Science.gov

Sample records for resonance spin-spin coupling

  1. Theoretical grounds of relativistic methods for calculation of spin-spin coupling constants in nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.

    2016-04-01

    The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin-spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin-spin coupling constants using the available software are given. The bibliography includes 622 references.

  2. Spin-Spin Coupling in the Solar System

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-09-01

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole-quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin-spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  3. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.

    PubMed

    Dracínský, Martin; Kaminský, Jakub; Bour, Petr

    2009-03-01

    Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in

  4. Finite-Perturbation Intermediate - Neglect - of - Differential - Overlap Molecular Orbital Calculations of Nuclear Magnetic Resonance Spin-Spin Coupling Constants for Polycyclic Aromatic Hydrocarbons and Aromatic Nitrogen Heterocyclics

    NASA Astrophysics Data System (ADS)

    Long, Sheila Ann Thibeault

    The H-H, C-H, and C-C spin-spin coupling constants were calculated by the finite-perturbation, intermediate -neglect-of-differential-overlap method using the Fermi contact interaction for benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations were made using both the actual and the average molecular geometries. For all six of these molecules, the agreements between the calculated and the experimental coupling constants were comparable to those previously reported for other, predominantly smaller, molecules. The actual molecular geometries always gave the correct relative order of values for the H-H coupling constants, whereas the average molecular geometries did not always do so. The magnitudes, but not the signs, of the calculated coupling constants were sensitive to small changes in molecular geometry. The results were the best (next best) for the H-H (C-H) coupling constants. In addition the H-H, C-H, N-H, C-C, and N-C spin -spin coupling constants were calculated in a similar manner for pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, quinoline, quinoxaline, phthalazine, benzo g quinoxaline, and benzo b phenazine. The agreements between the theoretical and the experimental values were comparable to those for the polycyclic aromatic hydrocarbons.

  5. Investigation of the resonance-assisted hydrogen bond in model β-diketones through localized molecular orbital analysis of the spin-spin coupling constants related to the O-H···O hydrogen bond.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F

    2015-02-01

    The resonance-assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin-spin coupling constants between atoms either involved or close to the O-H···O system of some β-diketones and their saturated counterparts. The analysis, carried out at the level of the second-order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π-electron structure supporting the idea of the existence of the resonance-assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π-electrons.

  6. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  7. Calculation of nuclear spin-spin coupling constants using frozen density embedding.

    PubMed

    Götz, Andreas W; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between (199)Hg and (13)C upon coordination of dimethylsulfoxide solvent molecules.

  8. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  9. Analyzing and Interpreting NMR Spin-Spin Coupling Constants Using Molecular Orbital Calculations

    ERIC Educational Resources Information Center

    Autschbach, Jochen; Le Guennic, Boris

    2007-01-01

    Molecular orbital plots are used to analyze and interpret NMR spin-spin coupling constants, also known as J coupling constants. Students have accepted the concept of contributions to molecular properties from individual orbitals without the requirement to provide explicit equations.

  10. Weak Te,Te interactions through the looking glass of NMR spin-spin coupling.

    PubMed

    Bühl, Michael; Knight, Fergus R; Křístková, Anezka; Malkin Ondík, Irina; Malkina, Olga L; Randall, Rebecca A M; Slawin, Alexandra M Z; Woollins, J Derek

    2013-02-25

    Across the bay: J((125)Te, (125)Te) spin-spin coupling is a highly sensitive probe into the electronic and geometric structure of 1,8-peri-substituted naphthalene tellurium derivatives. The coupling is related to the onset of multicenter bonding in these systems.

  11. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system. PMID:23743998

  12. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system.

  13. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru

    2013-03-01

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form {r}_{12}⊗ {r}_{12}/r_{12}^n over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation.

  14. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.

    PubMed

    Shiozaki, Toru

    2013-03-21

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form r12⊗r12/r12(n) over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation. PMID:23534619

  15. Calculations of spin-spin coupling constants in aromatic nitrogen heterocyclics

    NASA Astrophysics Data System (ADS)

    Long, S. A. T.; Memory, J. D.

    HH, CH, NH, CC, and NC spin-spin coupling constants were calculated using the FP-INDO method and the Fermi contact interaction for pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, quinoline, quinoxaline, phthalazine, isoquinoline, cinnoline, quinazoline, acridine, phenazine, benzo[ g]quinoxaline, and benzo[ b]-phenazine. The agreement between theory and experiment was comparable to that for polynuclear aromatic hydrocarbons reported earlier.

  16. Density-Functional and Coupled-Cluster Singles-and-Doubles Calculations of the Nuclear Shielding and Indirect Nuclear Spin-Spin Coupling Constants of o-Benzyne.

    PubMed

    Helgaker, Trygve; Jaszuński, Michał

    2007-01-01

    Density-functional theory (DFT) and coupled-cluster singles-and-doubles (CCSD) theory are applied to compute the nuclear magnetic resonance (NMR) shielding and indirect nuclear spin-spin coupling constants of o-benzyne, whose biradical nature makes it difficult to study both experimentally and theoretically. Because of near-equilibrium triplet instabilities that follow from its biradical character, the calculated DFT NMR properties of o-benzyne are unusually sensitive to details of the exchange-correlation functional. However, this sensitivity is greatly reduced if these properties are calculated at the equilibrium of the chosen functional. A strong correlation is demonstrated between the quality of the calculated indirect spin-spin coupling constants and the quality of the calculated lowest triplet excitation energy in o-benzyne. Orbital-unrelaxed coupled-cluster theory should be less affected by such instabilities, and the CCSD NMR properties were only calculated at the experimental equilibrium geometry. For the shielding constants, the results in best agreement with experimental results are obtained with CCSD theory and with the Keal-Tozer KT1 and KT2 functionals. For the triply bonded carbon atoms, these models yield an isotropic shielding of 1.3, -3.3, and -1.2 ppm, respectively, compared with the experimentally observed shielding of 3.7 ppm for incarcerated o-benzyne. For the indirect spin-spin coupling constants, the CCSD model and the Perdew-Burke-Ernzerhof functional both yield reliable results; for the most interesting spin-spin coupling constant, (1)J (C⋮C), we obtain 210 and 209 Hz with these two models, respectively, somewhat above the recently reported experimental value of 177.9 ± 0.7 Hz for o-benzyne inside a molecular container, suggesting large incarceration effects.

  17. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  18. Dielectric permittivity and temperature effects on spin-spin couplings studied on acetonitrile.

    PubMed

    Sahakyan, Aleksandr B; Shahkhatuni, Astghik A; Shahkhatuni, Aleksan G; Panosyan, Henry A

    2008-01-01

    Dielectric permittivity (epsilon) and temperature effects on indirect spin-spin coupling constants were studied using acetonitrile as a probe molecule. Experiments were accompanied by hybrid DFT (density functional theory) studies, where the solvent was modeled using the polarization continuum model. Owing to its numerous types of J-couplings, acetonitrile is a very convenient molecule against which various basis sets can be tested or the best basis set can be selected for a given study. The results show reasonable agreement between calculated and experimental values. According to our data, scalar spin-spin coupling constants undergo substantial shifts at lower values of the dielectric constant. Thus J-coupling values are not transferable between measurements made at differing epsilon-conditions, and the assumption of the epsilon-independence of the J-coupling can lead to crucial mistakes in experiments using low-epsilon media. Dielectric permittivity also causes small geometric fluctuations within the molecule, which themselves can affect J-coupling values. Examinations of the results computed with frozen and relaxed geometries show that geometry mediation mostly affects the spin-dipole term of the J-coupling; hence, for accurate evaluation of the latter, frozen geometries are not acceptable. Another interesting fact revealed is the connection between the solvent dielectric properties and the temperature-dependence slopes of J-couplings in corresponding media. PMID:18098231

  19. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  20. Correlation of 1JCH spin-spin coupling constants and their solvent sensitivities

    NASA Astrophysics Data System (ADS)

    Shahkhatuni, Astghik A.; Sahakyan, Aleksandr B.; Shahkhatuni, Aleksan G.; Mamyan, Suren S.; Panosyan, Henry A.

    2012-07-01

    The solvent induced changes of one-bond spin-spin coupling constants (SSCC) of several substituted methanes are investigated in solvents with different polarities. The correlation between solute SSCC and solvent dielectric constant is used to estimate the solvent effect-free ('pure') values of SSCCs by linear extrapolation to zero in reaction field coordinates. The obtained 'pure' SSCCs are close to the values, measured by gas phase NMR spectroscopy or predicted by quantum chemical calculations for isolated molecules. The slopes of SSCC dependencies, interpreted as solvent sensitivities of each molecule, are linearly correlated with the 'pure' values of SSCC.

  1. Molecular properties in the Tamm-Dancoff approximation: indirect nuclear spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.

    2015-07-01

    The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.

  2. NMR spin-spin coupling constants in polymethine dyes as polarity indicators.

    PubMed

    Murugan, N Arul; Aidas, Kestutis; Kongsted, Jacob; Rinkevicius, Zilvinas; Ågren, Hans

    2012-09-10

    Herein, we explore the use of spin-spin coupling constants (SSCCs) in merocyanine (MCYNE) dyes as indicators of polarity. For this purpose, we use Car-Parrinello hybrid quantum mechanics/molecular mechanics (QM/MM) to determine the structures of MCYNE in solvents of different polarity, followed by computations of the SSCCs by using QM/MM linear-response theory. The molecular geometry of MCYNE switches between neutral, cyanine-like, and zwitterionic depending on the polarity of the solvent. This structural variation is clearly reflected in the proton SSCCs in the polymethine backbone, which are highly sensitive to the dielectric nature of the environment; this mechanism can be used as a "polarity indicator" for different microenvironments. This result is highlighted by computing the SSCCs of the MCYNE probe in the cavity of the beta-lactoglobulin protein. The computed SSCCs clearly indicate a non-polar hydrophobic dielectric nature of this cavity. PMID:22887687

  3. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    NASA Astrophysics Data System (ADS)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  4. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    SciTech Connect

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  5. Constraints on Short-Range Spin-Dependent Interactions from Scalar Spin-Spin Coupling in Deuterated Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Romalis, M. V.; Kimball, D. F. Jackson

    2013-01-01

    A comparison between existing nuclear magnetic resonance measurements and calculations of the scalar spin-spin interaction (J coupling) in deuterated molecular hydrogen yields stringent constraints on anomalous spin-dependent potentials between nucleons at the atomic scale (˜1Å). The dimensionless coupling constant gPpgPN/4π associated with the exchange of pseudoscalar (axionlike) bosons between nucleons is constrained to be less than 3.6×10-7 for boson masses in the range of 5 keV, representing improvement by a factor of 100 over previous constraints. The dimensionless coupling constant gApgAN/4π associated with the exchange of an axial-vector boson between nucleons is constrained to be gApgAN/4π<1.3×10-19 for bosons of mass ≲1000eV, improving constraints at this distance scale by a factor of 100 for proton-proton couplings and more than 8 orders of magnitude for neutron-proton couplings.

  6. What determines the sign of the Fermi-contact contribution to the NMR spin spin coupling constant?

    NASA Astrophysics Data System (ADS)

    Del Bene, Janet E.; Elguero, José

    2003-11-01

    The Dirac vector model for the sign of the spin-spin coupling constant ( J) between a pair of atoms states that one-bond coupling constants are positive, two-bond negative, three-bond positive, etc. However, this rule is often violated. In an attempt to understand the sign of J, we propose a new model, the Nuclear magnetic resonance triplet wavefunction model (NMRTWM) which is based on the phases of excited triplet state wavefunctions, and the response of magnetic nuclei to these phases. The model demonstrates that, (1) the excited states which contribute to the coupling constant do so in a regular manner; (2) the sign of an individual contribution is determined by the nodal character of the excited-state wavefunction and the response of the nuclei to the phases of this function; and (3) the sign of the total coupling constant is the result of competing positive and negative contributions from various states. NMRTWM provides a fundamental explanation for both the successes and failures of the Dirac vector model, and can be used to gain insight into some puzzling results for the orientation dependence of F-F coupling between two HF molecules.

  7. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  8. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  9. 15N-15N spin-spin coupling constants through intermolecular hydrogen bonds in the solid state.

    PubMed

    Claramunt, Rosa M; Pérez-Torralba, Marta; María, Dolores Santa; Sanz, Dionisia; Elena, Bénédicte; Alkorta, Ibon; Elguero, José

    2010-10-01

    A 2hJNN intermolecular spin-spin coupling constant (SSCC) of 10.2±0.4 Hz has been measured for the powdered tetrachlorogallate salt of pyridinium solvated by pyridine (pyridine-H+⋯pyridine cation 3). Density Functional Theory (DFT) calculations at the B3LYP/6-311++G(d,p) level reproduced this value and two others reported in the literature for 2hJ intermolecular SSCCs, which were measured for complexes in solution.

  10. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations

    NASA Astrophysics Data System (ADS)

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-01

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  11. The performance of hybrid density functional theory for the calculation of indirect nuclear spin-spin coupling constants in substituted hydrocarbons.

    PubMed

    Lutnaes, Ola B; Ruden, Torgeir A; Helgaker, Trygve

    2004-10-01

    Density functional theory, in particular, with the Becke-3-parameter-Lee-Yang-Parr (B3LYP) hybrid functional, has been shown to be a promising method for the calculation of indirect nuclear spin-spin coupling constants. However, no systematic investigation has so far been undertaken to evaluate the capability of B3LYP to calculate these coupling constants accurately, taking properly into account the vibrational contributions. In this work, vibrationally corrected indirect spin-spin coupling constants were calculated using the B3LYP functional for 10 rigid unsubstituted and substituted hydrocarbons: ethyne, ethene, allene, cyclopropene, cyclopropane, cyclobutene, pyrrole, furan, thiophene and benzene. The resulting spin-spin constants were compared with the available experimental values. The basis sets in these calculations give indirect nuclear spin-spin coupling constants of ethyne that are almost converged to the basis-set limit, making the intrinsic error of the computational method and the error in equilibrium geometry the main sources of error. On average, the B3LYP functional overestimates the indirect nuclear spin-spin coupling constants in hydrocarbons by 10%.

  12. GIAO-DFT isotropic magnetic shielding constants and spin-spin coupling of tartaric acid in water solution

    NASA Astrophysics Data System (ADS)

    Fideles, Bruna; Oliveira, Leonardo B. A.; Colherinhas, Guilherme

    2016-01-01

    We investigate the nuclear isotropic shielding constants and spin-spin coupling for oxygen and carbons atoms of isomers of tartaric acid in gas phase and in water solutions by Monte Carlo simulation and quantum mechanics calculations using the GIAO-B3LYP approach. Solute polarization effects are included iteratively and play an important role in the quantitative determination of shielding constants. Our MP2/aug-cc-pVTZ results show substantial increases of the dipole moment in solution as compared with the gas phase results (61-221%). The solvent effects on the σ(13O) values are in general small. More appreciable solvent effects can be seen on the σ(17O) and J(Csbnd O).

  13. Probing the flexibility of internal rotation in silylated phenols with the NMR scalar spin-spin coupling constants.

    PubMed

    Sychrovský, Vladimír; Benda, Ladislav; Prokop, Alexandr; Blechta, Vratislav; Schraml, Jan; Spirko, Vladimír

    2008-06-12

    The rotation of a trimethylsiloxy (TMSO) group in three silylated phenols (with three different ortho substituents -H, -CH3, and -C(CH3)3) was studied with the NMR (n)J(Si,C), n = 2, 3, 4, 5, scalar spin-spin coupling between the (29)Si nucleus of the TMSO group and the (13)C nuclei of the phenyl ring. The internal rotation potential calculated with the B3LYP and MP2 calculation methods including the effect of a solvent environment (gas phase, chloroform, and water) was used for the calculation of the dynamical averages of the scalar coupling constants in the framework of the rigid-bender formalism. Solvent effects, the quality of the rotational potential, and the applicability of the classical molecular dynamic to the problem is discussed. Quantum effects have a sizable impact on scalar couplings, particularly for the internal rotational states well localized within the wells of the potential surfaces for the TMSO group. The overall difference between the experimental and theoretical scalar couplings calculated for the global energy-minima structures (static model) decreases substantially for both model potentials (B3LYP, MP2) when the molecular motion of the TMSO group is taken into account. The calculated data indicate that the inclusion of molecular motion is necessary for the accurate calculation of the scalar coupling constants and their reliable structural interpretation for any system which possesses a large-amplitude motion. PMID:18491850

  14. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine.

    PubMed

    San Fabián, J; Omar, S; García de la Vega, J M

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF)n](-) and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules. PMID:27586916

  15. Through-space (19)F-(19)F spin-spin coupling in ortho-fluoro Z-azobenzene.

    PubMed

    Rastogi, Shiva K; Rogers, Robert A; Shi, Justin; Brown, Christopher T; Salinas, Cindy; Martin, Katherine M; Armitage, Jacob; Dorsey, Christopher; Chun, Gao; Rinaldi, Peter; Brittain, William J

    2016-02-01

    We report through-space (TS) (19)F-(19)F coupling for ortho-fluoro-substituted Z-azobenzenes. The magnitude of the TS-coupling constant ((TS) JFF ) ranged from 2.2-5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non-bonded F-F distances (dFF) of 3.0-3.5 Å. These non-bonded distances are significantly smaller than those determined by X-ray crystallography or density functional theory, which argues that simple models of (19)F-(19)F TS spin-spin coupling solely based dFF are not applicable. (1)H, (13)C and (19)F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6-311++G(d,p)] was used to calculate (19) F chemical shifts, and the calculated values deviated 0.3-10.0 ppm compared with experimental values.

  16. Electric field effects on one-bond indirect spin-spin coupling constants and possible biomolecular perspectives.

    PubMed

    Sahakyan, Aleksandr B; Shahkhatuni, Aleksan G; Shahkhatuni, Astghik A; Panosyan, Henry A

    2008-04-24

    Electric field (EF) induced changes of one-bond indirect spin-spin coupling constants are investigated on a wide range of molecules including peptide models. EFs were both externally applied and internally calculated without external EF application by the hybrid density functional theory method. Reliable agreement with experimental data has been obtained for calculated one-bond J-couplings. The role of the EF sign and direction, internal and induced components, hydrogen bonding, internuclear distance and hyperconjugative interactions on the one-bond J-coupling vs EF interconnection is analyzed. A linear dependence of 1J on EF projection along the bond is obtained, if the bound atoms possess different enough electron densities and an EF determined by the electronic polarization exists along the bond. Accentuating the 1JNH couplings as possible EF sensitive parameters, a systematic study is done in two sets of molecules with a large variation of the native internal EF value. The most EF affected component of the 1JNH coupling constant is the spin-dipole term of Ramsey's formulation; however, in the total J-coupling formation, the EF influence on the Fermi contact term is the most significant. The induced EF projection along the bond is 6.7 times weaker in magnitude than the simulated external uniform field. The absolute EF dependence of the one-bond J-coupling involves only the internal field, which is the sum of the induced field (if the external field exists) and the internuclear field determined by the native polarization. That linear and universal dependence joins the corresponding couplings in a diverse set of molecules under various electrostatic conditions. Many types of the one-bond J-couplings can be potentially measured in biomolecules, and the study of their relation with the electrostatic properties at the corresponding sites opens a new avenue to the full exploitation of the NMR measurable parameters with novel and exciting applications. PMID:18363392

  17. Revealing the specific solute-solvent interactions via the measurements of the NMR spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Shahkhatuni, Astghik A.; Shahkhatuni, Aleksan G.; Minasyan, Nune S.; Panosyan, Henry A.; Sahakyan, Aleksandr B.

    2015-03-01

    The solvent induced changes of one-bond spin-spin coupling constants (SSCCs) are investigated for a set of substituted methanes in solvents with various ε dielectric constants. Solute-solvent systems with varying types of ε-dependences for the solute SSCCs are outlined. Aliphatic hydrocarbon solvents and their halogen-substituted derivatives comprise the subset, where the SSCC is linearly dependent on the solvent reaction field, f(ε) = 2(ε - 1)/(2ε + 1), hence indicating the absence of specific solute-solvent interactions. In such solvents, SSCCs depend only on bulk dielectric properties of the medium, and, the magnitudes of the solvent sensitivities of SSCCs are fully determined by the initial values of "pure" SSCCs that correspond to the isolated solute molecules. The solvents involved in the second subset have a relatively chaotic distribution of the SSCC/f(ε) relationship, with possible groupings by their chemical nature. There, the conventional linear SSCC/f(ε) dependence is perturbed by additional interactions, such as hydrogen bonding, specific association processes, lone electron pairs, and conjugation.

  18. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    NASA Astrophysics Data System (ADS)

    Wodyński, Artur; Pecul, Magdalena

    2014-01-01

    The 1JCC and 1JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  19. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    SciTech Connect

    Wodyński, Artur; Pecul, Magdalena

    2014-01-14

    The {sup 1}J{sub CC} and {sup 1}J{sub CH} spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  20. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives.

    PubMed

    Wodyński, Artur; Pecul, Magdalena

    2014-01-14

    The (1)JCC and (1)JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  1. Tuning spin-spin coupling in quinonoid-bridged dicopper(II) complexes through rational bridge variation.

    PubMed

    Schweinfurth, David; Khusniyarov, Marat M; Bubrin, Denis; Hohloch, Stephan; Su, Cheng-Yong; Sarkar, Biprajit

    2013-09-16

    Bridged metal complexes [{Cu(tmpa)}2(μ-L(1)-2H)](ClO4)2 (1), [{Cu(tmpa)}2(μ-L(2)-2H)](ClO4)2 (2), [{Cu(tmpa)}2(μ-L(3)-2H)](BPh4)2 (3), and [{Cu(tmpa)}2(μ-L(4)-2H)](ClO4)2 (4) (tmpa = tris(2-pyridylmethyl)amine, L(1) = chloranilic acid, L(2) = 2,5-dihydroxy-1,4-benzoquinone, L(3) = (2,5-di-[2-(methoxy)-anilino]-1,4-benzoquinone, L(4) = azophenine) were synthesized from copper(II) salts, tmpa, and the bridging quinonoid ligands in the presence of a base. X-ray structural characterization of the complexes showed a distorted octahedral environment around the copper(II) centers for the complexes 1-3, the donors being the nitrogen atoms of tmpa, and the nitrogen or oxygen donors of the bridging quinones. In contrast, the copper(II) centers in 4 display a distorted square-pyramidal coordination, where one of the pyridine arms of each tmpa remains uncoordinated. Bond-length analyses within the bridging ligand exhibit localization of the double bonds inside the bridge for 1-3. In contrast, complete delocalization of double bonds within the bridging ligand is observed for 4. Temperature-dependent magnetic susceptibility measurements on the complexes reveal an antiferromagnetic coupling between the copper(II) ions. The strength of antiferromagnetic coupling was observed to depend on the energy of the HOMO of the bridging quinone ligands, with exchange coupling constants J in the range between -23.2 and -0.6 cm(-1) and the strength of antiferromagnetic coupling of 4 > 3 > 2 > 1. Broken-symmetry density functional theory calculations (DFT) revealed that the orientation of magnetic orbitals in 1 and 2 is different than that in 3 and 4, and this results in two different exchange pathways. These results demonstrate how bridge-mediated spin-spin coupling in quinone-bridged metal complexes can be strongly tuned by a rational design of the bridging ligand employing the [O] for [NR] isoelectronic analogy.

  2. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    SciTech Connect

    Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.

    2015-03-21

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  3. On the calculation of nuclear spin-spin coupling constants. The bond length dependence of the Fermi contact term in H 2 and HD

    NASA Astrophysics Data System (ADS)

    Bacskay, George B.

    1995-08-01

    A theoretical study of the Fermi contact contribution to the HH and HD spin-spin coupling constant is reported, with special emphasis on its calculation using quantum chemical techniques over a wide range of internuclear distances, that has necessitated an extension of the existing methodology so the effects of near-degeneracy are properly treated. A detailed configuration interaction calculation on H 2 shows that as the molecule is stretched the coupling constant displays a sharp increase before decaying to zero as the molecule dissociates. Such distance dependence is reflected in the calculated vibrational averages of the coupling constant for HD that show a rapid increase with vibrational excitation.

  4. Shielding and indirect spin-spin coupling tensors in the presence of a heavy atom: an experimental and theoretical study of bis(phenylethynyl)mercury.

    PubMed

    Gryff-Keller, Adam; Kraska-Dziadecka, Anna; Molchanov, Sergey; Wodyński, Artur

    2012-11-01

    Magnetic shielding and indirect spin-spin coupling phenomena are tensorial properties and both their isotropic and anisotropic parts do affect NMR spectra. The involved interaction tensors, σ and J, can nowadays be theoretically calculated, although the reliability of such methods in the case of anisotropic parameters, Δσ and ΔJ, in systems involving heavy nuclei, yet demands testing. In this communication the results of the experimental and theoretical investigations of bis(phenylethynyl)mercury (I) labeled with (13)C isotope at positions neighboring Hg are reported. The theoretical calculations of molecular geometry and values of NMR parameters for I have been performed by the ZORA/DFT method, including the relativistic scalar and spin-orbit coupling contributions, using the PBE0 functional and TZP (or jcpl) basis set. These values have been confronted with the experimentally measured ones. The isotropic parameters have been measured by the standard (13)C and (199)Hg NMR spectra. The shielding anisotropies for the atoms in the central part of molecule I have been determined in a liquid sample using magnetic relaxation measurements. The relaxation data have been interpreted within the rotational diffusion theory, assuming the symmetrical top reorientation model. The anisotropies of one-bond (13)C-(199)Hg and two-bond (13)C-Hg-(13)C spin-spin couplings have been determined exploiting the temperature-dependent (13)C NMR spectra of I in the ZLI1167 liquid-crystal phase. We have found that our theoretical calculations reproduce experimental values of both isotropic and anisotropic NMR parameters very well.

  5. NMR spin-spin coupling constants: bond angle dependence of the sign and magnitude of the vicinal (3)JHF coupling.

    PubMed

    Viesser, Renan V; Ducati, Lucas C; Autschbach, Jochen; Tormena, Cláudio F

    2016-08-24

    The dependence of the magnitude and sign of (3)JHFF on the bond angle in fluoro-cycloalkene compounds is evaluated by electronic structure calculations using different levels of theory, viz. DFT, SOPPA(CCSD) and SOPPA(CC2). Localized molecular orbital contributions to (3)JHFF are analyzed to assess which orbitals are responsible for (3)JHFF and which are the most important coupling transmission mechanisms for each compound. Fluoro-ethylene is used as a model system to evaluate the dependence of the (3)JHFF coupling constant on the angle between the σCα-F and σCα'-HF vectors. Through-space and hyperconjugative transmission pathways and ring strain are identified as responsible for the opposite trend between (3)JHFF and bond angle, and for the negative signs obtained for the two molecules, respectively. One of the fluorine lone pairs, σCα'-HF, σCα-F, σCα'-Cβ' bonding orbitals and the σ*Cα-F antibonding orbital are involved in the J-coupling pathways, according to analyses of pairwise-steric and hyperconjugative energies. PMID:27526856

  6. NMR spin-spin coupling constants: bond angle dependence of the sign and magnitude of the vicinal (3)JHF coupling.

    PubMed

    Viesser, Renan V; Ducati, Lucas C; Autschbach, Jochen; Tormena, Cláudio F

    2016-08-24

    The dependence of the magnitude and sign of (3)JHFF on the bond angle in fluoro-cycloalkene compounds is evaluated by electronic structure calculations using different levels of theory, viz. DFT, SOPPA(CCSD) and SOPPA(CC2). Localized molecular orbital contributions to (3)JHFF are analyzed to assess which orbitals are responsible for (3)JHFF and which are the most important coupling transmission mechanisms for each compound. Fluoro-ethylene is used as a model system to evaluate the dependence of the (3)JHFF coupling constant on the angle between the σCα-F and σCα'-HF vectors. Through-space and hyperconjugative transmission pathways and ring strain are identified as responsible for the opposite trend between (3)JHFF and bond angle, and for the negative signs obtained for the two molecules, respectively. One of the fluorine lone pairs, σCα'-HF, σCα-F, σCα'-Cβ' bonding orbitals and the σ*Cα-F antibonding orbital are involved in the J-coupling pathways, according to analyses of pairwise-steric and hyperconjugative energies.

  7. Revisiting NMR through-space J(FF) spin-spin coupling constants for getting insight into proximate F---F interactions.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Ducati, Lucas Colucci; Tormena, Cláudio Francisco

    2014-07-10

    At present times it is usual practice to mark biological compounds replacing an H for an F atom to study, by means of (19)F NMR spectroscopy, aspects such as binding sites and molecular folding features. This interesting methodology could nicely be improved if it is known how proximity interactions on the F atom affect its electronic structure as gauged through high-resolution (19)F NMR spectroscopy. This is the main aim of the present work and, to this end, differently substituted peri-difluoronaphthalenes are chosen as model systems. In such compounds are rationalized some interesting aspects of the diamagnetic and paramagnetic parts of the (19)F nuclear magnetic shielding tensor as well as the transmission mechanisms for the PSO and FC contributions to (4)JF1F8 indirect nuclear spin-spin coupling constants.

  8. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  9. Indirect spin-spin coupling constants in CH 4, SiH 4 and GeH 4 - Gas-phase NMR experiment and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Antušek, Andrej; Keḑziera, Dariusz; Jackowski, Karol; Jaszuński, Michał; Makulski, Włodzimierz

    2008-09-01

    New values of the indirect spin-spin coupling constants in CH 4, SiH 4 and GeH 4, derived from experiment and ab initio calculations, are reported. The new experimental values of 1J(CH), 1J(SiH) and 1J(GeH) are obtained from gas-phase NMR spectra. The dependence of the measured one-bond coupling constants on the density is analysed and the results are extrapolated to zero-density point to eliminate the effects due to intermolecular forces. In the calculation of the coupling constants, at the nonrelativistic level coupled cluster singles and doubles (CCSD) perturbation theory is used and the basis set convergence of the results is discussed. The relativistic corrections are estimated from Dirac-Hartree-Fock (DHF) calculations. The final theoretical values are obtained adding available estimates of the vibrational and temperature corrections. The agreement of the calculated and experimental 1J(XH), X = C, Si, Ge, constants is very satisfying, the differences are approximately 1-3%.

  10. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  11. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  12. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  13. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    SciTech Connect

    Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.

    2015-12-14

    The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  14. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.

    2015-12-01

    The cold boron carbide free radical (BC X 4Σ-) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B 4Σ--X 4Σ- and E 4Π-X 4Σ- band systems of both 11BC and 10BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B 4Σ- excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E 4Π-X 4Σ- 0-0 and 1-0 bands of 11BC. The E-X 0-0 band of 10BC was found to be severely perturbed. The ground state main electron configuration is …3σ24σ25σ11π22π0 and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  15. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical.

    PubMed

    Sunahori, Fumie X; Nagarajan, Ramya; Clouthier, Dennis J

    2015-12-14

    The cold boron carbide free radical (BC X (4)Σ(-)) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B (4)Σ(-)-X (4)Σ(-) and E (4)Π-X (4)Σ(-) band systems of both (11)BC and (10)BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B (4)Σ(-) excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E (4)Π-X (4)Σ(-) 0-0 and 1-0 bands of (11)BC. The E-X 0-0 band of (10)BC was found to be severely perturbed. The ground state main electron configuration is …3σ(2)4σ(2)5σ(1)1π(2)2π(0) and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  16. Spin-spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2014-10-01

    The indirect spin-spin coupling of hydrogen deuteride, J(D, H), was determined from a series of 1H and 2H NMR spectra acquired at various densities of gaseous solvents (He, Ar, CO2, and N2O). The analysis of these spectra shows that accurate determination of J(D, H) from this experimental data requires careful examination of the effects of nuclear relaxation and of HD-solvent gas interactions on hydrogen deuteride line shapes. Particularly, it was found that the first-order corrections of the peak-to-peak separations between HD multiplet peaks due to weak van der Waals interactions are proportional to solvent gas density, while these corrections for nuclear relaxation of the proton and the deuteron are proportional to the second power of the inverse of the gas density. Analysis of the data indicates that J(D, H), obtained by correcting for the effects of nuclear relaxation and intermolecular interactions, is 43.136(7) Hz at 300 K.

  17. From correlation-consistent to polarization-consistent basis sets estimation of NMR spin spin coupling constant in the B3LYP Kohn Sham basis set limit

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald

    2008-08-01

    Based on B3LYP spin-spin coupling constants (SSCC) of several molecules calculated with cc-pV xZ, cc-pCV xZ, cc-pCV xZ-sd and cc-pCV xZ-sd+ t basis sets, a reasonably fit, using the two-parameter formula, to the Kohn-Sham complete basis set limit (CBS) is shown. Improvement in the CBS values going from cc-pV xZ to the most elaborated cc-pCV xZ-sd+ t basis set family is observed: standard deviation for all data drops from 33.7 to 23.1, and from 6.0 to 4.8 Hz after excluding problematic 1J(F,H) and 1J(F,C). Calculation of water's 1J(OH) using B3LYP/cc-pCV xZ and B3LYP/pcJ- n significantly improved the FC term convergence.

