Pope, Noah G.; Veirs, Douglas K.; Claytor, Thomas N.
1994-01-01
The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure.
Pope, N.G.; Veirs, D.K.; Claytor, T.N.
1994-10-25
The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast Fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure. 7 figs.
An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin
ERIC Educational Resources Information Center
Rovnyak, David; Thompson, Laura E.
2005-01-01
Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…
Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M
2015-05-04
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stevens, Joanna S.; Gainar, Adrian; Suljoti, Edlira; ...
2015-03-18
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs andmore » σ* shape resonances in the NEXAFS spectra. Finally, this provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.« less
Properties of nonaqueous electrolytes
NASA Technical Reports Server (NTRS)
Foster, J. N.; Hanson, D. C.; Hon, J. F.; Keller, R.; Muirhead, J. S.
1970-01-01
Physical property measurements and structural studies conducted in aprotic solvents using various solutes are applicable to the further development of lithum batteries. Structural studies utilize nuclear magnetic resonance and electron paramagnetic resonance techniques.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Neutrino-antineutrino oscillations as a possible solution for the LSND and MiniBooNE anomalies?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenberg, Sebastian; Micu, Octavian; Paes, Heinrich
2009-09-01
We investigate resonance structures in CPT and Lorentz symmetry-violating neutrino-antineutrino oscillations in a two generation framework. The neutrino-antineutrino oscillations are induced by Lorentz- and CPT-violating terms in the Hamiltonian. The resonances are suitably described in terms of charge conjugation eigenstates of the system. The relations among the flavor, charge conjugation and mass eigenbasis of neutrino-antineutrino oscillations are examined along with the interplay between the available CPT-violating parameter space and possible resonance structures. Eventually we remark on the consequences of such scenarios for neutrino oscillation experiments, namely, possible solutions for the LSND and MiniBooNE anomalies.
Resonant soft X-ray scattering on protein solutions
NASA Astrophysics Data System (ADS)
Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique
Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.
Opto-electronic oscillator: moving toward solutions based on polymer materials
NASA Astrophysics Data System (ADS)
Nguyên, Lâm Duy; Journet, Bernard; Zyss, Joseph
2008-02-01
Optoelectronic oscillators have been studied since many years now, their high spectral purity being one of their most interesting quality for photonics signal processing, communication or radio over fiber systems. One part of the structure is a long fiber optic feedback loop acting as a delay line. Different techniques have been introduced such as multiple loops in order to get very narrow spectral lines and large mode spacing. One of the problems due to long fiber loops is the size and the requirement of temperature control. In order to go toward integrated solutions it is also possible to introduce optical resonators instead of a delay line structure (as for classical electronic oscillators). But such resonators should present very high quality factor. In this paper we demonstrate solutions using resonators based on polymer materials such as PMMA-DCM. Structures such as micro-rings, micro-disks or stadium-shaped resonator have been realized at the laboratory. Quality factor of 6000 have already been achieved leading to an equivalent fiber loop of 19 m for an oscillator at 10 GHz. But it has been already theoretically proved that quality factor greater than one thousand hundred could be obtained. These resonators can be directly implemented with Mach-Zehnder optical modulators based on electro-optic polymer such as PMMA-DR1 leading to integrated solutions. And in the future it should be also possible to add a laser made with polymer material, with a structure as stadium-shape polymer micro-laser. The fully integrated photonic chip is not so far. The last important function to be implemented is the tuning of the oscillation frequency.
Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang
2013-01-01
The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313
Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A
2014-01-01
We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.
Nuclear quadrupole resonance studies in semi-metallic structures
NASA Technical Reports Server (NTRS)
Murty, A. N.
1974-01-01
Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas
2014-05-01
Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.
A Markov Random Field Framework for Protein Side-Chain Resonance Assignment
NASA Astrophysics Data System (ADS)
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.
Cheng, Chi-Yuan; Han, Songi
2013-01-01
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.
Pritišanac, Iva; Degiacomi, Matteo T; Alderson, T Reid; Carneiro, Marta G; Ab, Eiso; Siegal, Gregg; Baldwin, Andrew J
2017-07-19
Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace
A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less
NASA Astrophysics Data System (ADS)
Tyler, R.
2017-12-01
Resonant tidal excitation of an atmosphere will arrive in predictable situations where there is a match in form and frequency between tidal forces and the atmosphere's eigenmodes of oscillation. The resonant response is typically several orders of magnitude more energetic than in non-resonant configurations involving only slight differences in parameters, and the behavior can be quite different because different oscillation modes are favored in each. The work presented provides first a generic description of these resonant states by demonstrating the behavior of solutions within the very large parameter space of potential scenarios. This generic description of the range of atmospheric tidal response scenarios is further used to create a taxonomy for organizing and understanding various tidally driven dynamic regimes. The resonances are easily identified by associated peaks in the power. But because these peaks may be relatively narrow, millions of solutions can be required to complete the description of the solution's dependence over the range of parameter values. (Construction of these large solution spaces is performed using a fast, semi-analytical method that solves the forced, dissipative, Laplace Tidal Equations subject to the constraint of dynamical consistency (through a separation constant) with solutions describing the vertical structure.) Filling in the solution space in this way is used not only to locate the parameter coordinates of resonant scenarios but also to study allowed migration paths through this space. It is suggested that resonant scenarios do not arrive through happenstance but rather because secular variations in parameters make the configuration move into the resonant scenario, with associated feedbacks either accelerating or halting the configuration migration. These results are then used to show strong support for the hypothesis by R. Lindzen that the regular banding (belts/zones/jets) on Jupiter and Saturn are driven by tides. The results also provide important, though less specific, support for a second hypothesis that inflated atmospheres inferred for a number of giant extra-solar planets are due to thermal or gravitational tides.
NASA Astrophysics Data System (ADS)
Maksimenko, V. V.; Zagaynov, V. A.; Semina, P. N.; Zheltova, A. V.; Maslenkova, E. V.; Smolyanskiy, A. S.
2018-05-01
The photon propagator describing the interaction of light with a monolayer of metal particles (island film) is calculated in the coherent potential approximation. It is shown that the shift in the frequency peak of a dipole surface plasmon for a monolayer particle relative to the analogous frequency of the plasma resonance for an isolated particle is not the only manifestation of the influence of neighboring particles. Neighboring particles also produce a bimodal structure in the spectrum line of the plasmon resonance. The possibility of fine structure in the plasmon resonance spectrum lines is predicted.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Solution structural ensembles of substrate-free cytochrome P450(cam).
Asciutto, Eliana K; Young, Matthew J; Madura, Jeffry; Pochapsky, Susan Sondej; Pochapsky, Thomas C
2012-04-24
Removal of substrate (+)-camphor from the active site of cytochrome P450(cam) (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The (1)H-(15)N correlation map of substrate-free diamagnetic Fe(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for (15)N-(1)H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form.
Theoretical and material studies on thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.; Brennan, K. F.
1986-01-01
A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.
Optical solitons to the resonance nonlinear Schrödinger equation by Sine-Gordon equation method
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2018-01-01
In this paper, we examined the optical solitons to the resonant nonlinear Schrödinger equation (R-NLSE) which describes the propagation of solitons through optical fibers. Three types of nonlinear media fibers are studied. They are; quadratic-cubic law, Kerr law and parabolic law. Dark, bright, dark-bright or combined optical and singular soliton solutions are derived using the sine-Gordon equation method (SGEM). The constraint conditions that naturally fall out of the solution structure which guarantee the existence of these solitons are also reported.
Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives
Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.
2017-01-01
The electronic structure of the [Co(CN)6]3− complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand. PMID:28098216
Liang, Jiran; Guo, Jinbang; Zhao, Yirui; Zhang, Ying; Su, Tianyu
2018-07-06
We design and fabricate a totally encapsulated VO 2 /Au/VO 2 composite structure which is aimed to improve the tunability of the localized surface plasmon resonance (LSPR) peak. In this work, the structure will ensure all the Au NPs' resonant electric field area is filled with VO 2 . The modulation range of the totally encapsulated structure is larger than that of the semi-coated structure. To further improve the modulation range, we also explore the VO 2 thickness dependence of the structure's LSPR modulation. With the increase of the top layer VO 2 thin film thickness, the modulation range becomes larger. When the thickness is about 80 nm, the absorption peak achieves a largest shift of 112 nm. FDTD solution and equivalent model of series capacitor are used to explain the phenomenon. These results will contribute to the area of metamaterial electromagnetic wave absorber and other fields.
Nonlinear relativistic plasma resonance: Renormalization group approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metelskii, I. I., E-mail: metelski@lebedev.ru; Kovalev, V. F., E-mail: vfkvvfkv@gmail.com; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy ofmore » the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.« less
Cheon, Sangheon; Lee, Hochan; Choi, Jun-Ho; Cho, Minhaeng
2007-02-07
Theoretical descriptions of doubly resonant two-dimensional (2D) sum-frequency-generation (SFG) and difference-frequency-generation (DFG) spectroscopies of coupled-chromophore systems are presented. Despite that each electronic or vibrational chromophore is achiral, the interaction-induced chirality of a coupled multichromophore system in solution can be measured by using the doubly resonant 2D three-wave-mixing (3WM) spectroscopic method. An electronically coupled dimer, where each monomer is modeled as a simple two-level system, can have nonvanishing SFG (or DFG) properties, e.g., susceptibility in frequency domain or nonlinear response function in time domain, if the induced dipole vector of the dimer is not orthogonal to the vector product of the two monomer electronic transition dipole vectors. In order to demonstrate that these 2D 3WM spectroscopic methods can be used to determine the solution structure of a polypeptide, the authors carried out quantum chemistry calculations for an alanine dipeptide and obtained first- and second-order dipole derivatives associated with the amide I vibrational transitions of the dipeptide. It is shown that the numerically simulated 2D IR-IR SFG spectrum is highly sensitive to the dipeptide secondary structure and provides rich information on the one- and two-exciton states. It is believed that the theoretically proposed doubly resonant 2D 3WM spectroscopy, which can be considered to be an optical activity spectroscopy, will be of use in studying both structural and dynamical aspects of coupled multichromophore systems, such as proteins, nucleic acids, nanoparticle aggregates etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.
2013-03-15
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less
Plasmonic improvement of microcavity biomedical sensor spectroscopic characteristics
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas; Ghadiri, Reza
2014-03-01
New opportunity to improve a sensetivity of a label-free biomolecule detection in sensing systems based on microcavity evanescent wave optical sensors has been recently found and is being under intensive development. Novel technique based on combination of optical resonance on microring structures with plasmon resonance. Recently developed tools based on neural network data processing can realize real-time identification of biological agents. So combining advantages of plasmon enhancing optical microcavity resonance with identification tools can give a new platform for ulta sensitive label-free biomedical sensor. Our developed technique used standard glass and polymer microspheres as sensetive elements. They are fixed in the solution flow by adhesive layer on the surface being in the field of evanescence wave. Sensitive layer have been treated by gold nanoparticel (GN) solution. Another technique used thin film gold layers deposited on the substrate below adhesive. The light from a tuneable diode laser is coupled into the microsphere through a prism and was sharply focussed on the single microsphere. Images were recorded by CMOS camera. Normalized by free spectral range resonance shift of whispering gallery mode (WGM) and a relative efficiency of their excitation were used as input data for biomolecule classification. Both biomolecules and NP injection was obtained caused WGM spectra modification. But after NP treatment spectral shift and intensity of WGM resonances in biomolecule solutions increased. WGM resonances in microspheres fixed on substrate with gold layer with optimized layer thickness in biomolecule solutions also had higher intensity and spectra modification then without gold layer.
Solid state nuclear magnetic resonance studies of prion peptides and proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, Jonathan
1997-08-01
High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).
Resonant laser printing of structural colors on high-index dielectric metasurfaces
Zhu, Xiaolong; Yan, Wei; Levy, Uriel; Mortensen, N. Asger; Kristensen, Anders
2017-01-01
Man-made structural colors, which originate from resonant interactions between visible light and manufactured nanostructures, are emerging as a solution for ink-free color printing. We show that non-iridescent structural colors can be conveniently produced by nanostructures made from high-index dielectric materials. Compared to plasmonic analogs, color surfaces with high-index dielectrics, such as germanium (Ge), have a lower reflectance, yielding a superior color contrast. Taking advantage of band-to-band absorption in Ge, we laser-postprocess Ge color metasurfaces with morphology-dependent resonances. Strong on-resonance energy absorption under pulsed laser irradiation locally elevates the lattice temperature (exceeding 1200 K) in an ultrashort time scale (1 ns). This forms the basis for resonant laser printing, where rapid melting allows for surface energy–driven morphology changes with associated modification of color appearance. Laser-printable high-index dielectric color metasurfaces are scalable to a large area and open a new paradigm for printing and decoration with nonfading and vibrant colors. PMID:28508062
Laser Spectroscopy Investigations of Materials for Solid State Laser Systems.
1988-02-01
34 ing tools such as electron paramagnetic resonance and ". oc Be11 uniaxial stress. 19 However, the lattice structure of chryso- .,Pt AI3 PAIR 4 beryl... paramagnetic of these new emission bands is not known at the present time. resonance spectrum. 15The other features of the optical spectra cannot be...solution is peak absorption c-iefficient, and E, is the saturation field. The detuning parameter which accounts for the width of the resonant electronic
On the conditions for the onset of nonlinear chirping structures in NSTX
NASA Astrophysics Data System (ADS)
Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai
2015-11-01
The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.
NASA Astrophysics Data System (ADS)
Liang, Jiran; Guo, Jinbang; Zhao, Yirui; Zhang, Ying; Su, Tianyu
2018-07-01
We design and fabricate a totally encapsulated VO2/Au/VO2 composite structure which is aimed to improve the tunability of the localized surface plasmon resonance (LSPR) peak. In this work, the structure will ensure all the Au NPs’ resonant electric field area is filled with VO2. The modulation range of the totally encapsulated structure is larger than that of the semi-coated structure. To further improve the modulation range, we also explore the VO2 thickness dependence of the structure’s LSPR modulation. With the increase of the top layer VO2 thin film thickness, the modulation range becomes larger. When the thickness is about 80 nm, the absorption peak achieves a largest shift of 112 nm. FDTD solution and equivalent model of series capacitor are used to explain the phenomenon. These results will contribute to the area of metamaterial electromagnetic wave absorber and other fields.
NASA Astrophysics Data System (ADS)
Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco
2017-12-01
We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.
Resonant light emission from uniaxially tensile-strained Ge microbridges
NASA Astrophysics Data System (ADS)
Zhou, Peiji; Xu, Xuejun; Matsushita, Sho; Sawano, Kentarou; Maruizumi, Takuya
2018-04-01
A highly strained germanium microbridge is a promising platform for realizing monolithically integrated lasers on a silicon substrate. However, it remains challenging to combine it with optical resonators. Here, we have observed resonant light emission peaks with Q-factors of about 180 in room-temperature photoluminescence spectra from uniaxially tensile-strained germanium microbridges. These peaks are found to correspond to the resonance in Fabry–Perot (FP) cavities formed transversely to the uniaxial stress axis. On the basis of this phenomenon, we design a Fabry–Perot cavity by adding distributed Bragg reflectors (DBRs) laterally to the microbridge. With this design, the optical performance can be optimized without disturbing to the mechanical structure. A Q-factor as high as 1400 is obtained from numerical simulation. Moreover, we prove by theoretical analysis deduction and calculation that the lateral structure will not decrease the strain, unlike the on-pad DBR structure. The structure thus provides a promising solution for the realization of highly strained germanium lasers in the future.
Generalized topology for resonators having N commensurate harmonics
NASA Astrophysics Data System (ADS)
Danzi, Francesco; Gibert, James M.; Frulla, Giacomo; Cestino, Enrico
2018-04-01
Despite the ubiquity of both linear and nonlinear multimember resonators in MEMS and kinetic energy harvesting devices very few research efforts examine the orientation of members in the resonator on its dynamic behavior. Previous efforts to design this type of resonator constrains the members to have relative orientations that are 0○ or 90○ to each other, i.e., the elements are connected inline with adjoining members or are perpendicular to adjoining members. The work expands upon the existing body of research by considering the effect of the relative orientation between members on the dynamic behavior of the system. In this manuscript, we derive a generalized reduced-order model for the design of a multi-member planar resonator that has integer multiple modal frequencies. The model is based on a Rayleigh Ritz approximation where the number of degrees of freedom equals the number of structural members in the resonator. The analysis allows the generation of design curves, representing all the possible solutions for modal frequencies that are commensurate. The generalized model, valid for an N-DOF structure, is then restricted for a 2- and 3-DOF system/member resonator, where the linear dynamic behavior of the resonator is investigated in depth. Furthermore, this analysis demonstrates a rule of thumb; relaxing restrictions on the relative orientation of members in a planar structure, allows the structure to exhibit exactly N commensurable frequencies if it contains N members.
Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.
Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier
2016-09-01
Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Biological Ion Exchanger Resins
Damadian, Raymond; Goldsmith, Michael; Zaner, K. S.
1971-01-01
Biological selectivity is shown to vary with medium osmotic strength and temperature. Selectivity reversals occur at 4°C and at an external osmolality of 0.800 indicating that intracellular hydration and endosolvent (intracellular water) structure are important determinants in selectivity. Magnetic resonance measurements of line width by steady-state nuclear magnetic resonance (NMR) indicate a difference in the intracellular water signal of 16 Hz between the K form and Na form of Escherichia coli, providing additional evidence that changes in the ionic composition of cells are accompanied by changes in endosolvent structure. The changes were found to be consistent with the thermodynamic and magnetic resonance properties of aqueous electrolyte solutions. Calculation of the dependence of ion-pairing forces on medium dielectric reinforces the role of endosolvent structure in determining ion exchange selectivity. PMID:4943653
SAIL--stereo-array isotope labeling.
Kainosho, Masatsune; Güntert, Peter
2009-11-01
Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael
2017-04-15
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Freitas, T C; Coutinho, K; Varella, M T do N; Lima, M A P; Canuto, S; Bettega, M H F
2013-05-07
We report momentum transfer cross sections for elastic collisions of low-energy electrons with the HCOOH···(H2O)n complexes, with n = 1, 2, in liquid phase. The scattering cross sections were computed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for energies ranging from 0.5 eV to 6 eV. We considered ten different structures of HCOOH···H2O and six structures of HCOOH···(H2O)2 which were generated using classical Monte Carlo simulations of formic acid in aqueous solution at normal conditions of temperature and pressure. The aim of this work is to investigate the influence of microsolvation on the π* shape resonance of formic acid. Previous theoretical and experimental studies reported a π* shape resonance for HCOOH at around 1.9 eV. This resonance can be either more stable or less stable in comparison to the isolated molecule depending on the complex structure and the water role played in the hydrogen bond interaction. This behavior is explained in terms of (i) the polarization of the formic acid molecule due to the water molecules and (ii) the net charge of the solute. The proton donor or acceptor character of the water molecules in the hydrogen bond is important for understanding the stabilization versus destabilization of the π* resonances in the complexes. Our results indicate that the surrounding water molecules may affect the lifetime of the π* resonance and hence the processes driven by this anion state, such as the dissociative electron attachment.
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
Solution conformation of carbohydrates: a view by using NMR assisted by modeling.
Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús
2015-01-01
Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.
Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control
NASA Astrophysics Data System (ADS)
Estève, Simon J.; Johnson, Marty E.
2005-12-01
This paper presents an adaptive-passive solution to control the broadband sound transmission into rocket payload fairings. The treatment is composed of passive distributed vibration absorbers (DVAs) and adaptive Helmholtz resonators (HR). Both the frequency domain and time-domain model of a simply supported cylinder excited by an external plane wave are developed. To tune vibration absorbers to tonal excitation, a tuning strategy, based on the phase information between the velocity of the absorber mass and the velocity of the host structure is used here in a new fashion to tune resonators to peaks in the broadband acoustic spectrum of a cavity. This tuning law, called the dot-product method, only uses two microphone signals local to each HR, which allows the adaptive Helmholtz resonator (AHR) to be manufactured as an autonomous device with power supply, sensor, actuator and controller integrated. Numerical simulations corresponding to a 2.8 m long 2.5 m diameter composite cylinder prototype demonstrate that, as long as the structure modes, which strongly couple to the acoustic cavity, are damped with a DVA treatment, the dot-product method tune multiple HRs to a near-optimal solution over a broad frequency range (40-160 Hz). An adaptive HR prototype with variable opening is built and characterized. Experiments conducted on the cylinder prototype with eight AHRs demonstrate the ability of resonators adapted with the dot-product method to converge to near-optimal noise attenuation in a frequency band including multiple resonances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.W.; Labouriau, A.; Taylor, C.M.
Dynamics and structure of tri-n-butyltin fluoride in n-hexane solutions were probed using (tin-119) nuclear magnetic resonance spin relaxation methodologies. Significant relaxation-induced polarization transfer effects were observed and exploited. The experimental observations indicate that the tri-n-butyl fluoride exists in a polymeric form in solution. For a 0.10% (w/w) solution at 25 [degree]C, NMR reveals significant orientational/exchange relaxation on both the microsecond and nanosecond time scales. Solution-state and solid-state parameters are compared and contrasted. 26 refs., 3 figs., 1 tab.
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
2011-01-01
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called NASCA (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), NASCA extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that NASCA assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by NASCA have backbone RMSD 0.8 – 1.5 Å from the reference structures determined by traditional NMR approaches. PMID:21706248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.
Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.
Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.; ...
2017-04-04
Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; ...
2016-02-04
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.
Un, Sun
2013-04-01
A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).
Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins
NASA Astrophysics Data System (ADS)
Ding, Keyang; Gronenborn, Angela M.
2002-06-01
We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the α- and β-carbon and α-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H N, N, C α, C β, and H α nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D 15N- 1H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.
Planchard, Noelya; Point, Élodie; Dahmane, Tassadite; Giusti, Fabrice; Renault, Marie; Le Bon, Christel; Durand, Grégory; Milon, Alain; Guittet, Éric; Zoonens, Manuela; Popot, Jean-Luc; Catoire, Laurent J
2014-10-01
Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.
NASA Astrophysics Data System (ADS)
Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie
2017-12-01
This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.
Heerschap, A; Haasnoot, C A; Hilbers, C W
1983-01-01
Resonances of the water exchangeable iminoprotons of the T and anticodon stem of yeast tRNAPhe were assigned by means of Nuclear Overhauser Effects (NOE's). Together with our previous assignments of iminoproton resonances from the acceptor and D stem (A. Heerschap, C.A.G. Haasnoot and C.W. Hilbers (1982) Nucleic Acids Res. 10, 6981-7000) the present results constitute a complete assignment of all resonances of iminoprotons involved in the secondary structure of yeast tRNAPhe with a reliability and spectral resolution not reached heretofore. Separate identification of the methylprotons in m5C40 and m5C49 was also possible due to specific NOE patterns in the lowfield part of the spectrum. Our experiments indicate that in solution the psi 39 residue in the anticodon stem is orientated in a syn conformation in contrast to the normally observed anti orientation of the uracil base in AU basepairs. Evidence is presented that in solution the acceptor stem is stacked upon the T stem. Furthermore, it turns out that in a similar way the anticodon stem forms a continuous stack with the D stem, but here the m2(2)G26 residue is located between the latter two stems (as is found in the X-ray crystal structure). The stacking of these stems is not strictly dependent on the presence of magnesium ions. NOE experiments show that these structural features are preserved when proceeding from a buffer with magnesium ions to a buffer without magnesium ions although differences in chemical shifts and NOE intensities indicate changes in the conformation of the tRNA. PMID:6346268
Lagerstedt, Jens O.; Budamagunta, Madhu S.; Liu, Grace S.; DeValle, Nicole C.; Voss, John C.; Oda, Michael N.
2012-01-01
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free / lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. PMID:22245143
Kurmi, Moolchand; Sahu, Archana; Singh, Saranjit
2017-02-05
In the present study, degradation behaviour of abacavir sulfate was evaluated in solution and solid stress conditions. Solution state studies resulted in formation of eleven degradation products; of which two were also formed on solid stress. The same were separated by high performance liquid chromatography. They were characterized using liquid chromatography-high resolution mass spectrometry, liquid chromatography-multistage mass spectrometry and hydrogen/deuterium exchange mass spectrometry data. Additionally, seven degradation products were isolated and subjected to 1D and 2D nuclear magnetic resonance studies for their structural confirmation. Copyright © 2016 Elsevier B.V. All rights reserved.
A study of tyre cavity resonance and noise reduction using inner trim
NASA Astrophysics Data System (ADS)
Mohamed, Zamri; Wang, Xu
2015-01-01
A study of tyre inner trim as a method for reducing tyre cavity resonance noise is presented. The tyre is modelled as a rectangular toroid where only the outside shell is flexible. A modal series solution of the sound pressure frequency response inside the tyre cavity is derived from the wave equation using modal superposition. In the solution with the rigid and flexible wall boundary condition, the effect of placing a trim layer onto the inner surface of the tyre tread plate wall is reflected by adding a damping loss term in the sound pressure frequency response function. The numerical simulation result was then compared with the result obtained from a roving impact test performed on a tyre. The results show that selective trim material may be effective for reducing the structure-borne noise magnitude resulting from the tyre cavity resonance.
A novel analytical description of periodic volume coil geometries in MRI
NASA Astrophysics Data System (ADS)
Koh, D.; Felder, J.; Shah, N. J.
2018-03-01
MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.
1993-01-15
through a pad of Celite into a flask equipped with a sidearm stopcock and the volume of the solution was not adjusted. Neopentyl lithium was...The resonance at 2.5 ppm (A) was irradiated and both this resonance and the resonance at 2.8 ppm (B) were integrated. An ethylene glycol temperature...angles for different side groups in model compound S (MM2 results, C3 = cyclopropyl, Np = neopentyl ). Figure 14. Values of torsion angle el at 10 fs
Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan
2017-06-26
Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.
Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H
2012-01-01
Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279
Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.
1994-01-01
The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597
Coexistence of a self-induced transparency soliton and a Bragg soliton.
Tseng, Hong-Yih; Chi, Sien
2002-11-01
We theoretically show that a self-induced transparency (SIT) soliton and a Bragg soliton can coexist in a nonlinear photonic band gap (PBG) medium doped uniformly with inhomogeneous-broadening two-level atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure are derived first and further reduced to an effective nonlinear Schrödinger equation. This model describes an equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic dispersion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account, the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originating from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely determined for given material parameters, atomic transition frequency, and input central frequency of the soliton. The numerical examples of the SIT soliton in a one-dimensional As2S3-based PBG structure doped uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT soliton with approximately 100-ps width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than the light speed in an unprocessed host medium.
Resonance-inclined optical nuclear spin polarization of liquids in diamond structures
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2016-02-01
Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.
Solution characterization of [methyl-13C]methionine HIV-1 reverse transcriptase by NMR spectroscopy☆
Zheng, Xunhai; Mueller, Geoffrey A.; DeRose, Eugene F.; London, Robert E.
2013-01-01
HIV reverse transcriptase (RT) is a primary target for drug intervention in the treatment of AIDS. Wereport the first solution NMR studies of [methyl-13 C]methionine HIV-1 RT, aimed at better understanding the conformational and dynamic characteristics of RT, both in the presence and absence of the non-nucleoside RT inhibitor (NNRTI) nevirapine. The selection of methionine as a structural probe was based both on its favorable NMR characteristics, and on the presence of two important active site methionine residues, M18466 and M23066. Observation of the M184 resonance is subunit dependent; in the p66 subunit the solvent-exposed residue produces a readily observed signal with a characteristic resonance shift, while in the globular p51 subunit, the M18451 resonance is shifted and broadened as M184 becomes buried in the protein interior. In contrast, although structural data indicates that the environment of M230 is also strongly subunit dependent, the M230 resonances from both subunits have very similar shift and relaxation characteristics. A comparison of chemical shift and intensity data with model-based predictions gives reasonable agreement for M18466, while M23066, located on the β-hairpin “primer grip”, is more mobile and solvent-exposed than suggested by crystal structures of the apo enzyme which have a “closed” fingers-thumb conformation. This mobility of the primer grip is presumably important for binding of non-nucleoside RT inhibitors (NNRTIs), since the NNRTI binding pocket is not observed in the absence of the inhibitors, requiring instead that the binding pocket be dynamically accessible. In the presence of the nevirapine, both the M18466 and M23066 resonances are significantly perturbed, while none of the methionine resonances in the p51 subunit is sensitive to this inhibitor. Site-directed mutagenesis indicates that both M16 and M357 produce two resonances in each subunit, and for both residues, the intensity ratio of the component peaks is strongly subunit dependent. Conformational features that might explain the multiple peaks are discussed. PMID:19665484
Determination of Membrane Protein Structure by Rotational Resonance NMR: Bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Creuzet, F.; McDermott, A.; Gebhard, R.; van der Hoef, K.; Spijker-Assink, M. B.; Herzfeld, J.; Lugtenburg, J.; Levitt, M. H.; Griffin, R. G.
1991-02-01
Rotationally resonant magnetization exchange, a new nuclear magnetic resonance (NMR) technique for measuring internuclear distances between like spins in solids, was used to determine the distance between the C-8 and C-18 carbons of retinal in two model compounds and in the membrane protein bacteriorhodopsin. Magnetization transfer between inequivalent spins with an isotropic shift separation, δ, is driven by magic angle spinning at a speed ω_r that matches the rotational resonance condition δ = nω_r, where n is a small integer. The distances measured in this way for both the 6-s-cis- and 6-s-trans-retinoic acid model compounds agreed well with crystallographically known distances. In bacteriorhodopsin the exchange trajectory between C-8 and C-18 was in good agreement with the internuclear distance for a 6-s-trans configuration [4.2 angstroms (overset{circ}{mathrm A})] and inconsistent with that for a 6-s-cis configuration (3.1 overset{circ}{mathrm A}). The results illustrate that rotational resonance can be used for structural studies in membrane proteins and in other situations where diffraction and solution NMR techniques yield limited information.
NASA Astrophysics Data System (ADS)
Pástor, P.
2016-07-01
The equations of secular evolution for dust grains in mean motion resonances with a planet are solved for stationary points. Non-gravitational effects caused by stellar radiation (the Poynting-Robertson effect and the stellar wind) are taken into account. The solutions are stationary in the semimajor axis, eccentricity and resonant angle, but allow the pericentre to advance. The semimajor axis of stationary solutions can be slightly shifted from the exact resonant value. The periodicity of the stationary solutions in a reference frame orbiting with the planet is proved analytically. The existence of periodic solutions in mean motion resonances means that analytical theory enables infinitely long capture times for dust particles. The stationary solutions are periodic motions to which the eccentricity asymptotically approaches and around which the libration occurs. Initial conditions corresponding to the stationary solutions are successfully found by numerically integrating the equation of motion. Numerically and analytically determined shifts of the semimajor axis from the exact resonance for the stationary solutions are in excellent agreement. The stationary solutions can be plotted by the locations of pericentres in the reference frame orbiting with the planet. The pericentres are distributed in space according to the properties of the dust particles.
