as a charge order with 2\\textbf{p}F wave vectors, where 2\\textbf{p}F is the ordering vector connecting two opposite sides of the Fermi surface. We calculate the spectral weight and the density of states in the RES and we find that our model correctly reproduces the opening of the PG in Bi-2201.

  16. Resonant interactions and chaotic rotation of Pluto's small moons.

    PubMed

    Showalter, M R; Hamilton, D P

    2015-06-04

    Four small moons--Styx, Nix, Kerberos and Hydra--follow near-circular, near-equatorial orbits around the central 'binary planet' comprising Pluto and its large moon, Charon. New observational details of the system have emerged following the discoveries of Kerberos and Styx. Here we report that Styx, Nix and Hydra are tied together by a three-body resonance, which is reminiscent of the Laplace resonance linking Jupiter's moons Io, Europa and Ganymede. Perturbations by the other bodies, however, inject chaos into this otherwise stable configuration. Nix and Hydra have bright surfaces similar to that of Charon. Kerberos may be much darker, raising questions about how a heterogeneous satellite system might have formed. Nix and Hydra rotate chaotically, driven by the large torques of the Pluto-Charon binary.

  17. Wave-mixing interference in three-photon resonant atomic excitation with cross-polarized angled beams

    SciTech Connect

    Peet, V.

    2006-09-15

    Three-photon excitation and associated wave mixing near the 6s and 6s{sup '} resonances of xenon have been studied utilizing resonance-enhanced multiphoton ionization in angled beams with different polarizations. It has been shown that a complete cancellation of three-photon resonant atomic excitation caused by the well-known destructive wave-mixing interference occurs in s and p polarization of angled beams but distinct resonance ionization enhancement is observed when pump beams have orthogonal polarization planes. Pressure-induced evolution of the resonance ionization peak in cross-polarized beams is identical to that observed with counterpropagating beams. The reason for such resonance ionization enhancement is unknown and cannot be explained within the frame work of existing theory. The effect may result from some peculiarities of wave-mixing interference in a multilevel atomic system, where different degenerate magnetic sublevels of the upper atomic state and multiple interfering excitation processes are involved. Another possibility is that the resonance ionization enhancement results from a process where weak counterpropagating light is generated within the excitation region of cross-polarized angled beams.

  18. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Laubach, S.; Schulz, M.

    2017-06-01

    The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.

  19. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  20. Using small angle solution scattering data in Xplor-NIH structure calculations.

    PubMed

    Schwieters, Charles D; Clore, G Marius

    2014-07-01

    This contribution describes the use of small and wide angle X-ray and small angle neutron scattering for biomolecular structure calculation using the program Xplor-NIH, both with and without NMR data. The current algorithms used for calculating scattering curves are described, and the use of scattering data as a structural restraint is given concrete form as a fragment of an Xplor-NIH structure calculation script. We review five examples of the use of scattering data in structure calculation, including the treatment of single domain proteins, nucleic acids, structure determination of large proteins, and the use of ensemble representations to characterize small and large amplitude motions. Published by Elsevier B.V.

  1. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Round, A. R.; Wilkinson, S. J.; Hall, C. J.; Rogers, K. D.; Glatter, O.; Wess, T.; Ellis, I. O.

    2005-09-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  2. Magic angle sample spinning sup 13 C nuclear magnetic resonance of isotopically labeled bacteriorhodopsin

    SciTech Connect

    Engelhard, M.; Hess, B.; Emeis, D.; Metz, G.; Kreutz, W.; Siebert, F. )

    1989-05-02

    Bacteriorhodopsin (bR), the light-driven proton pump protein from Halobacterium halobium, was biosynthetically labeled with (4-{sup 13}C)Asp. The incorporation yield was 48%. The magic angle sample spinning (MASS) {sup 13}C nuclear magnetic resonance (NMR) spectrum of this sample revealed six different peaks superimposed on a broad band of naturally abundant peptide-bond {sup 13}C. Two of the six carbonyl signals can be attributed to internal-protonated Asp carboxyl groups, one of which might be Asp115. An additional resonance at 110 ppm can be associated with the C-11 carbon of Trp, indicating an unusual biosynthetic pathway of this amino acid in Halobacterium halobium. Similar measurements performed on papain-treated purple membrane which lacks the C-terminal tail display two new intense signals at 178 and 178.9 ppm. If the same spectrum is taken without cross-polarization, these signals do not decrease or disappear. On the basis of their intensities and their chemical shifts, one can assign in addition to the C-terminal Asp four Asp residues facing the cytoplasmic phase. In native bR, at least two of these form a salt-bridge-like bond which also might include the C-terminal tail. These experiments not only provide data about the chemical environment of the Asp residues within the hydrophobic core of bacteriorhodopsin but also yield information about the interactions between surface components.

  3. Quantum plasmon resonances and coupling of small nanoparticles

    NASA Astrophysics Data System (ADS)

    Mario, Zapata-Herrera; Jefferson, Florez; Angela, Camacho

    2013-03-01

    In this work, we propose to extend a theoretical quantum approach to describe the behavior of the optical response as a function of both size and shape of small metal nanoparticles. By using classical models as well as quantum approaches we also want to study the nanoparticle's permittivity in the whole range of nanometers in order to define the different regimes at the nanoscale. In particular, we are interested in examining size and shape effects on the enhancement field factor and the absorption spectra for comparing with possible experiments. We study the role played by Localized Surface Plasmon Resonance in the coupling of small metal nanoparticles pairs by varying the distance between them by using an analogy between molecular electronic states and plasmonic excitations as a function of particle size and shape. We pay special atention on tunnelling and multipolar effects in order to predict the regime of dimer formation. The main interest in understanding the plasmon resonances of small nanoparticles lies in the applications in biology, catalysis and quantum optics.

  4. Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Becker, M.; Gösele, U.; Hofmann, A.; Christiansen, S.

    2009-10-01

    Highly p-doped regions in multicrystalline silicon solar cells, such as the back surface field region, are analyzed by means of small angle beveling and micro-Raman spectroscopy. Small angle beveling and subsequent Secco etching are used to enhance the lateral resolution of the micro-Raman spectroscopic measurements and to investigate the microstructure of the back surface field region in detail. The position-dependent analysis of the free carrier concentrations within the back surface field region is based on the Raman specific Fano resonances. The Raman spectroscopic measurement results are compared to results obtained from electrochemical capacitance-voltage measurements, which allows a subsequent calibration of the Raman data for the quantitative analysis of the free carrier concentrations within the highly p-doped regions of silicon solar cells and other devices. Our investigations show that the free carrier as well as the dopant concentration profiles within the back surface field region exhibit a nearly step-functional shape instead of the extended gradient shape which the electrochemical capacitance-voltage measurements suggest. Moreover, we show that the shape of the back surface field is often influenced by grain boundaries and other defects that occur in multicrystalline silicon wafers.

  5. Small angle grain boundary Ge films on biaxial CaF 2/glass substrate

    NASA Astrophysics Data System (ADS)

    Gaire, C.; Clemmer, P. C.; Li, H.-F.; Parker, T. C.; Snow, P.; Bhat, I.; Lee, S.; Wang, G.-C.; Lu, T.-M.

    2010-02-01

    We demonstrated that it is possible to grow single crystal-like Ge films on a glass substrate using a biaxially textured CaF 2 buffer layer at a low temperature of ˜400 °C. The CaF 2 buffer layer with the (1 1 1)<1 2 1> biaxial orientation was grown by the oblique angle deposition technique and characterized by X-ray pole figure analysis. Transmission electron microscopy revealed that the Ge(1 1 1) heteroepitaxial films possess a single crystal-like structure with small angle grain boundaries of ≤2° misorientation.

  6. Molecular theory for the phase equilibria and cluster distribution of associating fluids with small bond angles.

    PubMed

    Marshall, Bennett D; Chapman, Walter G

    2013-08-07

    We develop a new theory for associating fluids with multiple association sites. The theory accounts for small bond angle effects such as steric hindrance, ring formation, and double bonding. The theory is validated against Monte Carlo simulations for the case of a fluid of patchy colloid particles with three patches and is found to be very accurate. Once validated, the theory is applied to study the phase diagram of a fluid composed of three patch colloids. It is found that bond angle has a significant effect on the phase diagram and the very existence of a liquid-vapor transition.

  7. Shocked quartz: A {sup 29}Si magic-angle-spinning nuclear magnetic resonance study

    SciTech Connect

    Fiske, P.S.; Nellis, W.J.; Xu, Z.; Stebbins, J.F.

    1998-11-01

    Quantitative {sup 29}Si NMR spectra of single-crystal {alpha}-quartz, shock compressed to 12--38 GPa and recovered, provide new information about the complex response of quartz to shock loading. Spectra from samples recovered from shock pressures of 12--20 GPa show a broadening of the {sup 29}Si NMR peak and the development of asymmetry toward lower NMR frequency (indicating an increase in the mean Si-O-Si intertetrahedral bond angle). NMR spectra of samples shock compressed above {approximately}25 GPa show increasing amounts of a separate amorphous phase of SiO{sub 2} with a mean Si-O-Si bond angle roughly 5{degree} narrower, and 10--15% denser, than fused SiO{sub 2}. Small amounts of crystalline material remain with a mean Si-O-Si bond angle up to 3{degree} larger than unshocked {alpha}-quartz. The recovery of dense glass indicates that post-shock temperatures were sufficiently low to also preserve stishovite, had any been created in the experiments. The paucity of stishovite or Si in an amorphous phase in the recovered samples suggests that the formation of stable, high-coordinated Si is kinetically hindered in shock compression experiments up to about 35--40 GPa, except in regions of high temperature, such as planar deformation features (PDFs), microfaults (pseudotachylites), or voids.

  8. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.

    PubMed

    Kikhney, Alexey G; Svergun, Dmitri I

    2015-09-14

    Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.

  9. High-field small animal magnetic resonance oncology studies

    NASA Astrophysics Data System (ADS)

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, chemical exchange saturation transfer imaging and hyperpolarized 13C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.

  10. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  11. Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods.

    PubMed

    Grissom, William A; Khalighi, Mohammad-Mehdi; Sacolick, Laura I; Rutt, Brian K; Vogel, Mika W

    2012-11-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods.

  12. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    DOE PAGES

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using themore » chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less

  13. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    SciTech Connect

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; Furmann, Agnieszka; Clarkson, Chris R.

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.

  14. Reconstruction of three-dimensional anisotropic structure from small-angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Wang, Yangyang; Wu, Bin; Wang, Zhe; Do, Changwoo; Smith, Gregory S.; Bras, Wim; Porcar, Lionel; Falus, Péter; Chen, Wei-Ren

    2017-08-01

    When subjected to flow, the structures of many soft-matter systems become anisotropic due to the symmetry breaking of the spatial arrangements of constituent particles at the microscopic level. At present, it is common practice to use various small-angle scattering techniques to explore flow-induced microstructural distortion. However, there has not been a thorough discussion in the literature on how a three-dimensional anisotropic structure can be faithfully reconstructed from two-dimensional small-angle scattering spectra. In this work, we address this issue rigorously from a mathematical perspective by using real spherical harmonic expansion analysis. We first show that, except for cases in which mechanical perturbation is sufficiently small, the existing small-angle scattering techniques generally do not provide complete information on structural distortion. This limitation is caused by the linear dependence of certain real spherical harmonic basis vectors on the flow-vorticity and flow-velocity gradient planes in the Couette shear cell. To circumvent the constraint imposed by this geometry, an alternative approach is proposed in which a parallel sliding plate shear cell is used with a central rotary axis along the flow direction. From the calculation of rotation of the reference frame, we demonstrate the feasibility of this experimental implementation for a fully resolved three-dimensional anisotropic structure via a case study of sheared polymers.

  15. Magnetic Resonance Imaging Findings in Small Patella Syndrome.

    PubMed

    Kim, Hyoung-Soo; Yoo, Jeong-Hyun; Park, Noh-Hyuck; Chang, Jun-Hee; Ban, Yun-Seong; Song, Sang-Heon

    2016-03-01

    Small patella syndrome (SPS) is characterized by aplasia or hypoplasia of the patella and pelvic girdle abnormalities, including bilateral absence or delayed ossification of the ischiopubic junction and infra-acetabular axe-cut notches. Here, we report a case of SPS in a 26-year-old female. Magnetic resonance image (MRI) showed a small patella with thick eccentric non-ossified patellar cartilage and femoral trochlear dysplasia with hypoplastic patellar undersurface. To our knowledge, this is the first report of MRI findings in SPS. MRI findings could be clinically relevant because elongation of the medial patellofemoral ligament and trochlear dysplasia with eccentric non-ossified patellar cartilage might lead to patellofemoral maltracking with an osteochondral lesion or acute dislocation or an extensor mechanism injury. Though the patient presented in this case report only had a gastrocnemius injury at the origin site, physicians should carefully examine abnormalities with MRI when an SPS patient has a trauma to the knee.

  16. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    SciTech Connect

    McClintock, B. H.; Norton, A. A. E-mail: aanorton@stanford.edu

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.

  17. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  18. Interferometry of a reflective axicon surface with a small cone angle using an optical inner surface

    NASA Astrophysics Data System (ADS)

    Gao, Huimin; Zhang, Xiaodong; Fang, Fengzhou

    2017-09-01

    Reflective axicons, widely used in optical alignment and Bessel-Gauss beam generation, require a highly accurate cone angle and surface metrology. However, current methods focus on the cone angle measurement and it is still difficult to measure the surface of a reflective axicon with a small cone angle. An interferometer measurement method using an optical inner surface is proposed to obtain the surface and cone angle simultaneously. The optical axis of the axicon and the optical inner surface should align together and be parallel to the beam light from the interferometer. The interference fringe would be obtained by the optical system consisting of the axicon and the optical inner surface. The theoretical model is established and analyzed through ray tracing theory, and is verified by optical simulation software. Fabrication errors in the axicon and the inner surface, and misalignment of the measurement setup are investigated systematically and separated in the measurement process. In the experiments, the reflective axicon with a cone angle of about 90° was measured by the proposed method, the results of which show good agreement with a stylus profiler (Taylor-Hobson PGI 3D) in cone angle trend and generatrix error. Experimental results prove the feasibility of the proposed method. This economical and effective method can be widely used with all types of reflective axicons, and it can obtain the surface error map of the axicon as well as the inner cylinder at the same time. The uncertainty and resolution of the proposed method is based on the performance of the interferometer. The uncertainty of alignment angle errors is less than 10-10 rad; the lateral resolution is 53.8 µm.

  19. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy.

    PubMed

    Karino, Takeshi; Ikeda, Yuko; Yasuda, Yoritaka; Kohjiya, Shinzo; Shibayama, Mitsuhiro

    2007-02-01

    The microscopic structures of natural rubber (NR) and deproteinized NR (DPNR) were investigated by means of small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM). They were compared to those of isoprene rubber (IR), which is a synthetic analogue of NR in terms of chemical structure without any non-rubber components like proteins. Comparisons of the structure and mechanical properties of NR, DPNR, and IR lead to the following conclusions. (i) The well-known facts, for example, the outstanding green strength of NR and strain-induced crystallization, are due not much to the presence of proteins but to other components such as the presence of phospholipids and/or the higher stereoregularity of NR. It also became clear the naturally residing proteins accelerate the upturn of stress at low strain. The protein phases work as cross-linking sites and reinforcing fillers in the rubbery matrix. (ii) The microscopic structures of NR were successfully reproduced by SANS intensity functions consisting of squared-Lorentz and Lorentz functions, indicating the presence of inhomogeneities in bulk and thermal concentration fluctuations in swollen state, respectively. On the other hand, IR rubbers were homogeneous in bulk. (iii) The inhomogeneities in NR are assigned to protein aggregates of the order of 200 A or larger. Although these aggregates are larger in size as well as in volume fraction than those of cross-link inhomogeneities introduced by cross-linking, they are removed by deproteinization. (iv) Swelling of both NR and IR networks introduces gel-like concentration fluctuations whose mesh size is of the order of 20 A.

  20. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer

    Tainer, John [Scripps Research Institute; Hura, Greg [LBNL; Rambo, Robert P. [LBNL

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an ôexperimentö and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  1. Quaternary structure built from subunits combining NMR and small-angle x-ray scattering data.

    PubMed Central

    Mattinen, Maija-Liisa; Pääkkönen, Kimmo; Ikonen, Teemu; Craven, Jeremy; Drakenberg, Torbjörn; Serimaa, Ritva; Waltho, Jonathan; Annila, Arto

    2002-01-01

    A new principle in constructing molecular complexes from the known high-resolution domain structures joining data from NMR and small-angle x-ray scattering (SAXS) measurements is described. Structure of calmodulin in complex with trifluoperazine was built from N- and C-terminal domains oriented based on residual dipolar couplings measured by NMR in a dilute liquid crystal, and the overall shape of the complex was derived from SAXS data. The residual dipolar coupling data serves to reduce angular degrees of freedom, and the small-angle scattering data serves to confine the translational degrees of freedom. The complex built by this method was found to be consistent with the known crystal structure. The study demonstrates how approximate tertiary structures of modular proteins or quaternary structures composed of subunits can be assembled from high-resolution structures of domains or subunits using mutually complementary NMR and SAXS data. PMID:12124297

  2. Solution properties of a CO{sub 2}-soluble fluoropolymer via small angle neutron scattering

    SciTech Connect

    McClain, J.B.; Combes, J.R.; Romack, T.J.; Canelas, D.A.; Betts, D.E.; Samulski, E.T.; DeSimone, J.M.; Londono, D.; Wignall, G.D.

    1996-01-31

    In this communication, we report the first characterization of solutions of a high molecular weight polymer in supercritical CO{sub 2} by small-angle neutron scattering (SANS). It is shown that small-angle neutron scattering gives key molecular parameters of an amorphous fluoropolymer in supercritical CO{sub 2}, i.e., the molecular weight, radius of gyration, and second virial coefficient, and thereby gives insights into a polymer chain`s behavior in this unique solvent. The positive sign of the second virial coefficients indicate that this medium is a good solvent - there is no evidence of a collapsed chain conformation. In fact, we conclude from the SANS data that, in CO{sub 2}, the poly(FOA) chain dimensions are expanded relative to those characteristic of its melt. 29 refs., 2 figs., 1 tab.

  3. Quantitative characterization of the contrast mechanisms of ultra-small angle x-ray scattering imaging.

    SciTech Connect

    Zhang, F.; Long, G. G.; Levine, L.E.; Ilavsky, J.; Jemain, P.R.; NIST

    2008-04-01

    A general treatment of X-ray imaging contrast for ultra-small-angle X-ray scattering (USAXS) imaging is presented; this approach makes use of phase propagation and dynamical diffraction theory to account quantitatively for the intensity distribution at the detector plane. Simulated results from a model system of micrometer-sized spherical SiO{sub 2} particles embedded in a polypropylene matrix show good agreement with experimental measurements. Simulations by means of a separate geometrical ray-tracing method also account for the features in the USAXS images and offer a complementary view of small-angle X-ray scattering as a contrast mechanism. The ray-tracing analysis indicates that refraction, in the form of Porod scattering, and, to a much lesser extent, X-ray reflection account for the USAXS imaging contrast.

  4. Development and prospects of Very Small Angle Neutron Scattering (VSANS) techniques

    NASA Astrophysics Data System (ADS)

    Xuo, Tai-Sen; Cheng, He; Chen, Yuan-Bo; Wang, Fang-Wei

    2016-07-01

    Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, D11 in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented. Supported by National Natural Science Foundation of China (21474119, 11305191)

  5. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  6. Small-angle neutron scattering studies from solutions of bovine nasal cartilage proteoglycan

    SciTech Connect

    Patel, A.; Stivala, S.S.; Damle, S.P.; Gregory, J.D.; Bunick, G.J.; Uberbacher, E.C.

    1985-08-01

    Small-angle neutron scattering, SANS, of the proteoglycan subunit of bovine nasal cartilage in 0.15N LiCl at 25/sup 0/C yielded the radius of gyration, R/sub g/, radius of gyration of the cross-section, R/sub q/, persistence length, a, and the molecular weight, M. The following values were obtained: M = 3.9 x 10/sup 6/, R/sub g/ = 745 A, R/sub q/ = 34.6 A and a = 35.2 A. These values compare favorably with those that were obtained from small angle x-ray scattering, SAXS, of a similar extract. The scattering curve of the proteoglycan subunit in D/sub 2/O showed a characteristic broad peak in the specified angular range similar to that observed from SAXS, thus confirming the polyelectrolyte nature of the proteoglycan. 15 refs., 3 figs., 1 tab. (DT)

  7. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W.

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  8. Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept.

    PubMed

    Allec, Nicholas; Choi, Mina; Yesupriya, Nikhil; Szychowski, Brian; White, Michael R; Kann, Maricel G; Garcin, Elsa D; Daniel, Marie-Christine; Badano, Aldo

    2015-07-10

    Characterizing biomolecular interactions is crucial to the understanding of biological processes. Existing characterization methods have low spatial resolution, poor specificity, and some lack the capability for deep tissue imaging. We describe a novel technique that relies on small-angle X-ray scattering signatures from high-contrast molecular probes that correlate with the presence of biomolecular interactions. We describe a proof-of-concept study that uses a model system consisting of mixtures of monomer solutions of gold nanoparticles (GNPs) as the non-interacting species and solutions of GNP dimers linked with an organic molecule (dimethyl suberimidate) as the interacting species. We report estimates of the interaction fraction obtained with the proposed small-angle X-ray scattering characterization method exhibiting strong correlation with the known relative concentration of interacting and non-interacting species.

  9. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Yu S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I.

    2017-05-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures.

  10. Using the MCLIB Library: Small-Angle Instrument with Focusing-Mirror Collimation

    SciTech Connect

    Seeger, Philip A.

    1997-12-31

    Focusing mirrors in 1 or 2 dimensions can be used to increase the intensity in a small-angle instrument while maintaining high resolution. Using the recently added toroidal mirror region type in MCLlB (Monte Carlo library for neutron instrument design), we compare five mirror shares: the ideal ellipsoid the tangent toroid, 8 tangent toroidal segments, 8 tangential cylindrical segments, and 20 tangential cylindrical segments. A small-angle scattering instrument on a spallation source was simulated to study resolution. Comparisons show that the ellipsoid provides superior resolution, but that the 8 tangential toroids are a good compromise. A resolution of 0.00056 {Angstrom}{sup -1}(rms), or (-)(+)11% at Q = 0.005 {Angstrom}{sup -1}, was achieved in the simulation using neutrons in the wavelength range 4-15 A. The count rate is high because the full area of the moderator is viewed.

  11. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V.; Vales, V.; Endres, J.; Holy, V.; Buljan, M.; Bernstorff, S.

    2013-01-14

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  12. SFF analysis of the small angle scattering data for investigation of a vesicle systems structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Gruzinov, A. Yu.; Aksenov, V. L.; Ipatova, O. M.; Druzhilovskaya, O. S.

    2016-06-01

    Experimental data on the small angle synchrotron X-ray scattering (SAXS) are analyzed on a basis of Separated form factors method (SFF) for a study of the drug delivery Phospholipid Transport Nano System (PTNS). Basic parameters of polydispersed population of PTNS nanoparticles (average radius of PTNS-particles, polydispersity of radius, thickness of membrane) have been determined. The results are discussed in comparison with the SFF results for the “classical” vesicular system of dimyristoylphosphocholine (DMPC).

  13. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    SciTech Connect

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs.

  14. Small-angle stability analysis of a linear control system for a high power communication satellite

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1972-01-01

    A small angle stability analysis is presented for one particular configuration of a high power communication satellite having a linear control system. Both the central body and the solar array are treated as rigid bodies. The control system studied consists of three-axis control of the central body and one-axis control of the solar array rotation relative to the central body. The results yield preliminary indications of the relation of stability to satellite inertias and control gains.

  15. Characterization of a variable angle reflection Fourier transform infrared accessory modified for surface plasmon resonance spectroscopy.

    PubMed

    Menegazzo, Nicola; Kegel, Laurel L; Kim, Yoon-Chang; Booksh, Karl S

    2010-10-01

    The Harrick AutoSeagull variable angle reflection accessory for Fourier transform infrared (FT-IR) spectrometers provides access to various spectroscopic techniques in a highly flexible platform. In particular, its ability to perform total internal reflection measurements is of interest because it also forms the basis for surface plasmon resonance (SPR) spectroscopy in prism-based configurations. The work presented here discusses the modification of the AutoSeagull to perform SPR spectroscopy, allowing for easy incorporation of the technique into most common FT-IR spectrometers. The wavelength dependency of the dielectric constant of the plasmon-supporting metal (in our case, gold) is largely responsible for the sensitivity attributed to changes in the sample's refractive index (RI) monitored by SPR spectroscopy. Furthermore, the optical properties of gold are such that when near-infrared (NIR) and/or mid-infrared (mid-IR) wavelengths are used to excite surface plasmons, higher sensitivities to RI changes are experienced compared to surface plasmons excited with visible wavelengths. The result is that in addition to instrumental simplicity, SPR analysis on FT-IR spectrometers, as permitted by the modified AutoSeagull, also benefits from the wavelength ranges accessible. Adaptation of the AutoSeagull to SPR spectroscopy involved the incorporation of slit apertures to minimize the angular spread reaching the detector, resulting in sharper SPR "dips" but at the cost of noisier spectra. In addition, discussion of the system's analytical performance includes comparison of dip quality as a function of slit size, tailoring of the dip minima location with respect to incident angle, and sensitivity to bulk RI changes.

  16. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  17. Using a Hexagonal Mirror for Varying Light Intensity in the Measurement of Small-Angle Variation

    PubMed Central

    Hsieh, Meng-Chang; Lin, Jiun-You; Chang, Chia-Ou

    2016-01-01

    Precision positioning and control are critical to industrial-use processing machines. In order to have components fabricated with excellent precision, the measurement of small-angle variations must be as accurate as possible. To achieve this goal, this study provides a new and simple optical mechanism by varying light intensity. A He-Ne laser beam was passed through an attenuator and into a beam splitter. The reflected light was used as an intensity reference for calibrating the measurement. The transmitted light as a test light entered the optical mechanism hexagonal mirror, the optical mechanism of which was created by us, and then it entered the power detector after four consecutive reflections inside the mirror. When the hexagonal mirror was rotated by a small angle, the laser beam was parallel shifted. Once the laser beam was shifted, the hitting area on the detector was changed; it might be partially outside the sensing zone and would cause the variation of detection intensity. This variation of light intensity can be employed to measure small-angle variations. The experimental results demonstrate the feasibility of this method. The resolution and sensitivity are 3 × 10−40 and 4 mW/° in the angular range of 0.6°, respectively, and 9.3 × 10−50 and 13 mW/° in the angular range of 0.25°. PMID:27537893

  18. The potential for studying the effects of microgravity on connective tissue by small angle light scattering

    NASA Astrophysics Data System (ADS)

    McNamara, K.; Bellare, A.; Shortkroff, S.; Dahlgren, E.

    In order to address the effects of microgravity on living tissue, we must examine and understand tissue response on a molecular level. Doing so requires the development of quantitative techniques for characterizing tissue behavior on the micrometer scale under both normal and reduced gravitational fields. It has been demonstrated that small angle light scattering holds great promise in this regard. Small angle light scattering (SALS) has been used to probe tissue microstructure on the micron and sub-micron length scales. Quantitative information on feature geometry, dimension and orientation was obtained. Here, we discuss the application of small angle light scattering techniques to the study of connective tissue. Two terrestrial situations relevant to future microgravity studies were considered: the anisotropic behavior of collagen fibers in rabbit tendon in response to increasing load; and, the variation in collagen structure in healthy and arthritic human cartilage. SALS allowed quantitative determination of both fiber diameter and degree of orientation, providing a level of information beyond that obtainable by light and electron microscopies. The primary advantages of SALS over these techniques lies in its quantitative nature and reduced sample preparation requirements. SALS requires neither vacuum or the use of dyes, eliminating important potential sources of artifacts. Results from these studies compare favorably with microscopy studies and demonstrate the importance of the quantitative nature of the technique. In addition, these results also demonstrate the potential of SALS for providing quantitative analysis of effects of microgravity on structural and connective tissue.

  19. Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering.

    PubMed

    Golub, M; Combet, S; Wieland, D C F; Soloviov, D; Kuklin, A; Lokstein, H; Schmitt, F-J; Olliges, R; Hecht, M; Eckert, H-J; Pieper, J

    2017-04-01

    The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.

  20. An upgrade beamline for combined wide, small and ultra small-angle x-ray scattering at the ESRF

    SciTech Connect

    Van Vaerenbergh, Pierre; Léonardon, Joachim; Sztucki, Michael; Boesecke, Peter; Gorini, Jacques; Claustre, Laurent; Sever, Franc; Morse, John; Narayanan, Theyencheri

    2016-07-27

    This contribution presents the main design features of the upgraded beamline ID02 (TRUSAXS). The beamline combines different small-angle X-ray scattering techniques in one unique instrument. The key component of this instrument is an evacuated (5×10{sup −3} mbar) stainless steel detector tube of length 34 m and diameter 2 m. Three different detectors (Rayonix MX170, Pilatus 300 K and FReLoN 4M) are housed inside a motorized wagon which travels along a rail system with very low parasitic lateral movements (± 0.3 mm). This system allows automatically changing the sample-to-detector distance from about 1 m to 31 m and selecting the desired detector. In addition, a wide angle detector (Rayonix LX170) is installed just above the entrance cone of the tube for optional wide-angle X-ray scattering measurements. The beamstop system enables monitoring of the X-ray beam intensity in addition to blocking the primary beam, and automated insertion of selected masks behind the primary beamstop. The focusing optics and collimation system permit to cover a scattering vector (q) range of 0.002 nm{sup −1} ≤ q ≤ 50 nm{sup −1} with one unique setting using 0.1 nm X-ray wavelength for moderate flux (5×10{sup 12} photons/sec). However, for higher flux (6x10{sup 13} photons/sec) or higher resolution (minimum q < 0.001 nm{sup −1}), focusing and collimation, respectively need to be varied. For a sample-to-detector distance of 31 m and 0.1 nm wavelength, two dimensional ultra small-angle X-ray scattering patterns can be recorded down to q≈0.001 nm{sup −1} with far superior quality as compared to one dimensional profiles obtained with a Bonse-Hart instrument.

  1. Equilibrium polymerization of liquid sulphur from small angle neutron scattering of sulphur solutions

    NASA Astrophysics Data System (ADS)

    Boué, F.; Ambroise, J. P.; Bellissent, R.; Pfeuty, P.

    1992-06-01

    The reversible singular anomaly which shows up in liquid sulphur at 159°C and is also present in sulphur solutions has been clearly detected for the first time by small angle neutron scattering in solutions of sulphur with deuterated naphtalene and of sulphur with deuterated biphenyl. The observed sudden rise of the small q limit of the scattering intensity is interpreted as the signature of an equilibrium polymerization transition with formation of long sulphur chains. Experimental meausrements are in qualitative agreement with theoretical predictions based on the mean field approximation of a lattice model.