  18. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    SciTech Connect

    Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)

  19. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  20. Magnetization plateaux in Bethe ansatz solvable spin-S ladders

    NASA Astrophysics Data System (ADS)

    Maslen, M.; Batchelor, M.; de Gier, J.

    2003-07-01

    We examine the properties of the Bethe ansatz solvable two- and three-leg spin-S ladders. These models include Heisenberg rung interactions of arbitrary strength and thus capture the physics of the spin-S Heisenberg ladders for strong rung coupling. The discrete values derived for the magnetization plateaux are seen to fit with the general prediction based on the Lieb-Schultz-Mattis theorem. We examine the magnetic phase diagram of the spin-1 ladder in detail and find an extended magnetization plateau at the fractional value =1/2 in agreement with the experimental observation for the organic polyradical spin-1 ladder compound BIP-TENO.

  1. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    PubMed

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study.

  2. Dynamic coupling of plasmonic resonators

    NASA Astrophysics Data System (ADS)

    Lee, Suyeon; Park, Q.-Han

    2016-02-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments.

  3. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  4. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  5. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Sauer, Stephan P. A.; Provasi, Patricio F.

    2014-10-01

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the 1J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the 1J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  6. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  7. A re-investigation of (4)JFF and (5)JFF nuclear spin-spin couplings in substituted benzenes, a novel conformational tool.

    PubMed

    Abraham, Raymond J; Cooper, M Ashley

    2016-06-21

    A theoretical analysis of the (4)JFF and (5)JFF couplings in fluorobenzenes separates the σ and π components of the substituent coefficients. The π bond mechanism is dominant but the σ bond mechanism must be included to give accurate values of the couplings. For monosubstituted difluorobenzenes the (4)JFF and (5)JFF couplings can be predicted from the calculated π densities by linear equations. The use of additive substituent effects allows the prediction of the meta(4)JFF couplings for multisubstituted compounds. The π dependence of the (4)JFF coupling in 2,6-difluorobenzenes provides a novel and simple method of determining the torsional angle of the C1 substituent and the benzene ring for non-symmetrical functional groups (acetyl, carboxymethyl, dimethylamino, amide, nitro etc.). This could be used to determine the geometries of such molecules in biological systems. The π dependence of the (4)JFF coupling is also of importance in the charged species of 2,6-difluoroanilinium ((4)JFF 2.1 Hz) and 2,6-difluoro-N,N,N-trimethylanilinium ((4)JFF 0.0 Hz) due to the very different π electron densities. PMID:27230607

  8. Analysis of phi and chi 1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants.

    PubMed

    Smith, L J; Sutcliffe, M J; Redfield, C; Dobson, C M

    1991-01-29

    Three-bond 3JHN alpha coupling constants have been determined for 106 residues and 3J alpha beta coupling constants have been measured for 57 residues of the 129-residue protein hen egg white lysozyme. These NMR data have been compared with torsion angles defined in the tetragonal and the triclinic crystal forms of the protein. For most residues the measured 3JHN alpha values were consistent with the phi torsion angles found in both crystal forms; the RMS difference between the coupling constants calculated by using the tetragonal crystal structure phi angles and the experimental 3JHN alpha values is 0.88 Hz. Thus there appears to be no significant averaging of the phi torsion angle either in the interior or at the surface of the protein. For 41 of the residues where 3J alpha beta coupling constants have been determined, the values are consistent with a single staggered conformation about the chi 1 torsion angle and there is complete agreement between the NMR data in solution and the torsion angles defined in the crystalline state. In contrast, for the other 16 residues where 3J alpha beta coupling constant values have been measured, the data indicate extensive motional averaging about the chi 1 torsion angle. These residues occur largely on the surface of the protein and examination of the crystal structures shows that many of these residues adopt a different conformation in the triclinic and tetragonal crystal forms and have high crystallographic temperature factors. It appears, however, that in solution conformational flexibility of the side chains of surface residues is significantly more pronounced than in individual crystal structures.

  9. Semiclassical spin-spin dynamics and feedback control in transport through a quantum dot

    NASA Astrophysics Data System (ADS)

    Mosshammer, Klemens; Brandes, Tobias

    2014-10-01

    We present a theory of magnetotransport through an electronic orbital, where the electron spin interacts with a (sufficiently) large external spin via an exchange interaction. Using a semiclassical approximation, we derive a set of equations of motions for the electron density matrix and the mean value of the external spin that turns out to be highly nonlinear. The dissipation via the electronic leads is implemented in terms of a quantum master equation that is combined with the nonlinear terms of the spin-spin interaction. With an anisotropic exchange coupling a variety of dynamics is generated, such as self-sustained oscillations with parametric resonances or even chaotic behavior. Within our theory we can integrate a Maxwell-demon-like closed-loop feedback scheme that is capable of transporting particles against an applied bias voltage and that can be used to implement a spin filter to generate spin-dependent oscillating currents of opposite directions.

  10. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  11. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  12. Viscoelastic coupling of nanoelectromechanical resonators.

    SciTech Connect

    Simonson, Robert Joseph; Staton, Alan W.

    2009-09-01

    This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanical devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.

  13. Substituent effect in 2-benzoylmethylenequinoline difluoroborates exhibiting through-space couplings. Multinuclear magnetic resonance, X-ray diffraction, and computational study.

    PubMed

    Zakrzewska, Anna; Kolehmainen, Erkki; Valkonen, Arto; Haapaniemi, Esa; Rissanen, Kari; Chęcińska, Lilianna; Ośmiałowski, Borys

    2013-01-10

    The series of nine 2-benzoylmethylenequinoline difluoroborates have been synthesized and characterized by multinuclear magnetic resonance, X-ray diffraction (XRD), and computational methods. The through-space spin-spin couplings between (19)F and (1)H/(13)C nuclei have been observed in solution. The NMR chemical shifts have been correlated to the Hammett substituent constants. The crystal structures of six compounds have been solved by XRD. For two derivatives the X-ray wave function refinement was performed to evaluate the character of bonds in the NBF(2)O moiety by topological and integrated bond descriptors.

  14. Controllable optomechanical coupling in serially-coupled triple resonators

    SciTech Connect

    Huang, Chenguang Zhao, Yunsong; Fan, Jiahua; Zhu, Lin

    2014-12-15

    Radiation pressure can efficiently couple mechanical modes with optical modes in an optical cavity. The coupling efficiency is quite dependent on the interaction between the optical mode and mechanical mode. In this report, we investigate a serially-coupled triple resonator system, where a freestanding beam is placed in the vicinity of the middle resonator. In this coupled system, we demonstrate that the mechanical mode of the free-standing beam can be selectively coupled to different resonance supermodes through the near field interaction.

  15. Laser array having mutually coupled resonators

    SciTech Connect

    Sziklas, E.A.; Palma, G.E.

    1987-07-21

    A laser system is described having at least two independently pumped unstable laser resonators. Each has a feedback region in which optical radiation resonates, an output region. Output radiation exists from the feedback region and an output coupling means for coupling out a main beam from the region in which laser extracted radiation extracted from a first one of at least two unstable laser resonators is coupled unidirectionally into at least one other of the unstable laser resonators. The extracted radiation from the first unstable laser resonator influences at least one other unstable laser resonator. The improvement comprises a system in which each of the resonators is mutually and substantially symmetrically, bidirectionally coupled to at least one other unstable resonator, through extraction means for extracting at least one coupling portion of the output radiation. A coupling radiation power and transporting means transports at least one coupling portion of the output radiation that is mode-matched to an adjoint mode. At least one other unstable laser resonator into at least one corresponding output region of the other one of at least two unstable laser resonators produce a laser system having a scaled-up laser output.

  16. Low-loss coupling to dielectric resonators

    NASA Astrophysics Data System (ADS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-07-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  17. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    SciTech Connect

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  18. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  19. Discrete photonics resonator in coupled waveguide arrays.

    PubMed

    Plougonven, Nadia Belabas; Minot, Christophe; Bouwmans, Géraud; Levenson, Ariel; Moison, Jean-Marie

    2014-05-19

    We demonstrate both theoretically and experimentally that discrete diffraction resonance can be designed, fabricated, and successfully probed in functionalized - guidonic - coupled waveguide arrays. We evidence that double-barrier patterning of the coupling creates wavelength-independent angular tunnel resonance in the transmitted and the reflected intensity of light beams freely propagating in the plane of the array. Transmission peaks obtained are associated with resonant excitation of the engineered array bound supermodes of the functionalized array, in agreement with accurate and practical numerical modeling based on extended coupled-mode theory. The linear operation of the guidonic resonant tunneling double barrier makes up an original resonator for discrete photonics, suitable for all-optical control of light.

  20. Unstable resonator with reduced output coupling.

    PubMed

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Grünewald, Karin Maria; Handke, Jürgen

    2012-06-20

    The properties of a laser beam coupled out of a standard unstable laser resonator are heavily dependent on the chosen resonator magnification. A higher magnification results in a higher output coupling and a better beam quality. But in some configurations, an unstable resonator with a low output coupling in combination with a good beam quality is desirable. In order to reduce the output coupling for a particular resonator, magnification fractions of the outcoupled radiation are reflected back into the cavity. In the confocal case, the output mirror consists of a spherical inner section with a high reflectivity and a flat outer section with a partial reflectivity coating. With the application of the unstable resonator with reduced output coupling (URROC), magnification and output coupling can be adjusted independently from each other and it is possible to get a good beam quality and a high power extraction for lasers with a large low gain medium. The feasibility of this resonator design is examined numerically and experimentally with the help of a chemical oxygen iodine laser. PMID:22722301

  1. Structures, energies, and spin-spin coupling constants of methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes: four-member B-P-B-P rings B2P2(CH3)(n)H(8-n), with n = 0, 1, 2, 4.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2011-09-29

    An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 17 methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)(CH(3))(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. The B-P-B-P rings are puckered in a butterfly conformation, in agreement with experimental data for related molecules. Isomers with the CH(3) group bonded to P are more stable than those with CH(3) bonded to B. If there is only one methyl group or if two methyl groups are bonded to two different P or B atoms, isomers with equatorial bonds are more stable than those with axial bonds. However, when two methyl groups are present, the gem isomers are the most stable for molecules B(2)P(2)(CH(3))(2)H(6) with P-C and B-C bonds, respectively. Transition structures present barriers to the interconversion of two equilibrium structures or to the interchange of axial and equatorial positions in the same isomer. These barriers are very low for the isomer with two methyl groups bonded to B in axial positions for the isomer with four axial bonds and for the isomer with geminal B-C bonds at both B atoms. Coupling constants (1)J(B-P), (1)J(P-C), (1)J(B-C), (2)J(P-P), and (3)J(P-C) are capable of providing structural information. They are sensitive to the number of methyl groups present and can discriminate between axial, equatorial, and geminal bonds, although not all do this to the same extent. The one-bond coupling constants (1)J(B-P), (1)J(P-C), and (1)J(B-C) are similar in equilibrium and transition structures, but (3)J(P-C) and (2)J(P-P) are not. These coupling constants and those of the corresponding fluoro-derivatives of the 1,3-diborata-2,4-diphosphoniocyclobutanes demonstrate the great sensitivity of phosphorus coupling to structural and electronic effects. PMID:21895014

  2. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  3. Dynamic nonlinear thermal optical effects in coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Huang, Chenguang; Fan, Jiahua; Zhu, Lin

    2012-09-01

    We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple "shark fins" and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  4. Isotropic and anisotropic spin-spin interactions and a quantum phase transition in a dinuclear Cu(II) compound

    NASA Astrophysics Data System (ADS)

    Napolitano, Lia M. B.; Nascimento, Otaciro R.; Cabaleiro, Santiago; Castro, Jesús; Calvo, Rafael

    2008-06-01

    We report electron-paramagnetic resonance (EPR) studies at ˜9.5GHz ( X band) and ˜34GHz ( Q band) of powder and single-crystal samples of the compound Cu2[TzTs]4 [ N -thiazol-2-yl-toluenesulfonamidatecopper(II)], C40H36Cu2N8O8S8 , having copper(II) ions in dinuclear units. Our data allow determining an antiferromagnetic interaction J0=(-113±1)cm-1 (Hex=-J0S1ṡS2) between Cu(II) ions in the dinuclear unit and the anisotropic contributions to the spin-spin coupling matrix D(Hani=S1ṡDṡS2) , a traceless symmetric matrix with principal values D/4=(0.198±0.003)cm-1 and E/4=(0.001±0.003)cm-1 arising from magnetic dipole-dipole and anisotropic exchange couplings within the units. In addition, the single-crystal EPR measurements allow detecting and estimating very weak exchange couplings between neighbor dinuclear units, with an estimated magnitude |J'|=(0.060±0.015)cm-1 . The interactions between a dinuclear unit and the “environment” of similar units in the structure of the compound produce a spin dynamics that averages out the intradinuclear dipolar interactions. This coupling with the environment leads to decoherence, a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling. Our EPR experiments provide a new procedure to follow the classical exchange-narrowing process as a shift and collapse of the line structure (not only as a change of the resonance width), which is described with general (but otherwise simple) theories of magnetic resonance. Using complementary procedures, our EPR measurements in powder and single-crystal samples allow measuring simultaneously three types of interactions differing by more than three orders of magnitude (between 113cm-1 and 0.060cm-1 ).

  5. Capture into resonance of coupled Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated.

  6. Capture into resonance of coupled Duffing oscillators.

    PubMed

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated. PMID:26382478

  7. Capture into resonance of coupled Duffing oscillators.

    PubMed

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated.

  8. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce T.; Freericks, J. K.

    2016-05-01

    Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  9. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  10. Flow noise source-resonator coupling

    SciTech Connect

    Pollack, M.L.

    1997-11-01

    This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node.

  11. Flux qubit ultrastrongly coupled to two resonators

    NASA Astrophysics Data System (ADS)

    Baust, A.; Hoffmann, E.; Haeberlein, M.; Schwarz, M. J.; Eder, P.; Goetz, J.; Wulschner, F.; Xie, E.; Zhong, L.; Fedorov, K.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2015-03-01

    Circuit quantum electrodynamics has not only become a versatile toolbox for quantum information processing, but is also a powerful platform for the investigation of light-matter interaction. The coupling strength between microwave resonators and qubits acting as artificial atoms can be tuned over several orders of magnitude and can even reach the regime of ultrastrong coupling.We present spectroscopic data of a flux qubit coupled galvanically to the signal lines of two coplanar stripline resonators. We discuss the complex mode spectrum and show that the coupling strength between the qubit and one resonant mode reaches 15% of the respective mode frequency. Noticably, the high coupling strength is reached solely by the geometric layout of the qubit without utilizing additional coupling elements such as Josephson junctions. Our data exhibit a pronounced Bloch-Siegert shift and therefore represent an experimental evidence for the breakdown of the Jaynes-Cummings model. This work is supported by the DFG via SFB 631, and EU projects CCQED and PROMISCE.

  12. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  13. Correlation functions of the integrable spin-s chain

    NASA Astrophysics Data System (ADS)

    Ribeiro, G. A. P.; Klümper, A.

    2016-06-01

    We study the correlation functions of su(2) invariant spin-s chains in the thermodynamic limit. We derive nonlinear integral equations for an auxiliary correlation function ω for any spin s and finite temperature T. For the spin-3/2 chain for arbitrary temperature and zero magnetic field we obtain algebraic expressions for the reduced density matrix of two-sites. In the zero temperature limit, the density matrix elements are evaluated analytically and appear to be given in terms of Riemann’s zeta function values of even and odd arguments. Dedicated to Professor Rodney Baxter on the occasion of his 75th birthday.

  14. Simple Approaches for Estimating Vicinal 1H- 1H Coupling-Constants and for Obtaining Stereospecific Resonance Assignments in Leucine Side Chains

    NASA Astrophysics Data System (ADS)

    Constantine, K. L.; Friedrichs, M. S.; Mueller, L.

    An approach for deriving stereospecific δ-methyl assignments and χ 2 dihedral angle constraints for leucine residues, based on easily recognized patterns of 1H- 1H spin-spin coupling constants and intraresidue nuclear-Overhauser-effect spectroscopy (NOESY) cross-peak intensities, is described. The approach depends on resolved H γ and/or δ-methyl resonances and on initially obtaining stereospecific assignments for H β2 and H β3. As part of the overall strategy, a method is presented for obtaining qualitative or, in favorable cases, semiquantitative estimates of vicinal 1H- 1H coupling constants from peak intensities measured in a short-mixing-time 1H- 1H total correlation spectroscopy (TOCSY) experiment. This method of estimating 1H- 1H spin-spin coupling constants is generally applicable to all side-chain types. The approach is illustrated for several leucine residues within uniformly 15N-labeled and 15N/ 13C-double-labeled isolated light-chain variable domain of the anti-digoxin antibody 26-10. Estimates of 3Jαβ and 3Jβγ coupling constants are derived from a three-dimensional (3D) 13C-edited TOCSY-heteronuclear multiple-quantum coherence (HMQC) spectrum. These data are combined with information from 3D 15N-edited NOESY and 3D 13C-edited NOESY spectra to yield stereospecific H β2, H β3, and δ-methyl assignments, as well as constraints on χ (1) and χ 2 dihedral angles. Although the overall approach is illustrated using 3D 15N-edited and 13C-edited data, it is equally applicable to analysis of two-dimensional 1H- 1H NOESY and TOCSY spectra.

  15. Hybridized/coupled multiple resonances in nacre

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2014-01-01

    We report that nacre (also known as mother-of-pearl), a wondrous nanocomposite found in nature, is a rich photonic nanomaterial allowing the experimental realization of collective excitation and light amplification via coupled states. Localized modes in three-dimensional complex media are typically isolated in frequency and space. However, multiple local resonances can be hybridized in multilayered nanostructures of nacre so that the effective cavity size for efficient disordered resonators is scaled up. Localized modes in hybridized states in nacre are overlapped in frequency with similar shapes in space, thus being collectively excited and synergistically amplified. These hybridized states boost light amplification, leading to stable and regular multimode lasing at low excitation energy. The simplicity of ameliorating disordered resonators by mimicking nacre can further serve as platforms for developing cost-effective photonic systems and provide materials for fundamental research on complex media.

  16. Phase diagram study of a dimerized spin-S zig-zag ladder

    NASA Astrophysics Data System (ADS)

    Matera, J. M.; Lamas, C. A.

    2014-08-01

    The phase diagram of a frustrated spin-S zig-zag ladder is studied through different numerical and analytical methods. We show that for arbitrary S, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, being the Majumdar-Ghosh point for a particular member of the family. We show that the system presents a transition between a dimerized phase to a Néel-like phase for S = 1/2, and spiral phases can appear for large S. The phase diagram is characterized by means of a generalization of the usual mean field approximation. The novelty in the present implementation is to consider the strongest coupled sites as the unit cell. The gap and the excitation spectrum is analyzed through the random phase approximation. Also, a perturbative treatment to obtain the critical points is discussed. Comparisons of the results with numerical methods like the Density Matrix Renormalization Group are also presented.

  17. Using geoelectrons to search for velocity-dependent spin-spin interactions.

    PubMed

    Hunter, L R; Ang, D G

    2014-03-01

    We use the recently developed model of the electron spins within Earth to investigate all of the six possible long-range velocity-dependent spin-spin interactions associated with the exchange of an ultralight (mz'<10(-10) eV) or massless intermediate vector boson. Several laboratory experiments have established upper limits on the energy associated with various fermion-spin orientations relative to Earth. We combine the results from three of these experiments with the geoelectron-spin model to obtain bounds on the velocity-dependent interactions that couple electron spin to the spins of electrons, neutrons, and protons. Five of the six possible potentials investigated were previously unbounded. In the long-range limit we have improved the bound on the sixth potential by 30 orders of magnitude. PMID:24655243

  18. Energy harvesting with coupled magnetostrictive resonators

    NASA Astrophysics Data System (ADS)

    Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.

    2014-03-01

    We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.

  19. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  20. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  1. MEASUREMENT OF LINEAR COUPLING RESONANCE IN RHIC.

    SciTech Connect

    BAI,M.PILAT,F.SATOGATA,T.TOMAS,R.

    2002-05-12

    Linear coupling is one of the factors that determine beam lifetime in RHIC. The traditional method of measuring the minimum tune separation requires a tune scan and can't be done parasitically or during the acceleration ramp. A new technique of using ac dipoles to measure linear coupling resonance has been developed at RHIC. This method measures the degree of coupling by comparing the amplitude of the horizontal coherent excitation with the amplitude of the vertical coherent excitation if the beam is excited by the vertical AC dipole and vice versa. One advantage of this method is that it can be done without changing tunes from the normal machine working points. In principle, this method can also localize the coupling source by mapping out the coupling driving terms throughout the ring. This is very useful for local decoupling the interaction regions in RHIC. A beam experiment of measuring linear coupling has been performed in RHIC during its 2003 run, and the analysis of the experimental data is discussed in this paper.

  2. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ginzburg, Pavel; Krasavin, Alexey; Sonnefraud, Yannick; Murphy, Antony; Pollard, Robert J.; Maier, Stefan A.; Zayats, Anatoly V.

    2012-08-01

    The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

  3. Controlling spin-spin network dynamics by repeated projective measurements

    PubMed Central

    Bretschneider, Christian O.; Álvarez, Gonzalo A.; Kurizki, Gershon; Frydman, Lucio

    2016-01-01

    We show that coupled-spin network manipulations can be made highly effective by repeated “projections” of the evolving quantum states onto diagonal density-matrix states (populations). As opposed to the intricately crafted pulse trains that are often used to fine-tune a complex network’s evolution, the strategy hereby presented derives from the “quantum-Zeno effect” and provides a highly robust route to guide the evolution by destroying all unwanted correlations (coherences). We exploit these effects by showing that a relaxation-like behaviour is endowed to polarization transfers occurring within a N-spin coupled network. Experimental implementations yield coupling constant determinations for complex spin-coupling topologies, as demonstrated within the field of liquid-state nuclear magnetic resonance (NMR). PMID:22540774

  4. Comment on two recent papers regarding next-to-leading order spin-spin effects in gravitational interaction

    SciTech Connect

    Steinhoff, Jan; Schaefer, Gerhard

    2009-10-15

    It is argued that the tetrad in a recent paper by Porto and Rothstein on gravitational spin-spin coupling should not have the given form. The fixation of that tetrad was suggested by Steinhoff, Hergt, and Schaefer as a possible source for the disagreement found in the spin-squared dynamics. However, this inconsistency will only show up in the next-to-leading order spin-orbit dynamics and not in the spin-squared dynamics. Instead, the disagreement found at the next-to-leading order spin-squared level is due to a sign typo in the spin-squared paper by Porto and Rothstein.

  5. FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS

    SciTech Connect

    Huffenberger, Kevin M.; Wandelt, Benjamin D.

    2010-08-15

    We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L{sup 3}), where L is the band limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the cosmic microwave background and gravitational lensing.

  6. Resonance continuum coupling in high-permittivity dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Lepetit, Thomas; Akmansoy, Eric; Ganne, Jean-Pierre; Lourtioz, Jean-Michel

    2010-11-01

    A detailed investigation of resonance-continuum coupling is carried out both experimentally and theoretically in metamaterials based on high-permittivity dielectric subwavelength resonators. An original experimental scheme is designed at microwave frequencies, which mimics a periodic array of resonators. Fano resonances are discussed in the framework of temporal coupled mode theory for the cases where one or two resonator modes couples to the continuum. Fano lineshapes are unambiguously demonstrated experimentally for the single-mode case in agreement with theoretical modeling. Numerical evidence of resonance trapping is shown in the two-mode case when modes with the same symmetry coincide in frequency.

  7. Scattering-theory analysis of waveguide-resonator coupling

    PubMed

    Xu; Li; Lee; Yariv

    2000-11-01

    Using a formalism similar to the quantum scattering theory, we analyze the problem of coupling between optical waveguides and high Q resonators. We give the optical transmission and reflection coefficients as functions of the waveguide-resonator coupling, cavity loss (gain), and cavity resonant frequency. Based on these results, the recently proposed concept of "critical coupling" is discussed. Using a matrix formalism based on the scattering analysis, we find the dispersion relation of indirectly coupled resonator optical waveguides. The coupling between waveguides and multiple cavities is investigated and the reflection and transmission coefficients are derived.

  8. Correlation resonance generated by coupled enzymatic processing.

    PubMed

    Mather, William H; Cookson, Natalie A; Hasty, Jeff; Tsimring, Lev S; Williams, Ruth J

    2010-11-17

    A major challenge for systems biology is to deduce the molecular interactions that underlie correlations observed between concentrations of different intracellular molecules. Although direct explanations such as coupled transcription or direct protein-protein interactions are often considered, potential indirect sources of coupling have received much less attention. Here we show how correlations can arise generically from a posttranslational coupling mechanism involving the processing of multiple protein species by a common enzyme. By observing a connection between a stochastic model and a multiclass queue, we obtain a closed form expression for the steady-state distribution of the numbers of molecules of each protein species. Upon deriving explicit analytic expressions for moments and correlations associated with this distribution, we discover a striking phenomenon that we call correlation resonance: for small dilution rate, correlations peak near the balance-point where the total rate of influx of proteins into the system is equal to the maximum processing capacity of the enzyme. Given the limited number of many important catalytic molecules, our results may lead to new insights into the origin of correlated behavior on a global scale.

  9. Resonant coupling in trenched bend-insensitive optical fiber.

    PubMed

    Ren, Guobin; Lin, Zhen; Zheng, Siwen; Jian, Shuisheng

    2013-03-01

    We report in this Letter the resonant coupling mechanism in bending trenched bend-insensitive fiber (BIF). It is found that among the trench parameters, the core-trench distance is predominant for optimized BIF design. We reveal that resonant coupling is an intrinsic characteristic of bending trenched BIF, and resonant coupling between the fiber core and the innermost cladding would limit the ultimate bending loss of BIF under tight bend. Resonant coupling is also present in double-trenched BIF, and would impair its bending performance.

  10. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  11. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer

    NASA Astrophysics Data System (ADS)

    Tayler, Michael C. D.; Sjolander, Tobias F.; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1 μT. Using magnetic fields in the 100 μT to 1 mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  12. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    SciTech Connect

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs.

  13. Ferromagnetic resonance in coupled ultrathin films

    NASA Astrophysics Data System (ADS)

    Lindner, J.; Baberschke, K.

    2003-02-01

    Ferromagnetic resonance (FMR) is known to be one of the most informative techniques to measure basic physical quantities such as magnetic anisotropy energies, the g tensor in solids or the interlayer exchange coupling Jinter. We investigate prototype Cu/Ni/Cu/Ni/Cu(001) and Ni/Cu/Co/Cu(001) trilayers as well as Fen/Vm superlattices. We show for the case of trilayers how in situ ultrahigh vacuum FMR can be used to determine Jinter in absolute energy units in a straightforward way: we first prepare and measure the bottom magnetic layer together with the Cu spacer in situ and then evaporate the second magnetic film on top. Thus, it is possible to investigate the FMR signal before and after the two magnetic films become coupled. We discuss results, showing that the temperature dependence of Jinter follows a T3/2 law over a wide temperature range. This indicates that thermally excited spin waves at the interface of the ferromagnetic layers dominate the temperature dependence of Jinter. The second part focuses on the measurement of the g value. From the g value, the ratio of orbital to spin magnetic moment can be obtained via the relation muL /muS = (g - 2)/2. We show for Fen/Vm superlattices how muL /muS increases with decreasing Fe-layer thickness.

  14. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  15. Coupled whispering gallery mode resonators in the Terahertz frequency range.

    PubMed

    Preu, S; Schwefel, H G L; Malzer, S; Döhler, G H; Wang, L J; Hanson, M; Zimmerman, J D; Gossard, A C

    2008-05-12

    We report on coupling of two whispering gallery mode resonators in the Terahertz frequency range. Due to the long wavelength in the millimeter to submillimeter range, the resonators can be macroscopic allowing for accurate size and shape control. This is necessary to couple specific modes of two or more resonators. Sets of polyethylene (PE) and quartz disk resonators are demonstrated, with medium (loaded) quality (Q)-factors of 40-800. Both exhibit coinciding resonance frequency spectra over more than ten times the free spectral range. Loading effects of single resonators are investigated which provide strong Q-factor degradation and red-shifts of the resonances in the 0.2% range. By coupling two resonators of the same size, we observe mode splitting, in very good agreement with our numerical calculations.

  16. Tailored Asymmetry for Enhanced Coupling to WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

  17. Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems.

    PubMed

    Zhou, Jianhong; Mu, Da; Yang, Jinhua; Han, Wenbo; Di, Xu

    2011-03-14

    We present an optical coupling system, which consists of waveguide, cavity and waveguide resonator, to investigate coupled-resonator-induced transparency effect. The transmission properties are analyzed theoretically by using coupled-mode theory in time domain. We also numerically demonstrate the effect by simulating the propagation of electromagnetic waves in photonic crystals by finite-difference time-domain method.

  18. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  19. Zero-field nuclear magnetic resonance spectroscopy of viscous liquids

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Blanchard, J. W.; Pustelny, S.; Saielli, G.; Bagno, A.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2015-01-01

    We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids.

  20. The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

    PubMed Central

    Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming

    2014-01-01

    The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314

  1. Ultraviolet single-frequency coupled optofluidic ring resonator dye laser.

    PubMed

    Tu, Xin; Wu, Xiang; Li, Ming; Liu, Liying; Xu, Lei

    2012-08-27

    Ultraviolet single-frequency lasing is realized in a coupled optofluidic ring resonator (COFRR) dye laser that consists of a thin-walled capillary microfluidic ring resonator and a cylindrical resonator. The whispering gallery modes (WGMs) in each resonator couple to each other and generate single-frequency laser emission. Single-frequency lasing occurs at 386.75 nm with a pump threshold of 5.9 μJ/mm. The side-mode-suppression ratio (SMSR) is about 20 dB. Moreover, the laser emits mainly in two directions, and each of them has a divergence of only 10.5°.

  2. Inverted-wedge silica resonators for controlled and stable coupling.

    PubMed

    Bo, Fang; Huang, Steven He; Özdemir, Sahin Kaya; Zhang, Guoquan; Xu, Jingjun; Yang, Lan

    2014-04-01

    Silica microresonators with an inverted-wedge shape were fabricated using conventional semiconductor fabrication methods. The measured quality factors of the resonators were greater than 10(6) in 1550 nm band. Controllable coupling from undercoupling to the overcoupling regime through the critical coupling point was demonstrated by horizontally moving a fiber taper while in touch with the top surface of the resonator. The thin outer ring of the resonator provided a support for the fiber taper leading to robust stable coupling. PMID:24686619

  3. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    PubMed

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications.

  4. Ultrastrong coupling in two-resonator circuit QED

    NASA Astrophysics Data System (ADS)

    Baust, A.; Hoffmann, E.; Haeberlein, M.; Schwarz, M. J.; Eder, P.; Goetz, J.; Wulschner, F.; Xie, E.; Zhong, L.; Quijandría, F.; Zueco, D.; Ripoll, J.-J. García; García-Álvarez, L.; Romero, G.; Solano, E.; Fedorov, K. G.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2016-06-01

    We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system comprised of two superconducting coplanar stripline resonators coupled galvanically to the qubit. With a coupling strength as high as 17.5 % of the mode frequency, exceeding that of previous circuit quantum electrodynamics experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system reveals a clear breakdown of the Jaynes-Cummings approximation. In contrast to earlier experiments, the high coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.

  5. Catching Microwave Photons in a Superconducing Resonator with Tunable Coupling

    NASA Astrophysics Data System (ADS)

    Wenner, James; Yin, Yi; Chen, Yu; Barends, R.; Chiaro, B.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; Ohya, S.; Sank, D.; White, T.; Cleland, A. N.; Martinis, John M.

    2013-03-01

    When transferring a quantum state from a freely propagating mode to a resonator, reflections must be minimized to avoid energy loss. Performing this transfer with high fidelity requires tunable coupling. We experimentally studied a 50 Ohm transmission line with tunable coupling to a 6GHz superconducting coplanar waveguide resonator, which in turn is capacitively coupled to a phase qubit for calibration. We classically drove the resonator while measuring the reflected and captured signals using a HEMT amplifier. Following theory by Korotkov (PRB 84, 014510, 2011), we find that the photon capture efficiency is maximized with an exponentially increasing drive; further improvements come from varying pulse duration and dynamic coupling. With these techniques, we reduce reflections so that presently over 80% of the pulse energy is captured by the resonator.

  6. Tunable Fano resonances based on microring resonator with feedback coupled waveguide.

    PubMed

    Zhao, Guolin; Zhao, Ting; Xiao, Huifu; Liu, Zilong; Liu, Guipeng; Yang, Jianhong; Ren, Zhaoyu; Bai, Jintao; Tian, Yonghui

    2016-09-01

    We experimentally demonstrate a tunable Fano resonance which originates from the optical interference between two different resonant cavities using silicon micro-ring resonator with feedback coupled waveguide fabricated on silicon-on-insulator (SOI) substrate. The resonance spectrum can be periodically tuned via changing the resonant wavelengths of two resonators through the thermo-optic effect. In addition to this, we can also change the transmission loss of the feedback coupled waveguide (FCW) to tune the resonance spectrum by the injection free carriers to FCW. We also build the theoretical model and we analyze the device performance by using the scattering matrix method. The simulation results are in a good agreement with the experimental results. The measurement maximum extinction ratio of the Fano resonance is as high as 30.8dB. Therefore, the proposed device is a most promising candidate for high on/off ratio optical switching/modulating, high-sensitivity biochemical sensing. PMID:27607626

  7. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  8. Strong and tunable mode coupling in carbon nanotube resonators

    NASA Astrophysics Data System (ADS)

    Castellanos-Gomez, Andres; Meerwaldt, Harold B.; Venstra, Warner J.; van der Zant, Herre S. J.; Steele, Gary A.