On the extraction of P 11 resonances from πN data
Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung -Shung; ...
2010-06-22
With the accuracy of the available P 11 amplitudes of πΔ scattering, we show that two resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis. The number of poles in the 1.5 GeV < W < 2 GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. Lastly, our results indicate the need of more accurate πN scattering data in the W > 1.6 GeV region for high precision resonance extractions.
Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass
Wu, Qiong; Huang, Lang; Yu, Shitao; ...
2017-05-26
We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less
Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiong; Huang, Lang; Yu, Shitao
We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less
Doutres, Olivier; Atalla, Noureddine; Osman, Haisam
2015-06-01
Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.
NASA Astrophysics Data System (ADS)
Nasr, Mamdouh H.; Othman, Mohamed A. K.; Eshrah, Islam A.; Abuelfadl, Tamer M.
2017-04-01
New developments in the eigenmode projection technique (EPT) are introduced in solving problems of electromagnetic resonance in closed cavities as well as scattering from discontinuities in guided-wave structures. The EPT invokes the eigenmodes of a canonical predefined cavity in the solution procedure and uses the expansion of these eigenmodes to solve Maxwell's equations, in conjunction with a convenient choice of port boundary conditions. For closed cavities, a new spurious-mode separation method is developed, showing robust and efficient spurious-mode separation. This has been tested using more complex and practical examples demonstrating the powerful use of the presented approach. For waveguide scattering problems, convergence studies are being performed showing stable solutions for a relatively small number of expansion modes, and the proposed method has advantages over conventional solvers in analyzing electromagnetic problems with inhomogeneous materials. These convergence studies also lead to an efficient rule-of-thumb for the number of modes to be used in the simulation. The ability to handle closed and open structures is presented in a unified framework that highlights the generality of the EPT which could be used to analyze and design a variety of microwave components.
Scaling of membrane-type locally resonant acoustic metamaterial arrays.
Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R
2012-10-01
Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.
NMR solution structure study of one saturated sulphur-containing amides from Glycosmis lucida.
Geng, Zhu-Feng; Yang, Kai; Li, Yin-Ping; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Zhang, Zhe; Du, Shu-Shan
2017-04-01
One sulphur-containing amide (N-[2-(4-Hydroxyphenyl)-ethyl]-3-methanesulfonyl-N-methyl-propionamide) which was isolated from Glycosmis lucida Wall ex Huang had a different NMR profile with this kind of compounds' normal case. Based on the information obtained by nuclear magnetic resonance pectroscopy (NMR) and mass spectrometry (MS), its configurations in solution were investigated. The results indicated that the compound would have two stable configurations in solution as the double bond switched between C-N and C-O in an appropriate rate. This phenomenon was clearly exposed by the one dimension selective NOE (1D-NOE) experiments. This conclusion would play an active role in the structure analysis work of this kind of compounds.
Nanometric Surface Oscillation Spectroscopy of Water-Poor Microemulsions.
Corti, Mario; Raudino, Antonio; Cantù, Laura; Theisen, Johannes; Pleines, Maximilian; Zemb, Thomas N
2018-06-18
Selectively exchanging metal complexes between emulsified water-poor microemulsions and concentrated solutions of mixed electrolytes is the core technology for strategic metal recycling. Nanostructuration triggered by solutes present in the organic phase is understood, but little is known about fluctuations of the microemulsion-water interface. We use here a modified version of an opto-electric device initially designed for air bubbles, in order to evidence resonant electrically induced surface waves of an oily droplet suspended in an aqueous phase. Resonant waves of nanometer amplitude of a millimeter-sized microemulsion droplet containing a common ion-specific extractant diluted by dodecane and suspended in a solution of rare earth nitrate are evidenced for the first time with low excitation fields (5 V/cm). From variation of the surface wave spectrum with rare earth concentration, we evidence up-take of rare-earth ions at the interface and at higher concentration the formation of a thin "crust" of liquid crystal forming at unusually low concentration, indicative of a surface induced phase transition. The effect of the liquid crystal structure on the resonance spectrum is backed up by a model, which is used to estimate crust thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevan, L.
1982-10-21
During this period work has focused on the structural aspects of photoinduced charge separation in micellar media with initial forays into vesicular media. The primary techniques utilized are electron spin resonance and electron spin echo spectrometry. The analysis of electron spin echo modulation gives a unique handle on very weak hyperfine interactions thus providing a new structural tool for this general problem. Electron spin resonance and electron spin echo studies of the photoionization of N,N,N',N'tetramethylbenzidine (TMB) to give the cation radical have been carried out in anionic, cationic and nonionic micellar solutions frozen to 77/sup 0/K. The photoionization efficiency ofmore » TMB has also been studied in micelles with varying alkyl chain lengths of the surfactant. Stearic acid nitroxide spin probes have also been used to determine some structural aspects of the location of the neutral TMB molecule in anionic micelles before photoionization. The nitroxide work in which the nitroxide is acting as an electron acceptor also shows that a suitable electron acceptor can be located within the micellar structure. The effect of inorganic solutes on the efficiency of the photoionization of TMB in frozen micelles has also been studied. A series of electron scavenger studies have been initiated to study the effect on TMB photoionization efficiency. Electron spin echo detection of laser photogenerated TMB cation in liquid sodium dodecyl sulfate solutions at room temperature has recently been observed.« less
Gely, Stéphane; Lowry, David F; Bernard, Cédric; Jensen, Malene R; Blackledge, Martin; Costanzo, Stéphanie; Bourhis, Jean-Marie; Darbon, Hervé; Daughdrill, Gary; Longhi, Sonia
2010-01-01
In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.
NASA Technical Reports Server (NTRS)
Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Le, H. Q.
1987-01-01
Recent observations of oscillation frequencies up to 56 GHz in resonant tunneling structures are discussed in relation to calculations by several authors of the ultimate frequency limits of these devices. It is found that calculations relying on the Wentzel-Kramers-Brillouin (WKB) approximation give limits well below the observed oscillation frequencies. Two other techniques for calculating the upper frequency limit were found to give more reasonable results. One method employs the solution of the time-dependent Schroedinger equation obtained by Kundrotas and Dargys (1986); the other uses the energy width of the transmission function for electrons through the double-barrier structure. This last technique is believed to be the most accurate since it is based on general results for the lifetime of any resonant state. It gives frequency limits on the order of 1 THz for two recently fabricated structures. It appears that the primary limitation of the oscillation frequency for double-barrier resonant-tunneling diodes is imposed by intrinsic device circuit parameters and by the transit time of the depletion layer rather than by time delays encountered in the double-barrier region.
A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.
Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A
1984-01-01
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2011-07-01
A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
The influence of and the identification of nonlinearity in flexible structures
NASA Technical Reports Server (NTRS)
Zavodney, Lawrence D.
1988-01-01
Several models were built at NASA Langley and used to demonstrate the following nonlinear behavior: internal resonance in a free response, principal parametric resonance and subcritical instability in a cantilever beam-lumped mass structure, combination resonance in a parametrically excited flexible beam, autoparametric interaction in a two-degree-of-freedom system, instability of the linear solution, saturation of the excited mode, subharmonic bifurcation, and chaotic responses. A video tape documenting these phenomena was made. An attempt to identify a simple structure consisting of two light-weight beams and two lumped masses using the Eigensystem Realization Algorithm showed the inherent difficulty of using a linear based theory to identify a particular nonlinearity. Preliminary results show the technique requires novel interpretation, and hence may not be useful for structural modes that are coupled by a guadratic nonlinearity. A literature survey was also completed on recent work in parametrically excited nonlinear system. In summary, nonlinear systems may possess unique behaviors that require nonlinear identification techniques based on an understanding of how nonlinearity affects the dynamic response of structures. In this was, the unique behaviors of nonlinear systems may be properly identified. Moreover, more accutate quantifiable estimates can be made once the qualitative model has been determined.
Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.
Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe
2017-11-27
The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.
NASA Astrophysics Data System (ADS)
Nardini, Viviani; Dias, Luis Gustavo; Palaretti, Vinicius; da Silva, Gil Valdo José
2018-04-01
Citronellal, an acyclic monoterpenoid, is a small molecule suitable for systematic scanning of its conformational geometric parameters in solution or in the gas phase. We have studied the conformational distribution of citronellal by correlating its structure and theoretical chemical shifts with nuclear magnetic resonance data. Interestingly, folded conformations were the most relevant, as confirmed by NOE experiments. We concluded that the conformational distribution is due to intramolecular dispersion interactions.
Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S
2016-05-04
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
Solution structure of leptospiral LigA4 Big domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Song; Zhang, Jiahai; Zhang, Xuecheng
Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Bigmore » domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca{sup 2+} binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca{sup 2+}-binding site was identified by strains-all and NMR chemical shift perturbation.« less
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji
2015-05-01
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto
2015-05-07
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less
NASA Astrophysics Data System (ADS)
Ito, Juri; Kajikawa, Kotaro
2016-02-01
We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.
Riemann-Hilbert technique scattering analysis of metamaterial-based asymmetric 2D open resonators
NASA Astrophysics Data System (ADS)
Kamiński, Piotr M.; Ziolkowski, Richard W.; Arslanagić, Samel
2017-12-01
The scattering properties of metamaterial-based asymmetric two-dimensional open resonators excited by an electric line source are investigated analytically. The resonators are, in general, composed of two infinite and concentric cylindrical layers covered with an infinitely thin, perfect conducting shell that has an infinite axial aperture. The line source is oriented parallel to the cylinder axis. An exact analytical solution of this problem is derived. It is based on the dual-series approach and its transformation to the equivalent Riemann-Hilbert problem. Asymmetric metamaterial-based configurations are found to lead simultaneously to large enhancements of the radiated power and to highly steerable Huygens-like directivity patterns; properties not attainable with the corresponding structurally symmetric resonators. The presented open resonator designs are thus interesting candidates for many scientific and engineering applications where enhanced directional near- and far-field responses, tailored with beam shaping and steering capabilities, are highly desired.
Periodic and rational solutions of the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Wei, Jiao; Wang, Xin; Geng, Xianguo
2018-06-01
We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of short optical pulses in dielectric materials with resonant non-degenerate transitions. The general Nth-order periodic solutions are provided by means of the Darboux transformation. The Nth-order degenerate periodic and Nth-order rational solutions containing several free parameters with compact determinant representations are derived from two different limiting cases of the obtained general periodic solutions, respectively. Explicit expressions of these solutions from first to second order are presented. Typical nonlinear wave patterns for the four components of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip structures in the second-order rational solutions are shown. This kind of the rational solutions correspond to rogue waves in the reduced Maxwell-Bloch equations.
Aircraft interior noise reduction by alternate resonance tuning
NASA Technical Reports Server (NTRS)
Gottwald, James A.; Bliss, Donald B.
1990-01-01
The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.
Efficient RF energy harvesting by using a fractal structured rectenna system
NASA Astrophysics Data System (ADS)
Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.
2014-04-01
A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.
NASA Astrophysics Data System (ADS)
Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan
2017-05-01
This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.
Technological Innovations in Magnetic Resonance for Early Detection of Cardiovascular Diseases.
Santarelli, Maria F; Positano, Vincenzo; Martini, Nicola; Valvano, Giuseppe; Landini, Luigi
2016-01-01
Most recent technical innovations in cardiovascular MR imaging (CMRI) are presented in this review. They include hardware and software developments, and novelties in parametric mapping. All these recent improvements lead to high spatial and temporal resolution and quantitative information on the heart structure and function. They make it achievable ambitious goals in the field of magnetic resonance, such as the early detection of cardiovascular pathologies. In this review article, we present recent innovations in CMRI, emphasizing the progresses performed and the solutions proposed to some yet opened technical problems.
Sensitivity optimization in whispering gallery mode optical cylindrical biosensors
NASA Astrophysics Data System (ADS)
Khozeymeh, F.; Razaghi, M.
2018-01-01
Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.
Terahertz molecular resonance of cancer DNA.
Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk
2016-11-15
Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.
Terahertz molecular resonance of cancer DNA
NASA Astrophysics Data System (ADS)
Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk
2016-11-01
Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.
NASA Astrophysics Data System (ADS)
Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.
1992-10-01
The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.
Anomalous Diffraction in Crystallographic Phase Evaluation
Hendrickson, Wayne A.
2014-01-01
X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017
Development of a TiO2/SiO2 waveguide-mode chip for an ultraviolet near-field fluorescence sensor.
Kuroda, Chiaki; Nakai, Midori; Fujimaki, Makoto; Ohki, Yoshimichi
2018-03-19
Aimed at detecting fluorescent-labeled biological substances sensitively, a sensor that utilizes near-field light has attracted much attention. According to our calculations, a planar structure composed of two dielectric layers can enhance the electric field of UV near-field light effectively by inducing waveguide-mode (WM) resonance. The fluorescence intensity obtainable by a WM chip with an optimized structure is 5.5 times that obtainable by an optimized surface plasmon resonance chip. We confirmed the above by making a WM chip consisting of TiO 2 and SiO 2 layers on a silica glass substrate and by measuring the fluorescence intensity of a solution of quantum dots dropped on the chip.
NASA Astrophysics Data System (ADS)
Sarikaya, Ebru Karakaş; Dereli, Ömer
2017-02-01
To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.
Abbott, Laurence C; Batchelor, Stephen N; Moore, John N
2013-03-07
UV-visible absorption, resonance Raman, and (1)H NMR spectroscopy, allied with density functional theory (DFT) calculations, have been used to study the structure, bonding, and alkaline hydrolysis mechanism of the cationic thiazloium azo dye, 2-[2-[4-(diethylamino)phenyl]diazenyl]-3-methyl-thiazolium (1a), along with a series of six related dyes with different 4-dialkylamino groups and/or other phenyl ring substituents (2a-c, 3a-c) and the related isothiazolium azo dye, 5-[2-[4-(dimethylamino)phenyl]diazenyl]-2-methyl-isothiazolium (4). These diazahemicyanine dyes are calculated to have a similar low-energy structure that is cis, trans at the (iso)thiazolium-azo group, and for which the calculated Raman spectra provide a good match with the experimental data; the calculations on these structures are used to assign and discuss the transitions giving rise to the experimental spectra, and to consider the bonding and its variation between the dyes. UV-visible, Raman, and NMR spectra recorded from minutes to several weeks after raising the pH of an aqueous solution of 1a to ca. 11.5 show that the dominant initial step in the reaction is loss of diethylamine to produce a quinonimine (ca. hours), with subsequent reactions occurring on longer time scales (ca. days to weeks); kinetic analyses give a rate constant of 2.6 × 10(-2) dm(3) mol(-1) s(-1) for reaction of 1a with OH(-). UV-visible spectra recorded on raising the pH of the other dyes in solution show similar changes that are attributed to the same general reaction mechanism, but with different rate constants for which the dependence on structure is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nettesheim, D.G.; Klevit, R.E.; Drobny, G.
1989-02-21
The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by bindingmore » to the sodium channels of excitable membranes.« less
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.
Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M
2015-10-06
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum
Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.
2016-01-01
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800
Rathner, Petr; Rathner, Adriana; Horničáková, Michaela; Wohlschlager, Christian; Chandra, Kousik; Kohoutová, Jaroslava; Ettrich, Rüdiger; Wimmer, Reinhard; Müller, Norbert
2015-09-01
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C.
2018-01-01
At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael
2013-01-01
During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two
A lightweight vibro-acoustic metamaterial demonstrator: Numerical and experimental investigation
NASA Astrophysics Data System (ADS)
Claeys, C.; Deckers, E.; Pluymers, B.; Desmet, W.
2016-03-01
In recent years metamaterials gained a lot of attention due to their superior noise and vibration insulation properties, be it at least in some targeted and tuneable frequency ranges, referred to as stopbands. These are frequency zones for which free wave propagation is prevented throughout the metamaterial, resulting in frequency zones of pronounced wave attenuation. Metamaterials are achieved due to addition of an, often periodic, grid of resonant structures to a host material or structure. The interaction between resonant inclusions and host structure can lead to a performance which is superior to the ones of any of the constituent materials. A key element in this concept is that waves can be affected by incorporating structural resonant elements of sub-wavelength sizes, i.e. features that are actually smaller than the wavelength of the waves to be affected. This paves the way towards compact and light vibro-acoustic solutions in the lower frequency ranges. This paper discusses the numerical design and experimental validation of acoustic insulation based on the concept of metamaterials: a hollow core periodic sandwich structure with added local resonant structures. In order to investigate the sensitivity to specific parameters in the metamaterial design and the robustness of the design, a set of variations on the nominal design are investigated. The stop bands are numerically predicted through unit cell modelling after which a full vibro-acoustic finite element model is applied to predict the insertion loss of the demonstrator. The results of these analyses are compared with measurements; both indicate that this metamaterials concept can be applied to combine light weight, compact volume and good acoustic behaviour.
Garces, Andrea P; Watowich, Stanley J
2013-10-01
West Nile virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection can cause severe neurological disease and fatality in humans. Efforts are ongoing to develop antiviral drugs that inhibit the WNV protease, a viral enzyme required for polyprotein processing. Unfortunately, little is known about the solution structure of recombinant WNV protease (NS2B-NS3pro) used for antiviral drug discovery and development, although X-ray crystal structures and nuclear magnetic resonance (NMR) studies have provided valuable insights into the interactions between NS2B-NS3pro and peptide-based inhibitors. We completed small-angle X-ray scattering and Fourier transform infrared spectroscopy experiments to determine the solution structure and dynamics of WNV NS2B-NS3pro in the absence of a bound substrate or inhibitor. Importantly, these solution studies suggested that all or most of the NS2B cofactor was highly flexible and formed an ensemble of structures, in contrast to the NS2B tertiary structures observed in crystallographic and NMR studies. The secondary structure of NS2B-NS3pro in solution had high β-content, similar to the secondary structure observed in crystallographic studies. This work provided evidence of the intrinsic flexibility and conformational heterogeneity of the NS2B chain of the WNV protease in the absence of substratelike ligands, which should be considered during antiviral drug discovery and development efforts.
Poznanski, J; Sodano, P; Suh, S W; Lee, J Y; Ptak, M; Vovelle, F
1999-02-01
Nuclear magnetic resonance (NMR) spectroscopy was used to determine the three dimensional structure of rice nonspecific lipid transfer protein (ns-LTP), a 91 amino acid residue protein belonging to the broad family of plant ns-LTP. Sequence specific assignment was obtained for all but three HN backbone 1H resonances and for more than 95% of the 1H side-chain resonances using a combination of 1H 2D NOESY; TOCSY and COSY experiments at 293 K. The structure was calculated on the basis of four disulfide bridge restraints, 1259 distance constraints derived from 1H-1H Overhauser effects, 72 phi angle restraints and 32 hydrogen-bond restraints. The final solution structure involves four helices (H1: Cys3-Arg18, H2: Ala25-Ala37, H3: Thr41-Ala54 and H4: Ala66-Cys73) followed by a long C-terminal tail (T) with no observable regular structure. N-capping residues (Thr2, Ser24, Thr40), whose side-chain oxygen atoms are involved in hydrogen bonds with i + 3 amide proton additionally stabilize the N termini of the first three helices. The fourth helix involving Pro residues display a mixture of alpha and 3(10) conformation. The rms deviation of 14 final structures with respect to the average structure is 1.14 +/- 0.16 A for all heavy atoms (C, N, O and S) and 0.72 +/- 0.01 A for the backbone atoms. The global fold of rice ns-LTP is close to the previously published structures of wheat, barley and maize ns-LTPs exhibiting nearly identical pattern of the numerous sequence specific interactions. As reported previously for different four-helix topology proteins, hydrophobic, hydrogen bonding and electrostatic mechanisms of fold stabilization were found for the rice ns-LTP. The sequential alignment of 36 ns-LTP primary structures strongly suggests that there is a uniform pattern of specific long-range interactions (in terms of sequence), which stabilize the fold of all plant ns-LTPs.
Azevedo, Joana; Fernandes, Ana; Oliveira, Joana; Brás, Natércia F; Reis, Sofia; Lopes, Paulo; Roseira, Isabel; Cabral, Miguel; Mateus, Nuno; de Freitas, Victor
2017-10-04
The aim of this study was to evaluate the reactivity of phenolic compounds extracted from cork stoppers to wine model solutions with two major wine components, namely, (+)-catechin and malvidin-3-O-glucoside. Besides the formation of some compounds already described in the literature, these reactions also yielded a new family of ellagitannin-derived compounds, named herein as corklins. This new family of compounds that were found to result from the interaction between ellagitannins in alcoholic solutions and (+)-catechin were structurally characterized by mass spectroscopy, nuclear magnetic resonance, and computational methods.
Sheppard, Colin J R; Kou, Shan S; Lin, Jiao
2014-12-01
Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes.
Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators
NASA Astrophysics Data System (ADS)
Manimala, James Mathew
Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation in locally dissipative AM with various damped oscillator microstructures was studied using mechanical lattice models. The presence of damping was represented by a complex effective-mass. Analytical transmissibilities and numerical verifications were obtained for Kelvin-Voigt-type, Maxwell-type and Zener-type oscillators. Although peak attenuation at resonance is diminished, broadband attenuation was found to be achievable without increasing mass ratio, obviating the bandgap width limitations of locally resonant AM. Static and frequency-dependent measures of optimal damping that maximize the attenuation characteristics were established. A transitional value for the excitation frequency was identified within the locally resonant bandgap, above which there always exists an optimal amount of damping that renders the attenuation for the dissipative AM greater than that for the locally resonant case. AM with nonlinear stiffnesses were also investigated. For a base-excited two degree of freedom system consisting of a master structure and a Duffing-type oscillator, approximate transmissibility was derived, verified using simulations and compared to its equivalent damped model. Analytical solutions for dispersion curve shifts in nonlinear chains with linear resonators and in linear chains with nonlinear oscillators were obtained using perturbation analysis and first order approximations for cubic hardening and softening cases. Amplitude-activated alterations in bandgap width and the possibility of phenomena such as branch curling and overtaking were observed. Device implications of nonlinear AM as amplitude-dependent filters and direction-biased waveguides were examined using simulations.
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, Boyd McLean
1999-12-01
Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less
NASA Technical Reports Server (NTRS)
Gandhi, O. P.; Hagmann, M. J.; Dandrea, J. A.
1979-01-01
Fine structure in the whole-body resonant curve for radio-frequency energy deposition in man can be attributed to part-body resonances. As for head resonance, which occurs near 350 MHz in man, the absorptive cross section is nearly three times the physical cross section of the head. The arm has a prominent resonance at 150 MHz. Numerical solutions, antenna theory, and experimental results on animals have shown that whole-body energy deposition may be increased by 50 percent or more because of multiple bodies that are strategically located in the field. Empirical equations for SARs are also presented along with test data for several species of laboratory animals. Barbiturate anesthesia is sufficiently disruptive of thermoregulation that delta Ts of colonic temperature yield energy dose values in several mammals that compare quite favorably with those based on whole-body calorimetry.
Non-monotonic resonance in a spatially forced Lengyel-Epstein model
Haim, Lev; Hagberg, Aric; Meron, Ehud
2015-06-02
Here, we study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. Furthermore, we show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcationmore » can be reversed. Finally, we attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.« less
Comment on "Exact solution of resonant modes in a rectangular resonator".
Gutiérrez-Vega, Julio C; Bandres, Miguel A
2006-08-15
We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation.
An approach to determination of shunt circuits parameters for damping vibrations
NASA Astrophysics Data System (ADS)
Matveenko; Iurlova; Oshmarin; Sevodina; Iurlov
2018-04-01
This paper considers the problem of natural vibrations of a deformable structure containing elements made of piezomaterials. The piezoelectric elements are connected through electrodes to an external electric circuit, which consists of resistive, inductive and capacitive elements. Based on the solution of this problem, the parameters of external electric circuits are searched for to allow optimal passive control of the structural vibrations. The solution to the problem is complex natural vibration frequencies, the real part of which corresponds to the circular eigenfrequency of vibrations and the imaginary part corresponds to its damping rate (damping ratio). The analysis of behaviour of the imaginary parts of complex eigenfrequencies in the space of external circuit parameters allows one to damp given modes of structure vibrations. The effectiveness of the proposed approach is demonstrated using a cantilever-clamped plate and a shell structure in the form of a semi-cylinder connected to series resonant ? circuits.
Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry
Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; ...
2015-07-23
This paper describes resonant ultrasound spectroscopy (RUS) as a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist.more » In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.« less
Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Andrew Loyd
Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ patternmore » of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T 1, T 2, and 15N/ 1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.« less
NASA Astrophysics Data System (ADS)
Abeln, Brant Anthony
The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.
Hoff, Michael N; Andre, Jalal B; Xiang, Qing-San
2017-02-01
Balanced steady state free precession (bSSFP) imaging suffers from off-resonance artifacts such as signal modulation and banding. Solutions for removal of bSSFP off-resonance dependence are described and compared, and an optimal solution is proposed. An Algebraic Solution (AS) that complements a previously described Geometric Solution (GS) is derived from four phase-cycled bSSFP datasets. A composite Geometric-Algebraic Solution (GAS) is formed from a noise-variance-weighted average of the AS and GS images. Two simulations test the solutions over a range of parameters, and phantom and in vivo experiments are implemented. Image quality and performance of the GS, AS, and GAS are compared with the complex sum and a numerical parameter estimation algorithm. The parameter estimation algorithm, GS, AS, and GAS remove most banding and signal modulation in bSSFP imaging. The variable performance of the GS and AS on noisy data justifies generation of the GAS, which consistently provides the highest performance. The GAS is a robust technique for bSSFP signal demodulation that balances the regional efficacy of the GS and AS to remove banding, a feat not possible with prevalent techniques. Magn Reson Med 77:644-654, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Synthesis, purification, and structural characterization of the dimethyldiselenoarsinate anion.
Gailer, Jürgen; George, Graham N; Harris, Hugh H; Pickering, Ingrid J; Prince, Roger C; Somogyi, Arpad; Buttigieg, Gavin A; Glass, Richard S; Denton, M Bonner
2002-10-21
A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.
NASA Astrophysics Data System (ADS)
Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup
2018-02-01
Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations.
Jiang, Jun; Aduri, Raviprasad; Chow, Christine S; SantaLucia, John
2014-04-01
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Hancox, Cindy; Phillips, David; Walsworth, Ron
2007-06-01
Of relevance to compact atomic frequency standards, we investigate a model of the N+CPT joint optical resonance. We compare analytical solutions of a 4-state theory, as well as numerical solutions of the optical Bloch equations, to experimental investigations of N+CPT resonances in 87Rb. Our results inform the optimization of N+CPT based frequency standards.
Solution structure of dimeric Mnt repressor (1-76).
Burgering, M J; Boelens, R; Gilbert, D E; Breg, J N; Knight, K L; Sauer, R T; Kaptein, R
1994-12-20
Wild-type Mnt repressor of Salmonella bacteriophage P22 is a tetrameric protein of 82 residues per monomer. A C-terminal deletion mutant of the repressor denoted Mnt (1-76) is a dimer in solution. The structure of this dimer has been determined using NMR. The NMR assignments of the majority of the 1H, 15N, and 13C resonances were obtained using 2D and triple-resonance 3D techniques. Elements of secondary structure were identified on the basis of characteristic sequential and medium range NOEs. For the structure determination more than 1000 NOEs per monomer were obtained, and structures were generated using distance geometry and restrained simulated annealing calculations. The discrimination of intra- vs intermonomer NOEs was based upon the observation of intersubunit NOEs in [15N,13C] double half-filtered NOESY experiments. The N-terminal part of Mnt (residues 1-44), which shows a 40% sequence homology with the Arc repressor, has a similar secondary and tertiary structure. Mnt (1-76) continues with a loop region of irregular structure, a third alpha-helix, and a random coil C-terminal peptide. Analysis of the secondary structure NOEs, the exchange rates, and the backbone chemical shifts suggests that the carboxy-terminal third helix is less stable than the remainder of the protein, but the observation of intersubunit NOEs for this part of the protein enables the positioning of this helix. The rsmd's between the backbone atoms of the N-terminal part of the Mnt repressor (residues 5-43, 5'-43') and the Arc repressor is 1.58 A, and between this region and the corresponding part of the MetJ repressor 1.43 A.
Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.
2012-01-01
Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654
Analytical Solution and Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning
2010-09-30
Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.
Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa
2017-10-15
An unambiguous structural characterization of the water-soluble Aureobasidium pullulans β-(1→3, 1→6)-glucan is yet to be achieved, although this β-(1→3, 1→6)-glucan is expected to exhibit excellent biofunctional properties. Thus, we herein report the elucidation of the primary structure of the A. pullulans β-(1→3, 1→6)-glucan using nuclear magnetic resonance spectroscopy, followed by comparison of the obtained structure with that of schizophyllan (SPG). Structural characterization of the A. pullulans β-(1→3, 1→6)-glucan revealed that the structural units are a β-(1→3)-d-glucan backbone with four β-(1→6)-d-glucosyl side branching units every six residues. In addition, circular dichroism spectroscopic analysis revealed that the β-(1→3, 1→6)-glucan interacted with polyadenylic acid (poly(A)) chains in DMSO solution to form a complex similar to that obtained in the complexation of SPG/poly(A). This finding indicates that β-(1→3, 1→6)-glucan forms a triple-helical conformation in aqueous solution but exhibits a random coil structure in DMSO solution, which is similar to the behavior of SPG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient near-field wireless energy transfer using adiabatic system variations
Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin
2013-01-29
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.
Efficient near-field wireless energy transfer using adiabatic system variations
Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin
2014-09-16
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.
Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.
Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L
2015-06-16
Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling.
Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz.