  2. Small-Angle Neutron Scattering Measurements of Magnetic Cluster Sizes in Magnetic Recording Disks

    SciTech Connect

    Toney, Michael F

    2003-06-17

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  3. Goos-Hänchen shifts at a resonance angle of a two-prism structure using COMSOL multiphysics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Zhang, Zhiwei; Yang, Peng; Zhu, Xiang; Dai, Yifan

    2016-10-01

    We simulated and analyzed Goos-Hänchen (GH) shifts of 633 nm polarized light through a two-prism structure, consisting of a right triangle prism and an isosceles triangle prism with Kretschmann-Raether configuration, by comparing the results from COMSOL Multiphysics (CM) simulation software with that of a stationary-phase analysis (SPA). For this two-prism structure, using a gold film that of thickness 45 nm, the maximum positive GH shift, obtained using SPA at the resonance angle of 44.1°, was 354 μm. Using CM at an incident angle of 43.8°, we found the maximum positive GH shift of 9.45 μm. The results obtained using CM are in agreement with those obtained by the SPA around the resonance angle, although the enhancement effect from CM is much less than that of SPA. This is because SPA depends on the differentiation of the phase shift with respect to the incident angle, while a drastic phase shift occurs at the resonance angle. These results are useful for designing high-sensitivity SPR sensors based on GH shift measurement and for application in waveguide-type SPR devices, with sizes in the order of micro millimeter.

  4. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    SciTech Connect

    Trapote-Barreira, Ana; Porcar, Lionel; Cama, Jordi; Soler, Josep M.; Allen, Andrew J.

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  5. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn5

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Movshovich, Roman

    2017-05-01

    The thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn5 , with the heat current J along the nodal [110] direction of its dx2-y2 order parameter and the magnetic field up to 7 T rotating in the a b plane. In contrast to the smooth oscillations found previously for J ∥[100 ] , we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to the heat current. We explain this peak qualitatively via a model of the heat transport in a d -wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ ≈±3 3 ° with respect to J . The origin of the observed resonances at Θ ≈±3 3 ° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.

  6. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn5

    DOE PAGES

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...

    2017-05-12

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn5, with the heat current J along the nodal [110] direction of its dx2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to the heat current.more » We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  7. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    NASA Astrophysics Data System (ADS)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l‑1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  8. Surface plasmon resonance biosensor for enzymatic detection of small analytes.

    PubMed

    Miyazaki, Celina Massumi; Shimizu, Flávio Makoto; Mejía-Salazar, J R; Oliveira, Osvaldo N; Ferreira, Marystela

    2017-04-07

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l(-1), respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  9. Magnetic resonance-guided interventions of large and small joints.

    PubMed

    Garmer, Marietta; Grönemeyer, Dietrich

    2011-08-01

    Magnetic resonance (MR)-guided interventions of large and small joints are feasible and safe procedures offering several advantages compared with standard guiding techniques. Nevertheless, MR-guided interventions are not routinely performed in daily practice apart from a few centers. Accurate injections are crucial for clinical outcome in diagnostic arthrography as well as therapeutic joint injections. In particular, palpatory joint puncture was shown to be inaccurate or uncertain in a substantial percentage of injections of the shoulder, the hip, and the knee. Magnetic resonance imaging offers respective merits of a cross-sectional technique with high soft-tissue contrast. Exact depiction of structures, which should be preserved, such as the labrum, should be aimed for. Areas with complex anatomy can be approached by adapting the right imaging plane(s) because of multiplanar capacity. Lack of ionizing radiation for patients is of growing interest particularly in young patients with repeated interventions. Magnetic resonance guidance alone allows an "all-in-one" MR arthrography combining precise targeting with high-field-strength imaging. Modern short-bore and open-bore high-field-strength systems offer a good comfort for patients as well as clinicians and enhance patient positioning options such as supine or prone position. Thus, a tailored approach such as a posterior technique for suspected anterior lesions in shoulder MR arthrography is possible.In this article, we describe the advantages and limitations of MR guidance in joint interventions with focus on shoulder and hip interventions. We review the requirements for needle material and MR sequences, discuss several different techniques developed to date, and present current results in clinical outcome.

  10. Small and Wide Angle X-ray Scattering studies of biological macromolecules in solution.

    PubMed

    Liu, Li; Boldon, Lauren; Urquhart, Melissa; Wang, Xiangyu

    2013-01-08

    In this paper, Small and Wide Angle X-ray Scattering (SWAXS) analysis of macromolecules is demonstrated through experimentation. SWAXS is a technique where X-rays are elastically scattered by an inhomogeneous sample in the nm-range at small angles (typically 0.1 - 5°) and wide angles (typically > 5°). This technique provides information about the shape, size, and distribution of macromolecules, characteristic distances of partially ordered materials, pore sizes, and surface-to-volume ratio. Small Angle X-ray Scattering (SAXS) is capable of delivering structural information of macromolecules between 1 and 200 nm, whereas Wide Angle X-ray Scattering (WAXS) can resolve even smaller Bragg spacing of samples between 0.33 nm and 0.49 nm based on the specific system setup and detector. The spacing is determined from Bragg's law and is dependent on the wavelength and incident angle. In a SWAXS experiment, the materials can be solid or liquid and may contain solid, liquid or gaseous domains (so-called particles) of the same or another material in any combination. SWAXS applications are very broad and include colloids of all types: metals, composites, cement, oil, polymers, plastics, proteins, foods, and pharmaceuticals. For solid samples, the thickness is limited to approximately 5 mm. Usage of a lab-based SWAXS instrument is detailed in this paper. With the available software (e.g., GNOM-ATSAS 2.3 package by D. Svergun EMBL-Hamburg and EasySWAXS software) for the SWAXS system, an experiment can be conducted to determine certain parameters of interest for the given sample. One example of a biological macromolecule experiment is the analysis of 2 wt% lysozyme in a water-based aqueous buffer which can be chosen and prepared through numerous methods. The preparation of the sample follows the guidelines below in the Preparation of the Sample section. Through SWAXS experimentation, important structural parameters of lysozyme, e.g. the radius of gyration, can be analyzed.

  11. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  12. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kim, Kyounghwan; DaSilva, Ashley; Huang, Shengqiang; Fallahazad, Babak; Larentis, Stefano; Taniguchi, Takashi; Watanabe, Kenji; LeRoy, Brian J.; MacDonald, Allan H.; Tutuc, Emanuel

    2017-03-01

    According to electronic structure theory, bilayer graphene is expected to have anomalous electronic properties when it has long-period moiré patterns produced by small misalignments between its individual layer honeycomb lattices. We have realized bilayer graphene moiré crystals with accurately controlled twist angles smaller than 1° and studied their properties using scanning probe microscopy and electron transport. We observe conductivity minima at charge neutrality, satellite gaps that appear at anomalous carrier densities for twist angles smaller than 1°, and tunneling densities-of-states that are strongly dependent on carrier density. These features are robust up to large transverse electric fields. In perpendicular magnetic fields, we observe the emergence of a Hofstadter butterfly in the energy spectrum, with fourfold degenerate Landau levels, and broken symmetry quantum Hall states at filling factors ±1, 2, 3. These observations demonstrate that at small twist angles, the electronic properties of bilayer graphene moiré crystals are strongly altered by electron-electron interactions.

  13. Upgrade of small angle x-ray scattering beamline BL-6A at the photon factory

    SciTech Connect

    Takagi, H. Igarashi, N.; Mori, T.; Saijo, S.; Nagatani, Y.; Kosuge, T.; Shimizu, N.; Ohta, H.

    2016-07-27

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally, a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.

  14. Efficient imaging approach for spaceborne sliding spotlight synthetic aperture radar with a small squint angle

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Chen, Yanmei; Sun, Weifeng; Wan, Yong; Dai, Yongshou

    2015-01-01

    Several existing algorithms for squinted sliding spotlight synthetic aperture radar (SAR) suffer from low efficiency, despite their good focusing abilities. Their low speeds are primarily due to the use of wave-number domain (Omega-K) processing after spectrum unfolding in the azimuth frequency domain. Omega-K processing is chosen in these algorithms due to its focusing ability at large squint angles. However, in most scenarios, spaceborne SARs operate with small squint angles that are generally not greater than 5 deg. In these scenarios, Omega-K processing is not necessary and is not preferred due to its computational burden. Thus, in this study, we extend a classic, two-step algorithm based on the chirp z-transformation for the efficient processing of SAR data acquired in spaceborne sliding spotlight mode at a small squint angle. The modified azimuth-filtering and focusing processing is used to compensate for the additional Doppler bandwidth caused by the antenna squinting and is described in detail. The simulation results show the good focusing ability of the proposed algorithm and validate the improvement in computational efficiency.

  15. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    NASA Astrophysics Data System (ADS)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  16. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    PubMed

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  17. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering.

    PubMed

    Carli, Larissa N; Bianchi, Otávio; Machado, Giovanna; Crespo, Janaina S; Mauler, Raquel S

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite® 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor (β) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing.

  18. Grazing-incidence small-angle neutron scattering from structures below an interface

    PubMed Central

    Nouhi, Shirin; Hellsing, Maja S.; Kapaklis, Vassilios; Rennie, Adrian R.

    2017-01-01

    Changes of scattering are observed as the grazing angle of incidence of an incoming beam increases and probes different depths in samples. A model has been developed to describe the observed intensity in grazing-incidence small-angle neutron scattering (GISANS) experiments. This includes the significant effects of instrument resolution, the sample transmission, which depends on both absorption and scattering, and the sample structure. The calculations are tested with self-organized structures of two colloidal samples with different size particles that were measured on two different instruments. The model allows calculations for various instruments with defined resolution and can be used to design future improved experiments. The possibilities and limits of GISANS for different studies are discussed using the model calculations. PMID:28808432

  19. Grazing-incidence small-angle neutron scattering from structures below an interface.

    PubMed

    Nouhi, Shirin; Hellsing, Maja S; Kapaklis, Vassilios; Rennie, Adrian R

    2017-08-01

    Changes of scattering are observed as the grazing angle of incidence of an incoming beam increases and probes different depths in samples. A model has been developed to describe the observed intensity in grazing-incidence small-angle neutron scattering (GISANS) experiments. This includes the significant effects of instrument resolution, the sample transmission, which depends on both absorption and scattering, and the sample structure. The calculations are tested with self-organized structures of two colloidal samples with different size particles that were measured on two different instruments. The model allows calculations for various instruments with defined resolution and can be used to design future improved experiments. The possibilities and limits of GISANS for different studies are discussed using the model calculations.

  20. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    SciTech Connect

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P.; Perlich, J.; Roth, S. V.; Gehrke, R.

    2012-07-15

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  1. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    NASA Astrophysics Data System (ADS)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  2. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    NASA Astrophysics Data System (ADS)

    Körstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Perlich, J.; Roth, S. V.; Gehrke, R.; Müller-Buschbaum, P.

    2012-07-01

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C61 butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  3. The 40m General Purpose Small-Angle Neutron Scattering Instrument at Oak Ridge National Laboratory

    SciTech Connect

    Wignall, George D; Bailey, Katherine M; Buchanan, Michelle V; Butler, Paul D; Heller, William T; Littrell, Ken; Lynn, Gary W; Melnichenko, Yuri B; Myles, Dean A A; Urban, Volker S

    2012-01-01

    A high-flux, 40m long small-angle neutron scattering (SANS) instrument has been constructed at Oak Ridge National Laboratory (ORNL). The facility utilizes a mechanical velocity selector, pinhole collimation and a high count-rate (> 105 Hz), large-area (1m2) two-dimensional position-sensitive detector. The incident wavelength ( ), resolution ( / ), incident collimation and sample-detector distance are independently variable under computer control. The detector can translate 45cm off axis to increase the overall Q-range (< 0.001 < Q = 4 -1sin < 1 -1), where 2 is the angle of scatter. The design and characteristics of this instrument are described along with examples of scattering data to illustrate the performance.

  4. A Laboratory Scale Critical-Dimension Small-Angle X-ray Scattering Instrument

    SciTech Connect

    Ho, Derek L.; Wang Chengqing; Lin, Eric K.; Jones, Ronald L.; Wu Wenli

    2007-09-26

    New methods for critical dimension (CD) measurements may be needed to enable the detailed characterization of nanoscale structures produced in the semiconductor industry and for nanotechnology applications. In earlier work, small angle x-ray scattering (SAXS) measurements with synchrotron sources have shown promise in meeting several grand challenges for CD metrology. However, it is not practical to depend upon x-ray synchrotron sources, which are large national facilities with limitations in the number of available instruments. To address this problem, a laboratory scale SAXS instrument for critical dimension measurements on periodic nanoscale patterns has been designed, installed, and tested. The system possesses two configurations, SAXS and ultra-small-angle x-ray scattering (USAXS), with a radiation target of either copper or molybdenum. With these configurations, the instrument is capable of accessing scattering angles that probe length scales ranging from ca. 0.5 nm to 2 {mu}m. In this work, we compare CD-SAXS measurements taken from a synchrotron-based SAXS at the Advanced Photon Source of the Argonne National Laboratory with those from the National Institute of Standards and Technology laboratory-scale SAXS instrument. The results from standard line/space gratings possessing periodic line-space patterns with CDs of tens to hundreds of nanometers show that the laboratory-scale system can quantitatively measure parameters, such as the pitch, line width, height, line-width roughness and sidewall angle. These results show that laboratory-scale measurements are feasible and can be used for research and development purposes or to assist calibration of optical scatterometry and CD-scanning electron microscopy instruments. The primary limitation of the measurement is that the data collection rate is unacceptably slow for production metrology because of the significantly lower x-ray beam fluxes currently available.

  5. Small-angle scattering and morphologies of ultra-flexible microemulsions.

    PubMed

    Prevost, Sylvain; Lopian, Tobias; Pleines, Maximilian; Diat, Olivier; Zemb, Thomas

    2016-12-01

    The phase diagrams of ternary mixtures of partly miscible solvents containing a hydrotropic co-solvent exhibit a variable miscibility gap and one critical point. This work investigates the entire monophasic region far from and near to the miscibility gap in octan-1-ol/ethanol/water, for which ultra-flexible micro-emulsions (UFMEs) are observed by small-angle scattering techniques. SWAXS (combined small- and wide-angle X-ray scattering) allows the elucidation of these types of structure. Three distinct areas can be identified in the phase diagram, with scattering data resembling those from direct, bicontinuous and reverse local structures. These UFMEs are far more polydisperse than their surfactant-based counterparts. Water-rich and solvent-rich domains are only delimited by a small excess of hydrotrope, instead of a well defined surfactant layer of fixed area per molecule. It is shown that all scattering spectra obtained for the nanostructured compositions can be modelled by a simple unified analytical model composed of two uncorrelated contributions. The main one is the Ornstein-Zernike formula for composition fluctuations which gives information about the pseudo-phase domain size. The second is a Lorentzian that captures the structure of at least one of the coexisting pseudo-phases. No Porod law can be measured in the SAXS domain. The proposed expression gives access to two characteristic sizes as well as one inter-aggregate distance.

  6. Small-angle scattering and morphologies of ultra-flexible microemulsions1

    PubMed Central

    Prevost, Sylvain; Lopian, Tobias; Pleines, Maximilian; Diat, Olivier; Zemb, Thomas

    2016-01-01

    The phase diagrams of ternary mixtures of partly miscible solvents containing a hydrotropic co-solvent exhibit a variable miscibility gap and one critical point. This work investigates the entire monophasic region far from and near to the miscibility gap in octan-1-ol/ethanol/water, for which ultra-flexible micro­emulsions (UFMEs) are observed by small-angle scattering techniques. SWAXS (combined small- and wide-angle X-ray scattering) allows the elucidation of these types of structure. Three distinct areas can be identified in the phase diagram, with scattering data resembling those from direct, bicontinuous and reverse local structures. These UFMEs are far more polydisperse than their surfactant-based counterparts. Water-rich and solvent-rich domains are only delimited by a small excess of hydrotrope, instead of a well defined surfactant layer of fixed area per molecule. It is shown that all scattering spectra obtained for the nanostructured compositions can be modelled by a simple unified analytical model composed of two uncorrelated contributions. The main one is the Ornstein–Zernike formula for composition fluctuations which gives information about the pseudo-phase domain size. The second is a Lorentzian that captures the structure of at least one of the coexisting pseudo-phases. No Porod law can be measured in the SAXS domain. The proposed expression gives access to two characteristic sizes as well as one inter-aggregate distance. PMID:27980512

  7. Testing sTGC with small angle wire edges for the ATLAS new small wheel muon detector upgrade

    SciTech Connect

    Roth, Itamar; Klier, Amit; Duchovni, Ehud

    2015-07-01

    The LHC upgrade scheduled for 2018 is expected to significantly increase the accelerator's luminosity, and as a result the radiation background rates in the ATLAS Muon Spectrometer will increase too. Some of its components will have to be replaced in order to cope with these high rates. Newly designed small-strip Thin Gap chambers (sTGC) will replace them at the small wheel region. One of the differences between the sTGC and the currently used TGC is the alignment of the wires along the azimuthal direction. As a result, the outermost wires approach the detector's edge with a small angle. Such a configuration may be a cause for various problems. Two small dedicated chambers were built and tested in order to study possible edge effects that may arise from the new configuration. The sTGC appears to be stable and no spark have been observed, yet some differences in the detector response near the edge is seen and further studies should be carried out. (authors)

  8. Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films

    NASA Astrophysics Data System (ADS)

    Capua, Amir; Wang, Tianyu; Yang, See-Hun; Rettner, Charles; Phung, Timothy; Parkin, Stuart S. P.

    2017-02-01

    The conversion of charge current to spin current by the spin Hall effect is of considerable current interest from both fundamental and technological perspectives. Measurement of the spin Hall angle, especially for atomically thin systems with large magnetic anisotropies, is not straightforward. Here we demonstrate a hybrid phase-resolved optical-electrical ferromagnetic resonance method that we show can robustly determine the spin Hall angle in heavy-metal/ferromagnet bilayer systems with large perpendicular magnetic anisotropy. We present an analytical model of the ferromagnetic resonance spectrum in the presence of the spin Hall effect, in which the spin Hall angle can be directly determined from the changes in the amplitude response as a function of the spin current that is generated from a dc charge current passing through the heavy-metal layer. Increased sensitivity to the spin current is achieved by operation under conditions for which the magnetic potential is shallowest at the "Smit point." Study of the phase response reveals that the spin Hall angle can be reliably extracted from a simplified measurement that does not require scanning over time or magnetic field but rather only on the dc current. The method is applied to the Pt-Co/Ni/Co system whose spin Hall angle was to date characterized only indirectly and that is especially relevant for spin-orbit torque devices.

  9. Rotor design for high pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Turcu, Romulus V F; Hoyt, David W; Rosso, Kevin M; Sears, Jesse A; Loring, John S; Felmy, Andrew R; Hu, Jian Zhi

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low (1)H and (13)C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe(2+))(3)Si(2)O(5)(OH)(4)), in contact with liquid water in water-saturated supercritical CO(2) (scCO(2)) at 150 bar and 50°C. This mineral is relevant to the deep geologic disposal of CO(2), but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  10. Rotor design for high pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Turcu, Romulus V. F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Zhi

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 °C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  11. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    SciTech Connect

    Turcu, Romulus V.F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  12. Characterization of two new stable block copolymer mesophases by synchrotron small-angle scattering

    NASA Astrophysics Data System (ADS)

    Burger, C.; Micha, M. A.; Oestreich, S.; Förster, S.; Antonietti, M.

    1998-05-01

    Block copolymers made of polystyrene and fluorinated blocks represent a new class of polymers with a very strong incompatibility between the two blocks. They exhibit new stable block copolymer mesophases which are not considered in the phase diagrams of diblock copolymers in the strong and super-strong segregation regime. The solid-state structures of two polymers with different compositions are characterized by synchrotron small-angle X-ray scattering and transmission electron microscopy, thus proving the existence of a quadratically perforated layer phase and a 2D phase of sanidically degenerated cylinders.

  13. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    SciTech Connect

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; Gallego, Nidia C.; Melnichenko, Yuri B.

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbon (Do-Do model).

  14. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    SciTech Connect

    Worcester, D.L.; Katz, J.J.

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  15. An overview of resid characterization by mass spectrometry and small angle scattering techniques.

    SciTech Connect

    Hunt, J. E.; Winans, R. E.

    1999-07-14

    The purpose of this presentation is to discuss what is known about the molecular structures found in petroleum resid from mass spectrometry and small angle neutron and X-ray scattering methods. The question about molecular size distributions and the occurrence of aggregation in the asphaltene fraction will be examined. Our understanding of this problem has evolved with the application of new analytical methods. Also, correlations with results from other approaches will be discussed. In addition, the issue of the nature of the heteroatom-containing molecules will be examined and the challenges that remain in this area.

  16. Study of structural irregularities of smectite clay systems by small-angle neutron scattering and adsorption

    NASA Astrophysics Data System (ADS)

    De Stefanis, A.; Tomlinson, A. A. G.; Steriotis, Th. A.; Charalambopoulou, G. Ch.; Keiderling, U.

    2007-04-01

    Small angle neutron scattering (SANS) and its contrast-matching variant are employed in order to determine structural properties (inter-pillar distances and mass/surface fractal dimensions of the clay layers and pillars) of a series of smectite natural clays (montmorillonite, beidellite, and bentonite) and their pillared and pillared/ion-exchanged analogues. Moreover, a comparative analysis with the adsorption data is carried out on the basis of a systematic study of the structural changes induced by a particular treatment or modification (e.g. pillaring) of the clay systems.

  17. Small angle X-ray scattering study of coal soot formation

    SciTech Connect

    Winans, R. E.; Parker, J. T.; Seifert, S.; Fletcher, T. H.

    2000-02-14

    The objective of this study is to examine, by small angle X-ray scattering (SAXS), the formation of soot from individual coal particle combustion in a methane flat flame burner. The SAXS instrument at the Basic Energy Sciences Synchrotron Radiation Center (BESSRC) at the Advanced Photon Source (APS) can be used to observe both the formation of spherules and clusters since it can access length scales of 6--6000 {angstrom}. The high X-ray flux enables rapid acquisition of scattering data of various regions of the flame. SAXS data reveal particle size, shape, surface areas, and surface roughness.

  18. Integrative structural modeling with small angle X-ray scattering profiles

    PubMed Central

    2012-01-01

    Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS) profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types. PMID:22800408

  19. Proposed design of SAMUS (small angle muon spectrometer) toroid and its magnetic field calculation

    SciTech Connect

    Yamada, R.

    1988-06-09

    Presently the D/null/ detector has three big toroidal magnets; one Central Toroid (CF) and two End Wall Toroids (EF). The EF toroids have central openings 72'' x 72''. Originally, this opening was meant for possible future end-plug calorimeters. Instead we are now designing Small Angle Muon Spectrometer (SAMUS) for the opening. The major component will be built at Serpukhov. The design of the toroid magnets and its magnetic field calculations is being done by exchanging information between Serpukhov and Fermilab. 2 refs., 4 figs., 1 tab.

  20. A small angle neutron scattering study of mica based glass-ceramics with applications in dentistry

    NASA Astrophysics Data System (ADS)

    Kilcoyne, S. H.; Bentley, P. M.; Al-Jawad, M.; Bubb, N. L.; Al-Shammary, H. A. O.; Wood, D. J.

    2004-07-01

    We are currently developing machinable and load-bearing mica-based glass-ceramics for use in restorative dental surgery. In this paper we present the results of an ambient temperature small angle neutron scattering (SANS) study of several such ceramics with chemical compositions chosen to optimise machinability and strength. The SANS spectra are all dominated by scattering from the crystalline-amorphous phase interface and exhibit Q-4 dependence (Porod scattering) indicating that, on a 100Å scale, the surface of the crystals is smooth.

  1. Measurement of protein size in concentrated solutions by small angle X‐ray scattering

    PubMed Central

    Liu, Jun; Wei, Yanru; Wang, Wenjia; Wang, Bing; Liang, Hongli; Gao, Yuxi

    2016-01-01

    Abstract By simulations on the distance distribution function (DDF) derived from small angle X‐ray scattering (SAXS) theoretical data of a dense monodisperse system, we found a quantitative mathematical correlation between the apparent size of a spherically symmetric (or nearly spherically symmetric) homogenous particle and the concentration of the solution. SAXS experiments on protein solutions of human hemoglobin and horse myoglobin validated the correlation. This gives a new method to determine, from the SAXS DDF, the size of spherically symmetric (or nearly spherically symmetric) particles of a dense monodisperse system, specifically for protein solutions with interference effects. PMID:27241796

  2. Characterising density fluctuations in liquid yttria aluminates with small angle x-ray scattering

    SciTech Connect

    Greaves, G. Neville; Wilding, Martin C.; Vu Van, Quang; Majerus, Odile; Hennet, Louis

    2009-01-29

    Small angle x-ray scattering (SAXS) has been measured in the wavevector range 0.01

  3. Grazing exit small angle X-ray scattering on grain formation in polycrystalline metal films

    SciTech Connect

    Zhang, Wei; Robinson, Ian K.

    2009-09-25

    We recently proposed a new grazing exit geometry for measuring the small-angle scattering from thin film materials, which we call GESAXS, to contrast with the successful grazing incidence version, GISAXS. The technique is particularly useful for probing nanostructured thin film materials, especially when the coherence properties of the beam are employed. Here we demonstrate the application of GESAXS to evaporated metal films, prepared using an in-situ diffraction chamber, to investigate how their structure evolves upon annealing. Contrasting behavior is seen for Au, which preserves a roughly exponential distribution of domain sizes, and Fe for which the size distribution narrows by an Ostwald ripening process.

  4. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  5. Application of small angle neutron scattering on the analysis of Korean compact jaw bone

    NASA Astrophysics Data System (ADS)

    Choi, Yong; Shin, E. J.; Seong, B. S.; Paik, D. J.

    2012-10-01

    Small angle neutron scattering (SANS) was applied to analyze the nano-structure of normal and osteoporosis compact bones of Korean jaw-bones. The SANS profiles revealed the directional and regular distributions of plate-like bone crystals, lacuna rough surface and nano-sized canliculi in the compact bones. A smaller amount of bone crystals, lacuna and canliculi were present in the osteoporosis bone than in normal human bone. Microstructure observation by transmission electron microscopy and density measurement by bone densitometry supported the SANS evaluation.

  6. Correlation between fractal dimension and surface characterization by small angle X-ray scattering in marble.

    PubMed

    Salinas-Nolasco, Manlio Favio; Méndez-Vivar, Juan

    2010-03-16

    Among several analysis techniques applied to the study of surface passivation using dicarboxylic acids, small angle X-ray scattering (SAXS) has proved to be relevant in the physicochemical interpretation of the surface association resulting between calcium carbonate and the molecular structure of malonic acid. It is possible to establish chemical affinity principles through bidimensional geometric analysis in terms of the fractal dimension obtained experimentally by SAXS. In this Article, we present results about the adsorption of malonic acid on calcite, using theoretical and mathematical principles of the fractal dimension.

  7. Small-angle and surface scattering from porous and fractal materials.

    SciTech Connect

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  8. Small-angle X-ray scattering probe of intermolecular interaction in red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui

    2015-03-01

    With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)

  9. Depth profiling of polymer films with grazing-incidence small-angle X-ray scattering.

    PubMed

    Singh, Marsha A; Groves, Michael N

    2009-05-01

    A model-free method of reconstructing depth-specific lateral scattering from incident-angle-resolved grazing-incidence small-angle X-ray scattering (GISAXS) data is proposed. The information on the material which is available through variation of the X-ray penetration depth with incident angle is accessed through reference to the reflected branch of the GISAXS process. Reconstruction of the scattering from lateral density fluctuations is achieved by solving the resulting Fredholm integral equation with minimal a priori information about the experimental system. Results from simulated data generated for hypothetical multilayer polymer systems with constant absorption coefficient are used to verify that the method can be applied to cases with large X-ray penetration depths, as typically seen with polymer materials. Experimental tests on a spin-coated thick film of a blend of diblock copolymers demonstrate that the approach is capable of reconstruction of the scattering from a multilayer structure with the identification of lateral scattering profiles as a function of sample depth.

  10. EDITORIAL Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    Ungar, Goran; Heenan, Richard

    2010-10-01

    There are 52 papers in these Proceedings. The papers are divided into 10 thematic sections and a section for invited papers and reviews. The sections and the respective section editors are given below. Section Editor(s) Invited Papers and Reviews Peter Griffiths, Wim Bras, Rudolf Winter Beamlines and Instrumentation Elliot Gilbert, Wim Bras, Nigel Rhodes Theory, Data processing and Modelling Jan Skov Pedersen, Carlo Knupp Biological Systems and Membranes Richard Heenan, Cameron Neylon Ceramics, Glasses and Porous Materials Rudolf Winter Colloids and Solutions Peter Griffiths Hierarchical Structures and Fibres Steve Eichhorn, Karen Edler Metallic and Magnetic Systems Armin Hoell Polymers Patrick Fairclough Time resolved Diffraction, Kinetic and Dynamical Studies João Cabral, Christoph Rau We are grateful to all section editors and the many anonymous referees for their invaluable effort which made the publication of the Proceedings possible. The refereeing process was strict and thorough, some papers were rejected and most were improved. The resulting compendium gives a good overview of recent developments in small-angle X-ray and neutron scattering theory, application, methods of analysis and instrumentation. Thus it should be a useful source of reference for a number of years to come. The papers are a good reflection of the material presented at the meeting. Because of the general high quality of the articles, it was difficult to decide which to highlight and be fair to all contributors. The following in particular have caught the attention of the editors. Highlighted papers A statistical survey of publications reporting the application of SAXS and SANS by Aldo Craievich (paper 012003) is recommended reading for anyone needing convincing about the vibrancy of this scientific field and the ever expanding use of these techniques. Two aspects of coherent X-ray scattering, made available by the advent of the 3rd generation synchrotron sources, are discussed in the

  11. Comparison of tibial plateau angles in small and large breed dogs

    PubMed Central

    Su, Lillian; Townsend, Katy L.; Au, Jennifer; Wittum, Thomas E.

    2015-01-01

    Cranial cruciate ligament (CCL) disease can affect dogs of all sizes. The literature describing tibial plateau angle (TPA) in small breed dogs is limited. A retrospective study was conducted in unselected dogs presented for stifle or tibial examination to compare TPA in small breed dogs (n = 146 dogs, 185 stifles) versus large breed dogs (n = 200 dogs, 265 stifles). Small breed dogs had a mean TPA 3.1° ± 0.6° higher than large breed dogs. There were higher TPAs in spayed females and castrated males for all dogs compared with intact males (3.6° ± 1.0° and 2.7° ± 1.0°, respectively). Dogs with unilateral and bilateral CCL disease had higher TPAs compared to dogs with intact CCLs (2.0° ± 0.7° and 2.5° ± 0.8°, respectively). Tibial morphology differs between large and small breed dogs; however, the significance of the impact of TPA on CCL disease in small breed dogs is unknown. PMID:26028684

  12. Investigation of the tripoli porous structure by small-angle neutron scattering

    SciTech Connect

    Avdeev, M. V.; Blagoveshchenskii, N. M.; Garamus, V. M.; Novikov, A. G. Puchkov, A. V.

    2011-12-15

    The characteristics of the tripoli porous structure have been investigated by small-angle neutron scattering (SANS). Tripoli is a finely porous sedimentary rock formed by small spherical opal particles. Its main component is aqueous silica SiO{sub 2} {center_dot} nH{sub 2}O (80-90%). Tripoli is widely used in practice as a working medium for sorption filters and in some other commercial and construction technologies. The shape of the experimental SANS curves indicates the presence of small and large pores in tripoli. The small-pore size was estimated to be {approx}100 Angstrom-Sign . The size of large pores turned out to be beyond the range of neutron wave vector transfers Q that are available for the instrument used; however, their size was indirectly estimated to be {approx}(2000-2500) Angstrom-Sign . The pores of both groups behave as surfacetype fractal scatterers with the fractal dimension D {approx} 2.2-2.6. The densities of pores of these two groups differ by approximately three orders of magnitude ({approx}10{sup 16} and {approx}10{sup 13} cm{sup -3} for small and large pores, respectively); the fraction of large pores amounts to 70-80% of the total pore volume. The found pore characteristics (their densities, sizes, and relative volumes) are in satisfactory agreement (when a comparison is possible) with the absorption data.

  13. Determination of magnetic anisotropies and miscut angles in epitaxial thin films on vicinal (111) substrate by the ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Izotov, A. V.; Solovev, P. N.; Yakovlev, I. A.

    2017-10-01

    A method for determining magnetic anisotropy parameters of a thin single-crystal film on vicinal (111) substrate as well as substrate miscut angles from angular dependence of ferromagnetic resonance field has been proposed. The method is based on the following: (i) a new approach for the solution of the system of nonlinear equations for equilibrium and resonance conditions; (ii) a new expression of the objective function for the fitting problem. The study of the iron silicide films grown on vicinal Si(111) substrates with different miscut angles confirmed the efficiency of the method. The proposed method can be easily generalized to determine parameters of single-crystal films grown on substrates with an arbitrary cut.

  14. Riboswitch Conformations Revealed by Small-Angle X-Ray Scattering

    PubMed Central

    Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2015-01-01

    Summary Riboswitches are functional RNA molecules that control gene expression through conformational changes in response to small-molecule ligand binding. In addition, riboswitch 3D structure, like that of other RNA molecules, is dependent on cation–RNA interactions as the RNA backbone is highly negatively charged. Here, we show how small-angle X-ray scattering (SAXS) can be used to probe RNA conformations as a function of ligand and ion concentration. In a recent study of a glycine-binding tandem aptamer from Vibrio cholerae, we have used SAXS data and thermodynamic modeling to investigate how Mg2+-dependent folding and glycine binding are energetically coupled. In addition, we have employed ab initio shape reconstruction algorithms to obtain low-resolution models of the riboswitch structure from SAXS data under different solution conditions. PMID:19381558

  15. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Seong, Baek Seok; Ikram, Abarrul

    2009-02-01

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  16. Sample holder for small-angle x-ray scattering static and flow cell measurements

    SciTech Connect

    Lipfert, Jan; Millett, Ian S.; Seifert, Soenke; Doniach, Sebastian

    2006-04-15

    We present the design of a sample holder for small-angle x-ray scattering (SAXS) that can be used for both static and flow cell measurements, allowing to switch between these two types of measurement without having to realign the detector and camera geometry. The device makes possible high signal-to-noise experiments with sample volumes as small as 16 {mu}l and can be thermocontrolled using a standard circulating water bath. The setup has been used successfully for a range of biological SAXS measurements, including peptides, detergent micelles, membrane proteins, and nucleic acids. As a performance test, we present scattering data for horse heart cytochrome c, collected at the BESSRC CAT beam line 12-ID of the Advanced Photon Source. The design drawings are provided in the supplementary material.

  17. SEC-SANS: size exclusion chromatography combined in situ with small-angle neutron scattering1

    PubMed Central

    Jordan, Ashley; Jacques, Mark; Merrick, Catherine; Devos, Juliette; Forsyth, V. Trevor; Porcar, Lionel; Martel, Anne

    2016-01-01

    The first implementation and use of an in situ size exclusion chromatography (SEC) system on a small-angle neutron scattering instrument (SANS) is described. The possibility of deploying such a system for biological solution scattering at the Institut Laue–Langevin (ILL) has arisen from the fact that current day SANS instruments at ILL now allow datasets to be acquired using small sample volumes with exposure times that are often shorter than a minute. This capability is of particular importance for the study of unstable biological macromolecules where aggregation or denaturation issues are a major problem. The first use of SEC-SANS on ILL’s instrument D22 is described for a variety of proteins including one particularly aggregation-prone system. PMID:27980509

  18. Use of anomalous small angle x-ray scattering to investigate microstructural features in complex alloys

    SciTech Connect

    Weertman, J.R.

    1988-08-01

    This report covers the last 5 months of the second year of this grant and the first 8 months of the third year. The research thrust of this grant has been directed into two areas. The principal effort has been spent in an investigation of the use of anomalous small angle x-ray scattering (ASAXS) to observe changes in the microstructure of a relatively complex alloy produced by high temperature deformation or aging. The second effort involves a study of the high temperature behavior of several ferritic steels. During this past year we have been examining the effect of environment (air vs vacuum) on the high temperature strength of Fe9Cr1Mo modified by the addition of small amounts of V and Nb.

  19. A stress-controlled shear cell for small-angle light scattering and microscopy

    NASA Astrophysics Data System (ADS)

    Aime, S.; Ramos, L.; Fromental, J. M.; Prévot, G.; Jelinek, R.; Cipelletti, L.

    2016-12-01

    We develop and test a stress-controlled, parallel plates shear cell that can be coupled to an optical microscope or a small angle light scattering setup, for simultaneous investigation of the rheological response and the microscopic structure of soft materials under an imposed shear stress. In order to minimize friction, the cell is based on an air bearing linear stage, the stress is applied through a contactless magnetic actuator, and the strain is measured through optical sensors. We discuss the contributions of inertia and of the small residual friction to the measured signal and demonstrate the performance of our device in both oscillating and step stress experiments on a variety of viscoelastic materials.

  20. On the effect of emergence angle on emissivity spectra: application to small bodies

    NASA Astrophysics Data System (ADS)

    Maturilli, Alessandro; Helbert, Jörn; Ferrari, Sabrina; D'Amore, Mario

    2016-05-01

    Dependence of laboratory-measured emissivity spectra from the emergence angle is a subject that still needs a lot of investigations to be fully understood. Most of the previous work is based on reflectance measurements in the VIS-NIR spectral region and on emissivity measurements of flat, solid surfaces (mainly metals), which are not directly applicable to the analysis of remote sensing data. Small bodies in particular (c.f. asteroids Itokawa and 1999JU3, the respective targets of JAXA Hayabusa and Hayabusa 2 missions) have a very irregular surface; hence, the spectra from those rough surfaces are difficult to compare with laboratory spectra, where the observing geometry is always close to "nadir." At the Planetary Emissivity Laboratory of the German Aerospace Center (DLR), we have set up a series of spectral measurements to investigate this problem in the 1- to 16-µm spectral region. We measured the emissivity for two asteroid analogue materials (meteorite Millbillillie and a synthetic enstatite) in vacuum and under purged air, at surface temperature of 100 °C, for emergence angles of 0°, 5°, 10°, 20°, 30°, 40°, 50°, and 60°. Emissivity of a serpentinite slab, already used as calibration target for the MARA instrument on Hayabusa 2 MASCOT lander and for the thermal infrared imager spectrometer on Hayabusa 2 orbiter, was measured under the same conditions. Additionally, a second basalt slab was measured. Both slabs were not measured at 5° inclination. Complementary reflectance measurements of the four samples were taken. For all the samples measured, we found that for calibrated emissivity, significant variations from values obtained at nadir (0° emergence angle) appear only for emergence angles ≥40°. Reflectance measurements confirmed this finding, showing the same trend of variations.

  1. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    PubMed Central

    Epand, Richard M; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule. PMID:12324423

  2. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  3. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    SciTech Connect

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim; Habicht, Klaus; Tremsin, Anton; Strobl, Markus

    2016-06-15

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.

  4. Small angle scattering methods to study porous materials under high uniaxial strain

    NASA Astrophysics Data System (ADS)

    Le Floch, Sylvie; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-01

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  5. Laser desorption mass spectrometry and small angle neutron scattering of heavy fossil materials

    SciTech Connect

    Hunt, J.E.; Winans, R.E.; Thiyagarajan, P.

    1997-09-01

    The determination of the structural building blocks and the molecular weight range of heavy hydrocarbon materials is of crucial importance in research on their reactivity and for their processing. The chemically and physically heterogenous nature of heavy hydrocarbon materials, such as coals, heavy petroleum fractions, and residues, dictates that their structure and reactivity patterns be complicated. The problem is further complicated by the fact that the molecular structure and molecular weight distribution of these materials is not dependent on a single molecule, but on a complex mixture of molecules which vary among coals and heavy petroleum samples. Laser Desorption mass spectrometry (LDMS) is emerging as a technique for molecular weight determination having found widespread use in biological polymer research, but is still a relatively new technique in the fossil fuel area. Small angle neutron scattering (SANS) provides information on the size and shape of heavy fossil materials. SANS offers the advantages of high penetration power even in thick cells at high temperatures and high contrast for hydrocarbon systems dispersed in deuterated solvents. LDMS coupled with time of flight has the advantages of high sensitivity and transmission and high mass range. We have used LDMS to examine various heavy fossil-derived materials including: long chain hydrocarbons, asphaltenes from petroleum vacuum resids, and coals. This paper describes the application of laser desorption and small angle neutron scattering techniques to the analysis of components in coals, petroleum resids and unsaturated polymers.

  6. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.

    PubMed

    Mao, Yimin; Liu, Kai; Zhan, Chengbo; Geng, Lihong; Chu, Benjamin; Hsiao, Benjamin S

    2017-02-16

    Nanocellulose extracted from wood pulps using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and sulfuric acid hydrolysis methods was characterized by small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) techniques. The dimensions of this nanocellulose (TEMPO-oxidized cellulose nanofiber (TOCN) and sulfuric acid hydrolyzed cellulose nanocrystal (SACN)) revealed by the different scattering methods were compared with those characterized by transmission electron microscopy (TEM). The SANS and SAXS data were analyzed using a parallelepiped-based form factor. The width and thickness of the nanocellulose cross section were ∼8 and ∼2 nm for TOCN and ∼20 and ∼3 nm for SACN, respectively, where the fitting results from SANS and SAXS profiles were consistent with each other. DLS was carried out under both the VV mode with the polarizer and analyzer parallel to each other and the HV mode having them perpendicular to each other. Using rotational and translational diffusion coefficients obtained under the HV mode yielded a nanocellulose length qualitatively consistent with that observed by TEM, whereas the length derived by the translational diffusion coefficient under the VV mode appeared to be overestimated.

  7. Small angle scattering methods to study porous materials under high uniaxial strain

    SciTech Connect

    Le Floch, Sylvie Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  8. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    SciTech Connect

    Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.

  9. A small-angle x-ray scattering system with a vertical layout

    SciTech Connect

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-15

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  10. Bilayer thickness in unilamellar phosphatidylcholine vesicles: small-angle neutron scattering using contrast variation

    NASA Astrophysics Data System (ADS)

    Kučerka, N.; Uhríková, D.; Teixeira, J.; Balgavý, P.

    2004-07-01

    The thickness of the lipid bilayer in extruded unilamellar vesicles prepared from synthetic 1,2-diacyl-sn-glycero-3-phosphorylcholines with monounsaturated acyl chains (diCn:1PC, n=14-22) was studied at 30°C in the small-angle neutron scattering (SANS) experiment. Several contrasts of the neutron scattering length density between the aqueous phase and phospholipid bilayer of vesicles were used. The experimental data were evaluated using the small-angle form of the Kratky-Porod approximation ln[I(q)q2] vs. q2 of the SANS intensity I(q) in the appropriate range of scattering vector values q to obtain the bilayer radius of gyration Rg and its extrapolated value at infinite scattering contrast Rginf. The bilayer thickness parameter evaluated from a linear approximation of dependence of gyration radius on the inverse contrast was then obtained without using any bilayer structure model. The dependence of the thickness parameter dg≅120.5Rginf on the number n of acyl chain carbons was found to be linear with a slope of 1.8+/-0.2Å per one acyl chain carbon. This slope can be used in bilayer-protein interaction studies.

  11. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions

    PubMed Central

    Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F.

    2015-01-01

    SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102). PMID:26500467

  12. The solution structure of stilbenoid dendrimers: a small-angle scattering study.

    PubMed

    Rosenfeldt, Sabine; Karpuk, Elena; Lehmann, Matthias; Meier, Herbert; Lindner, Peter; Harnau, Ludger; Ballauff, Matthias

    2006-10-13

    The spatial structure of a stilbenoid dendrimer is investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) in dilute solution. All measurements are performed in toluene. The dendrimer consists of a stilbenoid scaffold with appended hexyloxy chains. SAXS is mainly sensitive to the dendrimer scaffold whereas SANS intensity, measured in fully deuterated toluene, derives from the solute molecules. The resulting SAXS and SANS intensities are analyzed by comparison with various models. It is found that the model of a circular disk gives the best description of the data. SAXS data demonstrate that the stilbenoid scaffold is flat as expected for benzene rings conjugated through vinylene units. Thus, it can be described by a circular disk with a radius of 1.6 nm and a thickness of 0.7 nm. SANS, on the other hand, shows that the hexyloxy chains are not confined in the plane defined by the core. This is derived from modeling the SANS data with a much thicker circular disk (radius: 2.4 nm, thickness: 1.8 nm). The structure factor S(q), describing the interaction of the dendrimers at higher concentrations, is modeled quantitatively with the "polymer reference interaction site model" (PRISM) integral equation formalism for hard plates such as particles. Here the structural data obtained from the analysis of the SANS data are used so that no new adjustable parameter is necessary for this description.

  13. Morphological characterization of carbon-nanofiber-reinforced epoxy nanocomposites using ultra-small angle scattering

    SciTech Connect

    Justice, R.S.; Anderson, D.P.; Brown, J.M.; Arlen, M.J.; Colleary, A.J.; Lafdi, K.; Schaefer, D.W.

    2010-07-01

    Studies of the properties of nanocomposites reinforced with vapor-grown carbon nanofibers (VGCFs) can be found throughout the literature. Electrical, mechanical, viscoelastic, and rheological properties are just a few of the characteristics that have been well discussed. Although these properties depend on morphology, morphological characterization is rare. Due to its 2-dimensional nature, microscopy is of limited value when analyzing network morphologies. This work will show how the characterization of the three-dimensional geometry and network formation of VGCFs can be determined using ultra-small angle scattering techniques. Ultra-small angle x-ray and neutron scattering (USAXS and USANS) were used to characterize the morphology of carbon nanofibers suspended in epoxy. Using a simplified tube model, we estimate the dimensions of suspended fibers. The assumption of tubular fibers accounts for the increased surface area observed with USAXS that is not accounted for using a solid rod model. Furthermore, USANS was used to search for a structural signature associated with the electrical percolation threshold. USANS extends to longer dimensional scales than USAXS, which measures a smaller range of momentum transfer. To determine the electrical percolation threshold, AC impedance spectroscopy was employed to verify that an electrically conductive, percolated network forms at VGCNF loadings of 0.8% < CNF wt% < 1.2%. These values correlate with the USANS data, where a morphological transition is seen at {approx}1.2% loading.

  14. A small-angle x-ray scattering system with a vertical layout

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  15. Small-angle neutron and dynamic light scattering study of gelatin coacervates

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Aswal, V. K.; Goyal, P. S.; Bohidar, H. B.

    2004-08-01

    The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of 50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of 400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates) [1]. Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, xi = 10.6 Å of the network and the other is the size of inhomogeneities = 21.4 Å. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60oC (xi = 50 Å, zeta = 113 Å) and 5% (w/v) gel at 28oC (xi = 47 Å, zeta = 115 Å) in aqueous phase [2] indicating smaller length scales in coacervate as compared to sol and gel.

  16. A small-angle x-ray scattering system with a vertical layout.

    PubMed

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  17. Using Small-Angle Scattering Techniques to Understand Mechanical Properties of Biopolymer-Based Biomaterials

    PubMed Central

    Hyland, Laura L.; Taraban, Marc B.

    2013-01-01

    The design and engineering of innovative biopolymer-based biomaterials for a variety of biomedical applications should be based on the understanding of the relationship between their nanoscale structure and mechanical properties. Down the road, such understanding could be fundamental to tune the properties of engineered tissues, extracellular matrices for cell delivery and proliferation/differentiation, etc. In this tutorial review, we attempt to show in what way biomaterial structural data can help to understand the bulk material properties. We begin with some background on common types of biopolymers used in biomaterials research, discuss some typical mechanical testing techniques and then review how others in the field of biomaterials have utilized small-angle scattering for material characterization. Detailed examples are then used to show the full range of possible characterization techniques available for biopolymer-based biomaterials. Future developments in the area of material characterization by small-angle scattering will undoubtedly facilitate the use of structural data to control the kinetics of assembly and final properties of prospective biomaterials. PMID:24273590

  18. Orienting rigid and flexible biological assemblies in ferrofluids for small-angle neutron scattering studies

    PubMed Central

    Sosnick, T.; Charles, S.; Stubbs, G.; Yau, P.; Bradbury, E. M.; Timmins, P.; Trewhella, J.

    1991-01-01

    Small-angle scattering from macromolecules in solution is widely used to study their structures, but the information content is limited because the molecules are generally randomly oriented and hence the data are spherically averaged. The use of oriented rodlike structures for scattering, as in fiber diffraction, greatly increases the amount of structural detail that can be obtained. A new technique using a ferromagnetic fluid has been developed to align elongated structures independent of their intrinsic magnetic properties. This technique is ideal for small-angle neutron scattering because the scattering from the ferrofluid particles can be reduced significantly by matching the neutron scattering length density of the particles to a D2O solvent (“contrast matching”). The net result is scattering primarily from the ordered biological assembly in a solution environment that can be adjusted to physiological pH and ionic strength. Scattering results from ordered tobacco mosaic virus, tobacco rattle virus, and chromain fibers are presented. ImagesFIGURE 4FIGURE 4 PMID:19431809

  19. Did the Kozai Resonance Help Form Pluto's Small Moons?

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; (Luke) Dones, Henry C.; Nesvorny, David; Walsh, Kevin J.

    2016-05-01

    The origin of the small moons of Pluto is currently poorly understood. They most likely originated from debris ejected from Pluto and Charon during their formation in the giant impact. However, the moons' large separation from Pluto and massive past tidal evolution of Charon make it very hard to emplace collisional fragments on circular orbits in the 40-60 Pluto radii zone where the four small moons are found. Here we propose that the Pluto system has a parallel in the triple Trans-Neptunian Object (TNO) 1999 TC36. Both systems have large obliquities, and have additional components outside the inner binary that probably formed in a giant impact and has likely gone through a rapid tidal evolution immediately following formation. Our hypothesis is that loosely bound ejecta from giant impacts can experience strong perturbations from the Sun (the ``Kozai resonance") as long as major axes of their elongated orbits are perpendicular to the binary's heliocentric orbit. This process could decouple the debris from the inner boundary long enough for the inner binary to evolve tidally and prevent further Kozai oscillations through its quadrupole moment. If the debris is dominated by one large fragment, a triple can form (as in the case of 1999 TC36), while a large population of fragments would experience collisions and make a disk surrounding the inner binary (as in the case of Pluto). At the meeting we will present numerical simulations of this process using numerical integrator COMPLEX which includes both tides and solar perturbations, and can integrate dynamics of satellites on crossing orbits.

  20. A method to measure internal contact angle in opaque systems by magnetic resonance imaging.

    PubMed

    Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei

    2013-07-23

    Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.

  1. Magnetic resonance imaging for precise radiotherapy of small laboratory animals.

    PubMed

    Frenzel, Thorsten; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes; Jäckel, Maria; Schumacher, Udo; Krüll, Andreas

    2017-03-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging. Copyright © 2016. Published by Elsevier GmbH.

  2. Applications of small surface plasmon resonance sensors for biochemical monitoring

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Francois; Battaglia, Tina M.; Beaudoin, Stephen; Booksh, Karl S.

    2004-12-01

    The development of small surface plasmon resonance (SPR) sensors to detect biological markers for myocardial ischemia (MI), spinal muscular atrophy (SMA), and wound healing was achieved at low ng/mL and in less than 10 minutes. The markers of interest for MIs are myoglobin (MG) and cardiac Troponin I (cTnI). The limits of detection for these markers are respectively 600 pg/mL and 1.4 ng/mL in saline solution. To study SMA, the level of survival motor neuron protein (SMN) was investigated. A limit of detection of 990 pg/mL was achieved for the detection of SMN. The interactions of SMN with MG decreased the signal for both SMN and MG. Interleukin 6 and tumor necrosis factor alpha (TNFa) were investigated to monitor wound healing. The sensor's performance in more complex solutions, e.g.: serum, showed a large non-specific signal. Modifying the support on which the antibodies are attached improved the sensor's stability in serum by a factor of 5. To achieve this non-specific binding (NSB) reduction, different polysaccharides, biocompatible polymers and short chain thiols were investigated.

  3. Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins.

    PubMed

    Scott, David J

    2016-12-01

    Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments.

  4. Phase information recovery based on the methods of phase shifting interferometry with small angles between interfering beams

    NASA Astrophysics Data System (ADS)

    Guzhov, V. I.; Il'inykh, S. P.; Khaibullin, S. V.

    2017-05-01

    This paper describes the method for recovering digital holograms obtained at small angles between interfering wave fields. The technique for obtaining data on the phase of the wavefront reflected from the object is under consideration.

  5. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering.

    PubMed

    Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan

    2017-04-01

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å(-1), together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.

  6. Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles

    SciTech Connect

    Laveissiere, Geraud; Degrande, Natalie; Jaminion, Stephanie; Jutier, Christophe; Todor, Luminita; Di Salvo, Rachele; Van Hoorebeke, L.; Alexa, L.C.; Anderson, Brian; Aniol, Konrad; Arundell, Kathleen; Audit, Gerard; Auerbach, Leonard; Baker, F.; Baylac, Maud; Berthot, J.; Bertin, Pierre; Bertozzi, William; Bimbot, Louis; Boeglin, Werner; Brash, Edward; Breton, Vincent; Breuer, Herbert; Burtin, Etienne; Calarco, John; Cardman, Lawrence; Cavata, Christian; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chen, Jian-Ping; Chudakov, Eugene; Cisbani, Evaristo; Dale, Daniel; De Jager, Cornelis; De Leo, Raffaele; Deur, Alexandre; D'Hose, Nicole; Dodge, Gail; Domingo, John; Elouadrhiri, Latifa; Epstein, Martin; Ewell, Lars; Finn, John; Fissum, Kevin; Fonvieille, Helene; Fournier, Guy; Frois, Bernard; Frullani, Salvatore; Furget, Christophe; Gao, Haiyan; Gao, Juncai; Garibaldi, Franco; Gasparian, Ashot; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Glashausser, Charles; Gomez, Javier; Gorbenko, Viktor; Grenier, Philippe; Guichon, Pierre; Hansen, Jens-Ole; Holmes, Richard; Holtrop, Maurik; Howell, Calvin; Huber, Garth; Hyde, Charles; Incerti, Sebastien; Iodice, Mauro; Jardillier, Johann; Jones, Mark; Kahl, William; Kamalov, Sabit; Kato, Seigo; Katramatou, A.T.; Kelly, James; Kerhoas, Sophie; Ketikyan, Armen; Khayat, Mohammad; Kino, Kouichi; Kox, Serge; Kramer, Laird; Kumar, Krishna; Kumbartzki, Gerfried; Kuss, Michael; Leone, Antonio; LeRose, John; Liang, Meihua; Lindgren, Richard; Liyanage, Nilanga; Lolos, George; Lourie, Robert; Madey, Richard; Maeda, Kazushige; Malov, Sergey; Manley, D.; Marchand, Claude; Marchand, Dominique; Margaziotis, Demetrius; Markowitz, Pete; Marroncle, Jacques; Martino, Jacques; McCormick, Kathy; McIntyre, Justin; Mehrabyan, Surik; Merchez, Fernand; Meziani, Zein-Eddine; Michaels, Robert; Miller, Gerald; Mougey, Jean; Nanda, Sirish; Neyret, Damien; Offermann, Edmond; Papandreou, Zisis; Perdrisat, Charles; Perrino, R.; Petratos, Gerassimos; Platchkov, Stephane; Pomatsalyuk, Roman; Prout, David; Punjabi, Vina; Pussieux, Thierry; Quemener, Gilles; Ransome, Ronald; Ravel, Oliver; Real, Jean-Sebastien; Renard, F.; Roblin, Yves; Rowntree, David; Rutledge, Gary; Rutt, Paul; Saha, Arunava; Saito, Teijiro; Sarty, Adam; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, Pavel; Souder, Paul; Suleiman, Riad; Templon, Jeffrey; Terasawa, Tatsuo; Tiator, Lothar; Tieulent, Raphael; Tomasi-Gustaffson, E.; Tsubota, Hiroaki; Ueno, Hiroaki; Ulmer, Paul; Urciuoli, Guido; Van De Vyver, R.; van der Meer, Rob; Vernin, Pascal; Vlahovic, B.; Voskanyan, Hakob; Voutier, Eric; Watson, J.W.; Weinstein, Lawrence; Wijesooriya, Krishni; Wilson, R.; Wojtsekhowski, Bogdan; Zainea, Dan; Zhang, Wei-Ming; Zhao, Jie; Zhou, Z.-L.

    2009-01-01

    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e'p)? exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2, and for the Q2-dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2-dependence is smooth. The measured ratio of H(e,e'p)? to H(e,e'p)?0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2-independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.

  7. Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles

    SciTech Connect

    Laveissiere, G.; Jaminion, S.; Salvo, R. Di; Berthot, J.; Bertin, P. Y.; Breton, V.; Fonvieille, H.; Grenier, P.; Ravel, O.; Roblin, Y.; Smirnov, G.; Jutier, C.; Hyde, C. E.; Todor, L.; Dodge, G. E.; McCormick, K.; Ulmer, P. E.

    2009-01-15

    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e{sup '}p){gamma} exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q{sup 2}=1 GeV{sup 2} and for the Q{sup 2} dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q{sup 2} dependence is smooth. The measured ratio of H(e, e{sup '}p){gamma} to H(e, e{sup '}p){pi}{sup 0} cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q{sup 2} independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.

  8. Dynamic holographic moiré patterns in photorefractive Bi12TiO20 and small-angle measurements.

    PubMed

    dos Santos, P A; Nunes, L C; Corrêa, I

    2000-09-01

    A procedure for obtaining real-time holographic moirélike patterns and measuring small angles is proposed. Two rotated sinusoidal phase gratings are superposed, and the result represents a promising technique for making small-angle measurements in metrological applications. The experiments are performed with a diffusion-only recording mechanism in the photorefractive crystal Bi12TiO20 illuminated by lambda = 0.633 microm light from a He-Ne laser.

  9. [Morphological changes of cerebral cortex in primary open-angle glaucoma patients under magnetic resonance imaging].

    PubMed

    Zhang, Yuyan; Zhao, Jin; Ning, Li; Zhang, Jinling; Tang, Weijun

    2015-09-08

    To observe the morphology changes of cerebral cortex in primary open-angle glaucoma (POAG) patients, and to explore the damage mechanism in the central nerve system. 30 patients, 19 males and 11 females (age ranged from 26 to 82 years old), who were diagnosed with POAG in the department of ophthalmology at Huashan Hospital of Fudan University from February 2011 to December 2012 were enrolled. Meanwhile, additional 30 age- and sex- matched patients were collected as controls. All subjects underwent a complete ophthalmic evaluation. As for magnetic resonance imaging (MRI), we adopted the scans of T1WI, T2WI and fluid attenuated inversion recovery (FLAIR) on a Siemens Magneton Verio 3T MRI machine with a 12-channel head coil. Subjects with space occupying or vascular lesion in brain imaging were excluded from the study. The three-dimensional magnetization prepared rapid acquisition gradient echo sequence (3D-MPRAGE) was used to acquire the volume data of whole brain of all subjects. SPM8 and VBM8 toolbox were used to analyze the image data. Voxel-based analysis was done for whole brain grey matter images. Compared with the control group, the volume of grey matter from several brain regions of the POAG patients decreased. These structures included left lingual gyrus (t=3.207, P=0.002), left medial frontal gyrus (t=2.912, P=0.004), right superior frontal gyrus (t=2.745, P=0.005), left middle temporal gyrus (t=2.958, P=0.003), right precuneus (t=3.291, P=0.001), right postcentral gyrus (t=3.306, P=0.001), left inferior parietal lobule(t=2.716, P=0.006), left parahippocampa gyrus (t=2.815, P=0.005). The results were assessed with comparative t-test to perform statistical analysis. When t>2.479, P<0.01, the difference between the two groups was considered statistically significant. The volume of grey matter in POAG patients' brain decreased in several regions. It is illustrated that POAG is a syndrome, which causes damages in the brain of POAG patients at multi-aspects and

  10. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer

    PubMed Central

    Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based

  11. NanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles

    PubMed Central

    Razado-Colambo, I.; Avila, J.; Nys, J.-P.; Chen, C.; Wallart, X.; Asensio, M.-C.; Vignaud, D.

    2016-01-01

    The structural and electronic properties of twisted bilayer graphene (TBG) on SiC(000) grown by Si flux-assisted molecular beam epitaxy were investigated using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy with nanometric spatial resolution. STM images revealed a wide distribution of twist angles between the two graphene layers. The electronic structure recorded in single TBG grains showed two closely-spaced Dirac π bands associated to the two stacked layers with respective twist angles in the range 1–3°. The renormalization of velocity predicted in previous theoretical calculations for small twist angles was not observed. PMID:27264791

  12. NanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles.

    PubMed

    Razado-Colambo, I; Avila, J; Nys, J-P; Chen, C; Wallart, X; Asensio, M-C; Vignaud, D

    2016-06-06

    The structural and electronic properties of twisted bilayer graphene (TBG) on SiC(000) grown by Si flux-assisted molecular beam epitaxy were investigated using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy with nanometric spatial resolution. STM images revealed a wide distribution of twist angles between the two graphene layers. The electronic structure recorded in single TBG grains showed two closely-spaced Dirac π bands associated to the two stacked layers with respective twist angles in the range 1-3°. The renormalization of velocity predicted in previous theoretical calculations for small twist angles was not observed.

  13. Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray scattering.

    PubMed

    Fukuda, Masakazu; Watanabe, Atsushi; Hayasaka, Akira; Muraoka, Masaru; Hori, Yuji; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2017-03-01

    In this study, we investigated the concentration range in which self-association starts to form in humanized IgG monoclonal antibody (mAb) solutions. Furthermore, on the basis of the results, we developed a practical method of screening for low-viscosity antibody solutions by using small-angle X-ray scattering (SAXS) measurements utilizing small quantities of samples. With lower-viscosity mAb3, self-association was not detected in the range of 1-80mg/mL. With higher-viscosity mAb1, on the other hand, self-association was detected in the range of 10-20mg/mL and was clearly enhanced by a decrease in temperature. The viscosities of mAb solutions at 160, 180, and 200mg/mL at 25°C quantitatively correlated very well with the particle size parameters obtained by SAXS measurements of mAb solutions at 15mg/mL at 5°C. The quantity of mAb sample required for the SAXS measurements was only 0.15mg, which is about one-hundredth of that required for actual viscosity measurements at a high concentration, and such quantities could be available even at an early stage of development. In conclusion, the SAXS analysis method proposed in this study is a valuable tool for the development of concentrated mAb therapeutics with high manufacturability and high usability for subcutaneous injection.

  14. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.

    PubMed

    Franke, D; Petoukhov, M V; Konarev, P V; Panjkovich, A; Tuukkanen, A; Mertens, H D T; Kikhney, A G; Hajizadeh, N R; Franklin, J M; Jeffries, C M; Svergun, D I

    2017-08-01

    ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5-2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER, an assessment of the reconstruction ambiguity of experimental data; DATCLASS, a multiclass shape classification based on experimental data; SASRES, for estimating the resolution of ab initio model reconstructions; CHROMIXS, a convenient interface to analyse in-line size exclusion chromatography data; SHANUM, to evaluate the useful angular range in measured data; SREFLEX, to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low- and high-resolution models; and SASPy, the ATSAS plugin for interactive modelling in PyMOL. All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.embl-hamburg.de/biosaxs/software.html.

  15. Intrinsic flexibility of West Nile virus protease in solution characterized using small-angle X-ray scattering.

    PubMed

    Garces, Andrea P; Watowich, Stanley J

    2013-10-01

    West Nile virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection can cause severe neurological disease and fatality in humans. Efforts are ongoing to develop antiviral drugs that inhibit the WNV protease, a viral enzyme required for polyprotein processing. Unfortunately, little is known about the solution structure of recombinant WNV protease (NS2B-NS3pro) used for antiviral drug discovery and development, although X-ray crystal structures and nuclear magnetic resonance (NMR) studies have provided valuable insights into the interactions between NS2B-NS3pro and peptide-based inhibitors. We completed small-angle X-ray scattering and Fourier transform infrared spectroscopy experiments to determine the solution structure and dynamics of WNV NS2B-NS3pro in the absence of a bound substrate or inhibitor. Importantly, these solution studies suggested that all or most of the NS2B cofactor was highly flexible and formed an ensemble of structures, in contrast to the NS2B tertiary structures observed in crystallographic and NMR studies. The secondary structure of NS2B-NS3pro in solution had high β-content, similar to the secondary structure observed in crystallographic studies. This work provided evidence of the intrinsic flexibility and conformational heterogeneity of the NS2B chain of the WNV protease in the absence of substratelike ligands, which should be considered during antiviral drug discovery and development efforts.

  16. Small bowel magnetic resonance imaging for inflammatory bowel disease.

    PubMed

    Schunk, Klaus

    2002-12-01

    The presented concept of hydro-magnetic resonance imaging (MRI) using a 2.5% mannitol solution as an orally applicable intraluminal contrast agent is a meaningful, reproducible, and reliable imaging method for the depiction of the small bowel. Especially in patients with Crohn's disease, hydro-MRI is the imaging method of first choice because hydro-MRI offers the advantage of a superior depiction of the inflamed bowel wall and the extramural complications of this disease without radiation exposure. In addition, hydro-MRI allows for a reliable assessment of the inflammatory activity, especially for the differentiation between an active and an inactive (scarred) stenosis. In particular, the mural enhancement, the length as well as the wall thickness of inflamed bowel segments, are considered to be significant MR parameters for the determination of the activity of Crohn's disease. Hydro-MRI of the colon is suitable for the depiction of pathologic changes in ulcerative colitis, but in contrast to Crohn's disease, the assessment of disease activity by hydro-MRI is unreliable in ulcerative colitis, probably because of the low spatial resolution (mucositis in ulcerative colitis vs. transmural inflammation in Crohn's disease). Hydro-MRI does not allow a reliable classification of inflammatory bowel diseases, but in ambiguous cases, hydro-MRI may provide helpful information for the differentiation of Crohn's disease and ulcerative colitis. There are no data of larger patient groups published regarding MR findings in inflammatory bowel diseases besides Crohn's disease and ulcerative colitis, but hydro-MRI is a promising imaging tool for these entities, which should be assessed in additional studies.

  17. Modeling the Structure of RNA Molecules with Small-Angle X-Ray Scattering Data

    PubMed Central

    Gajda, Michal Jan; Martinez Zapien, Denise; Uchikawa, Emiko; Dock-Bregeon, Anne-Catherine

    2013-01-01

    We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS) data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA structures, along with a small multimetric benchmark of the proposed method. PMID:24223750

  18. Primary Open Angle Glaucoma is Associated with MR Biomarkers of Cerebral Small Vessel Disease.

    PubMed

    Mercieca, Karl; Cain, John; Hansen, Thomas; Steeples, Laura; Watkins, Amy; Spencer, Fiona; Jackson, Alan

    2016-02-29

    This prospective study tests the hypotheses that: 1) glaucoma is associated with evidence of cerebral small vessel disease; 2) that imaging biomarkers of cerebral small vessel disease in POAG and NTG will show different characteristics. 12 normal controls, 7 patients with primary open angle glaucoma (POAG) and 9 patients with normal tension glaucoma (NTG) were recruited. Ophthalmological clinical assessment and MR imaging of the brain were performed. MR imaging was used to quantify white matter lesion load, frequency of dilated perivascular spaces (PVS) and abnormalities in cerebral hydrodynamics. Patients with POAG had significantly greater white matter lesion load (p < 0.05), more PVS in the centrum semiovale (p < 0.05) and had higher overall PVS scores than controls (p < 0.05). In the POAG group, optic cup-to-disc ratio (CDR) was positively correlated with deep white matter hyperintensities (R(2) = 0.928, p < 0.01). Mean deviation on the Humphrey visual field assessment was negatively correlated with deep white matter lesion load (R(2) = -0.840, p < 0.01), total white matter lesion load (R(2) = -0.928, p < 0.01) and total PVS (R(2) = -0.820, p < 0.01). MR evidence of cerebral small vessel disease is strongly associated with a diagnosis of POAG and with the severity of abnormalities in CDR and visual field.

  19. Reflective small angle electron scattering to characterize nanostructures on opaque substrates

    NASA Astrophysics Data System (ADS)

    Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  20. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  1. Small-angle x-ray scattering study on the structure of microcrystalline and nanofibrillated cellulose

    NASA Astrophysics Data System (ADS)

    Leppänen, Kirsi; Pirkkalainen, Kari; Penttilä, Paavo; Sievänen, Jenni; Kotelnikova, Nina; Serimaa, Ritva

    2010-10-01

    The effects of different solvents on the structure of microcrystalline and nanofibrillated cellulose (MCC, NFC) were studied using small-angle x-ray scattering (SAXS). MCC was immersed in water, ethanol, and acetone, and NFC was immersed only in water and ethanol, but studied also in the form of foam-like water-NFC-gel in wet, air-dried and re-wet states. The solvent affected the average chord length, which reveals the typical length scale of the structure of the sample: 2.4 ± 0.1 nm was obtained for MCC-water, 2.5 ± 0.1 nm for re-wet NFC-gel, 1.6 ± 0.1 nm for MCC-ethanol, 1.2 ± 0.1 nm for NFC-ethanol, and 1.3 ± 0.1 nm for MCC-acetone. The specific surface of cellulose increased strongly when MCC and NFC were immersed in the solvents compared to dry cellulose. The specific surface of cellulose was determined to be larger for NFC-water than MCC-water, and slightly larger for dry NFC powder than for dry MCC, which can be explained by the fact that the width of cellulose crystallites perpendicular to the cellulose chain direction was slightly larger in MCC than in NFC on the basis of wide-angle x-ray scattering results.

  2. Small-angle x-ray scattering studies of the manganese stabilizing subunit in photosystem II.

    SciTech Connect

    Svensson, B.; Tiede, D. M.; Barry, B. A.; Univ. of Minnesota

    2002-08-29

    Small-angle X-ray scattering studies (SAXS) were used to determine the size, shape, and oligomeric composition of the manganese stabilizing protein (MSP) of photosystem II. This extrinsic protein subunit plays an important role in photosynthetic oxygen evolution. As its name implies, MSP stabilizes the tetranuclear Mn cluster of the water oxidation complex. Removal of MSP lowers activity and decreases the stability of active-site manganese. Reconstitution of MSP reverses these effects. In this study, MSP was extracted from spinach PSII membranes using CaCl{sub 2} or urea. Through the use of MALDI-TOF mass spectrometry, the molecular weight of MSP was determined to be 26.53 kDa. X-ray scattering results show that both samples display a monodisperse scattering pattern; this pattern is consistent with a homogeneous protein solution. The CaCl{sub 2} extracted and urea extracted MSP samples have radii of gyration of 25.9 {+-} 0.4 and 27.0 {+-} 0.01 {angstrom}, respectively. MSP is shown to be monomeric in solution. This was determined using a cytochrome c standard and the scattering intensity, extrapolated to zero scattering angle, which is proportional to the molecular weight. This SAXS study suggests that, in solution, MSP is a monomeric, elongated prolate ellipsoid with dimensions, 112 x 23 x 23 {angstrom}{sup 3} and an axial ratio of 4.8.

  3. On the small angle twist sub-grain boundaries in Ti3AlC2

    PubMed Central

    Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun

    2016-01-01

    Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al–Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations. PMID:27034075

  4. Small Angle Neutron Scattering Study of Nano Sized Precipitates in Ferrous Alloys.

    PubMed

    Han, Young-Soo; Park, Duck-Gun; Kobayashi, Satoru

    2015-11-01

    Nano-sized precipitates in a Fe-1 wt% Cu alloy were studied by SANS (Small Angle Neutron Scattering). The SANS experiments were performed with the 40 m SANS instrument at HANARO. Due to the ferromagnetic nature of the ferrous alloys, a horizontal magnetic field of 1 Tesla was applied during the SANS experiment. The nano-sized Cu precipitates were quantitatively analyzed by SANS in the Fe-1 wt% Cu alloy. The size of the precipitates increased from 2 nm to 4 nm with increasing aging time from 20 min. to 1800 min. at 753 K. The measured A-ratio obtained from SANS data increased from 2.2 to 6.6 with increasing aging time. It is surmised that Cu clusters containing a large amount of Fe are initiated at the early stage of aging and the Fe content in the Cu precipitate decreases with increasing aging time and eventually an almost pure BCC Cu precipitate is formed.

  5. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    SciTech Connect

    Lipfert, Jan; Doniach, Sebastian; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

    2007-09-18

    Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of algorithms for the reconstruction of 3-D electron density maps from 1-D scattering profiles have made possible the generation of useful low-resolution molecular models from SAXS data. Furthermore, SAXS is well suited for the study of unfolded or partially folded conformational ensembles as a function of time or solution conditions. Here, we review recently developed algorithms for 3-D structure modeling and applications to protein complexes. Furthermore, we discuss the emerging use of SAXS as a tool to study membrane protein-detergent complexes. SAXS is proving useful to study the folding of functional RNA molecules, and finally we discuss uses of SAXS to study ensembles of denatured proteins.

  6. Study of (Cyclic Peptide)-Polymer Conjugate Assemblies by Small-Angle Neutron Scattering.

    PubMed

    Koh, Ming Liang; FitzGerald, Paul A; Warr, Gregory G; Jolliffe, Katrina A; Perrier, Sébastien

    2016-12-19

    We present a fundamental study into the self-assembly of (cyclic peptide)-polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small-angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self-assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  8. Small angle neutron scattering as fingerprinting of ancient potteries from Sicily (Southern Italy)

    SciTech Connect

    Barone, G.; Mazzoleni, P.; Crupi, V.; Majolino, D.; Venuti, V.; Teixeira, J.

    2009-09-01

    Small angle neutron scattering measurements have been carried out in order to investigate, in microdestructive way, the mesoscopic structure of a variety of potteries of relevance to cultural heritage coming from different Sicilian (Southern Italy) archeological sites belonging to the 'Strait of Messina' area and dated back to 7th-3rd century B.C. Data have been compared with the mesoscopic parameters extracted for two series of clayey sediments typical of the Strait of Messina area and fired under controlled conditions. The observed agreement between the features of reference and archeological samples allowed us to estimate the maximum firing temperature of the latter. Information on the pore sizes was obtained by the use of the concept of fractal surface, and compared with porosimetry results.

  9. Structural characterization of chaos game fractals using small-angle scattering analysis.

    PubMed

    Anitas, Eugen Mircea; Slyamov, Azat

    2017-01-01

    Small-angle scattering (SAS) technique is applied to study the nano and microstructural properties of spatial patterns generated from chaos game representation (CGR). Using a simplified version of Debye formula, we calculate and analyze in momentum space, the monodisperse scattering structure factor from a system of randomly oriented and non-interacting 2D Sierpinski gaskets (SG). We show that within CGR approach, the main geometrical and fractal properties, such as the overall size, scaling factor, minimal distance between scattering units, fractal dimension and the number of units composing the SG, can be recovered. We confirm the numerical results, by developing a theoretical model which describes analytically the structure factor of SG. We apply our findings to scattering from single scale mass fractals, and respectively to a multiscale fractal representing DNA sequences, and for which an analytic description of the structure factor is not known a priori.

  10. Structural characterization of chaos game fractals using small-angle scattering analysis

    PubMed Central

    Slyamov, Azat

    2017-01-01

    Small-angle scattering (SAS) technique is applied to study the nano and microstructural properties of spatial patterns generated from chaos game representation (CGR). Using a simplified version of Debye formula, we calculate and analyze in momentum space, the monodisperse scattering structure factor from a system of randomly oriented and non-interacting 2D Sierpinski gaskets (SG). We show that within CGR approach, the main geometrical and fractal properties, such as the overall size, scaling factor, minimal distance between scattering units, fractal dimension and the number of units composing the SG, can be recovered. We confirm the numerical results, by developing a theoretical model which describes analytically the structure factor of SG. We apply our findings to scattering from single scale mass fractals, and respectively to a multiscale fractal representing DNA sequences, and for which an analytic description of the structure factor is not known a priori. PMID:28704515

  11. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    SciTech Connect

    Kulvelis, Yu. V. Lebedev, V. T.; Trunov, V. A.; Pavlyuchenko, V. N.; Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya.

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  12. Structure of phase-inversion membranes from small-angle neutron scattering data

    NASA Astrophysics Data System (ADS)

    Kul'velis, Yu. V.; Kononova, S. V.; Romashkova, K. A.; Lebedev, V. T.

    2014-01-01

    The structure of gradient-porous (asymmetric) membranes based on polyamide imide at different conditions of their formation has been investigated using small-angle neutron scattering. It has been shown that the membranes consist of rigid porous networks with well-defined interfaces between the polymer and the pores. It has been found that there are differences in the packings of structural elements of porous membranes-spherical pores with radii from 4 to 100 nm—depending on the membrane preformation time, drying regime, and the presence of fullerene C60 for modifying the mechanical and selective properties of membranes. The membranes also contain larger pores of micrometer sizes. Differences in the rates of saturation of membranes with water and their limiting swelling ratios are found, which can be explained by the structure of the dense layers of membranes (skin layer) and their different hydrophilities (depending on the fullerene content).

  13. Small-angle neutron scattering of nanocrystalline gadolinium and holmium with random paramagnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Döbrich, Frank; Bick, Jens-Peter; Birringer, Rainer; Wolff, Matthias; Kohlbrecher, Joachim; Michels, Andreas

    2015-02-01

    A neutron study of nanocrystalline terbium (Balaji G et al 2008 Phys. Rev. Lett. 100 227202) has shown that the randomly oriented anisotropy of the paramagnetic susceptibility tensor may lead to strongly correlated nanoscale spin disorder in the paramagnetic state which can be probed very effectively by magnetic small-angle neutron scattering (SANS). In principle, this scenario is also applicable to other rare-earth metals and the size of the effect is expected to scale with the strength of the anisotropy in the paramagnetic state. Here, we report SANS results (in the paramagnetic state) on nanocrystalline inert-gas condensed samples of Gd and Ho, which represent the cases of low and high anisotropy, respectively.

  14. Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering.

    SciTech Connect

    Tanaka, R.; Hunt, J. E.; Winans, R. E.; Thiyagarajan, P.; Sato, S.; Takanohashi, T.; Idemitsu Kosan Co.; National Institute of Advanced Industrial Science and Technology

    2003-01-01

    The objective of this study is to examine changes in the structures of petroleum asphaltene aggregates in situ with small-angle neutron scattering (SANS). Asphaltenes were isolated from three different crude oils: Maya, Khafji, and Iranian Light. An aliquot of the 5 wt % asphaltene solution in deuterated Decalin, 1-methylnaphthalene, or quinoline was loaded in a special stainless steel cell for SANS measurements. SANS data measured at various temperatures from 25 to 350 {sup o}C showed various topological features different with asphaltene or solvent species. A fractal network was formed only with asphaltene of Maya in Decalin, and it remained even at 350 {sup o}C. In all of the solvents, asphaltenes aggregate in the form of a prolate ellipsoid with a high aspect ratio at 25 {sup o}C and got smaller with increasing temperature. That became a compact sphere with the size of around 25 {angstrom} in radius at 350 {sup o}C.

  15. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements.

    PubMed

    Sedlak, Steffen M; Bruetzel, Linda K; Lipfert, Jan

    2017-04-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ(2)(q) = [I(q) + const.]/(kq), where I(q) is the scattering intensity as a function of the momentum transfer q; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  16. New developments in the ATSAS program package for small-angle scattering data analysis

    PubMed Central

    Petoukhov, Maxim V.; Franke, Daniel; Shkumatov, Alexander V.; Tria, Giancarlo; Kikhney, Alexey G.; Gajda, Michal; Gorba, Christian; Mertens, Haydyn D. T.; Konarev, Petr V.; Svergun, Dmitri I.

    2012-01-01

    New developments in the program package ATSAS (version 2.4) for the processing and analysis of isotropic small-angle X-ray and neutron scattering data are described. They include (i) multiplatform data manipulation and display tools, (ii) programs for automated data processing and calculation of overall parameters, (iii) improved usage of high- and low-resolution models from other structural methods, (iv) new algorithms to build three-dimensional models from weakly interacting oligomeric systems and complexes, and (v) enhanced tools to analyse data from mixtures and flexible systems. The new ATSAS release includes installers for current major platforms (Windows, Linux and Mac OSX) and provides improved indexed user documentation. The web-related developments, including a user discussion forum and a widened online access to run ATSAS programs, are also presented. PMID:25484842

  17. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    NASA Astrophysics Data System (ADS)

    Fernandez-Castanon, J.; Bomboi, F.; Rovigatti, L.; Zanatta, M.; Paciaroni, A.; Comez, L.; Porcar, L.; Jafta, C. J.; Fadda, G. C.; Bellini, T.; Sciortino, F.

    2016-08-01

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  18. Small angle x-ray scattering studies of carbon anodes used in lithium rechargeable batteries.

    SciTech Connect

    Sandi, G.; Carrado, K. A.; Winans, R. E.; Seifert, S.; Johnson, C. S.

    1999-11-16

    In ANL laboratories, disordered carbons with predictable surface area and porosity properties have been prepared using inorganic templates containing well defined pore sizes. The carbons have been tested in electrochemical cells as anodes in lithium secondary batteries. They deliver high specific capacity and display excellent performance in terms of the number of cycles run. In situ small angle X-ray scattering (SAXS) during electrochemical cycling was carried out at the Advanced Photon Source, at ANL. In order to monitor the carbon electrode structural changes upon cycling, an electrochemical cell was specially designed to allow for the application of electrical current and the collection of SAXS data at the same time. Results show that upon cycling the structure of the carbon remains unchanged, which is desirable in reversible systems.

  19. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  20. Elucidating the Molecular Deformation Mechanism of Entangled Polymers in Fast Flow by Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Sanchez-Diaz, Luis; Cheng, Shiwang; Hong, Kunlun; Chen, Wei-Ren; Liu, Jianning; Lin, Panpan; Wang, Shi-Qing

    Understanding the viscoelastic properties of polymers is of fundamental and practical importance because of the vast and ever expanding demand of polymeric materials in daily life. Our current theoretical framework for describing the nonlinear flow behavior of entangled polymers is built upon the tube model pioneered by de Gennes, Doi, and Edwards. In this work, we critically examine the central hypothesis of the tube model for nonlinear rheology using small angle neutron scattering (SANS). While the tube model envisions a unique non-affine elastic deformation mechanism for entangled polymers, our SANS measurements show that the evolution of chain conformation of a well-entangled polystyrene melt closely follows the affine deformation mechanism in uniaxial extension, even when the Rouse Weissenberg number is much smaller than unity. This result provides a key clue for understanding the molecular deformation mechanism of entangled polymers in fast flow. Several implications from our analysis will be discussed in this talk.

  1. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; ...

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  2. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La0.7Sr0.3MnO3 (LSMO) and Nd0.5Sr0.5MnO3, in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields.

  3. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    PubMed Central

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    2017-01-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ2(q) = [I(q) + const.]/(kq), where I(q) is the scattering intensity as a function of the momentum transfer q; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors. PMID:28381982

  4. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  5. Data reduction for time-of-flight small-angle neutron scattering with virtual neutrons

    NASA Astrophysics Data System (ADS)

    Du, Rong; Tian, Haolai; Zuo, Taisen; Tang, Ming; Yan, Lili; Zhang, Junrong

    2017-09-01

    Small-angle neutron scattering (SANS) is an experimental technique to detect material structures in the nanometer to micrometer range. The solution of the structural model constructed from SANS strongly depends on the accuracy of the reduced data. The time-of-flight (TOF) SANS data are dependent on the wavelength of the pulsed neutron source. Therefore, data reduction must be handled very carefully to transform measured neutron events into neutron scattering intensity. In this study, reduction algorithms for TOF SANS data are developed and optimized using simulated data from a virtual neutron experiment. Each possible effect on the measured data is studied systematically, and suitable corrections are performed to obtain high-quality data. This work will facilitate scientific research and the instrument design at China Spallation Neutron Source.

  6. Microstructural investigations on Russian reactor pressure vessel steels by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Ulbricht, A.; Boehmert, J.; Strunz, P.; Dewhurst, C.; Mathon, M.-H.

    The effect of radiation embrittlement has a high safety significance for Russian VVER reactor pressure vessel steels. Heats of base and weld metals of the as-received state, irradiated state and post-irradiation annealed state were investigated using small-angle neutron scattering (SANS) to obtain insight about the microstructural features caused by fast neutron irradiation. The SANS intensities increase in the momentum transfer range between 0.8 and 3 nm-1 for all the material compositions in the irradiated state. The size distribution function of the irradiation-induced defect clusters has a pronounced maximum at 1 nm in radius. Their content varies between 0.1 and 0.7 vol.% dependent on material composition and increases with the neutron fluence. The comparison of nuclear and magnetic scattering indicates that the defects differ in their composition. Thermal annealing reduces the volume fraction of irradiation defect clusters.

  7. Titanium sample holder for small-angle x-ray scattering measurements of supercritical aqueous solutions

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Kusano, Kouhei; Nishikawa, Keiko; Miyagi, Hiroshi; Shimokawa, Yuji; Matsuo, Hitoshi

    2001-07-01

    A titanium high-temperature sample holder for small-angle x-ray scattering (SAXS) was newly constructed. It is applicable to aqueous solutions in the supercritical state up to 750 K and 50 MPa. The use of high-tension titanium for assemblies and high-purity titanium for gaskets enables us to apply the holder to fluids in extreme conditions such as supercritical water, supercritical aqueous solutions, and other corrosive hydrothermal aqueous solutions. Details are presented for the diamond window sealed by a flange set made of titanium. The seal is superior to the conventional unsupported-area-seal by a screw cap and plug for the titanium high-temperature sample holder. As a test of the instrument, the SAXS experiments for supercritical water were made at the isothermal condition of T=662 K with pressures from 22.8 to 29.3 MPa. The first SAXS measurements for supercritical aqueous solution were also carried out.

  8. Protein structure and interactions in the solid state studied by small-angle neutron scattering.

    PubMed

    Curtis, Joseph E; McAuley, Arnold; Nanda, Hirsh; Krueger, Susan

    2012-01-01

    Small-angle neutron scattering (SANS) is uniquely qualified to study the structure of proteins in liquid and solid phases that are relevant to food science and biotechnological applications. We have used SANS to study a model protein, lysozyme, in both the liquid and water ice phases to determine its gross-structure, interparticle interactions and other properties. These properties have been examined under a variety of solution conditions before, during, and after freezing. Results for lysozyme at concentrations of 50 mg mL(-1) and 100 mg mL(-1), with NaCl concentrations of 0.4 M and 0 M, respectively, both in the liquid and frozen states, are presented and implications for food science are discussed.

  9. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  10. Characterization of Nanocomposite filler Morphology using Ultra Small-Angle X-ray Scattering

    SciTech Connect

    Justice, Ryan S.; Schaefer, Dale W.

    2010-10-22

    Loading polymer matrices with nanoscale fillers is widely believed to have the potential to push polymer properties to extreme values. Realization of anticipated properties, however, has proven elusive. Recent nanocomposite research suggests better characterization of the large-scale morphology will provide insight explaining these shortfalls. This work will present ultra-small angle X-ray scattering as a viable tool for elucidating the hierarchical filler morphology that exists within polymer nanocomposites. Scattering analysis tools developed by our group will be applied to scattering data from nanocomposites filled with carbon nanotubes, layered silicates, and colloidal silica. The relationship between imaging data and scattering data will be discussed in the context of filler dispersion. Finally, the impact of large-scale filler morphology on mechanical and electrical properties will be discussed.

  11. Nanoscopic mechanism of Cu precipitation at small-angle tilt boundaries in Si

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Inoue, Kaihei; Kutsukake, Kentaro; Deura, Momoko; Ohsawa, Takayuki; Yonenaga, Ichiro; Yoshida, Hideto; Takeda, Seiji; Taniguchi, Ryo; Otubo, Hideki; Nishitani, Sigeto R.; Ebisawa, Naoki; Shimizu, Yasuo; Takamizawa, Hisashi; Inoue, Koji; Nagai, Yasuyoshi

    2015-06-01

    We investigate copper (Cu) precipitation at small-angle tilt boundaries on (220) in Czochralski-grown p-type silicon (Si) ingots using transmission electron microscopy, atom probe tomography, and ab initio calculations. In the initial stage of precipitation, Cu atoms agglomerate along the boundaries, forming coherent layers (less than about 2 nm thick) of Cu3Si with a body-centered-cubic structure in a metastable state (a =0.285 nm). As the layers thicken, they become semicoherent with misfit dislocations on the (220) interphase boundaries, reducing coherency strains. Subsequently, the metastable layers convert into incoherent polyhedrons of orthorhombic η''-Cu3Si in the equilibrium state, forming interphase boundaries on {112} in Si. These results are similar to the Cu precipitation processes found in metallic alloys: the formation of Guinier-Preston zones followed by a conversion into the equilibrium θ phase.

  12. Small-angle Scattering Study of Mesoscopic Structures in Charged Gel and Their Evolution in Dehydration

    SciTech Connect

    Sugiyama, M.; Annaka, M.; Hara, K.; Vigild, M. E.; Wignall, George D

    2003-01-01

    Mesoscopic structures, with length scales {approx}10{sup 2} {angstrom}, were investigated by small-angle X-ray and neutron scattering (SAXS and SANS) in several N-isopropylacrylamide-sodium acrylate (NIPA-SA) copolymeric hydrogels with varying [NIPA]/[SA] ratios and water contents. The SAXS experiments reveal that, depending upon the [NIPA]/[SA] ratio, the dehydrated NIPA-SA gel shows two mesoscopic structures: one consists of randomly distributed SA-rich islands in NIPA matrix, while the other is a microphase-separated structure, composed of NIPA-rich and SA-rich domains. In addition, the SANS experiments reveal the mesoscopic structural features during the dehydration process. As the concentration of the network polymers increases, NIPA-rich and water-rich domains segregate in the gel. Then, an electrostatic interaction between the segregated domains induces a microphase-separated structure in the limit of the dehydrated NIPA-SA gel.

  13. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  14. Small angle neutron scattering (SANS and V-SANS) study of asphaltene aggregates in crude oil.

    PubMed

    Headen, Thomas F; Boek, Edo S; Stellbrink, Jörg; Scheven, Ulrich M

    2009-01-06

    We report small angle neutron scattering (SANS) experiments on two crude oils. Analysis of the high-Q SANS region has probed the asphaltene aggregates in the nanometer length scale. We find that the radius of gyration decreases with increasing temperature. We show that SANS measurements on crude oils give similar aggregate sizes to those found from SANS measurements of asphaltenes redispersed in deuterated toluene. The combined use of SANS and V-SANS on crude oil samples has allowed the determination of the radius of gyration of large scale asphaltene aggregates of approximately 0.45 microm. This has been achieved by the fitting of Beaucage functions over two size regimes. Analysis of the fitted Beaucage functions at very low-Q has shown that the large scale aggregates are not simply made by aggregation of all the smaller nanoaggregates. Instead, they are two different aggregates coexisting.

  15. Structural Analysis of the Flagellar Component Proteins in Solution by Small Angle X-Ray Scattering.

    PubMed

    Lee, Lawrence K

    2017-01-01

    Small angle X-ray scattering is an increasingly utilized method for characterizing the shape and structural properties of proteins in solution. The technique is amenable to very large protein complexes and to dynamic particles with different conformational states. It is therefore ideally suited to the analysis of some flagellar motor components. Indeed, we recently used the method to analyze the solution structure of the flagellar motor protein FliG, which when combined with high-resolution snapshots of conformational states from crystal structures, led to insights into conformational transitions that are important in mediating the self-assembly of the bacterial flagellar motor. Here, we describe procedures for X-ray scattering data collection of flagellar motor components, data analysis, and interpretation.

  16. Convex and concave successions of power-law decays in small-angle scattering

    NASA Astrophysics Data System (ADS)

    Anitas, E. M.

    2016-08-01

    The small-angle scattering (SAS) structure factor from a new model of a 3D deterministic fractal in which the relative positions and the number of structural units vary with fractal iteration number is calculated. It is shown that, depending on the relative positions of scattering units inside the fractal, we can obtain various types of power-law successions, such as: convex/concave - when the absolute value of the scattering exponent of the first power-law decay is higher/smaller than that of the subsequent power- law decay, or any combination of them (i.e. convex-concave or concave-convex). The obtained results can explain experimental SAS (neutron or X-rays) data which are characterized by a succession of power-law decays of arbitrary length.

  17. Beyond the small-angle approximation for MBR anisotropy from seeds

    SciTech Connect

    Stebbins, A. ); Veeraraghavan, S. )

    1995-02-15

    In this paper we give a general expression for the energy shift of massless particles traveling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is [ital not] assumed that matter is nonrelativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the observer's velocity) depends only on the matter distribution on the observer's past light cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of an object such as a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.

  18. Nucleon-nucleon scattering at small angles, measured at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Bagdasarian, Z.

    2016-03-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.

  19. Multiple size scale structures in silica/siloxane composites studied by small-angle scattering

    SciTech Connect

    Beaucage, G.; Schaefer, D.W.; Ulibarri, T.; Black, E.

    1993-12-31

    The physical properties of in-situ produced composites, such as the TEOS-polysiloxane based systems, are directly related to the complex interaction of structural features from the nano- to macro-scopic scales. The nature of these structural interactions are a key element in understanding and controlling mechanical properties in these systems. We believe that the smallest scale structures, in the nanometer range, correlate with properties such as the modulus while large-scale structures on the micron scale effect failure in these materials. This paper discusses techniques for analysis of structural features and interrelation of structural features over these wide ranges of size using small-angle light, x-ray and neutron scattering. Combination of data from different instruments allows for characterization of the interaction between these different size scale features.

  20. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  1. Structure of nanocrystalline palladium and copper studied by small angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Barker, J.G.

    1996-12-01

    The structure of nanocrystalline palladium and copper, made by inert gas condensation and compaction, was studied using small angle neutron scattering (SANS), optical microscopy, and scanning electron microscopy. The effects of annealing and warm compaction were also examined with these techniques. The SANS results were interpreted using a maximum entropy routine, combined with knowledge of the Archimedes density and hydrogen concentration determined by prompt gamma activation analysis (PGAA). Similar hydrogen concentrations were detected by SANS and PGAA. This hydrogen content, which was approximately 5 at.{percent} in samples compacted at room temperature, was reduced by both annealing and warm compaction. Defects in several size classes were observed, including missing grain pores ({approx_equal}1{endash}50 nm diameter) and defects of micrometer size. Warm compaction produced a lower number density of pores in nanocrystalline palladium, which led to increased density. The observed structure was correlated with Vickers microhardness and fracture surface morphology. {copyright} {ital 1996 Materials Research Society.}

  2. Small Angle X-ray Diffraction Study of DNA—Cationic Liposomes Aggregates

    NASA Astrophysics Data System (ADS)

    Pullmannová, Petra; Uhríková, Daniela; Funari, Sergio S.; Lacko, Ivan; Devínsky, Ferdinand; Balgavý, Pavol

    2010-01-01

    The microstructure of DNA—dioleoylphosphatidylethanolamine (DOPE)—propane-1,3-diyl-bis(dodecyldimethylammonium bromide) (C3GS12) aggregates as a function of the C3GS12:DOPE molar ratio and temperature was investigated using small angle X-ray diffraction. At 20° C, we observe a condensed lamellar phase (Lαc) with the lattice parameter d˜6.8-6.2 nm and the DNA—DNA distance dDNA˜5.8-3.2 nm decreasing with increasing content of C3GS12 in the phospholipid bilayer. Increase in temperature induces a phase transition from Lαc phase to condensed inverted hexagonal phase (HIIc). The temperature of the Lαc→HIIc phase transition increases with increasing C3GS12:DOPE molar ratio.

  3. Small angle x-ray scattering and electron microscopy of nanoparticles formed in an electrical arc

    NASA Astrophysics Data System (ADS)

    Carvou, E.; Garrec, J. L. Le; Pérez, J.; Praquin, J.; Djeddi, M.; Mitchell, J. B. A.

    2013-03-01

    Small Angle X-ray Scattering has been used to characterize nanoparticles generated by electrical arcing between metallic (AgSnO2) electrodes. The particles are found to have diameters between 30 and 40 nm and display smooth surfaces suggesting that they are either in liquid form or have solidified from the liquid state. Particles collected around the electrodes were analyzed by Transmission Electron Microscopy and were seen to be much larger than those seen in the SAXS measurement, to be spherical in form and composed of silver metal with irregular tin oxide particles deposited on their surface. Mixed metal nanoparticles can have important practical applications and the use of mixed sintered electrodes may be a direct method for their production.

  4. Spin echo small angle neutron scattering using a continuously pumped {sup 3}He neutron polarisation analyser

    SciTech Connect

    Parnell, S. R.; Li, K.; Yan, H.; Stonaha, P.; Li, F.; Wang, T.; Baxter, D. V.; Snow, W. M.; Washington, A. L.; Walsh, A.; Chen, W. C.; Parnell, A. J.; Fairclough, J. P. A.; Pynn, R.

    2015-02-15

    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of {sup 3}He. We describe the performance of the analyser along with a study of the {sup 3}He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

  5. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet

    NASA Astrophysics Data System (ADS)

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-06-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  6. Small-angle scattering as a tool to study the thermal denaturation of DNA

    NASA Astrophysics Data System (ADS)

    Wood, Kathleen; Knott, Robert; Tonchev, Ognyan; Angelov, Dimitar; Theodorakopoulos, Nikos; Peyrard, Michel

    2014-10-01

    DNA thermal denaturation is the breaking of the base pairs, leading to a splitting of the two strands of the double helix. While it is easy to measure the fraction of open base pairs (f) vs. temperature, determining the fraction (p) of fully open molecules is much harder. Previously, the simultaneous recording of f and p could only be achieved for special sequences. We show that small-angle scattering of X-rays or neutrons allows the measurement of p for any sequence. We illustrate the method with a SAXS investigation of two sequences designed to exhibit different melting profiles and compare the SAXS data with nano-calorimetric measurements of the melting curve.

  7. Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution

    NASA Astrophysics Data System (ADS)

    Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.

    2016-09-01

    The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.

  8. Anomalous small-angle x-ray scattering of a femtosecond irradiated germano silicate fibre preform.

    SciTech Connect

    Hindle, F.; Fertein, E.; Seifert, S.; Przygodski, C.S.; Bocquet, R.; Douay, M.; Bychkov, E.; Experimental Facilities Division; LPCA, CNRS; PhLAM; Univ. des Sciences et Tech. de Lille

    2005-01-01

    RADIATION is shown to induce significant mesoscopic structure. The scattering intensity for irradiated glasses is close to two orders of magnitude greater than that of unexposed material. Anomalous small-angle X-ray scattering (ASAXS) around the germanium K-edge for the silica and germanium doped silica regions of a fiber preform is used to demonstrate that identical structures are induced in both glass materials, with germanium displaying a capacity to isomorphically replace silicon in the case of the germanium doped silica. Analysis of measured scattering indicates that photo-inscribed features are produced at two distinct scales with typical radii of R {approx} 20 Angstroms and R{sub min} {approx} 200 Angstroms.

  9. Brain tumor imaging using small-angle x-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Jensen, Torben H.; Bech, Martin; Bunk, Oliver; Thomsen, Maria; Menzel, Andreas; Bouchet, Audrey; Le Duc, Géraldine; Feidenhans'l, Robert; Pfeiffer, Franz

    2011-03-01

    We demonstrate high-resolution small-angle x-ray scattering computed tomography (SAXS-CT) of soft matter and soft tissue samples. Complete SAXS patterns over extended ranges of momentum transfer are reconstructed spatially resolved from volumes inside an extended sample. Several SAXS standard samples are used to quantitatively validate the method and demonstrate its performance. Further results on biomedical tissue samples (rat brains) are presented that demonstrate the advantages of the method compared to existing biomedical x-ray imaging approaches. Functional areas of the brains as well as tumor morphology are imaged. By providing insights into the structural organization at the nano-level, SAXS-CT complements and extends results obtainable with standard methods such as x-ray absorption tomography and histology.

  10. SOLPS modeling of an innovative small-angle slot divertor concept for low-density detachment

    NASA Astrophysics Data System (ADS)

    Covele, B.; Sang, C.; Guo, H.; Lao, L.; Stangeby, P.; Thomas, D.

    2016-10-01

    SOLPS modeling offers insight into how a new Small-Angle Slot (SAS) divertor concept exploits the role of neutral trapping to exhaust power and particles at lower core densities than even highly slanted divertors. The special SAS baffling structure enhances volumetric power and momentum losses across the entire target profile, flattening temperatures even in the far SOL. SOLPS characterizes SAS heat and temperature handling for a spectrum of plasma and neutral source conditions, varying ne,sep, PSOL, heat flux width, gas puffing rates and locations, and pumping rates. Certain aspects of the baffling structure were also systematically varied to observe the effect on the neutral dynamics, particularly pressure gradients in D2 near the target. Radial transport coefficients were controlled to match midplane profiles to experimental H-mode profiles. The SAS divertor is an excellent testbed for probing the interplay between plasma and neutrals at the onset of detachment. The SAS concept is developed under General Atomics corporate funding.

  11. Toward a Taxonomy of the Denatured State: Small Angle Scattering Studies of Unfolded Proteins

    SciTech Connect

    Millett, I.S.; Doniach, S.; Plaxco, K.W.

    2005-02-15

    Despite the critical role the unfolded state plays in defining protein folding kinetics and thermodynamics (Berg et al., 2002; Dunker, 2002; Shortle, 2002; Wright and Dyson, 2002), our understanding of its detailed structure remains rather rudimentary; the heterogeneity of the unfolded ensemble renders difficult or impossible its study by traditional, atomic-level structural methods. Consequently, recent years have seen a significant expansion of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) techniques that provide direct, albeit rotationally and time-averaged, measures of the geometric properties of the unfolded ensemble. These studies have reached a critical mass, allowing us for the first time to define general observations regarding the nature of the geometry - and possibly the chemistry and physics - of unfolded proteins.

  12. Small angle neutron scattering study to determine the structure of high strength hydrogels.

    NASA Astrophysics Data System (ADS)

    Tominaga, Taiki; Tirumala, Vijay R.; Lin, Eric K.; Wu, Wen-Li; Gong, Jian Ping; Furukawa, Hidemitsu; Osada, Yoshihito

    2006-03-01

    Hydrogels are swollen polymer networks containing more than 90% water. Most hydrogels, however, are mechanically too weak to be used as load bearing devices. Gong et al. have overcome this problem by synthesizing hydrogels with a double network (DN) structure. Modifying the polyelectrolyte network structure by polymerization of high molecular weight uncharged polymer in situ, resulted in orders of magnitude increase in their load bearing ability. Despite 90% water, these tough gels exhibit a fracture stress of 170 kg/cm^2, similar to that of articular cartilage found in the bone-joints of human body. In this work, we determined the structure of DN-gels using small angle neutron scattering. Structural origins for high toughness found in DN-gels were then examined by comparing the structure of DN-gels with that of pure polyelectrolyte network and polyacrylamide solution.

  13. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  14. Study of the enzyme ascorbate oxidase by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Maritano, S.; Carsughi, F.; Fontana, M. P.; Marchesini, A.

    1996-09-01

    We report a study of the large scale structure of the "blue" copper enzyme ascorbate oxidase by small angle neutron scattering. The enzyme has been extracted from zucchini and studied in solutions of two different preparations. Contrast variation method was used by performing the measurements in water, heavy water and mixtures of H 2OD 2O. Our data show that, at least at the concentrations used here, the gyration radius of the enzyme is about 34 Å; with such a value our analysis is most consistent with a value of 70 KDa for the molecular weight of ascorbate oxidase in the conditions of our experiment. This is in contrast to the generally accepted value of 140 KDa, obtained by other techniques at high concentrations (e.g. greater than 2 mg ml -1). The possible origins of such a discrepancy are discussed.

  15. A Small-angle Study of the Solution Properties of Dendrimer-like Star Polymers

    SciTech Connect

    Pople, John A

    2001-03-22

    The solution properties of poly(e-caprolactone) dendritic polymers are investigated by small angle neutron scattering (SANS) techniques. Comparisons of the scattering function in the intermediate region of the SANS patterns with molecular dynamic simulations indicate that the dendritic polymers are relatively extended in their conformation. We report a decay exponent, which scales as l/{nu}, of -1.2, which suggests a conformation more extended than star polymers, approaching the case of sea urchins. Guinier plots of SANS patterns yield radius of gyration measurements R{sub g} {approx} 30{angstrom}, which increase with generation number. Modeling the scattering profiles according to a ''blob'' model yields values of the random walk persistence length <{xi}{sub E}> {approx} 10{angstrom}, which decreases with increasing polymerization generation.

  16. Small-angle Coulomb collision model for particle-in-cell simulations

    SciTech Connect

    Lemons, Don S. Winske, Dan; Daughton, William; Albright, Brian

    2009-03-20

    We construct and investigate a set of stochastic differential equations that incorporate the physics of velocity-dependent small-angle Coulomb collisions among the plasma particles in a particle-in-cell simulation. Each particle is scattered stochastically from all the other particles in a simulation cell modeled as one or more Maxwellians. Total energy and momentum are conserved by linear transformation of the velocity increments. In two test simulations the proposed 'particle-moment' collision algorithm performs well with time steps as large as 10% of the relaxation time - far larger than a particle-pairing collision algorithm, in which pairs of particles are scattered from one another, requires to achieve the same accuracy.

  17. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water

    NASA Astrophysics Data System (ADS)

    Wikfeldt, K. T.; Huang, C.; Nilsson, A.; Pettersson, L. G. M.

    2011-06-01

    We present extensive simulations on the TIP4P/2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (TW) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)], 10.1063/1.3495974 are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing TW, consistent with a recent determination of the critical pressure of TIP4P/2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P/2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching TW. Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  18. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water.

    PubMed

    Wikfeldt, K T; Huang, C; Nilsson, A; Pettersson, L G M

    2011-06-07

    We present extensive simulations on the TIP4P∕2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (T(W)) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)] are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing T(W), consistent with a recent determination of the critical pressure of TIP4P∕2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P∕2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching T(W). Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  19. External stability of a resonance during the descent of a spacecraft with a small variable asymmetry in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Lyubimov, V. V.; Lashin, V. S.

    2017-03-01

    We consider the problem of a spacecraft's descent with a small asymmetry in the rarefied martian atmosphere at low values of the angle of attack. The use of the method of averaging and conditions of external stability of the main resonance make it possible for us to determine several characteristic cases of occurrence of external stability and instability during rotation of the spacecraft. It is shown, that control of the asymmetry in the above-described problem can provide stabilization of rotation of the spacecraft.

  20. Resonator Sensitivity Optimization in Magnetic Resonance and the Development of a Magic Angle Spinning Probe for the NMR Study of Rare Spin Nuclei on Catalytic Surfaces.

    NASA Astrophysics Data System (ADS)

    Doty, Francis David

    The sensitivity of an arbitrary resonator for the detection of a magnetic resonance signal is derived from basic energy considerations, and is shown to be dependent on V(,s)/t(,90)P(' 1/2). The radiation damping time constant is shown to be inversely dependent on the rf filling factor. Several resonators are analyzed in detail. The optimum solenoid is shown to have a length of about 1.5 times the diameter. The multilayer solenoid and the capacitively shortened slotted line resonator are shown to have advantages for samples with high dielectric losses. The capacitively shortened slotted line resonator is shown to substantially reduce acoustic ringing problems. Efficient methods are discussed for double and triple tuning these resonators. A slotted cylindrical resonator is described which gives higher sensitivity and faster response time than conventional cavities for very small samples at X-band ESR frequencies. Double tuned circuits using lumped elements are shown to be generally more efficient than those using transmission lines in generating rf fields. The optimum inductance ratio of the two coils in a ('13)C, ('1)H CP experiment is about 3. The high speed cylindrical sample spinner is analyzed in terms of compressible fluid dynamics, resonant modes, and structural analysis to arrive at optimum air bearing and spinner design recommendations. The optimum radial clearance is shown to depend on the 1/3 power of the rotor diameter. The required air bearing hole diameter has a square root dependence on the rotor diameter. Air pockets are shown to increase the resonant frequencies. Relevant data for a number of high strength insulators including hard ceramics are tabulated, and limiting speeds are calculated. CP MAS experiments on a 5% monolayer of n-butylamine absorbed on (gamma)-alumina reveal six lines. By comparison with the liquid phase spectrum it was determined that at least two types of chemically different surface species were present and that surface

  1. Structure parameters of synaptic vesicles quantified by small-angle x-ray scattering.

    PubMed

    Castorph, Simon; Riedel, Dietmar; Arleth, Lise; Sztucki, Michael; Jahn, Reinhard; Holt, Matthew; Salditt, Tim

    2010-04-07

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons, and which are crucial in neurotransmission. After a rise in internal [Ca(2+)] during neuronal stimulation, SVs fuse with the plasma membrane releasing their neurotransmitter content, which then signals neighboring neurons. SVs are subsequently recycled and refilled with neurotransmitter for further rounds of release. Recently, tremendous progress has been made in elucidating the molecular composition of SVs, as well as putative protein-protein interactions. However, what is lacking is an empirical description of SV structure at the supramolecular level-which is necessary to enable us to fully understand the processes of membrane fusion, retrieval, and recycling. Using small-angle x-ray scattering, we have directly investigated the size and structure of purified SVs. From this information, we deduced detailed size and density parameters for the protein layers responsible for SV function, as well as information about the lipid bilayer. To achieve a convincing model fit, a laterally anisotropic structure for the protein shell is needed, as a rotationally symmetric density profile does not explain the data. Not only does our model confirm many of the preexisting ideas concerning SV structure, but also for the first time, to our knowledge, it indicates structural refinements, such as the presence of protein microdomains.

  2. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  3. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  4. Revealing nanocomposite filler structures by swelling and small-angle X-ray scattering.

    PubMed

    Baeza, Guilhem P; Genix, Anne-Caroline; Paupy-Peyronnet, Nathalie; Degrandcourt, Christophe; Couty, Marc; Oberdisse, Julian

    2016-01-01

    Polymer nanocomposites are used widely, mainly for the industrial application of car tyres. The rheological behavior of such nanocomposites depends in a crucial way on the dispersion of the hard filler particles - typically silica nanoparticles embedded in a soft polymer matrix. It is thus important to assess the filler structure, which may be quite difficult for aggregates of nanoparticles of high polydispersity, and with strong interactions at high loading. This has been achieved recently using a coupled TEM/SAXS structural model describing the filler microstructure of simplified industrial nanocomposites with grafted or ungrafted silica of high structural disorder. Here, we present an original method capable of reducing inter-aggregate interactions by swelling of nanocomposites, diluting the filler to low-volume fractions. Note that this is impossible to reach by solid mixing due to the large differences in viscoelasticity between the composite and the pure polymer. By combining matrix crosslinking, swelling in a good monomer solvent, and post-polymerization of these monomers, it is shown that it is possible to separate the filler into small aggregates. The latter have then been characterized by electron microscopy and small-angle X-ray scattering, confirming the conclusions of the above mentioned TEM-SAXS structural model applied directly to the highly loaded cases.

  5. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    SciTech Connect

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.

  6. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering.

    PubMed

    Eyssautier, Joëlle; Levitz, Pierre; Espinat, Didier; Jestin, Jacques; Gummel, Jérémie; Grillo, Isabelle; Barré, Loïc

    2011-06-02

    Complementary neutron and X-ray small angle scattering results give prominent information on the asphaltene nanostructure. Precise SANS and SAXS measurements on a large q-scale were performed on the same dilute asphaltene-toluene solution, and absolute intensity scaling was carried out. Direct comparison of neutron and X-ray spectra enables description of a fractal organization made from the aggregation of small entities of 16 kDa, exhibiting an internal fine structure. Neutron contrast variation experiments enhance the description of this nanoaggregate in terms of core-shell disk organization, giving insight into core and shell dimensions and chemical compositions. The nanoaggregates are best described by a disk of total radius 32 Å with 30% polydispersity and a height of 6.7 Å. Composition and density calculations show that the core is a dense and aromatic structure, contrary to the shell, which is highly aliphatic. These results show a good agreement with the general view of the Yen model (Yen, T. F.; et al. Anal. Chem.1961, 33, 1587-1594) and as for the modified Yen model (Mullins, O. C. Energy Fuels2010, 24, 2179-2207), provide characteristic dimensions of the asphaltene nanoaggregate in good solvent.

  7. Use of anomalous small angle x-ray scattering to investigate microstructural features in complex alloys

    SciTech Connect

    Weertman, J.R.

    1990-08-01

    The research thrust has been directed into two areas. The principal effort has been spent in an investigation of the use of anomalous small angle x-ray scattering (ASAXS) to observe changes in the microstructure of a relatively complex alloy produced by high temperature deformation or aging. A second effort involves a study of the high temperature behavior of several ferritic steels. In particular, we are investigating the precursors and earliest stages of fatigue crack initiation, especially how initiation is affected by hold times and by environment. We have been studying carbides in two ferritic steel alloys. The first is Fe9CrlMo modified by the addition of small amounts of the strong carbide formers, V and Nb. This alloy, which has been studied at ORNL and in the course of this grant, is used in power-generating equipment. The second alloy is AF1410 (primarily Fel4Col0Ni), an ultra high-strength, high toughness steel. 8 figs.,

  8. Small-angle neutron scattering study of radiation-induced defects in synthetic quartz

    SciTech Connect

    Lebedev, V. M. Lebedev, V. T.; Orlov, S. P.; Pevzner, B. Z.; Tolstikhin, I. N.

    2006-12-15

    The supraatomic structure of single crystals of synthetic quartz was studied by thermal neutron small-angle scattering in the initial state (dislocation densities 54 and 570 cm{sup -2}) and after irradiation in the WWR-M reactor (Petersburg Nuclear Physics Institute) by fast neutrons with energies E{sub n} > 0.1 MeV at fluences F{sub n} = 0.2 x 10{sup 17} -5 x 10{sup 18} neutrons/cm{sup 2}. It is established that fast neutrons form point, linear, and volume defects in the lattice throughout the entire volume of a sample. Large-volume structures-amorphous-phase nuclei-reach sizes of {approx}100 nm in quartz, while occupying a small total volume of {approx}0.3% even at the maximum fluence 5 x 10{sup 18} neutrons/cm{sup 2}. The main fraction of the damaged volume (up to 5%) corresponds to point (with a radius of gyration of 1-2 nm) and linear defects, giving a comparable contribution ({approx}1-4%). The extended linear structures with a radius of 2 nm, even at a moderate fluence of 7.7 x 10{sup 17} neutrons/cm{sup 2}, have a significant total length per volume unit ({approx}10{sup 11} cm/cm{sup 3}) and can form a connected network with a cell {approx}30 nm in size in the sample. Foreign atoms and molecules can migrate through channels of this network.

  9. Nature of radiation defects in synthetic quartz according to the small-angle neutron scattering data

    SciTech Connect

    Lebedev, V. M. Lebedev, V. T.; Orlov, S. P.; Pevzner, B. Z.; Tolstikhin, I. N.

    2007-05-15

    The supraatomic structure of single crystals of synthetic quartz in the initial state with a dislocation density of 570 cm{sup -2} and after irradiation in the VVR-M reactor at the Petersburg Nuclear Physics Institute with fast neutrons having the energy E{sub n} > 1 MeV in the range of fluences F{sub n} = 7.7 x 10{sup 17} -2.1 x 10{sup 20} neutrons/cm{sup 2} has been studied by small-angle scattering of thermal neutrons. It is established that fast neutrons form point, linear, and volume lattice defects throughout the entire sample volume. Large-volume structures (nuclei of the amorphous phase) in quartz, reaching {approx}100 nm in size, occupy a small total volume ({approx}1.5%) even at the maximum fluence 2.1 x 10{sup 20} neutrons/cm{sup 2}. The majority of damage is related to the point defects with the radius of gyration of 1-2 nm and linear defects, which give comparable contributions up to several percent.

  10. Pore distributions in nanocrystalline metals from small-angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A.

    1998-07-24

    Recent upgrades in inert-gas condensation processing equipment have produced nanocrystalline metal samples with high densities and low-impurity levels. Typical Cu and Pd samples have densities {ge}98% of theoretical and oxygen and hydrogen impurity concentrations {le}0.5 at. %. Lower porosity and impurity levels may make it difficult to produce and maintain samples with the smallest nanocrystalline grain sizes. These improved samples were studied by small-angle neutron scattering (SANS) to determine the volume fraction and size distribution of pores. Excellent correlation was obtained between the total volume fraction of pores and the Archimedes density for Pd, signifying that most of the pores were relatively small and in the detectability range of SANS ({approx}1--100 nm). Nanocrystalline Cu is shown to exhibit a wider pore size distribution. For Pd, the average pore sizes were slightly smaller than the average grain size, while for Cu the pore size and grain size were about the same. Both materials exhibited a trend of increasing pore size with increasing grain size. In terms of processing prerequisites, the principal condition for the production of high-density nanocrystalline Cu is an exceptionally clean synthesis environment, while nanocrystalline Pd requires compaction at elevated temperatures. These differences are the result of Cu having both a lower melting point and a greater susceptibility to contamination by gaseous impurities such as oxygen.

  11. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    SciTech Connect

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M.

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  12. Development of a magic-angle spinning nuclear magnetic resonance probe with a cryogenic detection system for sensitivity enhancement.

    PubMed

    Mizuno, Takashi; Hioka, Katsuya; Fujioka, Koji; Takegoshi, K

    2008-04-01

    A novel nuclear magnetic resonance (NMR) probe for high-resolution solid-state NMR has been developed. In this probe, temperature of the detection coil is kept at cryogenic temperature (approximately 12 K) for sensitivity enhancement, which is achieved not only by suppression of thermal noise but also by increment of a Q factor of the coil. A marked feature of this probe is that a sample rotating at magic angle is thermally isolated from the cryogenic system in order to realize high-resolution solid-state NMR measurement at various sample temperatures. We call this system as cryocoil magic-angle spinning (cryocoil MAS). (1)H MAS NMR with the coil temperature of approximately 20 K was successfully observed for solid adamantane rotating at room temperature, and signal-to-noise increment due to this cryocoil approach was confirmed.

  13. Contact angle and indentation velocity dependency for a resonance sensor--evaluation on soft tissue silicone models.

    PubMed

    Astrand, Anders P; Jalkanen, Ville; Andersson, Britt M; Lindahl, Olof A

    2013-04-01

    Human tissue stiffness can vary due to different tissue conditions such as cancer tumours. Earlier studies show that stiffness may be detected with a resonance sensor that measures frequency shift and contact force at application. Through the frequency shift and the contact force, a tissue stiffness parameter can be derived. This study evaluated how the probe application angle and indentation velocity affected the results and determined the maximum parameter errors. The evaluation was made on flat silicone discs with specified hardness. The frequency shift, the force and the stiffness parameter all varied with contact angle and indentation velocity. A contact angle of ≤10° was acceptable for reliable measurements. A low indentation velocity was recommended. The maximum errors for the system were <1.1% of the measured values. It was concluded that contact angle and indentation velocity have to be considered in the clinical setting. The angular dependency is especially important in clinical use for studying stiffness of human soft tissue, e.g. in prostate cancer diagnosis.

  14. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique.

    PubMed

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  15. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  16. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  17. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Zhou, Xiang; Ying, Yao; Qiao, Xiaojing; Qin, Faxiang; Li, Qian; Che, Shenglei

    2015-06-01

    In this letter, we report the design, demonstration and discussion of a multi- and broad- band metamaterial absorber (MMA) with wide angle polarization insensitive at microwave region. The MMA consisting of double layered electric ring resonator (ERR) with four fold rotational symmetry structure is used to realize a desirable absorption. Strong triple absorption peaks in 2˜8 GHz and broadband microwave absorption in 10˜18 GHz are demonstrated. The absorption can be reached as high as 0.73, 0.73 and 0.94 at 4.41, 5.15, 6.37 GHz, respectively. The multiband absorbing features originate from the synergetic effects of dipole resonance and Fabry-Pérot interference between two or three metasurfaces. This design is of high practical for constructing broad band and multiband absorber for electromagnetic intereference/compatibility (EMI/EMC) applications.

  18. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  19. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  20. Primary Open Angle Glaucoma is Associated with MR Biomarkers of Cerebral Small Vessel Disease

    PubMed Central

    Mercieca, Karl; Cain, John; Hansen, Thomas; Steeples, Laura; Watkins, Amy; Spencer, Fiona; Jackson, Alan

    2016-01-01

    This prospective study tests the hypotheses that: 1) glaucoma is associated with evidence of cerebral small vessel disease; 2) that imaging biomarkers of cerebral small vessel disease in POAG and NTG will show different characteristics. 12 normal controls, 7 patients with primary open angle glaucoma (POAG) and 9 patients with normal tension glaucoma (NTG) were recruited. Ophthalmological clinical assessment and MR imaging of the brain were performed. MR imaging was used to quantify white matter lesion load, frequency of dilated perivascular spaces (PVS) and abnormalities in cerebral hydrodynamics. Patients with POAG had significantly greater white matter lesion load (p < 0.05), more PVS in the centrum semiovale (p < 0.05) and had higher overall PVS scores than controls (p < 0.05). In the POAG group, optic cup-to-disc ratio (CDR) was positively correlated with deep white matter hyperintensities (R2 = 0.928, p < 0.01). Mean deviation on the Humphrey visual field assessment was negatively correlated with deep white matter lesion load (R2 = −0.840, p < 0.01), total white matter lesion load (R2 = −0.928, p < 0.01) and total PVS (R2 = −0.820, p < 0.01). MR evidence of cerebral small vessel disease is strongly associated with a diagnosis of POAG and with the severity of abnormalities in CDR and visual field. PMID:26923106

  1. Parameterization of structures in HE composites using surrogate materials: A small angle neutron scattering investigation

    SciTech Connect

    Mang, J.T.; Hjelm, R.P.; Skidmore, C.B.; Howe, P.M.

    1996-07-01

    High explosive materials used in the nuclear stockpile are composites of crystalline high explosives (HE) with binder materials, such as Estane. In such materials, there are naturally occurring density fluctuations (defects) due to cracks, internal (in the HE) and external (in the binder) voids and other artifacts of preparation. Changes in such defects due to material aging can affect the response of explosives due to shock, impact and thermal loading. Modeling efforts are attempting to provide quantitative descriptions of explosive response from the lowest ignition thresholds to the development of full blown detonations and explosions, however, adequate descriptions of these processes require accurate measurements of a number of structural parameters of the HE composite. Since different defects are believed to affect explosive sensitivity in different ways it is necessary to quantitatively differentiate between defect types. The authors report here preliminary results of SANS measurements on surrogates for HE materials. The objective of these measurements was to develop methodologies using SANS techniques to parameterize internal void size distributions in a surrogate material, sugar, to simulate an HE used in the stockpile, HMX. Sugar is a natural choice as a surrogate material, as it has the same crystal structure, has similar intragranular voids and has similar mechanical properties as HMX. It is used extensively as a mock material for explosives. Samples were used with two void size distributions: one with a sufficiently small mean particle size that only small occluded voids are present in significant concentrations, and one where the void sizes could be larger. By using methods in small-angle neutron scattering, they were able to isolate the scattering arising from particle-liquid interfaces and internal voids.

  2. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    SciTech Connect

    Settens, Charles M.

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  3. A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lambard, Jacques; Lesieur, Pierre; Zemb, Thomas

    1992-06-01

    To extend the domain of small angle X-ray scattering requires multiple reflection crystals to collimate the beam. A double crystal, triple axis X-ray camera using multiple reflection channel cut crystals is described. Procedures for measuring the desmeared scattering cross-section on absolute scale are described as well as the measurement from several typical samples : fibrils of collagen, 0.3 μm diameter silica spheres, 0.16 μm diameter interacting latex spheres, porous lignite coal, liquid crystals in a surfactant-water system, colloidal crystal of 0.32 μm diameter silica spheres. L'extension du domaine de diffusion des rayons-X vers les petits angles demande l'emploi de cristaux à réflexions multiples pour collimater le faisceau. Nous décrivons une caméra à rayons-X à trois axes où les réflexions multiples sont réalisées dans deux cristaux à gorge. Nous donnons ensuite les procédures de déconvolution pour obtenir la section efficace de diffusion en échelle absolue, ainsi que les résultats des mesures effectuées avec plusieurs échantillons typiques : fibres de collagène, sphères de silice de 0,3 μm de diamètre, sphères de latex de 0,16 μm de diamètre en interaction, charbon lignite poreux, cristaux liquides formés dans un système eau-tensioactif, solution colloïdale de sphères de silice de 0,32 μm de diamètre.

  4. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Settens, Charles M.

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H 2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CD-SEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  5. Application of small-angle X-ray scattering for differentiation among breast tumors

    PubMed Central

    Changizi, V.; Kheradmand, A. Arab; Oghabian, M. A.

    2008-01-01

    Small-angle X-ray scattering (SAXS) is an X-ray diffraction-based technique where a narrow collimated beam of X-rays is focused onto a sample and the scattered X-rays recorded by a detector. The pattern of the scattered X-rays carries information on the molecular structure of the material. As breast cancer is the most widespread cancer in women and differentiation among its tumors is important, this project compared the results of coherent X-ray scattering measurements obtained from benign and malignant breast tissues. The energy-dispersive method with a setup including X-ray tube, primary collimator, sample holder, secondary collimator and high-purity germanium (HpGe) detector was used. One hundred thirty-one breast-tissue samples, including normal, fibrocystic changes and carcinoma, were studied at the 6° scattering angle. Diffraction profiles (corrected scattered intensity versus momentum transfer) of normal, fibrocystic changes and carcinoma were obtained. These profiles showed a few peak positions for adipose (1.15 ± 0.06 nm−1), mixed normal (1.15 ± 0.06 nm−1 and 1.4 ± 0.04 nm−1), fibrocystic changes (1.46 ± 0.05 nm−1 and 1.74 ± 0.04 nm−1) and carcinoma (1.55 ± 0.04 nm−1, 1.73 ± 0.06 nm−1, 1.85 ± 0.05 nm−1). We were able to differentiate between normal, fibrocystic changes (benign) and carcinoma (malignant) breast tissues by SAXS. However, we were unable to differentiate between different types of carcinoma. PMID:20041048

  6. Planar small-angle x-ray scattering imaging of phantoms and biological samples

    NASA Astrophysics Data System (ADS)

    Choi, M.; Badano, A.

    2017-04-01

    Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.

  7. Structural characterization of a polymer substituted fullerene (flagellene) by small angle neutron scattering

    SciTech Connect

    Affholter, K.A.; Bunick, G.J.; Wignall, G.D.; Desimone, J.M.; Hunt, M.O. Jr.; Menceloglu, Y.Z.; Samulski, E.T.

    1994-12-31

    Small-angle neutron scattering (SANS) can structurally characterize fullerenes in solvents with strong SANS contrast (e.g. CS{sub 2}). Deuterated solvents (e.g. toluene-d{sub 8}) have a high scattering length density (SLD), which is close to that of C{sub 60} and C{sub 70} moieties. Hence, there is virtually no SANS contrast with the solvent and these particles are practically ``invisible`` in such media. On the other hand, the negative scattering length of hydrogen means that the SLD of H{sup 1}-containing materials is much lower, so they have strong contrast with toluene-d{sub 8}. Thus, SANS makes it possible to study the size and shapes of modified buckyballs such as the polymer-substituted fullerenes, or flagellenes. These consist of C{sub 60} cores to which 1-4 polystryene chains (with a molecular weight, MW {approx_equal} 2000) are attached. The extrapolated cross section at zero angle of scatter [d{Sigma}/d{Omega}(0)] is a function of the number of pendant chains, so SANS can be used to assess the number of ``arms`` which are covalently attached to the fullerene ``sphere.`` Close agreement ({plus_minus}4%) between measured and calculated values of d{Sigma}/d{Omega}(0) along with independent estimates of the radius of gyration (R{sub g}) and second virial coefficient (A{sub 2}) for a calibration linear polystyrene sample serves as a cross check on the validity of this methodology.

  8. CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    PubMed Central

    Takeuchi, Koh; Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian

    2010-01-01

    We present a 13C direct detection CACA-TOCSY experiment for samples with alternate 13C–12C labeling. It provides inter-residue correlations between 13Cα resonances of residue i and adjacent Cαs at positions i − 1 and i + 1. Furthermore, longer mixing times yield correlations to Cα nuclei separated by more than one residue. The experiment also provides Cα-to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13C–12C labeling with [1,3-13C] glycerol or [2-13C] glycerol, which allows utilizing the small scalar 3JCC couplings that are masked by strong 1JCC couplings in uniformly 13C labeled samples. PMID:20383561

  9. PREFACE Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    King, Stephen; Terrill, Nicholas

    2010-10-01

    The XIV International Conference on Small-Angle Scattering, SAS-2009, was held in Oxford UK, 13-18 September 2009, and was jointly organised under the auspices of the International Union of Crystallography Commission on SAS by a team from the Diamond Light Source and the ISIS Pulsed Neutron Source - their first such joint venture - with help from the UK Science and Technology Facilities Council. It was the first time that this long running and successful series of conferences on the application, science and technology of small-angle scattering techniques had been staged in the UK. The UK has a proud heritage in small-angle scattering: as home to one of the world's first SANS instruments (at AERE Harwell), as the site of the world's first 2nd generation X-ray Synchrotron (the SRS at Daresbury with its suite of SAXS beamlines), and latterly as the location of the world's most successful pulsed source SANS instrument. Indeed, 2009 also marked the 25th Anniversary of neutron operations at ISIS and the opening of a Second Target Station. Whilst the SRS ceased operations in 2008, its mantle has been inherited by the Diamond synchrotron. Many delegates took the opportunity to visit both Diamond and ISIS during a conference excursion. Despite the prevailing global economic downturn, we were delighted that 434 delegates from 32 different countries were able to attend SAS-2009; two-thirds were drawn from the UK, Germany, Japan, the USA and France, but there were also sizeable contingents from Australia, Korea, Taiwan and South America. In many ways this geographical spread reflects the present and emerging distribution, respectively, of 3rd generation X-ray synchrotrons and high-flux neutron sources, although the scope of the conference was not solely limited to these probes. Financial support from the IUCr enabled us to grant bursaries to attend SAS-2009 to 12 delegates from emerging countries (Algeria, Argentina, Brazil, India, Nepal, Romania, Russia and the Ukraine). The

  10. Collective resonant phenomena on small bodies in the solar system

    NASA Astrophysics Data System (ADS)

    Froeschle, Ch.; Froeschle, C.

    1992-03-01

    The role resonances play in the orbital evolutions of asteroids, meteor streams, and comets is examined. Crossing of separatrixlike zones is argued to be crucial for the formation of arcs and for the dissolution of streams. The orbital inclination of a meteor stream appears to be a critical parameter for arc formation. Numerical results obtained in any other context show that the competition between the Poynting-Robertson drag and the gravitational interaction of grains near the 2/1 resonance might be very important over the long term for the structure of meteor streams.

  11. Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter

    NASA Astrophysics Data System (ADS)

    Wignall, G. D.; Melnichenko, Y. B.

    2005-08-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the

  12. Self crowding of globular proteins studied by small-angle x-ray scattering.

    PubMed

    Goldenberg, David P; Argyle, Brian

    2014-02-18

    Small-angle x-ray scattering (SAXS) was used to study the behavior of equine metmyoglobin (Mb) and bovine pancreatic trypsin inhibitor (BPTI) at concentrations up to 0.4 and 0.15 g/mL, respectively, in solutions also containing 50% D2O and 1 M urea. For both proteins, significant effects because of interference between x-rays scattered by different molecules (interparticle interference) were observed, indicating nonideal behavior at high concentrations. The experimental data were analyzed by comparison of the observed scattering profiles with those predicted by crystal structures of the proteins and a hard-sphere fluid model used to represent steric exclusion effects. The Mb scattering data were well fit by the hard-sphere model using a sphere radius of 18 Å, only slightly smaller than that estimated from the three-dimensional structure (20 Å). In contrast, the scattering profiles for BPTI in phosphate buffer displayed substantially less pronounced interparticle interference than predicted by the hard-sphere model and the radius estimated from the known structure of the protein (15 Å). Replacing the phosphate buffer with 3-(N-morpolino)propane sulfonic acid (MOPS) led to increased interparticle interference, consistent with a larger effective radius and suggesting that phosphate ions may mediate attractive intermolecular interactions, as observed in some BPTI crystal structures, without the formation of stable oligomers. The scattering data were also used to estimate second virial coefficients for the two proteins: 2.0 ×10(-4) cm(3)mol/g(2) for Mb in phosphate buffer, 1.6 ×10(-4) cm(3)mol/g(2) for BPTI in phosphate buffer and 9.2 ×10(-4) cm(3)mol/g(2) for BPTI in MOPS. The results indicate that the behavior of Mb, which is nearly isoelectric under the conditions used, is well described by the hard-sphere model, but that of BPTI is considerably more complex and is likely influenced by both repulsive and attractive electrostatic interactions. The hard

  13. Self Crowding of Globular Proteins Studied by Small-Angle X-Ray Scattering

    PubMed Central

    Goldenberg, David P.; Argyle, Brian

    2014-01-01

    Small-angle x-ray scattering (SAXS) was used to study the behavior of equine metmyoglobin (Mb) and bovine pancreatic trypsin inhibitor (BPTI) at concentrations up to 0.4 and 0.15 g/mL, respectively, in solutions also containing 50% D2O and 1 M urea. For both proteins, significant effects because of interference between x-rays scattered by different molecules (interparticle interference) were observed, indicating nonideal behavior at high concentrations. The experimental data were analyzed by comparison of the observed scattering profiles with those predicted by crystal structures of the proteins and a hard-sphere fluid model used to represent steric exclusion effects. The Mb scattering data were well fit by the hard-sphere model using a sphere radius of 18 Å, only slightly smaller than that estimated from the three-dimensional structure (20 Å). In contrast, the scattering profiles for BPTI in phosphate buffer displayed substantially less pronounced interparticle interference than predicted by the hard-sphere model and the radius estimated from the known structure of the protein (15 Å). Replacing the phosphate buffer with 3-(N-morpolino)propane sulfonic acid (MOPS) led to increased interparticle interference, consistent with a larger effective radius and suggesting that phosphate ions may mediate attractive intermolecular interactions, as observed in some BPTI crystal structures, without the formation of stable oligomers. The scattering data were also used to estimate second virial coefficients for the two proteins: 2.0 ×10-4 cm3mol/g2 for Mb in phosphate buffer, 1.6 ×10-4 cm3mol/g2 for BPTI in phosphate buffer and 9.2 ×10-4 cm3mol/g2 for BPTI in MOPS. The results indicate that the behavior of Mb, which is nearly isoelectric under the conditions used, is well described by the hard-sphere model, but that of BPTI is considerably more complex and is likely influenced by both repulsive and attractive electrostatic interactions. The hard-sphere model may be

  14. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOEpatents

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  15. Justification and implementation of the coordinate method among potentially possible precise methods for measuring angles between axes of small-angle beams

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, M. D.

    2017-08-01

    A series of studies devoted to the theoretical justification and development of methods and tools for angular measurements based on the use of multiple sources of optical beams with a small angular aperture is continued. The source used in this study is a holographic prism: a fluorite single crystal with a system of superimposed holograms recorded in its bulk, which generates a series of diffracted small-angle beams in the form of a flat fan under illumination by a reference laser. This fan has a high spatial stability, including constancy of angles between any pair of fan beams in a wide range of external conditions. Based on the previously introduced notion of an effective beam axis, potential exact methods for measuring angles between fan beams are considered, and a coordinate method using a coordinate measuring machine and a CCD recorder is substantiated and implemented. The accuracy of the proposed method is analyzed. It is shown that its errors can potentially be reduced to a level of 1″ or even less.

  16. Effects of macromolecular crowding on the structure of a protein complex: A small-angle scattering study of superoxide dismutase

    DOE PAGES

    Rajapaksha, Ajith; Stanley, Christopher B.; Todd, Brian A.

    2015-02-17

    Macromolecular crowding can alter the structure and function of biological macromolecules. We used small angle scattering (SAS) to measure the change in size of a protein complex, superoxide dismutase (SOD), induced by macromolecular crowding. Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl- -glucoside ( -MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%.more » Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. SAXS done in the presence of TEG suggests that for further deformation beyond a 9% decrease in volume the resistance to deformation may increase dramatically.« less

  17. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: In situ synchrotron small angle and wide angle X-ray scattering study

    SciTech Connect

    Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen

    2013-01-10

    A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.

  18. Comparison of four magnetic resonance methods for mapping small temperature changes.

    PubMed

    Wlodarczyk, W; Hentschel, M; Wust, P; Noeske, R; Hosten, N; Rinneberg, H; Felix, R

    1999-02-01

    Non-invasive detection of small temperature changes (< 1 degree C) is pivotal to the further advance of regional hyperthermia as a treatment modality for deep-seated tumours. Magnetic resonance (MR) thermography methods are considered to be a promising approach. Four methods exploiting temperature-dependent parameters were evaluated in phantom experiments. The investigated temperature indicators were spin-lattice relaxation time T1, diffusion coefficient D, shift of water proton resonance frequency (water PRF) and resonance frequency shift of the methoxy group of the praseodymium complex (Pr probe). The respective pulse sequences employed to detect temperature-dependent signal changes were the multiple readout single inversion recovery (T One by Multiple Read Out Pulses; TOMROP), the pulsed gradient spin echo (PGSE), the fast low-angle shot (FLASH) with phase difference reconstruction, and the classical chemical shift imaging (CSI). Applying these sequences, experiments were performed in two separate and consecutive steps. In the first step, calibration curves were recorded for all four methods. In the second step, applying these calibration data, maps of temperature changes were generated and verified. With the equal total acquisition time of approximately 4 min for all four methods, the uncertainties of temperature changes derived from the calibration curves were less than 1 degree C (Pr probe 0.11 degrees C, water PRF 0.22 degrees C, D 0.48 degrees C and T1 0.93 degrees C). The corresponding maps of temperature changes exhibited slightly higher errors but still in the range or less than 1 degree C (0.97 degrees C, 0.41 degrees C, 0.70 degrees C, 1.06 degrees C respectively). The calibration results indicate the Pr probe method to be most sensitive and accurate. However, this advantage could only be partially transferred to the thermographic maps because of the coarse 16 x 16 matrix of the classical CSI sequence. Therefore, at present the water PRF method appears

  19. Nano-Scale Morphology of Melanosomes Revealed by Small-Angle X-Ray Scattering

    PubMed Central

    Gorniak, Thomas; Haraszti, Tamas; Garamus, Vasyl M.; Buck, Andreas R.; Senkbeil, Tobias; Priebe, Marius; Hedberg-Buenz, Adam; Koehn, Demelza; Salditt, Tim; Grunze, Michael; Anderson, Michael G.; Rosenhahn, Axel

    2014-01-01

    Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences – determining the color of skin, hair and the iris – they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye). Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering – a method effective in determining the three-dimensional structures of biomolecules – to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance. PMID:24621581

  20. Topological Structure Determination of RNA Using Small-Angle X-Ray Scattering.

    PubMed

    Bhandari, Yuba R; Fan, Lixin; Fang, Xianyang; Zaki, George F; Stahlberg, Eric A; Jiang, Wei; Schwieters, Charles D; Stagno, Jason R; Wang, Yun-Xing

    2017-09-14

    Knowledge of RNA three-dimensional topological structures provides important insight into the relationship between RNA structural components and function. It is often likely that near-complete sets of biochemical and biophysical data containing structural restraints are not available, but one still wants to obtain knowledge about approximate topological folding of RNA. In this regard, general methods for determining such topological structures with minimum readily available restraints are lacking. Naked RNAs are difficult to crystallize and NMR spectroscopy is generally limited to small RNA fragments. By nature, sequence determines structure and all interactions that drive folding are self-contained within sequence. Nevertheless, there is little apparent correlation between primary sequences and three-dimensional folding unless supplemented with experimental or phylogenetic data. Thus, there is an acute need for a robust high-throughput method that can rapidly determine topological structures of RNAs guided by some experimental data. We present here a novel method (RS3D) that can assimilate the RNA secondary structure information, small-angle X-ray scattering data, and any readily available tertiary contact information to determine the topological fold of RNA. Conformations are firstly sampled at glob level where each glob represents a nucleotide. Best-ranked glob models can be further refined against solvent accessibility data, if available, and then converted to explicit all-atom coordinates for refinement against SAXS data using the Xplor-NIH program. RS3D is widely applicable to a variety of RNA folding architectures currently present in the structure database. Furthermore, we demonstrate applicability and feasibility of the program to derive low-resolution topological structures of relatively large multi-domain RNAs. Published by Elsevier Ltd.

  1. Three Biomedical Beamlines at NSLS-II for Macromolecular Crystallography and Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Schneider, D. K.; Berman, L. E.; Chubar, O.; Hendrickson, W. A.; Hulbert, S. L.; Lucas, M.; Sweet, R. M.; Yang, L.

    2013-03-01

    We report on the status of the development of three beamlines for the National Synchrotron Light Source-II (NSLS-II), two for macromolecular crystallography (MX), and one for wide- and small-angle x-ray scattering (SAXS). Funded by the National Institutes of Health, this suite of Advanced Beamlines for Biological Investigations with X-rays (ABBIX) is scheduled to begin operation by 2015. The two MX beamlines share a sector with identical canted in-vacuum undulators (IVU21). The microfocusing FMX beamline on the inboard branch employs a two-stage horizontal source demagnification scheme, will cover an energy range of 5 - 23 keV, and at 12.7 keV will focus a flux of up to 1013 ph/s into a spot of 1 μm width. The companion AMX beamline on the short outboard branch of the sector is tunable in the range of 5 - 18 keV and has a native focus of 4 μm (h) × 2 μm (v). This robust beamline will be highly automated, have high throughput capabilities, and with larger beams and low divergence will be well suited for structure determinations on large complexes. The high brightness SAXS beamline, LIX, will provide multiple dynamic and static experimental systems to support scientific programs in solution scattering, membrane structure determination, and tissue imaging. It will occupy a different sector, equipped with a single in-vacuum undulator (IVU23). It can produce beams as small as 1 μm across, and with a broad energy range of 2.1 - 18 keV it will support anomalous SAXS.

  2. SCT: a suite of programs for comparing atomistic models with small-angle scattering data.

    PubMed

    Wright, David W; Perkins, Stephen J

    2015-06-01

    Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.

  3. Small-angle neutron scattering study of structure and kinetics of temperature-induced protein gelation.

    PubMed

    Chodankar, S; Aswal, V K; Kohlbrecher, J; Vavrin, R; Wagh, A G

    2009-02-01

    The phase diagram, structural evolution, and kinetics of temperature-induced protein gelation of protein Bovine Serum Albumin (BSA) have been studied as a function of solution pH and protein concentration. The protein gelation temperature represents the onset of turbidity in the protein solution, which increases significantly with increasing pH beyond the isoelectric pH of the protein molecule. On the other hand, the gelation temperature decreases with an increase in protein concentration only in the low-protein-concentration regime and shows a small increasing trend at higher protein concentrations. The structural evolution and kinetics of protein gelation have been studied using small-angle neutron scattering. The structure of the protein molecule remains stable up to temperatures very close to the gelation temperature. On increasing the temperature above the gelation temperature, the protein solution exhibits a fractal structure, an indication of gel formation due to aggregation. The fractal dimension of the gel increases with increasing temperature, suggesting an increase in branching between the aggregates, which leads to stronger gels. The increase in both solution pH and protein concentration is found to delay the growth in the fractal structure and its saturation. The kinetics of gelation has been studied using the temperature-jump process of heating. It is found that the structure of the protein gels remains invariant after the heating time ( approximately 1 min), indicating a rapid formation of gel structure within this time. The protein gels prepared through gradual and temperature-jump heating routes do not always show the same structure. In particular, at higher temperatures (e.g., 85 degrees C ), while gradual heating shows a fractal structure, there is collapse of such fractal structure during temperature-jump heating.

  4. Effective interactions in lysozyme aqueous solutions: A small-angle neutron scattering and computer simulation study

    NASA Astrophysics Data System (ADS)

    Abramo, M. C.; Caccamo, C.; Costa, D.; Pellicane, G.; Ruberto, R.; Wanderlingh, U.

    2012-01-01

    We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r-6 potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions.

  5. Light-microscope specimen holder with 3-axis rotation and small-angle control.

    PubMed

    Iwabuchi, Sadahiro; Koh, Jin-Young; Wardenburg, Michael; Johnson, James D; Harata, N Charles

    2014-01-15

    Although recent developments in methodologies for light microscopy have enabled imaging of fine biological structures, such imaging is often accompanied by two types of problems. One is a tilting of the specimen with respect to the x-y plane (i.e. rotation around the x- or y-axis) such that the sample is not perpendicular to the optical z-axis, and the other is rotation around the z-axis that precludes optimal orientations for imaging and experimentation. These rotation problems can cause optical aberrations and hamper imaging experiments, even when the angular difference from the ideal position is small. In order to correct for these practical issues, we have developed a specimen holder with 3-axis (x-y-z) rotation for an inverted light microscope. This allows for full-range rotations of 2-4° for x-, y-axes, ~24° for z-axis, and a small-angle control of <0.1° for either axis. Using this device, we observed the cultured hippocampal neurons stained by immunofluorescence for a dendritic marker, or the sub-resolution fluorescent beads plated on a glass coverslip. The rotations and associated problems could be manipulated, while viewing the specimens by laser-scanning confocal microscopy. This tilting/rotation device is easily manufactured and installed on a conventional microscope stage without requiring changes to the existing optical components. Similar devices with full capability have not been available. It will be useful for imaging experiments with biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  7. Changes of creatine kinase structure upon ligand binding as seen by small-angle scattering

    NASA Astrophysics Data System (ADS)

    Forstner, Michael; Kriechbaum, Manfred; Laggner, Peter; Wallimann, Theo

    1996-09-01

    Small-angle X-ray and neutron scattering have been used to investigate structural changes upon binding of individual substrates or a transition state analogue complex (TSAC), consisting of Mg-ADP, creatine and KNO 3 to creatine kinase isoenzymes (dimeric M-CK and octameric Mi-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-ATP and TSAC, whereas creatine alone had only a small effect. In Mi-CK, the radius of gyration was reduced from 55.6 Å (free enzyme) to 48.9 Å (enzyme + Mg-ATP) and to 48.2 Å (enzyme + TSAC). The experiments performed with M-CK showed similar changes from 28.0 Å (free enzyme) to 25.6 Å (enzyme + Mg-ATP) and to 25.5 Å (enzyme + TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK showed the same behaviour: a change of the radius of gyration from 21.5 Å (free enzyme) to 19.7 Å (enzyme + MG-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a magnesium-nucleotide induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In creatine kinase, however, further movements must be involved in the large conformational change.

  8. Microstructure of beta-lactoglobulin/pectin coacervates studied by small-angle neutron scattering.

    PubMed

    Wang, Xiaoyong; Li, Yunqi; Wang, Yu-Wen; Lal, Jyotsana; Huang, Qingrong

    2007-01-25

    Small-angle neutron scattering (SANS) has been used to investigate the microstructure of beta-lactoglobulin/pectin coacervates prepared by different initial protein/polysaccharide weight ratio (r), sodium chloride concentration (C(NaCl)), and pectin charge density. The higher r and higher pectin charge density lead to higher scattering intensity at small q range (0.007 Angstrom(-1) < q < 0.02 Angstrom(-1)), suggesting that the charges of pectin chains are screened significantly by the binding of oppositely charged protein molecules, leading to a tighter aggregation of pectin chains. On the other hand, the appearance of a shoulder peak at intermediate q range (0.04 Angstrom(-1) < q < 0.2 Angstrom(-1)) is used to interpret the formation of protein domains in beta-lactoglobulin/pectin coacervates. At C(NaCl) = 0.1 M, the coacervate of beta-lactoglobulin and pectin A does not show a shoulder peak at intermediate q range at r = 10:1, suggesting that protein molecules are separately bound on pectin chains. However, a shoulder peak appears at intermediate q range at r = 20:1 and 30:1, and the average protein domain size estimated from the shoulder peak position is 7.2 and 8.5 nm, respectively, for these two coacervates. When C(NaCl) increases from 0.05 to 0.2 M, the shoulder peak shifts toward smaller q and becomes broader, indicating that the addition of a higher amount of salt leads to a more heterogeneous coacervate structure. Pectin B with a lower linear charge density favors the formation of larger protein domains. The formation of protein domains in beta-lactoglobulin/pectin coacervates is partially ascribed to the self-aggregation of beta-lactoglobulin molecules. Two kinds of microstructures of beta-lactoglobulin/pectin coacervates with and without observable protein domains have been proposed.

  9. Effective interactions in lysozyme aqueous solutions: a small-angle neutron scattering and computer simulation study.

    PubMed

    Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U

    2012-01-21

    We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions.

  10. Small-angle neutron scattering correlation functions of bulk magnetic materials

    PubMed Central

    Mettus, Denis; Michels, Andreas

    2015-01-01

    On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets (e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣM/dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣM/dΩ (e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength H p to the jump ΔM in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio H p/ΔM, the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel. PMID:26500464

  11. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  12. Optical phase curves of exoplanets at small and large phase angles

    NASA Astrophysics Data System (ADS)

    García Muñoz, Antonio

    2016-10-01

    Phase curves and secondary eclipses provide key information on exoplanet atmospheres. Indeed, recent work on close-in giant planets observed by Kepler has shown that it is possible to constrain various reflecting, dynamical and thermal properties of their atmospheres from the analysis of the planets' phase curves. This presentation discusses new diagnostic possibilities for the characterization of exoplanet atmospheres with optical phase curves. These possibilities benefit from the fact that at optical wavelengths the signal from the planet is either partly or mostly determined by scattering of starlight within its atmosphere, which entails that the structure of the planet's phase curve mimics to some extent the optical properties of the atmospheric medium. In particular, we will show how cloud properties such as the particle size or the atmospheric scale height might be constrained through observations at small (i.e. near transit) and large (i.e. near occultation) phase angles. We will emphasize how the interpretation of optical phase curves differs from the interpretation of phase curves obtained at longer wavelengths. The conclusions are relevant to the study of Kepler planets, but also to the investigation of phase curves to be delivered by upcoming space missions such as CHEOPS, JWST, PLATO and TESS.

  13. In situ microfluidic dialysis for biological small-angle X-ray scattering

    PubMed Central

    Skou, Magda; Skou, Søren; Jensen, Thomas G.; Vestergaard, Bente; Gillilan, Richard E.

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample aggregation was induced by the concentration process at the levels achieved in these experiments. Simulations of fluid dynamics and transport properties within the device strongly suggest that aggregates, and possibly even higher-order oligomers, are preferentially retained by the device, resulting in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. PMID:25242913

  14. Measuring Material Microstructure Under Flow Using 1-2 Plane Flow-Small Angle Neutron Scattering

    PubMed Central

    Gurnon, A. Kate; Godfrin, P. Douglas; Wagner, Norman J.; Eberle, Aaron P. R.; Butler, Paul; Porcar, Lionel

    2014-01-01

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions. PMID:24561395

  15. Search for small-angle neutron scattering in MnO at 1700K

    SciTech Connect

    Routbort, J.L.; Epperson, J.E.; Klippert, T.E.; Goretta, K.C.

    1986-01-01

    A preliminary small-angle scattering (SANS) experiment has been performed on MnO single crystal at the Intense Pulsed Neutron Source. The experiment was preformed at 1700/sup 0/K at oxygen partial pressures of 2.2 x 10/sup -4/, 1 x 10/sup 2/, and 2 x 10/sup 2/ Pa, which resulted in deviations from stoichiometry of about 0.0015, 0.082, and 0.127. No statistically significant change in SANS was observed at this temperature with the pressure changes. Neither was any significant change observed in the wavelength-dependent sample transmission, also measured in-situ as a function of pressure. Therefore, either clustering of cation vacancies is negligible in MnO for these conditions, or the clusters are smaller than about 5 A. Of proposed cluster configurations, only the existence of the smallest (4:1, 6:2, or possible 8:3) appears to be consistent with these results.

  16. Miscibility Study of PCBM/P3EHT Organic Photovoltaics via Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Yin, Wen; McCulloch, Bryan; Segalman, Rachel; Dadmun, Mark

    2011-03-01

    Organic photovoltaics (OPV) attracted considerable interest as lightweight, inexpensive, and easily processable replacement of inorganic photovoltaics. Current results indicate that the morphology of these photovoltaic materials is essential to their solar energy conversion efficiency but a detailed and fundamental understanding is absent. In this paper, the miscibility and structure of P3EHT/PCBM composites with varying PCBM loading level are investigated via small angle neutron scattering (SANS). With P3EHT having a melting temperature below 100°C, SANS experiments of the blends are conducted above the melting point to unequivocally determine the miscibility of PCBM and P3EHT without the added complexity of polymer crystals. Our SANS results show that blends with 20 and 50 wt% PCBM exhibit dramatically larger scattering at low-Q regime relative to 10 and 15wt% PCBM samples. This result implies that the miscibility limit of PCBM and P3EHT lies between 15:85 and 20:80. Further analysis is underway to correlate these results to OPV efficiency.

  17. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  18. Using Small Angle Neutron Scattering on Glucose Oxidase immobilized on Single Layer Graphene

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh; Gurusaran, M.; Qian, S.; Weiss, K.; Urban, V.; Li, P.; Ma, L.; Ajayan, P.; Narayanan, T.; Sekar, K.; Viswanathan, S.; Renugopalakrishanan, V.

    2015-03-01

    Reliable blood glucose monitoring using biosensors is valuable for health evaluations and medication in wake of chronic diabetic issues accompanying deviations from evolutionary human lifestyle. Glucose oxidase (GOx) is an ideal enzyme because of its specificity and the ability to electrochemically transduce from the enzymatic reaction. We use graphene-based electrode with GOx sensor matrix so that the emitted electrons from sensor matrix can flow across graphene nearly without scattering; crucial for constructing ultrasensitive-sensors. Thereafter, establishing a structure-property based relationships to tune the sensor topology with electrochemically output forms the main focus of the device development process. We have developed a methodology to obtain low-resolution hierarchical models of the aggregate matrix using Small Angle Neutron Scattering (SANS) technique. A Unified Fit model is used in tandem with GNOM, DAMMIN and DAMAVER to construct low-resolution models for GOx matrices. A detailed explanation of a general methodology for obtaining quantitative details aggregate structures along with qualitative models will be presented.

  19. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  20. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  1. Investigation of the interaction of dimethyl sulfoxide with lipid membranes by small-angle neutron scattering

    SciTech Connect

    Gorshkova, J. E. Gordeliy, V. I.

    2007-05-15

    The influence of dimethyl sulfoxide (CH{sub 3}){sub 2}SO (DMSO) on the structure of membranes of 1,2-dimiristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in an excess of a water-DMSO solvent is investigated over a wide range of DMSO molar concentrations 0.0 {<=} X{sub DMSO} {<=} 1.0 at temperatures T = 12.5 and 55 deg. C. The dependences of the repeat distance d of multilamellar membranes and the thickness d{sub b} of single vesicles on the molar concentration X{sub DMSO} in the L{sub {beta}}{sub '} gel and L{sub {alpha}} liquid-crystalline phases are determined by small-angle neutron scattering. The intermembrane distance d{sub s} is determined from the repeat distance d and the membrane thickness d{sub b}. It is shown that an increase in the molar concentration X{sub DMSO} leads to a considerable decrease in the intermembrane distance and that, at X{sub DMSO} = 0.4, the neighboring membranes are virtually in steric contact with each other. The use of the deuterated phospholipid (DMSO-D6) and the contrast variation method makes it possible, for the first time, to determine the number of DMSO molecules strongly bound to the membrane.

  2. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  3. Small-Angle Neutron Scattering and Spontaneous Formation of Unilamellar Vesicles: Potential Vehicles for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Katsaras, John

    2004-03-01

    Unilamellar vesicles (ULVs) are single-bilayer shells with radii commonly between 10 and 100 nm, and are widely used as model membranes, drug delivery systems, microreactors and substrates for a variety of enzymes and proteins. A common method of making ULVs is the extrusion of multilamellar vesicles (MLVs) through synthetic membranes of known pore size. These extruded ULVs are invariably unstable and in due time, revert back to MLVs. Over the years there have been reports of the spontaneous formation of stable ULVs in surfactant, lipid, and lipid/detergent mixtures. These ULVs have sometimes been shown to be monodisperse and their radii were found, almost without exception, to vary with concentration. We have carried-out small-angle neutron scattering (SANS) experiments on a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC/DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+) leads to the spontaneous formation of monodisperse unilamellar vesicles whose radii are concentration independent, in contrast to previous experimental observations.

  4. Interactive graphical system for small-angle scattering analysis of polydisperse systems

    NASA Astrophysics Data System (ADS)

    Konarev, P. V.; Volkov, V. V.; Svergun, D. I.

    2016-09-01

    A program suite for one-dimensional small-angle scattering analysis of polydisperse systems and multiple data sets is presented. The main program, POLYSAS, has a menu-driven graphical user interface calling computational modules from ATSAS package to perform data treatment and analysis. The graphical menu interface allows one to process multiple (time, concentration or temperature-dependent) data sets and interactively change the parameters for the data modelling using sliders. The graphical representation of the data is done via the Winteracter-based program SASPLOT. The package is designed for the analysis of polydisperse systems and mixtures, and permits one to obtain size distributions and evaluate the volume fractions of the components using linear and non-linear fitting algorithms as well as model-independent singular value decomposition. The use of the POLYSAS package is illustrated by the recent examples of its application to study concentration-dependent oligomeric states of proteins and time kinetics of polymer micelles for anticancer drug delivery.

  5. Small-angle scattering of dense, polydisperse granular porous media: Computation free of size effects

    NASA Astrophysics Data System (ADS)

    Brisard, Sébastien; Levitz, Pierre

    2013-01-01

    Small-angle x-ray and neutrons scattering is a widespread experimental tool for the investigation of the microstructure of random heterogeneous materials. Validation of (computer-generated) model microstructures often requires the numerical computation of the scattering intensity, which must be carried out with great care due to finite size effects. In this paper, a new method for this computation is presented. It is superior to previously existing methods for three reasons: First, it applies to any type of microstructure (not necessarily granular). Second, closed-form expressions of the size effects inherent to the proposed method can be rigorously derived and removed (in this sense, our method is free of size effects). Third, the complexity of the new algorithm is linear and the computation can easily be updated to account for local changes of the microstructure, while most existing algorithms are quadratic and any change of the microstructure requires a full recomputation. The present paper provides full derivation and validation of this method. Application to the computation of the scattering intensity of dense, polydisperse assemblies of spheres is then presented. A new, simple algorithm for the generation of these dense configurations is introduced. Finally, the results are critically reviewed in the perspective of hardened cement pastes.

  6. Small-angle x-ray scattering investigation of the solution structure of troponin C

    SciTech Connect

    Hubbard, S.R.; Hodgson, K.O.; Doniach, S.

    1988-03-25

    X-ray crystallographic studies of troponin C have revealed a novel protein structure consisting of two globular domains, each containing two Ca/sup 2 +/-binding sites, connected via a nine-turn alpha-helix, three turns of which are fully exposed to solvent. Since the crystals were grown at pH approximately 5, it is of interest to determine whether this structure is applicable to the protein in solution under physiological conditions. We have used small-angle x-ray scattering to examine the solution structure of troponin C at pH 6.8 and the effect of Ca/sup 2 +/ on the structure. The scattering data are consistent with an elongated structure in solution with a radius of gyration of approximately 23.0 A, which is quite comparable to that computed for the crystal structure. The experimental scattering profile and the scattering profile computed from the crystal structure coordinates do, however, exhibit differences at the 40-A level. A weak Ca/sup 2 +/-facilitated dimerization of troponin C was observed. The data rule out large Ca/sup 2 +/-induced structural changes, indicating rather that the molecule with Ca/sup 2 +/ bound is only slightly more compact than the Ca/sup 2 +/-free molecule.

  7. Small angle neutron scattering studies of the structure of nucleosome cores at low ionic strength

    NASA Astrophysics Data System (ADS)

    Mita, Kazuei; Zama, Mitsuo; Ichimura, Sachiko; Niimura, Nobuo; Kaji, Keisuke; Hirai, Mitsuhiro; Ishikawa, Yoshikazu

    1983-05-01

    The structure of the nucleosome core particle at low ionic strenth (10-0.04 mM Na +) has been studied by small angle neutron scattering in various H 2O/D 2O mixtures. At 0.04 mM Na +,the radius of gyration obtained at 39% D 2O where scattering from the DNA dominates was 32 Å, and at 65% D 2O where scattering from the histones dominates, 40 Å. An abrupt increase in the radius of gyration from 35 to 40 Å was observed at about 1 mM ionic strength at 65% D 2O, with decreasing the ionic strength from 10 mM. No loss of the histone secondary structure was detected by circular dichroism over the range of the ionic strength examined. These results suggest that at low ionic strength (⪅1 mM) the histones are located outside of the nucleosome core particle accompanied by an alteration of the tertiary and/or quaternary structure of the histone octamer, with the DNA in a folded conformation.

  8. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    PubMed Central

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew; Rechberger, Gerald N.; Katsaras, John

    2017-01-01

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ∼120 nm diameter palmitoyl­oleoyl phosphatidyl­choline (POPC) vesicles, compared to the inner leaflet. Analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e. above the melting transition temperature of the two lipids. PMID:28381971

  9. Counterion Distribution Around Protein-SNAs probed by Small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kurinji; Bedzyk, Michael; Kewalramani, Sumit; Moreau, Liane; Mirkin, Chad

    Protein-DNA conjugates couple the advanced cell transfection capabilities of spherical DNA architecture and the biocompatible enzymatic activity of a protein core to potentially create therapeutic agents with dual functionality. An understanding of their stabilizing ionic environment is crucial to better understand and predict their properties. Here, we use Small-angle X-ray scattering techniques to decipher the structure of the counterion cloud surrounding these DNA coated nanoparticles. Through the use of anomalous scattering techniques we have mapped the local concentrations of Rb+ ions in the region around the Protein-DNA constructs. These results are further corroborated with simulations using a geometric model for the excess charge density as function of radial distance from the protein core. Further, we investigate the influence of solution ionic strength on the structure of the DNA corona and demonstrate a reduction in the extension of the DNA corona with increasing concentration of NaCl in solution for the case of both single and double stranded DNA shells. Our work reveals the distribution of counterions in the vicinity of Protein-DNA conjugates and decouples the effect of solution ionic strength on the thickness of the DNA layer.

  10. The contribution of small angle and quasi-elastic scattering to the physics of liquid water

    NASA Astrophysics Data System (ADS)

    Teixeira, José

    2017-05-01

    Many properties of liquid water at low temperature show anomalous behaviour. For example, density, isothermal compressibility, heat capacity pass by maxima or minima and transport properties show a super-Arrhenius behaviour. Extrapolations performed beyond the homogeneous nucleation temperature are at the origin of models that predict critical points, liquid-liquid transitions or dynamic cross-overs in the large domain of temperature and pressure not accessible to experiments because of ice nucleation. A careful analysis of existing data can be used to test some of these models. Small angle X-ray or neutron scattering data are incompatible with models where two liquids or heterogeneities are present. Quasi-elastic neutron scattering, taking advantage and combining both coherent and incoherent scattering show that two relaxation times are present in liquid water and that one of them, related to hydrogen bond dynamics, has an Arrhenian behaviour, suggesting that the associated dynamics of the bonds, similar to the β relaxation of polymers, determines the glass transition temperature of water.

  11. The kinetics of water sorption in Nafion membranes: a small-angle neutron scattering study.

    PubMed

    Gebel, Gérard; Lyonnard, Sandrine; Mendil-Jakani, Hakima; Morin, Arnaud

    2011-06-15

    The optimization of the water management in proton exchange membrane fuel cells is a major issue for the large-scale development of this technology. In addition to the operating conditions, the membrane water sorption and transport processes obviously control the water management. The main objective of this work is to provide new experimental evidence based on the use of the small-angle neutron scattering (SANS) technique in order to allow a better understanding of water sorption processes. SANS spectra were recorded for membranes equilibrated with either water vapor or liquid. Sorption kinetics data were determined and the SANS spectra were analyzed using the method developed for extracting water concentration profiles across the membrane in operating fuel cells. The water concentration profiles across the membrane are completely flat, which indicates that the water diffusion within the membrane is not the limiting process. This result provides new insight into the numerous data published on these properties. For the first time, the swelling kinetics of a Nafion membrane immersed in liquid water is studied and a complete swelling is obtained in less than 1 min.

  12. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    PubMed

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  13. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    SciTech Connect

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Melnichenko, Yuri; He, Lilin; Wang, Yi

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.

  14. Small-Angle Neutron Scattering study of the NIST mAb reference material

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Liu, Yun; Krueger, Susan; Curtis, Joseph

    Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry because they can be engineered to target specific antigens. Due to their importance, the biomanufacturing initiative at NIST is developing an IgG1 mAb reference material `NIST mAb', which can be used by industry, academia, and regulatory authorities. As part of this collaborative effort, we aim at characterizing the reference material using neutron scattering techniques. We have studied the small-angle scattering profile of the NIST mAb in a histidine buffer at 0 and 150 mM NaCl. Using Monte Carlo simulations, we generate an ensemble of structures and calculate their theoretical scattering profile, which can be directly compared with experimental data. Moreover, we analyze the structure factor to understand the effect of solution conditions on the protein-protein interactions. Finally, we have measured the solution scattering of the NIST mAb, while simultaneously performing freeze/thaw cycles, in order to investigate if the solution structure was affected upon freezing. The results from neutron scattering not only support the development of the reference material, but also provide insights on its stability and guide efforts for its development under different formulations.

  15. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  16. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (< 20 nm)/larger Q values of shale samples increase systematically as temperature increase during pyrolysis from 250 oC to 600oC (Fig.1a). These results in combination with hydrocarbon fractions measurements during the same process (Fig. 1b) provide a quantitative relation between pore characteristics and hydrocarbons generation. Our results indicate that hydrocarbon expulsion primarily causes the observed changes in smaller pores. They also demonstrate that due to its sensitivity to hydrogen, SANS locates all pores whether the pore is filled or not with hydrocarbons. Thus, SANS is particularly suited for probing hydrocarbon behavior in tight shale reservoirs and the factors that impact their pore dynamics for the petroleum industry.

  17. Small-angle Neutron Scattering and Contrast Variation: A Powerful Combination for Studying Biological Structures

    SciTech Connect

    Heller, William T

    2010-01-01

    The use of small-angle scattering (SAS) in the biological sciences continues to increase, driven as much by the need to study increasingly complex systems that are often resistant to crystallization or are too large for NMR as by the availability of user facilities and advancements in the modelling of biological structures from SAS data. SAS, whether with neutrons (SANS) or X-rays (SAXS), is a structural probe of length scales ranging from 10 to 10,000 {angstrom}. When applied to biological complexes in dilute solution, it provides size and shape information that can be used to produce structural models that can provide insight into function. SANS enables the use of contrast-variation methods through the unique interaction of neutrons with hydrogen and its isotope deuterium. SANS with contrast variation enables the visualization of components within multisubunit complexes, making it a powerful tool for probing protein-protein and protein-nucleic acid complexes, as well as the interaction of proteins with lipids and detergents.

  18. Small angle neutron scattering modeling of copper-rich precipitates in steel

    SciTech Connect

    Spooner, S.

    1997-11-01

    The magnetic to nuclear scattering intensity ratio observed in the scattering from copper rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel steels was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed.

  19. Small angle neutron scattering modeling of copper-rich precipitates in steel

    SciTech Connect

    Spooner, S.

    1997-11-01

    The magnetic-to-nuclear scattering intensity ratio observed in the scattering from copper-rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper-rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel shells was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed.

  20. Small-angle neutron-scattering study of nanophase zirconia in a reverse micelle synthesis.

    SciTech Connect

    Lager, G. A.; Li, X.; Loong, C.-K.; Miranda, R.; Thiyagarajan, P.

    1999-07-02

    Nanophase zirconia particles are synthesized by mixing two reverse micelle solutions containing the precursor salt ZrOCl{sub 2} and the base NH{sub 4}OH. The primary reverse micelle solution consists of AOT, toluene and water. The reverse micelle structure of four solutions as a function of w (the molar ratio of [water]/[AOT]) is characterized by small-angle neutron scattering at room temperature. With the addition of ZrOCl{sub 2} and NH{sub 4}OH into the water pools, the reverse micelle sizes decrease as compared to those in the D{sub 2}O/AOT/C{sub 6}D{sub 5}CD{sub 3} primary system. The mixed microemulsions contain reverse micelle sizes that fail between the values of the pre-mixed solutions. All the reverse micelles exhibit uniform size and spherical shape. The effect of concentration of inorganic salt precursor in the water pools on the reverse micelle structure is also studied.

  1. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  2. Small-Angle Neutron Scattering by the Magnetic Microstructure of Nanocrystalline Ferromagnets Near Saturation

    PubMed Central

    Weissmüller, J.; McMichael, R. D.; Michels, A.; Shull, R. D.

    1999-01-01

    The paper presents a theoretical analysis of elastic magnetic small-angle neutron scattering (SANS) due to the nonuniform magnetic microstructure in nanocrystalline ferromagnets. The reaction of the magnetization to the magnetocrystalline and magnetoelastic anisotropy fields is derived using the theory of micromagnetics. In the limit where the scattering volume is a single magnetic domain, and the magnetization is nearly aligned with the direction of the magnetic field, closed form solutions are given for the differential scattering cross-section as a function of the scattering vector and of the magnetic field. These expressions involve an anisotropy field scattering function, that depends only on the Fourier components of the anisotropy field microstructure, not on the applied field, and a micromagnetic response function for SANS, that can be computed from tabulated values of the materials parameters saturation magnetization and exchange stiffness constant or spin wave stiffness constant. Based on these results, it is suggested that the anisotropy field scattering function SH can be extracted from experimental SANS data. A sum rule for SH suggests measurement of the volumetric mean square anisotropy field. When magnetocrystalline anisotropy is dominant, then a mean grain size or the grain size distribution may be determined by analysis of SH.

  3. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Qmore » values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  4. Large-area proportional counter camera for the US National Small-Angle Neutron Scattering Facility

    SciTech Connect

    Abele, R.K.; Allin, G.W.; Clay, W.T.; Fowler, C.E.; Kopp, M.K.

    1980-01-01

    An engineering model of a multiwire position-sensitive proportional-counter (PSPC) was developed, tested, and installed at the US National Small-Angle Neutron Scattering Facility at ORNL. The PSPC is based on the RC-encoding and time-difference decoding method to measure the spatial coordinates of the interaction loci of individual scattered neutrons. The active area of the PSPC is 65 cm x 65 cm, and the active depth is 3.6 cm. The spatial uncertainty in both coordinates is approx. 1.0 cm (fwhm) for thermal neutrons; thus, a matrix of 64 x 64 picture elements is resolved. The count rate capability for randomly detected neutrons is 10/sup 4/ counts per second, with < 3% coincidence loss. The PSPC gas composition is 63% /sup 3/He, 32% Xe, and 5% CO/sub 2/ at an absolute pressure of approx. 3 x 10/sup 5/ Pa (3 atm). The detection efficiency is approx. 90% for the 0.475-nm (4.75-A) neutrons used in the scattering experiments.

  5. Small-angle neutron scattering reveals a pH-dependent conformational change in cellobiohydrolase I

    SciTech Connect

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; McGaughey, Joseph; Urban, Volker S; Myles, Dean A A; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4-5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  6. Survey of background scattering from materials found in small-angle neutron scattering.

    PubMed

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a (3)He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the (3)He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  7. The lipid and protein structure of mouse stratum corneum: a wide and small angle diffraction study.

    PubMed

    Bouwstra, J A; Gooris, G S; van der Spek, J A; Lavrijsen, S; Bras, W

    1994-05-13

    The structure of mouse stratum corneum was investigated using small and wide angle X-ray scattering. Diffraction patterns were collected as a function of temperature and hydration. The lipid lamellar structure is characterized by a repeat distance of 13.4 nm. Occasionally a second lipid lamellar phase has been found with a repeat distance of 6.1 nm. Upon hydration neither swelling of the lamellae nor lateral swelling of the lipids was found. On the basis of these facts it was concluded that the size of the crystallographic unit cell of the lipid structure is insensitive to the water content. The 13.4 nm lamellar phase disappeared upon heating to 55 degrees C. At 45 degrees C the orthorhombic lateral packing disappeared. At this temperature only an hexagonal and liquid lateral packing of the lipids was observed. The hexagonal lateral packing transformed to a liquid one between 45 degrees C and 80 degrees C. Model calculations were carried out to obtain the electron density profile of the lamellar structure. In all models three electron lucent regions were fitted between which electron dense regions are located indicating that the 13.4 nm lamellar structure consist of three bilayers.

  8. Small Angle Neutron Scattering Reveals pH-dependent Conformational Changes in Trichoderma reesei Cellobiohydrolase I

    PubMed Central

    Pingali, Sai Venkatesh; O'Neill, Hugh M.; McGaughey, Joseph; Urban, Volker S.; Rempe, Caroline S.; Petridis, Loukas; Smith, Jeremy C.; Evans, Barbara R.; Heller, William T.

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4–5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection. PMID:21784865

  9. How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective

    PubMed Central

    Receveur-Bréchot, Véronique; Durand, Dominique

    2012-01-01

    While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable technique for addressing many of the fundamental questions regarding the activities of IDPs. After introducing some experimental issues specific to IDPs and in relation to the latest technical developments, this article presents the interest of the theory of polymer physics to evaluate the flexibility of fully disordered proteins. The different strategies to obtain 3-dimensional models of IDPs, free in solution and associated in a complex, are then reviewed. Indeed, recent computational advances have made it possible to readily extract maximum information from the scattering curve with a special emphasis on highly flexible systems, such as multidomain proteins and IDPs. Furthermore, integrated computational approaches now enable the generation of ensembles of conformers to translate the unique flexible characteristics of IDPs by taking into consideration the constraints of more and more various complementary experiment. In particular, a combination of SAXS with high-resolution techniques, such as x-ray crystallography and NMR, allows us to provide reliable models and to gain unique structural insights about the protein over multiple structural scales. The latest neutron scattering experiments also promise new advances in the study of the conformational changes of macromolecules involving more complex systems. PMID:22044150

  10. Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution

    PubMed Central

    Skou, Soren; Gillilan, Richard E

    2015-01-01

    Summary With recent advances in data analysis algorithms, X-ray detectors, and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community than ever before. Although limited to ~10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced usage of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors, and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the non-specialist. Here, we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch, and other common problems. The protein, human serum albumin (HSA), serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity, and solubility be extensively optimized prior to the experiment. PMID:24967622

  11. Small-Angle Scattering of X-Rays from Extragalactic Sources by Dust in Intervening Galaxies

    NASA Astrophysics Data System (ADS)

    Miralda-Escudé, Jordi

    1999-02-01

    Gamma-ray bursts are now known to be a cosmological population of objects, which are often accompanied by X-ray and optical afterglows. The total energy emitted in the afterglow can be similar to the energy radiated in the gamma-ray burst itself. If a galaxy containing a large column density of dust is near the line of sight to a gamma-ray burst, small-angle scattering of the X-rays due to diffraction by the dust grains will give rise to an X-ray echo of the afterglow. A measurement of the angular size of the echo at a certain time after the afterglow is observed yields a combination of the angular diameter distances to the scattering galaxy and the gamma-ray burst that can be used to constrain cosmological models in the same way as a time delay in a gravitational lens. The scattering galaxy will generally cause gravitational lensing as well, and this should modify the shape of the X-ray echo from a circular ring. The main difficulty in detecting this phenomenon is the very low flux expected for the echo. The flux can be increased when the gamma-ray burst is highly magnified by gravitational lensing, or when the deflecting galaxy is at low redshift. X-ray echoes of continuous (but variable) sources, such as quasars, may also be detectable with high-resolution instruments and would allow similar measurements.

  12. Comparative analysis of the nucleosome structure of cell nuclei by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Isaev-Ivanov, V. V.; Lebedev, D. V.; Lauter, H.; Pantina, R. A.; Kuklin, A. I.; Islamov, A. Kh.; Filatov, M. V.

    2010-05-01

    The nucleosome structure in native nuclei of normal (chicken erythrocyte and rat leukocyte nuclei) and anomalously proliferating (the human cervical adenocarcinoma cell line HeLa and the Chinese hamster fibroblast cell line A238) cells has been investigated using small-angle neutron scattering. The experimental results obtained allow one to make the inference that the parameters of the nucleosome structure for the chicken erythrocyte and rat leukocyte nuclei (on average over the nucleus) are close to the universally accepted values and that the distance distribution function is bimodal. The bimodality of the distance distribution function reflects a narrow distribution of distances between nucleosomes (on average over the nucleus) at the fibril level of the chromatin organization. The histone core of the nucleosome structure in the nuclei of the HeLa and A238 cells (on average over the nucleus) is considerably less compact than that in the chicken erythrocyte and rat leukocyte nuclei, and the distance distribution function does not exhibit indications of the bimodality.

  13. Modeling and small-angle neutron scattering spectra of chromatin supernucleosomal structures at genome scale

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Grigoriev, Mikhail; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2011-11-01

    Eukaryotic genome is a highly compacted nucleoprotein complex organized in a hierarchical structure based on nucleosomes. Detailed organization of this structure remains unknown. In the present work we developed algorithms for geometry modeling of the supernucleosomal chromatin structure and for computing distance distribution functions and small-angle neutron scattering (SANS) spectra of the genome-scale (˜106 nucleosomes) chromatin structure at residue resolution. Our physical nucleosome model was based on the mononucleosome crystal structure. A nucleosome was assumed to be rigid within a local coordinate system. Interface parameters between nucleosomes can be set for each nucleosome independently. Pair distance distributions were computed with Monte Carlo simulation. SANS spectra were calculated with Fourier transformation of weighted distance distribution; the concentration of heavy water in solvent and probability of H/D exchange were taken into account. Two main modes of supernucleosomal structure generation were used. In a free generation mode all interface parameters were chosen randomly, whereas nucleosome self-intersections were not allowed. The second generation mode (generation in volume) enabled spherical or cubical wall restrictions. It was shown that calculated SANS spectra for a number of our models were in general agreement with available experimental data.

  14. Percolating bulk-heterostructures from neutron reflectometry and small angle scattering data

    NASA Astrophysics Data System (ADS)

    Olds, Daniel; Duxbury, Phillip

    2013-03-01

    We present a novel algorithm for efficiently calculating the simulated small angle scattering data of any discretized morphological model of arbitrary scale and resolution, referred to as the distribution function method (DFM). Unlike standard SAS fitting methods, the DFM algorithm allows for the calculation of form factors and structure factors from complex nanoscale morphologies commonly encountered in many modern polymeric and nanoparticle based systems, which have no exact analytical corollary. The computational efficiency of the DFM algorithm suggests it's use in morphological model refinement. We will present a number of simple examples to demonstrate the accuracy and limits of the algorithm, followed by an example of incorporation of the DFM algorithm into reverse Monte Carlo structural refinement of bulk-heterojunction two-phase morphologies, such as those commonly found in organic photovoltaic devices. We will show that morphological features introduced via direct incorporation of experimental neutron reflectometry and SANS data to the models has a direct effect on the results of device simulations. The authors thank CORE-CM at Michigan State University for it's funding of this research.

  15. Synchrotron-based small-angle X-ray scattering of proteins in solution.

    PubMed

    Skou, Soren; Gillilan, Richard E; Ando, Nozomi

    2014-07-01

    With recent advances in data analysis algorithms, X-ray detectors and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community. Although limited to ∼10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced use of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the nonspecialist. Here we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch and other common problems. Human serum albumin (HSA) serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity and solubility be extensively optimized before the experiment.

  16. Characterization of colloidal structures during intestinal lipolysis using small-angle neutron scattering.

    PubMed

    Rezhdo, Oljora; Di Maio, Selena; Le, Peisi; Littrell, Kenneth C; Carrier, Rebecca L; Chen, Sow-Hsin

    2017-08-01

    Bile micelles are thought to mediate intestinal absorption, in part by providing a phase into which compounds can partition. Solubilizing capacity of bile micelles is enhanced during the digestion of fat rich food. We hypothesized that the intestinal digestion of triglycerides causes an increase in volume of micelles that can be quantitatively monitored over the course of digestion using small-angle neutron scattering (SANS), and that SANS can enable evaluation of the contribution of each of the components present during digestion to the size of micelles. SANS was used to characterize the size and shape of micelles present prior to and during the in vitro simulated intestinal digestion of a model food-associated lipid, triolein. Pre-lipolysis mixtures of a bile salt and phospholipid simulating bile concentrations in fed conditions were organized in micelles with an average volume of 40 nm(3). During lipolysis, the micelle volume increased 2.5-fold over a 2-h digestion period due to growth in one direction as a result of insertion of monoglycerides and fatty acids. These efforts represent a basis for quantitative mechanistic understanding of changes in solubilizing capacity of the intestinal milieu upon ingestion of a fat-rich meal. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering¶

    SciTech Connect

    Littrell, Kenneth C.; Gallas, James M.; Zajac, Gerry W.; Thiyagarajan, Pappannan

    2003-01-01

    Small-angle X-ray scattering was used to measure the effects of chemical bleaching on the size and morphology of tyrosine-derived synthetic melanin dispersed in aqueous media. The average size as measured by the radius of gyration of the melanin particles in solution, at neutral to mildly basic pH, decreases from 16.5 to 12.5 angstroms with increased bleaching. The melanin particles exhibit scattering characteristic of sheet-like structures with a thickness of approximately 11 angstroms at all but the highest levels of bleaching. The scattering data are well described by the form factor for scattering from a pancake-like circular cylinder. These data are consistent with the hypothesis that unbleached melanin, at neutral to mildly basic pH, is a planar aggregate of 6- to 10-nm-sized melanin protomolecules, hydrogen bonded through their quinone and phenolic perimeters. The observed decrease in melanin particle size with increased bleaching is interpreted as evidence for deaggregation, most probably the result of oxidative disruption of hydrogen bonds and an increase in the number of charged, carboxylic acid groups, whereby the melanin aggregates disassociate into units composed of decreasing numbers of protomolecules.

  18. Global analysis of riboswitches by small-angle X-ray scattering and calorimetry

    PubMed Central

    Zhang, Jinwei; Jones, Christopher P.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Riboswitches are phylogenetically widespread non-coding mRNA domains that directly bind cellular metabolites and regulate transcription, translation, RNA stability or splicing via alternative RNA structures modulated by ligand binding. The details of ligand recognition by many riboswitches have been elucidated using X-ray crystallography and NMR. However, the global dynamics of riboswitch-ligand interactions and their thermodynamic driving forces are less understood. By compiling the work of many laboratories investigating riboswitches using small-angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC), we uncover general trends and common themes. There is a pressing need for community-wide consensus experimental conditions to allow results of riboswitch studies to be compared rigorously. Nonetheless, our meta-analysis reveals considerable diversity in the extent to which ligand binding reorganizes global riboswitch structures. It also demonstrates a wide spectrum of enthalpy-entropy compensation regimes across riboswitches that bind a diverse set of ligands, giving rise to a relatively narrow range of physiologically relevant free energies and ligand affinities. From the strongly entropy-driven binding of glycine to the predominantly enthalpy-driven binding of c-di-GMP to their respective riboswitches, these distinct thermodynamic signatures reflect the versatile strategies employed by RNA to adapt to the chemical natures of diverse ligands. Riboswitches have evolved to use a combination of long-range tertiary interactions, conformational selection, and induced fit to work with distinct ligand structure, charge, and solvation properties. PMID:24769285

  19. Small angle neutron scattering study of fatigue induced grain boundary cavities

    SciTech Connect

    Page, R.; Roth, M.; Weertman, J.R.

    1982-07-01

    Small angle neutron scattering (SANS) has been used to study grain boundary cavitation in high purity copper fatigued at elevated temperatures. SANS is an extremely sensitive method for observing cavities. Void volume fractions of less than 10/sup -6/ can be detected. Analysis of scattering data yields values for the total void volume per unit volume and the total number of voids in a fatigued sample. The size distribution of the voids also can be calculated. From a series of specimens, each fatigued under identical conditions but for varying lengths of time, it is possible to obtain the void nucleation rate and the rate of growth of the total void volume and of the individual voids. Extrapolation of curves of void volume fraction vs time of fatigue to zero time shows that cavitation begins upon commencement of fatiguing without any measurable incubation time. Void nucleation is continuous throughout fatigue Calculated values of the individual void growth rate agree very well, as regards time dependence, temperature dependence, and even absolute value, with growth rates derived from a theory of fatigueinduced cavitation based on transient effects in vacancy diffusion.

  20. Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering.

    PubMed

    Bruetzel, Linda K; Gerling, Thomas; Sedlak, Steffen M; Walker, Philipp U; Zheng, Wenjun; Dietz, Hendrik; Lipfert, Jan

    2016-08-10

    Self-assembled DNA origami nanostructures enable the creation of precisely defined shapes at the molecular scale. Dynamic DNA devices that are capable of switching between defined conformations could afford completely novel functionalities for diagnostic, therapeutic, or engineering applications. Developing such objects benefits strongly from experimental feedback about conformational changes and 3D structures, ideally in solution, free of potential biases from surface attachment or labeling. Here, we demonstrate that small-angle X-ray scattering (SAXS) can quantitatively resolve the conformational changes of a DNA origami two-state switch device as a function of the ionic strength of the solution. In addition, we show how SAXS data allow for refinement of the predicted idealized three-dimensional structure of the DNA object using a normal mode approach based on an elastic network model. The results reveal deviations from the idealized design geometries that are otherwise difficult to resolve. Our results establish SAXS as a powerful tool to investigate conformational changes and solution structures of DNA origami and we anticipate our methodology to be broadly applicable to increasingly complex DNA and RNA devices.

  1. Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering.

    PubMed

    Gurnon, A Kate; Godfrin, P Douglas; Wagner, Norman J; Eberle, Aaron P R; Butler, Paul; Porcar, Lionel

    2014-02-06

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions.

  2. The cubic phase of phosphatidylethanolamine film by small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Sun, Run Guang; Zhang, Jing

    2004-02-01

    Using small angle x-ray scattering, we have investigated the effects of polyvinylpyrrolidone (PVP) and oleic acid (OA) on the structures of the cubic phase of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) films. At lower PVP concentrations, DEPE-PVP mixed films existed in two cubic phases. With increasing PVP concentration in the DEPE-PVP mixed phase, a phase transition from Q229 (Im3m) to Q224 (Pn3m) occurred. The effect of addition of OA to a DEPE-PVP mixed phase was also determined using a certain fixed amount. At 0.5 mol% OA, the presence of low amounts of OA allows the DEPE-PVP-OA system to organize in a cubic Q229 phase. At 1.0 mol% OA, the presence of larger amounts of OA induces formation of coexisting Q229 and Q224 phases. At 1.5 mol% OA, the presence of even larger amounts of OA promotes formation of a cubic Q224 phase in the DEPE-PVP-OA mixture.

  3. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  4. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  5. Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid.

    PubMed

    Kang, T; Qian, S; Smith, G S; Do, C; Heller, W T

    2017-09-12

    Mixtures of water, octane and 1-octanol with 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), often referred to as a surface active ionic liquid (SAIL), form water-in-oil microemulsions that have potential application as extraction media for various metal ions. Here, we present a structural study by small-angle neutron scattering (SANS) of dense microemulsions formed by surfactant-rich mixtures of these four compounds to understand how the SAIL can be used to tune the structures and properties of the microemulsions. The SANS experiments revealed that the microemulsions formed are composed of two phases, a water-in-oil microemulsion and a bicontinuous microemulsion, which becomes the dominant phase at high surfactant concentration. In this concentration regime, the surfactant film becomes more rigid, having a higher bending modulus that results from the parallel stacking of the imidazolium ring of the SAIL. At lower surfactant concentrations, the molecular packing of the SAIL does not change with the water content of the microemulsion. The results presented here correlate well with previously observed changes in the interaction between the IL cation and metal ions (Y. Tong, L. Han and Y. Yang, Ind. Eng. Chem. Res., 2012, 51, 16438-16443), while the capacity of the microemulsion system for water remains high enough for using the system as an extraction medium.

  6. Structural evaluation of an amyloid fibril model using small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dahal, Eshan; Choi, Mina; Alam, Nadia; Bhirde, Ashwinkumar A.; Beaucage, Serge L.; Badano, Aldo

    2017-08-01

    Amyloid fibrils are highly structured protein aggregates associated with a wide range of diseases including Alzheimer’s and Parkinson’s. We report a structural investigation of an amyloid fibril model prepared from a commonly used plasma protein (bovine serum albumin (BSA)) using small-angle x-ray scattering (SAXS) technique. As a reference, the size estimates from SAXS are compared to dynamic light scattering (DLS) data and the presence of amyloid-like fibrils is confirmed using Congo red absorbance assay. Our SAXS results consistently show the structural transformation of BSA from spheroid to rod-like elongated structures during the fibril formation process. We observe the elongation of fibrils over two months with fibril length growing from 35.9  ±  3.0 nm to 51.5  ±  2.1 nm. Structurally metastable fibrils with distinct SAXS profiles have been identified. As proof of concept, we demonstrate the use of such distinct SAXS profiles to detect fibrils in the mixture solutions of two species by estimating their volume fractions. This easily detectable and well-characterized amyloid fibril model from BSA can be readily used as a control or standard reference to further investigate SAXS applications in the detection of structurally diverse amyloid fibrils associated with protein aggregation diseases.

  7. Quantifying radiation damage in biomolecular small-angle X-ray scattering.

    PubMed

    Hopkins, Jesse B; Thorne, Robert E

    2016-06-01

    Small-angle X-ray scattering (SAXS) is an increasingly popular technique that provides low-resolution structural information about biological macromolecules in solution. Many of the practical limitations of the technique, such as minimum required sample volume, and of experimental design, such as sample flow cells, are necessary because the biological samples are sensitive to damage from the X-rays. Radiation damage typically manifests as aggregation of the sample, which makes the collected data unreliable. However, there has been little systematic investigation of the most effective methods to reduce damage rates, and results from previous damage studies are not easily compared with results from other beamlines. Here a methodology is provided for quantifying radiation damage in SAXS to provide consistent results between different experiments, experimenters and beamlines. These methods are demonstrated on radiation damage data collected from lysozyme, glucose isomerase and xylanase, and it is found that no single metric is sufficient to describe radiation damage in SAXS for all samples. The radius of gyration, molecular weight and integrated SAXS profile intensity constitute a minimal set of parameters that capture all types of observed behavior. Radiation sensitivities derived from these parameters show a large protein dependence, varying by up to six orders of magnitude between the different proteins tested. This work should enable consistent reporting of radiation damage effects, allowing more systematic studies of the most effective minimization strategies.

  8. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U.-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  9. Solution Properties of 1,3-Cyclohexadiene Polymers by Small Angle Neutron and Light Scattering

    SciTech Connect

    Yun, Seok I; Melnichenko, Yuri B; Wignall, George D; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Terao, Ken; Nakamura, Yo

    2006-01-01

    1,3-Cyclohexdiene polymers (PCHD) and their derivatives are of interest due to the six-member rings in the main chain, which are expected to impart higher mechanical strength and better thermal and chemical stability, as compared to common vinyl polymers. For example, hydrogenated PCHD has the highest glass transition temperature (T{sub g} {approx} 231 C) of all hydrocarbon polymers, and it also shows good heat, weather, impact, abrasion, and chemical resistance as well as low water absorption. In addition, PCHD has unique photochemical properties, such as excellent transparency, due to the isolated double bonds in the main chain. Also, block copolymers containing PCHD show unusual phase separation behavior. For example, a styrene/1,3-CHD block copolymer (PS-b-PCHD) with 50 vol % CHD (1,4/1,2 {approx} 95/5) exhibits a core-shell or hollow cylinder morphology, while a typical styrene/acyclic diene (isoprene or butadiene) block copolymer with similar composition exhibits a lamellar structure. Such phase behavior and many other properties strongly depend on the conformation of the polymer in solution or bulk. However, almost no data have been reported on the conformation of PCHD, probably because of the lack of well-defined and well-characterized samples. Here we report solution properties of PCHD in tetrahydrofuran (THF) and chloroform by multiangle laser light scattering, viscometry, and small-angle neutron scattering (SANS).

  10. Synchrotron radiation small angle scattering studies of d(TTAGGG)4 oligomer in solution

    NASA Astrophysics Data System (ADS)

    Kozak, Maciej; Wlodarczyk, Agnieszka; Dobek, Andrzej

    2009-10-01

    Telomeric DNA sequences play a crucial role in maintaining chromosome stability and integrity. In human chromosomes telomeres are composed of tandem (TTAGGG)n repeats. The structural parameters and low-resolution structure of a synthetic d(TTAGGG)4 oligomer in solution has been studied in the absence and in the presence of potassium cations, with the use of the small angle scattering of synchrotron radiation. The radii of gyration RG, calculated for d(TTAGGG)4 oligomer (in 10 mM Tris/HCl pH 7.3) was 1.42 nm, while RG, (in 10 mM Tris/HCl pH 7.3; 0.1 mM KCl) was 1.32 nm. The pair distance distribution function, P(r), yielded a maximum dimension of 4.55and 4.35 nm for solutions in the absence and the presence of potassium cations. On the basis of SAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods.

  11. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-01

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  12. Deterministic fractals: extracting additional information from small-angle scattering data.

    PubMed

    Cherny, A Yu; Anitas, E M; Osipov, V A; Kuklin, A I

    2011-09-01

    The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space. In the fractal region, the curve I(q)q(D) is found to be log-periodic with good accuracy, and the period is equal to the scaling factor of the fractal. Here, D and I(q) are the fractal dimension and the scattering intensity, respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that the log-periodicity of I(q)q(D) in the momentum space is related to the log-periodicity of the quantity g(r)r(3-D) in the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of structural units from which the fractal is composed.

  13. QUAFIT: A Novel Method for the Quaternary Structure Determination from Small-Angle Scattering Data

    PubMed Central

    Spinozzi, Francesco; Beltramini, Mariano

    2012-01-01

    The new QUAFIT method for determining the quaternary structure of biological macromolecular assemblies by analyzing x-ray or neutron small-angle scattering data is presented. The method is based on the idea that asymmetric monomers, formed by rigid domains of known atomic structure possibly connected by flexible linkers of known sequence, are assembled according to a point-group symmetry combined with a screw axis. Scattering amplitudes of domains and linkers are determined by means of a spherical harmonics expansion and combined to get the form factor of the assembly. To avoid any overlap among domains, the contact distance between two asymmetric domains is determined as a function of their orientation by a new algorithm, based on Stone’s Invariants expansion. To account for continuity and compactness of the whole assembly, an anisotropic Lennard-Jones potential among domains, written in terms of the contact distances, is included in the merit function. QUAFIT allows for the simultaneous presence of oligomerization intermediates as well as of monomers distributed over multiple conformations. QUAFIT has been tested by studying the structure of a high molecular weight protein, the hemocyanin from Octopus vulgaris, under solution conditions that stabilize the decameric form or induce dissociation into monomers, respectively. Results are in very good agreement with the structural model derived from electron microscopy observations. PMID:22947867

  14. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Gaubicher, Bertrand

    2010-08-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration.

  15. A time dependent kinetic small angle neutron scattering study of a novel YFe phase.

    PubMed

    Simmons, L M; Bentley, P M; Al-Jawad, M; Kilcoyne, S H

    2013-06-26

    Crystallization of amorphous Y67Fe33 into the YFe2 C15 Laves phase via a novel 'YFe' intermediate phase has been observed through to completion using time-resolved small angle neutron scattering (SANS). The nucleation and growth kinetics of the phase transformations have been studied at annealing temperatures below the crystallization temperatures for both the 'YFe' phase and the YFe2 phase. The SANS results agree with previously reported neutron diffraction and SANS data. At the annealing temperatures of 360, 370 and 380 °C, changes in the scattering intensity I(Q) occur as a result of the contrast between the amorphous matrix and the nucleating and growing Y and 'YFe' phases. Critical scattering occurs during each of the isotherms, relating to the full crystallization of Y67Fe33, and extrapolation gives a crystallization temperature of 382 °C. Beyond critical scattering, isotherms at 435, 450, and 465 °C reveal the details of the continuing transformation of the 'YFe' intermediate phase into the YFe2 C15 Laves phase.

  16. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    PubMed Central

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  17. Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.

    PubMed

    Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram

    2014-01-01

    Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.

  18. Characterization of Athabasca Asphaltenes Separated Physically and Chemically Using Small-Angle X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Amundarain Hurtado, Jesus Leonardo

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS) with synchrotron radiation. Two methods were used to separate asphaltenes from Athabasca bitumen. Conventional chemical separation by precipitation with n-pentane, and physical separation realized by passing bitumen through a zirconia membrane with a 20 nm average pore size. The Athabasca permeates and chemically separated samples were dispersed in 1-methylnaphtalene and n-dodecane, with temperature and asphaltene concentration ranges of 50-310 °C and 1-8 wt. %, respectively. Two approaches were also taken in the analysis of the SAXS emissions. A model-independent approach provided radii of gyration and scattering coefficients. A model-dependent fit provided size distributions for asphaltenes aggregates assuming that they are dense and spherical. Physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and their structural properties exhibited different temperature dependencies. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in crude oil/bitumen.

  19. Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations.

    PubMed

    Perutková, Šárka; Daniel, Matej; Rappolt, Michael; Pabst, Georg; Dolinar, Gregor; Kralj-Iglič, Veronika; Iglič, Aleš

    2011-02-28

    In this study we present experimental and theoretical results which concern the deviations from circularity of the pivotal plane in the inverse hexagonal phases (H(II)) of phospholipid self-assemblies. Due to packing constraints, the cross-section of the polar/apolar interface deviates from a circle, which we studied in minute detail by analysing small-angle X-ray diffraction data of dioleoyl-phosphatidylethanolamine (DOPE) and stearoyl-oleoyl-phosphatidylethanolamine (SOPE), respectively. On this structural basis, Monte Carlo (MC) simulated annealing variations of the free energy were carried out, both on the formation of the H(II)-phase and on the particular shape of the cross-section in the H(II)-phase. The equilibrium of the H(II)-phase pivotal plane contour and the corresponding values of the mean intrinsic curvature, H(m), and the hydrocarbon chain stiffness, τ, were determined from MC calculations. The results of these calculations were tested by solving the corresponding system of non-linear differential equations derived using variational calculus. Here our main aim is to predict the range of possible values of H(m) and τ. Comparing the measured structural data with predictions from MC calculations including lipid anisotropy, and accounting for the elastic deformations of the pivotal plane allowed us to determine a relationship between the bending deformation and stretching of hydrocarbon chains.

  20. Characterization of coal morphology by small angle x-ray scattering (SAXS)

    SciTech Connect

    Foster, M.; Jensen, K.F.

    1984-01-01

    The objectives of the present small angle x-ray scattering (SAXS) studies are: (1) to measure the specific surface area of the sample; and (2) to infer a pore size distribution. In pursuing these objectives three types of samples are used; a model microporous carbon, Carbosieve-S, three coals, and a porous ..gamma..-alumina. Changes in the porous structure with conversion are clearly evident in scattering data from both the model carbon and anthracite coal. Growth of the micropores in Carbosieve and of both micro- and mesopores in the coal is seen in the increasing intensity at intermediate values of h. Also, the intensity drop-off at high values of h moves in toward the mesopore scattering. The Voronoi and Fully Penetrable Polydisperse Spheres (FPPS) models are better for analyzing SAXS than traditional discrete models since they correspond to interconnected, random porous structures with irregular pore sizes and shapes. The Voronoi model can be used with the model carbon which appears to have a bimodal distribution with pore sizes closely grouped about the modes. However, the FPPS model, which allows for broad distributions, is more widely applicable. The FPPS model closely approximates the scattering from a characterized sample with polydisperse porosity. However, there is a marked difference betwe

  1. Small Angle X-Ray Scattering from Lipid-Bound Myelin Basic Protein in Solution

    PubMed Central

    Haas, H.; Oliveira, C. L. P.; Torriani, I. L.; Polverini, E.; Fasano, A.; Carlone, G.; Cavatorta, P.; Riccio, P.

    2004-01-01

    The structure of myelin basic protein (MBP), purified from the myelin sheath in both lipid-free (LF-MBP) and lipid-bound (LB-MBP) forms, was investigated in solution by small angle x-ray scattering. The water-soluble LF-MBP, extracted at pH < 3.0 from defatted brain, is the classical preparation of MBP, commonly regarded as an intrinsically unfolded protein. LB-MBP is a lipoprotein-detergent complex extracted from myelin with its native lipidic environment at pH > 7.0. Under all conditions, the scattering from the two protein forms was different, indicating different molecular shapes. For the LB-MBP, well-defined scattering curves were obtained, suggesting that the protein had a unique, compact (but not globular) structure. Furthermore, these data were compatible with earlier results from molecular modeling calculations on the MBP structure which have been refined by us. In contrast, the LF-MBP data were in accordance with the expected open-coil conformation. The results represent the first direct structural information from x-ray scattering measurements on MBP in its native lipidic environment in solution. PMID:14695288

  2. Characterization of Nanoclay Orientation in Polymer Nanocomposite Film by Small-angle X-ray Scattering

    SciTech Connect

    P Nawani; C Burger; L Rong; B Chu; B Hsiao; A Tsou; W Weng

    2011-12-31

    The orientation distribution of layer-shaped nanoclays (e.g. organoclays and pristine clays) dispersed in a polymer matrix is an important parameter to control the properties of polymer nanocomposites. In this study, we demonstrate that the use of multi-directional 2-D small-angleX-rayscattering (SAXS) can quantitatively describe the orientation distribution of organoclays (e.g. Cloisite C20A) in melt-pressed nanocompositefilms, containing ethylene-vinyl acetate (EVA) copolymers as polymer matrices. Different weight fractions of organoclays were used to alter the orientation profile of nanocompositefilms, in which the dispersion and morphology of organoclays were also characterized by complementary 2-D and 3-D transmission electron microscopy (TEM). All nanocomposites exhibited mixed intercalation/exfoliation clay morphology, where the intercalated structure possessed partial orientation parallel to the in-plane direction of the film. The higher content of the clay loading showed a higher clay orientation. A simple analytical scheme for SAXS data analysis to determine the orientation parameter (P{sub 2}) was demonstrated, the results of which are in agreement with the gas permeation properties of the nanocompositefilms.

  3. Modeling detergent organization around aquaporin-0 using small-angle X-ray scattering.

    PubMed

    Berthaud, Alice; Manzi, John; Pérez, Javier; Mangenot, Stéphanie

    2012-06-20

    Solubilization of integral membrane proteins in aqueous solutions requires the presence of amphiphilic molecules like detergents. The transmembrane region of the proteins is then surrounded by a corona formed by these molecules, ensuring a hydrophilic outer surface. The presence of this corona has strongly hampered structural studies of solubilized membrane proteins by small-angle X-ray scattering (SAXS), a technique frequently used to monitor conformational changes of soluble proteins. Through the online combination of size exclusion chromatography, SAXS, and refractometry, we have determined a precise geometrical model of the n-dodecyl β-d-maltopyranoside corona surrounding aquaporin-0, the most abundant membrane protein of the eye lens. The SAXS data were well-fitted by a detergent corona shaped in an elliptical toroid around the crystal structure of the protein, similar to the elliptical shape recently reported for nanodiscs (Skar-Gislinge et al. J. Am. Chem. Soc. 2010, 132, 13713-13722). The torus thickness determined from the curve-fitting protocol is in excellent agreement with the thickness of a lipid bilayer, while the number of detergent molecules deduced from the volume of the torus compares well with those obtained on the same sample from refractometry and mass analysis based on SAXS forward scattering. For the first time, the partial specific volume of the detergent surrounding a protein was measured. The present protocol is a crucial step toward future conformational studies of membrane proteins in solution.

  4. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    SciTech Connect

    Scott, Jamieson; Tong, Katie; William, Hamilton; He, Lilin; James, Michael; Thordarson, Pall; Boukhalfa, Sofiane

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.

  5. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE PAGES

    Scott, Jamieson; Tong, Katie; William, Hamilton; ...

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  6. Small angle X-ray study of cellulose macromolecules produced by tunicates and bacteria.

    PubMed

    Khandelwal, Mudrika; Windle, Alan H

    2014-07-01

    The organisation of poly-glucan chains into cellulose macromolecular microfibrils has been studied using small angle X-ray scattering (SAXS). Three kinds of cellulose - bacterial cellulose (BC), nata-de-coco (NdC) (food grade bacterial cellulose) and tunicate cellulose (TC) have been investigated. Given the large ambiguity in literature on the microfibril dimensions owing to different methods and data analysis strategies, a method to extract dimensions of cellulose microfibrils using SAXS has been shown, which was found to be consistent across all the samples. The results have been verified with microscopy data. Two populations of microfibrils with different cross-section dimensions were identified. The dimensions of the rectangular cross-sections of BC were found to be 32nm by 16nm and 21nm by 10nm. The dimensions for NdC were calculated to be 25nm×8nm and 14nm×6nm and that for TC were determined to be 25nm×10nm and 15nm×8nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  8. The polymerization of actin: Structural changes from small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Norman, Alexander I.; Ivkov, Robert; Forbes, Jeffrey G.; Greer, Sandra C.

    2005-10-01

    We present a new analysis of small-angle neutron-scattering data from rabbit muscle actin in the course of the polymerization from G-actin to F-actin as a function of temperature. The data, from Ivkov et al. [J. Chem. Phys. 108, 5599 (1998)], were taken in D2O buffer with Ca2+ as the divalent cation on the G-actin in the presence of ATP and with KCl as the initiating salt. The new analysis of the data using modeling and the method of generalized indirect fourier transform (O. Glatter, GIFT, University of Graz, Austria, http://physchem.kfunigraz.ac.at/sm/) provide shapes and dimensions of the G-actin monomer and of the growing actin oligomer in solution as a function of temperature and salt concentration. This analysis indicates that the G-actin monomer, under the conditions given above, is a sphere 50-54Å in diameter as opposed to the oblate ellipsoid seen by x-ray crystallography. The F-actin dimensions are consistent with x-ray crystal structure determinations.

  9. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    DOE PAGES

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.; ...

    2017-02-28

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effortmore » but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K,i.e.above the melting transition temperature of the two lipids.« less

  10. Small angle x-ray scattering study of the porosity in coals

    NASA Astrophysics Data System (ADS)

    Schmidt, P. W.; Kalliat, M.; Kwak, C. Y.

    1981-02-01

    Small-angle scattering curves have bee obtained for some Pennsylvania State University PSOC coal samples and for several other coals. The x-ray scattering data provide information about the porosity in the coals and suggest that there are three classes of pores, which have average dimensions of the order of 1000 A˚, 30 A˚, and less than 5 A˚, corresponding to the macropores, transition pores and micropores discussed by Dubinin. The principal factor determining the form of the scattering curves has been found to be the rank of the coal. In coals of all ranks, the specific surface associated with the macropores is about 1 to 10 m2/gm. The micropores are most highly developed in high-rank coals. Comparison of the x-ray and adsorption results suggests that x-ray scattering and nitrogen adsorption detect only the specific surface of the macropores and transition pores, while carbon dioxide adsorption measures the total porosity from the micropores. Scattering data have also been recorded for a series of coals which had been tested for their suitability for conversion to liquid fuels. All the coals which were well-suited for producing liquid fuels were found to have a well-developed transition pore structure, while coals which were not especially good for coal liquefaction processes had almost no transition pores.

  11. Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-ray Scattering Study

    SciTech Connect

    Pople, John A.

    2001-03-29

    The mechanical properties of dentin are largely determined by the intertubular dentin matrix, which is a complex composite of type I collagen fibers and a carbonate-rich apatite mineral phase. The authors perform a small angle x-ray scattering (SAXS) study on fully mineralized human dentin to quantify this fiber/mineral composite architecture from the nanoscopic through continuum length scales. The SAXS results were consistent with nucleation and growth of the apatite phase within periodic gaps in the collagen fibers. These mineralized fibers were perpendicular to the dentinal tubules and parallel with the mineralization growth front. Within the plane of the mineralization front, the mineralized collagen fibers were isotropic near the pulp, but became mildly anisotropic in the mid-dentin. Analysis of the data also indicated that near the pulp the mineral crystallites were approximately needle-like, and progressed to a more plate-like shape near the dentino-enamel junction. The thickness of these crystallites, {approx} 5 nm, did not vary significantly with position in the tooth. These results were considered within the context of dentinogenesis and maturation.

  12. Small angle neutron scattering for the structural study of intrinsically disordered proteins in solution: a practical guide.

    PubMed

    Gabel, Frank

    2012-01-01

    Small angle neutron scattering (SANS) allows studying bio-macromolecular structures and interactions in solution. It is particularly well-suited to study structural properties of intrinsically disordered proteins (IDPs) over a wide range of length-scales ranging from global aspects (radii of gyration and molecular weight) down to short-distance properties (e.g., cross-sectional analysis). In this book chapter, we provide a practical guide on how to carry out SANS experiments on IDPs and discuss the complementary aspects and strengths of SANS with respect to small angle X-ray scattering (SAXS).

  13. Direct and Doppler angle-independent measurement of blood flow velocity in small-diameter vessels using ultrasound microbubbles.

    PubMed

    Roy, Homagni Sikha; Zuo, Guoqing; Luo, Zhengchun; Wu, Hanping; Krupka, Tianyi M; Ran, Haitao; Li, Pan; Sun, Youping; Wang, Zhigang; Zheng, Yuanyi

    2012-01-01

    This article represents an initial attempt to demonstrate the feasibility of a novel method for measuring flow velocity in small vessels, which is a direct, noninvasive, ultrasound-guided, and Doppler angle-independent method. In vitro, experiments were designed to mimic blood flow inside tubes. Harmonic ultrasound imaging was used to track the movement of microbubbles, and the mean flow velocity was calculated. In vivo, the flow velocities were measured in the central arteries of rabbit ears. This method can be used whenever the Doppler ultrasound cannot measure the velocity in small vessels because of either low sensitivity or Doppler angle limitation. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Small Angle X-Ray Scattering of Carbon and Kevlar Fibers Under Load

    NASA Astrophysics Data System (ADS)

    Effler, Lawrence Joseph, Jr.

    Small angle X-ray scattering (SAXS) was used as the primary tool for investigating the microporous structure of Kevlar and mesophase pitch based carbon fibers. The orientation present in the scattering entities was determined by extending Porod's invariant into a pseudo-invariant for one-dimensional data slices. By comparing the pseudo -invariants at different aximuthal angles the extent of the orientation present in the scattering system was determined. The orientation of the microvoids was found to correlate best with the modulus of the carbon fibers. Distance distribution functions were also determined for the fibers. For the carbon fibers the average size of the voids and the breadth of the distribution was found to increase with both fiber modulus and strength. In addition, the distance distribution curves were able to distinguish between fibers spun under different conditions. These results were found to mirror the enhancement of crystalline orientation and the development of graphitic phases in the fibers. Studies were also conducted to determine the response of the microvoids to an applied tensile load. Both Kevlar and the carbon fibers indicated a loss of outer fiber surface, with the most dramatic loss being seen for Kevlar. Experiments were conducted which compared both as received fibers to those which had been strained to failure. Additional experiments were done with the fibers being strained while in the SAXS camera. For the Kevlar fibers the loss of its skin layer was indicated by less anisotropic scattering patterns of the fractured fibers. The dynamic studies indicated that initially void orientation increases accompanied by the formation of newer, smaller voids. However these trends are reversed as the fiber tow approaches and reaches fracture. The loss of the skin region was confirmed by both laser backscattering and optical microscopy. The response of the microvoid phase of Kevlar to loading is interpreted in light of Morgan's chain end model

  15. The yields of light meson resonances in neutrino-nucleus interactions at Left-Pointing-Angle-Bracket E{sub {nu}} Right-Pointing-Angle-Bracket Almost-Equal-To 10 GeV

    SciTech Connect

    Agababyan, N. M.; Ammosov, V. V.; Grigoryan, N.; Gulkanyan, H.; Ivanilov, A. A.; Karamyan, Zh.; Korotkov, V. A.

    2011-02-15

    The total yields of the all well established light meson resonances (up to the {phi}(1020) meson) are estimated in neutrino-nucleus charged current interactions at Left-Pointing-Angle-Bracket E{sub {nu}} Right-Pointing-Angle-Bracket Almost-Equal-To 10 GeV, using the data obtained with SKAT bubble chamber. The yield of {phi} meson in neutrino production is obtained for the first time. For some resonances, the yields in the forward and backward hemispheres in the hadronic c.m.s. are also extracted. From the comparison of the obtained and available higher-energy data, an indication is obtained that the resonance yields rise almost linearly as a function of the mass W of the neutrino produced hadronic system. The fractions of pions originating from the light resonance decays are inferred.

  16. (abstract) Observation by Clementine of a Hugh Opposition Surge on the Moon at Very Small Solar Phase Angles

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Wang, M. C.

    1994-01-01

    The Clementine mission enabled the first quantative observations of the Moon at very small solar phase angles. It is well established from Earth-based observations that the Moon exhibits a non-linear increase in brightness as its face becomes fully illuminated to a terrestrial observer. Because the models of the opposition effect are sensitive indicators of surfical compaction state and particle size, observations at small solar phase angles are important to obtain. A recent model for optical coherent backscatter seeks to explain a narrow opposition spike at very small phase angles (< 1 degree) seen on several icy satellites , including Europa, Icarus 90, and Oberon . Over 90 images of the Moon's surface at phase angles less than 0.5(deg) (the minimum phase angle observable from Earth due to the Moon's angular size) were obtained by the Clementine spacecraft. Our analysis of these images shows the moon exhibits a surge in brightness of approximately 20% below 0.25(deg), comparable to the values observed on icy satellites. No color dependence was detected in the lunar phase curve below 2 degrees.

  17. (abstract) Observation by Clementine of a Hugh Opposition Surge on the Moon at Very Small Solar Phase Angles

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Wang, M. C.

    1994-01-01

    The Clementine mission enabled the first quantative observations of the Moon at very small solar phase angles. It is well established from Earth-based observations that the Moon exhibits a non-linear increase in brightness as its face becomes fully illuminated to a terrestrial observer. Because the models of the opposition effect are sensitive indicators of surfical compaction state and particle size, observations at small solar phase angles are important to obtain. A recent model for optical coherent backscatter seeks to explain a narrow opposition spike at very small phase angles (< 1 degree) seen on several icy satellites , including Europa, Icarus 90, and Oberon . Over 90 images of the Moon's surface at phase angles less than 0.5(deg) (the minimum phase angle observable from Earth due to the Moon's angular size) were obtained by the Clementine spacecraft. Our analysis of these images shows the moon exhibits a surge in brightness of approximately 20% below 0.25(deg), comparable to the values observed on icy satellites. No color dependence was detected in the lunar phase curve below 2 degrees.

  18. A Small Surrogate for the Golden Angle in Time-Resolved Radial MRI Based on Generalized Fibonacci Sequences.

    PubMed

    Wundrak, Stefan; Paul, Jan; Ulrici, Johannes; Hell, Erich; Rasche, Volker

    2015-06-01

    In golden angle radial magnetic resonance imaging a constant azimuthal radial profile spacing of 111.246...(°) guarantees a nearly uniform azimuthal profile distribution in k-space for an arbitrary number of radial profiles. Even though this profile order is advantageous for various real-time imaging methods, in combination with balanced steady-state free precession (SSFP) sequences the large azimuthal angle increment may lead to strong image artifacts, due to the varying eddy currents introduced by the rapidly switching gradient scheme. Based on a generalized Fibonacci sequence, a new sequence of smaller irrational angles is introduced ( 49.750...(°), 32.039...(°), 27.198...(°), 23.628...(°), ... ). The subsequent profile orders guarantee the same sampling efficiency as the golden angle if at least a minimum number of radial profiles is used for reconstruction. The suggested angular increments are applied for dynamic imaging of the heart and the temporomandibular joint. It is shown that for balanced SSFP sequences, trajectories using the smaller golden angle surrogates strongly reduce the image artifacts, while the free retrospective choice of the reconstruction window width is maintained.

  19. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    SciTech Connect

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  20. Nuclear effects on ion heating within the small-angle charged-particle elastic-scattering regime

    NASA Astrophysics Data System (ADS)

    Andrade, A.; Hale, G. M.

    1984-10-01

    The effects of nuclear forces (in contrast to pure Coulomb interaction) on the ion heating rate which results from small-angle scattering processes between charged particles in plasmas are investigated within the framework of Fokker-Planck theory. These effects are included through the addition of analytic Coulomb-nuclear interference and nuclear elastic cross sections in the scattering integrals of the dynamical friction coefficient and dispersion tensor. It is found that corrections to traditional Fokker-Planck predictions of the ion-ion energy exchange rate can be calculated and that these corrections are sensitive to the choice of the maximum scattering angle defining the cutoff between small- and large-angle scattering.