    2012-07-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage, allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders of magnitude larger than the mechanical-mode coupling in micromechanical resonators.

  9. Parametric strong mode-coupling in carbon nanotube mechanical resonators.

    PubMed

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-21

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. PMID:27447924

  10. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    NASA Astrophysics Data System (ADS)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  11. Calculation of the first nonlinear contribution to the general-relativistic spin-spin interaction for binary systems.

    PubMed

    Porto, Rafael A; Rothstein, Ira Z

    2006-07-14

    We use recently developed effective field theory techniques to calculate the third order post-Newtonian correction to the spin-spin potential between two spinning objects. This correction represents the first contribution to the spin-spin interaction due to the nonlinear nature of general relativity and will play an important role in forthcoming gravity wave experiments.

  12. Fiber-coupled short Fabry-Perot resonators

    SciTech Connect

    Stone, J.; Marcuse, D. )

    1989-05-01

    Fabry-Perot resonators intended as filters in wavelength-multiplexed optical communications systems may have to be very short (on the order of 10 {mu}m) in order to increase their free spectral range. Short, yet tunable cavities can be designed as air gaps between two fibers placed in close proximity with highly reflecting mirrors deposited on their ends. However, an air-gap resonator with plane mirrors between closely spaced fiber ends may yield low throughout because of the poor match between the modes of typical single-mode fibers and the resonant mode in the air-gap cavity. The throughput can be improved by confining the resonant mode by means of a hollow dielectric tube placed inside the resonator. This paper compares short fiber-coupled Fabry-Parot resonators with and without an inserted hollow dielectric waveguide and derives expressions for their transmission losses. The authors show that the throughput of both types of resonator can be improved significantly by using a special fiber with large mode size to couple to the resonator. The special fiber is then spliced to a conventional single-mode fiber. They conclude that the resonator with an inserted hollow dielectric waveguide offers increased throughput for resonators with high finesse.

  13. Synthesis of 14N and 15N-labeled trityl-nitroxide biradicals with strong spin-spin interaction and improved sensitivity to redox status and oxygen

    PubMed Central

    Liu, Yangping; Villamena, Frederick A.; Song, Yuguang; Sun, Jian; Rockenbauer, Antal

    2014-01-01

    Simultaneous evaluation redox status and oxygenation in biological systems is of great importance for the understanding of biological functions. Electron paramagnetic resonance spectroscopy coupled with the use of the nitroxide radicals have been an indispensable technique for this application but are still limited by its low oxygen sensitivity, and low EPR resolution in part due to the moderately broad EPR triplet and spin quenching through bioreduction. In this study, we showed that these drawbacks can be overcome through the use of trityl-nitroxide biradicals allowing for the simultaneous measurement of redox status and oxygenation. A new trityl-nitroxide biradical TNN14 composed of a pyrrolidinyl-nitroxide and a trityl, and its isotopically labeled 15N analogue TNN15 were synthesized and characterized. Both biradicals exhibited much stronger spin-spin interaction with J > 400 G than the previous synthesized trityl-nitroxide biradicals TN1 (~160 G) and TN2 (~52 G) with longer linker chain length. The enhanced stability of TNN14 was evaluated using ascorbate as reductant and the effect of different types of cyclodextrins on its stability in the presence of ascorbate was also investigated. Both biradicals are sensitive to redox status, and their corresponding trityl-hydroxylamines resulting from the reduction of the biradicals by ascorbate share the same oxygen sensitivity. Of note is that the 15N-labeled TNN15-H with an EPR doublet exhibits improved EPR signal amplitude as compared to TNN14-H with an EPR triplet. In addition, cyclic voltammetric studies verify the characteristic electrochemical behaviors of the trityl-nitroxide biradicals. PMID:21028905

  14. Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator.

    PubMed

    Mahboob, I; Perrissin, N; Nishiguchi, K; Hatanaka, D; Okazaki, Y; Fujiwara, A; Yamaguchi, H

    2015-04-01

    A micromechanical resonator embedded with a nanomechanical resonator is developed whose dynamics can be captured by the coupled-Van der Pol-Duffing equations. Activating the nanomechanical resonator can dispersively shift the micromechanical resonance by more than 100 times its bandwidth and concurrently increase its energy dissipation rate to the point where it can even be deactivated. The coupled-Van der Pol-Duffing equations also suggest the possibility of self-oscillations. In the limit of strong excitation for the nanomechanical resonator, the dissipation in the micromechanical resonator can not only be reduced, resulting in a quality factor of >3× 10(6), it can even be eliminated entirely resulting in the micromechanical resonator spontaneously vibrating. PMID:25751406

  15. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients.

  16. Coupled resonator filter with single-layer acoustic coupler.

    PubMed

    Jamneala, Tiberiu; Small, Martha; Ruby, Rich; Larson, John D

    2008-10-01

    We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz. PMID:18986880

  17. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF/sub 3/

    SciTech Connect

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-02-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF/sub 3/ and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF/sub 3/ is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs.

  18. Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities

    PubMed Central

    Li, Peng-Bo; Li, Hong-Rong; Li, Fu-Li

    2016-01-01

    We investigate the electromechanical coupling between a nanomechanical resonator and two parametrically coupled superconducting coplanar waveguide cavities that are driven by a two-mode squeezed microwave source. We show that, with the selective coupling of the resonator to the cavity Bogoliubov modes, the radiation-pressure type coupling can be greatly enhanced by several orders of magnitude, enabling the single photon strong coupling to be reached. This allows the investigation of a number of interesting phenomena such as photon blockade effects and the generation of nonclassical quantum states with electromechanical systems. PMID:26753744

  19. Tensor Renormalization Group Study of the General Spin-S Blume-Capel Model

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Xie, Zhi-Yuan

    2016-10-01

    We focus on the special situation of D = 2J in the general spin-S Blume-Capel model on a square lattice. Under an infinitesimal external magnetic field, the phase transition behaviors due to the thermal fluctuations are investigated by the newly developed tensor renormalization group method. We clearly demonstrate the phase transition process: in the case of an integer spin-S, there are S first-order phase transitions with the stepwise magnetizations M = S,S - 1, ldots ,0; in the case of a half-odd integer spin-S, there are S - 1/2 first-order phase transitions with corresponding M = S,S - 1, ldots ,1/2 in addition to one continuous phase transition due to spin-flip Z2 symmetry breaking. At low temperatures, all first-order phase transitions are accompanied by the successive disappearance of the spin-component pairs (±s); furthermore, the transition temperature for the nth first-order phase transition is the same, independent of the value of the spin-S. In the absence of a magnetic field, a visualization parameter characterizing the intrinsic degeneracy of the different phases provides a different reference for the phase transition process.

  20. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  1. Temporal coupled-mode theory for the Fano resonance in optical resonators.

    PubMed

    Fan, Shanhui; Suh, Wonjoo; Joannopoulos, J D

    2003-03-01

    We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications. PMID:12630843

  2. Direct Coupling From WGM Resonator Disks to Photodetectors

    NASA Technical Reports Server (NTRS)

    Savchenkov, Antoliy; Maleki, Lute; Mohageg, Makan; Le, Thanh

    2007-01-01

    Output coupling of light from a whispering- gallery-mode (WGM) optical resonator directly to a photodetector has recently been demonstrated. By directly is meant that the coupling is effected without use of intervening optical components. Heretofore, coupling of light into and out of WGM resonators has been a complex affair involving the use of such optical components as diamond or glass prisms, optical fibers, coated collimators, and/or fiber tapers. Alignment of these components is time-consuming and expensive. To effect direct coupling, one simply mounts a photodetector in direct mechanical contact with a spacer that is, in turn, in direct mechanical contact with a WGM resonator disk. The spacer must have a specified thickness (typically of the order of a wavelength) and an index of refraction lower, by an adequate margin, than the indices of refraction of the photodetector and the WGM resonator disk. This mechanically simple approach makes it possible to obtain an optimum compromise between maximizing optical coupling and maximizing the resonance quality factor (Q).

  3. Coupling graphene mechanical resonators to superconducting microwave cavities.

    PubMed

    Weber, P; Güttinger, J; Tsioutsios, I; Chang, D E; Bachtold, A

    2014-05-14

    Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 10(5)) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics. PMID:24745803

  4. Photoelastic coupling in gallium arsenide optomechanical disk resonators.

    PubMed

    Baker, Christopher; Hease, William; Nguyen, Dac-Trung; Andronico, Alessio; Ducci, Sara; Leo, Giuseppe; Favero, Ivan

    2014-06-16

    We analyze the magnitude of the radiation pressure and electrostrictive stresses exerted by light confined inside GaAs semiconductor WGM optomechanical disk resonators, through analytical and numerical means, and find the electrostrictive stress to be of prime importance. We investigate the geometric and photoelastic optomechanical coupling resulting respectively from the deformation of the disk boundary and from the strain-induced refractive index changes in the material, for various mechanical modes of the disks. Photoelastic optomechanical coupling is shown to be a predominant coupling mechanism for certain disk dimensions and mechanical modes, leading to total coupling gom and g(0) reaching respectively 3 THz/nm and 4 MHz. Finally, we point towards ways to maximize the photoelastic coupling in GaAs disk resonators, and we provide some upper bounds for its value in various geometries.

  5. Control of critical coupling in a coiled coaxial cable resonator.

    PubMed

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  6. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity

    PubMed Central

    Tan, Xiaoli; Song, Yuguang; Liu, Huiqiang; Zhong, Qinwen; Rockenbauer, Antal; Villamena, Frederick A.; Zweier, Jay L.; Liu, Yangping

    2016-01-01

    Supramolecular host-guest interactions of trityl-nitroxide (TN) biradicals CT02-VT, CT02-AT and CT02-GT with methyl-β-cyclodextrin (M-β-CD), hydroxypropyl-β-cyclodextrin (H-β-CD) and γ-cyclodextrin (γ-CD) were investigated by EPR spectroscopy. In the presence of cyclodextrins (i.e., γ-CD, M-β-CD and H-β-CD), host-guest complexes of CT02-VT are formed where the nitroxide and linker parts possibly interact with the cyclodextrins’ cavities. Complexation with cyclodextrins leads to suppression of the intramolecular through-space spin-spin exchange coupling in CT02-VT, thus allowing determination of the through-bond spin-spin exchange coupling which was calculated to be 1.6 G using EPR simulations. Different types of cyclodextrins have variable binding affinity with CT02-VT with γ-CD (95 M−1) > M-β-CD (70 M−1) > H-β-CD (32 M−1). In addition, the effect of the linkers in TN biradicals on the host-guest interactions was also investigated. Among three TN biradicals studied, CT02-VT has the highest association constant with one designated cyclodextrin derivative. On the other hand, the complexes of CT02-GT (~ 22 G) and CT02-AT (7.7–9.0 G) with cyclodextrins have much higher through-bond spin-spin exchange couplings than that of CT02-VT (1.6 G) due to the shorter linkers than that of CT02-VT. Furthermore, the stability of TN biradicals towards ascorbate was significantly enhanced after the complexation with CDs, with an almost 2-time attenuation of the second-order rate constants for all the biradicals. Therefore, the supramolecular host-guest interactions with cyclodextrins will be an alternative method to modulate the magnitude of the spin-spin interactions and redox sensitivity of TN biradicals and the resulting complexes are promising as highly efficient DNP polarizing agents as well as EPR redox probes. PMID:26700002

  7. Intercommunity resonances in multifrequency ensembles of coupled oscillators.

    PubMed

    Komarov, Maxim; Pikovsky, Arkady

    2015-07-01

    We generalize the Kuramoto model of globally coupled oscillators to multifrequency communities. A situation when mean frequencies of two subpopulations are close to the resonance 2:1 is considered in detail. We construct uniformly rotating solutions describing synchronization inside communities and between them. Remarkably, cross coupling across the frequencies can promote synchrony even when ensembles are separately asynchronous. We also show that the transition to synchrony due to the cross coupling is accompanied by a huge multiplicity of distinct synchronous solutions, which is directly related to a multibranch entrainment. On the other hand, for synchronous populations, the cross-frequency coupling can destroy phase locking and lead to chaos of mean fields.

  8. Anharmonic modal coupling in a bulk micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Dunn, Tyler; Wenzler, Josef-Stefan; Mohanty, Pritiraj

    2010-09-01

    We present measurements of nonlinear coupling between various acoustic modes of a micromechanical resonator. Piezoelectric transduction allows measurement of both flexural and bulk longitudinal modes up to microwave frequencies, and we find that all modes of the device couple, regardless of type. This coupling thus provides a means of mechanical nonlinear signal processing across a wide range of frequencies. Through controlled simultaneous excitation, we quantify coupling strength by measuring the frequency shift in a detector mode in response to the known energy of a driven mode.

  9. Resonance features of coupled Josephson junctions: radiation and shunting

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu M.; Seidel, P.; Il'ichev, E.; Nawrocki, W.; Grajcar, M.; Plecenik, P. A.; Rahmonov, I. R.; Kulikov, K.

    2012-11-01

    We study the phase dynamics and the resonance features of coupled Josephson junctions in layered superconductors and their manifestations in the current- voltage characteristics and temporal dependence of the electric charge in the superconducting layers. Results on the effect of the external radiation and shunting of the stack of Josephson junctions by LC-elements are presented. We discuss the ideas concerning the experimental observation of these resonances.

  10. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator

    NASA Astrophysics Data System (ADS)

    Binfeng, Yun; Hu, Guohua; Zhang, Ruohu; Yiping, Cui

    2016-05-01

    A coupled plasmonic waveguide resonator system which can produce sharp and asymmetric Fano resonances was proposed and analyzed. Two Fano resonances are induced by the interactions between the narrow discrete whispering gallery modes in a plasmonic square cavity resonator and the broad spectrum of the metal-insulator-metal stub resonator. The relative peak amplitudes between the 1st and 2nd order Fano resonances can be adjusted by changing the structure parameters, such as the square cavity size, the stub size and the center-to-center distance between the square cavity and the stub resonators. And the 1st order Fano resonant peak, which is a standing-wave mode, will split into two resonant peaks (one standing-wave mode and one traveling-wave mode) when it couples with the 2nd Fano resonance. Also, the potential of the proposed Fano system as an integrated slow-light device and refractive index sensor was investigated. The results show that a maximum group index of about 100 can be realized, and a linear refractive index sensitivity of 938 nm/RIU with a figure of merit of about 1.35 × 104 can be obtained.

  11. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  12. Tunable multiple mode-splitting in coupled graphene resonators system

    NASA Astrophysics Data System (ADS)

    Wang, Jicheng; Xia, Xiushan; Wang, Xiaosai; Liu, Shutian

    2016-05-01

    We investigate a coupled graphene resonator system which exhibits multiple mode-splitting effects and electromagnetically-induced-absorption-like transmission. The finite element method has been employed to study the transmission and electromagnetic responses of our designs at mid-infrared frequency. According to simulation results, the mode-splitting effects are mainly dependent on the destructive interference between two graphene resonators. By varying the chemical potential of graphene or the coupling gap, we are accessible to achieve a dynamically controllable mode-splitting system serving as a sensing application.

  13. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    SciTech Connect

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  14. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-11-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κE and/or magnetic κM components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  15. Design and analysis of coupled-resonator reconfigurable antenna

    NASA Astrophysics Data System (ADS)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2016-01-01

    In this paper, a coupled resonator with the microstrip patch antenna is proposed as a frequency reconfigurable antenna. The ground plane of the proposed microstrip patch antenna is modified with the proposed resonator structure to obtain reconfigurable characteristics. The resonator structure consists of two square split rings. The incorporation of proposed resonator structure with antenna makes it single-band antenna. The characteristics of proposed resonator structure can effectively deactivate by closing the splits of rings using switches, and hence, the dual-band characteristics of the antenna are recovered. The finite integration technique of computer simulation technology microwave studio is used throughout the investigation. The measurement of antenna performances is taken in an anechoic chamber. The measured and simulated performances of proposed reconfigurable antenna show very good agreement.

  16. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  17. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  18. Indirect coupling between two cavity modes via ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Hyde, Paul; Bai, Lihui; Harder, Michael; Match, Christophe; Hu, Can-Ming

    2016-10-01

    We experimentally realize an indirect coupling between two cavity modes via strong coupling with ferromagnetic resonance in Yttrium Iron Garnet. We find that some indirectly coupled modes of this system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. The properties of the indirectly coupled modes can be controlled using an external magnetic field or by tuning the cavity height. The relation between cavity transmission and the relative phase difference between cavity modes should be useful for developing tunable optical devices and improved information processing technologies.

  19. Differential amplification of structural perturbations in weakly coupled MEMS resonators.

    PubMed

    Thiruvenkatanathan, Pradyumna; Yan, Jize; Seshia, Ashwin A

    2010-03-01

    Measuring shifts in eigenstates caused by vibration localization in an array of weakly coupled resonators offers 2 distinct advantages for sensor applications compared with the technique of simply measuring resonant frequency shifts: 1) orders of magnitude enhancement in parametric sensitivity; and 2) intrinsic common mode rejection. In this paper, we experimentally demonstrate the common mode rejection in weakly coupled MEMS resonators with significant potential implications for sensor applications. The vibration behavior is studied in pairs of nearly identical MEMS resonators that are electrically coupled and subjected to small perturbations in stiffness under different ambient pressure and temperature. The shifts in the eigenstates for the same parametric perturbation in stiffness are experimentally demonstrated to be more than 3 orders of magnitude greater than corresponding resonant frequency variations. They are also shown to remain relatively constant to variations in ambient temperature and pressure. This increased relative robustness to environmental drift, along with the advantage of ultra-high parametric sensitivity, opens the door to an alternative approach to achieving higher sensitivity and stability in micromechanical sensors.

  20. Coupled Electromagnetic Resonators for Enhanced Communications and Telemetry

    NASA Technical Reports Server (NTRS)

    Dimmock, John O.

    2005-01-01

    Future NASA missions will require the collection of an increasing quantity and quality of data which, in turn, will place increasing demands on advanced sensors and advanced high bandwidth telemetry and communications systems. The capabilities of communication and telemetry systems depend, among other factors, on the stability, controllability and spectral purity of the carrier wave. These, in turn, depend on the quality of the oscillator, or resonator, or the Q of the system. Recent work on high Q optical resonators has indicated that the Q, or quality factor, of optical microsphere resonators can be substantially enhanced by coupling several such resonators together.1-3 In addition to the possibility of enhanced Q and increased energy storage capacity, the coupled optical resonators indicate that a wide variety of interesting and potentially useful phenomena such as induced transparency and interactive mode splitting can be observed depending critically on the morphology and configuration of the microresonators. The purpose of this SFFP has been to examine several different coupled electromagnetic oscillator configurations in order to evaluate their potential for enhanced electromagnetic communications.

  1. Measurement of coupling resonance driving terms with the AC dipole

    SciTech Connect

    Miyamoto, R.

    2010-10-01

    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.

  2. Nonlinear mode coupling in whispering-gallery-mode resonators

    NASA Astrophysics Data System (ADS)

    D'Aguanno, Giuseppe; Menyuk, Curtis R.

    2016-04-01

    We present a first-principles derivation of the coupled nonlinear Schrödinger equations that govern the interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode resonator. We find regions of modulational instability and the existence of trains of bright solitons in both the normal and the anomalous dispersion regime.

  3. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.

    PubMed

    Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M

    2012-07-20

    The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate.

  4. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion. PMID:24229289

  5. Double resonance in the system of coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Rahmonov, I. R.; Kulikov, K. V.

    2013-01-01

    The effect of LC shunting on the phase dynamics of coupled Josephson junctions has been examined. It has been shown that additional ( rc) branches appear in the current-voltage characteristics of the junctions when the Josephson frequency ωJ is equal to the natural frequency of the formed resonance circuit ωrc. The effect of the parameters of the system on its characteristics has been studied. Double resonance has been revealed in the system at ωJ = ωrc = 2ωLPW, where ωLPW is the frequency of a longitudinal plasma wave appearing under the parametric-resonance conditions. In this case, electric charge appears in superconducting layers in the interval of the bias current corresponding to the rc branch. The charge magnitude is determined by the accuracy with which the double resonance condition is satisfied. The possibility of the experimental implementation of the effects under study has been estimated.

  6. Modulation of coupling in a photonic switch by resonant interference.

    PubMed

    Attard, A E

    1998-04-20

    A novel photonic switch structure is described in which the coupling of light between two fiber waveguides is controlled by the resonant interference of a third waveguide. The switching action is controlled by a small variation of the index of refraction of the control waveguide by the application of either photo-optical (Kerr) techniques or electro-optical (Pockels) techniques. The control waveguide can be either a fiber waveguide or a slab waveguide. The equations for the waveguide coupling were obtained by analytical approximations from coupled-mode theory. A beam-propagation simulation was also used. The results of the two models were compared. Multiple resonant interferences were observed in the case of a slab waveguide. PMID:18273156

  7. Spin-Orbit Coupled Fermi Gases across a Feshbach Resonance

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-Qiang; Zhai, Hui

    2011-11-01

    In this Letter we study both ground state properties and the superfluid transition temperature of a spin-1/2 Fermi gas across a Feshbach resonance with a synthetic spin-orbit coupling, using the mean-field theory and the exact solution of two-body problem. We show that a strong spin-orbit coupling can significantly enhance the pairing gap for negative scattering length as, due to increased density of state at Fermi surface. Strong spin-orbit coupling can also significantly enhance the superfluid transition temperature Tc to a sizable fraction of Fermi temperature when as≲0, while it suppresses Tc slightly for positive as. The interaction energy and pair size at resonance are also discussed.

  8. Plasmon coupling in vertical split-ring resonator metamolecules

    PubMed Central

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I.; Sun, Greg; Tsai, Din Ping

    2015-01-01

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity. PMID:26043931

  9. Effect of chemical synapse on vibrational resonance in coupled neurons

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Wang, Jiang; Wei, Xile

    2009-03-01

    The response of three coupled FitzHugh-Nagumo neurons, under high-frequency driving, to a subthreshold low-frequency signal is investigated. We show that an optimal amplitude of the high-frequency driving enhances the response of coupled excited neurons to a subthreshold low-frequency input, and the chemical synaptic coupling is more efficient than the well-known electrical coupling (gap junction), especially when the coupled neurons are near the canard regime, for local signal input, i.e., only one of the three neurons is subject to a low-frequency signal. The influence of additive noise and the interplay between vibrational and stochastic resonance are also analyzed.

  10. Out-of-unison resonance in weakly nonlinear coupled oscillators

    PubMed Central

    Hill, T. L.; Cammarano, A.; Neild, S. A.; Wagg, D. J.

    2015-01-01

    Resonance is an important phenomenon in vibrating systems and, in systems of nonlinear coupled oscillators, resonant interactions can occur between constituent parts of the system. In this paper, out-of-unison resonance is defined as a solution in which components of the response are 90° out-of-phase, in contrast to the in-unison responses that are normally considered. A well-known physical example of this is whirling, which can occur in a taut cable. Here, we use a normal form technique to obtain time-independent functions known as backbone curves. Considering a model of a cable, this approach is used to identify out-of-unison resonance and it is demonstrated that this corresponds to whirling. We then show how out-of-unison resonance can occur in other two degree-of-freedom nonlinear oscillators. Specifically, an in-line oscillator consisting of two masses connected by nonlinear springs—a type of system where out-of-unison resonance has not previously been identified—is shown to have specific parameter regions where out-of-unison resonance can occur. Finally, we demonstrate how the backbone curve analysis can be used to predict the responses of forced systems. PMID:25568619

  11. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect

    Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  12. Strong coupling between whispering gallery modes and chromium ions in ruby

    NASA Astrophysics Data System (ADS)

    Farr, Warrick G.; Goryachev, Maxim; Creedon, Daniel L.; Tobar, Michael E.

    2014-08-01

    We report the study of interactions between cavity photons and paramagnetic Cr3+ spins in a ruby (Cr3+:Al2O3) whispering gallery mode (WGM) resonator. Examining the system at microwave frequencies and millikelvin temperatures, spin-photon couplings up to 610 MHz or about 5% of photon energy are observed between the impurity spins and high quality factor (Q >105) WGM. Large tunability and spin-spin interaction allows operation in the strong coupling regime. The system exhibits behavior not predicted by the usual Tavis-Cummings model because of interactions within the two-level spin bath, and the existence of numerous photonic modes.

  13. Coupling Between Corotation And Lindblad Mean Motion Resonances

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame; Sicardy, B.; Renner, S.

    2012-10-01

    We consider the classical Elliptic Restricted Three-Body Problem with two bodies (particle and satellite) orbiting a central planet. If we take into account the oblateness of the central body through the classical additional terms up to J_6, the secular terms causing the orbit precessions appear in the disturbing potential leading to the presence of two critical resonant arguments : Φ = (m+1)λ‧ + mλ + ω and Φ‧ = (m+1)λ‧ + mλ + ω‧ where m is an integer, λ and ω the mean longitude and the longitude of the periapsis of the particle, and the primed quantities apply to the satellite. The arguments Φ‧ and Φ respectively describe the Corotation Eccentric Resonance (CER) and the Lindblad Eccentric Resonance (LER). We developed a new model (the CoraLin model) which encapsulate in a simple adimensional form the coupling between the two resonances. We examine the asymptotic configurations where these resonances are well separated or completely superimposed. Poincaré surfaces of section reveal that in intermediate cases, the strong coupling between the resonances may lead to chaotic behavior. We apply this model to several recently discovered small Saturnian satellites dynamically linked to Mimas through first mean motion resonances : Anthe, Methone, and Aegaeon, all associated with arc material. All satellites are trapped in CER with Mimas and perturbed by the associated LER. We estimate the probability of capturing a satellite into a of CER with Mimas, as the orbit of the latter evolves through tidal effects, and discuss possible scenarios for the the dynamical origin of those moons.

  14. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions.

    PubMed

    Vavřinská, Andrea; Zelinka, Jiří; Šebera, Jakub; Sychrovský, Vladimír; Fiala, Radovan; Boelens, Rolf; Sklenář, Vladimír; Trantírek, Lukáš

    2016-01-01

    Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)JCH and (3)JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy. PMID:26685997

  15. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions.

    PubMed

    Vavřinská, Andrea; Zelinka, Jiří; Šebera, Jakub; Sychrovský, Vladimír; Fiala, Radovan; Boelens, Rolf; Sklenář, Vladimír; Trantírek, Lukáš

    2016-01-01

    Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)JCH and (3)JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.

  16. Antiferromagnetic Spin-S Chains with Exactly Dimerized Ground States

    NASA Astrophysics Data System (ADS)

    Michaud, Frédéric; Vernay, François; Manmana, Salvatore R.; Mila, Frédéric

    2012-03-01

    We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1·Si)(Si·Si+1)+H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S+1)-2]. This result generalizes the Majumdar-Ghosh point of the J1-J2 chain, to which the present model reduces for S=1/2. For S=1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c=3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.

  17. Intercommunity resonances in multifrequency ensembles of coupled oscillators.

    PubMed

    Komarov, Maxim; Pikovsky, Arkady

    2015-07-01

    We generalize the Kuramoto model of globally coupled oscillators to multifrequency communities. A situation when mean frequencies of two subpopulations are close to the resonance 2:1 is considered in detail. We construct uniformly rotating solutions describing synchronization inside communities and between them. Remarkably, cross coupling across the frequencies can promote synchrony even when ensembles are separately asynchronous. We also show that the transition to synchrony due to the cross coupling is accompanied by a huge multiplicity of distinct synchronous solutions, which is directly related to a multibranch entrainment. On the other hand, for synchronous populations, the cross-frequency coupling can destroy phase locking and lead to chaos of mean fields. PMID:26274246

  18. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses. PMID:27152793

  19. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  20. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field

    NASA Astrophysics Data System (ADS)

    McAllister, Ben T.; Parker, Stephen R.; Tobar, Michael E.

    2016-04-01

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  1. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  2. Relativistic calculations of magnetic resonance parameters: background and some recent developments.

    PubMed

    Autschbach, Jochen

    2014-03-13

    This article outlines some basic concepts of relativistic quantum chemistry and recent developments of relativistic methods for the calculation of the molecular properties that define the basic parameters of magnetic resonance spectroscopic techniques, i.e. nuclear magnetic resonance shielding, indirect nuclear spin-spin coupling and electric field gradients (nuclear quadrupole coupling), as well as with electron paramagnetic resonance g-factors and electron-nucleus hyperfine coupling. Density functional theory (DFT) has been very successful in molecular property calculations, despite a number of problems related to approximations in the functionals. In particular, for heavy-element systems, the large electron count and the need for a relativistic treatment often render the application of correlated wave function ab initio methods impracticable. Selected applications of DFT in relativistic calculation of magnetic resonance parameters are reviewed.

  3. Resonant self-pulsations in coupled nonlinear microcavities

    SciTech Connect

    Grigoriev, Victor; Biancalana, Fabio

    2011-04-15

    A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.

  4. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes.

    PubMed

    Kirkendall, Christopher R; Kwon, Jae W

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  5. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes.

    PubMed

    Kirkendall, Christopher R; Kwon, Jae W

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  6. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    NASA Astrophysics Data System (ADS)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  7. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    PubMed Central

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  8. Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2007-01-01

    Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.

  9. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  10. Monitoring microbial metabolites using an inductively coupled resonance circuit

    PubMed Central

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-01-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power. PMID:26264183

  11. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  12. Coupling a Transmon Qubit to a Superconducting Metamaterial Resonator

    NASA Astrophysics Data System (ADS)

    Wang, Haozhi; Hutchings, M.; Indrajeet, Sager; Rouxinol, Francisco; Lahaye, Matthew; Plourde, B. L. T.; Taketani, Bruno G.; Wilhelm, Frank K.

    Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit significantly different mode structures compared to resonators made from conventional distributed transmission lines. In particular, it is possible to produce a high density of modes in the microwave regime where a superconducting qubit can be operated and coupled to the various modes. We will present our low-temperature measurements of such a superconducting metamaterial resonator coupled to a tunable transmon qubit. By tuning the magnetic flux biasing the qubit, we observe vacuum Rabi splittings in the modes that the qubit transition passes through. We will also discuss our measurements of an interaction between neighboring modes of the metamaterial system that is mediated by the qubit. Because of the dispersive coupling of the qubit to the various modes of the system, driving a microwave tone near one mode of the system can have a significant influence on the transmission through another mode, with a strong dependence on the bias point of the qubit. We will compare these measurements with a theoretical model of the system.

  13. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  14. An inductively coupled, doubly tuned resonator for in vivo nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    McNichols, Roger J.; Wright, Steven M.; Wasser, Jeremy S.; Coté, Gerard L.

    1999-08-01

    We present a coil designed for in vivo 31P and 1H nuclear magnetic resonance spectroscopy which consists of a doubly tuned resonator inductively coupled to separate 1H and 31P feed coils. The advantages of the resonator include the ability to 1H shim over the same volume from which 31P spectra are extracted by using a single sample coil, elimination of coupling problems between separate 1H and 31P coils, ease of design and tuning over conventional double-tuned coils, and reduced match/tune sensitivity to coil loading, which is important in in vivo applications. We have used this coil to collect phosphorus spectra from the in situ heart of the western painted turtle (Chrysemys picta bellii) at 2 T. The total heart volume was less than 1 mL and acquisition time was just under 10 min.

  15. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering

  16. An antenna-coupled split-ring resonator for biosensing

    NASA Astrophysics Data System (ADS)

    Torun, H.; Cagri Top, F.; Dundar, G.; Yalcinkaya, A. D.

    2014-09-01

    An antenna-coupled split-ring resonator-based microwave sensor is introduced for biosensing applications. The sensor comprises a metallic ring with a slit and integrated monopole antennas on top of a dielectric substrate. The backside of the substrate is attached to a metallic plate. Integrated antennas are used to excite the device and measure its electromagnetic characteristics. The resonant frequency of the device is measured as 2.12 GHz. The characteristics of the device with dielectric loading at different locations across its surface are obtained experimentally. The results indicate that dielectric loading reduces the resonant frequency of the device, which is in good agreement with simulations. The shift in resonant frequency is employed as the sensor output for biomolecular experiments. The device is demonstrated as a resonant biomolecular sensor where the interactions between heparin and fibroblast growth factor 2 are probed. The sensitivity of the device is obtained as 3.7 MHz/(μg/ml) with respect to changes in concentration of heparin.