Sidabras, Jason W; Mett, Richard R; Froncisz, Wojciech; Camenisch, Theodore G; Anderson, James R; Hyde, James S
2007-03-01
A loop-gap resonator (LGR) and a cylindrical TE(011) cavity resonator for use at W band, 94 GHz, have been designed and characterized using the Ansoft (Pittsburgh, PA) high frequency structure simulator (HFSS; Version 10.0). Field modulation penetration was analyzed using Ansoft MAXWELL 3D (Version 11.0). Optimizing both resonators to the same sample sizes shows that EPR signal intensities of the LGR and TE(011) are similar. The 3 dB bandwidth of the LGR, on the order of 1 GHz, is a new advantage for high frequency experiments. Ultraprecision electric discharge machining (EDM) was used to fabricate the resonators from silver. The TE(011) cavity has slots that are cut into the body to allow penetration of 100 kHz field modulation. The resonator body is embedded in graphite, also cut by EDM techniques, for a combination of reasons that include (i) reduced microwave leakage and improved TE(011) mode purity, (ii) field modulation penetration, (iii) structural support for the cavity body, and (iv) machinability by EDM. Both resonators use a slotted iris. Variable coupling is provided by a three-stub tuning element. A collet system designed to hold sample tubes has been implemented, increasing repeatability of sample placement and reducing sample vibration noise. Initial results include multiquantum experiments up to 9Q using the LGR to examine 1 mM 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in aqueous solution at room temperature and field modulation experiments using the TE(011) cavity to obtain an EPR spectrum of 1 microM TEMPO.
Solution structure of a GAAA tetraloop receptor RNA.
Butcher, S E; Dieckmann, T; Feigon, J
1997-01-01
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions. PMID:9405377
Regular Motions of Resonant Asteroids
NASA Astrophysics Data System (ADS)
Ferraz-Mello, S.
1990-11-01
RESUMEN. Se revisan resultados analiticos relativos a soluciones regulares del problema asteroidal eliptico promediados en la vecindad de una resonancia con jupiten Mencionamos Ia ley de estructura para libradores de alta excentricidad, la estabilidad de los centros de liberaci6n, las perturbaciones forzadas por la excentricidad de jupiter y las 6rbitas de corotaci6n. ABSTRAC This paper reviews analytical results concerning the regular solutions of the elliptic asteroidal problem averaged in the neighbourhood of a resonance with jupiter. We mention the law of structure for high-eccentricity librators, the stability of the libration centers, the perturbations forced by the eccentricity ofjupiter and the corotation orbits. Key words: ASThROIDS
Hunter, Howard N.; Demcoe, A. Ross; Jenssen, Håvard; Gutteberg, Tore J.; Vogel, Hans J.
2005-01-01
Lactoferricins are highly basic bioactive peptides that are released in the stomach through proteolytic cleavage of various lactoferrin proteins. Here we have determined the solution structure of human lactoferricin (LfcinH) by conventional two-dimensional nuclear magnetic resonance methods in both aqueous solution and a membrane mimetic solvent. Unlike the 25-residue bovine lactoferricin (LfcinB), which adopts a somewhat distorted antiparallel β sheet, the longer LfcinH peptide shows a helical content from Gln14 to Lys29 in the membrane mimetic solvent but a nonexistent β-sheet character in either the N- or C-terminal regions of the peptide. The helical characteristic of the LfcinH peptide resembles the conformation that this region adopts in the crystal structure of the intact protein. The LfcinH structure determined in aqueous solution displays a nascent helix in the form of a coiled conformation in the region from Gln14 to Lys29. Numerous hydrophobic interactions create the basis for the better-defined overall structure observed in the membrane mimetic solvent. The 49-residue LfcinH peptide isolated for these studies was found to be slightly longer than previously reported peptide preparations and was found to have an intact peptide bond between residues Ala11 and Val12. The distinct solution structures of LfcinH and LfcinB represent a novel difference in the physical properties of these two peptides, which contributes to their unique physiological activities. PMID:16048952
Efficient near-field wireless energy transfer using adiabatic system variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from themore » first resonator structure to the second resonator structure through the intermediate resonator structure.« less
Multicoil resonance-based parallel array for smart wireless power delivery.
Mirbozorgi, S A; Sawan, M; Gosselin, B
2013-01-01
This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.
Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.
Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe
2012-02-01
Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®
Resonance Raman spectra of an O2-binding H-NOX domain reveal heme relaxation upon mutation.
Tran, Rosalie; Boon, Elizabeth M; Marletta, Michael A; Mathies, Richard A
2009-09-15
Resonance Raman spectra were measured for the wild type Heme-Nitric oxide/OXygen binding domain from Thermoanaerobacter tengcongensis (Tt H-NOX WT) and three other Tt H-NOX proteins containing mutations at key conserved residues to determine the heme conformation in solution. The most dramatic changes in heme conformation occurred in the O2-bound forms, and the single Tt H-NOX P115A mutation was sufficient to generate a significant relaxation of the chromophore. Clear evidence of heme relaxation in the Tt H-NOX I5L, P115A, and I5L/P115A mutants in solution is demonstrated by the observation of reduced resonance Raman intensities for several out-of-plane low frequency modes (e.g., gamma11, gamma12, gamma13, and gamma15) in the 400-750 cm(-1) region known to be sensitive to ruffling and saddling deformations, as well as increased vibrational frequencies for the core heme skeletal stretching modes, nu3, nu2, and nu10. In addition, all three mutants exhibited some degree of heme conformational heterogeneity based on several broad skeletal markers (e.g., nu10) in the high frequency region. These results are comparable to those observed by Olea et al. for Tt H-NOX P115A in crystal form, where four different heme structures were determined from a single unit cell. On the basis of the resonance Raman spectra, it is clear that the actual heme conformation for Tt H-NOX P115A in solution is considerably more relaxed than that of the WT protein, with increased flexibility within the protein pocket, allowing for rapid sampling of alternate conformations.
Neves, Ana L; Leroi, Lisa; Raolison, Zo; Cochinaire, Nicolas; Letertre, Thibaut; Abdeddaïm, Redha; Enoch, Stefan; Wenger, Jerome; Berthelot, Johann; Adenot-Engelvin, Anne-Lise; Malléjac, Nicolas; Mauconduit, Franck; Vignaud, Alexandre; Sabouroux, Pierre
2018-03-01
Perovskites are greatly used nowadays in many technological applications because of their high permittivity, more specifically in the form of aqueous solutions, for MRI dielectric shimming. In this study, full dielectric characterizations of highly concentrated CaTiO 3 /BaTiO 3 water mixtures were carried out and new permittivity maxima was reached. Permittivity measurements were done on aqueous solutions from 0%v/v to dry powder. The permittivity dependence with pressure was investigated. Scanning electron microscopy images were performed on a few representative solutions. BaTiO 3 pressed pads of different thicknesses, permittivities, and distances to the head were compared in a 7T MRI scanner. Perovskite aqueous mixtures undergo a pressure-dependent phase transition in terms of permittivity, with increasing water content. A new relative permittivity maximum of 475 was achieved. Microscopic images revealed structural differences between phases. A B1+ improvement in the temporal lobe was obtained with thin, high permittivity BaTiO 3 head. This new preparation method allows improved pad geometry and placement, as a result of the high relative permittivity values achieved. This method has great significance for medical applications of MRI dielectric shimming, being easy to replicate and implement on a large scale. Magn Reson Med 79:1753-1765, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Peale, S. J.
2002-01-01
Contents include a summary of publications followed by their abstracts titeled: 1. On microlensing rates and optical depth toward the Galactic center. 2. Newly discovered brown dwarfs not seen in microlensing timescale frequency distribution? 3. Origin and evolution of the natural satellites. 4. Probing the structure of the galaxy with microlensing. 5. Tides, Encyclopedia of Astronomy and Astrophysics. 6. The Puzzle of the Titan-Hyperion 4:3 Orbital Resonance. 7. On the Validity of the Coagulation Equation and the Nature of Runaway Growth. 8. Making Hyperion. 9. The MESSENGER mission to Mercury: Scientific objectives and implementation. 10. A Survey of Numerical Solutions to the Coagulation. 11. Probability of detecting a planetary companion during a microlensing event. 12. Dynamics and origin of the 2:l orbital resonances of the GJ876 planets. 13. Planetary Interior Structure Revealed by Spin Dynamics. 14. A primordial origin of the Laplace relation among the Galilean Satellites. 15. A procedure for determining the nature of Mercury's core. 16. Secular evolution of hierarchical planetary systems. 17. Tidally induced volcanism. 18. Extrasolar planets and mean motion resonances. 19. Comparison of a ground-based microlensing search for planets with a search from space.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Synthesis of unsymmetrical dimethylhydrazine oxalate from rejected liquid rocket propellant
NASA Astrophysics Data System (ADS)
Mu, Xiaogang; Yang, Jingjing; Zhang, Youzhi
2018-02-01
The rejected liquid propellant unsymmetrical dimethylhydrazine (UDMH) was converted to UDMH oxalate, which has commercial value. The UDMH oxalate structure and stability were investigated by the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectrophotometric analysis. The results indicate that UDMH oxalate has good thermal and aqueous solution stability, a melting point of 144 °C, an initial decomposition temperature of 180 °C, and a peak wavelength of UV in aqueous solution at λ = 204 nm. This disposal method of rejected UDMH is highly efficient and environmentally safe.
Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.
Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less
NASA Astrophysics Data System (ADS)
Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.
2017-06-01
In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.
Spatiotemporal optical pulse transformation by a resonant diffraction grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru
The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F.
A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the applicationmore » of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.« less
Artifacts Affecting Musculoskeletal Magnetic Resonance Imaging: Their Origins and Solutions.
Roth, Eira; Hoff, Michael; Richardson, Michael L; Ha, Alice S; Porrino, Jack
2016-01-01
Among articles within the radiology literature, few present the manifestations of magnetic resonance imaging artifacts in a clinically oriented manner. Recognizing such artifacts is imperative given the increasing clinical use of magnetic resonance imaging and the emphasis by the American Board of Radiology on practical physics applications. The purpose of this article is to present magnetic resonance physics principles visually and conceptually in the context of common musculoskeletal radiology artifacts and their solutions, described using nonmathematical explanations. Copyright © 2016 Elsevier Inc. All rights reserved.
Heterochiral Knottin Protein: Folding and Solution Structure.
Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L
2017-10-31
Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.
Elucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy
Oladepo, Sulayman A.; Xiong, Kan; Hong, Zhenmin; Asher, Sanford A.
2011-01-01
UV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the Amide III3 band and the Cα-H band frequencies and intensities can be used to determine Ramachandran Ψ angle distributions for peptide bonds. These incisive, quantitative glimpses into conformation can be combined with kinetic T-jump methodologies to monitor the dynamics of biomolecular conformational transitions. The resulting UVRR structural insight is impressive in that it allows differentiation of, for example, different α-helix-like states that enable differentiating π- and 310- states from pure α-helices. These approaches can be used to determine the Gibbs free energy landscape of individual peptide bonds along the most important protein (un)folding coordinate. Future work will find spectral monitors that probe peptide bond activation barriers that control protein (un)folding mechanisms. In addition, UVRR studies of sidechain vibrations will probe the role of side chains in determining protein secondary, tertiary and quaternary structures. PMID:21379371
Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune
2008-07-18
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.
Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek
Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA,more » which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.« less
N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation
NASA Astrophysics Data System (ADS)
Wang, Xin; Geng, Xian-Guo
2017-08-01
We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painlevé analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively. Supported by National Natural Science Foundation of China under Grant No. 11331008 and China Postdoctoral Science Foundation Funded Sixtieth Batches (2016M602252)
2014-01-01
The tyrosine kinase A (TrkA) receptor is a validated therapeutic intervention point for a wide range of conditions. TrkA activation by nerve growth factor (NGF) binding the second extracellular immunoglobulin (TrkAIg2) domain triggers intracellular signaling cascades. In the periphery, this promotes the pain phenotype and, in the brain, cell survival or differentiation. Reproducible structural information and detailed validation of protein–ligand interactions aid drug discovery. However, the isolated TrkAIg2 domain crystallizes as a β-strand-swapped dimer in the absence of NGF, occluding the binding surface. Here we report the design and structural validation by nuclear magnetic resonance spectroscopy of the first stable, biologically active construct of the TrkAIg2 domain for binding site confirmation. Our structure closely mimics the wild-type fold of TrkAIg2 in complex with NGF (1WWW.pdb), and the 1H–15N correlation spectra confirm that both NGF and a competing small molecule interact at the known binding interface in solution. PMID:25454499
Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations
Jiang, Jun; Aduri, Raviprasad; Chow, Christine S.; SantaLucia, John
2014-01-01
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson–Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity. PMID:24371282
Hasan, Nusair; Farouk, Bakhtier
2015-10-01
Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.
Molecular species forming at the α-Fe2O3 nanoparticle-aqueous solution interface.
Ali, Hebatallah; Seidel, Robert; Pohl, Marvin N; Winter, Bernd
2018-05-21
We report on electronic structure measurements of the interface between hematite nanoparticles (6 nm diameter) and aqueous solutions. Using soft X-ray photoelectron spectroscopy from a liquid microjet we detect valence and core-level photoelectrons as well as Auger electrons from liquid water, from the nanoparticle-water interface, and from the interior of the aqueous-phase nanoparticles. Most noteworthy, the method is shown to be sufficiently sensitive for the detection of adsorbed hydroxyl species, resulting from H 2 O dissociation at the nanoparticle surface in aqueous solution. We obtain signal from surface OH from resonant, non-resonant, and from so-called partial-electron-yield X-ray absorption (PEY-XA) spectra. In addition, we report resonant photoelectron measurements at the iron 2p excitation. The respective Fe iron 2p 3/2 edge (L 3 -edge) PEY-XA spectra exhibit two main absorption peaks with their energies being sensitive to the chemical environment of the Fe 3+ ions at the nanoparticle-solution interface. This manifests in the 10 D q value which is a measure of the ligand-field strength. Furthermore, an observed intensity variation of the pre-peak, when comparing the PEY-XA spectra for different iron Auger-decay channels, can be assigned to different extents of electron delocalization. From the experimental fraction of local versus non-local autoionization signals we then find a very fast, approximately 1 fs, charge transfer time from interfacial Fe 3+ into the environment. The present study, which is complementary to ambient-pressure photoemission studies on solid-electrolyte systems, also highlights the multiple aspects of photoemission that need to be explored for a full characterization of the transition-metal-oxide nanoparticle surface in aqueous phase.
SFG study of platinum electrodes in perchloric acid solutions
NASA Astrophysics Data System (ADS)
Zheng, W. Q.; Pluchery, O.; Tadjeddine, A.
2002-04-01
Infrared-visible sum-frequency generation (SFG) spectroscopy has been used to study the structure of water molecules (and/or its derivatives OH -, H 3O + etc.) at aqueous electrolyte/electrode interfaces. For Pt(1 1 0) and Pt(1 0 0) electrodes in 0.1 M perchloric acid solution, we did not observe any significant O-H stretching resonance. In striking contrast to the resonant SFG signal, the nonresonant SFG (NRSFG) signal varies sensitively with the applied electrochemical potential, indicating that the interaction of water molecules with platinum electrodes is relatively weak as compared to that of H + and ClO 4- ions. From changes in the NRSFG signal and on the basis of an ionic adsorption model, we can also deduce that the potential of zero charge of Pt(1 1 0) in 0.1 M HClO 4 should be located at about 0.22 V (vs. NHE). This value is in good agreement with that measured recently by electrochemical method.
Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin
Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.
2014-01-01
A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680
Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin.
Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Hammed, Leiqaa A; Al-Amiery, Ahmed A; San, Ng Hooi; Musa, Ahmed Y
2014-06-05
A new coumarin derivative, N , N '-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1 H-NMR and carbon-13 nuclear magnetic resonance 13 C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential ( E CORR ), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, A.S.W.; Kevan, L.
1983-09-07
The photoionization of N,N,N',N'-tetramethylbenzidine (TMB) in dihexadecylphosphate anionic vesicles and in dioctadecyldimethylammonium chloride cationic vesicles has been studied by optical absorption and electron spin resonance in liquid and frozen solutions. The TMB cation has been observed to be stabilized in both types of vesicles. The photoionization efficiency is about twofold greater in the cationic vesicles compared to the anionic vesicles. Shifts in the optical absorption maximum between micellar and vesicle solutions indicate that TMB is in a less polar environment in the vesicle systems. Electron spin echo modulation spectrometry has been used to detect TMB cation-water interactions that are foundmore » to be weaker than in previously studied micellar solutions. This is consistent with the optical absorption results and with an asymmetric solubilization site for TMB and TMB/sup +/ within the vesicular structure. A new absorption in the photoionized vesicles is assigned to a nonparamagnetic diamine-diimine charge-transfer complex between two TMB cations in the same vesicle. This complex is not formed in micellar systems. 5 figures.« less
Peys, Nick; Adriaensens, Peter; Van Doorslaer, Sabine; Gielis, Sven; Peeters, Ellen; De Dobbelaere, Christopher; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2014-09-07
An aqueous precursor solution, containing citrato-VO(2+) complexes, is synthesized for the formation of monoclinic VO2. With regard to the decomposition of the VO(2+) complexes towards vanadium oxide formation, it is important to gain insights into the chemical structure and transformations of the precursor during synthesis and thermal treatment. Hence, the conversion of the cyclic [V4O12](4-) ion to the VO(2+) ion in aqueous solution, using oxalic acid as an acidifier and a reducing agent, is studied by (51)Vanadium nuclear magnetic resonance spectroscopy. The citrate complexation of this VO(2+) ion and the differentiation between a solution containing citrato-oxalato-VO(2+) and citrato-VO(2+) complexes are studied by electron paramagnetic resonance and Fourier transform infra-red spectroscopy. In both solutions, the VO(2+) containing complex is mononuclear and has a distorted octahedral geometry with a fourfold R-CO2(-) ligation at the equatorial positions and likely a fifth R-CO2(-) ligation at the axial position. Small differences in the thermal decomposition pathway between the gel containing citrato-oxalato-VO(2+) complexes and the oxalate-free gel containing citrato-VO(2+) complexes are observed between 150 and 200 °C in air and are assigned to the presence of (NH4)2C2O4 in the citrato-oxalato-VO(2+) solution. Both precursor solutions are successfully used for the formation of crystalline vanadium oxide nanostructures on SiO2, after thermal annealing at 500 °C in a 0.1% O2 atmosphere. However, the citrato-oxalato-VO(2+) and the oxalate-free citrato-VO(2+) solution result in the formation of monoclinic V6O13 and monoclinic VO2, respectively.
Characterization of Inductive loop coupling in a Cyclotron Dee Structure
NASA Astrophysics Data System (ADS)
Carroll, Lewis
Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling through a feed-line driven by an RF transmitter employing a triode or tetrode power tube. The transmitter's output network transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms. But the load-line is not a physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input. In addition, the transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of measuring the output impedance so that an additional compensating length of feed-line can be incorporated. But a wrong choice of overall feed-line length- even though correctly load-matched at the resonator's operating frequency- can result in a curious degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases substantially: a condition to be avoided!
Air-coupled ultrasonic through-transmission thickness measurements of steel plates.
Waag, Grunde; Hoff, Lars; Norli, Petter
2015-02-01
Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.
Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K; Al-Hashimi, Hashim M
2017-05-19
In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K.
2017-01-01
Abstract In the canonical DNA double helix, Watson–Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02–0.4%) and short-lived (lifetimes ∼0.2–2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. PMID:28369571
Microwave temperature-jump nuclear magnetic resonance system for aqueous solutions
NASA Astrophysics Data System (ADS)
Kawakami, Masaru; Akasaka, Kazuyuki
1998-09-01
A microwave temperature-jump nuclear magnetic resonance (NMR) system suitable for aqueous solutions has been developed. A microwave pulse of a desired length is generated at a frequency of 2.46 GHz from a 1.3 kW magnetron, and is delivered through a waveguide and a coaxial cable to a coupling loop which works as an antenna to the dielectric resonator in the NMR probe. Inside the dielectric resonator, the microwave power is efficiently absorbed by the sample solution (about 100 μl) contained in a glass tube, causing a temperature jump by about 25 °C in less than 20 ms. The temperature after the jump can be maintained by applying intermittent microwave pulses of shorter length. A saddle-type radio-frequency coil is placed around the sample tube inside the hollow of the dielectric resonator to excite spins and detect NMR signals. Both the microwave pulses and the radio-frequency pulses are gated by a pulse programmer of the NMR spectrometer to form a desired temperature-jump pulse sequence. A mechanical mixing device is introduced, which significantly reduces the temperature gradient of the sample solution well within 100 ms after the jump. Application to an aqueous solution of ribonuclease A showed that the protein unfolds within 20 ms of microwave heating.
NASA Astrophysics Data System (ADS)
Wang, Yao; Chen, Mei-Dan; Li, Xian; Li, Biao
2017-05-01
Through Hirota bilinear transformation and symbolic computation with Maple, a class of lump solutions, rationally localised in all directions in the space, to a reduced generalised (3+1)-dimensional shallow water wave (SWW) equation are prensented. The resulting lump solutions all contain six parameters, two of which are free due to the translation invariance of the SWW equation and the other four of which must satisfy a nonzero determinant condition guaranteeing analyticity and rational localisation of the solutions. Then we derived the interaction solutions for lump solutions and one stripe soliton and the result shows that the particular lump solutions with specific values of the involved parameters will be drowned or swallowed by the stripe soliton. Furthermore, we extend this method to a more general combination of positive quadratic function and hyperbolic functions. Especially, it is interesting that a rogue wave is found to be aroused by the interaction between lump solutions and a pair of resonance stripe solitons. By choosing the values of the parameters, the dynamic properties of lump solutions, interaction solutions for lump solutions and one stripe soliton and interaction solutions for lump solutions and a pair of resonance solitons, are shown by dynamic graphs.
Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...
2015-07-20
In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less
X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.
Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan
2018-03-01
The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.
Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.
Chabalko, Matthew J; Shahmohammadi, Mohsen; Sample, Alanson P
2017-01-01
Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.
Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer
Shahmohammadi, Mohsen; Sample, Alanson P.
2017-01-01
Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power. PMID:28199321
Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene
NASA Astrophysics Data System (ADS)
Gonçalves, Norberto S.; Noda, Lúcia. K.
2017-10-01
In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.
Using Large Signal Code TESLA for Wide Band Klystron Simulations
2006-04-01
tuning procedure TESLA simulates of high power klystron [3]. accurately actual eigenmodes of the structure as a solution Wide band klystrons very often...on band klystrons with two-gap two-mode resonators. The decomposition of simulation region into an external results of TESLA simulations for NRL S ...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP022454 TITLE: Using Large Signal Code TESLA for Wide Band Klystron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falzone, C.J.; Benkovic, S.J.; Wright, P.E.
1991-02-26
Two-dimensional {sup 1}H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike thosemore » of the folate complex, are severally broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. Many of the side chains with clearly doubled resonances were located in the {beta}-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.« less
Partial Wave Analysis of Coupled Photonic Structures
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.
NASA Astrophysics Data System (ADS)
Strom, Brandon William
In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.
Foti, M; Marshalko, S; Schurter, E; Kumar, S; Beardsley, G P; Schweitzer, B I
1997-05-06
The nucleoside analog 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (ganciclovir, DHPG) is an antiviral drug that is used in the treatment of a variety of herpes viruses in immunocompromised patients and in a gene therapy protocol that has shown promising activity for the treatment of cancer. To probe the structural effects of ganciclovir when incorporated into DNA, we determined and compared the solution structure of a modified ganciclovir-containing decamer duplex [d(CTG)(ganciclovir)d(ATCCAG)]2 and a control duplex d[(CTGGATCCAG)]2 using nuclear magnetic resonance techniques. 1H and 31P resonances in both duplexes were assigned using a combination of 2-D 1H and 31P NMR experiments. Proton-proton distances determined from NOESY data and dihedral angles determined from DQF-COSY data were used in restrained molecular dynamics simulations starting from canonical A- and B-form DNA models. Both the control and ganciclovir sets of simulations converged to B-type structures. These structures were subjected to full relaxation matrix refinement to produce final structures that were in excellent agreement with the observed NOE intensities. Examination of the final ganciclovir-containing structures reveals that the base of the ganciclovir residue is hydrogen bonded to its complementary dC and is stacked in the helix; in fact, the base of ganciclovir exhibits increased stacking with the 5' base relative to the control. Interestingly, some of the most significant distortions in the structures occur 3' to the lesion site, including a noticeable kink in the sugar-phosphate backbone at this position. Further examination reveals that the backbone conformation, sugar pucker, and glycosidic torsion angle of the residue 3' to the lesion site all indicate an A-type conformation at this position. A possible correlation of these structural findings with results obtained from earlier biochemical studies will be discussed.
Characterization of pH-fractionated humic acids derived from Chinese weathered coal.
Zhang, Shuiqin; Yuan, Liang; Li, Wei; Lin, Zhian; Li, Yanting; Hu, Shuwen; Zhao, Bingqiang
2017-01-01
To reduce the compositional and structural heterogeneity of humic acids (HAs) and achieve better use of HA resources, in this study, we report a new sequential dissolution method for HAs derived from Chinese weathered coal. This method was used to separate HAs into seven fractions by adjusting the pH (3-10) of the extraction solution. The results showed that the HA fractions derived from Chinese weathered coal were concentrated up to 90.31% in the lower pH solutions (3-7). The compositional and structural characteristics of the HA fractions were determined by elemental analysis; ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), and solid-state 13 C-nuclear magnetic resonance (NMR) spectroscopies; and other techniques. The results showed significant differences among the HA fractions. The concentrations of the total acidic groups and the carboxyl groups decreased with the increasing pH of the extraction solution. However, the HA fractions derived from extraction solutions with pH 3-4 had relatively lower aromaticity but a higher protonated carbon content. The HA fractions derived from extraction solutions with pH 6-7 had the highest aromaticity and the greatest abundance of COO/N-C=O. This study demonstrated that adjusting the pH of the extraction solution is one way to fractionate HAs from Chinese weathered coal and to obtain HA fractions with compositions and structures that could serve as useful material for study and utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Piezoelectric Energy Harvesting Solutions
Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria
2014-01-01
This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725
NASA Astrophysics Data System (ADS)
Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-04-01
Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].
Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering
NASA Astrophysics Data System (ADS)
Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan
2015-07-01
Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.
Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Yuan, Yu-Qiang; Sun, Yan
2018-02-01
Under investigation in this paper is the (2 + 1) -dimensional Maccari system, which is related to the Kadomtsev-Petviashvili (KP) equation. Bright and dark N -soliton solutions in terms of the Gramian are obtained via the KP hierarchy reduction. Oblique and parallel interactions between the bright solitons and between the dark solitons are studied analytically and graphically. We find that there are elastic and inelastic interactions for the bright solitons, but there are only elastic interactions for the dark solitons. Resonance, breather, attraction and repulsion structures are presented. It is expected that these soliton interactions have potential applications in fluid dynamics, nonlinear optics and plasma physics.
Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis
Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM
2008-06-10
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
NASA Astrophysics Data System (ADS)
Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.
2016-06-01
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O
2016-06-24
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
Al-Azzam, Wasfi; Pastrana, Emil A; Ferrer, Yancy; Huang, Qing; Schweitzer-Stenner, Reinhard; Griebenow, Kai
2002-01-01
Fourier transform infrared (FTIR) spectroscopy has emerged as a powerful tool to guide the development of stable lyophilized protein formulations by providing information on the structure of proteins in amorphous solids. The underlying assumption is that IR spectral changes in the amide I and III region upon protein dehydration are caused by protein structural changes. However, it has been claimed that amide I IR spectral changes could be the result of water removal per se. Here, we investigated whether such claims hold true. The structure of horseradish peroxidase (HRP) and poly(ethylene glycol)-modified HRP (HRP-PEG) has been investigated under various conditions (in aqueous solution, the amorphous dehydrated state, and dissolved/suspended in toluene and benzene) by UV-visible (UV-Vis), FTIR, and resonance Raman spectroscopy. The resonance Raman and UV-Vis spectra of dehydrated HRP-PEG dissolved in neat toluene or benzene were very similar to that of HRP in aqueous buffer, and thus the heme environment (heme iron spin, coordination, and redox state) was essentially the same under both conditions. Therefore, the three-dimensional structure of HRP-PEG dissolved in benzene and toluene was similar to that in aqueous solution. The amide I IR spectra of HRP-PEG in aqueous buffer and of dehydrated HRP-PEG dissolved in neat benzene and toluene were also very similar, and the secondary structure compositions (percentages of alpha-helices and beta-sheets) were within the standard error the same. These results are irreconcilable with recent claims that water removal per se could cause substantial amide I IR spectral changes (M. van de Weert, P.I. Haris, W.E. Hennink, and D.J. Crommelin. 2001. Anal. Biochem. 297:160-169). On the contrary, amide I IR spectral changes upon protein dehydration are caused by perturbations in the secondary structure. PMID:12496131
Nomura, Yusuke; Tanaka, Yoichiro; Fukunaga, Jun-ichi; Fujiwara, Kazuya; Chiba, Manabu; Iibuchi, Hiroaki; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi
2013-12-01
AML1/RUNX1 is an essential transcription factor involved in the differentiation of hematopoietic cells. AML1 binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. In a previous study, we obtained RNA aptamers against the AML1 Runt domain by systematic evolution of ligands by exponential enrichment and revealed that RNA aptamers exhibit higher affinity for the Runt domain than that for RDE and possess the 5'-GCGMGNN-3' and 5'-N'N'CCAC-3' conserved motif (M: A or C; N and N' form Watson-Crick base pairs) that is important for Runt domain binding. In this study, to understand the structural basis of recognition of the Runt domain by the aptamer motif, the solution structure of a 22-mer RNA was determined using nuclear magnetic resonance. The motif contains the AH(+)-C mismatch and base triple and adopts an unusual backbone structure. Structural analysis of the aptamer motif indicated that the aptamer binds to the Runt domain by mimicking the RDE sequence and structure. Our data should enhance the understanding of the structural basis of DNA mimicry by RNA molecules.
Measuring and modeling of a three-dimensional tracer transport in a planted soil column
NASA Astrophysics Data System (ADS)
Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.
2013-12-01
Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, Vadose Zone Journal, 7(3), 1079-1079. [2] Schröder, N., M. Javaux, J. Vanderborght, B. Steffen, and H. Vereecken (2012), Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study, Vadose Zone Journal, 11(3). [3 ]Haber-Pohlmeier, S., Bechtold, M., Stapf, S., and Pohlmeier, A. (2010). Water Flow Monitored by Tracer Transport in Natural Porous Media Using Magnetic Resonance Imaging. Vadose Zone Journal (9),835-845. [4] Stingaciu, L. R., Schulz, H., Pohlmeier, A., Behnke, S., Zilken, H., Vereecken, H., and Javaux, M. (2013). In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Application to Water Uptake Modeling. Vadose Zone Journal.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging
NASA Astrophysics Data System (ADS)
Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata
2007-01-01
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.
Surface vibrational modes in disk-shaped resonators.
Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P
2014-03-01
The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Seti, Julia; Tkach, Mykola; Voitsekhivska, Oxana
2018-03-01
The exact solutions of the Schrödinger equation for a double-barrier open semiconductor plane nanostructure are obtained by using two different approaches, within the model of the rectangular potential profile and the continuous position-dependent effective mass of the electron. The transmission coefficient and scattering matrix are calculated for the double-barrier nanostructure. The resonance energies and resonance widths of the electron quasi-stationary states are analyzed as a function of the size of the near-interface region between wells and barriers, where the effective mass linearly depends on the coordinate. It is established that, in both methods, the increasing size affects in a qualitatively similar way the spectral characteristics of the states, shifting the resonance energies into the low- or high-energy region and increasing the resonance widths. It is shown that the relative difference of resonance energies and widths of a certain state, obtained in the model of position-dependent effective mass and in the widespread abrupt model in physically correct range of near-interface sizes, does not exceed 0.5% and 5%, respectively, independently of the other geometrical characteristics of the structure.
NASA Astrophysics Data System (ADS)
Teraoka, Iwao; Yao, Haibei; Huiyi Luo, Natalie
2017-06-01
We employed a recently developed whispering gallery mode (WGM) dip sensor made of silica to obtain spectra for many resonance peaks in water and solutions of sucrose at different concentrations and thus having different refractive indices (RI). The apparent Q factor was estimated by fitting each peak profile in the busy resonance spectrum by a Lorentzian or a sum of Lorentzians. A plot of the Q factor as a function the peak height for all the peaks analyzed indicates a straight line with a negative slope as the upper limit, for each of water and the solutions. A coupling model for a resonator and a pair of fiber tapers to feed and pick up light, developed here, supports the presence of the upper limit. We also found that the round-trip attenuation of WGM was greater than the one estimated from light absorption by water, and the difference increased with the concentration of sucrose.
Resonant optical pulses on a continuous-wave background in two-level active media
NASA Astrophysics Data System (ADS)
Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar
2018-01-01
We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.
2015-02-21
Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less
Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins
Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi
2013-01-01
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578
Busch, Martin H J; Vollmann, Wolfgang; Grönemeyer, Dietrich H W
2006-05-26
Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach (1/4) of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q V(ind) < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q V(ind) > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for.
Busch, Martin HJ; Vollmann, Wolfgang; Grönemeyer, Dietrich HW
2006-01-01
Background Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. Methods First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. Results The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. Conclusion The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for. PMID:16729878
2,3-DPG-Hb complex: a hypothesis for an asymmetric binding.
Pomponi, M; Bertonati, C; Fuglei, E; Wiig, O; Derocher, A E
2000-05-15
This study was undertaken to test the symmetry of 2,3-diphosphoglycerate (2,3-DPG) binding site in hemoglobin (Hb). From Arnone's study [A. Arnone, Nature (London) 237 (1972) 146] the 2,3-DPG binding site is located at the top of the cavity, that runs through the center of the deoxy-Hb molecule. However, it is possible that this symmetry reported by Arnone, for crystals of 2,3-DPG-Hb complex, might not be conserved in solution. In this paper, we report the 31P nuclear magnetic resonances of the 2,3-DPG interaction with Hb. The 2,3-DPG chemical shifts of the P2 and P3 resonance are both pH- and hemoglobin-dependent [protein from man, polar bear (Ursus maritimus), Arctic fox (Alopex lagopus) and bovine]. 2,3-DPG binds tightly to deoxyhemoglobin and weakly, nevertheless significantly, to oxyhemoglobin. In particular, our results suggest similar spatial position of the binding site of 2,3-DPG in both forms of Hb in solutions. However, the most unexpected result was the apparent loss of symmetry in the binding site, which might correlate with the ability of the hemoglobin to modulate its functional behavior. The different interactions of the phosphate groups indicate small differences in the quaternary structure of the different deoxy forms of hemoglobin. Given the above structural perturbation an asymmetric binding in the complex could justify, at least in part, different physiological properties of Hb. Regardless, functionally relevant effects of 2,3-DPG seem to be measured and best elucidated through solution studies.
Optically detected magnetic resonance studies on pi-conjugated polymers and novel carbon allotropes
NASA Astrophysics Data System (ADS)
Partee, Jonathan Farel
1997-12-01
The photophysics of poly(p-phenylene)-type ladder polymers (m-LPPP) and 2,5-dibutoxy poly(p-phenylene ethynylene) (DBO-PPE) films and solutions were studied by X-band photoluminescence detected magnetic resonance (PLDMR). Frequency resolved PLDMR measurements on LPPP, DBO-PPE, poly(3-hexylthiophene) (P3HT), poly(p-phenylene-vinylene) (PPV), and Csb{70} are also reported and discussed. All the polymer samples exhibit three distinct features when excited at wavelengths lambda≥ 458nm: (i) A narrow PL-enhancing spin-1/2 polaron resonance, (ii) broad full- and (iii) half-field spin-1 triplet exciton powder patterns due to the Deltamsbs = 1 and Deltamsbs = 2 transitions among the triplet sublevels, respectively. The full-width at half maximum (FWHM) of the spin-1/2 resonance in LPPP decreased from film to solution. However, the FWHM of that resonance in PPE was identical at all concentrations. This spin-1/2 resonance is assigned to the magnetic resonance enhancement of the recombination of both interchain and intrachain-intersegment polaron pairs which quench singlet exciton recombination. In solid m-LPPP samples, the aggregate PL gives rise to a proportionally higher magnetic resonance effect than other parts of the PL spectrum. In DBO-PPE and m-LPPP solutions, the triplet resonance decreased with decreasing concentration. This suggests that the triplet state is an intrinsic long-lived (˜30mus) trapped state localized on a phenylene ring and stabilized by coupling to a unit of an adjacent chain. Frequency resolved measurements of the lifetime of the species affected by the resonance conditions for all the polymers are described and discussed. The lifetimes appeared to include: (i) fast (9mus ≤ tausb1 ≤ 40mus) and (ii) slow (575mus\\ ≤ tausb2≤ 1868mus) components. The lifetimes increased with increasing concentration of the polymers in toluene solutions. These results can be interpreted to provide support for the interchain/intersegment polaron model or a distribution of lifetimes model.
a New Method to Prepare the Novel Anatase TiO2
NASA Astrophysics Data System (ADS)
Cui, Guanjun; Xu, Zhanxia; Wang, Yan; Zhang, Min; Yang, Jianjun
In this paper, a kind of novel anatase TiO2 nanoparticle with single-electron-trapped oxygen vacancies was prepared by hydrothermal treated nanotube titanic acid. The morphology, structure, and properties of the products were characterized by transmission electron microscope, X-ray diffraction, electron spin resonance, and photoluminescence. Photocatalytic decolorization of the Methylene Blue solution was carried out in the visible light region and showed a high photocatalytic activity.
Accuracy improvement of interferometric Rayleigh scattering diagnostic
NASA Astrophysics Data System (ADS)
Yan, Bo; Chen, Li; Yin, Kewei; Chen, Shuang; Yang, Furong; Tu, Xiaobo
2017-10-01
Cavity structure is used to increase the Interferometric Rayleigh scattering signal intensity. By using ZEMAX method, we simulate a special cavity mode comprising two spherical reflectors with different size, including the focal length and the diameter. The simulations suggest that the parallel beam can reflect repeatedly in the resonant cavity and concentrate on the focus. Besides, the reflection times and the ray width can reach about 50 and 2.1 cm after some feasible solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, N.G.
A method of noninvasively measuring the density and concentration of NaCl solutions contained within stainless steel pipes has been developed. The pipe-solution system was energized using an ultrasonic transducer resulting in resonances at specific frequencies. The periodicity of the resonant peaks was determined by analyzing ultrasonic voltage response data using a fast Fourier transform to yield the power spectrum. In preliminary studies the periodicity was measured directly from the voltage response spectrum. The resonant periodicities were correlated against known NaCl density and concentration standards. The concentration of unknown NaCl solutions was measured in situ with an accuracy of {plus_minus}O.15 Mmore » over a range of 0.4 to 3.4 M. The precision of each of the measurements range from 1 part in 10,000 to 1 part in 1000. The error resulting from temperature was at most 0.0287 M per degree Celsius or 0.59% over the range measured. Data collection time ranged from 1.7 seconds to 17.0 seconds. Literature on similar but invasive techniques suggests that the technique developed here could be applied to a variety of industrial solutions including acids, caustics, petrochemicals, gases, foodstuffs, and beverages.« less
Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.
Kumar, S; Reed, M W; Gamper, H B; Gorn, V V; Lukhtanov, E A; Foti, M; West, J; Meyer, R B; Schweitzer, B I
1998-01-01
The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions. PMID:9443977
Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.
Kumar, S; Reed, M W; Gamper, H B; Gorn, V V; Lukhtanov, E A; Foti, M; West, J; Meyer, R B; Schweitzer, B I
1998-02-01
The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.
NASA Astrophysics Data System (ADS)
Retico, A.
2018-02-01
Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of pathological conditions.
Measuring the change in hydration of a polypeptide-based block polymer vesicle as a function of pH
NASA Astrophysics Data System (ADS)
Smith, Ian; Charlier, Alban; Shishlov, Alexander; Savin, Daniel
Amphiphilic AB2 star polymers undergo directed self-assembly into vesicles in aqueous solution. The overall structure of the assembly is responsive to a change in solution pH by incorporating an ionizable polypeptide as the A-block and two lipid-like tails for the B-blocks. Herein, we present some recent results in the solution characterization of polyglutamate-octadecanethiol2 (PE-DDT2) star polymers using static and dynamic light scattering, as well as transmission electron microscopy. An increase in pH will induce a transition in secondary structure of the PE block from an α-helix to an extended coil, thereby perturbing the morphological structure and resulting in an expansion of the vesicle. The magnitude of this response is much larger than what is expected based on the conformational transition of the peptide. The mechanism of this process can be probed by measuring the change in hydration at the surface of the hydrophobic bilayer. Towards this end, we utilize 2,4,6-trichloro-1,3,5-triazine (TCT) as a modular linker to install spin labels into the assembly as a mechanism to directly interrogate local hydrophobicity using electron paramagnetic resonance (EPR). NSF 1539347.
Influence of Aromatic Molecules on the Structure and Spectroscopy of Water Clusters
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Sibert, Edwin; Walsh, Patrick S.; Zwier, Timothy S.
2016-06-01
Isomer-specific resonant ion-dip infrared spectra are presented for benzene-(water)_n, 1-2-diphenoxyethane-(water)_n, and tricyclophane-(water)_n clusters. The IR spectra are modeled with a local mode Hamiltonian that was originally formulated for the analysis of benzene-(water)_n clusters with up to seven waters. The model accounts for stretch-bend Fermi coupling, which can complicate the IR spectra in the 3150-3300 cm-1 region. When the water clusters interact with each of the solutes, the hydrogen bond lengths between the water molecules change in a characteristic way, reflecting the strength of the solute-water interaction. These structural effects are also reflected spectroscopically in the shifts of the local mode OH stretch frequencies. When diphenoxyethane is the solute, the water clusters distort more significantly than when bound to benzene. Tricyclophane's structure provides an aromatic-rich binding pocket for the water clusters. The local mode model is used to extract Hamiltonians for individual water molecules. These monomer Hamiltonians divide into groups based on their local H-bonding architecture, allowing for further classification of the wide variety of water environments encountered in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi
2017-03-19
Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directlymore » involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.« less
Optical microresonator for application to an opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Wu, Yu-Mei; Vivien, Laurent; Cassan, Eric; Luong, Vu Hai Nam; Nguyen, Lam Duy; Journet, Bernard
2010-02-01
Optoelectronic oscillators are classically based on a feedback fiber loop acting as a delay line for high spectral purity. One of the problems due to long fiber loops is the size and the requirement of temperature control. Going toward integrated solutions requires the introduction of optical resonators with a very high quality factor. A structure based on silicon on insulator material has been designed for application to an oscillator working at 8 GHz. The micro-resonator has a stadium shape with a ridge of 30 nm height, 1 μm width, a millimetric radius and a gap of some microns in agreement with the required free spectral range. A quality factor of 500000 can be achieved leading to an equivalent fiber loop of 2 km.
A simple anaesthetic and monitoring system for magnetic resonance imaging.
Rejger, V S; Cohn, B F; Vielvoye, G J; de Raadt, F B
1989-09-01
Clinical magnetic resonance imaging (MRI) is a digital tomographic technique which utilizes radio waves emitted by hydrogen protons in a powerful magnetic field to form an image of soft-tissue structures and abnormalities within the body. Unfortunately, because of the relatively long scanning time required and the narrow deep confines of the MRI tunnel and Faraday cage, some patients cannot be examined without the use of heavy sedation or general anaesthesia. Due to poor access to the patient and the strong magnetic field, several problems arise in monitoring and administering anaesthesia during this procedure. In this presentation these problems and their solutions, as resolved by our institution, are discussed. Of particular interest is the anaesthesia circuit specifically adapted for use during MRI scanning.
NASA Astrophysics Data System (ADS)
Alghamdi, N. A.; Hankiewicz, J. H.; Anderson, N. R.; Stupic, K. F.; Camley, R. E.; Przybylski, M.; Żukrowski, J.; Celinski, Z.
2018-05-01
We investigate the use of Cu1 -xZnxFe2O4 ferrites (0.60
Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance
Dongsheng, Liu; Xu, Rong; Cowburn, David
2009-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474
NASA Astrophysics Data System (ADS)
Chrabåszczewska, Magdalena; Maszota-Zieleniak, Martyna; Pietralik, Zuzanna; Taube, Michał; Rodziewicz-Motowidło, Sylwia; Szymańska, Aneta; Szutkowski, Kosma; Clemens, Daniel; Grubb, Anders; Kozak, Maciej
2018-05-01
Human cystatin C (HCC) is a cysteine protease inhibitor that takes a series of oligomeric forms in solution (e.g., dimers, trimers, tetramers, decamers, dodecamers, and other higher oligomers). The best-known form of cystatin C is the dimer, which arises as a result of a domain swapping mechanism. The formation of the HCC oligomeric forms, which is most likely due to this domain swapping mechanism, is associated with the aggregation of HCC into amyloid fibrils and deposits. To investigate the structure of a specific HCC oligomer, we developed a covalently stabilized trimer of HCC. An atomic model of this HCC trimer was proposed on the basis of molecular docking and molecular dynamics simulations. The most stable model of the HCC trimer obtained from the molecular dynamics simulations is characterized by a well-preserved secondary structure. The molecular size and structural parameters of the HCC trimer in solution were also confirmed by Small Angle Neutron Scattering and Nuclear Magnetic Resonance Diffusometry.
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography
Niso, Guiomar; Gorgolewski, Krzysztof J.; Bock, Elizabeth; Brooks, Teon L.; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N.; Jas, Mainak; Litvak, Vladimir; T. Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain
2018-01-01
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone. PMID:29917016
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.
Niso, Guiomar; Gorgolewski, Krzysztof J; Bock, Elizabeth; Brooks, Teon L; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N; Jas, Mainak; Litvak, Vladimir; T Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain
2018-06-19
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone.
Action-FRET of a Gaseous Protein
NASA Astrophysics Data System (ADS)
Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe
2017-01-01
Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.
Terahertz microfluidic sensing using a parallel-plate waveguide sensor.
Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M
2012-08-30
Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides, asymmetric split-ring resonators, and photonic band gap structures integrated into parallel-plate waveguides. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index.
Development of ultrasonic electrostatic microjets for distributed propulsion and microflight
NASA Astrophysics Data System (ADS)
Amirparviz, Babak
This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.
Yang, Fan; Hu, Wei; Xu, Huimin; Li, Congmin; Xia, Bin; Jin, Changwen
2007-02-09
[NiFe] hydrogenases are metalloenzymes involved in many biological processes concerning the metabolism of hydrogen. The maturation of the large subunit of these hydrogenases requires the cleavage of a peptide at the C terminus by an endopeptidase before the final formation of the [NiFe] metallocenter. HycI is an endopeptidase of the M52 family and responsible for the C-terminal cleavage of the large subunit of hydrogenase 3 in Escherichia coli. Although extensive studies were performed, the molecular mechanism of recognition and cleavage of hydrogenase 3 remains elusive. Herein, we report the solution structure of E. coli HycI determined by high resolution nuclear magnetic resonance spectroscopy. This is the first solution structure of the apo form of endopeptidase of the M52 family reported thus far. The overall structure is similar to the crystal structure of holo-HybD in the same family. However, significant diversity was observed between the two structures. Especially, HycI shows an open conformation at the putative nickel-binding site, whereas HybD adopts a closed conformation. In addition, we performed backbone dynamic studies to probe the motional properties of the apo form of HycI. Furthermore, the metal ion titration experiments provide insightful information on the substrate recognition and cleavage processes. Taken together, our current structural, biochemical, and dynamic studies extend the knowledge of the M52 family proteins and provide novel insights into the biological function of HycI.
Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I
1998-12-11
The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs.
Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit
2017-09-17
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.
1,2-Hydroxypyridonates as Contrast Agents for Magnetic ResonanceImaging: TREN-1,2-HOPO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jocher, Christoph J.; Moore, Evan G.; Xu, Jide
2007-05-08
1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for Magnetic Resonance Imaging (MRI). X-ray diffraction of single crystals established that the solid state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence allow direct measurement of the number if water molecules in the metal complex. Fluorescence measurements of the Eu(III) complex corroborate that in solution two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescencemore » measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K{sub A} = 82.7 {+-} 6.5 M{sup -1}). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2); pZn = 15.2 (2), pCa = 8.8 (3)].« less
The EIT- and N- joint resonance lineshape asymmetry
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hancox, Cindy; Hohensee, Michael; Phillips, David; Walsworth, Ron
2008-03-01
The solution of a quantum optics model for the joint EIT- and N- resonance explains the experimentally observed two-photon lineshape asymmetry as arising from interference and AC stark effects. This solution is evaluated for various light field intensities, detunings and couplings associated with experiments performed on the D1 and D2 transition of 87Rb. Because of its contribution to clock instability, lineshape asymmetry remains perhaps the main impediment to improving all-optical time standards based on the joint resonance.
The influence of thermal and conductive temperatures in a nanoscale resonator
NASA Astrophysics Data System (ADS)
Hobiny, Aatef; Abbas, Ibrahim A.
2018-06-01
In this work, the thermoelastic interaction in a nano-scale resonator based on two-temperature Green-Naghdi model is established. The nanoscale resonator ends were simply supported. In the Laplace's domain, the analytical solution of conductivity temperature and thermodynamic temperature, the displacement and the stress components are obtained. The eigenvalue approach resorted to for solutions. In the vector-matrix differential equations form, the essential equations were written. The numerical results for all variables are presented and are illustrated graphically.
NASA Technical Reports Server (NTRS)
Yoder, C. F.
1979-01-01
Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.
Explosive magnetorotational instability in Keplerian disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtemler, Yu., E-mail: shtemler@bgu.ac.il; Liverts, E., E-mail: eliverts@bgu.ac.il; Mond, M., E-mail: mond@bgu.ac.il
Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén–Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the threemore » amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.« less
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
NASA Astrophysics Data System (ADS)
Deng, Xuchu; Hu, Mary; Wei, Xiaoliang; Wang, Wei; Mueller, Karl T.; Chen, Zhong; Hu, Jian Zhi
2016-03-01
Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and for understanding the detailed solvation structures. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. At dilute solute concentrations, most Fc1N112+ and TFSI- are fully disassociated with their own solvation shells formed by solvent molecules. At saturated concentration, Fc1N112+-TFSI- contact ion pairs are formed and the solvent molecules are preferentially interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI.
NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi
Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation.more » To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.« less
Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, XC; Gao, YZ; Chen, J
We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 mu M in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures ofmore » gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.« less
Reynolds stress closure in jet flows using wave models
NASA Technical Reports Server (NTRS)
Morris, Philip J.
1990-01-01
A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.
Cylindrical heat conduction and structural acoustic models for enclosed fiber array thermophones.
Dzikowicz, Benjamin R; Tressler, James F; Baldwin, Jeffrey W
2017-11-01
Calculation of the heat loss for thermophone heating elements is a function of their geometry and the thermodynamics of their surroundings. Steady-state behavior is difficult to establish or evaluate as heat is only flowing in one direction in the device. However, for a heating element made from an array of carbon fibers in a planar enclosure, several assumptions can be made, leading to simple solutions of the heat equation. These solutions can be used to more carefully determine the efficiency of thermophones of this geometry. Acoustic response is predicted with the application of a Helmholtz resonator and thin plate structural acoustics models. A laboratory thermophone utilizing a sparse horizontal array of fine (6.7 μm diameter) carbon fibers is designed and tested. Experimental results are compared with the model. The model is also used to examine the optimal array density for maximal efficiency.
NASA Astrophysics Data System (ADS)
Jiang, Shouzhen; Li, Zhe; Zhang, Chao; Gao, Saisai; Li, Zhen; Qiu, Hengwei; Li, Chonghui; Yang, Cheng; Liu, Mei; Liu, Yanjun
2017-04-01
In this work, we have presented a novel local surface plasmon resonance (LSPR) sensor based on the U-bent plastic optical fibre (U-POF). Firstly, a layer of discontinuous silver (Ag) thin film was deposited on the U-POF and then the Ag film was covered by a layer of cladding synthesized by polyvinyl alcohol (PVA), graphene and silver nanoparticles forming the PVA/G/AgNPs@Ag film. The normalized transmittance spectrum of the LSPR sensor have been collected in a range of the refractive index (RI) from 1.330 to 1.3657 in ethanol solution, and 700.3 nm/RIU sensitivity of the developed LSPR sensor has been demonstrated. By experiments, we demonstrated that the graphene could improve the sensitivity of the LSPR sensor and delay the oxidation process of the AgNPs effectively to keep the stability of the LSPR sensor. The LSPR sensor also exhibited good sensitivity and linearity in the detection of glucose solutions. This work shows that the developed LSPR sensor may have promising applications in biosensing.
Field enhancement in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Piltan, Shiva; Sievenpiper, Dan
2018-05-01
Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.
Solution NMR views of dynamical ordering of biomacromolecules.
Ikeya, Teppei; Ban, David; Lee, Donghan; Ito, Yutaka; Kato, Koichi; Griesinger, Christian
2018-02-01
To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghanbari, Behzad; Inc, Mustafa
2018-04-01
The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Seth, E-mail: seth.olsen@uq.edu.au
2015-01-28
This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant tomore » any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler’s hydrol blue. The diabatic CASVB representation is shown to vary weakly for “temperatures” corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.« less
Olsen, Seth
2015-01-28
This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler's hydrol blue. The diabatic CASVB representation is shown to vary weakly for "temperatures" corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.
NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations
NASA Astrophysics Data System (ADS)
Holly, R.; Damyanovich, A.; Peemoeller, H.
2006-05-01
A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
Glutamate receptors as seen by light: Spectroscopic studies of structure-function relationships
Mankiewicz, Kimberly A.; Jayaraman, Vasanthi
2010-01-01
Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand binding domain and subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction of the insight gained from X-ray crystallography and nuclear magnetic resonance (NMR) investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer (FRET) to study the behavior of the isolated ligand binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation. PMID:17934637
Gurriarán-Rodríguez, Uxía; Mosteiro, Carlos S.; Álvarez-Pérez, Juan C.; Otero-Alén, María; Camiña, Jesús P.; Gallego, Rosalía; García-Caballero, Tomás; Martín-Pastor, Manuel; Casanueva, Felipe F.; Jiménez-Barbero, Jesús; Pazos, Yolanda
2012-01-01
The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6–23)-obestatin (3), (11–23)-obestatin (4), and (16–23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels. PMID:23056203
Alén, Begoña O; Nieto, Lidia; Gurriarán-Rodríguez, Uxía; Mosteiro, Carlos S; Álvarez-Pérez, Juan C; Otero-Alén, María; Camiña, Jesús P; Gallego, Rosalía; García-Caballero, Tomás; Martín-Pastor, Manuel; Casanueva, Felipe F; Jiménez-Barbero, Jesús; Pazos, Yolanda
2012-01-01
The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6-23)-obestatin (3), (11-23)-obestatin (4), and (16-23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels.
Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.
Sanders, C R; Oxenoid, K
2000-11-23
Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.
Junk, Matthias J.N.; Spiess, Hans W.; Hinderberger, Dariush
2011-01-01
The structure of human serum albumin loaded with a metal porphyrin and fatty acids in solution is characterized by orientation-selective double electron-electron resonance (DEER) spectroscopy. Human serum albumin, spin-labeled fatty acids, and Cu(II) protoporphyrin IX—a hemin analog—form a fully self-assembled system that allows obtaining distances and mutual orientations between the paramagnetic guest molecules. We report a simplified analysis for the orientation-selective DEER data which can be applied when the orientation selection of one spin in the spin pair dominates the orientation selection of the other spin. The dipolar spectra reveal a dominant distance of 3.85 nm and a dominant orientation of the spin-spin vectors between Cu(II) protoporphyrin IX and 16-doxyl stearic acid, the electron paramagnetic resonance reporter group of the latter being located near the entry points to the fatty acid binding sites. This observation is in contrast to crystallographic data that suggest an asymmetric distribution of the entry points in the protein and hence the occurrence of various distances. In conjunction with the findings of a recent DEER study, the obtained data are indicative of a symmetric distribution of the binding site entries on the protein's surface. The overall anisotropic shape of the protein is reflected by one spin-spin vector orientation dominating the DEER data. PMID:21539799
2000-06-23
conductivity ( NDC ) effects in double barrier resonant tunneling structures (DBRTS) prove the extremely fast frequency response of charge transport (less...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013131 TITLE: Multiple-Barrier Resonant Tunneling Structures for...Institute Multiple-barrier resonant tunneling structures for application in a microwave generator stabilized by microstrip resonator S. V. Evstigneev, A. L
Parametrically driven scalar field in an expanding background
NASA Astrophysics Data System (ADS)
Yanez-Pagans, Sergio; Urzagasti, Deterlino; Oporto, Zui
2017-10-01
We study the existence and dynamic behavior of localized and extended structures in a massive scalar inflaton field ϕ in 1 +1 dimensions in the framework of an expanding universe with constant Hubble parameter. We introduce a parametric forcing, produced by another quantum scalar field ψ , over the effective mass squared around the minimum of the inflaton potential. For this purpose, we study the system in the context of the cubic quintic complex Ginzburg-Landau equation and find the associated amplitude equation to the cosmological scalar field equation, which near the parametric resonance allows us to find the field amplitude. We find homogeneous null solutions, flat-top expanding solitons, and dark soliton patterns. No persistent non-null solutions are found in the absence of parametric forcing, and divergent solutions are obtained when the forcing amplitude is greater than 4 /3 .
Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2015-03-01
Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.
Three-dimensional structure of interleukin 8 in solution.
Clore, G M; Appella, E; Yamada, M; Matsushima, K; Gronenborn, A M
1990-02-20
The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising phi, psi, and chi 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 +/- 0.08 A for the backbone atoms and 0.90 +/- 0.08 A for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by about 14 A, lie on top of a six-stranded antiparallel beta-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the alpha 1/alpha 2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two alpha-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices.
Shao, W; Fernandez, E; Sachpatzidis, A; Wilken, J; Thompson, D A; Schweitzer, B I; Lolis, E
2001-05-01
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.
[H2O ortho-para spin conversion in aqueous solutions as a quantum factor of Konovalov paradox].
Pershin, S M
2014-01-01
Recently academician Konovalov and co-workers observed an increase in electroconductivity and biological activity simultaneously with diffusion slowing (or nanoobject diameter increasing) and extremes of other parameters (ζ-potential, surface tension, pH, optical activity) in low concentration aqueous solutions. This phenomenon completely disappeared when samples were shielded against external electromagnetic fields by a Faraday cage. A conventional theory of water and water solutions couldn't explain "Konovalov paradox" observed in numerous experiments (representative sampling about 60 samples and 7 parameters). The new approach was suggested to describe the physics of water and explain "Konovalov paradox". The proposed concept takes into account the quantum differences of ortho-para spin isomers of H2O in bulk water (rotational spin-selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats and spin conversion induced in the presence of a resonant electromagnetic radiation). A size-dependent self-assembly of amorphous complexes of H2O molecules more than 275 leading to the ice Ih structure observed in the previous experiments supports this concept.
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant.
Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan
2014-01-01
With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB 2 monomer. The AB 2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), which indicated that HBP was successfully modified by oleic acid. Furthermore, the properties of surface tension and critical micelle concentration of HLPS solution showed that HLPS can significantly reduce the surface tension of water. The morphology of the HLPS solution was characterised by dynamic light scattering, which revealed that HLPS exhibited a nonmonotonic appearance in particle size at different scattering angles owing to the different replaced linear portions. The relationships of the surface pressure to monolayer area and time were measured using the Langmuir-Blodgett instrument, which showed that the surface tension of monolayer molecules increased with the increasing of hydrophobic groups. In addition, the interface conditions of different replaced HLPS solutions were simulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, N.G.
A method of noninvasively measuring the density and concentration of NaCl solutions contained within stainless steel pipes has been developed. The pipe-solution system was energized using an ultrasonic transducer resulting in resonances at specific frequencies. The periodicity of the resonant peaks was determined by analyzing ultrasonic voltage response data using a fast Fourier transform to yield the power spectrum. In preliminary studies the periodicity was measured directly from the voltage response spectrum. The resonant periodicities were correlated against known NaCl density and concentration standards. The concentration of unknown NaCl solutions was measured in situ with an accuracy of {plus minus}O.15more » M over a range of 0.4 to 3.4 M. The precision of each of the measurements range from 1 part in 10,000 to 1 part in 1000. The error resulting from temperature was at most 0.0287 M per degree Celsius or 0.59% over the range measured. Data collection time ranged from 1.7 seconds to 17.0 seconds. Literature on similar but invasive techniques suggests that the technique developed here could be applied to a variety of industrial solutions including acids, caustics, petrochemicals, gases, foodstuffs, and beverages.« less
Lin, C H; Patel, D J
1997-11-01
Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.
Effect of the size of silver nanoparticles on SERS signal enhancement
NASA Astrophysics Data System (ADS)
He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.
2017-08-01
The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.
A review of whole cell wall NMR by the direct-dissolution of biomass
Foston, Marcus B.; Samuel, Reichel; He, Jian; ...
2016-01-19
To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less
A review of whole cell wall NMR by the direct-dissolution of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foston, Marcus B.; Samuel, Reichel; He, Jian
To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less
NASA Astrophysics Data System (ADS)
Venkataraman, Ajey; Shade, Paul A.; Adebisi, R.; Sathish, S.; Pilchak, Adam L.; Viswanathan, G. Babu; Brandes, Matt C.; Mills, Michael J.; Sangid, Michael D.
2017-05-01
Ti-7Al is a good model material for mimicking the α phase response of near- α and α+ β phases of many widely used titanium-based engineering alloys, including Ti-6Al-4V. In this study, three model structures of Ti-7Al are investigated using atomistic simulations by varying the Ti and Al atom positions within the crystalline lattice. These atomic arrangements are based on transmission electron microscopy observations of short-range order. The elastic constants of the three model structures considered are calculated using molecular dynamics simulations. Resonant ultrasound spectroscopy experiments are conducted to obtain the elastic constants at room temperature and a good agreement is found between the simulation and experimental results, providing confidence that the model structures are reasonable. Additionally, energy barriers for crystalline slip are established for these structures by means of calculating the γ-surfaces for different slip systems. Finally, the positions of Al atoms in regards to solid solution strengthening are studied using density functional theory simulations, which demonstrate a higher energy barrier for slip when the Al solute atom is closer to (or at) the fault plane. These results provide quantitative insights into the deformation mechanisms of this alloy.
Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron
2018-01-16
Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.
Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris
2012-11-19
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.
NASA Astrophysics Data System (ADS)
Duch, M.; Grzadkowski, B.
2017-09-01
Motivated by the possibility of enhancing dark matter (DM) self-scattering cross-section σ self , we have revisited the issue of DM annihilation through a Breit-Wigner resonance. In this case thermally averaged annihilation cross-section has strong temper-ature dependence, whereas elastic scattering of DM on the thermal bath particles is sup-pressed. This leads to the early kinetic decoupling of DM and an interesting interplay in the evolution of DM density and temperature that can be described by a set of coupled Boltzmann equations. The standard Breit-Wigner parametrization of a resonance prop-agator is also corrected by including momentum dependence of the resonance width. It has been shown that this effects may change predictions of DM relic density by more than order of magnitude in some regions of the parameter space. Model independent discussion is illustrated within a theory of Abelian vector dark matter. The model assumes extra U(1) symmetry group factor and an additional complex Higgs field needed to generate a mass for the dark vector boson, which provides an extra neutral Higgs boson h 2. We discuss the resonant amplification of σ self . It turns out that if DM abundance is properly reproduced, the Fermi-LAT data favor heavy DM and constraint the enhancement of σ self to the range, which cannot provide a solution to the small-scale structure problems.
Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun
2018-02-10
Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.
Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun
2018-01-01
Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393
pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins.
Varadi, Mihaly; Kosol, Simone; Lebrun, Pierre; Valentini, Erica; Blackledge, Martin; Dunker, A Keith; Felli, Isabella C; Forman-Kay, Julie D; Kriwacki, Richard W; Pierattelli, Roberta; Sussman, Joel; Svergun, Dmitri I; Uversky, Vladimir N; Vendruscolo, Michele; Wishart, David; Wright, Peter E; Tompa, Peter
2014-01-01
The goal of pE-DB (http://pedb.vib.be) is to serve as an openly accessible database for the deposition of structural ensembles of intrinsically disordered proteins (IDPs) and of denatured proteins based on nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and other data measured in solution. Owing to the inherent flexibility of IDPs, solution techniques are particularly appropriate for characterizing their biophysical properties, and structural ensembles in agreement with these data provide a convenient tool for describing the underlying conformational sampling. Database entries consist of (i) primary experimental data with descriptions of the acquisition methods and algorithms used for the ensemble calculations, and (ii) the structural ensembles consistent with these data, provided as a set of models in a Protein Data Bank format. PE-DB is open for submissions from the community, and is intended as a forum for disseminating the structural ensembles and the methodologies used to generate them. While the need to represent the IDP structures is clear, methods for determining and evaluating the structural ensembles are still evolving. The availability of the pE-DB database is expected to promote the development of new modeling methods and leads to a better understanding of how function arises from disordered states.
Models for short-wave instability in inviscid shear flows
NASA Astrophysics Data System (ADS)
Grimshaw, Roger
1999-11-01
The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.
The inverse resonance problem for CMV operators
NASA Astrophysics Data System (ADS)
Weikard, Rudi; Zinchenko, Maxim
2010-05-01
We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.
Biological Small Angle Scattering: Techniques, Strategies and Tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, Barnali; Muñoz, Inés G.; Urban, Volker S.
This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins,more » and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications.« less
Two-state model based on the block-localized wave function method
NASA Astrophysics Data System (ADS)
Mo, Yirong
2007-06-01
The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).
Pereverzev, A Y; Boyarkin, O V
2017-02-01
Linking the intrinsic tertiary structures of biomolecules to their native geometries is a central prerequisite for making gas-phase studies directly relevant to biology. The isolation of molecules in the gas phase eliminates hydrophilic interactions with solvents, to some extent mimicking a hydrophobic environment. Intrinsic structures therefore may resemble native ones for peptides that in vivo reside in a hydrophobic environment (e.g., binding pockets of receptors). In this study, we investigate doubly protonated neurokinin A (NKA) using IR-UV double resonance cold ion spectroscopy and find only five conformers of this decapeptide in the gas phase. In contrast, NMR data show that in aqueous solutions, NKA exhibits high conformational heterogeneity, which reduces to a few well-defined structures in hydrophobic micelles. Do the gas-phase structures of NKA resemble these native structures? The IR spectra reported here allow the validation of future structural calculations that may answer this question.
Self-organization in neural networks - Applications in structural optimization
NASA Technical Reports Server (NTRS)
Hajela, Prabhat; Fu, B.; Berke, Laszlo
1993-01-01
The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.
NASA Astrophysics Data System (ADS)
Poggi, Valerio; Ermert, Laura; Burjanek, Jan; Michel, Clotaire; Fäh, Donat
2015-01-01
Frequency domain decomposition (FDD) is a well-established spectral technique used in civil engineering to analyse and monitor the modal response of buildings and structures. The method is based on singular value decomposition of the cross-power spectral density matrix from simultaneous array recordings of ambient vibrations. This method is advantageous to retrieve not only the resonance frequencies of the investigated structure, but also the corresponding modal shapes without the need for an absolute reference. This is an important piece of information, which can be used to validate the consistency of numerical models and analytical solutions. We apply this approach using advanced signal processing to evaluate the resonance characteristics of 2-D Alpine sedimentary valleys. In this study, we present the results obtained at Martigny, in the Rhône valley (Switzerland). For the analysis, we use 2 hr of ambient vibration recordings from a linear seismic array deployed perpendicularly to the valley axis. Only the horizontal-axial direction (SH) of the ground motion is considered. Using the FDD method, six separate resonant frequencies are retrieved together with their corresponding modal shapes. We compare the mode shapes with results from classical standard spectral ratios and numerical simulations of ambient vibration recordings.
Lee, Cheng-Kuang; Tseng, Hung-Yu; Lee, Chia-Yun; Wu, Shou-Yen; Chi, Ting-Ta; Yang, Kai-Min; Chou, Han-Yi Elizabeth; Tsai, Meng-Tsan; Wang, Jyh-Yang; Kiang, Yean-Woei; Chiang, Chun-Pin; Yang, C. C.
2010-01-01
The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time. PMID:21258530
Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R
2011-05-01
Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Ji-Hye; Kim, Heeyoun; Park, Jung Eun
Highlights: Black-Right-Pointing-Pointer We have determined solution structures of vEP C-terminal regulatory domain. Black-Right-Pointing-Pointer vEP C-ter100 has a compact {beta}-barrel structure with eight anti-parallel {beta}-strands. Black-Right-Pointing-Pointer Solution structure of vEP C-ter100 shares its molecular topology with that of the collagen-binding domain of collagenase. Black-Right-Pointing-Pointer Residues in the {beta}3 region of vEP C-ter100 might be important in putative ligand/receptor binding. Black-Right-Pointing-Pointer vEP C-ter100 interacts strongly with iron ion. -- Abstract: An extracellular metalloprotease (vEP) secreted by Vibrio vulnificus ATCC29307 is a 45-kDa proteolytic enzyme that has prothrombin activation and fibrinolytic activities during bacterial infection. The action of vEP could result in clottingmore » that could serve to protect the bacteria from the host defense machinery. Very recently, we showed that the C-terminal propeptide (C-ter100), which is unique to vEP, is involved in regulation of vEP activity. To understand the structural basis of this function of vEP C-ter100, we have determined the solution structure and backbone dynamics using multidimensional nuclear magnetic resonance spectroscopy. The solution structure shows that vEP C-ter100 is composed of eight anti-parallel {beta}-strands with a unique fold that has a compact {beta}-barrel formation which stabilized by hydrophobic and hydrogen bonding networks. Protein dynamics shows that the overall structure, including loops, is very rigid and stabilized. By structural database analysis, we found that vEP C-ter100 shares its topology with that of the collagen-binding domain of collagenase, despite low sequence homology between the two domains. Fluorescence assay reveals that vEP C-ter100 interacts strongly with iron (Fe{sup 3+}). These findings suggest that vEP protease might recruit substrate molecules, such as collagen, by binding at C-ter100 and that vEP participates in iron uptake from iron-withholding proteins of the host cell during infection.« less
Tutorial for the structure elucidation of small molecules by means of the LSD software.
Nuzillard, Jean-Marc; Plainchont, Bertrand
2018-06-01
Automatic structure elucidation of small molecules by means of the "logic for structure elucidation" (LSD) software is introduced in the context of the automatic exploitation of chemical shift correlation data and with minimal input from chemical shift values. The first step in solving a structural problem by means of LSD is the extraction of pertinent data from the 1D and 2D spectra. This operation requires the labeling of the resonances and of their correlations; its reliability highly depends on the quality of the spectra. The combination of COSY, HSQC, and HMBC spectra results in proximity relationships between nonhydrogen atoms that are associated in order to build the possible solutions of a problem. A simple molecule, camphor, serves as an example for the writing of an LSD input file and to show how solution structures are obtained. An input file for LSD must contain a nonambiguous description of each atom, or atom status, which includes the chemical element symbol, the hybridization state, the number of bound hydrogen atoms and the formal electric charge. In case of atom status ambiguity, the pyLSD program performs clarification by systematically generating the status of the atoms. PyLSD also proposes the use of the nmrshiftdb algorithm in order to rank the solutions of a problem according to the quality of the fit between the experimental carbon-13 chemical shifts, and the ones predicted from the proposed structures. To conclude, some hints toward future uses and developments of computer-assisted structure elucidation by LSD are proposed. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shin, Yongwoo
2017-04-10
Fundamental molecular level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applica-tions. In particular, exhaustive knowledge of solvation structure, stability and transport properties is critical for developing stable electrolytes for fast charging and high energy density next-generation energy storage systems. Here we report the correlation between solubility, solvation structure and translational dynamics of a lithium salt (Li-TFSI) and polysulfides species using well-benchmarked classical molecular dynamics simulations combined with nuclear magnetic resonance (NMR). It is observed that the polysulfide chain length has a significant effect on the ion-ion and ion-solvent interaction asmore » well as on the diffusion coefficient of the ionic species in solution. In particular, extensive cluster formation is observed in lower order poly-sulfides (Sx2-; x≤4), whereas the longer polysulfides (Sx2-; x>4) show high solubility and slow dynamics in the solu-tion. It is observed that optimal solvent/salt ratio is essen-tial to control the solubility and conductivity as the addi-tion of Li salt increases the solubility but decreases the mo-bility of the ionic species. This work provides a coupled theoretical and experimental study of bulk solvation struc-ture and transport properties of multi-component electro-lyte systems, yielding design metrics for developing optimal electrolytes with improved stability and solubility.« less
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua
2007-04-01
We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.
Characterizing the Shape of Anatomical Structures With Poisson’s Equation
Haidar, Haissam; Levitt, James J.; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.
2009-01-01
Poisson’s equation, a fundamental partial differential equation in classical physics, has a number of properties that are interesting for shape analysis. In particular, the equipotential sets of the solution graph become smoother as the potential increases. We use the displacement map, the length of the streamlines formed by the gradient field of the solution, to measure the “complexity” (or smoothness) of the equipotential sets, and study its behavior as the potential increases. We believe that this function complexity = f (potential), which we call the shape characteristic, is a very natural way to express shape. Robust algorithms are presented to compute the solution to Poisson’s equation, the displacement map, and the shape characteristic. We first illustrate our technique on two-dimensional synthetic examples and natural silhouettes. We then perform two shape analysis studies on three-dimensional neuroanatomical data extracted from magnetic resonance (MR) images of the brain. In the first study, we investigate changes in the caudate nucleus in Schizotypal Personality Disorder (SPD) and confirm previously published results on this structure [1]. In the second study, we present a data set of caudate nuclei of premature infants with asymmetric white matter injury. Our method shows structural shape differences that volumetric measurements were unable to detect. PMID:17024829
Magnetic Resonance Imaging (MRI) (For Parents)
... problems, your child may be given a contrast solution through an IV. The solution, which is painless as it goes into the ... to any medications or food before the contrast solution is given. The contrast solution used in MRI ...
On the synthesis of resonance lines in dynamical models of structured hot-star winds
NASA Technical Reports Server (NTRS)
Puls, J.; Owocki, S. P.; Fullerton, A. W.
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.
The multiphoton resonant excitation of three-level atoms by the two laser fields of different frequencies is investigated. The time evolution of the system and analytical solutions expressing Rabi oscillations of the probability amplitudes at the two-color multiphoton resonant excitation are found using a nonperturbative resonant approach. The specific examples for experimental implementation of two-color multiphoton resonant excitation of hydrogen atoms are considered.
Non-Invasive Methods to Characterize Soil-Plant Interactions at Different Scales
NASA Astrophysics Data System (ADS)
Javaux, M.; Kemna, A.; Muench, M.; Oberdoerster, C.; Pohlmeier, A.; Vanderborght, J.; Vereecken, H.
2006-05-01
Root water uptake is a dynamic and non-linear process, which interacts with the soil natural variability and boundary conditions to generate heterogeneous spatial distributions of soil water. Soil-root fluxes are spatially variable due to heterogeneous gradients and hydraulic connections between soil and roots. While 1-D effective representation of the root water uptake has been successfully applied to predict transpiration and average water content profiles, finer spatial characterization of the water distribution may be needed when dealing with solute transport. Indeed, root water uptake affects the water velocity field, which has an effect on solute velocity and dispersion. Although this variability originates from small-scale processes, these may still play an important role at larger scales. Therefore, in addition to investigate the variability of the soil hydraulic properties, experimental and numerical tools for characterizing root water uptake (and its effects on soil water distribution) from the pore to the field scales are needed to predict in a proper way the solute transport. Obviously, non-invasive and modeling techniques which are helpful to achieve this objective will evolve with the scale of interest. At the pore scale, soil structure and root-soil interface phenomena have to be investigated to understand the interactions between soil and roots. Magnetic resonance imaging may help to monitor water gradients and water content changes around roots while spectral induced polarization techniques may be used to characterize the structure of the pore space. At the column scale, complete root architecture of small plants and water content depletion around roots can be imaged by magnetic resonance. At that scale, models should explicitly take into account the three-dimensional gradient dependency of the root water uptake, to be able to predict solute transport. At larger scales however, simplified models, which implicitly take into account the heterogeneous root water uptake along roots, should be preferred given the complexity of the system. At such scales, electrical resistance tomography or ground-penetrating radar can be used to map the water content changes and derive effective parameters for predicting solute transport.
Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla
2016-03-15
The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structural architecture of prothrombin in solution revealed by single molecule spectroscopy
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; ...
2016-07-19
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr 93 in kringle-1 onto Trp 547 in the protease domain that obliterates access tomore » the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.« less
Recent advances in the structure elucidation of small organic molecules by the LSD software.
Plainchont, Bertrand; de Paulo Emerenciano, Vicente; Nuzillard, Jean-Marc
2013-08-01
The LSD software proposes the structures of small organic molecules that fit with structural constraints from 1D and 2D NMR spectroscopy. Its initial design introduced limits that needed to be eliminated to extend its scope and help its users choose the most likely structure among those proposed. The LSD software code has been improved, so that it recognizes a wider set of atom types to build molecules. More flexibility has been given in the interpretation of 2D NMR data, including the automatic detection of very long-range correlations. A program named pyLSD was written to deal with problems in which atom types are ambiguously defined. It also provides a (13)C NMR chemical shift-based solution ranking algorithm. PyLSD was able to propose the correct structure of hexacyclinol, a natural product whose structure determination has been highly controversal. The solution was ranked first within a list of ten structures that were produced by pyLSD from the literature NMR data. The structure of an aporphin natural product was determined by pyLSD, taking advantage of the possibility of handling electrically charged atoms. The structure generation of the insect antifeedant azadirachtin by LSD was reinvestigated by pyLSD, considering that three (13)C resonances did not lead to univocal hybridization states. Copyright © 2013 John Wiley & Sons, Ltd.
Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M
2017-04-15
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy.
Becker, Walter; Bhattiprolu, Krishna Chaitanya; Gubensäk, Nina; Zangger, Klaus
2018-04-17
Protein-ligand interactions are of fundamental importance in almost all processes in living organisms. The ligands comprise small molecules, drugs or biological macromolecules and their interaction strength varies over several orders of magnitude. Solution NMR spectroscopy offers a large repertoire of techniques to study such complexes. Here, we give an overview of the different NMR approaches available. The information they provide ranges from the simple information about the presence of binding or epitope mapping to the complete 3 D structure of the complex. NMR spectroscopy is particularly useful for the study of weak interactions and for the screening of binding ligands with atomic resolution. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian
2016-01-01
This report describes findings of an investigation of the role of capping molecules in the size growth in the aggregative growth of pre-formed small-sized gold nanoparticles capped with alkanethiolate monolayers toward monodispersed larger sizes. The size controllability depends on the thiolate chain length and concentration in the thermal solution. The size evolution in solution at different concentrations of alkanethiols is analyzed in relation to adsorption isotherms and cohesive energy. The size dependence on thiolate chain length is also analyzed by considering the cohesive energy of the capping molecules, revealing the importance of cohesive energy in the capping structure. Theoretical and experimental comparisons of the surface plasmonic resonance optical properties have also provided new insights into the mechanism, thus enabling the exploitation of size-dependent nanoscale properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Meng, Zi-Ming; Li, Zhi-Yuan
2018-03-01
We study the control of Fano resonances in a 2D photonic crystal nanobeam (PCN) side-coupled with a photonic crystal nanobeam cavity (PCNC) by choosing different cavity modes, the position of the photonic bandgap of PCNs and the displacement between PCNs and PCNCs. By increasing the refractive index of the holes and the surrounding medium, it is found that the air mode cavity with even mirror-reflection symmetry holds the highest sensitivity (538 nm/RIU RIU, refractive index unit) and maximal figure of merit (FOM = 516). Our results can be extended to a practical 3D configuration, where an air-suspended silicon PCN is side-coupled with a PCNC. Although the sensitivity is only 192 nm/RIU for our 3D structures, the maximal FOM is as large as 2095 due to the deep transmission valley. The sensitivity of our PCN-PCNC structures can be further improved by designing PCNCs with electric field concentrated in the air region as much as possible. Our PCN-PCNC structures do not require ultrahigh Q and can be fabricated on the silicon-on-insulator platform, which is compatible with CMOS processing. Therefore, our proposed PCN-PCNC structures provide feasible solutions for realizing label-free sensitive integrated refractive index sensors.
NASA Astrophysics Data System (ADS)
Hu, Wen-Pin; Chen, Shean-Jen; Yih, Jenq-Nan; Lin, G.-Y.; Chang, Guan L.
2004-06-01
The ability to recognize the conformational changes and structural variations of a protein when immobilized in a solid surface is of great importance in a variety of applications. Surface plasmon resonance (SPR) sensing is an appropriate technique for investigating interfacial phenomena, and enables the conformational changes of proteins to be monitored through the variation in the SPR angle shift. Meanwhile, the surface-enhanced Raman scattering (SERS) system can also assist in clarifying the changes in protein structure. The present study utilizes a 1 mM CrO3 phosphate buffer solution (PBS) to induce conformational changes of human serum albumin (HSA). Monitoring the corresponding SPR angle shifts and the SPR reflectivity spectrum enables the relationships between the conformational changes of the surface-immobilized protein and the thickness and dielectric constants of the protein layer to be estimated. The experimental SPR results indicate that the Cr6+ ions cause significant conformational change of the protein. It is established that the ions are not merely absorbed into the protein as a result of electrostatic forces, but that complex protein refolding events also take place. Furthermore, the data acquired from the SERS system yield valuable information regarding the changes which take place in the protein structure.
Tabor, Daniel P; Kusaka, Ryoji; Walsh, Patrick S; Sibert, Edwin L; Zwier, Timothy S
2015-05-21
The water hexamer and heptamer are the smallest sized water clusters that support three-dimensional hydrogen-bonded networks, with several competing structures that could be altered by interactions with a solute. Using infrared-ultraviolet double resonance spectroscopy, we record isomer-specific OH stretch infrared spectra of gas-phase benzene-(H2O)(6,7) clusters that demonstrate benzene's surprising role in reshaping (H2O)(6,7). The single observed isomer of benzene-(H2O)6 incorporates an inverted book structure rather than the cage or prism. The main conformer of benzene-(H2O)7 is an inserted-cubic structure in which benzene replaces one water molecule in the S4-symmetry cube of the water octamer, inserting itself into the water cluster by engaging as a π H-bond acceptor with one water and via C-H···O donor interactions with two others. The corresponding D(2d)-symmetry inserted-cube structure is not observed, consistent with the calculated energetic preference for the S4 over the D(2d) inserted cube. A reduced-dimension model that incorporates stretch-bend Fermi resonance accounts for the spectra in detail and sheds light on the hydrogen-bonding networks themselves and on the perturbations imposed on them by benzene.
NASA Astrophysics Data System (ADS)
Gerpe, Alejandra; Piro, Oscar E.; Cerecetto, Hugo; González, Mercedes
2007-12-01
A series of indazole N1-oxide derivatives has been spectroscopically studied in solution using 1H, 13C, and 15N NMR based on pulsed field gradient selected PFG 1H sbnd X (X = 13C and 15N) gHMQC and gHMBC experiments. Some indazoles were prepared using a new methodology to compare its spectral and structural data with the indazole N1-oxide parent compounds. The 13C resonances of the indazole N1-oxide carbon 3 and 7a demonstrate the N-oxide push-electron capability. The 15N resonances of the indazole N-oxide, nitrogen 1, are near to 30 ppm more shielded than the corresponding values in the indazole heterocycle (deoxygenated form). Moreover, the structures of one indazole and one indazole N-oxide were unambiguously confirmed by X-ray crystallography. The solid state structures were contrasted with the theoretical ones obtained in vacuo at different calculus level. The aromaticity of the derivatives was studied analyzing the H sbnd H coupling constants of indazole's aromatic hydrogens and measuring C sbnd C distances in the solid state. The fragmentation that takes place in EI/MS was gathered for all the indazole N-oxide derivatives and the general fragmentation pattern analyzed.
Multidataset Refinement Resonant Diffraction, and Magnetic Structures
Attfield, J. Paul
2004-01-01
The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599
Microspectroscopy with Terahertz bioMEMS
NASA Astrophysics Data System (ADS)
Akalin, Tahsin; Treizebré, Anthony
2006-04-01
Biological applications require more and more compact, sensitive and reliable microsystems. We will present solutions in order to realize a "microspectroscopy" up to Terahertz frequencies of various biological entities (living cell, neurons, proteins...). We investigate these entities in liquid phase. In a recent work, we have demonstrated a solution to excite efficiently a single wire transmission line [1]. The propagation mode is similar to a surface plasmon and known as a Goubau-mode [2]. The wire we used is extremely thin compared to other recent solutions at terahertz frequencies. There are three orders of magnitude in the size of the wire used by K. Wang and D.M. Mittleman. Typically the wire's width is 1μm compared to the 900μm diameter metal wire in [3]. Moreover our solution is in a planar configuration which is more suitable for microfluidic applications. We benefit from the high confinement of the electromagnetic field around this very thin gold wire to optimize the sensitivity of these Terahertz BioMEMS. Microfluidic channels are placed below the strip in a perpendicular direction. We will first present some properties of the Planar Goubau-Line (PGL) [4] and the measurements results obtained with structures fabricated on glass and quartz substrates. In a last part resonant structures and Mach-Zehnder type interferometers will also be presented.
Magnetic Resonance Imaging (MRI): Brain (For Parents)
... problems, your child may be given a contrast solution through an IV. The solution is painless as it goes into the vein. ... to any medications or food before the contrast solution is given. The contrast solution used in MRI ...
Terahertz Microfluidic Sensing Using a Parallel-plate Waveguide Sensor
Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M.
2012-01-01
Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators 1,2. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides 3, asymmetric split-ring resonators 4, and photonic band gap structures integrated into parallel-plate waveguides 5. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide 6,7. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove 6,8. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index 9. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves 10. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index. PMID:22951593
Resonant oscillations in open axisymmetric tubes
NASA Astrophysics Data System (ADS)
Amundsen, D. E.; Mortell, M. P.; Seymour, B. R.
2017-12-01
We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to k=0. The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. k→ 0. Detailed analysis for both the tube and cone in the limit of small forcing (O(ɛ 3)) is carried out, where ɛ 3 is the Mach number of the forcing function and the resulting flow has Mach number O(ɛ ). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of O(ɛ ). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of O(ɛ 2) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.
Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs
NASA Astrophysics Data System (ADS)
Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric
2016-06-01
Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution spectra were assigned to solvent shared pairs. Yet, the striking resemblance with our spectral data raises questions about the type assigned, pointing out that CIPs could be more present in these electrolyte solutions than previously thought. The novelty of the gas phase approach to investigate neutral ion pairs, opens the door for various new spectroscopic studies, paving the way to greater knowledge regarding the properties of ion pairs in many scientific fields. 1. Gloaguen, E.; Mons, M.; Topics in Current Chemistry, 2015, Vol 364, 225-270 2. Rudolph, W.W.; Fischer, D.; Irmer, G.; Dalton Transactions 2014, 43, (8), 3174-3185
Proton NMR studies of functionalized nanoparticles in aqueous environments
NASA Astrophysics Data System (ADS)
Tataurova, Yulia Nikolaevna
Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results in high-resolution NMR spectra. This technique is selective for protons on the surface organic functional groups due to their motional averaging in solution. In this study, 1H solution NMR spectroscopy was used to investigate the interface of the organic functional groups in D2O. The pKa for these functional groups covalently bound to the surface of nanoparticles was determined using an NMR-pH titration method based on the variation in the proton chemical shift for the alkyl group protons closest to the amine group with pH. The adsorption of toxic contaminants (chromate and arsenate anions) on the surface of functionalized silicalite-1 and mesoporous silica nanoparticles has been studied by 1H solution NMR spectroscopy. With this method, the surface bound contaminants are detected. The analysis of the intensity and position of these peaks allows quantitative assessment of the relative amounts of functional groups with adsorbed metal ions. These results demonstrate the sensitivity of solution NMR spectroscopy to the electronic environment and structure of the surface functional groups on porous nanomaterials.
Resonance treatment using pin-based pointwise energy slowing-down method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr
A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less
A novel control algorithm for interaction between surface waves and a permeable floating structure
NASA Astrophysics Data System (ADS)
Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu
2016-04-01
An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.
Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement
NASA Astrophysics Data System (ADS)
Mihaylov, Deyan; Gair, Jonathan
2017-01-01
Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.
A numerical study of active structural acoustic control in a stiffened, double wall cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.
1994-01-01
It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.
Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A
1997-03-01
As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuqing; Cai, Shuhui; Yang, Yu
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less
Aboalroub, Adam A; Zhang, Ziming; Keramisanou, Dimitra; Gelis, Ioannis
2017-04-01
Arylalkylamine N-acetyltransferases (AANATs) catalyze the transfer of an acetyl group from the acetyl-group donor, acetyl-CoA, to an arylalkylamine acceptor. Although a single AANAT has been identified in mammals, insects utilize multiple AANATs in a diverse array of biological processes. AANATs belong to the GCN5-related acetyltransferase (GNAT) superfamily of enzymes, which despite their overall very low sequence homology, are characterized by a well conserved catalytic core domain. The structural properties of many GNATs have been extensively studied by X-ray crystallography that revealed common features during the catalytic cycle. Here we report the 1 H, 13 C and 15 N backbone NMR resonance assignment of the 24 kDa AANAT3 from Bombyx mori (bmAANAT3) as a first step towards understanding the role of protein dynamics in the catalytic properties of AANATs. Our preliminary solution NMR studies reveal that bmAANAT3 is well-folded in solution. The P-loop, which is responsible for cofactor binding, is flexible in the free-state, while a large region of the enzyme interconverts between two distinct conformations in the slow exchange regime.
Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.
Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O
2014-11-11
α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance
Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong
2013-01-01
We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
Himeno, Kohei; Rosengren, K Johan; Inoue, Tomoko; Perez, Rodney H; Colgrave, Michelle L; Lee, Han Siean; Chan, Lai Y; Henriques, Sónia Troeira; Fujita, Koji; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Nakayama, Jiro; Leelawatcharamas, Vichien; Jikuya, Hiroyuki; Craik, David J; Sonomoto, Kenji
2015-08-11
Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colmont, Marie; Delevoye, Laurent; Ketatni, El Mostafa
2006-07-15
Two solid solutions BiM{sub x} Mg{sub (2-x)}PO{sub 6} (with M {sup 2+}=Zn or Cd) have been studied through {sup 31}P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn {sub x} Mg{sub (2-x)}PO{sub 6} does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn{sup 2+} for Mg{sup 2+} substitution. On the other hand, the Cd{sup 2+} for Mg{sup 2+} substitution behaves differently. Indeed, upmore » to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/1Cd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd{sup 2+}/Mg{sup 2+} mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8 T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a {sup 2} effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable. - Graphical abstract: First (CdMg){sub 4} cationic sphere influence on the {sup 31}P NMR signal in Bi(Cd,Mg){sub 2}PO{sub 6}. Display Omitted.« less
Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...
2015-01-29
We study adsorption of Rb + to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb + distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights ofmore » 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb + between these two conditions. At pH 7, the lowest energy structure shows that Rb + adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb + coverage was -0.11 C/m 2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less
Acetate-Bridged Platinum(III) Complexes Derived from Cisplatin
Wilson, Justin J.