  17. Coupled modes of the resonance box of the guitar.

    PubMed

    Elejabarrieta, M J; Ezcurra, A; Santamaria, C

    2002-05-01

    Vibrations of the resonance box of the guitar have been studied by means of the modal analysis technique and the finite-element method. An expert craftsman constructed the guitar box with all the structures, internal and external, characteristic of a real instrument for the experimental measurements. The boundary conditions were chosen in order to clarify the soundboard-back interaction only via the internal air coupling. The numerical model allows one to study the influence of each component on the whole box, and the contribution of the modes of the components (wooden box and its parts, and air), to the coupled modes by calculating their participation factors. The coupled modes of the guitar box are discussed taking into account both the finite-element and modal analysis results.

  18. A coupling model for amplified spontaneous emission in laser resonators

    NASA Astrophysics Data System (ADS)

    Su, Hua; Wang, Xiaojun; Shang, Jianli; Yu, Yi; Tang, Chun

    2015-10-01

    The competition between amplified spontaneous emission (ASE) and main laser in solid-state laser resonators is investigated both theoretically and experimentally. A coupled model using the spatial volume integral instead of the Monte Carlo type raytrace technique is proposed to depict ASE in the laser resonators. This model is able to evaluate all possible reflections at both the polishing surface and the diffusive side, to calculate ASE for an inhomogeneous gain distribution, and to include the spectral correction. An experiment is carefully designed to verify the theoretical model and to investigate the distinct physical properties caused by the coupling between ASE and the laser oscillations. The experimental data exhibit an excellent agreement with the theoretical predictions. According to that model, we confirm that ASE in thin-disk lasers can be characterized approximately by the product of the threshold gain of the resonator and the diameter of the disks, as laser modes are highly overlapped with the pumping beam. Theoretical evaluation shows that the scattering characteristic of the disk side impacts on ASE significantly. Furthermore, we point out that ASE decreases output laser power by affecting threshold pumping power, while slope efficiency is not changed by ASE. This observation provides us with a simple way to estimate the decrease of the optical efficiency by ASE.

  19. Micro-resonators coupled to atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Kitching, John

    2010-03-01

    Recently there has been a convergence of ideas between the fields of solid-state and atomic physics -- examples range from using atoms for quantum simulation of condensed-matter Hamiltonians to physically coupling atoms with solid-state devices such as micro-resonators. In this talk, we discuss an experimental proposal involving an array of cooled microcantilevers coupled to a sample of ultracold atoms trapped near a microfabricated surface [1]. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, we describe the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonators, along with a protocol for entangling two or more cantilevers on the atom chip using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this system for tests of quantum mechanics at macroscopic scales or quantum information processing will be discussed. [4pt] [1] A. Geraci and J. Kitching, Phys. Rev. A 80, 032317 (2009)

  20. Effect of Parasitic Dielectric Resonators on CPW/Aperture-Coupled Dielectric Resonator Antennas

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1993-01-01

    The effects of parasitic dielectric resonators on the HE (sub 11 sigma) and HE (High Efficiency) (sub 13 sigma) modes of a cylindrical dielectric resonator antenna (DRA) have been studied. The DRA was excited electromagnetically with a grounded coplanar waveguide through an aperture in the common ground plane. Strong couplings were observed for the HE (sub 11 sigma) mode with the parasitic element superimposed on the driven DRA, and for the HE (sub 13 sigma) mode with parasitic elements placed on both sides of the driven DRA. Results indicate significant enhancement in bandwidth for both modes, and good radiation patterns for the HE (sub 11 sigma) mode.

  1. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  2. PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS

    SciTech Connect

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-22

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.

  3. Beam engineering for selective and enhanced coupling to multipolar resonances

    NASA Astrophysics Data System (ADS)

    Das, Tanya; Iyer, Prasad P.; DeCrescent, Ryan A.; Schuller, Jon A.

    2015-12-01

    Multipolar electromagnetic phenomena in subwavelength resonators are at the heart of metamaterial science and technology. In this Rapid Communication, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique, we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. This work enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  4. Superharmonic resonances in a strongly coupled cavity-atom system

    NASA Astrophysics Data System (ADS)

    Buks, Eyal; Deng, Chunqing; Orgazzi, Jean-Luc F. X.; Otto, Martin; Lupascu, Adrian

    2016-09-01

    We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity. The fundamental cavity mode is externally driven and the response is investigated in the weak nonlinear regime. We find that near the crossing point, at which the resonance frequencies of the cavity mode and qubit coincide, the sign of the Kerr coefficient changes, and consequently the type of nonlinear response changes from softening to hardening. Furthermore, the cavity response exhibits superharmonic resonances (SHR) when the ratio between the qubit frequency and the cavity fundamental mode frequency is tuned close to an integer value. The nonlinear response is characterized by the method of intermodulation and both signal and idler gains are measured. The experimental results are compared with theoretical predictions and good qualitative agreement is obtained. The SHRs have potential for applications in quantum amplification and generation of entangled states of light.

  5. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  6. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    NASA Astrophysics Data System (ADS)

    Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.

    2016-05-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.

  7. Mode couplings and resonance instabilities in finite dust chains.

    PubMed

    Qiao, Ke; Kong, Jie; Matthews, Lorin S; Hyde, Truell W

    2015-05-01

    Employing a numerical simulation, the normal modes are investigated for finite, one-dimensional horizontal dust chains in complex plasma. Mode couplings induced by the ion flow within the sheath are identified in the mode spectra and the coupling rules are determined. Two types of resonance-induced instabilities are observed, one bidirectional and one unidirectional. Bidirectional instability is found to cause melting of the chain with the melting proceeding via a two-step process which obeys the Lindemann criterion. The relationship between the normal mode spectra observed in finite systems and the wave dispersion relations seen in larger systems was also examined using a dust chain model. For this case, the dispersion relation was obtained through multiplication of the mode spectra matrix by a transition matrix. The resulting dispersion relations exhibit both the general features observed in larger crystals as well as several characteristics unique to finite systems, such as discontinuities and strong energy-density fluctuations. PMID:26066266

  8. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.

    PubMed

    Pisarchik, A N; Jaimes-Reátegui, R

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively.

  9. Modulating the Near Field Coupling through Resonator Displacement in Planar Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Mohan Rao, S. Jagan; Kumar, Deepak; Kumar, Gagan; Chowdhury, Dibakar Roy

    2016-10-01

    We present the effect of vertical displacements between the resonators inside the unit cell of planar coupled metamaterials on their near field coupling and hence on the terahertz (THz) wave modulation. The metamolecule design consists of two planar split- ring resonators (SRRs) in a unit cell which are coupled through their near fields. The numerically simulated transmission spectrum is found to have split resonances due to the resonance mode hybridization effect. With the increase in displacement between the near field coupled SRRs, this metamaterial system shows a transition from coupled to uncoupled state through merging of the split resonances to the single intrinsic resonance. We have used a semi-analytical model describing the effect of displacements between the resonators and determine that it can predict the numerically simulated results. The outcome could be useful in modulating the terahertz waves employing near field coupled metamaterials, hence, can be useful in the development of terahertz modulators and frequency tunable devices in future.

  10. Vibrometry analysis of electrooptical coupling near piezoelectric resonance

    NASA Astrophysics Data System (ADS)

    McIntosh, Robert; Bhalla, Amar S.; Guo, Ruyan

    2014-09-01

    The electrooptic response of crystals becomes attenuated in the megahertz or higher frequencies where it is of the most use for communication systems. This research explores new possibilities of improved electrooptic interaction at high frequencies, discovered as a result of coupled electrooptic effects near selected piezoelectric resonances. Results suggest that for electrooptics the key to a large interaction at high frequencies is the gradient of the strain in a modulated crystal and the acceleration of the accompanying lattice waves. While strains tend to be damped, acceleration of the lattice wave retains its amplitude at high frequencies. This interaction is studied by a high frequency Laser Doppler Vibrometer and by numerical finite element analysis modeling using COMSOL. PMN-PT crystal was the primary material studied due to its large piezoelectric coupling and electrooptic coefficients. The dynamic displacement of the samples was measured over a broad range of frequencies, including the fundamental resonant modes and higher order harmonics where the mode structure becomes complex and not well described by existing analytical models.

  11. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave

    NASA Astrophysics Data System (ADS)

    Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang

    2016-01-01

    We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).

  12. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-01-01

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  13. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    SciTech Connect

    Pierre, Mathieu Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-06-09

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  14. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.

    PubMed

    Chu, Yizhuo; Wang, Dongxing; Zhu, Wenqi; Crozier, Kenneth B

    2011-08-01

    The strong coupling between localized surface plasmons and surface plasmon polaritons in a double resonance surface enhanced Raman scattering (SERS) substrate is described by a classical coupled oscillator model. The effects of the particle density, the particle size and the SiO2 spacer thickness on the coupling strength are experimentally investigated. We demonstrate that by tuning the geometrical parameters of the double resonance substrate, we can readily control the resonance frequencies and tailor the SERS enhancement spectrum. PMID:21934853

  15. Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide.

    PubMed

    Sorrentino, Christopher; Toland, John R E; Search, Christopher P

    2012-01-01

    We analyze the sensitivity to inertial rotations Ω of a micron scale integrated gyroscope consisting of a coupled resonator optical waveguide (CROW). We show here that by periodic modulation of the evanescent coupling between resonators, the sensitivity to rotations can be enhanced by a factor up to 10(9) in comparison to a conventional CROW with uniform coupling between resonators. Moreover, the overall shape of the transmission through this CROW superlattice is qualitatively changed resulting in a single sharp transmission resonance located at Ω = 0s-1 instead of a broad transmission band. The modulated coupling therefore allows the CROW gyroscope to operate without phase biasing and with sensitivities suitable for inertial navigation even with the inclusion of resonator losses.

  16. Motional resonance enhanced artificial atomic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wu, Lingna; Luo, Xinyu; Xu, Zhi-Fang; Ueda, Masahito; Wang, Ruquan; You, Li

    2015-05-01

    Atomic spin-orbit coupling (SOC) represents an important type of synthetic gauge fields actively pursued in quantum simulation studies. Recently, different schemes based on pulsed or periodic modulating gradient magnetic field (GMF) are proposed and implemented to synthesize one dimensional (1D) SOC in a spinor atomic Bose-Einstein condensate (BEC). This study provides theoretical understanding and experimental confirmation that the strength of SOC is enhanced making use of motional resonance associated with atomic center of mass in a harmonic trap. In addition to enable extra tunability and flexibility of gradient magnetic field based schemes for synthesizing atomic SOC, the findings we present also shed light on experimental efforts towards synthesizing two-dimensional (2D) atomic SOC. This work is supported by MOST 2013CB922002 and 2013CB922004 of the National Key Basic Research Program of China, and by NSFC (No. 91121005, No. 11374176, No. 11404184, and No. 11474347).

  17. A Straightforward Way to Determine Relative Intensities of Spin-Spin Splitting Lines of Equivalent Nuclei in NMR Spectra.

    ERIC Educational Resources Information Center

    Orcutt, Ronald H.

    1987-01-01

    Describes a simple way of obtaining a set of relative intensities of spin-spin splitting lines using Pascal's triangle rather than calculating binomial coefficients. Provides tables showing Pascal's triangle and the relative intensities of multiplets for a range of nuclear spins. (TW)

  18. Dimerizations in spin-S antiferromagnetic chains with three-spin interaction

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-Yuan; Furuya, Shunsuke C.; Nakamura, Masaaki; Komakura, Ryo

    2013-12-01

    We discuss spin-S antiferromagnetic Heisenberg chains with three-spin interactions, next-nearest-neighbor interactions, and bond alternation. First, we prove rigorously that there exist parameter regions of the exact dimerized ground state in this system. This is a generalization of the Majumdar-Ghosh model to arbitrary S. Next, we discuss the ground-state phase diagram of the models by introducing several effective field theories and the universality classes of the transitions are described by the level-2S SU (2) Wess-Zumino-Witten model and the Gaussian model. Finally, we determine the phase diagrams of S =1 and S =3/2 systems by using exact diagonalization and level spectroscopy.

  19. Nuclear spin-spin relaxation in 3He-Ne films

    NASA Astrophysics Data System (ADS)

    Sullivan, Neil S.; Stachiowak, Piotr; Parks, Charles

    2003-05-01

    NMR measurements of the nuclear spin-spin relaxation times are reported for commensurate monolayers of 3He and 3He-Ne films on boron nitride for temperatures 0.1

  20. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  1. A coupled optoelectronic oscillator with three resonant cavities

    NASA Astrophysics Data System (ADS)

    Shan, Yuan-yuan; Jiang, Yang; Bai, Guang-fu; Ma, Chuang; Li, Hong-xia; Liang, Jian-hui

    2015-01-01

    A new single-mode optoelectronic oscillator (OEO) with three coupled cavities is proposed and demonstrated. A Fabry-Perot (F-P) cavity fiber laser and an optical-electrical feedback branch are coupled together to construct an optoelectronic oscillator, where the F-P cavity fiber laser serves as a light source, and a modulator is placed in the laser cavity to implement reciprocating modulation, which simultaneously splits the laser cavity into two parts and forms a dual-loop configuration. To complete an optoelectronic oscillator, part of optical signal is output from the F-P cavity to implement the feedback modulation, which constructs the third cavity. Since only the oscillation signal satisfies the requirements of all the three cavities, a single-mode oscillation can be finally achieved. Three resonant cavities are successfully designed without adding more optoelectronic devices, and the side-modes can be well suppressed with low cost. The oscillation condition is theoretically analyzed. In the experimental demonstration, a 20 GHz single longitudinal mode microwave signal is successfully obtained.

  2. Identification of matrix conditions that give rise to the linear coupling resonances

    SciTech Connect

    Gardner,C.J.

    2009-03-01

    General definitions of horizontal and vertical amplitudes for linear coupled motion are developed from the normal form of the one-turn matrix. This leads to the identification of conditions on the matrix that give rise to the linear coupling sum and difference resonances. The correspondence with the standard hamiltonian treatment of the resonances is discussed.

  3. Improvement of efficient coupling and optical resonances by using taper-waveguides coupled to cascade of UV210 polymer micro-resonators

    NASA Astrophysics Data System (ADS)

    Castro-Beltran, R.; Huby, N.; Loas, G.; Lhermite, H.; Pluchon, D.; Bêche, B.

    2014-12-01

    In this paper, we report the overall design, fabrication and optical characterization of single and multiple resonant micro-structures patterned on UV210 polymer and shaped by using deep-UV lithography procedures. Various families of ring and racetrack forms are investigated with different geometrical dimensions linked to the micro-resonators and the specific taper-waveguides and gaps allowing the optimized coupling. Well defined photonic structures families in the sub-micrometer range obtained by this deep UV-light process are clearly confirmed through scanning electron microscopy. In order to evaluate and quantify the efficiency of the sub-micrometer coupling, the recirculation of the light and the quality of the optical resonance aspects, a global study including top view intensity imaging, spectral measurements and fast Fourier transform analysis is performed for all these devices based on single and multiple family resonators. The experimental TE-mode resonance transmissions reveal a complete agreement with the period of the theoretically expected resonances. A maximum value of the quality factor Q = 3.5  ×  103 at 1035 nm with a 3.2 times higher resonance contrast is assessed for cascade of triple micro-resonators with respect to photonic devices based on only one micro-resonator. In addition, UV210 circuits made of specific tapers coupling to cascade loops act directly on the improvement of the evanescent coupling and resonances in terms of quality factor and extinction rate by selecting the optical mode resonance successively and more precisely. All these designs have low cost technological reproducible steps, and the devices and protocol measurements are markedly suitable for mass fabrication and metrology applications.

  4. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.

    PubMed

    Zhuang, Huawei; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-08-20

    We investigate the plasmonic analog of electromagnetically induced transparency (EIT) using two adjacent graphene-based Fabry-Perot (F-P) resonators side coupling to a nanoribbon waveguide. By the coupling mode theory in time and F-P resonant model, the destructive interference from the coupling of the two F-P resonators results in the EIT-like optical response. The induced peak and width of the transparency window can be dynamically manipulated by varying the coupling distance of the two resonators, and the transparent window is easily shifted by tuning the resonator length or the chemical potential of the graphene nanoribbon. In order to verify the characteristics of slow light, the group index profile is analyzed at different coupling distances. The proposed graphene-based EIT-like system could open up new opportunities for potential applications in plasmonic slow light and optical information buffering devices.

  5. Fokker-Planck formalism in magnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  6. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Laser with resonators coupled by a dynamic hologram

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. B.; Golyanov, A. V.; Luk'yanchuk, B. S.; Ogluzdin, Valerii E.; Rubtsova, I. L.; Sugrobov, V. A.; Khizhnyak, A. I.

    1987-11-01

    The nature of operation of a laser with a phase-conjugate mirror utilizing multibeam interaction was found to have a considerable influence on the coupling of its resonator to the resonator of a laser used to pump the mirror. A system of this kind with resonators coupled by a dynamic hologram exhibited "soft" lasing in the presence of a self-pumped phase-conjugate mirror.

  7. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Yao, Hongbing; Gong, Daolei; Chen, Mingyang; Tong, Yanqun; Fu, Yonghong; Ren, Naifei

    2016-07-01

    We propose a strategy to broaden the absorption band of the conventional metamaterial absorber by incorporating alternating metal/dielectric films. Up to 7-fold increase in bandwidth and ∼95% average absorption are achieved arising from the coupling of induced multiple gap plasmon resonances. The resonance coupling is analytically demonstrated using the coupled oscillator model, which reveals that both the optimal coupling strength and the resonance wavelength matching are required for the enhancement of absorption bandwidth. The presented multilayer design is easily fabricated and readily implanted to other absorber configurations, offering a practical avenue for applications in photovoltaic cells and thermal emitters.

  8. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun; Wang, Shen-yun

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  9. Surface plasmon resonance applied to G protein-coupled receptors

    PubMed Central

    Locatelli-Hoops, Silvia; Yeliseev, Alexei A.; Gawrisch, Klaus; Gorshkova, Inna

    2013-01-01

    G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies. PMID:24466506

  10. Coupling of Acoustic Vibrations to Plasmon Resonances in Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Pelton, Matthew; Guest, Jeffrey

    Measurements of acoustic vibrations in nanoparticles provide a unique opportunity to study mechanical phenomena at nanometer length scales and picosecond time scales. Phonon vibrations of plasmonic nanoparticles are of particular interest, due to their large extinction efficiencies, and high sensitivity to surrounding medium. There are two mechanisms that transduce the mechanical oscillations into plasmon resonance shift: (1) changes in polarizability; and (2) changes in electron density. These mechanisms have been used to explain qualitatively the origin of the transient-absorption signals, however, a quantitative connection has not yet been made except for simple geometries. Here, we present a method to quantitatively determine the coupling between vibrational modes and plasmon modes in noble-metal nanoparticles including spheres, shells, rods and cubes. We separately determine the parts of the optical response that are due to shape changes and to changes in electron density, and we relate the optical signals to the symmetries of the vibrational and plasmon modes. These results clarify reported experimental results, and should help guide the optimization of future experiments.

  11. Issues in nanophotonics: coupling and phase in resonant tunneling

    NASA Astrophysics Data System (ADS)

    Tsu, Raphael

    2013-01-01

    Modern Nano electronics involves the use of heterojunctions in forming energy steps based on band-edge alignments in effecting quantum confinements. When the electron meanfree- path exceeds couple of periods, man-made quantum states appeared, mimicking natural solids with sharpness determined by the degree of coherence dictated by a relatively long meanfree- path. When a single quantum well is involved, the structure is represented by resonant tunneling. This process can further be extended to 3D (3-dimension), known as QD, for quantum dot, however, thus far only few systems have been found possible, mostly involving InAs, or InN. However, the real problem lies in I/O, making contact to a single quantum dot, seems to be impractical on account of difficulties in making contacts in Nano scale regime. The issue with impedance matching, is the most important aspect for efficient devices, whether as detectors, or as generator in frequencies between THz to visible light. As size shrinks to Nano-regime, even the wavelength of IR is too large for effective coupling to the quantum dots without some sort of coupling such as the use of Fabry-Perrot mirrors, which is in fact unsuited for quantum dots, unless these dots are arranged in an array mimicking a solid with translational symmetry, which in fact defeating the purpose of going to quantum dots, except when the distribution of these quantum dots are arranged either representable by some distribution functions suitable for arriving at a meaningful average, or periodically mimicking a solid, such as the man-made superlattice, SL, originally proposed by Esaki and Tsu. [1, 2]. Interestingly Esaki and Tsu were asked to remove the reference on doping in the barrier region for increased mobility by the reviewer for the IBM's own J. of Research and Development. We did protest to the Editor-in- Chief of the Journal to no avail! Because of this experience, it did occur to me of requiring something beyond the regular reviewing

  12. Two-slot coiled coaxial cable resonator: reaching critical coupling at a reduced number of coils.

    PubMed

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2014-11-01

    This paper reports the experimental demonstration of a coiled coaxial cable resonator capable of meeting the critical coupling condition using a reduced number of coils relative to previously reported coiled resonators. By introducing a second slot along the length of the device, a two-slot coiled coaxial cable resonator was fabricated and critical coupling observed at 22 turns. An additional device with one-slot, but otherwise identically constructed, was also fabricated. After 44 turns, the one-slot device had yet to reach critical coupling. An ultrahigh signal-to-noise ratio (greater than 70 dB) was observed at critical coupling of the two-slot device. This reduction in number of slots necessary to reach critical coupling, and the corresponding reduction of physical length of the device, makes this demonstration of the control of critical coupling a potentially important step towards the successful application of coiled coaxial cable resonators to microwave communication and robust sensing applications.

  13. Polarization of nuclear spins by a cold nanoscale resonator

    SciTech Connect

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-12-15

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  14. Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators

    NASA Astrophysics Data System (ADS)

    Yang, Chui-Ping; Su, Qi-Ping; Zheng, Shi-Biao; Nori, Franco

    2016-04-01

    In a circuit consisting of two or more resonators, the intercavity crosstalk is inevitable, which could create some problems, such as degrading the performance of quantum operations and the fidelity of various quantum states. The focus of this work is to propose a crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators, which is important in large-scale quantum information processing and communication in a network consisting of resonators or cavities. In this work, we consider 2 N resonators of different frequencies, which are coupled to a three-level quantum system (qutrit). By applying a strong pulse to the coupler qutrit, we show that an effective Hamiltonian can be constructed for simultaneously coupling multiple pairs of resonators. The main advantage of this proposal is that the effect of inter-resonator crosstalks is greatly suppressed by using resonators of different frequencies. In addition, by employing the qutrit-resonator dispersive interaction, the intermediate higher-energy level of the qutrit is virtually excited and thus decoherence from this level is suppressed. This effective Hamiltonian can be applied to implement quantum operations with photonic qubits distributed in different resonators. As one application of this Hamiltonian, we show how to simultaneously generate multiple Einstein-Podolsky-Rosen pairs of photonic qubits distributed in 2 N resonators. Numerical simulations show that it is feasible to prepare two high-fidelity EPR photonic pairs using a setup of four one-dimensional transmission line resonators coupled to a superconducting flux qutrit with current circuit QED technology.

  15. Gap Plasmon Resonance in a Suspended Plasmonic Nanowire Coupled to a Metallic Substrate.

    PubMed

    Miyata, Masashi; Holsteen, Aaron; Nagasaki, Yusuke; Brongersma, Mark L; Takahara, Junichi

    2015-08-12

    We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.

  16. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants. PMID:17328593

  17. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  18. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials.

    PubMed

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-01-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative "dark" modes. These 3D conductive "dark" modes strongly interfere with the "bright" resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109

  19. Multiple Resonators as a Multi-Channel Bus for Coupling Josephson Junction Qubits

    NASA Astrophysics Data System (ADS)

    Thrailkill, Zechariah; Lambert, Joseph; Ramos, Roberto

    2010-03-01

    Josephson junction-based qubits have been shown to be promising components for a future quantum computer. A network of these superconducting qubits will require quantum information to be stored in and transferred among them. Resonators made of superconducting metal strips are useful elements for this purpose because they have long coherence times and can dispersively couple qubits. We explore the use of multiple resonators with different resonant frequencies to couple qubits. We find that an array of resonators with different frequencies can be individually addressed to store and retrieve information, while coupling qubits dispersively. We show that a control qubit can be used to effectively isolate an active qubit from an array of resonators so that it can function within the same frequency range used by the resonators.

  20. An intermode-coupled thin-film micro-acoustic resonator

    NASA Astrophysics Data System (ADS)

    Arapan, Lilia; Katardjiev, Ilia; Yantchev, Ventsislav

    2012-08-01

    A novel concept for the development of thin-film micro-acoustic resonators based on the coupling between different plate acoustic modes is demonstrated. The basic principles for the design and fabrication of intermode-coupled plate acoustic wave resonators on c-textured thin aluminum nitride films are presented. More specifically, the lowest order symmetric S0 Lamb wave is excited and then coupled to the fundamental thickness shear bulk resonance by means of a metal strip grating with specific periodicity. The experimental results demonstrate that the grating-assisted intermode coupling can be employed in high-frequency resonators inheriting the low dispersive nature of the S0 mode in combination with the energy localization in the plate bulk typical for the fundamental thickness shear resonance.

  1. Spin-S kagome quantum antiferromagnets in a field with tensor networks

    NASA Astrophysics Data System (ADS)

    Picot, Thibaut; Ziegler, Marc; Orús, Román; Poilblanc, Didier

    2016-02-01

    Spin-S Heisenberg quantum antiferromagnets on the kagome lattice offer, when placed in a magnetic field, a fantastic playground to observe exotic phases of matter with (magnetic analogs of) superfluid, charge, bond, or nematic orders, or a coexistence of several of the latter. In this context, we have obtained the (zero-temperature) phase diagrams up to S =2 directly in the thermodynamic limit owing to infinite projected entangled pair states, a tensor network numerical tool. We find incompressible phases characterized by a magnetization plateau versus field and stabilized by spontaneous breaking of point group or lattice translation symmetry(ies). The nature of such phases may be semiclassical, as the plateaus at the 1/3th ,(1-2/9S)th, and (1-1/9S)th of the saturated magnetization (the latter followed by a macroscopic magnetization jump), or fully quantum as the spin-1/2 1/9 plateau exhibiting a coexistence of charge and bond orders. Upon restoration of the spin rotation U (1 ) symmetry, a finite compressibility appears, although lattice symmetry breaking persists. For integer spin values we also identify spin gapped phases at low enough fields, such as the S =2 (topologically trivial) spin liquid with no symmetry breaking, neither spin nor lattice.

  2. Sign structure and ground-state properties for a spin-S t-J chain

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Rui; Ye, Peng

    2014-07-01

    The antiferromagnetic Heisenberg spin chain of odd spin S is in the Haldane phase with several defining physical properties, such as thermodynamical ground-state degeneracy, symmetry-protected edge states, and nonzero string order parameter. If nonzero hole concentration δ and hole hopping energy t are considered, the spin chain is replaced by a spin-S t-J chain. The motivation of this paper is to generalize the discussions of the Haldane phase to the doped spin chain. The first result of this paper is that, for the model considered here, the Z2 sign structure in the usual Ising basis can be totally removed by two consecutive unitary transformations consisting of a spatially local one and a nonlocal one. Direct from the sign structure, the second result of this paper is that the Marshall theorem and the Lieb-Mattis theorem for pure spin systems are generalized to the t-J chain for arbitrary S and δ. A corollary of the theorem provides us with the ground-state degeneracy in the thermodynamic limit. The third result of this paper is about the phase diagram. We show that the defining properties of the Haldane phase survive in the small t /J limit. The large t /J phase supports a gapped spin sector with similar properties (ground-state degeneracy, edge state, and string order parameter) of the Haldane chain, although the charge sector is gapless.

  3. Quasi Eighth-Mode Substrate Integrated Waveguide (SIW) Fractal Resonator Filter Utilizing Gap Coupling Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin

    2016-09-01

    In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.

  4. Resonance Frequency Analysis for Surface-Coupled AFM Cantilever in Liquids

    SciTech Connect

    Mirman, B; Kalinin, Sergei V

    2008-01-01

    Shifts in the resonance frequencies of surface-coupled atomic force microscope (AFM) probes are used as the basis for the detection mechanisms in a number of scanning probe microscopy techniques including atomic force acoustic microscopy (AFAM), force modulation microscopy, and resonance enhanced piezoresponse force microscopy (PFM). Here, we analyze resonance characteristics for AFM cantilever coupled to surface in liquid environment, and derive approximate expressions for resonant frequencies as a function of vertical and lateral spring constant of the tip-surface junction. This analysis provides a simplified framework for the interpretation of AFAM and PFM data in ambient, liquid, and vacuum environments.

  5. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  6. Multiple hybridized resonances of IR-806 chromonic molecules strongly coupled to Au nanorods.

    PubMed

    Zhang, Ya-Fang; Yang, Da-Jie; Wang, Jia-Hong; Wang, Ya-Lan; Ding, Si-Jing; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-05-14

    Strong coupling of plasmons and molecules generates intriguingly hybridized resonance. The IR-806 molecule is a near-infrared cyanine liquid crystal dye with multiple molecular bands and its tunable absorption spectrum varies dramatically with concentration. In this article, we investigate multiple hybridized resonances of the Au nanorods (AuNRs) strongly coupled to IR-806 molecules. Five hybridized resonance peaks are observed in the extinction spectra of the AuNR@IR-806 hybrids. Two resonance peaks at approximately 840 and 912 nm in the hybrids are reported for the first time. The dependence of the multiple hybridized peaks on the bare plasmon resonance wavelength of AuNRs and the molecular concentration is also demonstrated. The observations presented herein provide a plasmon-molecule coupling route for tuning optical responses of liquid crystal molecules. PMID:25896476

  7. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  8. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    NASA Astrophysics Data System (ADS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Liang, Shixiong; Xu, Gaiqi; Sun, Han; Yang, Ziqiang

    2015-11-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  9. Multiple hybridized resonances of IR-806 chromonic molecules strongly coupled to Au nanorods

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Fang; Yang, Da-Jie; Wang, Jia-Hong; Wang, Ya-Lan; Ding, Si-Jing; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-04-01

    Strong coupling of plasmons and molecules generates intriguingly hybridized resonance. The IR-806 molecule is a near-infrared cyanine liquid crystal dye with multiple molecular bands and its tunable absorption spectrum varies dramatically with concentration. In this article, we investigate multiple hybridized resonances of the Au nanorods (AuNRs) strongly coupled to IR-806 molecules. Five hybridized resonance peaks are observed in the extinction spectra of the AuNR@IR-806 hybrids. Two resonance peaks at approximately 840 and 912 nm in the hybrids are reported for the first time. The dependence of the multiple hybridized peaks on the bare plasmon resonance wavelength of AuNRs and the molecular concentration is also demonstrated. The observations presented herein provide a plasmon-molecule coupling route for tuning optical responses of liquid crystal molecules.Strong coupling of plasmons and molecules generates intriguingly hybridized resonance. The IR-806 molecule is a near-infrared cyanine liquid crystal dye with multiple molecular bands and its tunable absorption spectrum varies dramatically with concentration. In this article, we investigate multiple hybridized resonances of the Au nanorods (AuNRs) strongly coupled to IR-806 molecules. Five hybridized resonance peaks are observed in the extinction spectra of the AuNR@IR-806 hybrids. Two resonance peaks at approximately 840 and 912 nm in the hybrids are reported for the first time. The dependence of the multiple hybridized peaks on the bare plasmon resonance wavelength of AuNRs and the molecular concentration is also demonstrated. The observations presented herein provide a plasmon-molecule coupling route for tuning optical responses of liquid crystal molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00051c

  10. Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators.

    PubMed

    Guo, Yunsheng; Zhou, Ji

    2014-11-01

    Resonance coupling of two resonators with the same resonant frequency is a highly efficient energy transfer approach in physics. Here we report total broadband transmission of microwaves through a metallic subwavelength aperture using the coupled resonances of the strongly localized electric fields at the gaps of two split-ring resonators (SRRs) placed on either side of the aperture. At the center frequency of the broad band, the phase difference between the two localized time-varying electric fields is 90°, which is consistent with the critical coupling state that is a sufficient condition for the two-resonator system to realize total transmission if the resonators are assumed to be lossless.

  11. Vanishing chiral couplings in the large-N{sub C} resonance theory

    SciTech Connect

    Portoles, Jorge; Rosell, Ignasi; Ruiz-Femenia, Pedro

    2007-06-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-N{sub C} chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/N{sub C} expansion.

  12. Micro-resonator with metallic mirrors coupled to a bus waveguide.

    PubMed

    Zamek, Steve; Feng, Liang; Khajavikhan, Mercedeh; Tan, Dawn T H; Ayache, Maurice; Fainman, Yeshaiahu

    2011-01-31

    We demonstrate a micro-resonator based on a channel waveguide terminated with metallic mirrors side coupled to a bus waveguide. Transmission through such a resonant structure implemented in a silicon-on-insulator platform is investigated theoretically and demonstrated experimentally. The resonator is 13.4 μm long, exhibits an unloaded Q-factor of ~2100, and a free spectral range of 21 nm around the wavelength of 1.55 μm.

  13. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    NASA Astrophysics Data System (ADS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-10-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e --C 2H 4 and e --Mg.

  14. THz-range generation frequency growth in semiconductor superlattice coupled to external high-quality resonator

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Maksimenko, Vladimir A.; Khramova, Marina V.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-03-01

    We investigate effects of a linear resonator on spatial electron dynamics in semiconductor superlattice. We have shown that coupling the external resonant system to superlattice leads to occurrence of the additional area of negative differential conductance on the current-voltage characteristic, which does not occur in autonomous system. Furthermore, this region shows great increase of generation frequency, that contains practical interest.

  15. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator.

    PubMed

    Ding, Yunhong; Huang, Bo; Peucheret, Christophe; Xu, Jing; Ou, Haiyan; Zhang, Xinliang; Huang, Dexiu

    2014-03-10

    Ultra-wide band signal generation using a silicon microring resonator tuned to an NRZ-DPSK modulated optical carrier is proposed and demonstrated. The scheme is shown to enable the generation of UWB signals with switchable polarity and tunable bandwidth by simply tuning the coupling regions of the microring resonator. Monocycle pulses with both negative and positive polarities are successfully synthesized experimentally.

  16. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  17. Tuning, coupling and matching of a resonant cavity in microwave exposure system for biological objects.

    PubMed

    Atanasova, Gabriela; Atanasov, Nikolai

    2013-06-01

    A new microwave exposure system for biological experiments with well-defined exposure conditions and improved control of the exposure parameters consisting of variable frequency power source, coaxial to waveguide transition, matching network and single-mode resonant cavity with movable shorting plunger was fabricated and characterized. The introduction of a biological sample into a resonant cavity has a large impact on its field configuration and port impedance. As such, the properties, geometry and position of the biological sample become a part of the electrical properties of the microwave circuit. With that change, the electrical properties of the resonant cavity, such as impedance, quality factor and resonant frequency, also change. In this study, an appropriate coupling system with effective power transfer and an algorithm to tuning and coupling of resonant cavity in resonance before and after the introduction of biological sample have been proposed. This procedure will lead to a known dose distribution within the biological sample and allow a better comparison with other studies. Coupling of the electromagnetic energy into a resonant cavity was experimentally investigated. Graphical representation of cavity impedance in case of undercoupled, critically coupled and overcoupled cavity has been presented. Critical coupling of an empty resonant cavity has been accomplished at voltage standing wave ratio (VSWR) 1.01, at resonance frequencies 900 and 947.5 MHz. Critical coupling with the introduction of a biological sample has been accomplished at VSWR ≤ 1.07 for frequency bandwidth 1 MHz and VSWR ≤ 1.5 for frequency bandwidth up to 5 MHz with central frequency 947.5 MHz. PMID:23675625

  18. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

  19. Dispersive Thermometry with a Josephson Junction Coupled to a Resonator

    NASA Astrophysics Data System (ADS)

    Saira, O.-P.; Zgirski, M.; Viisanen, K. L.; Golubev, D. S.; Pekola, J. P.

    2016-08-01

    We embed a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range of 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 μ K /√{Hz } . At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.

  20. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    NASA Astrophysics Data System (ADS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-08-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein-Gordon, Fermi-Pasta-Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation.

  1. Feshbach resonance described by boson-fermion coupling

    SciTech Connect

    Domanski, T.

    2003-07-01

    We consider a possibility to describe the Feshbach resonance in terms of the boson-fermion (BF) model. Using such a model, we show that after a gradual disentangling of the boson from fermion subsystem, the resonant-type scattering between fermions is indeed generated. We decouple the subsystems via (a) the single step and (b) the continuous canonical transformation. With the second one, we investigate the feedback effects effectively leading to the finite amplitude of the scattering strength. We study them in detail in the normal T>T{sub c} and superconducting T{<=}T{sub c} states.

  2. The enhancement and sustainment of coherence resonance in a two-way coupled brusselator system

    NASA Astrophysics Data System (ADS)

    Shi, Jian Cheng; Li, Qian Shu

    2007-01-01

    The two-way coupled brusselator system, subject to multiplicative noise at only one end, is investigated. Results show that coupling could induce the occurrence, propagation and synchronization of coherence resonance (CR); there exists an optimal noise intensity for CR being most effectively amplified; below the optimal noise level, AECR without tuning could be exhibited.

  3. Coupled-resonator-induced reflection in photonic-crystal waveguide structures.

    PubMed

    Mingaleev, Sergei F; Miroshnichenko, Andrey E; Kivshar, Yuri S

    2008-07-21

    We study the resonant transmission of light in a coupled-resonator optical waveguide interacting with two nearly identical side cavities. We reveal and describe a novel effect of the coupled-resonator-induced reflection (CRIR) characterized by a very high and easily tunable quality factor of the reflection line, for the case of the inter-site coupling between the cavities and the waveguide. This effect differs sharply from the coupled-resonator-induced transparency (CRIT)--an all-optical analogue of the electromagnetically-induced transparency--which has recently been studied theoretically and experimentally for the structures based on micro-ring resonators and photonic crystal cavities. Both CRIR and CRIT effects have the same physical origin which can be attributed to the Fano-Feshbach resonances in the systems exhibiting more than one resonance. We discuss the applicability of the novel CRIR effect to the control of the slow-light propagation and low-threshold all-optical switching. PMID:18648486

  4. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  5. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  6. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate. PMID:27607837

  7. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    NASA Astrophysics Data System (ADS)

    Zanotto, Simone; Tredicucci, Alessandro

    2016-04-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  8. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    PubMed Central

    Zanotto, Simone; Tredicucci, Alessandro

    2016-01-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results. PMID:27091489

  9. Lower Bounds on the Frequency Estimation Error in Magnetically Coupled MEMS Resonant Sensors.

    PubMed

    Paden, Brad E

    2016-02-01

    MEMS inductor-capacitor (LC) resonant pressure sensors have revolutionized the treatment of abdominal aortic aneurysms. In contrast to electrostatically driven MEMS resonators, these magnetically coupled devices are wireless so that they can be permanently implanted in the body and can communicate to an external coil via pressure-induced frequency modulation. Motivated by the importance of these sensors in this and other applications, this paper develops relationships among sensor design variables, system noise levels, and overall system performance. Specifically, new models are developed that express the Cramér-Rao lower bound for the variance of resonator frequency estimates in terms of system variables through a system of coupled algebraic equations, which can be used in design and optimization. Further, models are developed for a novel mechanical resonator in addition to the LC-type resonators.

  10. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    PubMed Central

    2011-01-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip. PMID:22039926

  11. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  12. Optically induced strong intermodal coupling in mechanical resonators at room temperature

    SciTech Connect

    Ohta, R.; Okamoto, H.; Yamaguchi, H.; Hey, R.; Friedland, K. J.

    2015-08-31

    Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperatures and provides a wide variety of applications of integrated mechanical systems.

  13. Geography of the rotational resonances and their stability in the ellipsoidal full two body problem

    NASA Astrophysics Data System (ADS)

    Jafari Nadoushan, Mahdi; Assadian, Nima

    2016-02-01

    A fourth-order Hamiltonian describing the planar full two body problem is obtained, allowing for a mapping out of the geography of spin-spin-orbit resonances. The expansion of the mutual potential function up to the fourth-order results in the angles to come through one single harmonic and consequently the rotation of both bodies and mutual orbit are coupled. Having derived relative equilibria, stability analysis showed that the stability conditions are independent of physical and orbital characteristics. Simultaneously chaotic motion of bodies is investigated through the Chirikov diffusion utilizing geographic information of the complete resonances. The results show that simultaneous chaos among the binary asteroids is not expected to be prevalent due to the mass distribution of primary in compare with secondary. If mass distribution of bodies is of the same order, simultaneous chaos and global instability are achievable.

  14. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment

    SciTech Connect

    Oh, B.H.; Westler, W.M.; Darba, P.; Markley, J.L.

    1988-05-13

    By applying a two-dimensional double-quantum carbon-13 nuclear magnetic resonance experiment to a protein uniformly enriched to 26% carbon-13, networks of directly bonded carbon atoms were identified by virtue of their one-bond spin-spin couplings and were classified by amino acid type according to their particular single- and double-quantum chemical shift patterns. Spin systems of 75 of the 98 amino acid residues in a protein, oxidized Anabaena 7120 ferredoxin (molecular weight 11,000), were identified by this approach, which represents a key step in an improved methodology for assigning protein nuclear magnetic resonance spectra. Missing spin systems corresponded primarily to residues located adjacent to the paramagnetic iron-sulfur cluster. 25 references, 2 figures.

  15. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs/AlAs Multiple Quantum Wells.

    PubMed

    Jusserand, B; Poddubny, A N; Poshakinskiy, A V; Fainstein, A; Lemaitre, A

    2015-12-31

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs/AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 10(5) at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g(0) in the range of 100 GHz. PMID:26765028

  16. Coherent coupling of molecular resonators with a microcavity mode

    PubMed Central

    Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T. W.

    2015-01-01

    The optical hybridization of the electronic states in strongly coupled molecule–cavity systems have revealed unique properties, such as lasing, room temperature polariton condensation and the modification of excited electronic landscapes involved in molecular isomerization. Here we show that molecular vibrational modes of the electronic ground state can also be coherently coupled with a microcavity mode at room temperature, given the low vibrational thermal occupation factors associated with molecular vibrations, and the collective coupling of a large ensemble of molecules immersed within the cavity-mode volume. This enables the enhancement of the collective Rabi-exchange rate with respect to the single-oscillator coupling strength. The possibility of inducing large shifts in the vibrational frequency of selected molecular bonds should have immediate consequences for chemistry. PMID:25583259

  17. Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide.

    PubMed

    Ghulinyan, M; Ramiro-Manzano, F; Prtljaga, N; Guider, R; Carusotto, I; Pitanti, A; Pucker, G; Pavesi, L

    2013-04-19

    We report on a theoretical and experimental study of the optical coupling between a whispering-gallery type resonator and a waveguide lying on different planes. In contrast to the usual in-plane geometry, the present vertical one is characterized by an oscillatory behavior of the effective coupling as a function of the vertical gap. This behavior manifests itself as oscillations in both the resonance peak waveguide transmission and the mode quality factor. An analytical description based on coupled-mode theory and a two-port beam-splitter model of the waveguide-resonator vertical coupling is developed for arbitrary phase-matching conditions and is successfully used to interpret the experimental observations.

  18. Localized Surface Plasmons Selectively Coupled to Resonant Light in Tubular Microcavities.

    PubMed

    Yin, Yin; Li, Shilong; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Saei Ghareh Naz, Ehsan; Ma, Libo; Schmidt, Oliver G

    2016-06-24

    Vertical gold nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold nanogap on the microcavities, which is conveniently achieved by rolling up specially designed thin dielectric films into three-dimensional microtube cavities. The coupling phenomenon is explained by a modified quasipotential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions. PMID:27391725

  19. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    PubMed

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories. PMID:23004718

  20. Design and Measurement of a Tunable Thin-Film LC Resonator for Coupling to Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Ballard, C. J.; Budoyo, R. P.; Voigt, K. D.; Dutta, S. K.; Lobb, C. J.; Wellstood, F. C.

    We have designed and measured a tunable lumped element LC resonator for coupling to transmon qubits. We use an rf SQUID loop as a variable inductive element that shunts the inductor of the resonator and produces a shift in the resonator frequency that depends on the flux applied to the loop. In order to achieve a balanced response, we shunt the inductor with two single junction SQUID loops. Each junction has a critical current of approximately 300pA, which is small enough to prevent multiple trapped flux states. We tune the effective inductance of the loops by using a split, gradiometric modulation coil that is well isolated from the cavity at the resonance frequency. Our resonator is made of thermally evaporated aluminum on a sapphire substrate and has a resonance frequency of 5.3 GHz. It is mounted inside a 3D microwave cavity that has a TE101 frequency of 6.3 GHz.

  1. Analysis of light propagation in slotted resonator based systems via coupled-mode theory.

    PubMed

    Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt

    2011-04-25

    Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties. PMID:21643116

  2. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    SciTech Connect

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-28

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  3. Shapiro and parametric resonances in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Gaafar, Ma A.; Shukrinov, Yu M.; Foda, A.

    2012-11-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  4. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    NASA Astrophysics Data System (ADS)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan

    2015-09-01

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  5. Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance

    NASA Astrophysics Data System (ADS)

    Xiao, S.; Yoon, Y.; Lee, Y.-H.; Bird, J. P.; Ochiai, Y.; Aoki, N.; Reno, J. L.; Fransson, J.

    2016-04-01

    A critical aspect of quantum mechanics is the nonlocal nature of the wave function, a characteristic that may yield unexpected coupling of nominally isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work, we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasibound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, intruder, continuum. According to this theory, the observed distortions in the Fano resonance arise only in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.

  6. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    SciTech Connect

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  7. Resonance-enhanced waveguide-coupled silicon-germanium detector

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Ram, R. J.

    2016-02-01

    A photodiode with 0.55 ± 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  8. Manifestation of resonance-related chaos in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.

    2012-11-01

    Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.

  9. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure.

    PubMed

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-01-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors. PMID:27640809

  10. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-09-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors.

  11. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    PubMed Central

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-01-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors. PMID:27640809

  12. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect

    Wisby, I. Tzalenchuk, A. Ya.; Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E.; Gwilliam, R.; Meeson, P. J.; Lindström, T.

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1 MHz and spin linewidths of 50–65 MHz.

  13. A coupling model for quasi-normal modes of photonic resonators

    NASA Astrophysics Data System (ADS)

    Vial, Benjamin; Hao, Yang

    2016-11-01

    We develop a model for the coupling of quasi-normal modes in open photonic systems consisting of two resonators. By expressing the modes of the coupled system as a linear combination of the modes of the individual particles, we obtain a generalized eigenvalue problem involving small size dense matrices. We apply this technique to dielectric rod dimmer of rectangular cross section for transverse electric polarization in a two-dimensional setup. The results of our model show excellent agreement with full wave finite element simulations. We provide a convergence analysis, and a simplified model with a few modes to study the influence of the relative position of the two resonators. This model provides interesting physical insights on the coupling scheme at stake in such systems and pave the way for systematic and efficient design and optimization of resonances in more complicated systems, for applications including sensing, antennae and spectral filtering.

  14. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications.

    PubMed

    Liu, Feifei; Zhang, Xinping

    2015-06-15

    Fano coupling between Rayleigh anomaly and localized surface plasmon resonance has been observed in diffractive grating structures consisting of aluminum nanolines deposited on the top surface of photoresist with each nanoline composed of tightly aggregated aluminum nanoparticles. Localized surface plasmon resonance is excited both in the nanoparticles and in the nanolines by differently polarized light. The surface propagation mode excited by the first- and second-order Rayleigh diffraction anomaly is strongly scattered and diffracted by the plasmonic aluminum grating structures, producing light rays in the same direction as the reflected light beam with the same spectral feature as the Rayleigh anomaly. The narrow-band diffracted and scattered light appears as sharp dips in the broad-band reflective optical extinction spectrum of plasmon resonance, which is recognized as a kind of Fano coupling. This kind of coupled mode is utilized successfully in refractive-index-sensor devices with excellent sensitivity.

  15. Weak and strong coupling regimes, vacuum Rabi splitting and two types of resonances

    NASA Astrophysics Data System (ADS)

    Billionnet, C.

    2007-01-01

    For two discrete-level quantum systems in interaction, we follow the displacement in the complex plane of the eigen-energies of the compound system when the excited level of one of the two systems is enlarged. These new points are usually called resonances and describe mixed unstable states. This allows us to define and to calculate a critical value of the coupling constant which separates two well-known coupling regimes. These two regimes are thus described in a unified way. In the study, resonances which are usually not taken into account occur. They are studied in the large continuum case provided by the coupling of the hydrogen atom to the states of the transverse electromagnetic field in the vacuum. We justify that some of these resonances be neglected in this case.

  16. Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile.

    PubMed

    Beck, Fiona J; Stavrinadis, Alexandros; Lasanta, Tania; Szczepanick, John-Paul; Konstantatos, Gerasimos

    2016-01-25

    We present a simple conceptual model describing the absorption enhancement provided by diffraction gratings due to resonant coupling to guided modes in a multi-layered structure. In doing so, we provide insight into why certain guided modes are more strongly excited than others and demonstrate that the spatial overlap of the mode profile with the grating is important. The model is verified by comparison to optical simulations and experimental measurements. We fabricate metal nanoparticle gratings integrated as back contacts in solution-processed PbS colloidal quantum dot photodiodes. The measured photocurrent at the target wavelength is enhanced by 250%, with reference to planar devices, due to resonant coupling to guided modes with strong spatial overlap with the gratings. In comparison, resonant coupling to weakly overlapping modes results in a 25% increase at the same wavelength.

  17. A Qubit-Coupled Nanomechanical Resonator Integrated with a Superconducting CPW Cavity

    NASA Astrophysics Data System (ADS)

    Hao, Yu; Rouxinol, Francisco; Shim, Seung-Bo; Lahaye, Matt

    2014-03-01

    In this work we discuss some of our first results integrating a qubit-coupled nanomechanical resonator with a superconducting transmission line resonator. This hybrid circuit QED system is composed of a capacitively-coupled superconducting charge-type qubit and UHF-range flexural nanoresonator, which are both embedded within a superconducting niobium coplanar waveguide (CPW) cavity. Phase-sensitive transmission measurements of the CPW cavity are used to spectroscopically probe the qubit-coupled nanoresonator via the qubit-state-dependent dispersive shift of the cavity frequency. We will discuss the design and measurement of the latest generation of these devices and the prospects for using this system to read-out the number-states statistics of a nanomechanical resonator at low thermal occupancy. NSF-DMR Career Award 1056423.

  18. Resonant Coupling of a Bose-Einstein Condensate to a Micromechanical Oscillator

    SciTech Connect

    Hunger, David; Camerer, Stephan; Haensch, Theodor W.; Treutlein, Philipp; Koenig, Daniel; Kotthaus, Joerg P.; Reichel, Jakob

    2010-04-09

    We report experiments in which the vibrations of a micromechanical oscillator are coupled to the motion of Bose-condensed atoms in a trap. The interaction relies on surface forces experienced by the atoms at about 1 {mu}m distance from the mechanical structure. We observe resonant coupling to several well-resolved mechanical modes of the condensate. Coupling via surface forces does not require magnets, electrodes, or mirrors on the oscillator and could thus be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes.

  19. Resonant coupling of Rayleigh waves through a narrow fluid channel causing extraordinary low acoustic transmission.

    PubMed

    Garcia-Chocano, Victor M; Nagaraj; Lòpez-Rios, Tomàs; Gumen, Lyudmila; Sànchez-Dehesa, Josè; Krokhin, Arkadii

    2012-10-01

    Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid channel is predicted and experimentally observed. Although the coupling through a fluid (water) is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in the design of acoustic metamaterial screens and reflectors.

  20. COMPONENTS OF LASER SYSTEMS AND PROCESSES OCCURRING IN THEM: Selectivity of coupled dispersive resonators

    NASA Astrophysics Data System (ADS)

    Kravchenko, V. I.; Parkhomenko, Yu N.; Sokolov, V. A.

    1988-09-01

    A study is made of the laws governing interference effects in a system of dispersive resonators coupled by diffraction. An approximate analytic expression is obtained for the selectivity function. An analysis is made of the influence of the parameters of the system on the selectivity curve. It is shown that the strongest manifestation of interference effects is observed when the difference between the Q factors of cophasal and antiphasal types of resonator excitation is maximal.

  1. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-06-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.

  2. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    PubMed Central

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-01-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109

  3. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Kim, Seonghwan; Van Neste, C. W.; Lee, Moonchan; Jeon, Sangmin; Thundat, Thomas

    2014-01-01

    A rapid method of obtaining photoacoustic spectroscopic signals for trace amounts of surface adsorbed molecules using a nanostructured coupled resonator array is described. Explosive molecules adsorbed on a nanoporous anodic aluminum oxide cantilever, which has hexagonally ordered nanowells with diameters and well-to-well distances of 35 nm and 100 nm, respectively, are excited using pulsed infrared (IR) light with a frequency matching the common mode resonance frequency of the coupled resonator. The common mode resonance amplitudes of the coupled resonator as a function of illuminating IR wavelength present a photoacoustic IR absorption spectrum representing the chemical signatures of the adsorbed explosive molecules. In addition, the mass of the adsorbed molecules as an orthogonal signal for quantitative analysis is determined by measuring the variation of the localized, individual mode resonance frequency of a cantilever on the array. The limit of detection of the ternary mixture of explosive molecules (1:1:1 of trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) is estimated to be ˜100 ng cm-2. These multi-modal signals enable us to perform quantitative and rapid chemical sensing and analysis in ambient conditions.

  4. Simulating Entanglement Dynamics of Singlet-Triplet Qubits Coupled to a Classical Transmission Line Resonator

    NASA Astrophysics Data System (ADS)

    Wolfe, Michael; Kestner, Jason

    Electrons confined in lateral quantum dots are promising candidates for scalable quantum bits. Particularly, singlet-triplet qubits can entangle electrostatically and offer long coherence times due to their weak interactions with the environment. However, fast two-qubit operations are challenging. We examine the dynamics of singlet triplet qubits capacitively coupled to a classical transmission line resonator driven near resonance. We numerically simulate the dynamics of the von Neumann entanglement entropy and investigate parameters of the coupling element that optimizes the operation time for the qubit.

  5. Elementary array of Fabry-Pérot waveguide resonators with tunable coupling

    NASA Astrophysics Data System (ADS)

    Lepert, Guillaume; Hinds, E. A.; Rogers, Helen L.; Gates, James C.; Smith, Peter G. R.

    2013-09-01

    We recently proposed that an array of optical cavities containing quantum emitters could be interconnected by an optical bus made of Fabry Pérot resonators lying side by side, for applications in quantum information processing and quantum simulation. Here, we demonstrate the feasibility of this geometry. We show that the resonators can be conveniently coupled, and that the coupling rate between adjacent waveguides can be widely tuned using the thermo-optic effect. The device is linearly scalable and can be combined with other integrated devices, making it more generally applicable as an adjustable optical delay line or optical interconnect.

  6. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  7. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators.

    PubMed

    Smith, Clinton J; Shankar, Raji; Laderer, Matthew; Frish, Michael B; Loncar, Marko; Allen, Mark G

    2015-03-01

    We report the initial evaluation of a mid-infrared QCL-coupled silicon-on-sapphire ring resonator gas sensor. The device probes the N(2)O 2241.79 cm(-1) optical transition (R23 line) in the ν(3) vibrational band. N(2)O concentration is deduced using a non-linear least squares fit, based on coupled-mode theory, of the change in ring resonator Q due to gas absorption losses in the evanescent portion of the waveguide optical mode. These early experiments demonstrated response to 5000 ppmv N(2)O.

  8. Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit

    NASA Astrophysics Data System (ADS)

    Suri, B.; Keane, Z. K.; Bishop, Lev S.; Novikov, S.; Wellstood, F. C.; Palmer, B. S.

    2015-12-01

    We measure photon occupancy in a thin-film superconducting lumped element resonator coupled to a transmon qubit at 20 mK and find a nonlinear dependence on the applied microwave power. The transmon-resonator system was operated in the strong dispersive regime, where the ac Stark shift (2 χ ) due to a single microwave photon present in the resonator was larger than the linewidth (Γ ) of the qubit transition. When the resonator was coherently driven at 5.474 325 GHz, the transition spectrum of the transmon at 4.982 GHz revealed well-resolved peaks, each corresponding to an individual photon number-state of the resonator. From the relative peak heights we obtain the occupancy of the photon states and the average photon occupancy n ¯ of the resonator. We observe a nonlinear variation of n ¯ with the applied drive power Prf for n ¯<5 and compare our results to numerical simulations of the system-bath master equation in the steady state, as well as to a semiclassical model for the resonator that includes the Jaynes-Cummings interaction between the transmon and the resonator. We find good quantitative agreement using both models and analysis reveals that the nonlinear behavior is principally due to shifts in the resonant frequency caused by a qubit-induced Jaynes-Cummings nonlinearity.

  9. Strong coupling of surface plasmon resonances to molecules on a gold grating

    NASA Astrophysics Data System (ADS)

    Gupta, Prince; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2016-10-01

    The intense electromagnetic fields generated by a surface plasmon resonance can strongly couple to molecules in the vicinity of the surface, causing significant line shifts. By measuring the angle dependent transmission spectrum through gold gratings with Rhodamine-6G molecules deposited on them, the coupling of the surface plasmon resonance to the molecular levels at different frequencies was determined. The strong coupling within the absorption and fluorescence bands of the molecules leads to anti-crossing of the states of the coupled system evidenced by the transmission minima. In particular, simultaneous existence of two distinct resonances at different wavevectors for a given wavelength over the absorption and fluorescence bands is observed. The multiplicity of the molecular levels and the coupling fields involved in the process is captured in a three-level Λ-system model coherently driven by the enhanced surface plasmon fields. The enhanced surface plasmon fields and the resonant absorption/fluorescent fields form the two arms of the Λ-system with approriate detuning.

  10. Experimental evidence of deterministic coherence resonance in coupled chaotic systems with frequency mismatch

    NASA Astrophysics Data System (ADS)

    García-Vellisca, M. A.; Pisarchik, A. N.; Jaimes-Reátegui, R.

    2016-07-01

    We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos suppression appears when the coupling strength is increased and the oscillators are in phase synchronization. In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement with the experiments.

  11. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  12. Sensitivity enhancement in optical micro-tube resonator sensors via mode coupling

    NASA Astrophysics Data System (ADS)

    Ling, Tao; Guo, L. Jay

    2013-07-01

    A liquid filled, silica micro-tube with a low refractive index material inner-coating has been proposed and theoretically studied as a coupled micro-resonator sensor to greatly enhance biochemical sensor sensitivity. Its unique coupling phenomenon has been analyzed and utilized to boost the device's refractive index sensitivity to 967 nm/Refractive Index Unit (RIU). Through optimization of the coupling strength between the two micro-resonators, further improvement in refractive index sensitivity up to 1100 nm/RIU has been predicted. This mode coupling strategy allows us to design robust, thick-walled micro-tube sensors with ultra-high sensitivity which is useful in practical biochemical sensing applications.

  13. Second-harmonic generation with pulses in a coupled-resonator optical waveguide.

    PubMed

    Mookherjea, Shayan; Yariv, Amnon

    2002-02-01

    We describe the generation and propagation of pulses in a coupled-resonator optical waveguide driven by a nonlinear polarization using a method closely related to the coupled-mode theory. The specific example we consider is that of second-harmonic generation. This formalism explicitly accounts for temporal dependencies in the waveguide field distributions and in their representations in terms of slowly modulated Bloch wave functions, in contrast with the equations obtained previously for cw second-harmonic generation.

  14. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2015-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  15. Cooperative effects of parameter heterogeneity and coupling on coherence resonance in unidirectional coupled brusselator system

    NASA Astrophysics Data System (ADS)

    Li, Qian-Shu; Shi, Jian-Cheng

    2007-01-01

    Two unidirectional coupled brusselator systems, subject to common and uncorrelated multiplicative noise, are investigated, respectively. It can be found that, the parameter heterogeneity effect may be destroyed above critical coupling strength. Synchronization occurs between subsystems subjected to common noise, but cannot achieve by means of uncorrelated noise.

  16. Cascade of parametric resonances in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Rahmonov, I. R.; Botha, A. E.

    2016-06-01

    We found that the coupled system of Josephson junctions under external electromagnetic radiation demonstrates a cascade of parametric instabilities. These instabilities appear along the IV characteristics within bias current intervals corresponding to Shapiro step subharmonics and lead to charging in the superconducting layers. The amplitudes of the charge oscillations increase with increasing external radiation power. We demonstrate the existence of longitudinal plasma waves at the corresponding bias current values. An essential advantage of the parametric instabilities in the case of subharmonics is the lower amplitude of radiation that is needed for the creation of the longitudinal plasma wave. This fact gives a unique possibility to create and control longitudinal plasma waves in layered superconductors. We propose a novel experiment for studying parametric instabilities and the charging of superconducting layers based on the simultaneous variation of the bias current and radiation amplitude.

  17. Non-empirical calculations of NMR indirect carbon-carbon coupling constants. Part 6: propellanes.

    PubMed

    Krivdin, Leonid B

    2004-01-01

    A full set of carbon-carbon coupling constants have been calculated at the SOPPA level in the series of six most representative propellanes. Special attention was focused on spin-spin couplings involving both bridgehead carbons, and these data were rationalized in terms of the multipath coupling mechanism and hybridization effects. Many unknown couplings in the propellane frameworks were predicted with high reliability.

  18. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    PubMed

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  19. Efficiency enhancement of coupled-cavity TWT's through cavity resonance tapering

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1979-01-01

    The paper examines efficiency enhancement of coupled-cavity traveling-wave tube (TWT) through cavity resonance tapering. Beam-wave resynchronization through circuit velocity reduction is used for TWT efficiency enhancement, with circuit velocity reduction in coupled cavity TWT's accomplished through period tapering. However, the amount of the latter is limited by the stability considerations, so that beyond a critical value of velocity reduction, the tube may be subject to zero drive oscillations originating in the velocity taper region. The coupled-cavity resonance tapering allows the velocity reduction to continue beyond the limit of stable period tapering, and it is accomplished by a gradual reduction in the cavity resonance frequency, with the period and the circuit bandwidth unchanged. The advantages of cavity resonance tapering vs period tapering are discussed, and test data are presented with the results of large-signal computer calculations. It is shown that cavity resonance tapering can produce efficiencies as period tapering without incurring the same risk of lower band-edge oscillations.

  20. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    PubMed Central

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243

  1. Stochastic resonance in an ensemble of bistable systems under stable distribution noises and nonhomogeneous coupling.

    PubMed

    Tang, Yang; Zou, Wei; Lu, Jianquan; Kurths, Jürgen

    2012-04-01

    In this paper, stochastic resonance of an ensemble of coupled bistable systems driven by noise having an α-stable distribution and nonhomogeneous coupling is investigated. The α-stable distribution considered here is characterized by four intrinsic parameters: α∈(0,2] is called the stability parameter for describing the asymptotic behavior of stable densities; β∈[-1,1] is a skewness parameter for measuring asymmetry; γ∈(0,∞) is a scale parameter for measuring the width of the distribution; and δ∈(-∞,∞) is a location parameter for representing the mean value. It is demonstrated that the resonant behavior is optimized by an intermediate value of the diversity in coupling strengths. We show that the stability parameter α and the scale parameter γ can be well selected to generate resonant effects in response to external signals. In addition, the interplay between the skewness parameter β and the location parameter δ on the resonance effects is also studied. We further show that the asymmetry of a Lévy α-stable distribution resulting from the skewness parameter β and the location parameter δ can enhance the resonance effects. Both theoretical analysis and simulation are presented to verify the results of this paper. PMID:22680556

  2. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    NASA Astrophysics Data System (ADS)

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-03-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  3. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.

    PubMed

    Zhang, Weifeng; Li, Wangzhe; Yao, Jianping

    2016-06-01

    A grating-based Fabry-Perot (FP) cavity-coupled microring resonator on a silicon chip is reported to demonstrate an all-optically tunable Fano resonance. In the device, an add-drop microring resonator (MRR) is employed, and one of the two bus waveguides is replaced by an FP cavity consisting of two sidewall Bragg gratings. By choosing the parameters of the gratings, the resonant mode of the FP cavity is coupled to one of the resonant modes of the MRR. Due to the coupling between the resonant modes, a Fano resonance with an asymmetric line shape resulted. Measurement results show a Fano resonance with an extinction ratio of 22.54 dB, and a slope rate of 250.4 dB/nm is achieved. A further study of the effect of the coupling on the Fano resonance is performed numerically and experimentally. Thanks to the strong light-confinement capacity of the MRR and the FP cavity, a strong two-photon absorption induced nonlinear thermal-optic effect resulted, which is used to tune the Fano resonance optically.

  4. Measurement of J-couplings between chemically equivalent nuclei using off-resonance decoupling

    NASA Astrophysics Data System (ADS)

    Turanov, Alexander; Khitrin, Anatoly

    2016-09-01

    The method of measuring J-couplings between chemically equivalent nuclei in isotopically/magnetically non-equivalent environment, based on off-resonance decoupling, is described. The approach uses intensities, rather than frequencies of the spectral peaks and, therefore, the accuracy of measurement is not limited by spectral resolution.

  5. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  6. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  7. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  8. Vertical split-ring resonators for plasmon coupling, sensing and metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Tsai, Wei-Yi; Liu, Ai Qun; Zheludev, Nikolay I.; Sun, Greg; Tsai, Din Ping

    2015-09-01

    Split-ring resonator (SRR), one kind of building block of metamaterials, attracts wide attentions due to the resonance excitation of electric and magnetic dipolar response. The fundamental plasmonic properties and potential applications in novel three dimensional vertical split-ring resonators (VSRRs) are designed and investigated. The resonant properties arose from the electric and magnetic interactions between the VSRR and light are theoretically and experimentally studied. Tuning the configuration of VSRR unit cells is able to generate various novel coupling phenomena in VSRRs, such as plasmon hybridization and Fano resonance. The magnetic resonance plays a key role in plasmon coupling in VSRRs. The VSRR-based refractive-index sensor is demonstrated. Due to the unique structural configuration, the enhanced plasmon fields localized in VSRR gaps can be lifted off from the dielectric substrate, allowing for the increase of sensing volume and enhancing the sensitivity. We perform a VSRR based metasurface for light manipulation in optical communication frequency. By changing the prong heights, the 2π phase modulation can be achieved in VSRR for the design of metasurface which can be used for high areal density integration of metal nanostructures and optoelectronic devices.