2012-01-01
Oxidation of the acetate-bridged half-lantern platinum(II) complex, cis-[PtII(NH3)2(µ-OAc)2PtII(NH3)2](NO3)2, [1](NO3)2, with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species, cis-[XPtIII(NH3)2(µ-OAc)2PtIII(NH3)2X](NO3)2, where X is Cl in [2](NO3)2, or Br in [3](NO3)2, respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈ 2.6 Å) Pt–Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt–X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of 1H, 13C, 14N, and 195Pt NMR spectroscopy was used to characterize [1]2+–[3]2+ in solution. All resonances shift downfield upon oxidation of [1]2+ to [2]2+ and [3]2+. For the platinum(III) complexes, the 14N and 195Pt resonances exhibit decreased linewidths by comparison to those of [1]2+. Density functional theory (DFT) calculations suggest that the decrease in 14N linewidth arises from a diminished electric field gradient (EFG) at the 14N nuclei in the higher valent compounds. The oxidation of [1](NO3)2 with the alternative oxidizing agent, bis(trifluoroacetoxy) iodobenzene, affords the novel tetranuclear complex, cis-[(O2CCF3)PtIII(NH3)2(µ-OAc)2PtIII(NH3)(µ-NH2)]2(NO3)4, [4](NO3)4, also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed. PMID:22946515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grøftehauge, Morten K., E-mail: m.k.groftehauge@durham.ac.uk; Hajizadeh, Nelly R.; Swann, Marcus J.
2015-01-01
The biophysical characterization of protein–ligand interactions in solution using techniques such as thermal shift assay, or on surfaces using, for example, dual polarization interferometry, plays an increasingly important role in complementing crystal structure determinations. Over the last decades, a wide range of biophysical techniques investigating protein–ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmonmore » resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.« less
NASA Astrophysics Data System (ADS)
Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho
2017-03-01
Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.
NASA Astrophysics Data System (ADS)
Khadem Sadigh, M.; Zakerhamidi, M. S.; Seyed Ahmadian, S. M.; Johari-Ahar, M.; Zare Haghighi, L.
2017-01-01
Molecular surrounding media as an important factor can effect on the operation of wide variety of drugs. For more study in this paper, spectral properties of Methotrexate and Folinic acid have been studied in various solvents. Our results show that the photo-physical of solute molecules depend strongly on solute-solvent interactions and active groups in their chemical structures. In order to investigate the contribution of specific and nonspecific interactions on the various properties of drug molecules, the linear solvation energy relationships concept is used. Moreover, charge distribution characteristics of used samples with various resonance structures in solvent environments were calculated by means of solvatochromic method. The high value of dipole moments in excited state show that local intramolecular charge transfer can occur by excitation. These results about molecular interactions can be extended to biological systems and can indicate completely the behaviors of Methotrexate and Folinic acid in polar solvents such as water in body system.
If It's Resonance, What is Resonating?
ERIC Educational Resources Information Center
Kerber, Robert C.
2006-01-01
The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…
NASA Astrophysics Data System (ADS)
Roehl, Jan Hendrik; Oberrath, Jens
2016-09-01
``Active plasma resonance spectroscopy'' (APRS) is a widely used diagnostic method to measure plasma parameter like electron density. Measurements with APRS probes in plasmas of a few Pa typically show a broadening of the spectrum due to kinetic effects. To analyze the broadening a general kinetic model in electrostatic approximation based on functional analytic methods has been presented [ 1 ] . One of the main results is, that the system response function Y(ω) is given in terms of the matrix elements of the resolvent of the dynamic operator evaluated for values on the imaginary axis. To determine the response function of a specific probe the resolvent has to be approximated by a huge matrix which is given by a banded block structure. Due to this structure a block based LU decomposition can be implemented. It leads to a solution of Y(ω) which is given only by products of matrices of the inner block size. This LU decomposition allows to analyze the influence of kinetic effects on the broadening and saves memory and calculation time. Gratitude is expressed to the internal funding of Leuphana University.
Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja
2014-10-29
Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).
Composite 3D-printed metastructures for low-frequency and broadband vibration absorption
NASA Astrophysics Data System (ADS)
Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara
2016-07-01
Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.
Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones.
Singh, Chandan; Rai, Ratan Kumar; Sinha, Neeraj
2013-01-01
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly becoming a popular technique to probe micro-structural details of biomaterial such as bone with pico-meter resolution. Due to high-resolution structural details probed by SSNMR methods, handling of bone samples and experimental protocol are very crucial aspects of study. We present here first report of the effect of various experimental protocols and handling methods of bone samples on measured SSNMR parameters. Various popular SSNMR experiments were performed on intact cortical bone sample collected from fresh animal, immediately after removal from animal systems, and results were compared with bone samples preserved in different conditions. We find that the best experimental conditions for SSNMR parameters of bones correspond to preservation at -20 °C and in 70% ethanol solution. Various other SSNMR parameters were compared corresponding to different experimental conditions. Our study has helped in finding best experimental protocol for SSNMR studies of bone. This study will be of further help in the application of SSNMR studies on large bone disease related animal model systems for statistically significant results. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu
2018-05-01
Highly stable silica-coated manganese ferrite nanoparticles were fabricated for application as magnetic resonance imagining (MRI) contrast agents. The manganese ferrite nanoparticles were synthesized using a hydrothermal technique and coated with silica. The particle size was investigated using transmission electron microscopy and was found to be 40-60 nm. The presence of the silica coating on the particle surface was confirmed by Fourier transform infrared spectroscopy. The crystalline structure was investigated by X-ray diffraction, and the particles were revealed to have an inverse spinel structure. Superparamagnetism was confirmed by the magnetic hysteresis curves obtained using a vibrating sample magnetometer. The efficiency of the MRI contrast agents was investigated by using aqueous solutions of the particles in a 4.7 T MRI scanner. The T1 and T2 relaxivities of the particles were 1.42 and 60.65 s-1 mM-1, respectively, in water. The ratio r2/r1 was 48.91, confirming that the silica-coated manganese ferrite nanoparticles were suitable high-efficacy T2 contrast agents.
Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V.; Hirsch, Soeren
2017-01-01
The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept. PMID:28946609
Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren
2017-09-23
The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.
Qiang, Tian; Wang, Cong; Kim, Nam-Young
2017-12-15
A concept for characterizing a radiofrequency (RF) patch biosensor combined with volume-fixed structures is presented for timely monitoring of an individual's glucose levels based on frequency variation. Two types of patch biosensors-separately integrated with a backside slot (0.53μL) and a front-side tank (0.70μL) structure-were developed to achieve precise and efficient detection while excluding the effects of interference due to the liquidity, shape, and thickness of the tested glucose sample. A glucose test analyte at different concentrations (50-600mg/dL) was dropped into the volume-fixed structures. It fully interacted with the RF patch electromagnetic field, effectively and sensitively changing the resonance frequency and magnitude of the reflection coefficient. Measurement results based on the resonance frequency showed high sensitivity up to 1.13MHz and 1.97MHz per mg/dL, and low detection limits of 26.54mg/dL and 15.22mg/dL, for the two types of patch biosensors, respectively, as well as a short response time of less than 1s. Excellent reusability of the proposed biosensors was verified through three sets of measurements for each individual glucose sample. Regression analysis revealed a good linear correlation between glucose concentrations and the resonance frequency shift. Moreover, to facilitate a multi-parameter-sensitive detection of glucose, the magnitude of the reflection coefficient was also tested, and it showed a good linear correlation with the glucose concentration. Thus, the proposed approach can be adopted for distinguishing glucose solution levels, and it is a potential candidate for early-stage detection of glucose levels in diabetes patients. Copyright © 2017 Elsevier B.V. All rights reserved.
All substituted nickel porphyrins are highly nonplanar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelnutt, J.A.; Song, X.Z.; Jentzen, W.
1996-12-31
X-ray crystallographic and resonance Raman studies show that only un-substituted Ni porphine is planar in solution; all substituted Ni porphyrin derivatives either are nonplanar or exist as a mixture of planar and nonplanar conformers in solution. Recent modifications in a molecular mechanics force field improve the ability the MM calculations to predict the X-ray structures of porphyrins and also the planar-nonplanar conformational equilibria in many cases. Calculations using the new force field suggests that all geoporphyrins will be highly nonplanar, especially those having meso substituents. The nonplanarity is expected to influence properties such as solubility and metallation/dematallation reactions. Further, amore » method of quantifying these nonplanar structures has been devised; any porphyrin structure can be decomposed into displacements along the out-of-plane normal coordinates. However, usually distortions along only the lowest-frequency normal modes of each symmetry type are required to adequately describe the structure. The lowest-frequency normal coordinates of b{sub lu}, a{sub 2u}, b{sub 2u}, and e{sub g} symmetries correspond to commonly observed symmetric distortions called ruffling (ruf), doming(dom), saddling (sad), and waving (wav(x), wav(y)). The application of this structural decomposition method to several problems including the influences of steric crowding and protein folding on porphyrin conformation will be described.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi
2018-06-01
A new acoustic metamaterial plate (AMP) is proposed herein. The plate incorporates Helmholtz resonators that are periodically embedded at intervals shorter than acoustic wavelengths. This metamaterial plate exhibits extraordinary sound transmission loss (STL) at the resonance frequency of the Helmholtz resonators compared to a conventional flat plate. The STL of the AMP can be theoretically analyzed using the effective mass density and flexural rigidity. At the resonant frequency, the dynamic density of the AMP becomes much larger than that of a conventional solid flat plate with the same mass. When the Helmholtz resonant frequency is tuned to the coincidence frequency of the AMP, the dip in transmission loss owing to the coincidence effect is not observed. The frequency band, wherein high STL occurs, is narrow; however, the frequency band can be widened by embedding multiple resonators with slightly different resonant frequencies. Numerical experiments are also performed to demonstrate the acoustic performance of the proposed system. In the simulation, Helmholtz resonators with the 2.1-kHz resonant frequency are embedded at 20-mm intervals inside a 6-mm-thick flat glass plate. Analytical solutions of this system agree well with numerical solutions for various incidence angles of incoming plane waves. In this configuration, we find that the degradation of STL caused by the coincidence effect is nearly eliminated for waves that are incident at random angles.
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less
Traveling waves and their tails in locally resonant granular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less
Generation mechanisms of fundamental rogue wave spatial-temporal structure.
Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling
2017-08-01
We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.
NASA Astrophysics Data System (ADS)
Ma, Yufang; Pei, Kemei; Zheng, Xuming; Li, Haiyang
2007-11-01
Resonance Raman spectra were acquired for acetophenone using 228.7, 239.5, and 245.9 nm excitations in cyclohexane solution. The spectra display overtones of the benzene ring C-C stretch (1578 cm -1) and the carbonyl C dbnd O stretch (1671 cm -1) modes and their combination bands with other five vibrational modes. A preliminary resonance Raman intensity analysis was done and these results for acetophenone were compared to the those previously reported for 2-hydroxyacetophenone. The differences between the vibrational reorganizational energies for acetophenone relative to those of 2-hydroxyacetophenone were briefly discussed.
Resonator graphene microfluidic antenna (RGMA) for blood glucose detection
NASA Astrophysics Data System (ADS)
Jizat, Noorlindawaty Md.; Mohamad, Su Natasha; Ishak, Muhammad Ikman
2017-09-01
Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show a resonator graphene microfluidic antenna (RGMA) is used to detect the dielectric properties of aqueous glucose solution which represent the glucose level in blood. Simulation verified the high sensitivity of proposed RGMA made with aqueous glucose solutions at different concentrations. The RGMA yielded a sensor sensitivity of 0.1882GHz/mgml-1 as plotted from the slope of the linear fit from the result averages in S11 and S21 parameter, respectively. This results indicate that the proposed resonator antenna achieves high sensitivity and linear to the changes of glucose concentration.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2010-05-01
A novel emerging technique for the label-free analysis of nano particles including biomolecules using optical micro cavity resonance is being developed. Various schemes based on a mechanically fixed microspheres as well as microspheres melted by laser on the tip of a standard single mode fiber have been investigated to make further development for microbial application. Water solutions of ethanol, HCl, glucose, vitamin C and biotin have been used to test refractive index changes by monitoring the magnitude of the whispering gallery modes spectral shift. Particular efforts were made for effective fixing of the micro spheres in the water flow, an optimal geometry for micro resonance observation and material of microsphere the most appropriate for microbial application. Optical resonance in free micro spheres from PMMA fixed in micro channels produced by photolithography has been observed under the laser power of less then 1 microwatt. Resonance shifts of C reactive protein water solutions as well as albumin solutions in pure water and with HCl modelling blood have been investigated. Introducing controlled amount of glass gel nano particles into sensor microsphere surrounding were accompanied by both correlative resonance shift (400 nm in diameter) and total reconstruct of resonance spectra (57 nm in diameter). Developed schemes have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
Asoubar, Daniel; Wyrowski, Frank
2015-07-27
The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.
NASA Astrophysics Data System (ADS)
Bitar, Z.; El-Said Bakeer, D.; Awad, R.
2017-07-01
Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.
Chazin, W J; Rance, M; Chollet, A; Leupin, W
1991-01-01
The dodecadeoxynucleotide duplex d-(GCATTAATGC)2 has been prepared with all adenine bases replaced by 2-NH2-adenine. This modified duplex has been characterized by nuclear magnetic resonance (NMR) spectroscopy. Complete sequence-specific 1H resonance assignments have been obtained by using a variety of 2D NMR methods. Multiple quantum-filtered and multiple quantum experiments have been used to completely assign all sugar ring protons, including 5'H and 5'H resonances. The assignments form the basis for a detailed comparative analysis of the 1H NMR parameters of the modified and parent duplex. The structural features of both decamer duplexes in solution are characteristic of the B-DNA family. The spin-spin coupling constants in the sugar rings and the relative spatial proximities of protons in the bases and sugars (as determined from the comparison of corresponding nuclear Overhauser effects) are virtually identical in the parent and modified duplexes. Thus, substitution by this adenine analogue in oligonucleotides appears not to disturb the global or local conformation of the DNA duplex. PMID:1945828
Tipikin, D. S.; Earle, K. A.; Freed, J. H.
2010-01-01
The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356
Milne, Bruce F; Norman, Patrick
2015-05-28
The first-order hyperpolarizability, β, has been calculated for a group of marine natural products, the makaluvamines. These compounds possess a common cationic pyrroloiminoquinone structure that is substituted to varying degrees. Calculations at the MP2 level indicate that makaluvamines possessing phenolic side chains conjugated with the pyrroloiminoquinone moiety display large β values, while breaking this conjugation leads to a dramatic decrease in the calculated hyperpolarizability. This is consistent with a charge-transfer donor-π-acceptor (D-π-A) structure type, characteristic of nonlinear optical chromophores. Dynamic hyperpolarizabilities calculated using resonance-convergent time-dependent density functional theory coupled to polarizable continuum model (PCM) solvation suggest that significant resonance enhancement effects can be expected for incident radiation with wavelengths around 800 nm. The results of the current work suggest that the pyrroloiminoquinone moiety represents a potentially useful new chromophore subunit, in particular for the development of molecular probes for biological imaging. The introduction of solvent-solute interactions in the theory is conventionally made in a density matrix formalism, and the present work will provide detailed account of the approximations that need to be introduced in wave function theory and our program implementation. The program implementation as such is achieved by a mere combination of existing modules from previous developments, and it is here only briefly reviewed.
The growth rates of KDP crystals in solutions with potassium permanganate additives
NASA Astrophysics Data System (ADS)
Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.
2017-01-01
We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.
Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes
NASA Astrophysics Data System (ADS)
Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.
2014-06-01
Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.
Design and characterization of a 20 Gbit/s clock recovery circuit
NASA Astrophysics Data System (ADS)
Monteiro, Paulo M.; Matos, J. N.; Gameiro, Atilio M. S.; da Rocha, Jose F.
1995-02-01
In this communication we report the design of a clock recovery circuit produced for the 20 Gbit/s demonstrator of the RACE 2011 project `TRAVEL' of the European Community. The clock recovery circuit is based on an open loop structure using a dielectric resonator narrow bandpass filter with a high quality factor. A detailed electrical characterization of the circuit and also its sensitivity to temperature and detuning variations are presented. The experimental results show that the circuit is a very attractive solution for the forthcoming STM-128 optical links.
Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET
Madeira, Catarina; Loura, Luís MS; Prieto, Manuel; Fedorov, Aleksander; Aires-Barros, M Raquel
2008-01-01
Background Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo. Results In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium. Conclusion The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications. PMID:18302788
Electrodynamic study of YIG filters and resonators
Krupka, Jerzy; Salski, Bartlomiej; Kopyt, Pawel; Gwarek, Wojciech
2016-01-01
Numerical solutions of coupled Maxwell and Landau-Lifshitz-Gilbert equations for a magnetized yttrium iron garnet (YIG) sphere acting as a one-stage filter are presented. The filter is analysed using finite-difference time-domain technique. Contrary to the state of the art, the study shows that the maximum electromagnetic power transmission through the YIG filter occurs at the frequency of the magnetic plasmon resonance with the effective permeability of the gyromagnetic medium μr ≈ −2, and not at a ferromagnetic resonance frequency. Such a new understanding of the YIG filter operation, makes it one of the most commonly used single-negative plasmonic metamaterials. The frequency of maximum transmission is also found to weakly depend on the size of the YIG sphere. An analytic electromagnetic analysis of resonances in a YIG sphere is performed for circularly polarized electromagnetic fields. The YIG sphere is situated in a free space and in a large spherical cavity. The study demonstrates that both volume resonances and magnetic plasmon resonances can be solutions of the same transcendental equations. PMID:27698467
Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico
2016-08-26
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers
2016-01-06
characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk
Compact wideband filter element-based on complementary split-ring resonators
NASA Astrophysics Data System (ADS)
Horestani, Ali K.; Shaterian, Zahra; Withayachumnankul, Withawat; Fumeaux, Christophe; Al-Sarawi, Said; Abbott, Derek
2011-12-01
A double resonance defected ground structure is proposed as a filter element. The structure involves a transmission line loaded with complementary split ring resonators embedded in a dumbbell shape defected ground structure. By using a parametric study, it is demonstrated that the two resonance frequencies can be independently tuned. Therefore the structure can be used for different applications such as dual bandstop filters and wide bandstop filters.
Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun
2016-01-01
The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave–matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887
Novel nuclear magnetic resonance techniques for studying biological molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, David Douglas
2000-06-01
Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. Inmore » this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13C a, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.« less
NASA Astrophysics Data System (ADS)
Meidt, Sharon E.
At the intersection of galactic dynamics, evolution and global structure, unresolved issues in the nature and origin of spirals can be addressed through the characterization of the angular speeds of the patterns and their possible radial variation. In this thesis I describe the development, testing, and application of the Radial Tremaine-Weinberg (TWR) Method, a generalized version of the continuity-based TW method wherein the pattern speed is allowed to vary arbitrarily with radius. I will address the utility of, and caveats in applying, the TWR calculation together with a standard regularization technique in a series of tests on N- body simulations. The regularization, which smooths otherwise intrinsically noisy solutions based on a priori assumptions for the radial dependence of the pattern speed, proves to be essential for achieving the radial precision necessary for accurate measurement. I also present results from applications of the TWR method to observations of real galaxies, where the possible sources and sinks in the continuity equation are well understood. Using CO observations of the grand design galaxy M51, the TWR method reveals a heretofore un-measured inner spiral pattern speed for the bright two-armed spiral structure, with a value significantly higher than conventional estimates. In addition, the radial dependence implied in the TWR solution suggests a possible resonant link between the inner and outer regions of the bright spiral arms. These findings signify an advance in observational investigations into the nature and origin of grand-design spiral structure. By analyzing high-quality HI and CO data cubes available for four other spiral galaxies, the characteristic signatures of the processes that drive spiral structure are likewise identifiable; within this small sample, the first direct evidence for the presence of resonant coupling of multiple distinct patterns is found in some galaxies, while a simple single pattern speed is measured in others. I conclude with a summary of future avenues for investigation with the TWR method and propose additional modifications of the TW calculation with which the influence of bar and spiral structure on the evolution of galaxy disks can be directly characterized.
CTE method and interaction solutions for the Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Ren, Bo
2017-02-01
The consistent tanh expansion method is applied to the Kadomtsev-Petviashvili equation. The interaction solutions among one soliton and other types of solitary waves, such as multiple resonant soliton solutions and cnoidal waves, are explicitly given. Some special concrete interaction solutions are discussed both in analytical and graphical ways.
Tunable cavity resonator including a plurality of MEMS beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah
A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.
Vibrational Spectroscopy of CO2- Radical Anion in Water
NASA Astrophysics Data System (ADS)
Janik, Ireneusz; Tripathi, G. N. R.
2016-06-01
The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, and methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 wn, attributed to the symmetric CO stretch, which is at 45 wn higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 wn which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 wn band also appears at 742 wn, and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28+/-0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4+/-0.2 measured in this work is consistent with the vibrational properties, bond structure and charge distribution in aqueous CO2-.
Wind seismic noise introduced by external infrastructure: field data and transfer mechanism
NASA Astrophysics Data System (ADS)
Martysevich, Pavel; Starovoyt, Yuri
2017-04-01
Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.
An electron paramagnetic resonance study on irradiated triphenylphosphinselenid single crystal
NASA Astrophysics Data System (ADS)
Aras, Erdal; Karatas, Ozgul; Meric, Yasemin; Abbass, Hind Kh; Birey, Mehmet; Kilic, Ahmet
2014-09-01
The single crystals of triphenylphosphinselenid [C18H15PSe] were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma (γ) rays with a dose speed of 0.980 kGy/h at the room temperature for 72 h. The free radical over the sample was observed using electron paramagnetic resonance (EPR)-X band spectrometer. The EPR spectra were recorded between 120 and 400 K. Furthermore, the sample irradiated was rotated in steps of 10° and analyzed for different orientations of the crystal in the magnetic field. Only one radical structure was determined on the molecule. The hyperfine constants of the sample were found to be anisotropic. The average values of these constants and value of g were calculated as following: g=2.007656, aSe=37.47 G, aP=27.44 G, aHa=17.28 G, and aHb=18.16 G.
Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juska, G., E-mail: gediminas.juska@tyndall.ie; Murray, E.; Dimastrodonato, V.
A study of highly symmetric site-controlled pyramidal In{sub 0.25}Ga{sub 0.75}As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from pyramidal QDs of different designs from the one already reported in Juska et al. [Nat. Photonics 7, 527 (2013)]. Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexciton-exciton recombination events. A possible solution of the charging problem is investigated exploitingmore » a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.« less
Engineering the vibrational coherence of vision into a synthetic molecular device.
Gueye, Moussa; Manathunga, Madushanka; Agathangelou, Damianos; Orozco, Yoelvis; Paolino, Marco; Fusi, Stefania; Haacke, Stefan; Olivucci, Massimo; Léonard, Jérémie
2018-01-22
The light-induced double-bond isomerization of the visual pigment rhodopsin operates a molecular-level optomechanical energy transduction, which triggers a crucial protein structure change. In fact, rhodopsin isomerization occurs according to a unique, ultrafast mechanism that preserves mode-specific vibrational coherence all the way from the reactant excited state to the primary photoproduct ground state. The engineering of such an energy-funnelling function in synthetic compounds would pave the way towards biomimetic molecular machines capable of achieving optimum light-to-mechanical energy conversion. Here we use resonance and off-resonance vibrational coherence spectroscopy to demonstrate that a rhodopsin-like isomerization operates in a biomimetic molecular switch in solution. Furthermore, by using quantum chemical simulations, we show why the observed coherent nuclear motion critically depends on minor chemical modifications capable to induce specific geometric and electronic effects. This finding provides a strategy for engineering vibrationally coherent motions in other synthetic systems.
Etched FBG coated with polyimide for simultaneous detection the salinity and temperature
NASA Astrophysics Data System (ADS)
Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah
2017-06-01
In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.
Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers
NASA Astrophysics Data System (ADS)
Wu, Wenpeng; Cao, Zexing; Zhao, Yi
2012-03-01
The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.
Magnetic resonance imaging using chemical exchange saturation transfer
NASA Astrophysics Data System (ADS)
Park, Jaeseok
2012-10-01
Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications
Chromium as Resonant Donor Impurity in PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, M.D.; Levin, Evgenii; Jaworski, C.M.
2012-01-25
We synthesize and perform structural, thermoelectric, magnetic, and 125Te NMR characterization measurements on chromium-doped PbTe. 125Te NMR and magnetic measurements show that Pb1−xCrxTe is a solid solution up to x = 0.4 at.% and forms an n-type dilute paramagnetic semiconductor. The Cr level is resonant and pins the Fermi level about 100 meV into the conduction band at liquid nitrogen temperatures and below, but it moves into the gap as the temperature increases to 300 K. 125Te NMR spectra exhibit a Knight shift that correlates well with Hall effect measurements and resolve peaks of Te near Cr. Magnetic behavior indicatesmore » that Cr exists mainly as Cr2+. No departure from the Pisarenko relation for PbTe is observed. Secondary Cr2Te3 and Cr3+δTe4 phases are present in samples with x > 0.4%.« less
Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring
NASA Astrophysics Data System (ADS)
Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud
2018-06-01
In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2017-09-01
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1998-01-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1997-12-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system
NASA Astrophysics Data System (ADS)
Gambino, G.; Lombardo, M. C.; Sammartino, M.
2018-01-01
In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.
Strongly nonlinear waves in locally resonant granular chains
Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...
2016-09-23
In this paper, we explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-livedmore » bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. Finally, in line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.« less
NASA Technical Reports Server (NTRS)
Yopp, John H.; Tindall, Donald R.; Pavlicek, Kenneth
1987-01-01
Major accomplishments underlying the basic understanding of cyanobacterial resistance to salt tolerance and osmotic stress were made. The methodology proposed included: the tracing of the pathways of formation of osmoregulatory solutes by traditional methods involving C-14 labelled substrates; gas chromatography; amino acid analysis; X-ray analysis using scanning transmission electron microscopy; and most importantly, C-13 labelled substrates, followed by Nuclear Magnetic Resonance (NMR) spectroscopy. It was found that the cyanobacteria employ a diversity of organic, osmoregulatory solutes. Osmoregulatory solutes were found to serve four functions: adjustment of water activity, noninhibition of enzymes; lowering of K sub m of enzymes to allow functioning at normal levels when the intracellular salt accumulates, and extending the pH optimum of enzymes as intracellular pH rises due to proton-potassium ion pump action during osmoregulation. Differences in osmoregulatory solutes may, but are not always, be attributed to differences in nutritional capabilities. The mechanism of osmoregulation and concomitant salt tolerance in halophilic cyanobacteria was elucidated. The activities of betaine and S-Adenosylhomocysteine hydrolase are discussed.
Givelet, Cecile C; Dron, Paul I; Wen, Jin; Magnera, Thomas F; Zamadar, Matibur; Čépe, Klára; Fujiwara, Hiroki; Shi, Yue; Tuchband, Michael R; Clark, Noel; Zbořil, Radek; Michl, Josef
2016-05-25
Proving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution. In the latter case, freeze-fracture transmission electron micrographs demonstrate that at least some of the solutions are colloidal, and high-resolution electron transmission and atomic force microscopy images are compatible with a tetradecamer but not a trimer. Comparison of solute partial molar volumes deduced from measurement of solution density with volumes anticipated from molecular models argues strongly against the presence of large voids (solvent vapor bubbles) in cages dissolved in nitromethane. The presence of bubbles was previously proposed in an attempt to account for the bilinear nature of the Eyring plot of the rate constant for pyridine ligand edge exchange reaction in one of the cages and for the unusual activation parameters in the high-temperature regime. An alternative interpretation is proposed now.
High-Q lattice mode matched structural resonances in terahertz metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg
2016-07-11
The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching.more » We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.« less
Magnetic Resonance Imaging (MRI) (For Teens)
... a few minutes. Some people get a contrast solution as part of an MRI exam. Contrast solution is a liquid that goes inside the body ... not show up otherwise. If you need contrast solution, the tech will probably use an IV to ...
Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF
NASA Technical Reports Server (NTRS)
Obrien, K. C.
1973-01-01
The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths.
Aromatic Bagels: An Edible Resonance Analogy
ERIC Educational Resources Information Center
Lin, Shirley
2007-01-01
Two Lewis structures, resonance contributors, are used to describe benzene (the Kekule structure) in order to explain resonance theory to chemistry students. The students could create two bagel halves representing the Kekule structures of benzene in which the numbered toothpicks corresponds to the carbon atoms in the two structures and the x…
Analytic Solution of the Electromagnetic Eigenvalues Problem in a Cylindrical Resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Martinello, Martina
Resonant accelerating cavities are key components in modern particles accelerating facilities. These take advantage of electromagnetic fields resonating at microwave frequencies to accelerate charged particles. Particles gain finite energy at each passage through a cavity if in phase with the resonating field, reaching energies even of the order of $TeV$ when a cascade of accelerating resonators are present. In order to understand how a resonant accelerating cavity transfers energy to charged particles, it is important to determine how the electromagnetic modes are exited into such resonators. In this paper we present a complete analytical calculation of the resonating fields formore » a simple cylindrical-shaped cavity.« less
Expansion of linear range of Pound-Drever-Hall signal.
Miyoki, Shinji; Telada, Souich; Uchiyama, Takashi
2010-10-01
We propose new solutions for expanding the linear signal range between the laser frequency deviation (or mirror position) and the voltage signal derived by the Pound-Drever-Hall (PDH) method for optical Fabry-Perot cavity resonance control. One solution is to perform not in-phase demodulation but near-Q-phase demodulation. Another solution is to take a suitable combination of signals demodulated by odd-harmonic modulation frequencies in the in phase. Although the PDH signal sensitivity will be diminished, the PDH signal linear range can be extended. From a practical standpoint, it is desirable that a sideband frequency for the PDH method is near the FP cavity resonance.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
Method for non-contact particle manipulation and control of particle spacing along an axis
Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde
2013-09-10
One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.
Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells
Smith, Michael L; Gourdon, Delphine; Little, William C; Kubow, Kristopher E; Eguiluz, R. Andresen; Luna-Morris, Sheila; Vogel, Viola
2007-01-01
Whether mechanically unfolded fibronectin (Fn) is present within native extracellular matrix fibrils is controversial. Fn extensibility under the influence of cell traction forces has been proposed to originate either from the force-induced lengthening of an initially compact, folded quaternary structure as is found in solution (quaternary structure model, where the dimeric arms of Fn cross each other), or from the force-induced unfolding of type III modules (unfolding model). Clarification of this issue is central to our understanding of the structural arrangement of Fn within fibrils, the mechanism of fibrillogenesis, and whether cryptic sites, which are exposed by partial protein unfolding, can be exposed by cell-derived force. In order to differentiate between these two models, two fluorescence resonance energy transfer schemes to label plasma Fn were applied, with sensitivity to either compact-to-extended conformation (arm separation) without loss of secondary structure or compact-to-unfolded conformation. Fluorescence resonance energy transfer studies revealed that a significant fraction of fibrillar Fn within a three-dimensional human fibroblast matrix is partially unfolded. Complete relaxation of Fn fibrils led to a refolding of Fn. The compactly folded quaternary structure with crossed Fn arms, however, was never detected within extracellular matrix fibrils. We conclude that the resting state of Fn fibrils does not contain Fn molecules with crossed-over arms, and that the several-fold extensibility of Fn fibrils involves the unfolding of type III modules. This could imply that Fn might play a significant role in mechanotransduction processes. PMID:17914904
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, N.R.; Nettesheim, D.G.; Klevit, R.E.
1989-02-21
The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C{sup alpha}H, C{sup beta}H{prime}, H{double prime}, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current inducedmore » shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.« less
Polis, B. David; Wyeth, John; Goldstein, Leonide; Graedon, Joe
1969-01-01
Stable free radicals have been prepared from purified plasma proteins, pituitary peptides, and simpler related structures like 5-OH tryptophan and melatonin by oxidation with the free-radical nitrosyl disulfonate in alkaline solution under controlled conditions. The presence of tyrosine or trytophan amino acid residues in the protein was found essential for free-radical formation. These red-colored, stable free radicals showed electron spin resonance spectra in aqueous solutions at room temperature and maintained this characteristic for weeks when stored at 5°C. Illumination, by visible light, of the free-radical proteins and peptides separated from excess nitrosyl disulfonate by salt fractionation or chromatography enhanced the free-radical concentration in the light. The increased signal decayed in the dark. Intravenous administration of the free-radical proteins or peptides into rabbits equipped with chronic cranial electrodes and sedated with a small dose of pentobarbital caused a sudden EEG arousal accompanied by behavioral changes indicative of brain excitation. Illumination of the free-radical compounds prior to administration enhanced the effects. Untreated control proteins or peptides had no effects. The observations are interpreted to suggest the involvement of free-radical structures in the transfer of energy in nervous tissue. PMID:4311379
NASA Astrophysics Data System (ADS)
Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin
2016-01-01
Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.
Otara, Claire B; Jones, Christopher E; Younan, Nadine D; Viles, John H; Elphick, Maurice R
2014-02-01
The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo. © 2013.
NASA Astrophysics Data System (ADS)
Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.
2012-03-01
Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.
Chang, Keke; Chen, Ruipeng; Wang, Shun; Li, Jianwei; Hu, Xinran; Liang, Hao; Cao, Baiqiong; Sun, Xiaohui; Ma, Liuzheng; Zhu, Juanhua; Jiang, Min; Hu, Jiandong
2015-08-19
The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD) array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D) converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 10(5) ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10(-5) refractive index unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.
Koirala, Gyan Raj; Dhakal, Rajendra; Kim, Eun-Seong; Yao, Zhao; Kim, Nam-Young
2018-04-03
We present a microfabricated spiral-coupled passive resonator sensor realized through integrated passive device (IPD) technology for the sensitive detection and characterization of water-ethanol solutions. In order to validate the performance of the proposed device, we explicitly measured and analyzed the radio frequency (RF) characteristics of various water-ethanol solution compositions. The measured results showed a drift in the resonance frequency from 1.16 GHz for deionized (DI) water to 1.68 GHz for the solution containing 50% ethanol, whereas the rejection level given by the reflection coefficient decreased from -29.74 dB to -14.81 dB. The obtained limit of detection was 3.82% volume composition of ethanol in solution. The derived loaded capacitance was 21.76 pF for DI water, which gradually decreased to 8.70 pF for the 50% ethanol solution, and the corresponding relative permittivity of the solution decreased from 80.14 to 47.79. The dissipation factor increased with the concentration of ethanol in the solution. We demonstrated the reproducibility of the proposed sensor through iterative measures of the samples and the study of surface morphology. Successive measurement of different samples had no overlapping and had very minimum bias between RF characteristics for each measured sample. The surface profile for bare sensors was retained after the sample test, resulting a root mean square (RMS) value of 11.416 nm as compared to 10.902 nm for the bare test. The proposed sensor was shown to be a viable alternative to existing sensors for highly sensitive water-ethanol concentration detection.
Full analytical solution of the bloch equation when using a hyperbolic-secant driving function.
Zhang, Jinjin; Garwood, Michael; Park, Jang-Yeon
2017-04-01
The frequency-swept pulse known as the hyperbolic-secant (HS) pulse is popular in NMR for achieving adiabatic spin inversion. The HS pulse has also shown utility for achieving excitation and refocusing in gradient-echo and spin-echo sequences, including new ultrashort echo-time imaging (e.g., Sweep Imaging with Fourier Transform, SWIFT) and B 1 mapping techniques. To facilitate the analysis of these techniques, the complete theoretical solution of the Bloch equation, as driven by the HS pulse, was derived for an arbitrary state of initial magnetization. The solution of the Bloch-Riccati equation for transverse and longitudinal magnetization for an arbitrary initial state was derived analytically in terms of HS pulse parameters. The analytical solution was compared with the solutions using both the Runge-Kutta method and the small-tip approximation. The analytical solution was demonstrated on different initial states at different frequency offsets with/without a combination of HS pulses. Evolution of the transverse magnetization was influenced significantly by the choice of HS pulse parameters. The deviation of the magnitude of the transverse magnetization, as obtained by comparing the small-tip approximation to the analytical solution, was < 5% for flip angles < 30 °, but > 10% for the flip angles > 40 °. The derived analytical solution provides insights into the influence of HS pulse parameters on the magnetization evolution. Magn Reson Med 77:1630-1638, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei
2018-05-01
Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.
Microwave Spectroscopy of a Single Permalloy Chiral Metamolecule on a Coplanar Waveguide
NASA Astrophysics Data System (ADS)
Kodama, Toshiyuki; Kusanagi, Yusaku; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Tomita, Satoshi; Hosoito, Nobuyoshi; Yanagi, Hisao
2018-05-01
We investigate the microwave spectroscopies of a micrometer-sized single permalloy (Py) chiral structure on coplanar waveguides (CPWs). Under an external dc magnetic field applied in a direction perpendicular to the microwave propagation, the Py chiral structure loaded on the center of the CPW signal line shows Kittel-mode ferromagnetic resonance. Contrastingly, the structure on the signal-line edge highlights two additional resonances: spin-wave resonance at a higher frequency, and unique resonance at a lower frequency of approximately 7.8 GHz. The resonance signal at 7.8 GHz originates from magnetically induced, geometry-driven resonance, although the resonance frequency does not depend on the external magnetic field. Moreover, the displacement of the Py structures on the signal line results in nonreciprocal microwave transmission, which is traced back to the edge-guide mode.
Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing
NASA Astrophysics Data System (ADS)
Edri, Yuval; Bozovic, Dolores; Yochelis, Arik
2016-10-01
The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild blackmore » hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.« less
NASA Astrophysics Data System (ADS)
Shimada, Rintaro; Kano, Hideaki; Hamaguchi, Hiro-o.
2008-07-01
A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-β-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experimental conditions. Similar experiments with all-trans-retinal did not exhibit such enhancement either. All-trans-β-carotene and all-trans-lycopene have thus been shown to induce enhanced HR scattering of solvent molecules through a novel molecular effect that is not associated with all-trans-retinal. We call this new effect the "molecular near-field effect." In order to explain this newly found effect, an extended vibronic theory of resonance HR scattering is developed where the vibronic interaction including the proximate solvent molecule (intermolecular vibronic coupling) is explicitly introduced in the solute hyperpolarizability tensor. The potential of "molecular near-field HR spectroscopy," which selectively detects molecules existing in the close vicinity of a HR probe in complex chemical or biological systems, is discussed.
Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers.
Fusco, Giuliana; Chen, Serene W; Williamson, Philip T F; Cascella, Roberta; Perni, Michele; Jarvis, James A; Cecchi, Cristina; Vendruscolo, Michele; Chiti, Fabrizio; Cremades, Nunilo; Ying, Liming; Dobson, Christopher M; De Simone, Alfonso
2017-12-15
Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Monolithic solid-state lasers for spaceflight
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth
2015-02-01
A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
The effects of lithium hydroxide solution on alkali silica reaction gels created with opal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick
The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhapsmore » stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.« less
Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing
NASA Astrophysics Data System (ADS)
Zhao, Chao Ying; Zhang, Lei; Zhang, Cheng Mei
2018-05-01
We propose a novel sensor structure composed of a slot microring and a phase-shifted sidewall Bragg gratings in a slot waveguide. We first present a theoretical analysis of transmission by using the transfer matrix. Then, the mode-field distributions of transmission spectrum obtained from 3D simulations based on FDTD method demonstrates that our sensor exhibit theoretical sensitivity of 297 . 13 nm / RIU, a minimum detection limit of 1 . 1 × 10-4 RIU, the maximum extinction ratio of 20 dB, the quality factor of 2 × 103 and a compact dimension-theoretical structure of 15 μm × 8 . 5 μm. Finally, the sensor's performance is simulated for NaCl solution.
Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy.
Grondin, Julie M; Langelaan, David N; Smith, Steven P
2017-01-01
Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1 H- 15 N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d ) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.
Santiveri, Clara M; Pantoja-Uceda, David; Rico, Manuel; Jiménez, M Angeles
2005-10-15
In order to check our current knowledge on the principles involved in beta-hairpin formation, we have modified the sequence of a 3:5 beta-hairpin forming peptide with two different purposes, first to increase the stability of the formed 3:5 beta-hairpin, and second to convert the 3:5 beta-hairpin into a 2:2 beta-hairpin. The conformational behavior of the designed peptides was investigated in aqueous solution and in 30% trifluoroethanol (TFE) by analysis of the following nuclear magnetic resonance (NMR) parameters: nuclear Overhauser effect (NOE) data, and C(alpha)H, (13)C(alpha), and (13)C(beta) conformational shifts. From the differences in the ability to adopt beta-hairpin structures in these peptides, we have arrived to the following conclusions: (i) beta-Hairpin population increases with the statistical propensity of residues to occupy each turn position. (ii) The loop length, and in turn, the beta-hairpin type, can be modified as a function of the type of turn favored by the loop sequence. These two conclusions reinforce previous results about the importance of beta-turn sequence in beta-hairpin folding. (iii) Side-chain packing on each face of the beta-sheet may play a major role in beta-hairpin stability; hence simplified analysis in terms of isolated pair interactions and intrinsic beta-sheet propensities is insufficient. (iv) Contributions to beta-hairpin stability of turn and strand sequences are not completely independent. (v) The burial of hydrophobic surface upon beta-hairpin formation that, in turn, depends on side-chain packing also contributes to beta-hairpin stability. (vi) As previously observed, TFE stabilizes beta-hairpin structures, but the extent of the contribution of different factors to beta-hairpin formation is sometimes different in aqueous solution and in 30% TFE. (c) 2005 Wiley Periodicals, Inc. Biopolymers 79: 150-162, 2005.
Sato, Katsuhiko; Kodama, Daisuke; Naka, Yukihisa; Anzai, Jun-ichi
2006-12-01
A layer-by-layer assembly composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) was prepared on the surface of a platinum (Pt) film-coated quartz resonator, and an electrochemically induced disintegration of the avidin-ib-PEI assembly was studied using a quartz crystal microbalance. The resonance frequency of a five-bilayer (avidin-ib-PEI)5 film-coated quartz resonator was increased upon application of an electric potential to the Pt layer of the quartz resonator, suggesting that the mass on the quartz resonator was decreased as a result of disintegration of the (avidin-ib-PEI)5 film, due to a pH change in the vicinity of the surface of the Pt-coated quartz resonator. It may be that the (avidin-ib-PEI)5 film assembly was decomposed by acidification of the local pH on the surface of the Pt layer, which in turn was induced through electrolysis of water on Pt, because ib-PEI forms complexes with avidin only in basic media. In pH 9 solution, the (avidin-ib-PEI)5 film was decomposed under the influence of an applied potential of 0.6-1.0 V versus Ag/AgCl. The (avidin-ib-PEI)5 film was decomposed almost completely within a minute in a low concentration buffer (1 mM, pH 9), while the decomposition was slower in 10 and 100 mM buffer solutions at the same pH. The decomposition of the assembly was rapid when the electrode potential was applied in pH 9 solutions, while the response was relatively slow in pH 10 and 11 solutions. All the results are rationalized on the basis of an electrochemically induced acidification of the local environment around the (avidin-ib-PEI)5 film on the Pt layer.
Optical properties of plasmonic nanostructures: Theory & experiments
NASA Astrophysics Data System (ADS)
Bala Krishna, Juluri
Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are surface waves that are localized to the interface between a structured perfect electric conductor (PEC) surface and dielectric medium. Terahertz (THz) DSPs excited on microscale structured PEC are localized in the out-of-plane direction, with negligible in-plane localization. We addressed this problem by subjecting DSPs to a parabolic graded-index structure. Lateral confinement such as focusing, collimation, and waveguiding of DSPs is demonstrated. Such control will pave the way towards THz energy concentration, diffusion, guiding, and beam aperture modifcation.
Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances
NASA Astrophysics Data System (ADS)
Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik
2018-04-01
Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.
Optical resonator and laser applications
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.
Formalism of photons in a nonlinear microring resonator
NASA Astrophysics Data System (ADS)
Tran, Quang Loc; Yupapin, Preecha
2018-03-01
In this paper, using short Gaussian pulses input from a monochromatic light source, we simulate the photon distribution and analyse the output gate's signals of PANDA nonlinear ring resonator. The present analysis is restricted to directional couplers characterized by two parameters, the power coupling coefficient κ and power coupling loss γ. Add/drop filters are also employed and investigated for the suitable to implement in the practical communication system. The experiment was conducted by using the combination of Lumerical FDTD Solutions and Lumerical MODE Solutions software.
NASA Technical Reports Server (NTRS)
Fieno, D.; Fox, T.; Mueller, R.
1972-01-01
Clean criticality data were obtained from molybdenum-reflected cylindrical uranyl-fluoride-water solution reactors. Using ENDF/B molybdenum cross sections, a nine energy group two-dimensional transport calculation of a reflected reactor configuration predicted criticality to within 7 cents of the experimental value. For these reactors, it was necessary to compute the reflector resonance integral by a detailed transport calculation at the core-reflector interface volume in the energy region of the two dominant resonances of natural molybdenum.
Observation of random lasing in gold-silica nanoshell/water solution
NASA Astrophysics Data System (ADS)
Kang, Jin U.
2006-11-01
The author reports experimental observation of resonant surface plasmon enhanced random lasing in gold-silica nanoshells in de-ionized water. The gold-silica nanoshell/water solution with concentration of 8×109particles/ml was pumped above the surface plasmon resonance frequency using 514nm argon-krypton laser. When pumping power was above the lasing threshold, sharp random lasing peaks occurred near and below the plasmon peak from 720to860nm with a lasing linewidth less than 1nm.
Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.
McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark
2018-07-01
To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the fast mode cutoff that exists at larger radial distances.
Colosi, John A
2008-09-01
While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.
NASA Astrophysics Data System (ADS)
Galuk, Yu P.; Nickolaenko, A. P.; Hayakawa, M.
2018-04-01
The real structure of lower ionosphere should be taken into account when modeling the sub-ionospheric radio propagation in the extremely low frequency (ELF) band and studying the global electromagnetic (Schumann) resonance of the Earth-ionosphere cavity. In the present work we use the 2D (two dimensional) telegraph equations (2DTE) for evaluating the effect of the ionosphere day-night non-uniformity on the electromagnetic field amplitude at the Schumann resonance and higher frequencies. Properties of the cavity upper boundary were taken into account by the full wave solution technique for realistic vertical profiles of atmosphere conductivity in the ambient day and ambient night conditions. We solved the electromagnetic problem in a cavity with the day-night non-uniformity by using the 2DTE technique. Initially, the testing of the 2DTE solution was performed in the model of the sharp day-night interface. The further computations were carried out in the model of the smooth day-night transition. The major attention was directed to the effects at propagation paths "perpendicular" or "parallel" to the solar terminator line. Data were computed for a series of frequencies, the comparison of the results was made and interpretation was given to the observed effects.
High power CO2 laser development with AOM integration for ultra high-speed pulses
NASA Astrophysics Data System (ADS)
Bohrer, Markus; Vaupel, Matthias; Nirnberger, Robert; Weinberger, Bernhard; Jamalieh, Murad
2017-01-01
There is a 500 billion USD world market for packaging expected to grow to a trillion in 2030. Austria plays an important role world wide for high speed laser engraving applications — especially when it comes to high end solutions. Such high end solutions are fundamental for the production of print forms for the packaging and decorating industry (e. g. cans). They are additionally used for security applications (e. g. for printing banknotes), for the textile printing industry and for creating embossing forms (e. g. for the production of dashboards in the automotive industry). High speed, high precision laser engraving needs laser resonators with very stable laser beams (400 - 800W) especially in combination with AOMs. Based upon a unique carbon fiber structure - stable within the sub-micrometer range - a new resonator has been developed, accompanied by most recent thermo-mechanical FEM calculations. The resulting beam is evaluated on an automated optical bench using hexapods, allowing to optimize the complete beam path with collimators and AOM. The major steps related to laser engraving of dry offset printing plates during the full workflow from the artists design to the printed result on an aluminum can is presented in this paper as well as laser characteristics, AOM integration and correlative CLSM and SEM investigation of the results.
Structural and sequencing analysis of local target DNA recognition by MLV integrase.
Aiyer, Sriram; Rossi, Paolo; Malani, Nirav; Schneider, William M; Chandar, Ashwin; Bushman, Frederic D; Montelione, Gaetano T; Roth, Monica J
2015-06-23
Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun
2013-01-01
Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554
DNA nanotubes for NMR structure determination of membrane proteins.
Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M
2013-04-01
Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.
Masica, David L; Ash, Jason T; Ndao, Moise; Drobny, Gary P; Gray, Jeffrey J
2010-12-08
Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized. Copyright © 2010 Elsevier Ltd. All rights reserved.
Integrated narrowband optical filter based on embedded subwavelength resonant grating structures
Grann, Eric B.; Sitter, Jr., David N.
2000-01-01
A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorn, Gilad, E-mail: zorn@ge.com; Castner, David G.; Tyagi, Anuradha
Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints ofmore » the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.« less
Leosson, K; Shayestehaminzadeh, S; Tryggvason, T K; Kossoy, A; Agnarsson, B; Magnus, F; Olafsson, S; Gudmundsson, J T; Magnusson, E B; Shelykh, I A
2012-10-01
Resonant photon tunneling was investigated experimentally in multilayer structures containing a high-contrast (TiO(2)/SiO(2)) Bragg mirror capped with a semitransparent gold film. Transmission via a fundamental cavity resonance was compared with transmission via the Tamm plasmon polariton resonance that appears at the interface between a metal film and a one-dimensional photonic bandgap structure. The Tamm-plasmon-mediated transmission exhibits a smaller dependence on the angle and polarization of the incident light for similar values of peak transmission, resonance wavelength, and finesse. Implications for transparent electrical contacts based on resonant tunneling structures are discussed.
Bykov, Sergei V; Asher, Sanford A
2010-11-30
Spectroscopic investigations of macromolecules generally attempt to interpret the measured spectra in terms of the summed contributions of the different molecular fragments. This is the basis of the local mode approximation in vibrational spectroscopy. In the case of resonance Raman spectroscopy independent contributions of molecular fragments require both a local mode-like behavior and the uncoupled electronic transitions. Here we show that the deep UV resonance Raman spectra of aqueous solution phase oligoglycines show independent peptide bond molecular fragment contributions indicating that peptide bonds electronic transitions and vibrational modes are uncoupled. We utilize this result to separately determine the conformational distributions of the internal and penultimate peptide bonds of oligoglycines. Our data indicate that in aqueous solution the oligoglycine terminal residues populate conformations similar to those found in crystals (3(1)-helices and β-strands), but with a broader distribution, while the internal peptide bond conformations are centered around the 3(1)-helix Ramachandran angles.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Kacprzak, Sylwia; Njimona, Ibrahim; Renz, Anja; Feng, Juan; Reijerse, Edward; Lubitz, Wolfgang; Krauss, Norbert; Scheerer, Patrick; Nagano, Soshichiro; Lamparter, Tilman; Weber, Stefan
2017-05-05
Bacterial phytochromes are dimeric light-regulated histidine kinases that convert red light into signaling events. Light absorption by the N-terminal photosensory core module (PCM) causes the proteins to switch between two spectrally distinct forms, Pr and Pfr, thus resulting in a conformational change that modulates the C-terminal histidine kinase region. To provide further insights into structural details of photoactivation, we investigated the full-length Agp1 bacteriophytochrome from the soil bacterium Agrobacterium fabrum using a combined spectroscopic and modeling approach. We generated seven mutants suitable for spin labeling to enable application of pulsed EPR techniques. The distances between attached spin labels were measured using pulsed electron-electron double resonance spectroscopy to probe the arrangement of the subunits within the dimer. We found very good agreement of experimental and calculated distances for the histidine-kinase region when both subunits are in a parallel orientation. However, experimental distance distributions surprisingly showed only limited agreement with either parallel- or antiparallel-arranged dimer structures when spin labels were placed into the PCM region. This observation indicates that the arrangements of the PCM subunits in the full-length protein dimer in solution differ significantly from that in the PCM crystals. The pulsed electron-electron double resonance data presented here revealed either no or only minor changes of distance distributions upon Pr-to-Pfr photoconversion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Roth, Braden M; Godoy-Ruiz, Raquel; Varney, Kristen M; Rustandi, Richard R; Weber, David J
2016-04-01
Clostridium difficile is a bacterial pathogen and is the most commonly reported source of nosocomial infection in industrialized nations. Symptoms of C. difficile infection (CDI) include antibiotic-associated diarrhea, pseudomembranous colitis, sepsis and death. Over the last decade, rates and severity of hospital infections in North America and Europe have increased dramatically and correlate with the emergence of a hypervirulent strain of C. difficile characterized by the presence of a binary toxin, CDT (C. difficile toxin). The binary toxin consists of an enzymatic component (CDTa) and a cellular binding component (CDTb) that together form the active binary toxin complex. CDTa harbors a pair of structurally similar but functionally distinct domains, an N-terminal domain (residues 1-215; (1-215)CDTa) that interacts with CDTb and a C-terminal domain (residues 216-420; (216-420)CDTa) that harbors the intact ADP-ribosyltransferase (ART) active site. Reported here are the (1)H, (13)C, and (15)N backbone resonance assignments of the 23 kDa, 205 amino acid C-terminal enzymatic domain of CDTa, termed (216-420)CDTa. These NMR resonance assignments for (216-420)CDTa represent the first for a family of ART binary toxins and provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.
Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander
2014-08-01
The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.
NASA Astrophysics Data System (ADS)
Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.
2017-10-01
We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.
Solution of a Complex Least Squares Problem with Constrained Phase.
Bydder, Mark
2010-12-30
The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.
Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms
NASA Astrophysics Data System (ADS)
Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi
2018-05-01
We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.
Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors.
Fard, Sahba Talebi; Murray, Kyle; Caverley, Michael; Donzella, Valentina; Flueckiger, Jonas; Grist, Samantha M; Huante-Ceron, Edgar; Schmidt, Shon A; Kwok, Ezra; Jaeger, Nicolas A F; Knights, Andrew P; Chrostowski, Lukas
2014-11-17
A resonance-enhanced, defect-mediated, ring resonator photodetector has been implemented as a single unit biosensor on a silicon-on-insulator platform, providing a cost effective means of integrating ring resonator sensors with photodetectors for lab-on-chip applications. This method overcomes the challenge of integrating hybrid photodetectors on the chip. The demonstrated responsivity of the photodetector-sensor was 90 mA/W. Devices were characterized using refractive index modified solutions and showed sensitivities of 30 nm/RIU.
Structural insights into the intertwined dimer of fyn SH2.
Huculeci, Radu; Garcia-Pino, Abel; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico
2015-12-01
Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand. © 2015 The Protein Society.
Using NMR to Determine Protein Structure in Solution
NASA Astrophysics Data System (ADS)
Cavagnero, Silvia
2003-02-01
Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.
Structural features of Fab fragments of rheumatoid factor IgM-RF in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V. V., E-mail: vvo@ns.crys.ras.ru; Lapuk, V. A.; Shtykova, E. V.
The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that formore » Fab-RF (21{+-}2 and 11{+-}1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.« less
Computational carbohydrate chemistry: what theoretical methods can tell us
Woods, Robert J.
2014-01-01
Computational methods have had a long history of application to carbohydrate systems and their development in this regard is discussed. The conformational analysis of carbohydrates differs in several ways from that of other biomolecules. Many glycans appear to exhibit numerous conformations coexisting in solution at room temperature and a conformational analysis of a carbohydrate must address both spatial and temporal properties. When solution nuclear magnetic resonance data are used for comparison, the simulation must give rise to ensemble-averaged properties. In contrast, when comparing to experimental data obtained from crystal structures a simulation of a crystal lattice, rather than of an isolated molecule, is appropriate. Molecular dynamics simulations are well suited for such condensed phase modeling. Interactions between carbohydrates and other biological macromolecules are also amenable to computational approaches. Having obtained a three-dimensional structure of the receptor protein, it is possible to model with accuracy the conformation of the carbohydrate in the complex. An example of the application of free energy perturbation simulations to the prediction of carbohydrate-protein binding energies is presented. PMID:9579797
Leclercq, Loïc; Bauduin, Pierre; Nardello-Rataj, Véronique
2017-04-11
In aqueous solution, dimethyldi-n-octylammonium chloride, [DiC 8 ][Cl], spontaneously forms dimers at low concentrations (1-10 mM) to decrease the strength of the hydrophobic-water contact. Dimers represent ideal building blocks for the abrupt edification of vesicles at 10 mM. These vesicles are fully characterized by dynamic and static light scattering, self-diffusion nuclear magnetic resonance, and freeze-fracture transmission electron microscopy. An increase in concentration leads to electrostatic repulsion between vesicles that explode into small micelles at 30 mM. These transitions are detected by means of surface tension, conductivity, and solubility of hydrophobic solutes as well as by isothermal titration microcalorimetry. These unusual supramolecular transitions emerge from the surfactant chemical structure that combines two contradictory features: (i) the double-chain structure tending to form low planar aggregates with low water solubility and (ii) the relatively short chains giving high hydrophilicity. The well-balanced hydrophilic-hydrophobic character of [DiC 8 ][Cl] is then believed to be at the origin of the unusual supramolecular sequence offering new opportunities for drug delivery systems.
NASA Astrophysics Data System (ADS)
Prakash, M.; Geetha, D.; Lydia Caroline, M.
2011-10-01
Tris( L-phenylalanine) L-phenylalaninium nitrate, C 9H 12NO 2+·NO 3-·3C 9H 11NO 2 (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG.
Methylation stabilizes the imino tautomer of dAMP and amino tautomer of dCMP in solution.
Jayanth, Namrata; Puranik, Mrinalini
2011-05-19
Alkylating agents cause methylation of adenosine and cytidine in DNA to generate 1-methyladenosine and 3-methylcytidine. These modified nucleosides can serve as regulators of cells or can act as agents of mutagenesis depending on the context and the partner enzymes. Solution structures and the chemical interactions with enzymes that lead to their recognition are of inherent interest. At physiological pH, 1-methyladenosine and 3-methylcytidine are presumed to be in the protonated amino forms in the literature. We report the structures, ionization states, and UV resonance Raman spectra of both substrates over a range of pH (2.5-11.0). The Raman excitation wavelength was tuned to selectively enhance Raman scattering from the nucleobase (260 nm) and further specifically from the imino form (210 nm) of 1-me-dAMP. We find that contrary to the general assumption, 1-me-dAMP is present in its neutral imino form at physiological pH and 3-me-dCMP is in the amino form. © 2011 American Chemical Society
Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho
2018-06-01
Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-09-01
In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.
Induction Hardening of External Gear
NASA Astrophysics Data System (ADS)
Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.
2018-03-01
Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.
Bardella, Paolo; Chow, Weng; Montrosset, Ivo
2016-01-08
In the last decades, various solutions have been proposed to increase the modulation bandwidth and consequently the transmission bit rate of integrated semiconductor lasers. In this manuscript we discuss a design procedure for a recently proposed laser structure realized with the integration of two DBR lasers. Design guidelines will be proposed and dynamic small and large signal simulations, calculated using a Finite Difference Traveling Wave numerical simulator, will be performed to confirm the design results and the effectiveness of the analyzed integrated configuration to achieve a direct modulation bandwidth up to 80 GHz
Theoretical study of dissociative recombination of Cl{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Mingwu; Graduate School of Chinese Academy of Sciences, Beijing 100039; Department of Physics, Stockholm University, S-106 91 Stockholm
Theoretical studies of low-energy electron collisions with Cl{sub 2}{sup +} leading to direct dissociative recombination are presented. The relevant potential energy curves and autoionization widths are calculated by combining electron scattering calculations using the complex Kohn variational method with multireference configuration interaction structure calculations. The dynamics on the four lowest resonant states of all symmetries is studied by the solution of a driven Schroedinger equation. The thermal rate coefficient for dissociative recombination of Cl{sub 2}{sup +} is calculated and the influence on the thermal rate coefficient from vibrational excited target ions is investigated.
Zhang, Xiayun; Yang, Zhongduo; Xie, Dengmin; Liu, Donglei; Chen, Zhenbin; Li, Ke; Li, Zhizhong; Tichnell, Brandon; Liu, Zhen
2018-01-01
The reversible addition fragmentation chain transfer (RAFT) polymerization method was adopted here to prepare a series of thermo-sensitive copolymers, poly (N,N-diethyl- acrylamide-b-N-vinylpyrrolidone). Their structures, molecular weight distribution and temperature sensitivity performances were characterized by the nuclear magnetic resonance ( 1 HNMR), the gel permeation chromatography (GPC) and the fluorescence spectrophotometer, respectively. It has been identified that the synthesis reaction of the block copolymer was living polymerization. The thermo-sensitivity study suggested that N-vinylpyrrolidone (NVP), played a key role on the lower critical solution temperature (LCST) performance.