  9. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  10. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.

  11. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    SciTech Connect

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

  12. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-02-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties.

  13. Coupling Light from a High-Q Microsphere Resonator Using a UV-induced Surface Grating

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Starodubov, D. S.; Gorodetsky, M. L.; Maleki, L.; Feinberg, J.

    2000-01-01

    High-Q microspheres with whispering-gallery modes have very narrow resonances that can be used for fiber-optic filters, ultra-compact narrow-linewidth lasers and optical/microwave oscillators. Whispering-gallery modes were previously excited in microspheres using evanescent optical fields. The necessary phase synchronism was obtained by adjusting the incident angle of input light beam (prism coupler) or adjustment of the waveguide propagation constant (fiber taper coupler). For many applications, however, bulky near-field couplers are undesirable. They compromise the symmetry and generate stray fields. Also, the control of coupling is crucial for the performance of microsphere resonators: in analogy with radio frequency circuits, the loading Q-factor should be less than the intrinsic Q-factor, Q(sub L) less than or equal to Q(sub O). Ideally one should combine a stable coupling element and a resonator into a single microsphere component.

  14. Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system

    SciTech Connect

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-10-15

    Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.

  15. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems. PMID:25167312

  16. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Hamidi, S. M.

    2012-01-01

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

  17. Mode coupling and resonance instabilities in quasi-two-dimensional dust clusters in complex plasmas

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Kong, Jie; Carmona-Reyes, Jorge; Matthews, Lorin S.; Hyde, Truell W.

    2014-09-01

    Small quasi-two-dimensional dust clusters consisting of three to eleven particles are formed in an argon plasma under varying rf power. Their normal modes are investigated through their mode spectra obtained from tracking the particles' thermal motion. Detailed coupling patterns between their horizontal and vertical modes are detected for particle numbers up to 7 and discrete instabilities are found for dust clusters with particle number ⩾9, as predicted in previous theory on ion-flow induced mode coupling in small clusters. The instabilities are proven to be induced by resonance between coupled horizontal and vertical normal modes.

  18. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  19. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  20. Resonance fluorescence spectra from coherently driven quantum dots coupled to slow-light photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Roy-Choudhury, Kaushik; Mann, Nishan; Manson, Ross; Hughes, Stephen

    2016-06-01

    Using a polaron master equation approach, we investigate the resonance fluorescence spectra from coherently driven quantum dots (QDs) coupled to an acoustic phonon bath and photonic crystal waveguides with a rich local density of photon states (LDOS). Resonance fluorescence spectra from QDs in semiconductor crystals are known to show strong signatures of electron-phonon interactions, but when coupled to a structured photonic reservoir, the QD emission properties are also determined by the frequency dependence of the LDOS of the photon reservoir. Here, we investigate the simultaneous role of coupled photon and phonon baths on the characteristic Mollow triplet spectra from a strongly driven QD. As an example structured photonic reservoir, we first study a photonic crystal coupled cavity waveguide, and find that photons and phonons have counterinteracting effects near the upper mode edge of the coupled-cavity waveguide, thus establishing the importance of their separate roles in determining the emission spectra. The general theory is developed for arbitrary photonic reservoirs and is further applied to determine the resonance fluorescence spectra from a realistic, disordered W1 photonic crystal waveguide showing important photon-phonon interaction effects that are directly relevant to emerging experiments and theoretical proposals.

  1. Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects.

    PubMed

    Zhao, Wenyu; Jiang, Yongyuan

    2015-01-01

    Fano resonance originating from the interaction of anti-phased and in-phased lattice collective resonances supported by a binary gold nanodisk array is investigated both numerically and experimentally. As the magnitude of particle radii in the two arrays approaches gradually, the Q factor of such resonance increases while the spectral contrast reduces. In the experiment, a high spectral contrast of 0.7 and a large Q factor of 14 could be achieved at the same time due to the excitation of the pure dipole resonance of each particle resulting from the weak near-field coupling. Optimal calculation gives rise to a higher Q factor of up to 85 and a corresponding spectral contrast of 0.86, which is very promising in refractive sensors. The sensitivity and the figure of merit are 337  nm/RIU and 116, respectively.

  2. Dual-band-enhanced Transmission through a Subwavelength Aperture by Coupled Metamaterial Resonators

    PubMed Central

    Guo, Yunsheng; Zhou, Ji

    2015-01-01

    In classical mechanics, it is well known that a system consisting of two identical pendulums connected by a spring will steadily oscillate with two modes: one at the fundamental frequency of a single pendulum and one in which the frequency increases with the stiffness of the spring. Inspired by this physical concept, we present an analogous approach that uses two metamaterial resonators to realize dual-band-enhanced transmission of microwaves through a subwavelength aperture. The metamaterial resonators are formed by the periodically varying and strongly localized fields that occur in the two metal split-ring resonators, which are placed gap-to-gap on either side of the aperture. The dual-band frequency separation is determined by the coupling strength between the two resonators. Measured transmission spectra, simulated field distributions, and theoretical analyses verify our approach. PMID:25634496

  3. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect

    Garnett, R.W.

    1989-03-01

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  4. Periodic coupling strength-dependent multiple coherence resonance by time delay in Newman-Watts neuronal networks.

    PubMed

    Wu, Yanan; Gong, Yubing; Xu, Bo

    2013-12-01

    Recently, multiple coherence resonance induced by time delay has been observed in neuronal networks with constant coupling strength. In this paper, by employing Newman-Watts Hodgkin-Huxley neuron networks with time-periodic coupling strength, we study how the temporal coherence of spiking behavior and coherence resonance by time delay change when the frequency of periodic coupling strength is varied. It is found that delay induced coherence resonance is dependent on periodic coupling strength and increases when the frequency of periodic coupling strength increases. Periodic coupling strength can also induce multiple coherence resonance, and the coherence resonance occurs when the frequency of periodic coupling strength is approximately multiple of the spiking frequency. These results show that for periodic coupling strength time delay can more frequently optimize the temporal coherence of spiking activity, and periodic coupling strength can repetitively optimize the temporal coherence of spiking activity as well. Frequency locking may be the mechanism for multiple coherence resonance induced by periodic coupling strength. These findings imply that periodic coupling strength is more efficient for enhancing the temporal coherence of spiking activity of neuronal networks, and thus it could play a more important role in improving the time precision of information processing and transmission in neural networks.

  5. An a0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration

    2016-05-01

    We present the first calculation of coupled-channel meson-meson scattering in the isospin =1 , G -parity negative sector, with channels π η , K K ¯ and π η', in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the S -matrix, and find that the S -wave features a prominent cusplike structure in π η →π η close to the K K ¯ threshold coupled with a rapid turn-on of amplitudes leading to the K K ¯ final state. This behavior is traced to an a0(980 )-like resonance, strongly coupled to both π η and K K ¯ , which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of D -wave scattering suggests a narrow tensor resonance at higher energy.

  6. Quantum Entanglement in a Spin-Orbit Coupled Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Xiao; Hui, Ning-Ju; Liu, Wan-Fang; Ye, En-Jia; Hu, Zheng-Da

    2015-12-01

    We study the spin-field and the spin-spin entanglement in the ground state of a spin-orbit coupled Bose-Einstein condensate. It is found that the spin-field and the spin-spin entanglement can be induced by the spin-orbit coupling. By mapping the system to the Dicke-like model, the system exhibits a quantum phase transition from a normal (spin balanced) phase to superradiant (spin polarized) phase. The Dicke-like phase transition can be captured by the spin-field and the spin-spin entanglement arising from the spin-orbit coupling. The spin-field and the spin-spin entanglement increase as the Raman coupling increases in the superradiant phase, while they decrease with the Raman coupling increasing in the normal phase. We also consider the effect of a finite detuning on these entanglement show that the presence of the detuning suppresses the spin-field and the spin-spin entanglement. Supported by the Fundamental Research Funds for and the Central Universities under Grant No. F701108F01, the Natural Science Foundation of Anhui Province of China under Grant No. 1408085QA15, the Natural Science Foundation of Jiangsu Province of China under Grant Nos. BK20140128 and BK20140131, and the National Natural Science Foundation of Special Theoretical Physics under Grant Nos. 11447217, 11447174 and 11447206

  7. Investigation of mode coupling in a microdisk resonator for realizing directional emission.

    PubMed

    Yang, Yue-De; Wang, Shi-Jiang; Huang, Yong-Zhen

    2009-12-01

    Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 microm and a refractive index of 3.2 connected to a 0.6-microm-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. PMID:20052227

  8. Demonstration of polarization mode selection and coupling efficiency of optofluidic ring resonator lasers.

    PubMed

    Zhang, Yuanxian; Meng, Weidong; Yang, Hongyue; Chu, Yufei; Pu, Xiaoyun

    2015-11-01

    We demonstrate the polarization mode selection and the dependence of coupling efficiency on polarization state of pump light for an optofluidic ring resonator (OFRR) laser. An optical fiber is chosen to serve as the ring resonator and surrounded by rhodamine 6G dye solution of lower refractive index as the fluidic gain medium. When the ring resonator is pumped by a linearly s-polarized laser, the emitted whispering gallery mode (WGM) lasing is of parallel polarization (TM mode), while p-polarized laser excitation generates a vertically polarized lasing emission (TE mode), both TM and TE mode lasing emission coexist simultaneously if the ring resonator is pumped by the s- and p-mixed polarized light. Further investigation reveals that the lasing intensity of the TM mode is approximately twice that of the TE mode for the same pump energy density, meaning an obvious difference of coupling efficiency on the polarization state of pump light; the experimental results of coupling efficiency are well explained by an induced dipole model. PMID:26512529

  9. Resonances in coupled πK, ηK scattering from lattice QCD

    DOE PAGES

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemore » related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.« less

  10. Resonances in coupled πK, ηK scattering from lattice QCD

    SciTech Connect

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  11. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    SciTech Connect

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  12. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.

    PubMed

    Woo, Kat Choi; Shao, Lei; Chen, Huanjun; Liang, Yao; Wang, Jianfang; Lin, Hai-Qing

    2011-07-26

    The plasmon coupling between metal nanocrystals can lead to large plasmon shifts, enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy. Consequently, the plasmon coupling between metal nanorods is much more complicated than that between nanospheres. For the latter, experimental approaches, simple scaling relationships, and exact analytic solutions have been developed for describing the plasmon coupling. In this study, we have carried out extensive finite-difference time-domain simulations to understand the plasmon coupling in the dimers of Au nanorods that are aligned along their length axes. The effects of the gap distance, longitudinal plasmon energy, and end shape of the nanorod monomers on the plasmon coupling have been scrutinized. The coupling energy diagrams show a general anticrossing behavior. All of them can be rescaled into one simple and universal hyperbolic formula. A theoretical model based on two interacting mechanical oscillators has been developed to understand the plasmon coupling between two arbitrarily varying Au nanorods. This model, together with the universal equation, allows for the determination of the coupled plasmon energies of Au nanorod dimers with high accuracies. Furthermore, the Fano interference has been observed in the nanorod heterodimers, with its behavior being dependent on the gap distance and plasmon energies of the nanorod monomers. Our results will be useful for predicting the coupled plasmon energies of metal nanorod dimers in a variety of plasmonic applications and understanding the Fano resonance in plasmonic nanostructures. PMID:21702485

  13. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    PubMed

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-01-01

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation. PMID:27527169

  14. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    PubMed Central

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-01-01

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation. PMID:27527169

  15. Coupled resonances allow studying the aging of adhesive contacts between a QCM surface and single, micrometer-sized particles

    NASA Astrophysics Data System (ADS)

    Peschel, Astrid; Langhoff, Arne; Johannsmann, Diethelm

    2015-12-01

    Interparticle contacts and contacts between particles and surfaces are known to change over time. The contact area, the contact stiffness, and the contact strength usually increase as the contact ages. Contact aging is mostly driven by capillary forces, but also by plastic deformation. Making use of acoustic resonators, we have studied the stiffness of contacts between the surface of a quartz crystal microbalance (QCM) and individual, micrometer-sized particles adsorbed to the resonator surface. Studying single particles avoids ensemble-averaging. Central to the analysis is the coupled resonance, occurring when a surface-attached particle together with the link forms a resonator of its own. If the frequency of this second resonator comes close to one of the crystal’s overtones, plots of shifts in resonance bandwidth versus overtone order display a resonance curve. This secondary resonance is caused by the coupling between the particle’s resonance and the main resonance. One can read the frequency of the coupled resonance from this plot. Similarly, resonance curves are observed in plots of frequency and bandwidth versus time, if the contact stiffness varies smoothly with time. Because the coupled resonance is a characteristic feature, it is easily identified even in cases where frequency shifts of some other origin are superimposed onto the data. For the cases studied here, the links stiffened while they dried. Interestingly, the efficiency of coupling between the particle resonance and the main resonance decreased at the same time. This can be explained with an increase in the link’s bending stiffness. The analysis highlights that a QCM experiment amounts to vibrational spectroscopy on surface-attached particles. Among the application examples is the adsorption and drying of a lycopodium spore. Clearly, the technique is also applicable to problems of bioadhesion.

  16. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    NASA Astrophysics Data System (ADS)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  17. Anharmonic vibrational frequencies and vibrationally averaged structures and nuclear magnetic resonance parameters of FHF-.

    PubMed

    Hirata, So; Yagi, Kiyoshi; Perera, S Ajith; Yamazaki, Shiori; Hirao, Kimihiko

    2008-06-01

    The anharmonic vibrational frequencies of FHF(-) were computed by the vibrational self-consistent-field, configuration-interaction, and second-order perturbation methods with a multiresolution composite potential energy surface generated by the electronic coupled-cluster method with various basis sets. Anharmonic vibrational averaging was performed for the bond length and nuclear magnetic resonance indirect spin-spin coupling constants, where the latter computed by the equation-of-motion coupled-cluster method. The calculations placed the vibrational frequencies at 580 (nu(1)), 1292 (nu(2)), 1313 (nu(3)), 1837 (nu(1) + nu(3)), and 1864 cm(-1) (nu(1) + nu(2)), the zero-point H-F bond length (r(0)) at 1.1539 A, the zero-point one-bond spin-spin coupling constant [(1)J(0)(HF)] at 124 Hz, and the bond dissociation energy (D(0)) at 43.3 kcal/mol. They agreed excellently with the corresponding experimental values: nu(1) = 583 cm(-1), nu(2) = 1286 cm(-1), nu(3) = 1331 cm(-1), nu(1) + nu(3) = 1849 cm(-1), nu(1) + nu(2) = 1858 cm(-1), r(0) = 1.1522 A, (1)J(0)(HF) = 124+/-3 Hz, and D(0) = 44.4+/-1.6 kcal/mol. The vibrationally averaged bond lengths matched closely the experimental values of five excited vibrational states, furnishing a highly dependable basis for correct band assignments. An adiabatic separation of high- (nu(3)) and low-frequency (nu(1)) stretching modes was examined and found to explain semiquantitatively the appearance of a nu(1) progression on nu(3). Our calculations predicted a value of 186 Hz for experimentally inaccessible (2)J(0)(FF).

  18. Magnetic coupling of laser-cooled atoms to a micro-resonator

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Wang, Ying-Ju; Eardley, Matthew; Moreland, John; Kitching, John

    2009-05-01

    The direct coupling of the spin-degrees of freedom of an atomic vapor to the vibrational motion of a magnetic cantilever tip has recently been demonstrated [1], and prospects for coupling a BEC on an atom-chip to a nano- mechanical resonator have been recently discussed [2]. Possible applications include chip-scale atomic devices, in which localized interactions with magnetic cantilever tips selectively influence or probe atomic spins. As a next step towards the realization of a strongly coupled ultra-cold atom- resonator system, we have constructed an apparatus to study the direct coupling between the spins of trapped laser-cooled Rb atoms and a magnetic tip on a micro-cantilever. The atoms will be loaded into a magnetic trap formed by the cantilever tip and external magnetic fields. The cantilever will be driven capacitively at its resonance frequency, resulting in a coherent precession of the trapped atomic spins with a matching Larmor frequency. Prospects for measuring the back-action of the ensemble of atomic spins on a cantilever beam will also be discussed. [1] Y.-J. Wang,M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, PRL 97, 227602 (2006). [2] P. Treutlein,D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, PRL 99, 140403 (2007).

  19. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth

    NASA Astrophysics Data System (ADS)

    Chudzinski, Piotr

    2015-12-01

    Using diagrammatic methods we derive an effective interaction between a low energy collective movement of fermionic liquid (acoustic plasmon) and acoustic phonon. We show that the coupling between the plasmon and the lattice has a very non-trivial, resonant structure. When real and imaginary parts of the acoustic plasmon's velocity are of the same order as the phonon's velocity, the resonance qualitatively changes the nature of phonon-drag. In the following we study how magneto-thermoelectric properties are affected. Our result suggests that the novel mechanism of energy transfer between electron liquid and crystal lattice can be behind the huge Nernst effect in bismuth.

  20. Organic Single-Crystal Light-Emitting Transistor Coupling with Optical Feedback Resonators

    PubMed Central

    Bisri, Satria Zulkarnaen; Sawabe, Kosuke; Imakawa, Masaki; Maruyama, Kenichi; Yamao, Takeshi; Hotta, Shu; Iwasa, Yoshihiro; Takenobu, Taishi

    2012-01-01

    Organic light-emitting transistors (OLETs) are of great research interest because they combine the advantage of the active channel of a transistor that can control the luminescence of an in-situ light-emitting diode in the same device. Here we report a novel single-crystal OLET (SCLET) that is coupled with single crystal optical feedback resonators. The combination of single-crystal waveguides with native Fabry-Perot cavities, formed by parallel crystal edges, drastically lowers the threshold energy for spectral narrowing and non-linear intensity enhancement. We apply this structure to SCLETs and demonstrate the first fabrication of a SCLET with the optical feedback resonators. PMID:23248748

  1. Collective behavior of globally coupled Langevin equations with colored noise in the presence of stochastic resonance

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Zhang, Xiao; Zhang, Lu; Luo, Mao-Kang

    2016-08-01

    The long-time collective behavior of globally coupled Langevin equations in a dichotomous fluctuating potential driven by a periodic source is investigated. By describing the collective behavior using the moments of the mean field and single-particle displacements, we study stochastic resonance and synchronization using the exact steady-state solutions and related stability criteria. Based on the simulation results and the criterion of the stationary regime, the notable differences between the stationary and nonstationary regimes are demonstrated. For the stationary regime, stochastic resonance with synchronization is discussed, and for the nonstationary regime, the volatility clustering phenomenon is observed.

  2. Mining the salivary proteome with grating-coupled surface plasmon resonance imaging and surface plasmon coupled emission microarrays.

    PubMed

    Molony, Ryan D; Rice, James M; Yuk, Jong Seol; Shetty, Vivek; Dey, Dipak; Lawrence, David A; Lynes, Michael A

    2012-08-01

    Biological indicators have numerous and widespread utility in personalized medicine, but the measurement of these indicators also poses many technological and practical challenges. Blood/plasma has typically been used as the sample source with which to measure these indicators, but the invasiveness associated with sample procurement has led to increased interest in saliva as an attractive alternative. However, there are unique issues associated with the measurement of saliva biomarkers. These issues are compounded by the imperfect correlation between saliva and plasma with respect to biomarker profiles. In this manuscript, we address the technical challenges associated with saliva biomarker quantification. We describe a high-content microarray assay that employs both grating-coupled surface plasmon resonance imaging and surface plasmon-coupled emission modalities in a highly sensitive assay with a large dynamic range. This powerful approach provides the tools to map the proteome of saliva, which in turn should greatly enhance the utility of salivary biomarker profiles in personalized medicine.

  3. Intense energy transfer and superharmonic resonance in a system of two coupled oscillators.

    PubMed

    Kovaleva, Agnessa; Manevitch, Leonid; Manevitch, Elina

    2010-05-01

    The paper presents the analytic study of energy exchange in a system of coupled nonlinear oscillators subject to superharmonic resonance. The attention is given to complete irreversible energy transfer that occurs in a system with definite initial conditions corresponding to a so-called limiting phase trajectory (LPT). We show that the energy imparted in the system is partitioned among the principal and superharmonic modes but energy exchange can be due to superharmonic oscillations. Using the LPT concept, we construct approximate analytic solutions describing intense irreversible energy transfer in a harmonically excited Duffing oscillator and a system of two nonlinearly coupled oscillators. Numerical simulations confirm the accuracy of the analytic approximations. PMID:20866315

  4. Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kartik; Painter, Oskar

    2007-01-01

    A system for studying microcavity resonators at cryogenic temperatures (˜10K) through evanescent coupling via optical fiber taper waveguides is reported, and efficient fiber coupling to AlGaAs microdisk cavities with embedded quantum dots is demonstrated. As an immediate application of this tool, the authors study high-resolution tuning of microdisk cavities through nitrogen gas adsorption, as first discussed by Mosor et al. [Appl. Phys. Lett. 87, 141105 (2005)]. By proper regulation of the nitrogen gas flow and delivery of the gas to the sample surface, continuous tuning can be achieved with modest gas flows, and overall wavelength shifts as large as 4nm are achieved.

  5. Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays

    NASA Astrophysics Data System (ADS)

    Shi, T.; Sun, C. P.

    2009-05-01

    We present a quantum field theoretical approach based on the Lehmann-Symanzik-Zimmermann reduction for the multiphoton scattering process in a nanoarchitecture consisting of the coupled-resonator arrays (CRA), which are also coupled to some artificial atoms as a controlling quantum node. By making use of this approach, we find the bound states of a single photon for an elementary unit, the T -type CRA, and explicitly obtain its multiphoton scattering S matrix in various situations. We also use this method to calculate the multiphoton S matrices for the more complex quantum network constructed with main T -type CRAs, such as a H -type CRA waveguide.

  6. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement

    SciTech Connect

    Shuai, Yichen; Zhao, Deyin; Singh Chadha, Arvinder; Zhou, Weidong; Seo, Jung-Hun; Ma, Zhenqiang; Yang, Hongjun; Fan, Shanhui

    2013-12-09

    We present here ultra-compact high-Q Fano resonance filters with displaced lattices between two coupled photonic crystal slabs, fabricated with crystalline silicon nanomembrane transfer printing and aligned e-beam lithography techniques. Theoretically, with the control of lattice displacement between two coupled photonic crystal slabs layers, optical filter Q factors can approach 211 000 000 for the design considered here. Experimentally, Q factors up to 80 000 have been demonstrated for a filter design with target Q factor of 130 000.

  7. Topological phononic states of underwater sound based on coupled ring resonators

    NASA Astrophysics Data System (ADS)

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-01-01

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  8. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGES

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  9. Scattering of two coherent photons inside a one-dimensional coupled-resonator waveguide

    SciTech Connect

    Alexanian, Moorad

    2010-01-15

    We consider the coherent propagation of n photons in a one-dimensional coupled-resonator waveguide for n=2,3,4.... The scattering by a three-level atom, which resides in one of the resonators of the waveguide and gives rise to only two-photon transitions, results in a perfect quantum switch that allows either total reflection or total transmission. This is to be contrasted to the case of a single photon inside a one-dimensional resonant waveguide scattered by a two-level system with single-photon transitions where only total reflection can be accomplished; viz. the system behaves only as a perfect mirror but not as an ideal, transparent medium.

  10. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Escher, J. E.; Arbanas, G.

    2014-04-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  11. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    SciTech Connect

    Thompson, I J; Escher, Jutta E; Arbanas, Goran

    2013-01-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  12. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  13. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  14. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  15. Resonances in Coupled πK-ηK Scattering from Quantum Chromodynamics

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  16. Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1992-01-01

    A design of an active antenna with a dielectric resonator stabilized high-electron-mobility transistor (HEMT) oscillator (DRO) and an aperture-coupled patch antenna is reported. The circuit is fabricated using coplanar waveguide (CPW) with the oscillator and the antenna on opposite sides of the substrate. The active antenna was demonstrated at 7.6 GHz; however, the design can be scaled to higher frequencies. Excellent oscillator characteristics and radiation patterns were obtained.

  17. Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1992-01-01

    A new design of an active antenna with a dielectric resonator stabilized high electron mobility transistor (HEMT) oscillator (DRO) and an aperture-coupled patch antenna is reported. The circuit is fabricated using coplanar waveguide (CPW) with the oscillator and the antenna on opposite sides of the substrate. The active antenna was demonstrated at 7.6 GHz; however, the design can be scaled to higher frequencies. Excellent oscillator characteristics and radiation patterns were obtained.

  18. Measuring the Diphoton Coupling of a 750 GeV Resonance.

    PubMed

    Fichet, S; von Gersdorff, G; Royon, C

    2016-06-10

    A slight excess has been observed in the first data of photon-photon events at the 13 TeV Large Hadron Collider that might be interpreted as a hint of physics beyond the standard model. We show that a completely model-independent measurement of the photon-photon coupling of a putative 750 GeV resonance is possible using the forward proton detectors scheduled at ATLAS and CMS. PMID:27341224

  19. Rotation sensitivity analysis of a two-dimensional array of coupled resonators

    NASA Astrophysics Data System (ADS)

    Zamani Aghaie, Kiarash; Vigneron, Pierre-Baptiste; Digonnet, Michel J. F.

    2015-03-01

    In this paper, we study the rotation sensitivity of a gyroscope made of a two-dimensional array of coupled resonators consisting of N columns of one-dimensional coupled resonant optical waveguides (CROWs) connected by two bus waveguides, each CROW consisting of M identical ring resonators. We show that the maximum rotation sensitivity of this structure is a strong function of the parity of the number of rows M. For an odd number of rows, and when the number of columns is small, the maximum sensitivity is high, and it is slightly lower than the maximum sensitivity of a single-ring resonator with two input/output waveguides (the case M = N = 1), which is a resonant waveguide optical gyroscope (RWOG). For an even M and small N, the maximum sensitivity is much lower than that of the RWOG. Increasing the number columns N increases the sensitivity of an even-row 2D CROW sublinearly, as N0.39, up to 30 columns. In comparison, the maximum sensitivity of an RWOG of equal area increases faster, as √N. The sensitivity of the 2D CROW therefore always lags behind that of the RWOG. For a 2×2 CROW, if the spacing between the columns L is increased sufficiently the maximum sensitivity increases linearly with L due to the presence of a composite Mach- Zehnder interferometer in the structure. However, for equal footprints this sensitivity is also not larger than that of a single-ring resonator. Regardless of the number of rows and columns and the spacing, for the same footprint and propagation loss, a 2D CROW gyroscope is not more sensitive than an RWOG.

  20. Coupling of semiconductor carbon nanotubes emission with silicon photonic micro ring resonators

    NASA Astrophysics Data System (ADS)

    Sarti, Francesco; Caselli, Niccolò; La China, Federico; Biccari, Francesco; Torrini, Ughetta; Intonti, Francesca; Vinattieri, Anna; Durán-Valdeiglesias, Elena; Zhang, Weiwei; Noury, Adrien; Alonso-Ramos, Carlos; Hoang, ThiHong Cam; Serna, Samuel; Le Roux, Xavier; Cassan, Eric; Izard, Nicolas; Yang, Hongliu; Bezugly, Viktor; Cuniberti, Gianaurelio; Filoramo, Arianna; Vivien, Laurent; Gurioli, Massimo

    2016-05-01

    Hybrid structures are needed to fully exploit the great advantages of Si photonics and several approaches have been addressed where Si devices are bonded to different materials and nanostructures. Here we study the use of semiconductor carbon nanotubes for emission in the 1300 nm wavelength range to functionalize Si photonic structures in view of optoelectronic applications. The Si micro-rings are fully characterized by near field forward resonant scattering with 100 nm resolution. We show that both TE and TM modes can be addressed on the top of the micro-rings in a vectorial imaging of the in-plane polarization components. We coupled the Si micro-resonators with selected carbon nanotubes for high photoluminescence emission. Coupling nanotubes with the evanescent tails in air of the electric field localized in the photonic modes of the micro-resonators is demonstrated by sharp resonances over imposed to the nanotube emission bands. By mapping the Si and the nanotube emission we demonstrate that strong enhancement of the nanotube photoluminescence can be achieved both in the photonic modes of micro-disks and slot micro-rings, whenever the spatial overlap between nano-emitters and photonic modes is fulfilled.

  1. Coupled-channel Treatment of Isobaric Analog Resonances in (p,p‧) Capture Processes

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Arbanas, G.

    2014-04-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in γ-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the non-orthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p'γ) coincidence data exists.

  2. Coupled-channel treatment of Isobaric Analog Resonances in (p,p') Capture Processes

    SciTech Connect

    Thompson, I J; Arbanas, Goran

    2013-01-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in gamma-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the nonorthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p g)

  3. Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement.

    PubMed

    Sekkat, Zouheir; Hayashi, Shinji; Nesterenko, Dmitry V; Rahmouni, Anouar; Refki, Siham; Ishitobi, Hidekazu; Inouye, Yasushi; Kawata, Satoshi

    2016-09-01

    We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors. PMID:27607617

  4. Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement.

    PubMed

    Sekkat, Zouheir; Hayashi, Shinji; Nesterenko, Dmitry V; Rahmouni, Anouar; Refki, Siham; Ishitobi, Hidekazu; Inouye, Yasushi; Kawata, Satoshi

    2016-09-01

    We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors.

  5. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    PubMed

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  6. Tunable Fano-like resonance enabled by coupling a microsphere with a fiber Mach-Zehnder interferometer.

    PubMed

    Zhao, Chenyang; Gan, Xuetao; Fang, Liang; Han, Lei; Chang, Kang; Li, Dongying; Zhao, Jianlin

    2016-07-20

    We demonstrate a simple scheme to achieve Fano-like resonance by coupling a microsphere resonator with a fiber Mach-Zehnder interferometer (FMZI), which includes a tapered microfiber in one pathway to evanescently couple with the microsphere. In this system, Fano-like asymmetric lineshapes could be converted into different types by introducing an extra phase shift in the FMZI. In addition, the sharpness of the Fano-like lineshapes could be controlled by changing the coupling strength between the microsphere and the microfiber. This Fano-like resonance with advantages of fiber integration, tunable lineshape, and ease of operation may have great potential in optical signal processing and sensing. PMID:27463933

  7. Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry.

    PubMed

    Darmawan, S; Tobing, L Y M; Zhang, D H

    2011-08-29

    We experimentally demonstrate coupled-resonator-induced-transparency (CRIT) phenomenon in ring-bus-ring (RBR) geometry synergistically integrated with Mach-Zehnder interferometer (MZI). The RBR consists of two detuned resonators indirectly coupled through a center bus waveguide. The transparency is obtained by increasing the light intercavity interaction through tailoring the RBR phase response while ensuring balanced MZI operation. In this work, a CRIT resonance with a quality factor of ~18,000 is demonstrated with cavity size detuning of ~0.035% and power coupling of ~60%, which are in good agreement with the theory.

  8. Extraction of Electromagnetic Transition Form Factors for Nucleon Resonances within a Dynamical Coupled-Channels Model

    SciTech Connect

    N. Suzuki, T. Sato, T.-S. H. Lee

    2010-10-01

    We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.

  9. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators

    PubMed Central

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-01-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs’ radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography. PMID:27630076

  10. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators.

    PubMed

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-01-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs' radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography. PMID:27630076

  11. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators.

    PubMed

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-09-15

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs' radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography.

  12. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators

    NASA Astrophysics Data System (ADS)

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-09-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs’ radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography.

  13. Internal noise induced pattern formation and spatial coherence resonance for calcium signals of diffusively coupled cells

    NASA Astrophysics Data System (ADS)

    Wang, Maosheng; Sun, Runzhi; Huang, Wanxia; Tu, Yubing

    2014-01-01

    The effects of internal noise in a square-lattice Höfer calcium oscillation system have been studied numerically in the context of chemical Langevin equations. It was found that spatial pattern can be induced by internal noise and, interestingly, an optimal internal noise strength (or optimal cell size) exists which maximizes the spatial coherence of pattern, indicating the occurrence of spatial coherence resonance. The effects of control parameter and coupling strength on system’s spatial coherence have also been investigated. We found that larger internal noise strength is needed to induce spatial pattern for a small control parameter or a stronger coupling strength, and spatial coherence can be enhanced by coupling.

  14. Q-switched operation of a coupled-resonator vertical-cavity laser diode

    SciTech Connect

    FISCHER,ARTHUR J.; CHOW,WENG W.; CHOQUETTE,KENT D.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-02-08

    The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.

  15. Measurement of Heteronuclear Dipolar Coupling by Transferred-Echo Double-Resonance NMR

    NASA Astrophysics Data System (ADS)

    Hing, A. W.; Vega, S.; Schaefer, J.

    A magic-angle spinning experiment called transferred-echo double resonance (TEDOR) has been introduced recently to measure the I-S dipolar coupling of heteronuclear I-S pairs of spin- {1}/{2} nuclei while eliminating unwanted background signals from uncoupled I and S spins via a coherence-transfer process. In this paper, a quantitative description of the TEDOR experiment is given in terms of the evolution of the density matrix for a pair of heteronuclear spins. The resulting equations provide a theoretical basis for evaluating the selectivity and sensitivity of TEDOR and suggest strategies for determining dipolar coupling constants directly from TEDOR data. Experimental examples illustrating these aspects of TEDOR are provided by studies performed on a range of 13C- 15N dipolar couplings found in double-labeled asparagine, alanine, glycine, and the linear peptide antibiotic, gramicidin.

  16. Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation.

    PubMed

    Centini, Marco; Benedetti, Alessio; Sibilia, Concita; Bertolotti, Mario

    2011-04-25

    We report results of second harmonic generation calculations performed on Silver coupled 2D-nanoresonators. Coupling is responsible for the creation of resonant modes that can be localized on small portions of the structure or distributed over the whole structure. Different field profiles can be obtained by varying the parameters of the input field (i.e. the wavelength). The second harmonic generation nonlinear process is enhanced by the excitation of coupled surface plasmon polaritons. The emitted field is strongly affected by the linear properties of the structure behaving as a nano antenna. We note that different configurations of the pump field lead to different second harmonic far-field emission patterns. Also, we show that the angular emission of the second harmonic field contains information about the spatial location of the pump field hot spots at different frequencies. Applications to a new class of nano sources for single molecule fluorescence and sensors are proposed.

  17. Spin-spin correlations in proton-proton collisions at high energy and threshold enhancements

    SciTech Connect

    de Teramond, G.F.

    1988-05-01

    The striking effects in the spin structure observed in elastic proton collisions and the Nuclear Transparency phenomenon recently discovered at BNL are described in terms of heavy quark threshold enhancements. The deviations from scaling laws and the broadening of the angular distributions at resonance are also consistent with the introduction of new degrees of freedom in the pp system. This implies new s-channel physics. Predictions are given for the spin effects in pp collisions near 18.5 GeV/c at large p/sub T//sup 2/ where new measurements are planned. 9 refs., 4 figs.

  18. Spatially resolved measurements of mean spin-spin relaxation time constants.

    PubMed

    Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J

    2014-02-01

    Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples. PMID:24361482

  19. Spatially resolved measurements of mean spin-spin relaxation time constants

    NASA Astrophysics Data System (ADS)

    Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J.

    2014-02-01

    Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples.

  20. Generalized model for beam-path variation in ring resonator and its applications in backscattering coupling effect

    NASA Astrophysics Data System (ADS)

    Chen, Meixiong; Yuan, Jie; Long, Xingwu; Kang, Zhenglong; Li, Yingying

    2012-02-01

    A generalized model for beam-path variation analyzed with vector method in square ring resonators is established. The model can be applied to analyze beam-path variation in various ring resonators induced by all the possible perturbation sources. The generalized model is useful for the cavity design, cavity improvement, alignment of planar ring resonators and research on backscattering coupling effect. Backscattering coupling effect in square ring resonator has been chosen as examples to show its application. Backscattering coupling coefficient r is obtained as a function of mirror's axial displacements. Some novel results of backscattering coupling effect have been acquired. The results indicate that r can not be reduced to zero because of the initial machining errors of surfaces of plane mirrors. However, r can be reduced to zero almost when stabilizing frequency of laser gyro by take the suitable values of axial displacements of plane mirrors. These results are important for high precision laser gyro.

  1. Fano Antiresonance and Kondo Resonance for Electronic Transport Through a Laterally Coupled Carbon-Nanotube Quantum-Dot System

    NASA Astrophysics Data System (ADS)

    Huo, Dong-Ming

    2015-10-01

    We present nonequilibrium Green function calculations for electronic transport through a laterally coupled carbon-nanotube quantum-dot system. In this system, a one-dimensional double carbon nanotube quantum dot attached to polarised electrodes forms a main channel for electronic tunnelling. Each carbon nanotube quantum dot in the main channel couples to a dangling carbon nanotube quantum dot. Then, the conductance spectrum is calculated. The insulating band and resonance peak in this spectrum, due to Fano antiresonance and Kondo resonance, are discussed. The intradot electron's Coulomb interaction effect on the insulating band is also investigated. By controlling the coupling coefficient between the quantum dots, we can realise mutual transformation between Kondo resonance and Fano antiresonance at the Fermi level. The spin-orbit coupling and magnetic field's influence on the Kondo resonance peak are discussed in detail. Finally, spin magnetic moment and orbital magnetic moment of electrons in the quantum dot by applying parallel magnetic field are also predicted.

  2. High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement

    NASA Astrophysics Data System (ADS)

    Abdelrehim, Adel A. A.; Ghafouri-Shiraz, H.

    2016-09-01

    In this paper, three dimensional periodic structure composed of circular split ring resonators and thin wires is used to improve the performance of a microstrip patch antenna. The three dimensional periodic structure is placed at the top of the patch within a specific separation distance to construct the proposed antenna. The radiated electromagnetic waves intensity of the proposed antenna is improved compared with the conventional patch antenna due to the electric and magnetic coupling enhancements. These enhancements occur between the patch and the periodic structure resonators and between the different resonator pairs of the periodic structure. As a result, the electric and the magnetic fields at the top of the patch are improved, the radiated electromagnetic beam size reduces which results in a highly focused beam and hence the antenna directivity and gain are improved, while the beam are is reduced. The proposed antenna has been designed and simulated using CST microwave studio at 10 GHz. An infinite two dimensional periodicity unit cell of circular split ring resonator and thin wire is designed to resonate at a 10 GHz and simulated in CST software, the scattering parameters are extracted, the results showed that the infinite periodicity two dimensional structure has a pass band frequency response of good transmission and reflection characteristics around 10 GHz. The infinite periodicity of the two dimensional periodic structure is then truncated and multi layers of such truncated structure is used to construct a three dimensional periodic structure. A parametric analysis has been performed on the proposed antenna incorporated with the three dimensional periodic structure. The impacts of the separation distance between the patch and three dimensional periodic structures and the size of the three dimensional periodic structure on the radiation and impedance matching parameters of the proposed antenna are studied. For experimental verification, the proposed

  3. Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy

    PubMed Central

    Mett, R.R.; Sidabras, J.W.; Hyde, J.S.

    2009-01-01

    An analytic circuit model for slot coupling from a waveguide to a loop-gap resonator (LGR) in a context of electron paramagnetic resonance (EPR) spectroscopy is presented. The physical dimensions of the waveguide, iris, LGR, and aqueous sample are transformed into circuit values of inductance, capacitance, and resistance. These values are used in a solution of circuit equations that results in a prediction of the rf currents, magnitude and phase, frequency, and magnetic and electric stored energies near critical coupling. The circuit geometry reflects magnetic flux conservation between the iris and LGR as well as modification of the outer loop LGR currents by the iris. Unlike conventional models, coupling is not explicitly based on a mutual inductance between the iris and LGR. Instead, the conducting wall high frequency rf boundary condition is used to define surface currents, regions, and circuit topology with lumped-circuit values of self-inductance, capacitance, and resistance. Match is produced by a combination of self-inductive and capacitive circuit coupling. Two conditions must be met to achieve match. First, the equivalent resistance of the LGR as seen by the iris must be transformed into the waveguide characteristic impedance. This transformation is met at a particular frequency relative to the natural LGR resonance frequency. The frequency shift magnitude is largely determined by the LGR properties, weakly dependent on iris length and placement, and independent of other iris dimensions. The second condition for match is that the iris reactance at this frequency shift must cancel the residual reactance of the LGR. This second condition is sensitive to the iris dimensions. If both conditions are not simultaneously satisfied, overcoupling or undercoupling results. A slotted iris of equal length to the size of the large dimension of the waveguide is found to have many properties opposite to a conventional iris of shorter length. Notably, the magnetic field

  4. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-01

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity. PMID:25853218

  5. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  6. Strain coupling of a mechanical resonator to a single quantum emitter in diamond

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Lee, Donghun; Ovartchaiyapong, Preeti; Jayich, Ania

    Hybrid quantum devices are central to the advancement of several emerging quantum technologies, including quantum information science and quantum-assisted sensing. Here, we present a hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically modulate the energy and polarization dependence of the optical transitions of a single nitrogen-vacancy defect center in diamond. With mechanical driving, we observe optomechanical couplings exceeding 10 GHz. Through resonant excitation spectroscopy, we quantitatively characterize the intrinsic strain environment of a single defect, and use this optomechanical coupling to tune the zero-phonon line of the defect. Through stroboscopic measurements, we show that we are able to match the frequency and polarization dependence of the optical zero-phonon lines of two separate NV centers. The experiments demonstrated here mark an important step toward realizing a monolithic hybrid quantum device capable of realizing and probing the dynamics of non-classical states of mechanical resonators, spin-systems, and photons. This work was supported with grants from the AFOSR, NSF and DARPA.

  7. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    PubMed

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  8. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    NASA Astrophysics Data System (ADS)

    Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.

    2015-10-01

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  9. In Vitro Evaluation of Genotoxic Effects under Magnetic Resonant Coupling Wireless Power Transfer

    PubMed Central

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity. PMID:25853218

  10. Nonlinear mode coupling and internal resonances in MoS{sub 2} nanoelectromechanical system

    SciTech Connect

    Samanta, C.; Yasasvi Gangavarapu, P. R.; Naik, A. K.

    2015-10-26

    Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS{sub 2} for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS{sub 2} resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances.

  11. Coupling of radiation into thin film modes by means of localized plasma resonances

    NASA Technical Reports Server (NTRS)

    Holland, W. R.; Hall, D. G.

    1983-01-01

    The interaction between the surface plasmon mode that propagates at a metal dielectric interface and the localized plasma resonances (LPR) is investigated experimentally in Ag-island films. A stair-stepped sample geometry comprising a glass substrate, a continuous 50-nm Ag film, an LiF spacer film of thickness d = 5-60 nm, and an Ag-island film of mass thickness 3 nm is used in near-normal-reflectivity and plasmon-propagation-constant (k) determinations. The results are presented graphically and discussed. The overall shape of the reflectivity curves is found to be characteristic of Ag films, but with a dip at about 400 nm (corresponding to the absorption resonance of the island film) which is most pronounced with d = 25 nm. It is inferred that the island resonances are strongly coupled to a continuous-film dissipative mechanism at this d value. This inference is supported by the fact that the variation in k, correctd for LiF effects and plotted as a function of d, is greatest at around d = 25 nm. The implications of this finding for broad-band coupling into a thin-film mode, LPR enhancement of waveguide nonlinear effects, and new surface-enhanced-Raman-scattering geometries are indicated.

  12. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    PubMed Central

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-01-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light–matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation. PMID:26584781

  13. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    PubMed Central

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen–vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen–vacancy spin–strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen–vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen–vacancy ground-state spin. The nitrogen–vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10−6 strain Hz−1/2. Finally, we show how this spin-resonator system could enable coherent spin–phonon interactions in the quantum regime. PMID:25034828

  14. Study of photon–magnon coupling in a YIG-film split-ring resonant system

    SciTech Connect

    Bhoi, B.; Aiyar, R.; Cliff, T.; Maksymov, I. S.; Kostylev, M.; Venkataramani, N.; Prasad, S.; Stamps, R. L.

    2014-12-28

    By using the stripline Microwave Vector–Network Analyser Ferromagnetic Resonance and Time Domain spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium–iron–garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9% at 3 GHz. Theoretically, we propose an equivalent circuit model of the SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetisation dynamics in the YIG film driven by the microwave currents in the SRR. The results obtained with the equivalent-circuit model are in good agreement with the experiment. This model provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in nonlinear and magnetically tuneable metamaterials exploiting the strong coupling of magnons to microwave photons.

  15. Study of photon-magnon coupling in a YIG-film split-ring resonant system

    NASA Astrophysics Data System (ADS)

    Bhoi, B.; Cliff, T.; Maksymov, I. S.; Kostylev, M.; Aiyar, R.; Venkataramani, N.; Prasad, S.; Stamps, R. L.

    2014-12-01

    By using the stripline Microwave Vector-Network Analyser Ferromagnetic Resonance and Time Domain spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium-iron-garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9% at 3 GHz. Theoretically, we propose an equivalent circuit model of the SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetisation dynamics in the YIG film driven by the microwave currents in the SRR. The results obtained with the equivalent-circuit model are in good agreement with the experiment. This model provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in nonlinear and magnetically tuneable metamaterials exploiting the strong coupling of magnons to microwave photons.

  16. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity

    NASA Astrophysics Data System (ADS)

    Singh, V.; Bosman, S. J.; Schneider, B. H.; Blanter, Y. M.; Castellanos-Gomez, A.; Steele, G. A.

    2014-10-01

    The combination of low mass density, high frequency and high quality factor, Q, of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force/mass sensing and exploring the quantum regime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-Q superconducting cavity. Using thermomechanical noise as calibration, we achieve a displacement sensitivity of 17 fm Hz-1/2. Optomechanical coupling is demonstrated by optomechanically induced reflection and absorption of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We quantitatively extract the cooperativity C, a characterization of coupling strength, from the measurement with no free parameters and find C = 8, which is promising for the quantum regime of graphene motion.

  17. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.

    PubMed

    Singh, V; Bosman, S J; Schneider, B H; Blanter, Y M; Castellanos-Gomez, A; Steele, G A

    2014-10-01

    The combination of low mass density, high frequency and high quality factor, Q, of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force/mass sensing and exploring the quantum regime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-Q superconducting cavity. Using thermomechanical noise as calibration, we achieve a displacement sensitivity of 17 fm Hz(-1/2). Optomechanical coupling is demonstrated by optomechanically induced reflection and absorption of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We quantitatively extract the cooperativity C, a characterization of coupling strength, from the measurement with no free parameters and find C = 8, which is promising for the quantum regime of graphene motion. PMID:25150717

  18. Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons

    PubMed Central

    Zarenia, M.; Perali, A.; Peeters, F. M.; Neilson, D.

    2016-01-01

    We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system. PMID:27108968

  19. An a0 resonance in strongly coupled πη, KK¯ scattering from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.

    2016-05-11

    Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $a_0(980)$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less

  20. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators.

    PubMed

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-10-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. PMID:24008430

  1. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes.

    PubMed

    Vincetti, L; Setti, V

    2012-06-18

    Confinement loss of inhibited coupling fibers with a cladding composed of a lattice of tubes of various shapes is theoretically and numerically investigated. Both solid core and hollow core are taken into account. It is shown that in case of polygonal shaped tubes, confinement loss is affected by extra loss due to Fano resonances between core modes and cladding modes with high spatial dependence. This explains why hollow core Kagome fibers exhibit much higher confinement loss with respect to tube lattice fibers and why hypocycloid core cladding interfaces significantly reduce fiber loss. Moreover it is shown that tube deformations, due for example to fabrication process, affect fiber performances. A relationship between the number of polygon sides and the spectral position of the extra loss is found. This suggests general guide lines for the design and fabrication of fibers free of Fano resonance in the spectral range of interest.

  2. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.

    PubMed

    Zhang, Diming; Lu, Yanli; Jiang, Jing; Zhang, Qian; Yao, Yao; Wang, Ping; Chen, Bilian; Cheng, Qiaoyuan; Liu, Gang Logan; Liu, Qingjun

    2015-05-15

    The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection.

  3. All-electrical nonlinear fano resonance in coupled quantum point contacts

    NASA Astrophysics Data System (ADS)

    Xiao, Shiran

    This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.

  4. Antigen-specific T cell phenotyping microarrays using Grating Coupled Surface Plasmon Resonance Imaging and Surface Plasmon Coupled Emission

    PubMed Central

    Rice, James M.; Stern, Lawrence J.; Guignon, Ernest F.; Lawrence, David A.; Lynes, Michael A.

    2011-01-01

    The circulating population of peripheral T lymphocytes obtained from a blood sample can provide a large amount of information about an individual's medical status and history. Recent evidence indicates that the detection and functional characterization of antigen-specific T cell subsets within the circulating population may provide a diagnostic indicator of disease and has the potential to predict an individual's response to therapy. In this report, a microarray detection platform that combines grating-coupled surface plasmon resonance imaging (GCSPRI) and grating-coupled surface plasmon coupled emission (SPCE) fluorescence detection modalities was used to detect and characterize CD4+ T cells. The microspot regions of interest (ROIs) printed on the array consisted of immobilized antibodies or peptide loaded MHC monomers (p/MHC) as T cell capture ligands mixed with additional antibodies as cytokine capture ligands covalently bound to the surface of a corrugated gold sensor chip. Using optimized parameters, an unlabelled influenza peptide reactive T cell clone could be detected at a frequency of 0.1% in a mixed T cell sample using GCSPRI. Additionally, after cell binding was quantified, differential TH1 cytokine secretion patterns from a T cell clone cultured under TH1 or TH2 inducing conditions was detected using an SPCE fluorescence based assay. Differences in the secretion patterns of 3 cytokines, characteristic of the inducing conditions, indicated that differences were a consequence of the functional status of the captured cells. A dual mode GCSPRI/SPCE assay can provide a rapid, high content T cell screening/characterization tool that is useful for diagnosing disease, evaluating vaccination efficacy, or assessing responses to immunotherapeutics. PMID:22104646

  5. Vertical Triple Series-Coupled Microring Resonator Filter for Passband Flattening and Expansion of Free Spectral Range

    NASA Astrophysics Data System (ADS)

    Yanagase, Yuji; Suzuki, Shuichi; Kokubun, Yasuo; Chu, Sai Tak

    2002-02-01

    The Lorentzian spectrum response of a single microring resonator filter is not suitable for practical use in wavelength division multiplexing (WDM) systems, because of the lack of passband flatness, high crosstalk, and the large wing in the rejection band. The series coupled microring resonator can resolve these problems. We designed and fabricated vertical triple series-coupled microring resonator add/drop filters with a stacked configuration. The box-like filter response with a flat passband was successfully obtained and the free spectral range (FSR) was expanded to 25.8 nm owing to the Vernier effect.

  6. Linear Coupling Resonance Correction of the J-PARC Main Ring

    NASA Astrophysics Data System (ADS)

    Takano, Junpei; Igarashi, Susumu; Molodozhentsev, Alexander; Someya, Hirohiko

    We have constructed skew quadrupole magnets (SQ) for the correction of linear coupling resonances (LCR) at the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). The LCR at Qx + Qy = 43 will cause a significant beam loss at the design beam power of 750 kW. In order to correct the LCR, parameters of the SQs are searched through beam based studies with low intensity by setting the MR operating tune at the LCR. The LCR was successfully corrected and a significant improvement of the beam survival ratio was achieved. A detail design specification and field measurements of the SQs including beam study results are presented.

  7. Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator

    SciTech Connect

    He Xiaoling; Luo Junyan; Yang Chuiping; Li Sheng; Han Siyuan

    2010-08-15

    We propose a way for realizing a two-qubit controlled phase gate with superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. In this proposal, the two lowest levels of each SQUID serve as the logical states and two intermediate levels of each SQUID are used for the gate realization. We show that neither adjustment of SQUID level spacings during the gate operation nor uniformity in SQUID parameters is required by this proposal. In addition, this proposal does not require the adiabatic passage or a second-order detuning and thus the gate is much faster.

  8. Kondo Resonance of a Co Atom Exchange Coupled to a Ferromagnetic Tip

    NASA Astrophysics Data System (ADS)

    Choi, D.-J.; Guissart, S.; Ormaza, M.; Bachellier, N.; Bengone, O.; Simon, P.; Limot, L.

    2016-10-01

    The Kondo effect of a Co atom on Cu(100) was investigated with a low-temperature scanning tunneling microscope using a monoatomically sharp nickel tip. Upon a tip-Co contact, the differential conductance spectra exhibit a spin-split asymmetric Kondo resonance. The computed ab initio value of the exchange coupling is too small to suppress the Kondo effect, but sufficiently large to produce the splitting observed. A quantitative analysis of the line shape using the numerical renormalization group technique indicates that the junction spin polarization is weak.

  9. Cooling Mechanism for a Nonmechanical Resonator by Periodic Coupling to a Cooper Pair Box

    SciTech Connect

    Zhang, P.; Wang, Y.D.; Sun, C.P.

    2005-08-26

    We propose and study an active cooling mechanism for the nanomechanical resonator (NAMR) based on periodical coupling to a Cooper pair box (CPB), which is implemented by a designed series of magnetic flux pluses threading through the CPB. When the initial phonon number of the NAMR is not too large, this cooling protocol is efficient in decreasing the phonon number by 2 to 3 orders of magnitude. Our proposal is theoretically universal in cooling various boson systems of a single mode. It can be specifically generalized to prepare the nonclassical state of the NAMR.

  10. Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array

    SciTech Connect

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman; Liu Yuxi

    2009-07-15

    We propose and study an approach to realize quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator (TLR) array with one controllable hopping interaction. We find that the single photon with arbitrary wave vector can transport in a controllable way in this system. We also study how to realize controllable hopping interaction between two TLRs via a Cooper-pair box (CPB). When the frequency of the CPB is largely detuned from those of the two TLRs, the variables of the CPB can be adiabatically eliminated and thus a controllable interaction between two TLRs can be obtained.

  11. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics.

    PubMed

    Liu, Yong-Chun; Xiao, Yun-Feng; Luan, Xingsheng; Wong, Chee Wei

    2013-04-12

    Cooling of mesoscopic mechanical resonators represents a primary concern in cavity optomechanics. In this Letter, in the strong optomechanical coupling regime, we propose to dynamically control the cavity dissipation, which is able to significantly accelerate the cooling process while strongly suppressing the heating noise. Furthermore, the dynamic control is capable of overcoming quantum backaction and reducing the cooling limit by several orders of magnitude. The dynamic dissipation control provides new insights for tailoring the optomechanical interaction and offers the prospect of exploring mesoscopic quantum physics.

  12. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique

    NASA Astrophysics Data System (ADS)

    Li, Ai Ping; Peng, Jing Dong; Zhou, MingQiong; Zhang, Jin

    2016-02-01

    A simple, fast, costless, sensitive and selective method of resonance light scattering coupled with HPLC was established for the determination of 6-mercaptopurine in human urine sample. In a Britton-Robinson buffer solution of pH 5.5, the formation of coordination complex between 6-mercaptopurine and metal palladium (II) led to enhance the RLS intensity of the system. The RLS signal was detected by fluorescence detector at λex = λem = 315 nm. The analytical parameters were provided by the coupled system, the linear of 6-mercaptopurine response from 0.0615 to 2.40 μg L- 1 and the limit of detection (S/N = 3) was 0.05 μg L- 1. The presented method has been applied to determine 6-mercaptopurine in human urine samples which obtained satisfactory results. Moreover, the reaction mechanism and possible reasons for enhancement of RLS were fully discussed.

  13. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators

    NASA Astrophysics Data System (ADS)

    Song, Wan-Lu; Yang, Wan-Li; Yin, Zhang-Qi; Chen, Chang-Yong; Feng, Mang

    2016-09-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters.

  14. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators

    PubMed Central

    Song, Wan-lu; Yang, Wan-li; Yin, Zhang-qi; Chen, Chang-yong; Feng, Mang

    2016-01-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994

  15. Numerical evaluation of aperture coupling in resonant cavities and frequency perturbation analysis

    NASA Astrophysics Data System (ADS)

    Dash, R.; Nayak, B.; Sharma, A.; Mittal, K. C.

    2014-01-01

    This paper presents a general formulation for numerical evaluation of the coupling between two identical resonant cavities by a small elliptical aperture in a plane common wall of arbitrary thickness. It is organized into two parts. In the first one we discuss the aperture coupling that is expressed in terms of electric and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical integrals. Carlson integrals have been numerically evaluated and under zero thickness approximation, the results match with the complete elliptical integrals of first and second kind. It is found that with zero wall thickness, the results obtained are the same as those of Bethe and Collin for an elliptical and circular aperture of zero thickness. In the second part, Slater's perturbation method is applied to find the frequency changes due to apertures of finite thickness on the cavity wall.

  16. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators.

    PubMed

    Song, Wan-Lu; Yang, Wan-Li; Yin, Zhang-Qi; Chen, Chang-Yong; Feng, Mang

    2016-01-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994

  17. Analysis of the weak coupling of the IrMn/Co/Ru/NiFe structures by ferromagnetic resonance

    SciTech Connect

    Alayo, W.; Baggio-Saitovitch, E.; Sousa, M. A.; Pelegrini, F.

    2011-04-15

    The Ir{sub 20}Mn{sub 80}/Co/Ru/Ni{sub 81}Fe{sub 19} spin valve structures have been produced by sputtering deposition and analyzed by ferromagnetic resonance. Two well resolved modes are identified in the FMR spectra as the resonance of the Co and NiFe layers. The in-plane angular dependence of the resonance peaks for the NiFe layer present a small asymmetry, which is attributed to the interlayer exchange interaction between ferromagnetic layers across the nonmagnetic spacer. The data were analyzed considering the exchange bias at the IrMn/Co interface and the indirect coupling between Co and NiFe. The in-plane angular dependence of the resonance fields of both Co and NiFe layers present an upward (downward) shift for antiferromagnetic (ferromagnetic) coupling with respect to a system with no interlayer coupling.

  18. Resonance saturation of the chiral couplings at next-to-leading order in 1/N{sub C}

    SciTech Connect

    Rosell, Ignasi; Ruiz-Femenia, Pedro; Sanz-Cillero, Juan Jose

    2009-04-01

    The precision obtainable in phenomenological applications of chiral perturbation theory is currently limited by our lack of knowledge on the low-energy constants (LECs). The assumption that the most important contributions to the LECs come from the dynamics of the low-lying resonances, often referred to as the resonance saturation hypothesis, has stimulated the use of large-N{sub C} resonance Lagrangians in order to obtain explicit values for the LECs. We study the validity of the resonance saturation assumption at the next-to-leading order in the 1/N{sub C} expansion within the framework of resonance chiral theory. We find that, by imposing QCD short-distance constraints, the chiral couplings can be written in terms of the resonance masses and couplings and do not depend explicitly on the coefficients of the chiral operators in the Goldstone boson sector of resonance chiral theory. As we argue, this is the counterpart formulation of the resonance saturation statement in the context of the resonance Lagrangian. Going beyond leading order in the 1/N{sub C} counting allows us to keep full control of the renormalization scale dependence of the LEC estimates.

  19. Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born-Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.

  20. Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances.

    PubMed

    Li, Ying Lia; Millen, James; Barker, P F

    2016-01-25

    We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3 pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micron-diameter taper, whereas a piezo stack is used to damp the motion of the much larger (up to 180 μm in diameter), heavier (up to 1.5 × 10(-7) kg) and stiffer microsphere-cantilever. In each feedback scheme multiple mechanical modes of each oscillator can be cooled, and mode temperatures below 10 K are reached for the dominant mode, consistent with limits determined by the measurement noise of our system. This represents stabilization on the picometer level and is the first demonstration of using WGM resonances to cool the mechanical modes of both the WGM resonator and its coupling waveguide. PMID:26832520

  1. Three-dimensional integration of vertically coupled microring resonator filters: fabrication and wavelength trimming technologies

    NASA Astrophysics Data System (ADS)

    Kokubun, Yasuo

    2003-04-01

    We have proposed and demonstrated a vertically coupled microring resonator filter as an Add/Drop wavelength filter. The ultra-compact ring resonantor can be realized by the ultra-high index contrast waveguide (=34%) consisting of glass core (n=1.80) and air cladding and the vertically coupled configuration, where a microring resonator with a few tens micron radius is stacked on the crossing point of cross-grid bus waveguides. The cross-grid topology of busline waveguides and very small ring radius enables a dense integration of filter circuit. To achieve the 3D integration, we developed a novel fabrication process of flat-top waveguide using a so-called lift-off process and the SOG (Spin-On-Glass), and successfully obtained a very smooth and flat surface of lower waveguide with a step height less than 0.01μm. In addition, to manipulate the center wavelength after fabrication, we developed two trimming methods; one is the use of UV-sensitive polymer for the over-cladding, and the other is the direct UV irradiation to the ring ocre made of Ta2O5-SiO2 compound glass. Utilizing the former method, the channel spacing of filter array was precisely controlled within 0.5nm, which can not be achieved by the control of ring radius.

  2. Investigations and system design for simultaneous energy and data transmission through inductively coupled resonances

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Lloret Fuentes, E.; Buchholz, M.

    2015-11-01

    Wireless Power Transfer (WPT) with simultaneous data transmission through coupled magnetic resonators is investigated in this paper. The development of this system is dedicated to serve as a basis for applications in the field of Ambient Assisted Living (AAL), for example tracking vital parameters remotely, charge and control sensors and so on. Due to these different scenarios we consider, it is important to have a system which is reliable under the circumstance of changing positioning of the receiving device. State of the art radio systems would be able to handle this. Nevertheless, energy harvesting from far field sources is not sufficient to power the devices additionally on mid-range distances. For this reason, coupled magnetic resonant circuits are proposed as a promising alternative, although suffering from more complex positioning dependency. Based on measurements on a simple prototype system, an equivalent circuit description is used to model the transmission system dependent on different transmission distances and impedance matching conditions. Additionally, the simulation model is used to extract system parameters such as coupling coefficients, coil resistance and self-capacitance, which cannot be calculated in a simple and reliable way. Furthermore, a mathematical channel model based on the schematic model has been built in MATLAB©. It is used to point out the problems occurring in a transmission system with variable transmission distance, especially the change of the passband's centre frequency and its bandwidth. Existing solutions dealing with this distance dependent behaviour, namely the change of the transmission frequency dependent on distance and the addition of losses to the resonators to increase the bandwidth, are considered as not inventive. First, changing the transmission frequency increases the complexity in the data transmission system and would use a disproportional total bandwidth compared to the actually available bandwidth

  3. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator

    NASA Astrophysics Data System (ADS)

    Sun, F.; Dong, X.; Zou, J.; Dykman, M. I.; Chan, H. B.

    2016-08-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion.

  4. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator

    PubMed Central

    Sun, F.; Dong, X.; Zou, J.; Dykman, M. I.; Chan, H. B.

    2016-01-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion. PMID:27576597

  5. Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator.

    PubMed

    Sun, F; Dong, X; Zou, J; Dykman, M I; Chan, H B

    2016-01-01

    The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion. PMID:27576597

  6. Dynamical coupled-channels model for neutrino-induced meson productions in resonance region

    NASA Astrophysics Data System (ADS)

    Nakamura, S. X.; Kamano, H.; Sato, T.

    2015-10-01

    A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. Starting from the DCC model that we have previously developed through an analysis of π N ,γ N →π N ,η N ,K Λ ,K Σ reaction data for W ≤2.1 GeV , we extend the model of the vector current to Q2≤3.0 (GeV /c )2 by analyzing electron-induced reaction data for both proton and neutron targets. We derive axial-current matrix elements that are related to the π N interactions of the DCC model through the partially conserved axial current (PCAC) relation. Consequently, the interference pattern between resonant and nonresonant amplitudes is uniquely determined. We calculate cross sections for neutrino-induced meson productions, and compare them with available data. Our result for the single-pion production reasonably agrees with the data. We also make a comparison with the double-pion production data. Our model is the first DCC model that can give the double-pion production cross sections in the resonance region. We also make comparison of our result with other existing models to reveal an importance of testing the models in the light of PCAC and electron reaction data. The DCC model developed here will be a useful input for constructing a neutrino-nucleus reaction model and a neutrino event generator for analyses of neutrino experiments.

  7. Selective mode coupling in microring resonators for single mode semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir

    Single mode semiconductor laser diodes have many applications in optical communications, metrology and sensing. Edge-emitting single mode lasers commonly use distributed feedback structures, or narrowband reflectors such as distributed Bragg reflectors (DBRs) and sampled grating distributed Bragg reflectors (SGDBRs). Compact, narrowband reflectors with high reflectivities are of interest to replace the commonly used DBRs and SGDBRs. This thesis presents our work on the simulation, design, fabrication, and characterization of devices operating based on the coupling of degenerate modes of a microring resonator, and investigation of the possibility of using them for improving the performance of laser diodes. In particular, we demonstrate a new type of compact, narrowband, on-chip reflector realized by selectively coupling degenerate modes of a microring resonator. For the simulation and design of reflective microring resonators, a fast and accurate analysis method is required. Conventional numerical methods for solving Maxwell's equations such as the finite difference time domain and the finite element method (FEM) provide accurate results but are computationally intense and are not suitable for the design of large 3D structures. We formulated a set of coupled mode equations that, combined with 2D FEM simulations, can provide a fast and accurate tool for the modeling and design of reflective microrings. We developed fabrication processing recipes and fabricated passive reflective microrings on silicon substrates with a silicon nitride core and silicon dioxide cladding. Narrowband single wavelength reflectors were realized which are 70 times smaller than a conventional DBR with the same bandwidth. Compared to the conventional DBR, they have faster roll-off, and no side modes. The smaller footprint saves real estate, reduces tuning power and makes these devices attractive as in-line mirrors for low threshold narrow linewidth laser diodes. Self-heating caused by material

  8. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  9. Ferromagnetic resonance of an heterogeneous multilayer system with interlayer exchange coupling: an accessible model

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2016-09-01

    We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.