Protonated Alcohols Are Examples of Complete Charge-Shift Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Peter; Petit, Alban; Ho, Junming
2014-10-15
Accurate gas-phase and solution-phase valence bond calculations reveal that protonation of the hydroxyl group of aliphatic alcohols transforms the C–O bond from a principally covalent bond to a complete charge-shift bond with principally “no-bond” character. All bonding in this charge-shift bond is due to resonance between covalent and ionic structures, which is a different bonding mechanism from that of traditional covalent bonds. Until now, charge-shift bonds have been previously identified in inorganic compounds or in exotic organic compounds. This work showcases that charge-shift bonds can occur in common organic species.
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
Xu, Yingqi; Plechanovová, Anna; Simpson, Peter; Marchant, Jan; Leidecker, Orsolya; Kraatz, Sebastian; Hay, Ronald T.; Matthews, Steve J.
2014-01-01
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer. PMID:24969970
A mathematical solution for the parameters of three interfering resonances
NASA Astrophysics Data System (ADS)
Han, X.; Shen, C. P.
2018-04-01
The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)
Coupled-Resonator-Induced Transparency
NASA Technical Reports Server (NTRS)
Smith, David D.; Chang, Hong-Rok; Fuller, Kirk A.; Rosenberger, A. T.; Boyd, Robert W.
2003-01-01
We demonstrate that a cancellation of absorption occurs on resonance for two (or any even number of) coupled optical resonators, due to mode splitting and classical destructive interference, particularly when the resonator finesse is large and the loss in the resonator furthest from the excitation waveguide is small. The linewidth and group velocity of a collection of such coupled-resonator structures may be decreased by using larger resonators of equal size, using larger resonators of unequal size where the optical path length of the larger resonator is an integer multiple of that of the smaller one, or by using a larger number of resonators per structure. We explore the analogy between these effects and electromagnetically induced transparency in an atomic system.
Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank
Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero
2010-01-01
Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR – X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution. PMID:21293729
Levy, Ariel R; Turgeman, Meital; Gevorkyan-Aiapetov, Lada; Ruthstein, Sharon
2017-08-01
Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer. © 2017 The Protein Society.
Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives
NASA Astrophysics Data System (ADS)
Myers, William K.
Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).
Bowen, Alice M; Johnson, Eachan O D; Mercuri, Francesco; Hoskins, Nicola J; Qiao, Ruihong; McCullagh, James S O; Lovett, Janet E; Bell, Stephen G; Zhou, Weihong; Timmel, Christiane R; Wong, Luet Lok; Harmer, Jeffrey R
2018-02-21
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe 2 S 2 ] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe 2 S 2 ] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.
Quantum Resonance Approach to Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.
Storr, Tim; Verma, Pratik; Pratt, Russell C; Wasinger, Erik C; Shimazaki, Yuichi; Stack, T Daniel P
2008-11-19
The geometric and electronic structure of an oxidized Cu complex ([CuSal](+); Sal = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV-vis-NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal](+) (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal](+), affording exclusively a Cu(III) species in the solid state (4-300 K). Variable-temperature solution studies suggest that [CuSal](+) exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal(*)](+) (S = 1) and the high-valent metal form [Cu(III)Sal](+) (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine-bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSal(red)](+) (Sal(red) = N,N'-bis(3,5-di- tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)-ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu-bis-phenoxide complexes.
Storr, Tim; Verma, Pratik; Pratt, Russell C.; Wasinger, Erik C.; Shimazaki, Yuichi; Stack, T. Daniel P.
2009-01-01
The geometric and electronic structure of an oxidized Cu complex ([CuSal]+; Sal = N, N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV–vis–NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal]+ (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal]+, affording exclusively a Cu(III) species in the solid state (4–300 K). Variable-temperature solution studies suggest that [CuSal]+ exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal•]+ (S = 1) and the high-valent metal form [Cu(III)Sal]+ (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine–bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSalred]+ (Salred = N, N′-bis(3,5-di-tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)–ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu–bis-phenoxide complexes. PMID:18939830
NASA Astrophysics Data System (ADS)
Kim, Mee Rahn; Hafez, Hassan A.; Chai, Xin; Besteiro, Lucas V.; Tan, Long; Ozaki, Tsuneyuki; Govorov, Alexander O.; Izquierdo, Ricardo; Ma, Dongling
2016-06-01
Semiconductor nanocrystals that show plasmonic resonance represent an emerging class of highly promising plasmonic materials with potential applications in diverse fields, such as sensing and optical and optoelectronic devices. We report a new approach to synthesizing homogeneous covellite CuS nanoplatelets in air and the almost complete disappearance of their plasmonic resonance once coupled with multiwalled carbon nanotubes (MWCNTs). These nanoplatelets were rapidly synthesized by a simple microwave-assisted approach at a relatively low reaction temperature in air, instead of under N2 as reported previously. These less severe synthesis conditions were enabled by appropriately selecting a Cu precursor and preparing a precursor sulfur solution (instead of using solid sulfur) and by using microwave radiation as the heat source. The advantages of utilizing microwave irradiation, including uniform and rapid heating, became clear after comparing the results of the synthesis with those achieved using a conventional oil-bath method under N2. The CuS nanoplatelets prepared in this way showed very strong plasmon resonance at c. 1160 nm as a result of their free charge carriers at the calculated density of nh = 1.5 × 1022 cm-3 based on the Drude model. With the aim of exploring their potential for near-infrared responsive optoelectronic devices, they were hybridized with functionalized MWCNTs. Their strong plasmon resonance almost completely disappeared on hybridization. Detailed investigations excluded the effect of possible structural changes in the CuS nanoplatelets during the hybridization process and a possible effect on the plasmon resonance arising from the chemical bonding of surface ligands. Charge transfer was considered to be the main reason for the almost complete disappearance of the plasmon resonance, which was further confirmed by terahertz (THz) time-domain spectrometry and THz time-resolved spectrometry measurements performed on the CuS-MWCNT nanohybrids. By extracting the rising and relaxation constants through fitting a single-exponential rising function and a bi-exponential relaxation function, in combination with the results of THz differential transmission as a function of the NIR pump fluence, it was found that hole injection changed the electronic properties of the MWCNTs only subtly on a short picosecond time scale, whereas the nature of the band structure of the MWCNTs remained largely unchanged. These findings aid our understanding of recently emerging semiconductor plasmonics and will also help in developing practical applications.Semiconductor nanocrystals that show plasmonic resonance represent an emerging class of highly promising plasmonic materials with potential applications in diverse fields, such as sensing and optical and optoelectronic devices. We report a new approach to synthesizing homogeneous covellite CuS nanoplatelets in air and the almost complete disappearance of their plasmonic resonance once coupled with multiwalled carbon nanotubes (MWCNTs). These nanoplatelets were rapidly synthesized by a simple microwave-assisted approach at a relatively low reaction temperature in air, instead of under N2 as reported previously. These less severe synthesis conditions were enabled by appropriately selecting a Cu precursor and preparing a precursor sulfur solution (instead of using solid sulfur) and by using microwave radiation as the heat source. The advantages of utilizing microwave irradiation, including uniform and rapid heating, became clear after comparing the results of the synthesis with those achieved using a conventional oil-bath method under N2. The CuS nanoplatelets prepared in this way showed very strong plasmon resonance at c. 1160 nm as a result of their free charge carriers at the calculated density of nh = 1.5 × 1022 cm-3 based on the Drude model. With the aim of exploring their potential for near-infrared responsive optoelectronic devices, they were hybridized with functionalized MWCNTs. Their strong plasmon resonance almost completely disappeared on hybridization. Detailed investigations excluded the effect of possible structural changes in the CuS nanoplatelets during the hybridization process and a possible effect on the plasmon resonance arising from the chemical bonding of surface ligands. Charge transfer was considered to be the main reason for the almost complete disappearance of the plasmon resonance, which was further confirmed by terahertz (THz) time-domain spectrometry and THz time-resolved spectrometry measurements performed on the CuS-MWCNT nanohybrids. By extracting the rising and relaxation constants through fitting a single-exponential rising function and a bi-exponential relaxation function, in combination with the results of THz differential transmission as a function of the NIR pump fluence, it was found that hole injection changed the electronic properties of the MWCNTs only subtly on a short picosecond time scale, whereas the nature of the band structure of the MWCNTs remained largely unchanged. These findings aid our understanding of recently emerging semiconductor plasmonics and will also help in developing practical applications. Electronic supplementary information (ESI) available: TEM, XRD, SAED and UV-Vis-NIR absorption spectra of the control reaction results. See DOI: 10.1039/c6nr03426h
Mean motion resonances. [of asteroid belt structure
NASA Technical Reports Server (NTRS)
Froeschle, CL.; Greenberg, R.
1989-01-01
Recent research on the resonant structure of the asteroid belt is reviewed. The resonant mechanism is discussed, and analytical models for the study of mean motion resonances are examined. Numerical averaging methods and mapping methods are considered. It is shown how fresh insight can be obtained by means of a new semianalytical approach.
Ay, Sinan; Küçük, Dervisşhan; Gümüş, Cesur; Kara, M Isa
2011-11-01
The aim of this study was to evaluate the distribution and absorption of local anesthetic solutions in inferior alveolar nerve block using magnetic resonance imaging. Forty healthy volunteers were divided into 4 groups and injected with 1.5 mL for inferior alveolar nerve block and 0.3 mL for lingual nerve block. The solutions used for the different groups were 2% lidocaine, 2% lidocaine with 0.125 mg/mL epinephrine, 4% articaine with 0.006 mg/mL epinephrine, and 4% articaine with 0.012 mg/mL epinephrine. All subjects had axial T2-weighted and fat-suppressed images at 0, 60, and 120 minutes after injection. The localization, area, and intensity (signal characteristics) of the solutions were analyzed and onset and duration times of the anesthesia were recorded. There were no significant differences between groups with regard to the intensity and area of the solutions at 0, 60, and 120 minutes after injection, but differences were found within each group. No between-group differences were found on magnetic resonance imaging in the distribution and absorption of lidocaine with or without epinephrine and articaine with 0.006 and 0.012 mg/mL epinephrine. All solutions were noticeably absorbed at 120 minutes after injection. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
The double polarization program of CBELSA/TAPS
NASA Astrophysics Data System (ADS)
Thiel, Annika
2014-06-01
The excitation spectrum of the proton consists of resonances with substancial width which are often strongly overlapping and are therefore difficult to disentangle. To determine the exact contributions and identify these resonances, a partial wave analysis solution has to be found. For a complete experiment, which leads to an unambiguous solution, several single and double polarization observables are needed. With the Crystal Barrel/TAPS experiment at ELSA, the measurement of double polarization observables in different reactions is possible by using a circularly or linearly polarized photon beam on a transversely or longitudinally polarized butanol target.
Long-term motion of resonant satellites with arbitrary eccentricity and inclination
NASA Technical Reports Server (NTRS)
Nacozy, P. E.; Diehl, R. E.
1982-01-01
A first-order, semi-analytical method for the long-term motion of resonant satellites is introduced. The method provides long-term solutions, valid for nearly all eccentricities and inclinations, and for all commensurability ratios. The method allows the inclusion of all zonal and tesseral harmonics of a nonspherical planet. We present here an application of the method to a synchronous satellite including J2 and J22 harmonics. Global, long-term solutions for this problem are given for arbitrary values of eccentricity, argument of perigee and inclination.
Small angle neutron and X-ray studies of carbon structures with metal atoms
NASA Astrophysics Data System (ADS)
Lebedev, V. T.; Szhogina, A. A.; Bairamukov, V. Yu
2017-05-01
Encapsulation of metal atoms inside carbon single-wall cages or within multi-layer cells has been realized using molecular precursors and high temperature processes transforming them into desirable structures. Endohedral fullerenols Fe@C60(OH)X with 3d-metal (iron) have been studied by SANS in aqueous solutions where they form stable globular clusters with radii R C ∼ 10-12 nm and aggregation numbers N C ∼ 104. This self-assembly is a crucial feature of paramagnetic fullerenols as perspective contrast agents for Magneto-Resonance Imaging in medicine. Cellular carbon-metal structures have been created by the pyrolysis of diphthalocyanines of lanthanides and actinides. It was established that these ultra porous matrices consist of globular cells of molecular precursor size (∼ 1 nm) which are aggregated into superstructures. This provides retain of metal atoms inside matrices which may serve for safety storage of spent fuel of nuclear power plants.
He, Liping; Sato, Kae; Abo, Mitsuru; Okubo, Akira; Yamazaki, Sunao
2003-03-01
Saccharides including mono- and disaccharides were quantitatively derivatized with 2-aminobenzoic acid (2-AA). These derivatives were then separated by capillary zone electrophoresis with UV detection using 50mM sodium phosphate buffer as the running electrolyte solution. In particular, the saccharide derivatives with the same molecular weight as 2-AA aldohexoses (mannose and glucose) and 2-AA aldopentoses (ribose and xylose) were well separated. The underlying reasons for separation were explored by studying their structural data using 1H and 13C NMR. It was found that the configurational difference between their hydroxyl group at C2 or C3 could cause the difference in Stokes' radii between their molecules and thus lead to different electrophoretic mobilities. The correlation between the electrophoretic behavior of these carbohydrate derivatives and their structures was studied utilizing the calculated molecular models of the 2-AA-labeled mannose, glucose, ribose, and xylose.
Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding
Ho, Peter C.; Szydlowski, Patrick; Sinclair, Jocelyn; Elder, Philip J. W.; Kübel, Joachim; Gendy, Chris; Lee, Lucia Myongwon; Jenkins, Hilary; Britten, James F.; Morim, Derek R.; Vargas-Baca, Ignacio
2016-01-01
Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal. PMID:27090355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthen-Veettil, B., E-mail: b.puthen-veettil@unsw.edu.au; Patterson, R.; König, D.
Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in amore » peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower “series resistance.” While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.« less
NASA Astrophysics Data System (ADS)
Chen, Mei-Dan; Li, Xian; Wang, Yao; Li, Biao
2017-06-01
With symbolic computation, some lump solutions are presented to a (3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters. Supported by National Natural Science Foundation of China under Grant Nos. 11271211, 11275072, and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502 and K.C. Wong Magna Fund in Ningbo University
Zook, James; Mo, Gina; Sisco, Nicholas J; Craciunescu, Felicia M; Hansen, Debra T; Baravati, Bobby; Cherry, Brian R; Sykes, Kathryn; Wachter, Rebekka; Van Horn, Wade D; Fromme, Petra
2015-06-02
Tularemia is a potentially fatal bacterial infection caused by Francisella tularensis, and is endemic to North America and many parts of northern Europe and Asia. The outer membrane lipoprotein, Flpp3, has been identified as a virulence determinant as well as a potential subunit template for vaccine development. Here we present the first structure for the soluble domain of Flpp3 from the highly infectious Type A SCHU S4 strain, derived through high-resolution solution nuclear magnetic resonance (NMR) spectroscopy; the first structure of a lipoprotein from the genus Francisella. The Flpp3 structure demonstrates a globular protein with an electrostatically polarized surface containing an internal cavity-a putative binding site based on the structurally homologous Bet v1 protein family of allergens. NMR-based relaxation studies suggest loop regions that potentially modulate access to the internal cavity. The Flpp3 structure may add to the understanding of F. tularensis virulence and contribute to the development of effective vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Challenges in NMR-based structural genomics
NASA Astrophysics Data System (ADS)
Sue, Shih-Che; Chang, Chi-Fon; Huang, Yao-Te; Chou, Ching-Yu; Huang, Tai-huang
2005-05-01
Understanding the functions of the vast number of proteins encoded in many genomes that have been completely sequenced recently is the main challenge for biologists in the post-genomics era. Since the function of a protein is determined by its exact three-dimensional structure it is paramount to determine the 3D structures of all proteins. This need has driven structural biologists to undertake the structural genomics project aimed at determining the structures of all known proteins. Several centers for structural genomics studies have been established throughout the world. Nuclear magnetic resonance (NMR) spectroscopy has played a major role in determining protein structures in atomic details and in a physiologically relevant solution state. Since the number of new genes being discovered daily far exceeds the number of structures determined by both NMR and X-ray crystallography, a high-throughput method for speeding up the process of protein structure determination is essential for the success of the structural genomics effort. In this article we will describe NMR methods currently being employed for protein structure determination. We will also describe methods under development which may drastically increase the throughput, as well as point out areas where opportunities exist for biophysicists to make significant contribution in this important field.
Tests and comparisons of gravity models.
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Douglas, B. C.
1971-01-01
Optical observations of the GEOS satellites were used to obtain orbital solutions with different sets of geopotential coefficients. The solutions were compared before and after modification to high order terms (necessary because of resonance) and were then analyzed by comparing subsequent observations with predicted trajectories. The most important source of error in orbit determination and prediction for the GEOS satellites is the effect of resonance found in most published sets of geopotential coefficients. Modifications to the sets yield greatly improved orbits in most cases. The results of these comparisons suggest that with the best optical tracking systems and gravity models, satellite position error due to gravity model uncertainty can reach 50-100 m during a heavily observed 5-6 day orbital arc. If resonant coefficients are estimated, the uncertainty is reduced considerably.
NASA Astrophysics Data System (ADS)
Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna
Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.
Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.
Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi
2012-08-07
The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.
Heparin Characterization: Challenges and Solutions
NASA Astrophysics Data System (ADS)
Jones, Christopher J.; Beni, Szabolcs; Limtiaco, John F. K.; Langeslay, Derek J.; Larive, Cynthia K.
2011-07-01
Although heparin is an important and widely prescribed pharmaceutical anticoagulant, its high degree of sequence microheterogeneity and size polydispersity make molecular-level characterization challenging. Unlike nucleic acids and proteins that are biosynthesized through template-driven assembly processes, heparin and the related glycosaminoglycan heparan sulfate are actively remodeled during biosynthesis through a series of enzymatic reactions that lead to variable levels of O- and N-sulfonation and uronic acid epimers. As summarized in this review, heparin sequence information is determined through a bottom-up approach that relies on depolymerization reactions, size- and charge-based separations, and sensitive mass spectrometric and nuclear magnetic resonance experiments to determine the structural identity of component oligosaccharides. The structure-elucidation process, along with its challenges and opportunities for future analytical improvements, is reviewed and illustrated for a heparin-derived hexasaccharide.
McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi
2008-09-16
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.
NASA Astrophysics Data System (ADS)
Swanson, Ryan David
The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to hydraulic conductivity fields estimated through ordinary kriging and sequential Gaussian simulation. Time-lapse electrical measurements are used to verify or dismiss aspects of breakthrough curves for different hydraulic conductivity fields. Our results quantify the potential for geophysical measurements to infer on single-rate DDMT parameters, show site-specific relations between hydraulic and electrical conductivity, and track solute exchange into and out of less-mobile domains.
Khan, Shahid N; Persons, John D; Paulsen, Janet L; Guerrero, Michel; Schiffer, Celia A; Kurt-Yilmaz, Nese; Ishima, Rieko
2018-03-13
In the era of state-of-the-art inhibitor design and high-resolution structural studies, detection of significant but small protein structural differences in the inhibitor-bound forms is critical to further developing the inhibitor. Here, we probed differences in HIV-1 protease (PR) conformation among darunavir and four analogous inhibitor-bound forms and compared them with a drug-resistant mutant using nuclear magnetic resonance chemical shifts. Changes in amide chemical shifts of wild-type (WT) PR among these inhibitor-bound forms, ΔCSP, were subtle but detectable and extended >10 Å from the inhibitor-binding site, asymmetrically between the two subunits of PR. Molecular dynamics simulations revealed differential local hydrogen bonding as the molecular basis of this remote asymmetric change. Inhibitor-bound forms of the drug-resistant mutant also showed a similar long-range ΔCSP pattern. Differences in ΔCSP values of the WT and the mutant (ΔΔCSPs) were observed at the inhibitor-binding site and in the surrounding region. Comparing chemical shift changes among highly analogous inhibitors and ΔΔCSPs effectively eliminated local environmental effects stemming from different chemical groups and enabled exploitation of these sensitive parameters to detect subtle protein conformational changes and to elucidate asymmetric and remote conformational effects upon inhibitor interaction.
NASA Astrophysics Data System (ADS)
House, Christopher; Armstrong, Jenelle; Burkhardt, John; Firebaugh, Samara
2014-06-01
With the end goal of medical applications such as non-invasive surgery and targeted drug delivery, an acoustically driven resonant structure is proposed for microrobotic propulsion. At the proposed scale, the low Reynolds number environment requires non-reciprocal motion from the robotic structure for propulsion; thus, a "flapper" with multiple, flexible joints, has been designed to produce excitation modes that involve the necessary flagella-like bending for non-reciprocal motion. The key design aspect of the flapper structure involves a very thin joint that allows bending in one (vertical) direction, but not the opposing direction. This allows for the second mass and joint to bend in a manner similar to a dolphin's "kick" at the bottom of their stroke, resulting in forward thrust. A 130 mm x 50 mm x 0.2 mm prototype of a swimming robot that utilizes the flapper was fabricated out of acrylic using a laser cutter. The robot was tested in water and in a water-glycerine solution designed to mimic microscale fluid conditions. The robot exhibited forward propulsion when excited by an underwater speaker at its resonance mode, with velocities up to 2.5 mm/s. The robot also displayed frequency selectivity, leading to the possibility of exploring a steering mechanism with alternatively tuned flappers. Additional tests were conducted with a robot at a reduced size scale.
Cao, Li-Hui; Li, Hai-Yang; Xu, Hong; Wei, Yong-Li; Zang, Shuang-Quan
2017-09-12
Metal-organic frameworks (MOFs) with light-harvesting building blocks provide an excellent platform to study energy transfer in networks with well-defined structures. Here, we report the synthesis, dissolution-recrystallization structural transformation (DRST) and the Förster resonance energy transfer (FRET) properties of a 2D microporous MOF {[Cd 2 (L 1 ) 3 (Hdabco) 2 ]·5DMAc·6H 2 O} n (Cd-MOF, 1). Complex 1 can be dissolved in water and three other products with different dimensions recrystallized from the aqueous solution under diverse reaction conditions were obtained. Due to the porosity and excellent blue luminescence properties of complex 1, we also studied the FRET process between 1 and guest dyes. Two distinct organic dye molecules viz., acridine orange (AO) and rhodamine B (RhB), are encapsulated in 1 which has honeycomb-type nanochannels, and their influence on fluorescence emission has also been studied. The microporous complex 1 in (AO + RhB)@1 serves as an energy funnel that harvests high energy excitation and channels it onto AO and then onto RhB. The steady-state fluorescence and fluorescence dynamics of emission reveal successfully the process of stepwise vectorial energy transfer. Therefore, MOFs could be a class of promising host materials to be further explored in the field of energy transfer between MOF-host and organic guests.
Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance
NASA Astrophysics Data System (ADS)
Sadeghi, S.; Hamidi, S. M.
2018-04-01
Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.
Human serum albumin adsorption study on 62-MHz miniaturized quartz gravimetric sensors.
Kao, Ping; Patwardhan, Ashish; Allara, David; Tadigadapa, Srinivas
2008-08-01
We have designed and fabricated 25-microm-thick quartz resonators operating at a fundamental resonance frequency of approximately 62 MHz. The results show a substantial increase in the mass sensitivity compared to single monolithic commercial resonators operating at lower frequencies in the approximately 5-10-MHz range. The overall performance of the micromachined resonators is demonstrated for the example of human serum albumin protein adsorption from aqueous buffer solutions onto gold electrodes functionalized with self-assembled monolayers. The results show a saturation adsorption frequency change of 6.8 kHz as opposed to 40 Hz for a commercial approximately 5-MHz sensor under identical loading conditions. From the analysis of the adsorption isotherm, the equilibrium adsorption constant of the adsorption of the protein layer was found to be K = 8.03 x 10(6) M(-1), which is in agreement with the values reported in the literature. The high sensitivity of the miniaturized QCM devices can be a significant advantage in both vapor and solution adsorption analyses.
Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert
2018-02-01
This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Theoretical study of platonic crystals with periodically structured N-beam resonators
NASA Astrophysics Data System (ADS)
Gao, Penglin; Climente, Alfonso; Sánchez-Dehesa, José; Wu, Linzhi
2018-03-01
A multiple scattering theory is applied to study the properties of flexural waves propagating in a plate with periodically structured N-beam resonators. Each resonator consists of a circular hole containing an inner disk connected to background plate with N rectangular beams. The Bloch theorem is employed to obtain the band structure of a two-dimensional lattice containing a single resonator per unit cell. Also, a numerical algorithm has been developed to get the transmittance through resonator slabs infinitely long in the direction perpendicular to the incident wave. For the numerical validation, a square lattice of 2-beam resonators has been comprehensively analyzed. Its band structure exhibits several flat bands, indicating the existence of local resonances embedded in the structure. Particularly, the one featured as the fundamental mode of the inner disk opens a bandgap at low frequencies. This mode has been fully described in terms of a simple spring-mass model. As a practical application of the results obtained, a homogenization approach has been employed to design a focusing lens for flexural waves, where the index gradient is obtained by adjusting the orientation of the resonators beams. Numerical experiments performed within the framework of a three-dimensional finite element method have been employed to discuss the accuracy of the models described here.
Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator
NASA Astrophysics Data System (ADS)
Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad
2011-03-01
In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.
Image-based overlay measurement using subsurface ultrasonic resonance force microscopy
NASA Astrophysics Data System (ADS)
Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.
2018-03-01
Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.
Low losses left-handed materials with optimized electric and magnetic resonance
NASA Astrophysics Data System (ADS)
Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng
2010-03-01
We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.
Yuan, C; Byeon, I J; Li, Y; Tsai, M D
1999-03-09
Bovine pancreatic phospholipase A2 (PLA2), a small (13.8 kDa) Ca2+-dependent lipolytic enzyme, is rich in functional and structural character. In an effort to examine its detailed structure-function relationship, we determined its solution structure by multidimensional nuclear magnetic resonance (NMR) spectroscopy at a functionally relevant pH. An ensemble of 20 structures generated has an average root-mean-square deviation (RMSD) of 0.62 +/- 0.08 A for backbone (N, Calpha, C) atoms and 0.98 +/- 0.09 A for all heavy atoms. The overall structure shows several notable differences from the crystal structure: the first three residues at the N-terminus, the calcium-binding loop (Y25-T36), and the surface loop (V63-N72) appear to be flexible; the alpha-helical conformation of helix B (E17-F22) is absent; helix D appears to be shorter (D59-V63 instead of D59-D66); and the hydrogen-bonding network is less defined. These differences were analyzed in relation to the function of PLA2. We then further examined the H-bonding network, because its functional role or even its existence in solution has been in dispute recently. Our results show that part of the H-bonding network (the portion away from N-terminus) clearly exists in solution, as evidenced by direct observation (at 11.1 ppm) of a strong H-bond between Y73 and D99 and an implicated interaction between D99 and H48. Analyses of a series of mutants indicated that the existence of the Y73.D99 H-bond correlates directly with the conformational stability of the mutant. Loss of this H-bond results in a loss of 2-3 kcal/mol in the conformational stability of PLA2. The unequivocal identification and demonstration of the structural importance of a specific hydrogen bond, and the magnitude of its contribution to conformational stability, are uncommon to the best of our knowledge. Our results also suggest that, while the D99.H48 catalytic diad is the key catalytic machinery of PLA2, it also helps to maintain conformational integrity.
Fang, Lingling; Wang, Yueliang; Liu, Miao; Gong, Ming; Xu, An; Deng, Zhaoxiang
2016-11-07
Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag + soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.
2016-07-01
Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.
Li, Hongwei; Yang, Fan; Kang, Xue; Xia, Bin; Jin, Changwen
2008-04-15
Rhodanese catalyzes the sulfur-transfer reaction that transfers sulfur from thiosulfate to cyanide by a double-displacement mechanism, in which an active cysteine residue plays a central role. Previous studies indicated that the phage-shock protein E (PspE) from Escherichia coli is a rhodanese composed of a single active domain and is the only accessible rhodanese among the three single-domain rhodaneses in E. coli. To understand the catalytic mechanism of rhodanese at the molecular level, we determined the solution structures of the sulfur-free and persulfide-intermediate forms of PspE by nuclear magnetic resonance (NMR) spectroscopy and identified the active site by NMR titration experiments. To obtain further insights into the catalytic mechanism, we studied backbone dynamics by NMR relaxation experiments. Our results demonstrated that the overall structures in both sulfur-free and persulfide-intermediate forms are highly similar, suggesting that no significant conformational changes occurred during the catalytic reaction. However, the backbone dynamics revealed that the motional properties of PspE in its sulfur-free form are different from the persulfide-intermediate state. The conformational exchanges are largely enhanced in the persulfide-intermediate form of PspE, especially around the active site. The present structural and biochemical studies in combination with backbone dynamics provide further insights in understanding the catalytic mechanism of rhodanese.
Preparation and Structural Properties of InIII–H Complexes
Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.
2013-01-01
The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saripalli, Ravi Kiran, E-mail: rksaripalli@physics.iisc.ernet.in; Sanath Kumar, R.; Elizabeth, Suja
2016-05-06
Large single crystals of Sodium D-isoacsorbate monohydrate and Lithium L-ascorbate dehydrate were grown using solution growth technique. Dielectric constant and dielectric loss were monitored as a function of frequency at different temperatures. These are typically characterized by strong resonance peaks. The piezoelectric coefficients d{sub 31}, elastic coefficient (S{sub 11}) and electromechanical coupling coefficient (k{sub 31}) were estimated by resonance-antiresonance method. The temperature dependence of the resonance-peaks frequencies was studied.
Probing Majorana modes in the tunneling spectra of a resonant level.
Korytár, R; Schmitteckert, P
2013-11-27
Unambiguous identification of Majorana physics presents an outstanding problem whose solution could render topological quantum computing feasible. We develop a numerical approach to treat finite-size superconducting chains supporting Majorana modes, which is based on iterative application of a two-site Bogoliubov transformation. We demonstrate the applicability of the method by studying a resonant level attached to the superconductor subject to external perturbations. In the topological phase, we show that the spectrum of a single resonant level allows us to distinguish peaks coming from Majorana physics from the Kondo resonance.
Active control of helicopter air resonance in hover and forward flight
NASA Technical Reports Server (NTRS)
Takahashi, M. D.; Friedman, P. P.
1988-01-01
A coupled rotor/fuselage helicopter analysis is presented. The accuracy of the model is illustrated by comparing it with experimental data. The sensitivity of the open loop damping of the unstable resonance mode to such modeling effects as blade torsional flexibility, unsteady aerodynamics, forward flight, periodic terms, and trim solution is illustrated by numerous examples. Subsequently, the model is used in conjunction with linear optimal control theory to stabilize the air resonance mode. The influence of the modeling effects mentioned before on active resonance control is then investigated.