  10. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator

    PubMed Central

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-01-01

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed. PMID:26902910

  11. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator.

    PubMed

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-23

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  12. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-01

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  13. Electron paramagnetic resonance study of the C e3 + pair centers in YAl O3 :Ce scintillator crystals

    NASA Astrophysics Data System (ADS)

    Buryi, M.; Laguta, V. V.; Mihóková, E.; Novák, P.; Nikl, M.

    2015-12-01

    Single crystals of YAl O3 doped with Ce have been studied by electron paramagnetic resonance (EPR) at the 9.4 and 34 GHz microwave bands. Besides the single-ion C e3 + spectrum, measurements have revealed many satellite lines which belong to the C e3 +-C e3 + pair centers. Their spectra have been fitted by a general effective spin Hamiltonian describing two interacting particles with the spin S =1 /2 . Corresponding g factors and spin-spin coupling constants have been determined. The spin-spin coupling constants are in the range from 0.1 up to 0.65 c m-1 for the nearest and next-nearest neighbors depending on the distance between Ce ions and their position. The exchange interaction between next-nearest neighbors (NNNs) is comparable to or even bigger than that between nearest neighbors (NNs), being in the range 0.4 -0.6 c m-1 . For a single C e3 + ion, crystal field parameters, energy sublevels of the 2F5 /2 and 2F7 /2 multiplets and principal g tensor components were obtained from the density functional theory calculation. They are in satisfactory agreement with those determined experimentally. The principal g tensor components of C e3 + pair centers are also calculated. Nevertheless, it was impossible to assign each of the satellite lines to actual positions of the six NN and 12 NNN Ce pairs in the lattice due to lack of valid information on the sign of the exchange interactions. The influence of C e3 + pairs on the luminescence efficiency is discussed as well.

  14. Charging of superconducting layers and resonance-related hysteresis in the current-voltage characteristics of coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Gaafar, M. A.

    2011-09-01

    A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling between junctions and the boundary conditions. Investigation of the time dependence of the electric charge in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of the dissipation in the system on the amplitude of the charge oscillations at the resonance.

  15. Chirped photonic crystal mode converters for broad-band coupling with highly dispersive photonic crystal microring resonators

    NASA Astrophysics Data System (ADS)

    Lo, Stanley M.; Lee, Jonathan Y.; Weiss, Sharon M.; Fauchet, Philippe M.

    2014-03-01

    We demonstrate evanescent coupling between a photonic crystal (PhC) waveguide and a PhC embedded microring resonator on the silicon-on-insulator platform. The mode converter comprises 6 linearly chirped air holes that adiabatically couple the light between the silicon waveguide mode and the PhC mode. Three-dimensional finitedifference time-domain simulations reveal a coupling bandwidth of >100nm. From our experiment, the optical spectra show a photonic bandgap located below ~1590nm. At the resonances in the slow-light regime, a loaded quality factor as high as ~2500 was measured and a group index of ~16 in the PhC embedded microring resonator was estimated from the non-uniform free spectral ranges.

  16. Crossing resonance of wave fields in a medium with an inhomogeneous coupling parameter

    SciTech Connect

    Ignatchenko, V. A. Polukhin, D. S.

    2013-11-15

    The dynamic susceptibilities (Green functions) of the system of two coupled wave fields of different physical natures in a medium with an arbitrary relation between the mean value ε and rms fluctuation Δε of the coupling parameter have been examined. The self-consistent approximation involving all diagrams with noncrossing correlation lines has been developed for the case where the initial Green’s function of the homogeneous medium describes the system of coupled wave fields. The analysis has been performed for spin and elastic waves. Expressions have been obtained for the diagonal elements G{sub mm} and G{sub uu} of the matrix Green’s function, which describe spin and elastic waves in the case of magnetic and elastic excitations, and for the off-diagonal elements G{sub mu} and G{sub um}, which describe these waves in the case of cross excitation. Change in the forms of these elements has been numerically studied for the case of one-dimensional inhomogeneities with an increase in Δε and with a decrease in ε under the condition that the sum of the squares of these quantities is conserved: two peaks in the frequency dependences of imaginary parts of G{sub mm} and G{sub uu} are broadened and then joined into one broad peak; a fine structure appears in the form of narrow resonance at the vertex of the Green’s function of one wave field and narrow antiresonance at the vertex of the Green function of the other field; peaks of the fine structure are broadened and then disappear with an increase in the correlation wavenumber of the inhomogeneities of the coupling parameter; and the amplitudes of the off-diagonal elements vanish in the limit ε → 0.

  17. Resonant coupling and negative differential resistance in metal/ferrocenyl alkanethiolate/STM structures

    NASA Astrophysics Data System (ADS)

    Wang, Shuchun; Lu, Wenchang; Zhao, Qingzhong; Bernholc, J.

    2006-11-01

    Recent experimental studies demonstrated that self-assembled molecules sandwiched between metallic contacts can perform logic functions based on negative differential resistance (NDR). To understand the mechanism of NDR, the electronic structure and transport properties of one such junction, ferrocenyl alkanethiolate attached to a gold surface and probed with a scanning tunneling microscope tip, are investigated by large scale ab initio calculations. The I-V characteristics show strong NDR features at both positive and negative biases, in good agreement with the experimental data. The voltage-dependent transmission, potential drop profile, and molecular level alignment under bias suggest that the ferrocenyl group acts like a quantum dot and that the NDR features are due to resonant coupling between the highest occupied molecular orbital and the density of states of gold leads. The strength of the individual NDR peaks can be tuned by changing the tunneling distance or using suitable spacer layers.

  18. A proposal for optical WDM using embedded photonic crystal ring resonator with distributed coupling

    NASA Astrophysics Data System (ADS)

    Almasian, Mohammad Reza; Abedi, Kambiz

    2016-05-01

    In this paper, an ultra-narrow band channel drop filter (CDF) based on embedded photonic crystal ring resonator with distributed coupling for optical wavelength division multiplexing is proposed and designed in which silicon rods arranged as square lattice. For this purpose, the influences of variation of the central ring radius, on the operating wavelength have been investigated. Calculation results show that the efficiency of 88% with quality factor of 5740, 98% with quality factor of 4889 and 98% with quality factor of 4798 at operating wavelength of 1550 nm can be achieved. Consequently the channel band width and channel spacing are reduced to 270 pm and 600 pm respectively, which will be suitable for dense wavelength division multiplexing (DWDM) optical network systems with 600 pm channel spacing. Simulations have been performed using 2-D finite difference time-domain (2D FDTD) calculations.

  19. A high sensitivity humidity sensor based on micro-ring resonator with three coupling points

    NASA Astrophysics Data System (ADS)

    Guo, Shi-liang; Wang, Wen-juan; Hu, Chun-hai

    2014-12-01

    A novel high sensitivity humidity sensor based on micro-ring resonator with three coupling points (MRRTCP) is reported. Since the dielectric constant of Polyimide is highly sensible to the relative humidity of the environment, we choose the Polyimide (PI) as the moisture material. The effective refractive index of the sensing part of the sensor changes as the relative humidity of the environment changes, this leading to an obvious shift of the output spectrum. The sensing range of the relative humidity sensor is 0~100%RH, and the sensitivity is 0.0017μm/%RH, and the structure is relatively simple and could be used in micro-scale humidity sensing.

  20. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal; Sharma, Suresh C.; Hozhabri, Nader

    2016-04-01

    Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = /∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  1. Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance

    PubMed Central

    Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong

    2013-01-01

    We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023

  2. Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator

    NASA Astrophysics Data System (ADS)

    Labadze, G.; Dukalski, M.; Blanter, Ya. M.

    2016-08-01

    We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classically, the behavior of the non-driven mode is reminiscent of that of a parametrically driven linear oscillator: it exhibits a threshold behavior, with the amplitude of this mode below the threshold being exactly zero. Quantum-mechanically, we were able to access the dynamics of this mode below the classical parametric threshold. We show that whereas the mean displacement of this mode is still zero, the mean squared displacement is finite and at the threshold corresponds to the occupation number of 1/2. This finite displacement of the non-driven mode can serve as an experimentally verifiable quantum signature of quantum motion.

  3. Coupling between Surface Plasmon Resonance and electric current in Au stripes

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; de La Venta, Jose

    2009-03-01

    Surface Plasmon Resonance (SPR) is the most outstanding feature of noble metal films. SPR consists on a collective oscillation of the conduction electrons when excited optically in the appropriate geometrical and energy conditions. The electrical current passing trough the metal film involves also the movement of conduction electrons. Thus, coupling effects are expected between SPR and electrical resistivity. A modification of the SPR when a electrical current passes through the film, could allow the modulation of an optical signal by a electrical one. Similarly, when the film is illuminated at the SPR conditions, the oscillation of the conduction electrons and local heating can induce an enhancement of the electric resistivity that can be used to translate an optical signal into a electric one. Those effects could be useful in the development of new fast optoelectronic transducers. We present here results on Au stripes illuminated to induce the SPR while electric currents flow with different orientation with respect to the light polarization

  4. Plasmon induced transparency in loop-stub resonator-coupled waveguide systems

    NASA Astrophysics Data System (ADS)

    Ye, Jiulin; Wang, Faqiang; Liang, Ruisheng; Wei, Zhongchao; Meng, Hongyun; Zhong, Jiewen; Jiang, Lihua

    2016-07-01

    We firstly investigate plasmon induced transparency (PIT) effect in a metal-dielectric-metal (MDM) waveguide coupled to a single loop stub resonator by finite difference time domain method (FDTD). Compared with previous PIT sup based on MDM waveguide, PIT phenomena can be realized in a single plasmonic composite nanocavity without employment of additional optical elements. Plasmon induced transparency windows can be controlled by adjusting the geometrical parameters of the vertical branches or the horizontal branch in the plasmonic structure. The red-shift of PIT peak is almost linearly proportional to the refractive index of the horizontal branch. This plasmonic system takes the advantages of easy fabrication and compactness. The results may pave a way for the dynamic control of light in highly integrated optical circuits, which can realize ultrafast switching, light storage and nanosensor devices.

  5. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  6. Limitations of symmetry in FE modeling: A comparison of fem and air-coupled resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    It has long been an accepted practice to use symmetry in Finite Element Modeling. Whenever modeling a large structure, we turn to symmetry in order to significantly reduce the model size and computation time. But is symmetry always the solution to long computation times, and is it always accurate? This study is aimed at modeling a whole ceramic tile and several possible symmetric models under several different loading cases and comparing them to each other and Air-Coupled Ultrasonic scans to determine if the Finite Element Models can accurately predict the vibrational resonance patterns. The reason for the accuracy or inaccuracy will also be examined. The understanding of the limitations of using symmetry to model large structures will be very useful in all future modeling.

  7. Radiofrequency (RF) Coil Impacts the Value and Reproducibility of Cartilage Spin-Spin (T2) Relaxation Time Measurements

    PubMed Central

    Dardzinski, BJ; Schneider, E

    2013-01-01

    Introduction T2 (spin-spin) relaxation time is frequently used for compositional assessment of articular cartilage. However little is known about the influence of MR system components on these measurements. The reproducibility and range of cartilage T2 values were evaluated using different extremity radiofrequency (RF) coils with potential differences in flip angle uniformity and SNR. Method Ten knees underwent 3 Tesla MR exams using RF coils with different signal-to-noise (SNR): quadrature transmit/receive (QTR); quadrature transmit/eight-channel phased-array receive (QT8PAR). Each knee was scanned twice per coil (4 exams total). T2 values were calculated for the central medial and lateral femoral (cMF, cLF) and medial and lateral tibial (MT, LT) cartilage. Results The flip angle varied across a central 40mm diameter region-of-interest of each coil by <1.5%. However SNR was significantly higher using QT8PAR than QTR (p<0.001). T2 values for cMF (50.7msec/45.9msec) and MT (48.2msec/41.6msec) were significantly longer with QT8PAR than QTR (p<0.05). T2 reproducibility was improved using QT8PAR for cMF and cLF (4.8%/5.8% and 4.1%/6.5%; p<0.001), similar for LT (3.8%/3.6%; p=1.0), and worse for MT (3.7%/3.3%; p<0.001). T2 varied spatially, with cLF having the longest (52.0msec) and the LT having the shortest (40.6msec) values. All deep cartilage had significantly longer, and less variable, T2 values using QT8PAR (higher SNR; p<0.03). Conclusions SNR varied spatially depending upon coil, but refocusing flip angle did not. With higher SNR, significantly longer T2 values were measured for deep (all plates) and global (MT, cMF) cartilage. T2 values varied by depth and plate, in agreement with prior studies. PMID:23376528

  8. On- and off-resonance radiation-atom-coupling matrix elements involving extended atomic wave functions

    NASA Astrophysics Data System (ADS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2014-01-01

    In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).

  9. Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Singh, Ranjan; Zhang, Caihong; Han, Jiaguang; Tonouchi, Masayoshi; Zhang, Weili

    2013-09-01

    Structured plasmonic metamaterial devices offer the design flexibility to be size scaled for operation across the electromagnetic spectrum and are extremely attractive for generating electromagnetically induced transparency and slow-light behaviors via coupling of bright and dark subwavelength resonators. Here, we experimentally demonstrate a thermally active superconductor-metal coupled resonator based hybrid terahertz metamaterial on a sapphire substrate that shows tunable transparency and slow light behavior as the metamaterial chip is cooled below the high-temperature superconducting phase transition temperature. This hybrid metamaterial opens up the avenues for designing micro-sized active circuitry with switching, modulation, and "slowing down terahertz light" capabilities.

  10. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  11. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells.

    PubMed

    Kupenko, I; Strohm, C; McCammon, C; Cerantola, V; Glazyrin, K; Petitgirard, S; Vasiukov, D; Aprilis, G; Chumakov, A I; Rüffer, R; Dubrovinsky, L

    2015-11-01

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe3C using synchrotron Mössbauer source spectroscopy, FeCO3 using nuclear inelastic scattering, and Fe2O3 using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses. PMID:26628151

  12. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    SciTech Connect

    Kupenko, I. Strohm, C.; McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L.; Glazyrin, K.; Vasiukov, D.; Aprilis, G.; Chumakov, A. I.; Rüffer, R.

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  13. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor.

    PubMed

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald; Mühl, Thomas

    2016-01-01

    Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  14. Control of dispersion in fiber coupled resonator-induced transparency structure

    NASA Astrophysics Data System (ADS)

    He, Tian; Yun-Dong, Zhang; Da-Wei, Qi; Run-Zhou, Su; Yan, Bai; Qiang, Xu

    2016-06-01

    Induced transparency phenomena and strong dispersion can be produced in a coupled resonator induced transparency (CRIT) structure. In this paper, we investigate the influences of structure parameters, such as amplitude reflection coefficient and loss, on transmission spectrum and dispersion of CRIT structure, and further study the control of dispersion in the structure. The results show that in the CRIT structure, adjusting the loss of resonators is an effective method of controlling dispersion and producing simultaneous normal and abnormal dispersion. When we choose approximate amplitude reflection coefficients of the two couplers, the decrease of transmittance due to loss could be effectively made up. In the experiment, we achieve the control of dispersion and simultaneous strong normal and abnormal dispersion in the CRIT structure comprised of fiber. The results indicate the CRIT structure has potential applications in optical signal processing and optical communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61307076 and 61275066), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAF14B11), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q14042).

  15. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops

    NASA Astrophysics Data System (ADS)

    Estep, Nicholas A.; Sounas, Dimitrios L.; Soric, Jason; Alù, Andrea

    2014-12-01

    Non-reciprocal components, which are essential to many modern communication systems, are almost exclusively based on magneto-optical materials, severely limiting their applicability. A practical and inexpensive route to magnetic-free non-reciprocity could revolutionize radio-frequency and nanophotonic communication networks. Angular-momentum biasing was recently proposed as a means of realizing isolation for sound waves travelling in a rotating medium, and envisaged as a path towards compact, linear integrated non-reciprocal electromagnetic components. Inspired by this concept, here we demonstrate a subwavelength, linear radio-frequency non-reciprocal circulator free from magnetic materials and bias. The scheme is based on the parametric modulation of three identical, strongly and symmetrically coupled resonators. Their resonant frequencies are modulated by external signals with the same amplitude and a relative phase difference of 120°, imparting an effective electronic angular momentum to the system. We observe giant non-reciprocity, with up to six orders of magnitude difference in transmission for opposite directions. Furthermore, the device topology is tunable in real time, and can be directly embedded in a conventional integrated circuit.

  16. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

    PubMed Central

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald

    2016-01-01

    Summary Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  17. Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry.

    PubMed

    Skoczowsky, Danilo; Jechow, Andreas; Menzel, Ralf; Paschke, Katrin; Erbert, Götz

    2010-01-15

    A new approach for efficient second-harmonic generation using diode lasers is presented. The experimental setup is based on a tapered amplifier operated in a ring resonator that is coupled to a miniaturized enhancement ring resonator containing a periodically poled lithium niobate crystal. Frequency locking of the diode laser emission to the resonance frequency of the enhancement cavity is realized purely optically, resulting in stable, single-frequency operation. Blue light at 488 nm with an output power of 310 mW is generated with an optical-to-optical conversion efficiency of 18%. PMID:20081978

  18. Generating the Schrödinger cat state in a nanomechanical resonator coupled to a charge qubit

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Qi; Xiong, Wei; Zhang, Shuo; Li, Yong; Feng, Mang

    2015-01-01

    We propose a scheme for generating the Schr\\"{o}dinger cat state based on geometric operations by a nanomechanical resonator coupled to a superconducting charge qubit. The charge qubit, driven by two strong classical fields, interacts with a high-frequency phonon mode of the nanomechanical resonator. During the operation, the charge qubit undergoes no real transitions, while the phonon mode of the nanomechanical resonator is displaced along different paths in the phase space, dependent on the states of the charge qubit, which yields the Schr\\"{o}dinger cat state. The robustness of the scheme is justified by considering noise from environment, and the feasibility of the scheme is discussed.

  19. Theory of inelastic confinement-induced resonances due to the coupling of center-of-mass and relative motion

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Saenz, Alejandro

    2016-08-01

    A detailed study of the anharmonicity-induced resonances caused by the coupling of center-of-mass and relative motion is presented for a system of two ultracold atoms in single-well potentials. As has been confirmed experimentally, these inelastic confinement-induced resonances are of interest since they can lead to coherent molecule formation, losses, and heating in ultracold atomic gases. A perturbative model is introduced to describe the resonance positions and the coupling strengths. The validity of the model and the behavior of the resonances for different confinement geometries are analyzed in comparison with exact numerical ab initio calculations. While such resonances have so far only been detected for large positive values of the s -wave scattering length, it is found that they are present also for negative s -wave scattering lengths, i.e., for attractive interactions. The possibility to coherently tune the resonances by a variation of the external confinement geometry might pave the way for coherent molecule association where magnetic Feshbach resonances are inaccessible.

  20. Theoretical grounds of relativistic methods for calculation of spin–spin coupling constants in nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.

    2016-04-01

    The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin–spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin–spin coupling constants using the available software are given. The bibliography includes 622 references.

  1. Study on signal intensity of low field nuclear magnetic resonance via an indirect coupling measurement

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Ying; Wang, Ning; Jin, Yi-Rong; Deng, Hui; Tian, Ye; Lang, Pei-Lin; Li, Jie; Chen, Ying-Fei; Zheng, Dong-Ning

    2013-04-01

    We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-Tc superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 μT) and the experiment is conducted in a home-made magnetically-shielded-room (MSR). The measurements are performed by the indirect coupling method in which the signal of nuclei precession is indirectly coupled to the SQUID through a tuned copper coil transformer. In such an arrangement, the interferences of applied measurement and polarization field to the SQUID sensor are avoided and the performance of the SQUID is not destroyed. In order to compare the detection sensitivity obtained by using the SQUID with that achieved using a conventional low-noise-amplifier, we perform the measurements using a commercial room temperature amplifier. The results show that in a wide frequency range (~1 kHz-10 kHz) the measurements with the SQUID sensor exhibit a higher signal-to-noise ratio. Further, we discuss the dependence of NMR peak magnitude on measurement frequency. We attribute the reduction of the peak magnitude at high frequency to the increased field inhomogeneity as the measurement field increases. This is verified by compensating the field gradient using three sets of gradient coils.

  2. Resonant atom-field interaction in large-size coupled-cavity arrays

    SciTech Connect

    Ciccarello, Francesco

    2011-04-15

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  3. Understanding the Potential of Aeroelastic Couplings to Stabilize Ground and Air Resonance in a Soft-Inplane Tiltrotor

    NASA Technical Reports Server (NTRS)

    Howard, Anna K. T.

    1999-01-01

    The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

  4. Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2016-06-01

    Phonon blockade is a purely quantum phenomenon, analogous to Coulomb and photon blockades, in which a single phonon in an anharmonic mechanical resonator can impede the excitation of a second phonon. We propose an experimental method to realize phonon blockade in a driven harmonic nanomechanical resonator coupled to a qubit, where the coupling is proportional to the second-order nonlinear susceptibility χ(2 ). This is in contrast to the standard realizations of phonon and photon blockade effects in Kerr-type χ(3 ) nonlinear systems. The nonlinear coupling strength can be adjusted conveniently by changing the coherent drive field. As an example, we apply this model to predict and describe phonon blockade in a nanomechanical resonator coupled to a Cooper-pair box (i.e., a charge qubit) with a linear longitudinal coupling. By obtaining the solutions of the steady state for this composite system, we give the conditions for observing strong antibunching and sub-Poissonian phonon-number statistics in this induced second-order nonlinear system. Besides using the qubit to produce phonon blockade states, the qubit itself can also be employed to detect blockade effects by measuring its states. Numerical simulations indicate that the robustness of the phonon blockade, and the sensitivity of detecting it, will benefit from this strong induced nonlinear coupling.

  5. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  6. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  7. Electroweak coupling measurements from polarized Bhabha scattering at the Z{sup 0} resonance

    SciTech Connect

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e{sup +}e{sup {minus}} {yields} e{sup +}e{sup {minus}}) with polarized electrons at the center of mass energy of the Z{sup 0} resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86{plus_minus}2.56 (stat){plus_minus}4.23 (sys) nb{sup {minus}1}. The luminosity asymmetry for polarized beams is measured to be A{sub LR}(LUM) = (1.7 {plus_minus} 6.4) {times} 10{sup {minus}3}. The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z{sup 0} through the measurement of the Z{sup 0} {yields} e{sup +}e{sup {minus}} partial width, {Gamma}{sub ee}, and the parity violation parameter, A{sub e}. From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be {bar g}{sub v}{sup e} = {minus}0.0495{plus_minus}0.0096{plus_minus}0.0030, and {bar g}{sub {alpha}}{sup e} = {minus}0.4977{plus_minus}0.0035{plus_minus}0.0064 respectively. The effective weak mixing angle is measured to be sin{sup 2}{theta}{sub W}{sup eff} = 0.2251{plus_minus}0.0049{plus_minus}0.0015. These results are compared with other experiments.

  8. Magnetic Field-Independent Onset of Vortex Pinning up to 28 T by ^17O Spin-spin Relaxation in YBa_2Cu_3O_7

    NASA Astrophysics Data System (ADS)

    Bachman, H. N.; Mitrovic, V. F.; Reyes, A. P.; Halperin, W. P.; Kleinhammes, A.; Kuhns, P.; Moulton, W. G.

    1998-03-01

    We report spin-spin relaxation measurements (T_2) up to 28 T. The data confirm a field-independent pinning temperature from ≈10 T up to 28 T for aligned YBa_2Cu_3O7 powder. Below ≈10 T the pinning temperature is field-dependent, and is consistent with the melting temperature of clean, untwinned YBCO crystals (Reyes, et al.), Phys. Rev. B, 55, R14737, (1997).. Spectrum analysis shows that above ≈10 T the pinning temperature is field-independent, occurring at 80 K (H. N. Bachman, et al.), Bull. Am. Phys. Soc., 42, 661, (1997).. Spin-spin relaxation probes the z-axis fluctuations in magnetic field which arise from copper and oxygen spin fluctuations (T1 processes) and field fluctuations from vortices. The vortex contribution is observable only for vortices locally fluctuating in the pinned or frozen state. The vortex field fluctuations have a lorentzian spectral density, in contrast to the normal state relaxation which is well described by a gaussian. Work at Northwestern University is supported by the NSF (DMR 91-20000) through the Science and Technology Center for Superconductivity. The NHMFL is supported through the NSF and the state of Florida.

  9. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  10. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering

    NASA Astrophysics Data System (ADS)

    Fang, Yingcui; Blinn, Kevin; Li, Xiaxi; Weng, Guojun; Liu, Meilin

    2013-04-01

    We made clean silver nano-clusters (AgNCs) on glass substrates by DC magnetron sputtering of a high purity Ag target in a high vacuum chamber. The AgNCs film shows strong localized surface plasmon resonance (LSPR) due to the coupling among Ag nanoparticles in the AgNCs and the coupling between AgNCs. The LSPR indicates strong coupling with Rhodamine 6G (R6G) adsorbed on the AgNC surface, which enhances the R6G absorption intensity and broadens the absorption wavelength range. This result promotes plasmonic nanoparticles to be better used in solar cells.

  11. The 750 GeV resonance as non-minimally coupled inflaton: Unitarity violation and why the resonance is a real singlet scalar

    NASA Astrophysics Data System (ADS)

    McDonald, John

    2016-10-01

    The 750 GeV resonance observed by ATLAS and CMS may be explained by a gauge singlet scalar. This would provide an ideal candidate for a gauge singlet scalar alternative to Higgs Inflation, known as S-inflation. Here we discuss the relevant results of S-inflation in the context of the 750 GeV resonance. In particular, we show that a singlet scalar, if it is real, has a major advantage over the Higgs boson with regard to unitarity violation during inflation. This is because it is possible to restrict the large non-minimal coupling required for inflation, ξ ∼105, to the real singlet scalar, with all other scalars having ξ ∼ 1. In this case the scale of unitarity violation Λ is much larger than the inflaton field during inflation. This protects the inflaton effective potential from modification by the new physics or strong coupling which is necessary to restore unitarity, which would otherwise invalidate the perturbative effective potential based on Standard Model physics. This is in contrast to the case of Higgs Inflation or models based on complex singlet scalars, where the unitarity violation scale during inflation is less than or of the order of the inflaton field. Therefore if the 750 GeV resonance is the inflaton, it must be a non-minimally coupled real singlet scalar.

  12. Assessment of DFT functionals with fluorine-fluorine coupling constants

    NASA Astrophysics Data System (ADS)

    García de la Vega, J. M.; San Fabián, J.

    2015-07-01

    Density functional theory (DFT) calculations of nuclear magnetic resonance (NMR) spin-spin coupling constants (SSCCs) provide an important contribution for understanding experimentally observed values. It is known that calculated SSCCs using DFT methods correlate well with those experimentally measured. Unlike most of SSCCs, in fluorine compounds, fluorine-fluorine SSCC JFF shows that the Fermi contact (FC) term is not dominant, particularly for JFF in polyfluorinated organic molecules. In order to devise a DFT approach that would correctly reproduce the variation of SSCCs within a series of fluorine compounds, we test several DFT-based approaches, using different exchange and correlation functionals. Isotropic contributions to NMR fluorine-fluorine coupling constants (FC, spin-dipolar, SD, paramagnetic spin-orbit, PSO, and diamagnetic spin-orbit, DSO) have been calculated. Results show that DFT methods give appropriate values for nJFF (n = 4 to 7), while for geminal and vicinal JFF present large deviations from experimental values. For the latter SSCCs (2JFF and 3JFF), the four contributions (FC, SD, PSO and DSO) are analysed as a function of the local and nonlocal exchange in 1,1- and 1,2-difluoroethylene. Although FC term is not dominant for these SSCCs, the variation of this contribution with exchange is remarkable. On the other hand, SD and PSO contributions can be suitably computed without and with exact exchange, respectively. This article is dedicated to the memory of Prof. N. C. Handy, whose contributions to the development of Theoretical Chemistry have been widely recognized.

  13. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

    PubMed Central

    Zhang, Zhidong; Luo, Liang; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2016-01-01

    A refractive index sensor based on metal-insulator-metal (MIM) waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM). The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU. PMID:27164101

  14. Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture.

    PubMed

    Kintaka, Kenji; Kita, Yuki; Shimizu, Katsuya; Matsuoka, Hitoshi; Ura, Shogo; Nishii, Junji

    2010-06-15

    A cavity-resonator-integrated grating input/output coupler (CRIGIC) is designed to operate at about 850 nm wavelength for high-efficiency vertical coupling of a guided wave and a free-space wave with a small aperture. The CRIGIC consists of a grating coupler and a waveguide cavity resonator constructed by two distributed Bragg reflectors. A coupling efficiency of 96% with a 3 dB bandwidth of 1.2 nm is predicted by a theoretical calculation. An output coupling efficiency of about 60% is experimentally demonstrated on a 20 microm aperture device, fabricated in a thin-film SiO(2)-based waveguide on a substrate with an Au reflection layer, for what we believe to be the first time.

  15. Capacitively coupled singlet-triplet qubits in the double charge resonant regime

    NASA Astrophysics Data System (ADS)

    Srinivasa, V.; Taylor, J. M.

    2015-12-01

    We investigate a method for entangling two singlet-triplet qubits in adjacent double quantum dots via capacitive interactions. In contrast to prior work, here we focus on a regime with strong interactions between the qubits. The interplay of the interaction energy and simultaneous large detunings for both double dots gives rise to the "double charge resonant" regime, in which the unpolarized (1111) and fully polarized (0202) four-electron states in the absence of interqubit tunneling are near degeneracy, while being energetically well separated from the partially polarized (0211 and 1102) states. A rapid controlled-phase gate may be realized by combining time evolution in this regime in the presence of intraqubit tunneling and the interqubit Coulomb interaction with refocusing π pulses that swap the singly occupied singlet and triplet states of the two qubits via, e.g., magnetic gradients. We calculate the fidelity of this entangling gate, incorporating models for two types of noise—charge fluctuations in the single-qubit detunings and charge relaxation within the low-energy subspace via electron-phonon interaction—and identify parameter regimes that optimize the fidelity. The rates of phonon-induced decay for pairs of GaAs or Si double quantum dots vary with the sizes of the dipolar and quadrupolar contributions and are several orders of magnitude smaller for Si, leading to high theoretical gate fidelities for coupled singlet-triplet qubits in Si dots. We also consider the dependence of the capacitive coupling on the relative orientation of the double dots and find that a linear geometry provides the fastest potential gate.

  16. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies

    NASA Astrophysics Data System (ADS)

    Xu, Heng; Springett, Roger; Dehghani, Hamid; Pogue, Brian W.; Paulsen, Keith D.; Dunn, Jeff F.

    2005-04-01

    A novel magnetic-resonance-coupled broadband near-infrared (NIR) tomography system for small animal brain studies is described. Several features of the image formation approach are new in NIR tomography and represent major advances in the path to recovering high-resolution hemoglobin and oxygen saturation images of tissue. The NIR data were broadband and continuous wave and were used along with a second-derivative-based estimation of the path length from water absorption. The path length estimation from water was then used along with the attenuation spectrum to recover absorption and reduced scattering coefficient images at multiple wavelengths and then to recover images of total hemoglobin and oxygen saturation. Going beyond these basics of NIR tomography, software has been developed to allow inclusion of structures derived from MR imaging (MRI) for the external and internal tissue boundaries, thereby improving the accuracy and spatial resolution of the properties in each tissue type. The system has been validated in both tissue-simulating phantoms, with 10% accuracy observed, and in a rat cranium imaging experiment. The latter experiment used variation in inspired oxygen (FiO2) to vary the observed hemoglobin and oxygen saturation images. Quantitative agreement was observed between the changes in deoxyhemoglobin values derived from NIR and the changes predicted with blood-oxygen-level-dependent (BOLD) MRI. This system represents the initial stage in what will likely be a larger role for NIR tomography, coupled to MRI, and illustrates that the technological challenges of using continuous-wave broadband data and inclusion of a priori structural information can be met with careful phantom studies.

  17. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.

    PubMed

    Kenig, Eyal; Tsarin, Yuriy A; Lifshitz, Ron

    2011-07-01

    We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica D 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.

  18. Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes.

    PubMed

    Wu, Jiang-Bin; Hu, Zhi-Xin; Zhang, Xin; Han, Wen-Peng; Lu, Yan; Shi, Wei; Qiao, Xiao-Fen; Ijiäs, Mari; Milana, Silvia; Ji, Wei; Ferrari, Andrea C; Tan, Ping-Heng

    2015-07-28

    Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures.

  19. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators

    NASA Astrophysics Data System (ADS)

    Kenig, Eyal; Tsarin, Yuriy A.; Lifshitz, Ron

    2011-07-01

    We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica DPDNPDT0167-278910.1016/0167-2789(92)90092-2 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.

  20. GaAs coupled micro resonators with enhanced sensitive mass detection.

    PubMed

    Chopard, Tony; Lacour, Vivien; Leblois, Therese

    2014-12-02

    This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation.