Science.gov

Sample records for resonance spin-spin coupling

  1. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, P.; Buckingham, A. D.

    2016-11-01

    It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.

  2. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling.

    PubMed

    Garbacz, P; Buckingham, A D

    2016-11-28

    It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.

  3. Spin-Spin Coupling in Asteroidal Binaries

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-11-01

    Gravitationally bound binaries constitute a substantial fraction of the small body population of the solar system, and characterization of their rotational states is instrumental to understanding their formation and dynamical evolution. Unlike planets, numerous small bodies can maintain a perpetual aspheroidal shape, giving rise to a richer array of non-trivial gravitational dynamics. In this work, we explore the rotational evolution of triaxial satellites that orbit permanently deformed central objects, with specific emphasis on quadrupole-quadrupole interactions. Our analysis shows that in addition to conventional spin-orbit resonances, both prograde and retrograde spin-spin resonances naturally arise for closely orbiting, highly deformed bodies. Application of our results to the illustrative examples of (87) Sylvia and (216) Kleopatra multi-asteroid systems implies capture probabilities slightly below ~10% for leading-order spin-spin resonances. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  4. Fully automated quantum chemistry based computation of spin-spin coupled nuclear magnetic resonance spectra for molecules.

    PubMed

    Grimme, Stefan; Bannwarth, Christoph; Dohm, Sebastian; Hansen, Andreas; Pisarek, Jana; Pracht, Philipp; Seibert, Jakob; Neese, Frank

    2017-09-14

    We present a composite procedure for the quantum chemical computation of spin-spin coupled 1H-NMR spectra for general, flexible molecules in solution. It is based on four main steps, namely, conformer/rotamer ensemble (CRE) generation by the fast tight-binding method GFN-xTB and a newly developed search algorithm, relative free energy and NMR parameter computation, and solution of the spin-Hamiltonian. In this way the NMR-specific nuclear permutation problem is solved and the correct spin-symmetries are obtained. Energies, shieldings, and spin-spin couplings are computed at state-of-the-art DFT levels employing continuum solvation. A few (in)organic and transition metal complexes are presented and very good, unprecedented agreement between theoretical and experimental spectra is achieved. The approach is routinely applicable to systems with up to 100-150 atoms and may open new avenues for a detailed (conformational) structure elucidation of e.g. natural products or drug molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: analysis of basic electronic effects.

    PubMed

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-22

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. (1)J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas (2)J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of (1)J(C,H) and (2)J(H,H), respectively, for hydrocarbons.

  6. A method for measurement of spin-spin couplings with sub-mHz precision using zero- to ultralow-field nuclear magnetic resonance.

    PubMed

    Wilzewski, A; Afach, S; Blanchard, J W; Budker, D

    2017-09-01

    We present a method which allows for the extraction of physical quantities directly from zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) data. A numerical density matrix evolution is used to simulate ZULF NMR spectra of several molecules in order to fit experimental data. The method is utilized to determine the indirect spin-spin couplings (J-couplings) in these systems, which is achieved with precision of 10(-2)-10(-4)Hz. The simulated and measured spectra are compared to earlier research. Agreement and improved precision are achieved for most of the J-coupling estimates. The availability of fast, flexible fitting method for ZULF NMR enables a new generation of precision-measurement experiments for spin-dependent interactions and physics beyond the Standard Model. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Paramagnetic Enhancement of Nuclear Spin-Spin Coupling.

    PubMed

    Cherry, Peter John; Rouf, Syed Awais; Vaara, Juha

    2017-03-14

    We present a derivation and computations of the paramagnetic enhancement of the nuclear magnetic resonance (NMR) spin-spin coupling, which may be expressed in terms of the hyperfine coupling (HFC) and (for systems with multiple unpaired electrons) zero-field splitting (ZFS) tensors. This enhancement is formally analogous to the hyperfine contributions to the NMR shielding tensor as formulated by Kurland and McGarvey. The significance of the spin-spin coupling enhancement is demonstrated by using a combination of density-functional theory and correlated ab initio calculations, to determine the HFC and ZFS tensors, respectively, for two paramagnetic 3d metallocenes, a Cr(II)(acac)2 complex, a Co(II) pyrazolylborate complex, and a lanthanide system, Gd-DOTA. Particular attention is paid to relativistic effects in HFC tensors, which are calculated using two methods: a nonrelativistic method supplemented by perturbational spin-orbit coupling corrections, and a fully relativistic, four-component matrix-Dirac-Kohn-Sham approach. The paramagnetic enhancement lacks a direct dependence on the distance between the coupled nuclei, and represents more the strength and orientation of the individual hyperfine couplings of the two nuclei to the spin density distribution. Therefore, the enhancement gains relative importance as compared to conventional coupling as the distance between the nuclei increases, or generally in the cases where the conventional coupling mechanisms result in a small value. With the development of the experimental techniques of paramagnetic NMR, the more significant enhancements, e.g., of the (13)C(13)C couplings in the Gd-DOTA complex (as large as 9.4 Hz), may eventually become important.

  8. Indirect Spin-Spin Coupling Constants in the Hydrogen Isotopologues.

    PubMed

    Garbacz, Piotr; Chotkowski, Maciej; Rogulski, Zbigniew; Jaszuński, Michał

    2016-07-21

    The results of experimental and theoretical studies of indirect spin-spin coupling constants for hydrogen deuteride (HD), hydrogen tritide (HT), and deuterium tritide (DT) are described. The reduced coupling constants obtained from the gas-phase NMR (nuclear magnetic resonance) experiment conducted at 300 K are 2.338(1), 2.334(3), and 2.316(1) × 10(20) T(2) J(-1), while the ab initio values computed at the full configuration interaction level of theory equal 2.349(3), 2.343(3), and 2.322(3) × 10(20) T(2) J(-1) for HD, HT, and DT, respectively. The agreement of the experimental and theoretical results is improved when proper treatment of the influence of nuclear relaxation on the NMR spectrum is applied. However, there is a minor discrepancy between experiment and theory, exceeding the estimated error bars; potential sources of this discrepancy are discussed.

  9. Spin-Spin Coupling in the Solar System

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-09-01

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole-quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin-spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  10. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.

    PubMed

    Dracínský, Martin; Kaminský, Jakub; Bour, Petr

    2009-03-07

    Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in

  11. Finite-Perturbation Intermediate - Neglect - of - Differential - Overlap Molecular Orbital Calculations of Nuclear Magnetic Resonance Spin-Spin Coupling Constants for Polycyclic Aromatic Hydrocarbons and Aromatic Nitrogen Heterocyclics

    NASA Astrophysics Data System (ADS)

    Long, Sheila Ann Thibeault

    The H-H, C-H, and C-C spin-spin coupling constants were calculated by the finite-perturbation, intermediate -neglect-of-differential-overlap method using the Fermi contact interaction for benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations were made using both the actual and the average molecular geometries. For all six of these molecules, the agreements between the calculated and the experimental coupling constants were comparable to those previously reported for other, predominantly smaller, molecules. The actual molecular geometries always gave the correct relative order of values for the H-H coupling constants, whereas the average molecular geometries did not always do so. The magnitudes, but not the signs, of the calculated coupling constants were sensitive to small changes in molecular geometry. The results were the best (next best) for the H-H (C-H) coupling constants. In addition the H-H, C-H, N-H, C-C, and N-C spin -spin coupling constants were calculated in a similar manner for pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, quinoline, quinoxaline, phthalazine, benzo g quinoxaline, and benzo b phenazine. The agreements between the theoretical and the experimental values were comparable to those for the polycyclic aromatic hydrocarbons.

  12. Dynamical spin-spin coupling of quantum dots

    NASA Astrophysics Data System (ADS)

    Grigoryan, Vahram; Xiao, Jiang; A spintronics Group Team

    2014-03-01

    We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. Due to its dynamical origin, this new coupling mechanism is qualitatively different from the all existing static couplings such as RKKY, while the strength could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner. This work was supported by the special funds for the Major State Basic Research Project of China (No. 2011CB925601) and the National Natural Science Foundation of China (Grants No. 11004036 and No. 91121002).

  13. Unusual long-range spin-spin coupling in fluorinated polyenes: A mechanistic analysis

    NASA Astrophysics Data System (ADS)

    Gräfenstein, Jürgen; Cremer, Dieter

    2007-11-01

    Nuclear magnetic resonance (NMR) is a prospective means to realize quantum computers. The performance of a NMR quantum computer depends sensitively on the properties of the NMR-active molecule used, where one requirement is a large indirect spin-spin coupling over large distances. F-F spin-spin coupling constants (SSCCs) for fluorinated polyenes F -(CHCH)n-F (n=1⋯5) are >9Hz across distances of more than 10Å. Analysis of the F,F spin-spin coupling mechanism with our recently developed decomposition of J into Orbital Contributions with the help of Orbital Currents and Partial Spin Polarization (J-OCOC-PSP=J-OC-PSP) method reveals that coupling is dominated by the spin-dipole (SD) term due to an interplay between the π lone-pair orbitals at the F atoms and the π(C2n) electron system. From our investigations we conclude that SD-dominated SSCCs should occur commonly in molecules with a contiguous π-electron system between the two coupling nuclei and that a large SD coupling generally is the most prospective way to provide large long-range spin-spin coupling. Our results give guidelines for the design of suitable active molecules for NMR quantum computers.

  14. Calculation of NMR Spin-Spin Coupling Constants in Strychnine.

    PubMed

    Helgaker, Trygve; Jaszuński, Michał; Świder, Paweł

    2016-11-18

    We compare the NMR indirect nuclear spin-spin coupling constants in strychnine calculated using density functional theory (DFT) with the semiempirical relativistic force field (RFF) method of Kutateladze and Mukhina (KM) (J. Org. Chem. 2015, 80, 10838-10848). DFT values significantly more accurate than those obtained by KM for their comparison with RFF values can be obtained, at a lower cost, by an appropriate selection of basis set.

  15. Limits on Anomalous Spin-Spin Couplings between Neutrons

    NASA Astrophysics Data System (ADS)

    Glenday, Alexander G.; Cramer, Claire E.; Phillips, David F.; Walsworth, Ronald L.

    2008-12-01

    We report experimental limits on new spin-dependent macroscopic forces between neutrons. We measured the nuclear Zeeman frequencies of a He3/Xe129 maser while modulating the nuclear spin polarization of a nearby He3 ensemble in a separate glass cell. We place limits on the coupling strength of neutron spin-spin interactions mediated by light pseudoscalar particles like the axion [gpgp/(4πℏc)] at the 3×10-7 level for interaction ranges longer than about 40 cm. This limit is about 10-5 the size of the magnetic dipole-dipole interaction between neutrons.

  16. Investigation of the resonance-assisted hydrogen bond in model β-diketones through localized molecular orbital analysis of the spin-spin coupling constants related to the O-H···O hydrogen bond.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F

    2015-02-01

    The resonance-assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin-spin coupling constants between atoms either involved or close to the O-H···O system of some β-diketones and their saturated counterparts. The analysis, carried out at the level of the second-order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π-electron structure supporting the idea of the existence of the resonance-assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π-electrons.

  17. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    NASA Astrophysics Data System (ADS)

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-01

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.

  18. Calculation of nuclear spin-spin coupling constants using frozen density embedding.

    PubMed

    Götz, Andreas W; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between (199)Hg and (13)C upon coordination of dimethylsulfoxide solvent molecules.

  19. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  20. Indirect NMR spin-spin coupling constants in diatomic alkali halides.

    PubMed

    Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2016-12-28

    We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

  1. Optical switching of nuclear spin-spin couplings in semiconductors.

    PubMed

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-07-05

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.

  2. Calculation of indirect nuclear spin-spin coupling constants within the regular approximation for relativistic effects.

    PubMed

    Filatov, Michael; Cremer, Dieter

    2004-06-22

    A new method for calculating the indirect nuclear spin-spin coupling constant within the regular approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic in the sense that it does not employ numeric integration for the evaluation of relativistic corrections to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or density functional theory. In the latter case, both pure and hybrid density functionals can be used for the calculation of the quasirelativistic spin-spin coupling constants. The new method is used in connection with the infinite-order regular approximation with modified metric (IORAmm) to calculate the spin-spin coupling constants for molecules containing heavy elements. The importance of including exact exchange into the density functional calculations is demonstrated.

  3. New effective-one-body Hamiltonian with next-to-leading order spin-spin coupling

    NASA Astrophysics Data System (ADS)

    Balmelli, Simone; Damour, Thibault

    2015-12-01

    We present a new effective-one-body (EOB) Hamiltonian with next-to-leading order (NLO) spin-spin coupling for black hole binaries endowed with arbitrarily oriented spins. The Hamiltonian is based on the model for parallel spins and equatorial orbits developed in [Physical Review D 90, 044018 (2014)] but differs from it in several ways. In particular, the NLO spin-spin coupling is not incorporated by a redefinition of the centrifugal radius rc but by separately modifying certain sectors of the Hamiltonian, which are identified according to their dependence on the momentum vector. The gauge-fixing procedure we follow allows us to reduce the 25 different terms of the NLO spin-spin Hamiltonian in Arnowitt-Deser-Misner coordinates to only nine EOB terms. This is an improvement with respect to the EOB model recently proposed in [Physical Review D 91, 064011 (2015)], where 12 EOB terms were involved. Another important advantage is the remarkably simple momentum structure of the spin-spin terms in the effective Hamiltonian, which is simply quadratic up to an overall square root. Moreover, a Damour-Jaranowski-Schäfer-type gauge could be established, thus allowing one to concentrate, in the case of circular and equatorial orbits, the whole spin-spin interaction in a single radial potential.

  4. Analyzing and Interpreting NMR Spin-Spin Coupling Constants Using Molecular Orbital Calculations

    ERIC Educational Resources Information Center

    Autschbach, Jochen; Le Guennic, Boris

    2007-01-01

    Molecular orbital plots are used to analyze and interpret NMR spin-spin coupling constants, also known as J coupling constants. Students have accepted the concept of contributions to molecular properties from individual orbitals without the requirement to provide explicit equations.

  5. Analyzing and Interpreting NMR Spin-Spin Coupling Constants Using Molecular Orbital Calculations

    ERIC Educational Resources Information Center

    Autschbach, Jochen; Le Guennic, Boris

    2007-01-01

    Molecular orbital plots are used to analyze and interpret NMR spin-spin coupling constants, also known as J coupling constants. Students have accepted the concept of contributions to molecular properties from individual orbitals without the requirement to provide explicit equations.

  6. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru

    2013-03-01

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form {r}_{12}⊗ {r}_{12}/r_{12}^n over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation.

  7. Calculations of spin-spin coupling constants in aromatic nitrogen heterocyclics

    NASA Astrophysics Data System (ADS)

    Long, S. A. T.; Memory, J. D.

    HH, CH, NH, CC, and NC spin-spin coupling constants were calculated using the FP-INDO method and the Fermi contact interaction for pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, quinoline, quinoxaline, phthalazine, isoquinoline, cinnoline, quinazoline, acridine, phenazine, benzo[ g]quinoxaline, and benzo[ b]-phenazine. The agreement between theory and experiment was comparable to that for polynuclear aromatic hydrocarbons reported earlier.

  8. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  9. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  10. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    NASA Astrophysics Data System (ADS)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  11. Molecular properties in the Tamm-Dancoff approximation: indirect nuclear spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.

    2015-07-01

    The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.

  12. Density functional theory study of indirect nuclear spin-spin coupling constants with spin-orbit corrections

    NASA Astrophysics Data System (ADS)

    Oprea, Corneliu I.; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2005-07-01

    This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X =C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.

  13. NMR spin-spin coupling constants in polymethine dyes as polarity indicators.

    PubMed

    Murugan, N Arul; Aidas, Kestutis; Kongsted, Jacob; Rinkevicius, Zilvinas; Ågren, Hans

    2012-09-10

    Herein, we explore the use of spin-spin coupling constants (SSCCs) in merocyanine (MCYNE) dyes as indicators of polarity. For this purpose, we use Car-Parrinello hybrid quantum mechanics/molecular mechanics (QM/MM) to determine the structures of MCYNE in solvents of different polarity, followed by computations of the SSCCs by using QM/MM linear-response theory. The molecular geometry of MCYNE switches between neutral, cyanine-like, and zwitterionic depending on the polarity of the solvent. This structural variation is clearly reflected in the proton SSCCs in the polymethine backbone, which are highly sensitive to the dielectric nature of the environment; this mechanism can be used as a "polarity indicator" for different microenvironments. This result is highlighted by computing the SSCCs of the MCYNE probe in the cavity of the beta-lactoglobulin protein. The computed SSCCs clearly indicate a non-polar hydrophobic dielectric nature of this cavity.

  14. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    NASA Astrophysics Data System (ADS)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  15. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    SciTech Connect

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  16. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-06

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  17. On the calculations of the nuclear spin spin coupling constants in small water clusters

    NASA Astrophysics Data System (ADS)

    Cybulski, Hubert; Pecul, Magdalena; Sadlej, Joanna

    2006-08-01

    The calculations of the nuclear spin-spin coupling constants were carried out for small water clusters (H 2O) n, n = 2-6, 12, and 17, using density functional theory (DFT) and second-order polarization propagator method (SOPPA). A wide range of different standard and modified basis sets was tested to enable the choice of the possibly smallest and most flexible basis set. The changes in the oxygen-proton coupling constants upon the cluster formation between the nuclei involved in hydrogen bonding cover a range of ca. 13 Hz. The range of the calculated changes in intramolecular 1JOH couplings shows that the simple model of rigid water clusters seems to be sufficient to reproduce properly the sign and to estimate the magnitude of the gas-to-liquid shift. The sign of the complexation-induced changes in the intramolecular 2JHH coupling constant is different for molecules with a different coordination number. While the sign is positive for the molecules of the single donor-single acceptor (DA) and single donor-double acceptor (DAA) types, it is negative for the double donor-single acceptor (DDA) molecules. In the four-coordinated double donor-double acceptor (DDAA) molecules the sign of Δ 2JHH varies. The hydrogen-bond transmitted intermolecular coupling constants are substantial: 1hJOH spans the range from 2.8 to 8.4 Hz while 2hJOO varies from -0.6 to 7.5 Hz. The average intermolecular 1hJOH coupling constant decays slowly with the H⋯O distance in the cyclic clusters n = 2-6. The average 2hJOO coupling decreases exponentially with the O⋯O separation for the cyclic clusters n = 2-6.

  18. 15N- 15N spin-spin coupling constants through intermolecular hydrogen bonds in the solid state

    NASA Astrophysics Data System (ADS)

    Claramunt, Rosa M.; Pérez-Torralba, Marta; María, Dolores Santa; Sanz, Dionisia; Elena, Bénédicte; Alkorta, Ibon; Elguero, José

    2010-10-01

    A 2hJNN intermolecular spin-spin coupling constant (SSCC) of 10.2 ± 0.4 Hz has been measured for the powdered tetrachlorogallate salt of pyridinium solvated by pyridine (pyridine-H +⋯pyridine cation 3). Density Functional Theory (DFT) calculations at the B3LYP/6-311++G( d, p) level reproduced this value and two others reported in the literature for 2hJ intermolecular SSCCs, which were measured for complexes in solution.

  19. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  20. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations

    NASA Astrophysics Data System (ADS)

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-01

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  1. Importance of Triples Contributions to NMR Spin-Spin Coupling Constants Computed at the CC3 and CCSDT Levels.

    PubMed

    Faber, Rasmus; Sauer, Stephan P A; Gauss, Jürgen

    2017-02-14

    We present the first analytical implementation of CC3 second derivatives using the spin-unrestricted approach. This allows, for the first time, the calculation of nuclear spin-spin coupling constants (SSCC) relevant to NMR spectroscopy at the CC3 level of theory in a fully analytical manner. CC3 results for the SSCCs of a number of small molecules and their fluorine substituted derivatives are compared with the corresponding coupled cluster singles and doubles (CCSD) results obtained using specialized basis sets. For one-bond couplings the change when going from CCSD to CC3 is typically 1-3%, but much higher corrections were found for (1)JCN in FCN, 15.7%, and (1)JOF in OF2, 6.4%. The changes vary significantly in the case of multibond couplings, with differences of up to 10%, and even 13.6% for (3)JFH in fluoroacetylene. Calculations at the coupled cluster singles, doubles, and triples (CCSDT) level indicate that the most important contributions arising from connected triple excitations in the coupled cluster expansion are accounted for at the CC3 level. Thus, we believe that the CC3 method will become the standard approach for the calculation of reference values of nuclear spin-spin coupling constants.

  2. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    PubMed

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict (1) J O H , (2) J H H and (2h) J O O couplings, while (1h) J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for (1) J O H and (2) J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  3. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V

    2013-08-21

    This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.

  4. What factors influence the metal-proton spin-spin coupling constants in mercury- and cadmium-substutited rubredoxin?

    PubMed

    Kauch, Małgorzata; Pecul, Magdalena

    2014-06-26

    The indirect metal-proton spin-spin coupling constants between protons in cysteine groups and the mercury or cadmium nucleus have been calculated for a small model of Me-rubredoxin complex (Me = Cd, Hg) by means of density functional theory with zeroth-order regular approximation Hamiltonian (DFT-ZORA). The calculated spin-spin coupling constants, in spite of the moderate size of the model system, are in good agreement with the values measured in NMR experiment, which are in the 0.29-0.56 Hz range for the Cd complex and in the 0.57-2.20 Hz range for the Hg complex. The robustness of the chosen method has been verified by calculations with a number of different exchange-correlation functionals and basis sets. Additionally, it has been shown that the short- and long-distance metal-proton coupling constants are affected mainly by the values of the metal-proton distance and the H-N-C-C dihedral angle.

  5. Elucidation of the electronic structure of molecules with the help of NMR spin-spin coupling constants: the FH molecule.

    PubMed

    Gräfenstein, Jürgen; Tuttle, Tell; Cremer, Dieter

    2005-03-17

    It is demonstrated how the one-bond NMR spin-spin coupling constant (SSCC) (1)J(FH) can be used as a source of information on the electronic structure of the FH molecule. For this purpose, the best possible agreement between measured and calculated SSCC is achieved by large basis set coupled perturbed density functional theory calculations. Then, the calculated value is dissected into its four Ramsey terms: Fermi contact, the paramagnetic spin-orbit term, the diamagnetic spin-orbit term, and the spin dipole term, which in turn are decomposed into orbital contributions and then described by their spin densities and orbital current densities. In this way, the SSCC gives detailed information about the electronegativity of F, the bond polarity, the bond polarizability, the volume and the polarizability of sigma and pi lone pair orbitals, the s- or p-character of the bond orbital, the nature of the LUMO, and the density distribution around F.

  6. Calculation of nuclear spin-spin couplings. VIII. Vicinal proton-proton coupling constants in ethane

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Inomata, H.; Baba, T.; Miura, K.; Matsuda, H.

    1995-10-01

    Ab initio self-consistent-field (SCF) and electron correlation calculations have been carried out for the dihedral angle dependence of the vicinal proton-proton coupling constants, 3JHH, in ethane molecule. The four contributions to 3JHH, (JFC, JSD, JOP, and JOD) have been computed with the three different basis sets, [5s2p1d/2s1p], [5s3p1d/3s1p], and [7s4p2d/5s2p]. The Fermi contact (FC) contribution was largest and the spin-dipole (SD) contribution was smallest. The FC and orbital paramagnetic (OP) contributions showed large basis set dependence, but the SD and orbital diamagnetic (OD) contributions presented little basis set dependence. The calculated total SCF contribution to 3JHH was higher than the experimental coupling. Using the Møller-Plesset perturbation theory we have introduced electron correlation effects on the FC and OP terms. The correlation effects on the OP term was shown to be negligible. The second-order correlation in the FC term was very large and amounted to half of its SCF value in magnitude with opposite sign. However, the third-order correlation in the FC contribution was small. Unfortunately, the calculated 3JHH value including correlation corrections through third order was too small compared to the experimental one. The poor agreement between calculation and experiment is claimed to be due to higher than third-order correlations in the FC term.

  7. On the discrepancy between theory and experiment for the F-F spin-spin coupling constant of difluoroethyne.

    PubMed

    Faber, Rasmus; Sauer, Stephan P A

    2012-12-21

    The vicinal indirect nuclear spin-spin coupling constant (SSCC) between the two fluorine atoms in difluoroethyne has been reinvestigated. This coupling has previously proved to be difficult to calculate accurately. In this study we have therefore systematically investigated the dependence of this coupling on the choice of one-electron basis set, the choice of correlated wave function method and the inclusion of zero-point vibrational and temperature corrections. All terms of the SSCC have been evaluated at the second-order polarization propagator, SOPPA and SOPPA(CCSD), and coupled cluster singles and doubles (CCSD) levels of theory and for the most correlation dependent term, the paramagnetic spin-orbit contribution (PSO), also at the very accurate CC3 level. We find that in order to get results that are well converged with respect to the basis set, one needs to use special SSCC optimized basis sets of at least quadruple zeta quality and with added diffuse functions. Furthermore, the PSO term is not yet converged at the CCSD level as shown by the CC3 calculations. Finally, it is shown that vibrational effects are very important, as they are in this case of the same order of magnitude as the equilibrium geometry value of the coupling constant. Only by using a converged basis set and including both vibrational and higher order correlation effects can we obtain agreement with the experimental value for this coupling.

  8. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (spin-spin couplings in several saturated and unsaturated fluorinated hydrocarbons. We find that the choice of the basis set for each atom belonging to our studied model compounds depends on its location with respect to the coupled fluorine atoms and on the cis/trans or synperiplanar/antiperiplanar conformation of the molecule. Carbon atoms in the bonding path connecting the coupled fluorine atoms have to be described with better basis sets than the carbon atoms outside this path. For the hydrogen atoms directly connected to the coupling pathway in molecules with trans or antiperiplanar conformations and for all hydrogen atoms not directly connected to the coupling pathway one can employ a minimal basis set with only one s-function. Employing these type of LDBSs we can reduce the number of necessary basis functions by about 30% without losing more than about 1 Hz in accuracy. The analysis of the four contributions to the vicinal fluorine-fluorine coupling constants shows that the non-contact orbital paramagnetic term is the most important contribution followed by the also non-contact spin-dipolar term. The Fermi contact term is the largest contribution only in the synperiplanar conformations of 1,2-difluoroethane and -propane.

  9. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Omar, S.; García de la Vega, J. M.

    2016-08-01

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF)n]- and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  10. Through-space (19)F-(19)F spin-spin coupling in ortho-fluoro Z-azobenzene.

    PubMed

    Rastogi, Shiva K; Rogers, Robert A; Shi, Justin; Brown, Christopher T; Salinas, Cindy; Martin, Katherine M; Armitage, Jacob; Dorsey, Christopher; Chun, Gao; Rinaldi, Peter; Brittain, William J

    2016-02-01

    We report through-space (TS) (19)F-(19)F coupling for ortho-fluoro-substituted Z-azobenzenes. The magnitude of the TS-coupling constant ((TS) JFF ) ranged from 2.2-5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non-bonded F-F distances (dFF) of 3.0-3.5 Å. These non-bonded distances are significantly smaller than those determined by X-ray crystallography or density functional theory, which argues that simple models of (19)F-(19)F TS spin-spin coupling solely based dFF are not applicable. (1)H, (13)C and (19)F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6-311++G(d,p)] was used to calculate (19) F chemical shifts, and the calculated values deviated 0.3-10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Electric field effects on one-bond indirect spin-spin coupling constants and possible biomolecular perspectives.

    PubMed

    Sahakyan, Aleksandr B; Shahkhatuni, Aleksan G; Shahkhatuni, Astghik A; Panosyan, Henry A

    2008-04-24

    Electric field (EF) induced changes of one-bond indirect spin-spin coupling constants are investigated on a wide range of molecules including peptide models. EFs were both externally applied and internally calculated without external EF application by the hybrid density functional theory method. Reliable agreement with experimental data has been obtained for calculated one-bond J-couplings. The role of the EF sign and direction, internal and induced components, hydrogen bonding, internuclear distance and hyperconjugative interactions on the one-bond J-coupling vs EF interconnection is analyzed. A linear dependence of 1J on EF projection along the bond is obtained, if the bound atoms possess different enough electron densities and an EF determined by the electronic polarization exists along the bond. Accentuating the 1JNH couplings as possible EF sensitive parameters, a systematic study is done in two sets of molecules with a large variation of the native internal EF value. The most EF affected component of the 1JNH coupling constant is the spin-dipole term of Ramsey's formulation; however, in the total J-coupling formation, the EF influence on the Fermi contact term is the most significant. The induced EF projection along the bond is 6.7 times weaker in magnitude than the simulated external uniform field. The absolute EF dependence of the one-bond J-coupling involves only the internal field, which is the sum of the induced field (if the external field exists) and the internuclear field determined by the native polarization. That linear and universal dependence joins the corresponding couplings in a diverse set of molecules under various electrostatic conditions. Many types of the one-bond J-couplings can be potentially measured in biomolecules, and the study of their relation with the electrostatic properties at the corresponding sites opens a new avenue to the full exploitation of the NMR measurable parameters with novel and exciting applications.

  12. Open-chain unsaturated selanyl sulfides: stereochemical structure and stereochemical behavior of their 77Se-1H spin-spin coupling constants.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Penzik, Maxim V; Potapov, Vladimir A; Amosova, Svetlana V

    2012-10-01

    Stereochemical structure of nine Z-2-(vinylsulfanyl)ethenylselanyl organyl sulfides has been investigated by means of experimental measurements and second-order polarization propagator approach calculations of their (1)H-(1)H, (13)C-(1)H, and (77)Se-(1)H spin-spin coupling constants together with a theoretical conformational analysis performed at the MP2/6-311G** level. All nine compounds were shown to adopt the preferable skewed s-cis conformation of their terminal vinylsulfanyl group, whereas the favorable rotational conformations with respect to the internal rotations around the C-S and C-Se bonds of the internal ethenyl group are both skewed s-trans. Stereochemical trends of (77)Se-(1)H spin-spin coupling constants originating in the geometry of their coupling pathways and the selenium lone pair effect were rationalized in terms of the natural J-coupling analysis within the framework of the natural bond orbital approach.

  13. Anisotropic indirect nuclear spin-spin coupling in InP: 31P CP NMR study under slow MAS condition

    NASA Astrophysics Data System (ADS)

    Iijima, Takahiro; Hashi, Kenjiro; Goto, Atsushi; Shimizu, Tadashi; Ohki, Shinobu

    2006-02-01

    The indirect nuclear spin-spin interaction tensor between neighboring 113,115In- 31P spins in Fe-doped InP semiconductor has been studied by 31P NMR spectra measured using CP of 113In → 31P and 115In → 31P under slow MAS condition. The isotropic ( Jiso) and anisotropic ( Janiso = 2/3[ J∥ - J⊥]) parts of the indirect interaction tensor are obtained from the spectral simulation. The acceptable combinations of these values are found to be as follows: ( Jiso, Janiso) = (224 ± 5, 500 ± 100 Hz) or (-224 ± 5, 2100 ± 100 Hz). Although, the coupling constants estimated in this study are slightly different from previously reported values of ∣ Jiso∣ = 350 Hz, Janiso = 1298 Hz [M. Engelsberg, R.E. Norberg, Phys. Rev. B 5 (1972) 3395] and of ∣ Jiso∣ = 225 ± 10, Janiso = (813 ± 50) or (1733 ± 50) Hz [M. Tomaselli et al., Phys. Rev. B 58 (1998) 8627], all of these has the trend that Janiso is rather larger than Jiso.

  14. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    NASA Astrophysics Data System (ADS)

    Wodyński, Artur; Pecul, Magdalena

    2014-01-01

    The 1JCC and 1JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  15. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    SciTech Connect

    Wodyński, Artur; Pecul, Magdalena

    2014-01-14

    The {sup 1}J{sub CC} and {sup 1}J{sub CH} spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  16. Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: the importance of the large amplitude inversion mode.

    PubMed

    Yachmenev, Andrey; Yurchenko, Sergei N; Paidarová, Ivana; Jensen, Per; Thiel, Walter; Sauer, Stephan P A

    2010-03-21

    Analytic internal-coordinate representations are reported for two accurate ab initio spin-spin coupling surfaces of the ammonia molecule, (1)J ((15)N,H) and (2)J(H,H). Calculations were carried out at the level of the second-order polarization propagator approximation involving coupled-cluster singles and doubles amplitudes (CCSD) and using a large specialized basis set, for a total of 841 different geometries corresponding to 2523 distinct points on the (1)J ((15)N,H) and (2)J(H,H) surfaces. The results were fitted to power series expansions truncated after the fourth-order terms. While the one-bond nitrogen-hydrogen coupling depends more on the internuclear distance, the geminal hydrogen-hydrogen coupling exhibits a pronounced dependence on the bond angle. The spin-spin parameters are first vibrationally averaged, using vibrational wave functions obtained variationally from the TROVE computer program with a CCSD(T) based potential energy surface, for ammonia and its various deuterated isotopologues. The vibrationally averaged quantities are then thermally averaged to give values of the couplings at absolute temperatures of 300 and 600 K. We find that the nuclear-motion corrections are rather small. The computed one-bond couplings and their minute isotope effects are in excellent agreement with the experimental values.

  17. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    NASA Astrophysics Data System (ADS)

    Křístková, Anežka; Komorovsky, Stanislav; Repisky, Michal; Malkin, Vladimir G.; Malkina, Olga L.

    2015-03-01

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  18. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    SciTech Connect

    Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.

    2015-03-21

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  19. Optimized basis sets for the calculation of indirect nuclear spin-spin coupling constants involving the atoms B, Al, Si, P, and Cl.

    PubMed

    Provasi, Patricio F; Sauer, Stephan P A

    2010-08-07

    The aug-cc-pVTZ-J series of basis sets for indirect nuclear spin-spin coupling constants has been extended to the atoms B, Al, Si, P, and Cl. The basis sets were obtained according to the scheme previously described by Provasi et al. [J. Chem. Phys. 115, 1324 (2001)]. First, the completely uncontracted correlation consistent aug-cc-pVTZ basis sets were extended with four tight s and three tight d functions. Second, the s and p basis functions were contracted with the molecular orbital coefficients of self-consistent-field calculations performed with the uncontracted basis sets on the simplest hydrides of each atom. As a first illustration, we have calculated the one-bond indirect spin-spin coupling constants in BH(4)(-), BF, AlH, AlF, SiH(4), SiF(4), PH(3), PF(3), H(2)S, SF(6), HCl, and ClF at the level of density functional theory using the Becke three parameter Lee-Yang-Parr and the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes.

  20. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-01-12

    A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.

  1. Using bio-functionalized magnetic nanoparticles and dynamic nuclear magnetic resonance to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection.

    PubMed

    Liao, Shu-Hsien; Chen, Kuen-Lin; Wang, Chun-Min; Chieh, Jen-Jie; Horng, Herng-Er; Wang, Li-Min; Wu, C H; Yang, Hong-Chang

    2014-11-12

    In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ΔT2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 μg/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins.

  2. First example of the correlated calculation of the one-bond tellurium-carbon spin-spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects.

    PubMed

    Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B

    2016-06-05

    This work reports on the comprehensive calculation of the NMR one-bond spin-spin coupling constants (SSCCs) involving carbon and tellurium, (1) J((125) Te,(13) C), in four representative compounds: Te(CH3 )2 , Te(CF3 )2 , Te(CCH)2 , and tellurophene. A high-level computational treatment of (1) J((125) Te,(13) C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4-component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium-containing compounds, basis sets, and methods used for obtainig spin-spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium-carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of (1) J((125) Te,(13) C) reaching as much as almost 50% of the total value of (1) J((125) Te,(13) C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3-6% and 0-4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non-relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc.

  3. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  4. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  5. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  6. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  7. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    SciTech Connect

    Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.

    2015-12-14

    The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  8. How to Calculate Spin-Spin Coupling and Spin-Rotation Coupling Strengths and Their Uncertainties from Spectroscopic Data: Application to the c(1^3Σ_g^+) State of Diatomic Lithium

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Li, Xuan

    2013-06-01

    Recent high-resolution (± 0.00002 cm^{-1}) photo-association spectroscopy (PAS) data of seven previously unexplored vibrational levels of the 1^3Σ_g^+ state of Li_2 have allowed for the first ever experimental determination of the spin-spin (λ_v) and spin-rotation (γ_v) coupling constants in a diatomic lithium system. For triplet states of diatomic molecules such as the 1^3Σ_g^+ state of Li_2, the three spin-spin/spin-rotation resolved energies associated with a ro-vibrational state |v,N> were expressed explicity in terms of B_v, λ_v, and γ_v in 1929 by Kramer's first-order formulas and then in 1937 by Schlapp's more refined formulas. Given spectroscopic data, while it has never been difficult to extract λ_v and γ_v from Schlapp's formulas, it has been a challenge to reliably predict how accurate these extracted values are. This is for two reasons: (1) the lack of a rigorous method to estimate the uncertainty in B_v, (2) the non-linearity of Schlapp's coupled equations has meant that traditionally they have had to be solved numerically by Newton iterations which makes error propagation difficult. The former challenge has been this year solved by Le Roy with a modification of Hutson's perturbation theory of, and the latter problem has now been solved by symbolic computing software that solves Schlapp's coupled non-linear equations analytically for the first time since their introduction in 1937. M. Semczuk, X. Li, W. Gunton, M. Haw, N. Dattani, J. Witz, A. Mills, D. Jones, K. Madison, Physical Review A {87}, XX (2013) H. Kramers, Zeitschrift fur Physik {53}, 422 (1929) R. Schlapp, Physical Review {51}, 342 (1937) J. Hutson, J. Phys. B, {14}, 851 (1981)

  9. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    SciTech Connect

    Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)

  10. New Methylene Specific Experiments for the Measurement of Scalar Spin-Spin Coupling Constants between Protons Attached to 13C

    NASA Astrophysics Data System (ADS)

    Carlomagno, T.; Schwalbe, H.; Rexroth, A.; Sørensen, O. W.; Griesinger, C.

    1998-11-01

    New two- and three-dimensional NMR methods are proposed for the measurement of3J(H, H) coupling constants between two adjacent methylene moieties. The new experiment, which is based on a combination of the E.COSY principle and double/zero quantum heteronuclear spectroscopy, has been applied to diaceton-glucose and to the protein rhodniin. The coupling constants of CH-CH2groups have been compared with those obtained from a HCCH-E.COSY experiment to check the reliability of the results. An analysis of the coupling constants derived by comparison between experimental and simulated spectra is presented. Simulations were done with the program wtest considering fully correlated dipolar relaxation. Side-chain conformations in amino acids with adjacent methylene groups can be determined by the new experiment.

  11. Limiting values of the one-bond Csbnd H spin-spin coupling constants of the imidazole ring of histidine at high-pH

    NASA Astrophysics Data System (ADS)

    Vila, Jorge A.; Scheraga, Harold A.

    2017-04-01

    Assessment of the relative amounts of the forms of the imidazole ring of Histidine (His), namely the protonated (H+) and the tautomeric Nε2-H and Nδ1-H forms, respectively, is a challenging task in NMR spectroscopy. Indeed, their determination by direct observation of the 15N and 13C chemical shifts or the one-bond Csbnd H, 1JCH, Spin-Spin Coupling Constants (SSCC) requires knowledge of the "canonical" limiting values of these forms in which each one is present to the extent of 100%. In particular, at high-pH, an accurate determination of these "canonical" limiting values, at which the tautomeric forms of His coexist, is an elusive problem in NMR spectroscopy. Among different NMR-based approaches to treat this problem, we focus here on the computation, at the DFT level of theory, of the high-pH limiting value for the 1JCH SSCC of the imidazole ring of His. Solvent effects were considered by using the polarizable continuum model approach. The results of this computation suggest, first, that the value of 1JCε1H = 205 ± 1.0 Hz should be adopted as the canonical high-pH limiting value for this SSCC; second, the variation of 1JCε1H SSCC during tautomeric changes is minor, i.e., within ±1 Hz; and, finally, the value of 1JCδ2H SSCC upon tautomeric changes is large (15 Hz) indicating that, at high-pH or for non-protonated His at any pH, the tautomeric fractions of the imidazole ring of His can be predicted accurately as a function of the observed value of 1JCδ2H SSCC.

  12. Efficient spin-spin scalar coupling mediated C-13 homonuclear polarization transfer in biological solids without proton decoupling.

    PubMed

    Mou, Yun; Chao, John Chin Hao; Chan, Jerry C C

    2006-06-01

    We demonstrate that an efficient C' <--> C alpha polarization transfer based on J-coupling can be realized under fast magic-angle spinning (MAS) condition without 1H decoupling. Experimental results are presented for model crystalline compounds as well as a non-crystalline 17-residue polypeptide MB(i + 4)EK. Measurements on MB(i + 4)EK demonstrate that 53% of the initial C' polarization was transferred to the cross peaks at 7.05 T under 25 kHz MAS spinning.

  13. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  14. Stereospecificity of the /sup 3/J /SUB CH/ spin-spin coupling constants in bicyclic cis-diaziridines. Stereochemistry of 2,4,6-Trialkvl-1,3,5-triazabicyclo (3. 1. 0)hexanes --

    SciTech Connect

    Denisenko, S.N.; Chervin, I.I.; Kostyanovskii, R.G.; Shustov, G.V.

    1986-04-01

    Stereospecificity of the /sup 3/JC,N,C,H spin-spin coupling constants (/sup 3/ /SUB J/ trans > /SUB J/ gauche) in the /sup 13/C NMR spectra of 1,5-diaza- and 1,3,5-triazabicyclo (3.1.0)hexanes was observed. Proceeding from this, the preferred conformations of the d,/ZETA/ and meso isomers of 2,4,6-trialkyl-1,3,5-triazabicyclo (3.1.0) hexanes were established, and a mechanism for the interconversion of these isomers via openings of the five-membered ring and an imino-enamine equilibrium was proposed. It is also shown that the stereochemical result of the Schmitz reaction is determined in the step involving cyclization of the iminium intermediate.

  15. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    PubMed

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Spin pseudogap and interplane coupling in Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15}: A {sup 63}Cu nuclear spin-spin relaxation study

    SciTech Connect

    Stern, R.; Mali, M.; Roos, J.; Brinkmann, D.

    1995-06-01

    We report measurements of the Gaussian contribution {ital T}{sub 2{ital G}} to the plane {sup 63}Cu nuclear spin-spin relaxation time in the YBa{sub 2}Cu{sub 3}O{sub 7} and YBa{sub 2}Cu{sub 4}O{sub 8} blocks of normal and superconducting Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15}. The data confirm our previous results that adjacent CuO{sub 2} planes have different doping levels and that these planes are strongly coupled. The static spin susceptibility at the antiferromagnetic wave vector exhibits a Curie-Weiss-like temperature dependence in the normal state. The Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15} data are incompatible with a phase diagram based on a single CuO{sub 2} plane theory but point to the importance of the interplane coupling in the spin-gap formation. Additional data for YBa{sub 2}Cu{sub 4}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 6.982} are in acord with the single-plane theory. The temperature dependence of {ital T}{sub 2{ital G},ind} below {ital T}{sub {ital c}} excludes isotropic {ital s}-wave superconductivity in all three compounds.

  17. A theoretical study of the NMR spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-) (n = 0-3) and [(NC)(5)Pt-Tl-Pt(CN)(5)](3-): a lesson on environmental effects.

    PubMed

    Autschbach, Jochen; Le Guennic, Boris

    2003-11-05

    The molecular geometries and the nuclear spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-), n = 0-3, and the related system [(NC)(5)Pt-Tl-Pt(CN)(5)](3-) are studied. These complexes have received considerable interest since the first characterization of the n = 1 system by Glaser and co-workers in 1995 [J. Am. Chem. Soc. 1995, 117, 7550-7551]. For instance, these systems exhibit outstanding NMR properties, such as extremely large Pt-Tl spin-spin coupling constants. For the present work, all nuclear spin-spin coupling constants J(Pt-Tl), J(Pt-C), and J(Tl-C) have been computed by means of a two-component relativistic density functional approach. It is demonstrated by the application of increasingly accurate computational models that both the huge J(Pt-Tl) for the complex (NC)(5)Pt-Tl and the whole experimental trend among the series are entirely due to solvent effects. An approximate inclusion of the bulk solvent effects by means of a continuum model, in addition to the direct coordination, proves to be crucial. Similarly drastic effects are reported for the coupling constants between the heavy atoms and the carbon nuclei. A computational model employing the statistical average of orbital-dependent model potentials (SAOP) in addition to the solvent effects allows to accurately reproduce the experimental coupling constants within reasonable limits.

  18. Coupled resonator vertical cavity laser

    SciTech Connect

    Choquette, K.D.; Chow, W.W.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-01-01

    The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. The authors report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.

  19. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  20. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  1. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  2. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  3. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Sauer, Stephan P. A.; Provasi, Patricio F.

    2014-10-01

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the 1J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the 1J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  4. A re-investigation of (4)JFF and (5)JFF nuclear spin-spin couplings in substituted benzenes, a novel conformational tool.

    PubMed

    Abraham, Raymond J; Cooper, M Ashley

    2016-06-21

    A theoretical analysis of the (4)JFF and (5)JFF couplings in fluorobenzenes separates the σ and π components of the substituent coefficients. The π bond mechanism is dominant but the σ bond mechanism must be included to give accurate values of the couplings. For monosubstituted difluorobenzenes the (4)JFF and (5)JFF couplings can be predicted from the calculated π densities by linear equations. The use of additive substituent effects allows the prediction of the meta(4)JFF couplings for multisubstituted compounds. The π dependence of the (4)JFF coupling in 2,6-difluorobenzenes provides a novel and simple method of determining the torsional angle of the C1 substituent and the benzene ring for non-symmetrical functional groups (acetyl, carboxymethyl, dimethylamino, amide, nitro etc.). This could be used to determine the geometries of such molecules in biological systems. The π dependence of the (4)JFF coupling is also of importance in the charged species of 2,6-difluoroanilinium ((4)JFF 2.1 Hz) and 2,6-difluoro-N,N,N-trimethylanilinium ((4)JFF 0.0 Hz) due to the very different π electron densities.

  5. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane.

    PubMed

    Zarycz, M Natalia C; Sauer, Stephan P A; Provasi, Patricio F

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the (1)J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the (1)J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes--SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  6. NMR chemical shielding and spin-spin coupling constants of liquid NH3: a systematic investigation using the sequential QM/MM method.

    PubMed

    Gester, Rodrigo M; Georg, Herbert C; Canuto, Sylvio; Caputo, M Cristina; Provasi, Patricio F

    2009-12-31

    The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the (1)J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, sigma((15)N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  7. NMR Chemical Shielding and Spin-Spin Coupling Constants of Liquid NH3: A Systematic Investigation using the Sequential QM/MM Method

    NASA Astrophysics Data System (ADS)

    Gester, Rodrigo M.; Georg, Herbert C.; Canuto, Sylvio; Caputo, M. Cristina; Provasi, Patricio F.

    2009-09-01

    The NMR spin coupling parameters, 1J(N,H) and 2J(H,H), and the chemical shielding, σ(15N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the 1J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the 2J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for 1J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, σ(15N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Δσ(15N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  8. Coupled-Resonator-Induced Transparency

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hong-Rok; Fuller, Kirk A.; Rosenberger, A. T.; Boyd, Robert W.

    2003-01-01

    We demonstrate that a cancellation of absorption occurs on resonance for two (or any even number of) coupled optical resonators, due to mode splitting and classical destructive interference, particularly when the resonator finesse is large and the loss in the resonator furthest from the excitation waveguide is small. The linewidth and group velocity of a collection of such coupled-resonator structures may be decreased by using larger resonators of equal size, using larger resonators of unequal size where the optical path length of the larger resonator is an integer multiple of that of the smaller one, or by using a larger number of resonators per structure. We explore the analogy between these effects and electromagnetically induced transparency in an atomic system.

  9. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  10. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  11. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  12. Indirect "no-bond" ³¹P···³¹P spin-spin couplings in P,P-[3]ferrocenophanes: insights from solid-state NMR spectroscopy and DFT calculations.

    PubMed

    Wiegand, Thomas; Eckert, Hellmut; Ren, Jinjun; Brunklaus, Gunther; Fröhlich, Roland; Daniliuc, Constantin G; Lübbe, Gerrit; Bussmann, Kathrin; Kehr, Gerald; Erker, Gerhard; Grimme, Stefan

    2014-03-27

    ··P distances, such measurements can also serve to estimate the magnitude of the anisotropy ΔJ of these no-bond indirect spin-spin couplings. The DFT results suggest that in the present series of compounds the magnitude of ΔJ is strongly correlated with that of the isotropic component, as both parameters have analogous distance dependences. While our studies indicate a sizable J-anisotropy for the model compound 1,8-bis(diphenylphosphino)napthalene (ΔJ ~ -70 Hz), the corresponding values for the P,P-[3]ferrocenophanes are significantly smaller, affecting their DQ-DRENAR curves only in a minor way. Based on the above insights, the structural aspects of conformational disorder and polymorphism observed in some of the P,P-[3]ferrocenophanes are discussed.

  13. Systematic Comparison of Second-Order Polarization Propagator Approximation (SOPPA) and Equation-of-Motion Coupled Cluster Singles and Doubles (EOM-CCSD) Spin-Spin Coupling Constants for Molecules with C, N, and O Double and Triple Bonds and Selected F-Substituted Derivatives.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2009-01-13

    Ab initio EOM-CCSD and SOPPA calculations with the Ahlrichs (qzp,qz2p) basis set have been carried out to evaluate one-, two-, and three-bond spin-spin coupling constants for molecules HmXYHn and HmXYHn for X, Y = (13)C, (15)N, and (17)O, and selected (19)F-substituted derivatives. In the great majority of cases, EOM-CCSD one-bond C-C, C-N, C-O, C-F, N-N, N-O, and N-F coupling constants and three-bond F-F coupling constants are smaller in absolute value than the corresponding SOPPA coupling constants, with the EOM-CCSD values in better agreement with experimental data. SOPPA tends to significantly overestimate the absolute values of large one- and three-bond couplings involving fluorine. The majority of two-bond SOPPA coupling constants are in better agreement with experiment than EOM-CCSD, although differences between EOM-CCSD and experimental values are not dramatic. A statistical analysis of thirty EOM-CCSD and SOPPA coupling constants versus experimental coupling constants demonstrates that better agreement with experiment is found when EOM-CCSD is the computational method.

  14. Method for estimating spin-spin interactions from magnetization curves

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Hukushima, Koji

    2017-02-01

    We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method. The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.

  15. Nonlocality without inequality for spin-s systems

    SciTech Connect

    Kunkri, Samir; Choudhary, Sujit K.

    2005-08-15

    We critically review earlier works on Hardy's nonlocality argument for two spin-s systems and show that solutions previously found in this regard were restricted due to imposition of some conditions which have no role in the argument of nonlocality. We provide a compact form of the nonlocality condition for two spin-s particles, and we also extend it to n number of spin-s particles. Finally we apply a more general kind of nonlocality argument, still without an inequality, to higher-spin systems.

  16. Fano resonances in prism-coupled multimode square micropillar resonators

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Tong; Zhou, Linjie; Poon, Andrew W.

    2005-06-01

    We report Fano resonances in a multimode square glass micropillar resonator; the resonances were obtained by using angle-resolved prism coupling. Our experiments reveal characteristically asymmetric line shapes of high-Q resonances and of detuned low-Q resonances in multimode reflection spectra. The asymmetric resonance line shapes evolve for an approximately pi phase within a 0.5° range of reflection angles. We model our observed asymmetric multimode resonances by the far-field interference between a light wave that is evanescently coupled with a high-Q mode orbit and a coherent light wave that is refractively coupled with a detuned low-Q mode orbit.

  17. Matrix model for strings beyond the c =1 barrier: The spin-s Heisenberg model on random surfaces

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Khachatryan, Sh.; Sedrakyan, A.

    2015-07-01

    We consider a spin-s Heisenberg model coupled to two-dimensional quantum gravity. We quantize the model using the Feynman path integral, summing over all possible two-dimensional geometries and spin configurations. We regularize this path integral by starting with the R-matrices defining the spin-s Heisenberg model on a regular 2d Manhattan lattice. Two-dimensional quantum gravity is included by defining the R-matrices on random Manhattan lattices and summing over these, in the same way as one sums over 2d geometries using random triangulations in noncritical string theory. We formulate a random matrix model where the partition function reproduces the annealed average of the spin-s Heisenberg model over all random Manhattan lattices. A technique is presented which reduces the random matrix integration in the partition function to an integration over their eigenvalues.

  18. Substituent effect in 2-benzoylmethylenequinoline difluoroborates exhibiting through-space couplings. Multinuclear magnetic resonance, X-ray diffraction, and computational study.

    PubMed

    Zakrzewska, Anna; Kolehmainen, Erkki; Valkonen, Arto; Haapaniemi, Esa; Rissanen, Kari; Chęcińska, Lilianna; Ośmiałowski, Borys

    2013-01-10

    The series of nine 2-benzoylmethylenequinoline difluoroborates have been synthesized and characterized by multinuclear magnetic resonance, X-ray diffraction (XRD), and computational methods. The through-space spin-spin couplings between (19)F and (1)H/(13)C nuclei have been observed in solution. The NMR chemical shifts have been correlated to the Hammett substituent constants. The crystal structures of six compounds have been solved by XRD. For two derivatives the X-ray wave function refinement was performed to evaluate the character of bonds in the NBF(2)O moiety by topological and integrated bond descriptors.

  19. Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.

    PubMed

    Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L

    2012-10-08

    The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.

  20. Pair entanglement in dimerized spin-s chains

    NASA Astrophysics Data System (ADS)

    Boette, A.; Rossignoli, R.; Canosa, N.; Matera, J. M.

    2016-12-01

    We examine the pair entanglement in the ground state of finite dimerized spin-s chains interacting through anisotropic X Y couplings immersed in a transverse magnetic field by means of a self-consistent pair mean-field approximation. The approach, which makes no a priori assumptions on the pair states, predicts, for sufficiently low coupling between pairs, 2 s distinct dimerized phases for increasing fields below the pair factorizing field, separated by spin-parity-breaking phases. The dimerized phases lead to approximate magnetization and pair entanglement plateaus, while the parity-breaking phases are characterized by weak pair entanglement but non-negligible entanglement of the pair with the rest of the system. These predictions are confirmed by the exact results obtained in finite s =1 and s =3 /2 chains. It is also shown that for increasing values of the spin s , the entanglement of an isolated pair, as measured by the negativity, rapidly saturates in the anisotropic X Y case but increases as s1 /2 in the X X case, reflecting a distinct single-spin entanglement spectrum.

  1. Loop coupled resonator optical waveguides.

    PubMed

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  2. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  3. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  4. Photon Dynamics in Coherently Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hong-Rok; Fuller, K. A.

    2004-01-01

    The temporal response of coupled resonators is investigated using a linear systems analysis and coupled mode theory. Damped Rabi oscillations, slow and fast light, and coherent photon transfer techniques are demonstrated in these systems.

  5. Controllable optomechanical coupling in serially-coupled triple resonators

    SciTech Connect

    Huang, Chenguang Zhao, Yunsong; Fan, Jiahua; Zhu, Lin

    2014-12-15

    Radiation pressure can efficiently couple mechanical modes with optical modes in an optical cavity. The coupling efficiency is quite dependent on the interaction between the optical mode and mechanical mode. In this report, we investigate a serially-coupled triple resonator system, where a freestanding beam is placed in the vicinity of the middle resonator. In this coupled system, we demonstrate that the mechanical mode of the free-standing beam can be selectively coupled to different resonance supermodes through the near field interaction.

  6. Low-loss coupling to dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-01-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  7. Spin-Spin Interactions in Organic Magnetoresistance Probed by Angle-Dependent Measurements

    NASA Astrophysics Data System (ADS)

    Wagemans, W.; Schellekens, A. J.; Kemper, M.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B.

    2011-05-01

    The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.

  8. Spin-spin interactions in organic magnetoresistance probed by angle-dependent measurements.

    PubMed

    Wagemans, W; Schellekens, A J; Kemper, M; Bloom, F L; Bobbert, P A; Koopmans, B

    2011-05-13

    The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.

  9. CP observables with spin spin correlations in chargino production

    NASA Astrophysics Data System (ADS)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.

    2008-10-01

    We study the CP-violating terms of the spin-spin correlations in chargino production ee→χ˜1±χ˜2∓, and their subsequent two-body decays into sneutrinos plus leptons. We propose novel CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both charginos, with one polarization perpendicular to the production plane. We identify two classes of CP-sensitive observables; one requires the reconstruction of the production plane, the other not. Our framework is the Minimal Supersymmetric Standard Model with complex parameters.

  10. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  11. Critical coupling in plasmonic resonator arrays

    NASA Astrophysics Data System (ADS)

    Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2011-08-01

    We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

  12. A proof for negative vicinal proton-proton and proton-carbon spin-spin couplings in aliphatic aldehydes by using temperature and solvent dependence. Conformational studies on glycolaldehyde and di- tert-butyl ethanal

    NASA Astrophysics Data System (ADS)

    Laatikainen, Reino; Král, Vladimir; Äyräs, Pertti

    A negative 1H, 1H three-bond coupling 3J( CHO), H) was found for glycolaldehyde by varying solvent composition. A negative 3J( CHO), C) is demonstrated for di- tert-butyl ethanal by following the temperature dependence of the coupling. 3JgB( CHO), H) of -0.73 and 3Jg( CHO), C) of -0.26 Hz (g = gauche) for the compounds were estimated by fitting the temperature dependence of the couplings by using the two-site approach. The conformational behavior of the vicinal couplings in aliphatic aldehydes and the conformations of the title compounds are briefly discussed.

  13. Spin-spin relaxation of protons in ferrofluids characterized with a high-Tc superconducting quantum interference device-detected magnetometer in microtesla fields

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien; Liu, Chieh-Wen; Yang, Hong-Chang; Chen, Hsin-Hsien; Chen, Ming-Jye; Chen, Kuen-Lin; Horng, Herng-Er; Wang, Li-Min; Yang, Shieh-Yueh

    2012-06-01

    In this work, the spin-spin relaxation of protons in ferrofluids is characterized using a high-Tc SQUID-based detector in microtesla fields. We found that spin-spin relaxation rate is enhanced in the presence of superparamagnetic nanoparticles. The enhanced relaxation rates are attributed to the microscopic field gradients from magnetic nanoparticles that dephase protons' spins nearby. The relaxation rates decrease when temperatures increase. Additionally, the alternating current magnetic susceptibility was inversely proportional to temperature. Those characteristics explained the enhanced Brownian motion of nanoparticles at high temperatures. Characterizing the relaxation will be helpful for assaying bio-molecules and magnetic resonance imaging in microtesla fields.

  14. Structures, energies, and spin-spin coupling constants of fluoro-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes: four-member B-P-B-P rings B2P2F(n)H(8-n) with n = 0, 1, 2, 4.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2011-05-05

    An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 15 fluoro-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)F(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. Except for B(2)P(2)F(4)H(4) with four fluorines bonded to two borons, these rings are puckered in a butterfly conformation. For a fixed number of fluorines, the isomers with B-F bonds are significantly more stable than those with P-F bonds. As the number of fluorines increases, the energy difference between the most stable isomer and the other isomers increases. Transition structures which interconvert axial and equatorial positions present relatively small inversion barriers. Coupling constants involving (31)P, namely, (1)J(B-P), (1)J(P-F), (2)J(P-P), (2)J(P-F), and (3)J(P-F) are large and are capable of providing structural information. They are sensitive to the number of fluorines present and can discriminate between axial, equatorial, and geminal B-F and P-F bonds, although not all do this to the same extent. (1)J(B-P) and (2)J(P-P) are similar in equilibrium and transition structures. Although transition structures no longer discriminate between axial and equatorial bonds, (1)J(P-F) and (3)J(P-F) remain sensitive to the number of fluorine atoms present.

  15. Scattering and coupling between subwavelength resonators

    NASA Astrophysics Data System (ADS)

    Karami, Morteza; Kitchin, Steven; Fiddy, M. A.

    2014-09-01

    We examine the coupling between resonances of closely spaced meta-atoms and investigate the role of extended effective periodicities of clusters of subwavelength sized elements on the overall bulk properties. The possibilities of negative refraction both with and without negative index, as well as the role of strong coupling near resonance on effective medium models and homogenization close to the photonic crystal limit are presented.

  16. Disorder-immune coupled resonator optical waveguide

    NASA Astrophysics Data System (ADS)

    Yamilov, Alexey G.; Bertino, Massimo F.

    2007-02-01

    We demonstrate that a photonic lattice with short- and long-range harmonic modulations of the refractive index facilitates formation of flat photonic bands and leads to slow propagation of light. The system can be considered a coupled-resonator optical waveguide (CROW): photonic bands with abnormally small dispersion are created due to the interaction of long-lived states in the cavity regions via weak coupling across tunneling barriers. Unlike previous CROW implementations, the proposed structures can be fabricated with interference photolithography (holography), sidestepping the issue of resonator-to-resonator fluctuation of the system parameters. The proposed holography-based approach enables fabrication of arrays with a large number of coupled optical resonators, which is necessary for practical applications.

  17. Dynamical Coupling of Pygmy and Giant Resonances

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos; Brady, Nathan; Aumann, Thomas; Thomas, James

    2016-03-01

    One of the effects overseen in studies of excitation of pygmy resonances is the fact that both pygmy and giant resonances are strongly coupled. This coupling leads to dynamical effects such as the modification of transition probabilities and and cross sections. We make an assessment of such effects by means of the relativistic coupled channels equations developed by our group. Supported by the U.S. NSF Grant No. 1415656 and the U.S. DOE Grant No. DE-FG02-08ER41533.

  18. Bell's inequality for n spin-s particles

    NASA Astrophysics Data System (ADS)

    Cabello, Adán

    2002-06-01

    The Mermin-Klyshko inequality for n spin-1/2 particles and two dichotomic observables is generalized to n spin-s particles and two maximal observables. It is shown that some multiparty multilevel Greenberger-Horne-Zeilinger states [A. Cabello, Phys. Rev. A 63, 022104 (2001)] maximally violate this inequality for any s. For a fixed n, the magnitude of the violation is constant for any s, which provides a simple demonstration and generalizes the conclusion reached by Gisin and Peres for two spin-s particles in the singlet state [Phys. Lett. A 162, 15 (1992)]. For a fixed s, the violation grows exponentially with n, which provides a generalization to any s of Mermin's conclusion for n spin- 1/2 particles [Phys. Rev. Lett. 65, 1838 (1990)].

  19. Structures, energies, and spin-spin coupling constants of methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes: four-member B-P-B-P rings B2P2(CH3)(n)H(8-n), with n = 0, 1, 2, 4.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2011-09-29

    An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 17 methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)(CH(3))(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. The B-P-B-P rings are puckered in a butterfly conformation, in agreement with experimental data for related molecules. Isomers with the CH(3) group bonded to P are more stable than those with CH(3) bonded to B. If there is only one methyl group or if two methyl groups are bonded to two different P or B atoms, isomers with equatorial bonds are more stable than those with axial bonds. However, when two methyl groups are present, the gem isomers are the most stable for molecules B(2)P(2)(CH(3))(2)H(6) with P-C and B-C bonds, respectively. Transition structures present barriers to the interconversion of two equilibrium structures or to the interchange of axial and equatorial positions in the same isomer. These barriers are very low for the isomer with two methyl groups bonded to B in axial positions for the isomer with four axial bonds and for the isomer with geminal B-C bonds at both B atoms. Coupling constants (1)J(B-P), (1)J(P-C), (1)J(B-C), (2)J(P-P), and (3)J(P-C) are capable of providing structural information. They are sensitive to the number of methyl groups present and can discriminate between axial, equatorial, and geminal bonds, although not all do this to the same extent. The one-bond coupling constants (1)J(B-P), (1)J(P-C), and (1)J(B-C) are similar in equilibrium and transition structures, but (3)J(P-C) and (2)J(P-P) are not. These coupling constants and those of the corresponding fluoro-derivatives of the 1,3-diborata-2,4-diphosphoniocyclobutanes demonstrate the great sensitivity of phosphorus coupling to structural and electronic effects.

  20. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  1. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  2. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  3. Dynamic nonlinear thermal optical effects in coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Huang, Chenguang; Fan, Jiahua; Zhu, Lin

    2012-09-01

    We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple "shark fins" and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  4. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce T.; Freericks, J. K.

    2016-05-01

    Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  5. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  6. Coupled Resonance Laser Frequency Stabilization

    NASA Astrophysics Data System (ADS)

    Burd, Shaun; Uys, Hermann; MAQClab Team

    2013-05-01

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to the same photodiode signal derived from the UV laser only. For trapping and cooling Yb+ ions, a frequency stabilized laser is required at 369.9 nm to drive the S1/2-P1/2 cooling cycle. Since that cycle is not closed, a repump beam is needed at 935.18 nm to drive the D3/2-D[ 3 / 2 ] transition, which rapidly decays back to the S1/2 state. Our 369 nm laser is locked using Doppler free polarization spectroscopy of Yb+ ions, generated in a hollow cathode discharge lamp. Without pumping, the metastable D3/2 level is only sparsely populated, making direct absorption of 935 nm light difficult to detect. A resonant 369 nm pump laser can populate the D3/2 state, and fast repumping to the S1/2 ground state by on resonant 935 nm light, can be detected via the change in absorption of the 369 nm laser. This is accomplished using lock-in detection on the same photodiode signal to which the 369 nm laser is locked. In this way, simultaneous locking of two frequencies in very different spectral regimes is accomplished, while exploiting only the photodiode signal from one of the lasers. A rate equation model gives good qualitative agreement with experimental observation. This work was partially funded by the South African National Research Foundation.

  7. Tunable Fano resonance in mutually coupled micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Xiao, Huifu; Wu, Xiaosuo; Liu, Zilong; Zhao, Guolin; Guo, Xiaonan; Meng, Yinghao; Deng, Lin; Chen, Wenping; Tian, Yonghui; Yang, Jianhong

    2017-08-01

    We simulate and experimentally observe a tunable Fano resonance in a mutual coupling micro-ring resonator (MRR) system which is comprised of two cascaded micro-ring resonators. The scattering matrix model is employed to analyze the modulating characterization of the Fano resonance by changing the effective refractive index of MRRs, and the simulation results indicate that the Fano resonance is the sharpest when two MRRs' resonances are coincident. The Fano resonance device is fabricated on a silicon-on-insulator substrate using the standard complementary metal-oxide-semiconductor (CMOS) fabrication process. The experimental results show that the spectrum of the Fano resonance can be periodically tuned and flipped by applying forward-bias voltages to integrated micro-heaters above the MRRs. The proposed device has unique merits such as compact size, simple structure, CMOS compatible fabrication process, and large-scale integration, which is a promising candidate for high-sensitivity biochemical sensing and low power optical switching/modulating in future.

  8. Induced transparency in optomechanically coupled resonators

    NASA Astrophysics Data System (ADS)

    Duan, Zhenglu; Fan, Bixuan; Stace, Thomas M.; Milburn, G. J.; Holmes, Catherine A.

    2016-02-01

    In this work we theoretically investigate a hybrid system of two optomechanically coupled resonators, which exhibits induced transparency. This is realized by coupling an optical ring resonator to a toroid. In the semiclassical analyses, the system displays bistabilities, isolated branches (isolas), and self-sustained oscillation dynamics. Furthermore, we find that the induced transparency window sensitively relies on the mechanical motion. Based on this fact, we show that the described system can be used as a weak force detector and the optimal sensitivity can beat the standard quantum limit without using feedback control or squeezing under available experimental conditions.

  9. Thermal bistability through coupled photonic resonances

    NASA Astrophysics Data System (ADS)

    Khandekar, Chinmay; Rodriguez, Alejandro W.

    2017-08-01

    We present a scheme for achieving thermal bistability based on the selective coupling of three optical resonances. This approach requires one of the resonant frequencies to be temperature dependent, which can occur in materials exhibiting strong thermo-optic effects. For illustration, we explore thermal bistability in two different passive systems, involving either a periodic array of Si ring resonators or parallel GaAs thin films separated by vacuum and exchanging heat in the near field. Such a scheme could prove to be useful for thermal devices operating with transition times on the order of hundreds of milliseconds.

  10. Capture into resonance of coupled Duffing oscillators.

    PubMed

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated.

  11. Coupled Resonator Vertical Cavity Laser Diode

    SciTech Connect

    CHOQUETTE, KENT D.; CHOW, WENG W.; FISCHER, ARTHUR J.; GEIB, KENT M.; HOU, HONG Q.

    1999-09-16

    We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

  12. Coupled optical resonance laser locking.

    PubMed

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  13. Spin-spin and spin-orbit interactions in nanographene fragments: a quantum chemistry approach.

    PubMed

    Perumal, S; Minaev, B; Ågren, H

    2012-03-14

    The relativistic behavior of graphene structures, starting from the fundamental building blocks--the poly-aromatic hydrocarbons (PAHs) along with other PAH nanographenes--is studied to quantify any associated intrinsic magnetism in the triplet (T) state and subsequently in the ground singlet (S) state with account of possible S-T mixture induced by spin-orbit coupling (SOC). We employ a first principle quantum chemical-based approach and density functional theory (DFT) for a systematic treatment of the spin-Hamiltonian by considering both the spin-orbit and spin-spin interactions as dependent on different numbers of benzene rings. We assess these relativistic spin-coupling phenomena in terms of splitting parameters which cause magnetic anisotropy in absence of external perturbations. Possible routes for changes in the couplings in terms of doping and defects are also simulated and discussed. Accounting for the artificial character of the broken-symmetry solutions for strong spin polarization of the so-called "singlet open-shell" ground state in zigzag graphene nanoribbons predicted by spin-unrestricted DFT approaches, we interpolate results from more sophisticated methods for the S-T gaps and spin-orbit coupling (SOC) integrals and find that these spin interactions become weak as function of size and increasing decoupling of electrons at the edges. This leads to reduced electron spin-spin interaction and hence almost negligible intrinsic magnetism in the carbon-based PAHs and carbon nanographene fragments. Our results are in agreement with the fact that direct experimental evidence of edge magnetism in pristine graphene has been reported so far. We support the notion that magnetism in graphene only can be ascribed to structural defects or impurities.

  14. Nonlinearly Coupled Superconducting Lumped Element Resonators

    NASA Astrophysics Data System (ADS)

    Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light

  15. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  16. Simple Approaches for Estimating Vicinal 1H- 1H Coupling-Constants and for Obtaining Stereospecific Resonance Assignments in Leucine Side Chains

    NASA Astrophysics Data System (ADS)

    Constantine, K. L.; Friedrichs, M. S.; Mueller, L.

    An approach for deriving stereospecific δ-methyl assignments and χ 2 dihedral angle constraints for leucine residues, based on easily recognized patterns of 1H- 1H spin-spin coupling constants and intraresidue nuclear-Overhauser-effect spectroscopy (NOESY) cross-peak intensities, is described. The approach depends on resolved H γ and/or δ-methyl resonances and on initially obtaining stereospecific assignments for H β2 and H β3. As part of the overall strategy, a method is presented for obtaining qualitative or, in favorable cases, semiquantitative estimates of vicinal 1H- 1H coupling constants from peak intensities measured in a short-mixing-time 1H- 1H total correlation spectroscopy (TOCSY) experiment. This method of estimating 1H- 1H spin-spin coupling constants is generally applicable to all side-chain types. The approach is illustrated for several leucine residues within uniformly 15N-labeled and 15N/ 13C-double-labeled isolated light-chain variable domain of the anti-digoxin antibody 26-10. Estimates of 3Jαβ and 3Jβγ coupling constants are derived from a three-dimensional (3D) 13C-edited TOCSY-heteronuclear multiple-quantum coherence (HMQC) spectrum. These data are combined with information from 3D 15N-edited NOESY and 3D 13C-edited NOESY spectra to yield stereospecific H β2, H β3, and δ-methyl assignments, as well as constraints on χ (1) and χ 2 dihedral angles. Although the overall approach is illustrated using 3D 15N-edited and 13C-edited data, it is equally applicable to analysis of two-dimensional 1H- 1H NOESY and TOCSY spectra.

  17. Coupling Between Split-Ring Resonators

    SciTech Connect

    Koenig, Michael; Stannigel, Kai; Niegemann, Jens; Busch, Kurt

    2009-10-07

    Numerical methods have become invaluable tools for research in the field of photonics and plasmonics. The Discontinuous Galerkin Time-Domain (DGTD) method, complemented by numerous extensions, allows us to solve Maxwell's equations on unstructured grids while maintaining an efficient, explicit time-stepping scheme. In this contribution we employ our DGTD computer code to analyse dimers of split-ring resonators (SRRs), metallic nano-structures often used as building blocks for metamaterials. We find that electromagnetic coupling between two SRRs heavily influences the dimers' resonances. Results for two SRRs facing each other are presented and the influence of the particle spacing is investigated.

  18. Hybridized/coupled multiple resonances in nacre

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2014-01-01

    We report that nacre (also known as mother-of-pearl), a wondrous nanocomposite found in nature, is a rich photonic nanomaterial allowing the experimental realization of collective excitation and light amplification via coupled states. Localized modes in three-dimensional complex media are typically isolated in frequency and space. However, multiple local resonances can be hybridized in multilayered nanostructures of nacre so that the effective cavity size for efficient disordered resonators is scaled up. Localized modes in hybridized states in nacre are overlapped in frequency with similar shapes in space, thus being collectively excited and synergistically amplified. These hybridized states boost light amplification, leading to stable and regular multimode lasing at low excitation energy. The simplicity of ameliorating disordered resonators by mimicking nacre can further serve as platforms for developing cost-effective photonic systems and provide materials for fundamental research on complex media.

  19. Mode Profiles in Waveguide-Coupled Resonators

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Cameron, Tom; Saw, John C. B.; Kim, Yoonkee

    1993-01-01

    Surface acoustic wave (SAW) waveguide-coupled resonators are of considerable interest for narrow-band filter applications, though to date there has been very little published on the acoustic details of their operation. As in any resonator, one must fully understand its mode structure and herein we study the SAW mode profiles in these devices. Transverse mode profiles in the resonant cavity of the device were measured at various frequencies of interest using a knife-edge laser probe. In addition we predict the mode profiles for the device structure by two independent methods. One is a stack-matrix approach adapted from integrated optics and the other is a conventional analytical eigenmode analysis of the Helmholtz equation. Both modeling techniques are in good agreement with the measured results.

  20. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  1. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  2. Tunable coupling between two superconducting resonators

    NASA Astrophysics Data System (ADS)

    Deppe, F.; Wulschner, F.; Baust, A.; Hoffmann, E.; Menzel, E. P.; Marx, A.; Gross, R.; Solano, E.; Zueco, D.; Garcia Ripoll, J.-J.

    2014-03-01

    During the last decade, tremendous progress has been made towards quantum computation and quantum simulation with superconducting circuits. In such architectures, the controlled exchange of information between two superconducting transmission line resonators via a tunable coupling is a useful tool. Here, we present experimental progress on such devices. Specifically, the coupling is mediated either by a superconducting flux qubit or by an RF SQUID. Our results allow us to analyze the tunable coupling in frequency and time domain. We acknowledge support from: the DFG via SFB 631; the German excellence initiative via NIM; the EU projects CCQED, PROMISCE, SCALEQIT; Spanish MINECO FIS2009-12773-C02-01, FIS2011-25167, FIS2012-36673-C03-02; UPV/EHU UFI 11/55; Basque Government IT472-10.

  3. MEASUREMENT OF LINEAR COUPLING RESONANCE IN RHIC.

    SciTech Connect

    BAI,M.PILAT,F.SATOGATA,T.TOMAS,R.

    2002-05-12

    Linear coupling is one of the factors that determine beam lifetime in RHIC. The traditional method of measuring the minimum tune separation requires a tune scan and can't be done parasitically or during the acceleration ramp. A new technique of using ac dipoles to measure linear coupling resonance has been developed at RHIC. This method measures the degree of coupling by comparing the amplitude of the horizontal coherent excitation with the amplitude of the vertical coherent excitation if the beam is excited by the vertical AC dipole and vice versa. One advantage of this method is that it can be done without changing tunes from the normal machine working points. In principle, this method can also localize the coupling source by mapping out the coupling driving terms throughout the ring. This is very useful for local decoupling the interaction regions in RHIC. A beam experiment of measuring linear coupling has been performed in RHIC during its 2003 run, and the analysis of the experimental data is discussed in this paper.

  4. FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS

    SciTech Connect

    Huffenberger, Kevin M.; Wandelt, Benjamin D.

    2010-08-15

    We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L{sup 3}), where L is the band limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the cosmic microwave background and gravitational lensing.

  5. Effective spin-spin interaction in neutron matter

    SciTech Connect

    Zverev, M.V.; Khafizov, R.U.; Khodel, V.A.; Shaginyan, V.R.

    1995-09-01

    A set of equations for calculating the effective-interaction matrix R{sup ik}(q, {omega}) and the response function X{sup ik}(q, {omega}) is derived. These equations take into account the spin degrees of freedom of infinite neutron matter. For isotropic neutron matter with the Bethe interaction, the effective spin-spin interaction g(k) is calculated in the local approximation of the functional approach in the density range from {rho} = 0.17 to 25 fm{sup -3}. It is shown that this interaction weakly depends on the density within the range under consideration and that neither ferromagnetic nor antiferromagnetic phase transitions occur in the system. 7 refs., 2 figs.

  6. Interrelated emission and spin-spin relaxation feature mediated by VO+ defects in Gd2O3 nanorods subjected to swift ion impact

    NASA Astrophysics Data System (ADS)

    Hazarika, Samiran; Mohanta, Dambarudhar

    2016-04-01

    We report on the manifestation and interconnected photoluminescence and electron paramagnetic resonance responses in gadolinium oxide (Gd2O3) nanorods subjected to 80 MeV carbon ion irradiation. On increasing the irradiation fluence between 1 × 1011 and 3 × 1012 ions/cm2, the emission associated with neutral oxygen vacancies (VOx), positioned at ~350 nm, undergoes a steady increase compared to that associated with singly charged vacancies (VO+), located at ~414 nm. The enhancement of spin-spin relaxation time (τss) is ascribed to a substantial changeover from VO+ to VOx defects with irradiation, the former being recognized as the major contributor to paramagnetic centres. Interconnected luminescence and spin-spin relaxation could provide insight for making advanced nanophosphors and spin valve elements.

  7. Phase versus flux coupling between resonator and superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Birenbaum, J. S.; O'Kelley, S. R.; Anton, S. M.; Nugroho, C. D.; Orlyanchik, V.; Dove, A. H.; Yoscovits, Z. R.; Olson, G. A.; van Harlingen, D. J.; Eckstein, J.; Braje, D. A.; Johnson, R. C.; Oliver, W. D.; Clarke, John

    2013-03-01

    The dispersive coupling of qubits to microwave resonators has become widely used for qubit readout. Recent advances in coupling qubits to 3D resonators have demonstrated the importance of the nature of the qubit-resonator coupling in determining the qubit relaxation and decoherence times, T1 and T2*. We study the effect of phase versus flux coupling on flux qubits coupled to planar resonators. Using an aluminum shadow evaporation technique we fabricate a low-loss planar resonator, consisting of a meandering inductor and interdigitated capacitor, and a flux qubit, all in a single processing step. Whereas the qubit and resonator are always flux coupled via a geometric mutual inductance, a phase coupling can be added by including a shared trace between the qubit and resonator. This technique allows us to control both the magnitude and nature of the qubit-resonator coupling without significantly affecting either the qubit or resonator design. We characterize the dependence of the qubit parameters T1, T2*, and spin echo time Techo on the resonator coupling parameters to gain insight into possible sources of decoherence and loss. This work was supported by ARO, IARPA, and the US Government

  8. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  9. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    SciTech Connect

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs.

  10. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  11. The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters

    NASA Astrophysics Data System (ADS)

    Ganyushin, Dmitry; Gilka, Natalie; Taylor, Peter R.; Marian, Christel M.; Neese, Frank

    2010-04-01

    In this work, the resolution of the identity (RI) approximation is developed for the calculation of the electron-electron spin-spin coupling (SSC) interaction that is a central component of the zero-field splitting (ZFS) term in the effective spin Hamiltonian. The approximated integrals are then used in large-scale multireference configuration interaction treatments of the SSC interaction. The SSC contribution to the ZFS is treated using the Breit-Pauli spin-spin Hamiltonian in conjunction with first-order perturbation theory. Test calculations on a set of diatomic molecules reveal that the error of the RI approximation does not exceed 0.01 cm-1 even if standard auxiliary basis sets are used. This error of less than 1% is considered to be negligible compared to the presently achievable accuracy of the SSC calculations relative to experimental data. The present development allows the correlated ab initio calculation of ZFS parameters of larger systems such as linear polyenes and linear polyacenes. The basis set convergence of the calculated ZFS values was investigated, and the effect of electronic correlation on the calculated ZFS parameters is discussed.

  12. Tailored Asymmetry for Enhanced Coupling to WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

  13. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  14. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope.

    PubMed

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-06

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator's Q value and to optimize the coupling coefficient to maximize the RMOG's sensitivity. GeO₂-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times.

  15. Zero-field nuclear magnetic resonance spectroscopy of viscous liquids.

    PubMed

    Shimizu, Y; Blanchard, J W; Pustelny, S; Saielli, G; Bagno, A; Ledbetter, M P; Budker, D; Pines, A

    2015-01-01

    We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Thermally tunable slot-coupled dielectric resonator antenna

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Chen, Cong; Wang, Qingmin; Liu, Wenjun; Hao, Yanan; Gao, Xinlu; Huang, Shanguo; Lei, Ming

    2017-02-01

    A thermally tunable slot-coupled dielectric resonator antenna (DRA) has been designed and prepared by placing a thermosensitive ceramic resonator onto the slot. Typical magnetic resonance occurs in the resonator, which is closely related to its dielectric constant. Because the dielectric constant of the ceramic resonator decreases as the temperature increases, the resonance frequency of the proposed DRA increases as the temperature increases. The simulated results are in good agreement with the measured ones, which confirms the thermally tunable behavior. This approach provides a way for designing the frequency tunable antennas.

  17. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope

    PubMed Central

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-01

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator’s Q value and to optimize the coupling coefficient to maximize the RMOG’s sensitivity. GeO2-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times. PMID:28067824

  18. The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

    PubMed Central

    Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming

    2014-01-01

    The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314

  19. On the Mutual Coupling Between Circular Resonant Slots

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.; Kharkovsky, S.; Zoughi, R.

    2007-01-01

    For near- and far-field microwave imaging purposes, array of circular resonant slots can be utilized to sample the electric field at a given reference plane. In general, the sensitivity of such array probes is impaired by the mutual coupling present between the radiating elements. The mutual coupling problem poses a design tradeoff between the resolution of the array and its sensitivity. In this paper, we investigate the mutual coupling between circular resonant slots in conducting ground plane both numerically and experimentally. Based on the analysis of the dominant coupling mechanism, i.e., the surface currents, various remedies to reduce the slots' mutual coupling are proposed and verified.

  20. Electrically small, complementary electric-field-coupled resonator antennas

    NASA Astrophysics Data System (ADS)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka <1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  1. Spin-spin interaction effect in 2D Extended Hubbard Model

    NASA Astrophysics Data System (ADS)

    Zouhair, A.; Harir, S.; Bennai, M.; Boughaleb, Y.

    2014-09-01

    Using an exact diagonlization for finite square lattice and taking into account the periodic boundary conditions in the two directions, we study the spin-spin interaction effect on some local electronic properties for antiferromagnetic correlated electrons system. We have considered an Extended Hubbard Model (EHM) including on-site coulomb interaction energy U and spin-spin interaction term J. The diagonlization of this 2D EHM model allows us to study J effect on some local properties for finite square lattice. The analysis of the obtained results shows that the introduction of spin-spin interaction induces a supplementary conductivity for antiferromagnetic correlated electrons system, even in the strong on-site interaction regime.

  2. A family of spin-S chain representations of SU(2) level k Wess-Zumino-Witten models

    NASA Astrophysics Data System (ADS)

    Greiter, Martin; Thomale, Ronny; Rachel, Stephan; Schmitteckert, Peter

    2012-02-01

    We investigate a family of spin-S chain Hamiltonians recently introduced by one of us [M. Greiter, Mapping of Parent Hamiltonians, Springer Tracts in Modern Phyiscs, Vol 244 (Springer, Berlin, 2011)]. For S=1/2, it corresponds to the Haldane--Shastry model. For general spin S, we numerically show that the low--energy theory of these spin chains is described by the SU(2)k Wess--Zumino--Witten model with coupling k=2S. In particular, we investigate the S=1 model whose ground state is given by a Pfaffian for even number of sites N. We reconcile aspects of the spectrum of the Hamiltonian for arbitrary N with trial states obtained by Schwinger projection of two Haldane--Shastry chains.

  3. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    PubMed

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications.

  4. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  5. The dynamics of large-scale arrays of coupled resonators

    NASA Astrophysics Data System (ADS)

    Borra, Chaitanya; Pyles, Conor S.; Wetherton, Blake A.; Quinn, D. Dane; Rhoads, Jeffrey F.

    2017-03-01

    This work describes an analytical framework suitable for the analysis of large-scale arrays of coupled resonators, including those which feature amplitude and phase dynamics, inherent element-level parameter variation, nonlinearity, and/or noise. In particular, this analysis allows for the consideration of coupled systems in which the number of individual resonators is large, extending as far as the continuum limit corresponding to an infinite number of resonators. Moreover, this framework permits analytical predictions for the amplitude and phase dynamics of such systems. The utility of this analytical methodology is explored through the analysis of a system of N non-identical resonators with global coupling, including both reactive and dissipative components, physically motivated by an electromagnetically-transduced microresonator array. In addition to the amplitude and phase dynamics, the behavior of the system as the number of resonators varies is investigated and the convergence of the discrete system to the infinite-N limit is characterized.

  6. On the Mutual Coupling between Circular Resonant Slots

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.; Kharkovshy, S.; Zoughi, R.

    2007-01-01

    For near- and far-field microwave imaging purposes, array of circular resonant slots can be utilized to sample the electric field at a given reference plane. In general, the sensitivity of such an array is impaired by the existing mutual coupling between the radiating elements or in this case circular slots. The mutual coupling problem imposes a design tradeoff between the resolution of the array and the overall system sensitivity and dynamic range. In this paper, the mutual coupling between circular resonant slots in conducting ground plane is investigated both numerically and experimentally. In particular, the mutual coupling in the E- and H-plane configurations of two identical slots is studied.

  7. CP-sensitive spin-spin correlations in neutralino production at the ILC

    NASA Astrophysics Data System (ADS)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.

    2009-07-01

    We study the CP-violating terms of the spin-spin correlations in neutralino production and their subsequent two-body decays into sleptons plus leptons at the ILC. We analyze CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both neutralinos, with one polarization perpendicular to the production plane. We present a detailed numerical study of the CP-sensitive observables, cross sections, and neutralino branching ratios in the Minimal Supersymmetric Standard Model with complex parameters.

  8. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    PubMed Central

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-01-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices. PMID:28186145

  9. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    NASA Astrophysics Data System (ADS)

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-02-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices.

  10. OVERCOMING INTRINSIC AND COUPLING SPIN RESONANCES IN THE AGS.

    SciTech Connect

    BAI,M.AHRENS,L.ROSER,T.

    2002-11-06

    In the Brookhaven AGS, polarized protons are accelerated from G{sub {gamma}} = 4.5 to G{sub {gamma}} = 46.5. During the acceleration, a total of 42 imperfection spin depolarization resonances and 7 intrinsic spin resonances are crossed. Currently, the depolarization at each imperfection spin resonance is overcome by a solenoid 5% snake and full spin flips are induced at 4 out of the 7 intrinsic resonances by the AGS rf dipole to avoid the polarization loss. No correction schemes are applied at the remaining 3 weak spin resonances. In addition, coupling spin resonances are also observed due to the solenoidal field of the snake and no correction is applied for these spin resonances other than keeping the horizontal and vertical betatron tunes separated. In order to achieve {ge} 50% beam polarization out of AGS, all of those spin resonances need to be corrected. This paper proposes three correction methods to overcome the. strong intrinsic spin resonances as well as the weak intrinsic spin resonances and the coupling spin resonances.

  11. Synthesis of 14N and 15N-labeled trityl-nitroxide biradicals with strong spin-spin interaction and improved sensitivity to redox status and oxygen

    PubMed Central

    Liu, Yangping; Villamena, Frederick A.; Song, Yuguang; Sun, Jian; Rockenbauer, Antal

    2014-01-01

    Simultaneous evaluation redox status and oxygenation in biological systems is of great importance for the understanding of biological functions. Electron paramagnetic resonance spectroscopy coupled with the use of the nitroxide radicals have been an indispensable technique for this application but are still limited by its low oxygen sensitivity, and low EPR resolution in part due to the moderately broad EPR triplet and spin quenching through bioreduction. In this study, we showed that these drawbacks can be overcome through the use of trityl-nitroxide biradicals allowing for the simultaneous measurement of redox status and oxygenation. A new trityl-nitroxide biradical TNN14 composed of a pyrrolidinyl-nitroxide and a trityl, and its isotopically labeled 15N analogue TNN15 were synthesized and characterized. Both biradicals exhibited much stronger spin-spin interaction with J > 400 G than the previous synthesized trityl-nitroxide biradicals TN1 (~160 G) and TN2 (~52 G) with longer linker chain length. The enhanced stability of TNN14 was evaluated using ascorbate as reductant and the effect of different types of cyclodextrins on its stability in the presence of ascorbate was also investigated. Both biradicals are sensitive to redox status, and their corresponding trityl-hydroxylamines resulting from the reduction of the biradicals by ascorbate share the same oxygen sensitivity. Of note is that the 15N-labeled TNN15-H with an EPR doublet exhibits improved EPR signal amplitude as compared to TNN14-H with an EPR triplet. In addition, cyclic voltammetric studies verify the characteristic electrochemical behaviors of the trityl-nitroxide biradicals. PMID:21028905

  12. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion.

  13. Strong and tunable mode coupling in carbon nanotube resonators

    NASA Astrophysics Data System (ADS)

    Castellanos-Gomez, Andres; Meerwaldt, Harold B.; Venstra, Warner J.; van der Zant, Herre S. J.; Steele, Gary A.

    2012-07-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage, allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders of magnitude larger than the mechanical-mode coupling in micromechanical resonators.

  14. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    NASA Astrophysics Data System (ADS)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  15. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system.

    PubMed

    Li, Shilei; Zhang, Yunyun; Song, Xiaokang; Wang, Yilin; Yu, Li

    2016-07-11

    In this paper, an asymmetric plasmonic structure composed of two MIM (metal-insulator-metal) waveguides and two rectangular cavities is reported, which can support triple Fano resonances originating from three different mechanisms. And the multimode interference coupled mode theory (MICMT) including coupling phases is proposed based on single mode coupled mode theory (CMT), which is used for describing and explaining the multiple Fano resonance phenomenon in coupled plasmonic resonator systems. Just because the triple Fano resonances originate from three different mechanisms, each Fano resonance can be tuned independently or semi-independently by changing the parameters of the two rectangular cavities. Such, a narrow 'M' type of double Lorentzian-like line-shape transmission windows with the position and the full width at half maximum (FWHM) can be tuned freely is constructed by changing the parameters of the two cavities appropriately, which can find widely applications in sensors, nonlinear and slow-light devices.

  16. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF/sub 3/

    SciTech Connect

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-02-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF/sub 3/ and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF/sub 3/ is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs.

  17. Planar coupling to high-Q lithium niobate disk resonators.

    PubMed

    Nunzi Conti, G; Berneschi, S; Cosi, F; Pelli, S; Soria, S; Righini, G C; Dispenza, M; Secchi, A

    2011-02-14

    We demonstrate optical coupling to high-Q lithium niobate disks from an integrated lithium niobate waveguide. The waveguides are made by proton exchange in X-cut lithium niobate substrate. The disks with diameter of 4.7 mm and thickness of 1 mm are made from commercial Z-cut lithium niobate wafers by polishing the edges into a spheroidal profile. Both resonance linewidth and cavity ringdown measurements were performed to calculate the Q factor of the resonator, which is in excess of 10(8). Planar coupling represents the most promising technique for practical applications of whispering gallery mode resonators.

  18. Fiber-coupled short Fabry-Perot resonators

    SciTech Connect

    Stone, J.; Marcuse, D. )

    1989-05-01

    Fabry-Perot resonators intended as filters in wavelength-multiplexed optical communications systems may have to be very short (on the order of 10 {mu}m) in order to increase their free spectral range. Short, yet tunable cavities can be designed as air gaps between two fibers placed in close proximity with highly reflecting mirrors deposited on their ends. However, an air-gap resonator with plane mirrors between closely spaced fiber ends may yield low throughout because of the poor match between the modes of typical single-mode fibers and the resonant mode in the air-gap cavity. The throughput can be improved by confining the resonant mode by means of a hollow dielectric tube placed inside the resonator. This paper compares short fiber-coupled Fabry-Parot resonators with and without an inserted hollow dielectric waveguide and derives expressions for their transmission losses. The authors show that the throughput of both types of resonator can be improved significantly by using a special fiber with large mode size to couple to the resonator. The special fiber is then spliced to a conventional single-mode fiber. They conclude that the resonator with an inserted hollow dielectric waveguide offers increased throughput for resonators with high finesse.

  19. Syntheses and spin-spin exchange interactions of calix[4]arene biradicals.

    PubMed

    Hu, Xiaojun; Yang, Haijun; Li, Yong

    2008-07-01

    Three novel paramagnetic calix[4]arenes (2, 3 and 4) with two opposite nitroxide radicals on the upper rims were synthesized and characterized. The through-space spin-spin exchange interactions of these calixarene biradicals were investigated, and found to be affected by many factors, such as molecular conformational flexibility, steric hindrance, temperature, solvent effect and complexation of silver ion.

  20. Terahertz plasmons in coupled two-dimensional semiconductor resonators

    NASA Astrophysics Data System (ADS)

    Sydoruk, O.; Wu, J. B.; Mayorov, A.; Wood, C. D.; Mistry, D. K.; Cunningham, J. E.

    2015-11-01

    Advances in theory are needed to match recent progress in measurements of coupled semiconductor resonators supporting terahertz plasmons. Here, we present a field-based model of plasmonic resonators that comprise gated and ungated two-dimensional electron systems. The model is compared to experimental measurements of a representative system, in which the interaction between the gated and ungated modes leads to a rich spectrum of hybridized resonances. A theoretical framework is thus established for the analysis and design of gated low-dimensional systems used as plasmonic resonators, underlining their potential application in the manipulation of terahertz frequency range signals.

  1. Active and Passive Coupled-Resonator Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Poon, Joyce Kai See

    Coupled-Resonator Optical Waveguides (CROWs) are chains of resonators in which light propagates by virtue of the coupling between the resonators. The dispersive properties of these waveguides are controllable by the inter-resonator coupling and the geometry of the resonators. If the inter-resonator coupling is weak, light can be engineered to propagate slowly in these structures. The small group velocities possible in CROWs may enable applications in and technologies for optical delay lines, interferometers, buffers, nonlinear optics, and lasers. This thesis reports on achieving and controlling the optical delay in passive and active CROWs. Both theoretical and experimental results are presented. Transfer matrices, tight-binding models, and coupled-mode approaches are developed to analyze and design a variety of coupled resonator systems in the space, frequency, and time domains. Although each analytical method is fundamentally different, in the limit of weak inter-resonator coupling these approaches are consistent with each other. From these formalisms, simple expressions for the delay, loss, bandwidth, and a figure of merit are derived to compare the performance of CROW delay lines. Using a time-domain tight-binding model, we examine the resonant gain enhancement and spontaneous emission noise in amplifying CROWs to find that the net amplification of a propagating wave does not always vary with the group velocity but instead depends on the termination and excitation of the CROW. CROWs in the form of high-order (> 10) weakly coupled passive polymer microring resonators were fabricated and measured. The measured transmission, group delay, and dispersive properties of the CROWs agreed with the theoretical results. Delays in excess of 100 ps and slowing factors of about 25 over bandwidths of about 20 GHz were observed. The main limitation of the passive CROWs was the optical losses. To overcome the losses and to enable electrical integration, we demonstrated active

  2. Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities

    PubMed Central

    Li, Peng-Bo; Li, Hong-Rong; Li, Fu-Li

    2016-01-01

    We investigate the electromechanical coupling between a nanomechanical resonator and two parametrically coupled superconducting coplanar waveguide cavities that are driven by a two-mode squeezed microwave source. We show that, with the selective coupling of the resonator to the cavity Bogoliubov modes, the radiation-pressure type coupling can be greatly enhanced by several orders of magnitude, enabling the single photon strong coupling to be reached. This allows the investigation of a number of interesting phenomena such as photon blockade effects and the generation of nonclassical quantum states with electromechanical systems. PMID:26753744

  3. Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities.

    PubMed

    Li, Peng-Bo; Li, Hong-Rong; Li, Fu-Li

    2016-01-12

    We investigate the electromechanical coupling between a nanomechanical resonator and two parametrically coupled superconducting coplanar waveguide cavities that are driven by a two-mode squeezed microwave source. We show that, with the selective coupling of the resonator to the cavity Bogoliubov modes, the radiation-pressure type coupling can be greatly enhanced by several orders of magnitude, enabling the single photon strong coupling to be reached. This allows the investigation of a number of interesting phenomena such as photon blockade effects and the generation of nonclassical quantum states with electromechanical systems.

  4. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  5. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  6. Properties of regular polygons of coupled microring resonators

    NASA Astrophysics Data System (ADS)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  7. Linear Coupling between Transverse Modes of a Nanomechanical Resonator

    NASA Astrophysics Data System (ADS)

    Truitt, Patrick; Hertzberg, Jared; Schwab, Keith

    2013-03-01

    Recently, several groups have identified a linear coupling between different vibrational modes of nanomechanical resonators. We report observations of such a coupling between the two transverse modes of a doubly-clamped Si3N4 resonator with transverse resonance frequencies of 8.4 and 8.7 MHz. The resonator is voltage biased with respect to a nearby gate electrode for capactive readout. Increasing the gate bias introduces an electrostatic contribution to the spring constant of each mode, reducing the frequency gap between the two modes. At degeneracy, we observe an avoided crossing of 100 kHz. Measurements of the displacement amplitudes and quality factors through degeneracy is consistent with a linear superposition of the two modes. Magnetomotive measurements, which are sensitive to the projection of each mode's displacement onto an applied field, show that the coupled modes remain linearly polarized, with the direction of polarization rotating with increasing gate bias. In an effort to identify the source of the coupling, we constructed a finite element model of the resonator-gate capacitance and find that the observed coupling is an order of magnitude larger than what is expected from electrostatic gradients alone.

  8. Direct Coupling From WGM Resonator Disks to Photodetectors

    NASA Technical Reports Server (NTRS)

    Savchenkov, Antoliy; Maleki, Lute; Mohageg, Makan; Le, Thanh

    2007-01-01

    Output coupling of light from a whispering- gallery-mode (WGM) optical resonator directly to a photodetector has recently been demonstrated. By directly is meant that the coupling is effected without use of intervening optical components. Heretofore, coupling of light into and out of WGM resonators has been a complex affair involving the use of such optical components as diamond or glass prisms, optical fibers, coated collimators, and/or fiber tapers. Alignment of these components is time-consuming and expensive. To effect direct coupling, one simply mounts a photodetector in direct mechanical contact with a spacer that is, in turn, in direct mechanical contact with a WGM resonator disk. The spacer must have a specified thickness (typically of the order of a wavelength) and an index of refraction lower, by an adequate margin, than the indices of refraction of the photodetector and the WGM resonator disk. This mechanically simple approach makes it possible to obtain an optimum compromise between maximizing optical coupling and maximizing the resonance quality factor (Q).

  9. Photoelastic coupling in gallium arsenide optomechanical disk resonators.

    PubMed

    Baker, Christopher; Hease, William; Nguyen, Dac-Trung; Andronico, Alessio; Ducci, Sara; Leo, Giuseppe; Favero, Ivan

    2014-06-16

    We analyze the magnitude of the radiation pressure and electrostrictive stresses exerted by light confined inside GaAs semiconductor WGM optomechanical disk resonators, through analytical and numerical means, and find the electrostrictive stress to be of prime importance. We investigate the geometric and photoelastic optomechanical coupling resulting respectively from the deformation of the disk boundary and from the strain-induced refractive index changes in the material, for various mechanical modes of the disks. Photoelastic optomechanical coupling is shown to be a predominant coupling mechanism for certain disk dimensions and mechanical modes, leading to total coupling gom and g(0) reaching respectively 3 THz/nm and 4 MHz. Finally, we point towards ways to maximize the photoelastic coupling in GaAs disk resonators, and we provide some upper bounds for its value in various geometries.

  10. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.

    PubMed

    Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2017-04-06

    A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

  11. Control of critical coupling in a coiled coaxial cable resonator

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  12. Control of critical coupling in a coiled coaxial cable resonator.

    PubMed

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  13. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  14. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator

    NASA Astrophysics Data System (ADS)

    Binfeng, Yun; Hu, Guohua; Zhang, Ruohu; Yiping, Cui

    2016-05-01

    A coupled plasmonic waveguide resonator system which can produce sharp and asymmetric Fano resonances was proposed and analyzed. Two Fano resonances are induced by the interactions between the narrow discrete whispering gallery modes in a plasmonic square cavity resonator and the broad spectrum of the metal-insulator-metal stub resonator. The relative peak amplitudes between the 1st and 2nd order Fano resonances can be adjusted by changing the structure parameters, such as the square cavity size, the stub size and the center-to-center distance between the square cavity and the stub resonators. And the 1st order Fano resonant peak, which is a standing-wave mode, will split into two resonant peaks (one standing-wave mode and one traveling-wave mode) when it couples with the 2nd Fano resonance. Also, the potential of the proposed Fano system as an integrated slow-light device and refractive index sensor was investigated. The results show that a maximum group index of about 100 can be realized, and a linear refractive index sensitivity of 938 nm/RIU with a figure of merit of about 1.35 × 104 can be obtained.

  15. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    PubMed

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  16. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    SciTech Connect

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  17. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-11-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κE and/or magnetic κM components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  18. Characterization of complementary electric field coupled resonant surfaces

    NASA Astrophysics Data System (ADS)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  19. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  20. Resonant excitation of coupled skyrmions by spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Dai, Y. Y.; Wang, H.; Yang, T.; Zhang, Z. D.

    2016-12-01

    Resonant excitations of coupled skyrmions in Co/Ru/Co nanodisks activated by spin-transfer torque (STT) have been studied by micromagnetic simulations. It is found that STT is an effective method to manipulate skyrmion dynamics. Unlike the dynamics driven by a microwave field, two skyrmions with opposite chiralities move synchronously in the same direction when they are driven by STT, which makes it easier to observe the dynamics of coupled skyrmions in experiments. Resonant excitations of coupled skyrmions can be controlled by changing the frequency or amplitude ratio of a dual-frequency alternating current (AC). In addition, the magnetostatic interaction between the two skyrmions plays an important role in the dynamics of coupled skyrmions.

  1. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  2. Coherence Resonance of Small World Networks with Adaptive Coupling

    NASA Astrophysics Data System (ADS)

    Miyakawa, Kenji

    2015-06-01

    The phenomenon of coherence resonance (CR) in small world networks with adaptive coupling is investigated by modeling a real experimental situation with a photosensitive Belousov-Zhabotinsky reaction. We show that both spatial synchronization and temporal coherence of noise-induced firings can be considerably improved by adjusting control parameters, such as the degree of connectivity and the coupling strength. A small fraction of possible long-range connections is enough to obtain a great enhancement in CR.

  3. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Beaudoin, Félix; Lachance-Quirion, Dany; Coish, W. A.; Pioro-Ladrière, Michel

    2016-11-01

    Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin- and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order ˜1 MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double-dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.

  4. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  5. Indirect coupling between two cavity modes via ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Hyde, Paul; Bai, Lihui; Harder, Michael; Match, Christophe; Hu, Can-Ming

    2016-10-01

    We experimentally realize an indirect coupling between two cavity modes via strong coupling with ferromagnetic resonance in Yttrium Iron Garnet. We find that some indirectly coupled modes of this system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. The properties of the indirectly coupled modes can be controlled using an external magnetic field or by tuning the cavity height. The relation between cavity transmission and the relative phase difference between cavity modes should be useful for developing tunable optical devices and improved information processing technologies.

  6. N-leg spin-S Heisenberg ladders: A density-matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Ramos, F. B.; Xavier, J. C.

    2014-03-01

    We investigate the N-leg spin-S Heisenberg ladders by using the density matrix renormalization group method. We present estimates of the spin gap Δs and of the ground-state energy per site e∞N in the thermodynamic limit for ladders with widths up to six legs and spin S≤5/2. We also estimate the ground-state energy per site e∞2D for the infinite two-dimensional spin-S Heisenberg model. Our results support that for ladders with semi-integer spins the spin excitation is gapless for N odd and gapped for N even, whereas for integer spin ladders the spin gap is nonzero, independent of the number of legs. Those results agree with the well-known conjectures of Haldane and Sénéchal-Sierra for chains and ladders, respectively. We also observe edge states for ladders with N odd, similar to what happens in spin chains.

  7. Plasmon coupling in vertical split-ring resonator metamolecules

    PubMed Central

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I.; Sun, Greg; Tsai, Din Ping

    2015-01-01

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity. PMID:26043931

  8. Plasmon coupling in vertical split-ring resonator metamolecules.

    PubMed

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I; Sun, Greg; Tsai, Din Ping

    2015-06-05

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity.

  9. Strong coupling between whispering gallery modes and chromium ions in ruby

    NASA Astrophysics Data System (ADS)

    Farr, Warrick G.; Goryachev, Maxim; Creedon, Daniel L.; Tobar, Michael E.

    2014-08-01

    We report the study of interactions between cavity photons and paramagnetic Cr3+ spins in a ruby (Cr3+:Al2O3) whispering gallery mode (WGM) resonator. Examining the system at microwave frequencies and millikelvin temperatures, spin-photon couplings up to 610 MHz or about 5% of photon energy are observed between the impurity spins and high quality factor (Q >105) WGM. Large tunability and spin-spin interaction allows operation in the strong coupling regime. The system exhibits behavior not predicted by the usual Tavis-Cummings model because of interactions within the two-level spin bath, and the existence of numerous photonic modes.

  10. Out-of-unison resonance in weakly nonlinear coupled oscillators

    PubMed Central

    Hill, T. L.; Cammarano, A.; Neild, S. A.; Wagg, D. J.

    2015-01-01

    Resonance is an important phenomenon in vibrating systems and, in systems of nonlinear coupled oscillators, resonant interactions can occur between constituent parts of the system. In this paper, out-of-unison resonance is defined as a solution in which components of the response are 90° out-of-phase, in contrast to the in-unison responses that are normally considered. A well-known physical example of this is whirling, which can occur in a taut cable. Here, we use a normal form technique to obtain time-independent functions known as backbone curves. Considering a model of a cable, this approach is used to identify out-of-unison resonance and it is demonstrated that this corresponds to whirling. We then show how out-of-unison resonance can occur in other two degree-of-freedom nonlinear oscillators. Specifically, an in-line oscillator consisting of two masses connected by nonlinear springs—a type of system where out-of-unison resonance has not previously been identified—is shown to have specific parameter regions where out-of-unison resonance can occur. Finally, we demonstrate how the backbone curve analysis can be used to predict the responses of forced systems. PMID:25568619

  11. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect

    Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  12. New Torsion Balance Search for Spin-Spin Forces

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Heckel, Blayne; Adelberger, Eric

    2007-04-01

    We report preliminary results from our new torsion balance search for interactions coupling polarized electron spins. We record the torque on a pendulum containing 10^23 spin-polarized electrons as a function of its angle with respect to large sources of spin-polarized electrons placed outside the torsion balance apparatus. Results can be interpreted as constraints on axion-like pseudoscalar couplings, the exchange of general low-mass bosons constrained only by rotational and translational invariance, and on forces mediated by the Nambu-Goldstone bosons that would arise in the context of spontaneously broken Lorentz symmetry. These Goldstone bosons, often referred to as the ``ghost condensate'' because they have a negative kinetic term in the Lagrangian stabilized by higher order terms, are particularly interesting because the energy scale accessible to our experiment is the scale on which they could contribute either to Dark Energy or Dark Matter. We will present the first experimental search for the unique signature of the ghost condensate's interaction with Standard Model fermions.

  13. Photon transfer in a system of coupled superconducting microwave resonators

    SciTech Connect

    Muirhead, C. M. Gunupudi, B.; Colclough, M. S.

    2016-08-28

    A novel scheme is proposed for the study of energy transfer in a pair of coupled thin film superconducting microwave resonators. We show that the transfer could be achieved by modulating the kinetic inductance and that this has a number of advantages over earlier theoretical and experimental schemes, which use modulation of capacitance by vibrating nanobars or membranes. We show that the proposed scheme lends itself to the study of the classical analogues of Rabi and Landau-Zener-Stueckelberg oscillations and Landau-Zener transitions using experimentally achievable parameters. We consider a number of ways in which energy transfer (photon shuttle) between the two resonators could be achieved experimentally.

  14. Photon transfer in a system of coupled superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Muirhead, C. M.; Gunupudi, B.; Colclough, M. S.

    2016-08-01

    A novel scheme is proposed for the study of energy transfer in a pair of coupled thin film superconducting microwave resonators. We show that the transfer could be achieved by modulating the kinetic inductance and that this has a number of advantages over earlier theoretical and experimental schemes, which use modulation of capacitance by vibrating nanobars or membranes. We show that the proposed scheme lends itself to the study of the classical analogues of Rabi and Landau-Zener-Stueckelberg oscillations and Landau-Zener transitions using experimentally achievable parameters. We consider a number of ways in which energy transfer (photon shuttle) between the two resonators could be achieved experimentally.

  15. Anomalous magnetic fluctuations in superconducting Sr2RuO4 revealed by 101Ru nuclear spin-spin relaxation

    NASA Astrophysics Data System (ADS)

    Manago, Masahiro; Yamanaka, Takayoshi; Ishida, Kenji; Mao, Zhiqiang; Maeno, Yoshiteru

    2016-10-01

    We carried out 101Ru nuclear quadrupole resonance (NQR) measurement on superconducting (SC) Sr2RuO4 under zero magnetic field (H =0 ) and found that the nuclear spin-spin relaxation rate 1 /T2 is enhanced in the SC state. The 1 /T2 measurement in the SC state under H =0 is effective for detecting slow magnetic fluctuations parallel to the quantized axis of the nuclear spin. Our results indicate that low-energy magnetic fluctuations perpendicular to the RuO2 plane emerge when the superconductivity sets in, which is consistent with the previous 17O-NQR result that the nuclear spin-lattice relaxation rate 1 /T1 of the in-plane O site exhibits anomalous behavior in the SC state. The enhancement of the magnetic fluctuations in the SC state is unusual and suggests that the fluctuations are related to the unconventional SC pairing. We suggest that this phenomenon is a consequence of the spin degrees of freedom of the spin-triplet pairing.

  16. Analysis of coupled resonator optical waveguide gyroscope based on periodically modulated coupling and circumferences

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Zhang, Hailiang; Yang, Junbo; Zhang, Jingjing; Wu, Wenjun; Chang, Shengli

    2016-12-01

    Based on periodically modulated coupling and circumferences, we developed a new structure for coupled resonator optical waveguide (CROW) gyroscopes. Its sensitivity and resolution were significantly improved. With our new structure, which overcomes the individual limitations of the previous schemes, the sensitivity and resolution of our gyroscope are higher than those with coupling-coefficient modulation alone and circumference modulation alone. The resolution of the gyroscope gradually declines with increasing resonator propagation loss; when the quality factor Q ≤ 2 ×106 , the height of the center resonance peak of the transmission band decreases by more than 90%. Fortunately, this effect can be weakened by increasing the circumference difference. We also numerically analyzed the influence of manufacturing errors on the performance of the gyroscope. We found that the fluctuations of radius have a greater influence than the fluctuations of quality factor.

  17. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  18. Collective behavior of quantum resonators coupled to a metamaterial

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier; Rousseau, Emmanuel

    2016-09-01

    We study a device that consist of quantum resonators coupled to a mesoscopic photonic structure, such as a metasurface or a 2D metamaterial. For metasurfaces, we use surface Bloch modes in order to reach various coupling regimes between the metasurface and a quantum emitter, modelized semi-classically by an oscillator. Using multiple scattering theory and complex plane techniques, we show that the coupling can be characterized by means of a pole-and-zero structure. The regime of strong coupling is shown to be reached when the pole-and- zero pair is broken. For 2D metamaterial, we show the possibility of controlling optically the opening or closing of a gap.

  19. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    SciTech Connect

    Devolder, Thibaut

    2016-04-21

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  20. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  1. Superconducting flux qubit capacitively coupled to an LC resonator

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Inomata, K.; Koshino, K.; Billangeon, P.-M.; Nakamura, Y.; Tsai, J. S.

    2014-01-01

    We study the system where a superconducting flux qubit is capacitively coupled to an LC resonator. In three devices with different coupling capacitance, the magnitude of the dispersive shift is enhanced by the third level of the qubit and quantitatively agrees with the theory. We show by numerical calculation that the capacitive coupling plays an essential role for the enhancement in the dispersive shift. We investigate the coherence properties in two of these devices, which are in the strong-dispersive regime, and show that the qubit energy relaxation is currently not limited by the coupling. We also observe the discrete ac-Stark effect, a hallmark of the strong-dispersive regime, in accordance with the theory.

  2. Rho-nucleon tensor coupling and charge-exchange resonances

    NASA Astrophysics Data System (ADS)

    De Conti, C.; Galeão, A. P.; Krmpotić, F.

    2000-11-01

    The Gamow-Teller resonance in 208Pb is discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction, generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction.

  3. Optical Nyquist filters based on silicon coupled resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Sung, Jiun-Yu; Wong, Chi Yan; Cheng, Zhenzhou; Chow, Chi Wai; Tsang, Hon Ki

    2014-10-01

    We propose an integrated optical Nyquist filter based on silicon coupled resonator optical waveguides (CROW). The designed filter can shape the 28 Gbaud QPSK spectrum to a spectrum having 0.2 roll-off raised cosine shape with 6-dB bandwidth equals to the baud rate. The impact of the fabrication tolerance induced coupling coefficients error on the figure of merits of the filter is considered. The filter overall performance is investigated in a Nyquist-WDM system and compared with a 4th order super Gaussian filter.

  4. Resonant self-pulsations in coupled nonlinear microcavities

    SciTech Connect

    Grigoriev, Victor; Biancalana, Fabio

    2011-04-15

    A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.

  5. Coupled-resonator-induced-transparency concept for wavelength routing applications.

    PubMed

    Mancinelli, M; Guider, R; Bettotti, P; Masi, M; Vanacharla, M R; Pavesi, L

    2011-06-20

    The presence of coupled resonators induced transparency (CRIT) effects in side-coupled integrated spaced sequence of resonators (SCISSOR) of different radii has been studied. By controlling the rings radii and their center to center distance, it is possible to form transmission channels within the SCISSOR stop-band. Two different methods to exploit the CRIT effect in add/drop filters are proposed. Their performances, e. g. linewidth, crosstalk and losses, are examined also for random variations in the structural parameters. Finally, few examples of high performances mux/demux structures and 2 × 2 routers based on these modified SCISSOR are presented. CRIT based SCISSOR optical devices are particularly promising for ultra-dense wavelength division multiplexing applications.

  6. Coupling thermal atomic vapor to an integrated ring resonator

    NASA Astrophysics Data System (ADS)

    Ritter, R.; Gruhler, N.; Pernice, W. H. P.; Kübler, H.; Pfau, T.; Löw, R.

    2016-10-01

    Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom-cavity systems.

  7. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    NASA Astrophysics Data System (ADS)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  8. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    PubMed Central

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  9. Characterizing a Superconducting Resonator with Frequency-Compensated Tunable Coupling

    NASA Astrophysics Data System (ADS)

    Wenner, James; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; White, T. C.; Barends, R.; Chen, Y.; Fowler, A. G.; Jeffrey, E.; Mutus, J. Y.; Roushan, P.; Sank, D.; Martinis, John M.

    2015-03-01

    Deterministic quantum state transfer between devices on different chips requires the ability to transfer quantum states between traveling qubits and fixed logic qubits. Reflections must be minimized to avoid energy loss and phase interference; this requires tunable coupling to an inter-chip line while the two devices are at equal frequencies. To achieve this, we present a 6GHz superconducting coplanar resonator with tunable coupling to a 50 Ohm transmission line. We compensate for the resulting shift in resonator frequency by simultaneously tuning a second SQUID. We further demonstrate the device coherence and the ability both to release a single-frequency shaped pulse into the transmission line and to efficiently capture a shaped pulse, prerequisites for efficient inter-chip deterministic quantum state transfer.

  10. Monitoring microbial metabolites using an inductively coupled resonance circuit

    PubMed Central

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-01-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power. PMID:26264183

  11. Monitoring microbial metabolites using an inductively coupled resonance circuit.

    PubMed

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G; Rümmeli, Mark H; de Visser, J Arjan G M; Schmidt, Oliver G; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-12

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  12. Surface-Wave Coupling to Single Phononic Subwavelength Resonators

    NASA Astrophysics Data System (ADS)

    Benchabane, Sarah; Salut, Roland; Gaiffe, Olivier; Soumann, Valérie; Addouche, Mahmoud; Laude, Vincent; Khelif, Abdelkrim

    2017-09-01

    We propose to achieve manipulation of mechanical vibrations at the micron scale by exploiting the interaction of individual, isolated mechanical resonators with surface acoustic waves. We experimentally investigate a sample consisting of cylindrical pillars individually grown by focused-ion-beam-induced deposition on a piezoelectric substrate, exhibiting different geometrical parameters and excited by a long-wavelength surface elastic wave. The mechanical displacement is strongly confined in the resonators, as shown by field maps obtained by laser scanning interferometry. A tenfold displacement field enhancement compared to the vibration at the surface is obtained, revealing that the energy is efficiently coupled. The spatial distribution of the elastic energy at the surface is governed by the geometrical characteristics of the resonators and can therefore be controlled by frequency tuning the elastic wave source. The results show the potential of the proposed approach to achieve dynamic control of surface phonons at the microscale or nanoscale.

  13. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  14. Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

    SciTech Connect

    Arena,D.; Vescovo, E.; Kao, C.; Guan, Y.; Bailey, W.

    2006-01-01

    We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni{sub 81}Fe{sub 19}/Cu/Co{sub 93}Zr{sub 7} trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 deg), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precessional oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.

  15. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  16. Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2007-01-01

    Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.

  17. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    SciTech Connect

    Jin, L.

    2016-07-15

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  18. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  19. Λ and Σ resonances coupled to vector and pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Khemchandani, K. P.; Martínez Torres, A.; Nagahiro, H.; Hosaka, A.

    2013-09-01

    The vector and pseudoscalar meson-baryon systems have been studied in a coupled channel formalism recently, which has lead to findings of some important results. The formalism consists of obtaining a detailed vector meson-baryon interaction originating from the s-, t-, u-channel diagrams and a contact interaction, all derived from the Lagrangian invariant under the gauge of the hidden local symmetry (HLS). We find the contributions from all the diagrams (except s-channel) to be important, contrary to the systems involving light Goldstone bosons where Weinberg-Tomozawa interaction gives the dominant contribution. Further, the transitions between the pseudoscalar meson-baryon (PB) and vector meson-baryon (VB) channels is obtained consistently by extending the Kroll-Ruderman theorem by replacing the photon by a vector meson, assuming the vector meson dominance. We find that the low-lying resonances couple strongly to VB channels. This information can be very useful in studying processes like photoproduction of low-lying resonances. Further, we find dynamical generation of new states in PB-VB coupled systems which can be related to the known resonances: Λ(2000), Σ(1750), Σ(1940) and Σ(2000).

  20. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    PubMed

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  1. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering

  2. The effect of coupling line loss in microstrip to dielectric resonator coupling

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.

    1990-01-01

    The interaction between a dielectric resonator and a microstrip transmission line is fundamentally a field phenomenon. However, the model of Figure 1b widely is used to represent the arrangement in Figure 1a, and predicts the behavior encountered in practice. The microstrip line of length l = n(lambda)/4 between the input and coupling planes and the lambda/4 open-circuit stub usually is assumed to be lossless. This paper considers the effect of coupling line loss on the unloaded-Q and coupling coefficient beta of the combination. It shows that transmission line loss can cause the decrease in unloaded-Q that has been observed to occur with tight coupling, and limits the coupling coefficient to a much lower value than would be obtained with a lossless coupling line.

  3. An antenna-coupled split-ring resonator for biosensing

    NASA Astrophysics Data System (ADS)

    Torun, H.; Cagri Top, F.; Dundar, G.; Yalcinkaya, A. D.

    2014-09-01

    An antenna-coupled split-ring resonator-based microwave sensor is introduced for biosensing applications. The sensor comprises a metallic ring with a slit and integrated monopole antennas on top of a dielectric substrate. The backside of the substrate is attached to a metallic plate. Integrated antennas are used to excite the device and measure its electromagnetic characteristics. The resonant frequency of the device is measured as 2.12 GHz. The characteristics of the device with dielectric loading at different locations across its surface are obtained experimentally. The results indicate that dielectric loading reduces the resonant frequency of the device, which is in good agreement with simulations. The shift in resonant frequency is employed as the sensor output for biomolecular experiments. The device is demonstrated as a resonant biomolecular sensor where the interactions between heparin and fibroblast growth factor 2 are probed. The sensitivity of the device is obtained as 3.7 MHz/(μg/ml) with respect to changes in concentration of heparin.

  4. Coupled modes of the resonance box of the guitar.

    PubMed

    Elejabarrieta, M J; Ezcurra, A; Santamaria, C

    2002-05-01

    Vibrations of the resonance box of the guitar have been studied by means of the modal analysis technique and the finite-element method. An expert craftsman constructed the guitar box with all the structures, internal and external, characteristic of a real instrument for the experimental measurements. The boundary conditions were chosen in order to clarify the soundboard-back interaction only via the internal air coupling. The numerical model allows one to study the influence of each component on the whole box, and the contribution of the modes of the components (wooden box and its parts, and air), to the coupled modes by calculating their participation factors. The coupled modes of the guitar box are discussed taking into account both the finite-element and modal analysis results.

  5. Coupled modes of the resonance box of the guitar

    NASA Astrophysics Data System (ADS)

    Elejabarrieta, M. J.; Ezcurra, A.; SantamaríA, C.

    2002-05-01

    Vibrations of the resonance box of the guitar have been studied by means of the modal analysis technique and the finite-element method. An expert craftsman constructed the guitar box with all the structures, internal and external, characteristic of a real instrument for the experimental measurements. The boundary conditions were chosen in order to clarify the soundboard-back interaction only via the internal air coupling. The numerical model allows one to study the influence of each component on the whole box, and the contribution of the modes of the components (wooden box and its parts, and air), to the coupled modes by calculating their participation factors. The coupled modes of the guitar box are discussed taking into account both the finite-element and modal analysis results.

  6. Transmission of asymmetric coupling double-ring resonator

    NASA Astrophysics Data System (ADS)

    Zhao, C. Y.; Tan, W. H.

    2015-02-01

    Based on the asymmetry between waveguide and double ring, the transmission and phase characteristics of coupled double-ring resonators are analyzed systemically. It is shown that the initial detuning determines the shape of transmission spectrum. The transmission spectrum of all-optical analog to electromagnetic inducted transparency (EIT) is controlled by tuning the asymmetric coupled parameter and loss. With the increasing of asymmetric coupled parameter, the transmission spectrum changes from EIT-like profile to Lorenz profile. The EIT-like transmission spectrum results from the interference between two Lorenz profiles. With the increasing of the loss, the transmission spectrum full frequency width at half-maximum broadens and its peak declines. The detuning and loss also make significant influences on the phase profile.

  7. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    PubMed Central

    Hajjaj, Amal Z.; Hafiz, Md Abdullah; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage. PMID:28134329

  8. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    NASA Astrophysics Data System (ADS)

    Hajjaj, Amal Z.; Hafiz, Md Abdullah; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  9. Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals.

    PubMed

    Agrawal, Ankit; Singh, Ajay; Yazdi, Sadegh; Singh, Amita; Ong, Gary K; Bustillo, Karen; Johns, Robert W; Ringe, Emilie; Milliron, Delia J

    2017-04-12

    Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.

  10. Hysteresis behaviors of the crystal field diluted general spin-S Ising model

    NASA Astrophysics Data System (ADS)

    Akıncı, Ümit

    2017-10-01

    Hysteresis characteristics of the crystal field diluted general Spin-S (S > 1) Blume-Capel model have been studied within the effective field approximation. Particular emphasis has been paid on the large negative valued crystal field and low temperature region and it has been demonstrated for this region that, rising dilution of the crystal field results in decreasing number of windowed hysteresis loops. The evolution of the multiple hysteresis loop with the dilution of the crystal field has been investigated and physical mechanism behind this evolution has been given.

  11. Effective indirect multi-site spin-spin interactions in the s-d(f) model

    NASA Astrophysics Data System (ADS)

    Komarov, K. K.; Dzebisashvili, D. M.

    2017-10-01

    Using the diagram technique for Matsubara Green's functions it is shown that the dynamics of the localized spin subsystem in the s-d(f) model can be described in terms of an effective spin model with multi-site spin-spin interactions. An exact representation of the action for the effective purely spin model is derived as an infinite series in powers of s-d(f) exchange interaction J. The indirect interactions of the 2nd, 3rd and 4th order are discussed.

  12. Reduced matrix elements of spin-spin interactions for the atomic f-electron configurations

    NASA Astrophysics Data System (ADS)

    Yeung, Y. Y.

    2014-03-01

    A re-examination of some major references on the intra-atomic magnetic interactions over the last six decades reveals that there exist some gaps or puzzles concerning the previous studies of the spin-spin interactions for the atomic f-shell electrons. Hence, tables are provided for the relevant reduced matrix elements of the four double-tensor operators zr (r=1,2,3, and 4) of rank 2 in both the orbital and spin spaces. The range of the tables covers all states of the configurations from f4 to f7.

  13. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field.

    PubMed

    Tayler, Michael C D; Theis, Thomas; Sjolander, Tobias F; Blanchard, John W; Kentner, Arne; Pustelny, Szymon; Pines, Alexander; Budker, Dmitry

    2017-09-01

    We review experimental techniques in our laboratory for nuclear magnetic resonance (NMR) in zero and ultralow magnetic field (below 0.1 μT) where detection is based on a low-cost, non-cryogenic, spin-exchange relaxation free (87)Rb atomic magnetometer. The typical sensitivity is 20-30 fT/Hz(1/2) for signal frequencies below 1 kHz and NMR linewidths range from Hz all the way down to tens of mHz. These features enable precision measurements of chemically informative nuclear spin-spin couplings as well as nuclear spin precession in ultralow magnetic fields.

  14. Nanoparticle arrays: From magnetic response to coupled plasmon resonances

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Schedin, F.; Pisano, G.; Thackray, B.; Thomas, P. A.; Grigorenko, A. N.

    2014-09-01

    We study optical properties of optomagnetic metamaterials consisting of regular arrays of single and double Au nanodots (nanopillars). Using a combination of data from variable angle spectroscopic ellipsometry, transmission, and reflection measurements, we identify localized plasmon resonances of gold nanodots and measure their dependence on dot size and substrate type. We demonstrate that arrays of Au nanopillars can support narrow collective plasmon resonances coupled to in-plane and out-of-plane localized plasmon resonances. The spectral positions of these plasmon modes are extracted from the angular dependence of the transmission and reflection spectra for two beam polarizations. We show that nanoarrays exhibit dramatically different optical response on conductive and nonconductive substrates and study its angular dependence. The optical response of nanoarrays is described well by coupled dipole approximation. The procedure for extracting optical constants of metamaterials based on ellipsometry is discussed and applied to our samples resulting in a calculated negative index of refraction for double-dot arrays at green light.

  15. PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS

    SciTech Connect

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-22

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.

  16. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  17. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    SciTech Connect

    Ahmadivand, Arash Sinha, Raju; Pala, Nezih

    2016-06-15

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  18. Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling.

    PubMed

    Wu, Ling-Na; Luo, Xin-Yu; Xu, Zhi-Fang; Ueda, Masahito; Wang, Ruquan; You, L

    2017-04-27

    Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap resonance in comparison with the free-space situation. A theory is developed that well explains the experimental results. Our work offers a clear physical insight into and analytical understanding of how to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance.

  19. Superharmonic resonances in a strongly coupled cavity-atom system

    NASA Astrophysics Data System (ADS)

    Buks, Eyal; Deng, Chunqing; Orgazzi, Jean-Luc F. X.; Otto, Martin; Lupascu, Adrian

    2016-09-01

    We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity. The fundamental cavity mode is externally driven and the response is investigated in the weak nonlinear regime. We find that near the crossing point, at which the resonance frequencies of the cavity mode and qubit coincide, the sign of the Kerr coefficient changes, and consequently the type of nonlinear response changes from softening to hardening. Furthermore, the cavity response exhibits superharmonic resonances (SHR) when the ratio between the qubit frequency and the cavity fundamental mode frequency is tuned close to an integer value. The nonlinear response is characterized by the method of intermodulation and both signal and idler gains are measured. The experimental results are compared with theoretical predictions and good qualitative agreement is obtained. The SHRs have potential for applications in quantum amplification and generation of entangled states of light.

  20. Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling

    PubMed Central

    Wu, Ling-Na; Luo, Xin-Yu; Xu, Zhi-Fang; Ueda, Masahito; Wang, Ruquan; You, L.

    2017-01-01

    Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap resonance in comparison with the free-space situation. A theory is developed that well explains the experimental results. Our work offers a clear physical insight into and analytical understanding of how to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance. PMID:28447670

  1. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes.

    PubMed

    Tipikin, D S; Earle, K A; Freed, J H

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.

  2. Continuum channel coupling of shape resonances in N2

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Kakar, Sandeep; Rosenberg, R. A.

    1992-02-01

    We have measured vibrational branching ratios for 2σ-1u photoionization of N2 in an effort to elucidate fundamental aspects of continuum channel coupling. Calculations have shown that photoejection of a 2σu electron from N2 should be influenced by a shape resonance in the 3σg →ɛσu photoionization channel and that this continuum channel coupling can result in deviations from Franck-Condon behavior for the resulting N+2(B 2Σ+u) ion. In the present study, the N2 molecules are ionized by monochromatic synchrotron radiation (25coupling between the 2σ-1u and 3σ-1g ionization channels. However, our results exhibit significant discrepancies with theory. The areas of agreement and disagreement suggest useful avenues of further study to clarify the nature of continuum channel coupling in molecular photoionization.

  3. Entanglement resonance in driven spin chains

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zueco, David; Kohler, Sigmund; Lutz, Eric; Hänggi, Peter

    2009-03-01

    We consider a spin-1/2 anisotropic XY model with time-dependent spin-spin coupling as means of creating long-distance entanglement. We predict the emergence of significant entanglement between the first spin and the last spin whenever the ac part of the coupling has a frequency matching the Zeeman splitting. In particular, we find that the concurrence assumes its maximum with a vanishing dc part. Mapping the time-dependent Hamiltonian within a rotating-wave approximation to an effective static model provides qualitative and quantitative understanding of this entanglement resonance. Numerical results for the duration of the entanglement creation and its length dependence substantiate the effective static picture.

  4. Modulating the Near Field Coupling through Resonator Displacement in Planar Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Mohan Rao, S. Jagan; Kumar, Deepak; Kumar, Gagan; Chowdhury, Dibakar Roy

    2017-01-01

    We present the effect of vertical displacements between the resonators inside the unit cell of planar coupled metamaterials on their near field coupling and hence on the terahertz (THz) wave modulation. The metamolecule design consists of two planar split- ring resonators (SRRs) in a unit cell which are coupled through their near fields. The numerically simulated transmission spectrum is found to have split resonances due to the resonance mode hybridization effect. With the increase in displacement between the near field coupled SRRs, this metamaterial system shows a transition from coupled to uncoupled state through merging of the split resonances to the single intrinsic resonance. We have used a semi-analytical model describing the effect of displacements between the resonators and determine that it can predict the numerically simulated results. The outcome could be useful in modulating the terahertz waves employing near field coupled metamaterials, hence, can be useful in the development of terahertz modulators and frequency tunable devices in future.

  5. Coupled-mode-theory framework for nonlinear resonators comprising graphene

    NASA Astrophysics Data System (ADS)

    Christopoulos, Thomas; Tsilipakos, Odysseas; Grivas, Nikolaos; Kriezis, Emmanouil E.

    2016-12-01

    A general framework combining perturbation theory and coupled-mode theory is developed for analyzing nonlinear resonant structures comprising dispersive bulk and sheet materials. To allow for conductive sheet materials, a nonlinear current term is introduced in the formulation in addition to the more common nonlinear polarization. The framework is applied to model bistability in a graphene-based traveling-wave resonator system exhibiting third-order nonlinearity. We show that the complex conductivity of graphene disturbs the equality of electric and magnetic energies on resonance (a condition typically taken for granted), due to the reactive power associated with the imaginary part of graphene's surface conductivity. Furthermore, we demonstrate that the dispersive nature of conductive materials must always be taken into account, since it significantly impacts the nonlinear response. This is explained in terms of the energy stored in the surface current, which is zeroed-out when linear dispersion is neglected. The results obtained with the proposed framework are compared with full-wave nonlinear finite-element simulations with excellent agreement. Very low characteristic power for bistability is obtained, indicating the potential of graphene for nonlinear applications.

  6. Coupled-mode-theory framework for nonlinear resonators comprising graphene.

    PubMed

    Christopoulos, Thomas; Tsilipakos, Odysseas; Grivas, Nikolaos; Kriezis, Emmanouil E

    2016-12-01

    A general framework combining perturbation theory and coupled-mode theory is developed for analyzing nonlinear resonant structures comprising dispersive bulk and sheet materials. To allow for conductive sheet materials, a nonlinear current term is introduced in the formulation in addition to the more common nonlinear polarization. The framework is applied to model bistability in a graphene-based traveling-wave resonator system exhibiting third-order nonlinearity. We show that the complex conductivity of graphene disturbs the equality of electric and magnetic energies on resonance (a condition typically taken for granted), due to the reactive power associated with the imaginary part of graphene's surface conductivity. Furthermore, we demonstrate that the dispersive nature of conductive materials must always be taken into account, since it significantly impacts the nonlinear response. This is explained in terms of the energy stored in the surface current, which is zeroed-out when linear dispersion is neglected. The results obtained with the proposed framework are compared with full-wave nonlinear finite-element simulations with excellent agreement. Very low characteristic power for bistability is obtained, indicating the potential of graphene for nonlinear applications.

  7. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  8. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    PubMed Central

    2010-01-01

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors. PMID:20672066

  9. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    SciTech Connect

    Pierre, Mathieu Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-06-09

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  10. Wireless power feeding to mobile objects with strongly coupled resonance

    NASA Astrophysics Data System (ADS)

    Koizumi, Masayoshi; Komurasaki, Kimiya; Mizuno, Yoshihiro; Shibata, Takayuki; Kano, Kazuhiko

    2011-04-01

    Wireless power feeding transmission is now in demand in the various fields. Electrical products of this modern age such as mobile phones, laptop monitoring sensors and electrical vehicles are spreading everywhere. Those electric device need to feed frequently because amount of consumed electric power of those devices are gradually increasing. Nonetheless content of battery show signs of leveling off. This is why it is important to develop a method of wireless power transmitting system with high efficiency. Strongly coupled magnetic resonance is the latest type of wireless power transmission technology. The main feature of this technology is the effectiveness in the mid-range that covers many attractive applications. The theory of transmitting efficiency is derived as a function of impedance ratio r and RF frequency ω.

  11. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  12. Quantum plasmon resonances and coupling of small nanoparticles

    NASA Astrophysics Data System (ADS)

    Mario, Zapata-Herrera; Jefferson, Florez; Angela, Camacho

    2013-03-01

    In this work, we propose to extend a theoretical quantum approach to describe the behavior of the optical response as a function of both size and shape of small metal nanoparticles. By using classical models as well as quantum approaches we also want to study the nanoparticle's permittivity in the whole range of nanometers in order to define the different regimes at the nanoscale. In particular, we are interested in examining size and shape effects on the enhancement field factor and the absorption spectra for comparing with possible experiments. We study the role played by Localized Surface Plasmon Resonance in the coupling of small metal nanoparticles pairs by varying the distance between them by using an analogy between molecular electronic states and plasmonic excitations as a function of particle size and shape. We pay special atention on tunnelling and multipolar effects in order to predict the regime of dimer formation. The main interest in understanding the plasmon resonances of small nanoparticles lies in the applications in biology, catalysis and quantum optics.

  13. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T).

  14. Focused Magnetic Resonance Coupling Coils for Electromagnetic Therapy Applications.

    PubMed

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-11-01

    This paper presents the design and construction of a pair of figure-of-eight coils, coupled by magnetic resonance coupling (MRC), which could generate (150 V/m per Ampere) electric field at the focal points for electromagnetic therapy related applications. The E field generated at the targeted site would be significantly enhanced under the same amount of current flowing through the MRC figure-of-eight coils compared to normal coils, due to the superposition of E field contributed by the coils. Furthermore, the MRC figure-of-eight coil is designed and the results are verified in theory, simulation, and experiments. In the ex vivo tissue measurement, 35% current and 82% ohmic power improvements were observed. Since it can enhance the current and ohmic power, the MRC figure-of-eight coils are promising solutions for electromagnetic therapy applications. The potential applications of the coils include noninvasive radio frequency (RF) stimulation, thermoacoustic imaging, electromagnetic field therapies, and RF ablation, etc.

  15. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.

    PubMed

    Konrad, Alexander; Kern, Andreas M; Brecht, Marc; Meixner, Alfred J

    2015-07-08

    A major aim in experimental nano- and quantum optics is observing and controlling the interaction between light and matter on a microscopic scale. Coupling molecules or atoms to optical microresonators is a prominent method to alter their optical properties such as luminescence spectra or lifetimes. Until today strong coupling of optical resonators to such objects has only been observed with atom-like systems in high quality resonators. We demonstrate first experiments revealing strong coupling between individual plasmonic gold nanorods (GNR) and a tunable low quality resonator by observing cavity-length-dependent nonlinear dephasing and spectral shifts indicating spectral anticrossing of the luminescent coupled system. These phenomena and experimental results can be described by a model of two coupled oscillators representing the plasmon resonance of the GNR and the optical fields of the resonator. The presented reproducible and accurately tunable resonator allows us to precisely control the optical properties of individual particles.

  16. Nuclear magnetic resonance predictions for graphenes: concentric finite models and extrapolation to large systems.

    PubMed

    Vähäkangas, Jarkko; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2013-04-07

    Nuclear magnetic resonance (NMR) data for graphenes are mainly lacking in the literature. We provide quantitative first-principles quantum-chemical calculations of NMR chemical shifts and shielding anisotropies as well as spin-spin couplings and anisotropies for increasingly large, hexagon-like fragments of graphene, hydrogenated graphene (graphane) and fluorinated graphene (fluorographene). Due to the rapid convergence of finite molecular model results, the parameter values in the innermost region of large flakes of these materials approach the bulk limit. For nuclear shieldings in the finite band-gap graphane and fluorographene systems, as well as deuterium quadrupole couplings in graphane, these limiting values are verified by periodic gauge-including projector augmented wave (PAW) calculations at corresponding theoretical levels. The periodic PAW wave method was used for all systems to obtain periodic structures. A quantum-chemical cluster approach was used with novel completeness-optimised basis sets to calculate both the shielding and coupling tensors for planar carbon nanoflakes of increasing size. The geometry of the innermost part of the nanoflakes as well as the nuclear shieldings converge toward the periodic counterparts. The cluster method allows the calculation of the spin-spin coupling tensors of all the graphenes and--in contrast to the periodic approach--all the NMR properties for the zero-band-gap graphene itself. The obtained parameters provide a plausible starting point for experimental NMR investigations of graphenes.

  17. Coherent interference induced transparency in self-coupled optical waveguide-based resonators.

    PubMed

    Zhou, Linjie; Ye, Tong; Chen, Jianping

    2011-01-01

    We propose a self-coupled optical waveguide (SCOW)-based resonator to generate an optical resonance analogous to electromagnetically induced transparency (EIT). The EIT-like effect is formed by the coherent interference between two resonance paths inherent to the SCOW resonator. For cascaded SCOW resonators, the spectrum they produce is significantly affected by the phase shift between them, with the EIT-like peak flattened or split as the two extreme cases. We also investigate the dispersion characteristics of an infinite array of SCOW resonators and show that the dispersion relation and group index in the EIT subband can be greatly changed by a small phase shift between the SCOW resonators.

  18. Fokker-Planck formalism in magnetic resonance simulations.

    PubMed

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  19. Fokker-Planck formalism in magnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  20. Coupled mode parametric resonance in a vibrating screen model

    NASA Astrophysics Data System (ADS)

    Slepyan, Leonid I.; Slepyan, Victor I.

    2014-02-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy exchange between the longitudinal and transverse modes of free oscillations is demonstrated. An exact analytical solution is found for the forced oscillations, where the coupling plays the role of a stabilizer. In a more general case, the harmonic analysis is used with neglect of the higher harmonics. Explicit expressions for all parameters of the steady nonlinear oscillations are determined. The domains are found where the analytically obtained steady oscillation regimes are stable. Over the frequency ranges, where the steady oscillations exist, a perfect correspondence is found between the amplitudes obtained analytically and numerically. Illustrations based on the analytical and numerical simulations are presented.

  1. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance

    NASA Astrophysics Data System (ADS)

    Wu, Gaojian; Nan, Tianxiang; Zhang, Ru; Zhang, Ning; Li, Shandong; Sun, Nian X.

    2013-10-01

    Resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites under the same electric and magnetic bias conditions. Resonant direct ME effect (DME) occurs at antiresonance frequency while resonant converse ME effect (CME) occurs at resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. A model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with experimental results.

  2. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling.

    PubMed

    Schneeweiss, Philipp; Zeiger, Sophie; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen

    2017-01-01

    We experimentally realize an optical fiber ring resonator that includes a tapered section with a subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as the out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75±1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.

  3. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling

    NASA Astrophysics Data System (ADS)

    Schneeweiss, Philipp; Zeiger, Sophie; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen

    2017-01-01

    We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.

  4. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Laser with resonators coupled by a dynamic hologram

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. B.; Golyanov, A. V.; Luk'yanchuk, B. S.; Ogluzdin, Valerii E.; Rubtsova, I. L.; Sugrobov, V. A.; Khizhnyak, A. I.

    1987-11-01

    The nature of operation of a laser with a phase-conjugate mirror utilizing multibeam interaction was found to have a considerable influence on the coupling of its resonator to the resonator of a laser used to pump the mirror. A system of this kind with resonators coupled by a dynamic hologram exhibited "soft" lasing in the presence of a self-pumped phase-conjugate mirror.

  5. SAW-LC coupled resonator wideband VCO for medical telemetry.

    PubMed

    Venkateswaran, Madhav; Hillig, Mark; Brown, James E; Stadnik, Paul J; Von Arx, Jeffrey A; Sutton, Brian; Stotts, Larry J

    2016-08-01

    Wireless links with implantable devices can help in real-time monitoring of symptoms, irregularities, implanted device efficacy and their reconfiguration. We present the design of a low-power wideband voltage controlled oscillator (VCO) to facilitate implantable wireless telemetry. A coupled SAW-LC resonator design combines high Q and spectral purity of a SAW element and tunability of an LC-tank. The designed 2.7 MHz bandwidth VCO is suitable for full duplex communication protocols in the MedRadio band with frequency agility and higher duty cycles, in conformance with FCC regulations. Output power at the fundamental frequency is above -7.5 dBm for a wide range of load impedances. Output power load insensitivity provides a wide margin for selection of communication system parameters, variability in device placement, temporal variation in tissue properties and flexibility for implants at different locations (e.g. heart, gastrointestinal tract, brain). The maximum output power variation in the entire 2.7 MHz band is limited to 1.3 dBm. Sensitivity of oscillation frequency to loading can be addressed by individual device calibration. The small size, component count and low DC power consumption (1.9 V, ~1.95 mW) is favorable for including in a miniaturized and integrated design assembly with a battery-powered implanted device.

  6. Acoustic metamaterials with coupled local resonators for broadband vibration suppression

    NASA Astrophysics Data System (ADS)

    Hu, Guobiao; Tang, Lihua; Das, Raj; Gao, Shiqiao; Liu, Haipeng

    2017-02-01

    This paper investigates a modified acoustic metamaterial system with local resonators coupled through linear springs. The proposed acoustic metamaterial system can provide three band gaps for broadband vibration suppression. First, the band structure of the modified acoustic metamaterial is calculated by using Bloch's theorem under the assumption of infinite lattice. The existence of three band gaps is confirmed in the band structure. Effects of mass and spring parameters on the band gap behaviour of the modified metamaterial are investigated through a dimensionless parametric study. Based on the parametric study, optimal dimensionless parameters are proposed to achieve maximal total band gap width in the low frequency range. Subsequently, a more realistic finite lattice model is established. The transmittances of the conventional and modified metamaterial systems are compared. The three band gaps predicted from transmittances and broadband vibration suppression behaviour are consistent with the predictions from infinite lattice model using Bloch's theorem. Finally, the time-domain responses are simulated and the superiority of the modified acoustic metamaterial over the conventional one is demonstrated.

  7. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun; Wang, Shen-yun

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  8. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants.

  9. Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators

    NASA Astrophysics Data System (ADS)

    Yang, Chui-Ping; Su, Qi-Ping; Zheng, Shi-Biao; Nori, Franco

    2016-04-01

    In a circuit consisting of two or more resonators, the intercavity crosstalk is inevitable, which could create some problems, such as degrading the performance of quantum operations and the fidelity of various quantum states. The focus of this work is to propose a crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators, which is important in large-scale quantum information processing and communication in a network consisting of resonators or cavities. In this work, we consider 2 N resonators of different frequencies, which are coupled to a three-level quantum system (qutrit). By applying a strong pulse to the coupler qutrit, we show that an effective Hamiltonian can be constructed for simultaneously coupling multiple pairs of resonators. The main advantage of this proposal is that the effect of inter-resonator crosstalks is greatly suppressed by using resonators of different frequencies. In addition, by employing the qutrit-resonator dispersive interaction, the intermediate higher-energy level of the qutrit is virtually excited and thus decoherence from this level is suppressed. This effective Hamiltonian can be applied to implement quantum operations with photonic qubits distributed in different resonators. As one application of this Hamiltonian, we show how to simultaneously generate multiple Einstein-Podolsky-Rosen pairs of photonic qubits distributed in 2 N resonators. Numerical simulations show that it is feasible to prepare two high-fidelity EPR photonic pairs using a setup of four one-dimensional transmission line resonators coupled to a superconducting flux qutrit with current circuit QED technology.

  10. Gap Plasmon Resonance in a Suspended Plasmonic Nanowire Coupled to a Metallic Substrate.

    PubMed

    Miyata, Masashi; Holsteen, Aaron; Nagasaki, Yusuke; Brongersma, Mark L; Takahara, Junichi

    2015-08-12

    We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.

  11. [Spin-spin interaction upon introduction of a spin label into immunoglobulins M and G at the carbohydrate moiety].

    PubMed

    Timofeev, V P; Nikol'skiĭ, D O; Lapuk, V A; Aleshkin, V A

    2002-01-01

    By spin labeling the monoclonal IgM and normal IgG at the carbohydrate moiety with 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl, preparations were obtained whose ESR spectra indicate rapid exchange spin-spin interactions between two spin labels. It was shown that, in the case of spin-labeled IgM, this spectrum is determined by a glycopeptide noncovalently bound to IgM, which incorporates two spin labels.

  12. Multi-gap individual and coupled split-ring resonator structures.

    PubMed

    Penciu, R S; Aydin, K; Kafesaki, M; Koschny, Th; Ozbay, E; Economou, E N; Soukoulis, C M

    2008-10-27

    We present a systematic numerical study, validated by accompanied experimental data, of individual and coupled split ring resonators (SRRs) of a single rectangular ring with one, two and four gaps. We discuss the behavior of the magnetic resonance frequency, the magnetic field and the currents in the SRRs, as one goes from a single SRR to strongly interacting SRR pairs in the SRR plane. We show that coupling of the SRRs along the E direction results to shift of the magnetic resonance frequency to lower or higher values, depending on the capacitive or inductive nature of the coupling. Strong SRR coupling along propagation direction usually results to splitting of the single SRR resonance into two distinct resonances, associated with peculiar field and current distributions.

  13. Air-coupled ultrasound stimulated optical vibrometry for resonance analysis of rubber tubes.

    PubMed

    Zhang, Xiaoming; Kinnick, Randall R; Greenleaf, James F

    2009-01-01

    Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful to better understand the coupling effects of the surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo.

  14. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  15. Characterization of the non-resonant radiation damping in coupled cavity photon magnon system

    NASA Astrophysics Data System (ADS)

    Rao, J. W.; Kaur, S.; Fan, X. L.; Xue, D. S.; Yao, B. M.; Gui, Y. S.; Hu, C.-M.

    2017-06-01

    We have experimentally investigated the non-resonant radiation damping in the coupled cavity photon-magnon system in addition to the resonant radiation damping which results in the linewidth exchange between the magnon-like and photon-like hybrid modes. The contribution of this non-resonant effect becomes apparent when the cavity photon-magnon resonance frequencies are mismatched. By carefully examining the change in the linewidth and the shift in the magnon resonance as a function of the coupling strength between the cavity photons and magnons, we can quantitatively describe this non-resonant radiation damping by including an additional relaxation channel for the hybridized photon-magnon system. This experimental realization and theoretical modelling of the non-resonant radiation damping in the cavity photon-magnon system may help in the design and adaptation of these systems for practical applications.

  16. Quasi Eighth-Mode Substrate Integrated Waveguide (SIW) Fractal Resonator Filter Utilizing Gap Coupling Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin

    2016-09-01

    In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.

  17. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties.

    PubMed Central

    Salamon, Z; Macleod, H A; Tollin, G

    1997-01-01

    A variant of surface plasmon resonance (SPR) spectroscopy has been developed that involves a coupling of plasmon resonances in a thin metal film and waveguide modes in a dielectric overcoating. This new technique is referred to as coupled plasmon-waveguide resonance (CPWR) spectroscopy. It combines a greatly enhanced sensitivity (due to increased electromagnetic field intensities at the dielectric surface) and spectral resolution (due to decreased resonance linewidths), with the ability to directly measure anisotropies in refractive index and optical absorption coefficient in a dielectric film adsorbed onto the surface of the overcoating. Experimental data obtained with an egg phosphatidylcholine bilayer are presented to document these properties. PMID:9370473

  18. Tunable terahertz plasmon-induced transparency with aperture-side-coupled disk resonators

    NASA Astrophysics Data System (ADS)

    Nozhat, Najmeh

    2017-05-01

    An analog of electromagnetically induced transparency (EIT) in plasmonic double disk resonators aperture-side-coupled to an InSb bus waveguide at the terahertz (THz) frequency region has been investigated. When there is a destructive interference coupling between these two disk resonators, the proposed plasmonic structure exhibits a transparency window. The simulation results show that the EIT-like response is dependent on the coupling distance between two disk resonators. Since the permittivity of InSb is modified by varying temperature, the central wavelength of the EIT-like transmission can be controlled by tuning the temperature. The proposed plasmonic structure may have applications in THz integrated circuits.

  19. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  20. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    NASA Astrophysics Data System (ADS)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  1. Characterization of brain tumours with spin-spin relaxation: pilot case study reveals unique T 2 distribution profiles of glioblastoma, oligodendroglioma and meningioma.

    PubMed

    Laule, Cornelia; Bjarnason, Thorarin A; Vavasour, Irene M; Traboulsee, Anthony L; Wayne Moore, G R; Li, David K B; MacKay, Alex L

    2017-09-11

    Prolonged spin-spin relaxation times in tumour tissue have been observed since some of the earliest nuclear magnetic resonance investigations of the brain. Over the last three decades, numerous studies have sought to characterize tumour morphology and malignancy using quantitative assessment of T 2 relaxation times, although attempts to categorize and differentiate tumours have had limited success. However, previous work must be interpreted with caution as relaxation data were typically acquired using a variety of multiple echo sequences with a range of echoes and T 2 decay curves and were frequently fit with monoexponential analysis. We defined the distribution of T 2 components in three different human brain tumours (glioblastoma, oligodendroglioma, meningioma) using a multi-echo sequence with a greater number of echoes and a longer acquisition window than previously used (48 echoes, data collection out to 1120 ms) with no a priori assumptions about the number of exponential components contributing to the T 2 decay. T 2 relaxation times were increased in tumour tissue and each tumour showed a distinct T 2 distribution profile. Tumours have complex and unique compartmentalization characteristics. Quantitative assessment of T 2 relaxation in brain cancer may be useful in evaluating different grades of brain tumours on the basis of their T 2 distribution profile, and has the potential to be a non-invasive diagnostic tool which may also be useful in monitoring therapy. Further study with a larger sample size and varying grades of tumours is warranted.

  2. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.

    PubMed

    Zhang, Yundong; Zhang, Xuenan; Wang, Ying; Zhu, Ruidong; Gai, Yulong; Liu, Xiaoqi; Yuan, Ping

    2013-04-08

    We theoretically propose and experimentally perform a novel dispersion tuning scheme to realize a tunable Fano resonance in a coupled-resonator-induced transparency (CRIT) structure coupled Mach-Zehnder interferometer. We reveal that the profile of the Fano resonance in the resonator coupled Mach-Zehnder interferometers (RCMZI) is determined not only by the phase shift difference between the two arms of the RCMZI but also by the dispersion (group delay) of the CRIT structure. Furthermore, it is theoretically predicted and experimentally demonstrated that the slope and the asymmetry parameter (q) describing the Fano resonance spectral line shape of the RCMZI experience a sign reversal when the dispersion of the CRIT structure is tuned from abnormal dispersion (fast light) to normal dispersion (slow light). These theoretical and experimental results indicate that the reversible Fano resonance which holds significant implications for some attractive device applications such as highly sensitive biochemical sensors, ultrafast optical switches and routers can be realized by the dispersion tuning scheme in the RCMZI.

  3. Synchronization in a mechanical resonator array coupled quadratically to a common electromagnetic field mode.

    PubMed

    León Aveleyra, G; Holmes, C A; Milburn, G J

    2014-06-01

    Optomechanical systems are based on the nonlinear coupling between the electromagnetic (EM) field in a resonator and one or more bulk mechanical resonators such that the frequency of the EM field resonator depends on the displacement coordinates of each of the mechanical resonators. In this paper we consider the case of multiple mechanical resonators interacting with a common field for which the frequency of the EM resonance is tuned to depend quadratically (to lowest order) on the displacement of the resonators. By using the method of amplitude equations around a critical point, it is shown that groups of near-identical bulk mechanical resonators with low driving fail to synchronize unless their natural frequencies are identical, in which case the resulting system can exhibit multistability.

  4. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  5. Regulating the surface plasmon resonance coupling between Au-nanoparticle and Au-film

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Li, Kewu; Zhang, Rui; Jing, Ning; Chen, Youhua; Chen, Yuanyuan; Wang, Zhibin

    2017-01-01

    In this paper, we report the coupling between the localized surface plasmon resonance (LSPR) of Au-nanoparticles and surface plasmon resonance (SPR) of the Au-film. According to the conditions for SPR excitation of the classical Kretschmann-Raether structure with 50nm Au thin film, the commonly used classes of spherical Au-nanoparticle is studied and optimized. We used the finite element analysis (COMSOL Multiphysics 5.0), to simulate the coupling. The results from calculation and simulation indicate that the resonant plasmonic coupling between Au-nanoparticles and Au-film could lead to a large field enhancement and thus improve SPR. We demonstrate that the resonant plasmonic coupling could be regulated by the size of nanoparticles, the distance between nanoparticles .

  6. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity.

    PubMed

    Chiu, Chien-Chang; Chen, Wei-Min; Sung, Kuen-Wei; Hsiao, Fu-Li

    2017-03-20

    We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

  7. Research on transmission characteristics of side-coupled rectangular-ring resonator

    NASA Astrophysics Data System (ADS)

    Cui, Luna; Yu, Li

    2016-11-01

    We investigate the characteristics of resonant modes in the side-coupled rectangular-ring resonator (SRR). The results show we can manipulate the resonant wavelengths of TMa mode and TMs mode by adjusting the outer wall width (Lx1) or the inner wall width (Lx2) of the ring resonators, and the effects of coupling distance on the full-width at half-maximum (FWHM) of resonant spectra are discussed. In sensing application, the proposed structure can work as a highly sensitive plasmonic nanosensor with a sensitivity of 1000 nm/RIU and a figure of merit (FOM) of 67. The values are comparable to periodic structures and the structures based on Fano resonance.

  8. On the calculation of resonances by means of analytic continuation in coupling constant

    NASA Astrophysics Data System (ADS)

    Horáček, J.; Paidarová, I.

    2010-11-01

    The method of analytic continuation in the coupling constant in combination with the use of statistical Padé approximation designed to determine resonance parameters is introduced. It is shown that standard quantum chemistry codes provide accurate data which can be used for the process of analytic continuation in coupling constant. Resonance parameters, both the energy and the width, can be inferred for real molecules with accuracy comparable to other more elaborated methods.

  9. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    PubMed

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  10. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems.

    PubMed

    Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L

    2016-02-01

    Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.

  11. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems

    NASA Astrophysics Data System (ADS)

    Furman, Gregory B.; Goren, Shaul D.; Meerovich, Victor M.; Sokolovsky, Vladimir L.

    2016-02-01

    Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.

  12. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    NASA Astrophysics Data System (ADS)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  13. Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-07-01

    A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.

  14. Vanishing chiral couplings in the large-N{sub C} resonance theory

    SciTech Connect

    Portoles, Jorge; Rosell, Ignasi; Ruiz-Femenia, Pedro

    2007-06-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-N{sub C} chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/N{sub C} expansion.

  15. Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields.

    PubMed

    Longhi, Stefano

    2014-10-15

    We suggest a method for trapping photons in quasi-one-dimensional waveguide or coupled-resonator lattices, which is based on an optical analogue of the Aharonov-Bohm cages for charged particles. Light trapping results from a destructive interference of Aharonov-Bohm type induced by a synthetic magnetic field, which is realized by periodic modulation of the waveguide/resonator propagation constants/resonances.

  16. Reconfigurable Optical Elements Based on Single and Coupled Microdisk Resonators with Quantum DOT Active Media

    DTIC Science & Technology

    2012-06-29

    thinned using a thinner to obtain one micron thick films. The dye doped films were later patterned using either EBL or photolithography. Scanning...established for the microdisk resonators. Scanning electron microscope images of single and coupled microring resonators fabricated using EBL are shown

  17. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  18. Coupled-resonator-induced transparency in two microspheres as the element of angular velocity sensing

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Tang, Jun; Guo, Hao; Zhang, Wei; Liu, Jian-Hua; Liu, Jun; Xue, Chen-Yang; Zhang, Wen-Dong

    2016-11-01

    We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect. We analyzed the theoretical model of the two coupled microspheres, and derived the coupled-resonator-induced transparency (CRIT) transfer function, the effective phase shift, and the group delay. Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure. We calculated that the group index of the two-coupled sphere reaches n g = 180.46, while the input light at a wavelength of 1550 nm. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225504, 61171056, and 91123036) and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China.

  19. Zero-coupling-gap degenerate band edge resonators in silicon photonics.

    PubMed

    Burr, Justin R; Reano, Ronald M

    2015-11-30

    Resonances near regular photonic band edges are limited by quality factors that scale only to the third power of the number of periods. In contrast, resonances near degenerate photonic band edges can scale to the fifth power of the number periods, yielding a route to significant device miniaturization. For applications in silicon integrated photonics, we present the design and analysis of zero-coupling-gap degenerate band edge resonators. Complex band diagrams are computed for the unit cell with periodic boundary conditions that convey characteristics of propagating and evanescent modes. Dispersion features of the band diagram are used to describe changes in resonance scaling in finite length resonators. Resonators with non-zero and zero coupling gap are compared. Analysis of quality factor and resonance frequency indicates significant reduction in the number of periods required to observe fifth power scaling when degenerate band edge resonators are realized with zero-coupling-gap. High transmission is achieved by optimizing the waveguide feed to the resonator. Compact band edge cavities with large optical field distribution are envisioned for light emitters, switches, and sensors.

  20. Tunable band notch filters by manipulating couplings of split ring resonators.

    PubMed

    Sun, Haibin; Wen, Guangjun; Huang, Yongjun; Li, Jian; Zhu, Weiren; Si, Li-Ming

    2013-11-01

    The couplings between single/dual split ring resonators (SRRs) and their mirror images in a rectangular waveguide are systematically investigated through theoretical analysis and experimental measurements. Such couplings can be manipulated mechanically by rotating the SRRs along a dielectric rod and/or shifting the SRRs up/down along the sidewall of the rectangular waveguide, resulting in shifts of the resonant frequencies and modulations of the resonant magnitudes. These controllable properties of SRRs pave the routers toward designing tunable band notch filters. In particular, it is experimentally demonstrated that the designed filters possess 7.5% tuning range in the X-band.

  1. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

  2. Simple model of a Feshbach resonance in the strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Wasak, T.; Krych, M.; Idziaszek, Z.; Trippenbach, M.; Avishai, Y.; Band, Y. B.

    2014-11-01

    We use the dressed potentials obtained in the adiabatic representation of two coupled channels to calculate s -wave Feshbach resonances in a three-dimensional spherically symmetric potential with an open channel interacting with a closed channel. Analytic expressions for the s -wave scattering length a and number of resonances are obtained for a piecewise constant model with a piecewise constant interaction of the open and closed channels near the origin. We show analytically and numerically that, for strong enough coupling strength, Feshbach resonances can exist even when the closed channel does not have a bound state.

  3. Enhanced four-wave mixing via photonic bandgap coupled defect resonances.

    PubMed

    Blair, S

    2005-05-16

    Frequency conversion efficiency via four-wave mixing in coupled 1-D photonic crystal defect structures is studied numerically. In structures where all interacting frequencies coincide with intraband defect resonances, energy conversion efficiencies greater than 5% are predicted. Because the frequency spacings are determined by the free-spectral range, thereby requiring long defects for small spacings using intraband resonances, four-wave mixing using coupled-defect miniband resonances in more compact structures is also studied. Conversion efficiencies of greater than 1% are obtained in this case.

  4. Dispersive Thermometry with a Josephson Junction Coupled to a Resonator

    NASA Astrophysics Data System (ADS)

    Saira, O.-P.; Zgirski, M.; Viisanen, K. L.; Golubev, D. S.; Pekola, J. P.

    2016-08-01

    We embed a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range of 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 μ K /√{Hz } . At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.

  5. Resonant elements contactless coupled to bolometric micro-stripes

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; Silva-López, Manuel; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, José M.; González, Francisco J.; Alda, Javier

    2015-08-01

    One of the main technical difficulties in the fabrication of optical antennas working as light detectors is the proper design and manufacture of auxiliary elements as load lines and signal extraction structures. These elements need to be quite small to reach the location of the antennas and should have a minimal effect on the response of the device. Unfortunately this is not an easy task and signal extraction lines resonate along with the antenna producing a complex signal that usually masks the one given by the antenna. In order to decouple the resonance from the transduction we present in this contribution a parametric analysis of the response of a bolometric stripe that is surrounded by resonant dipoles with different geometries and orientations. We have checked that these elements should provide a signal proportional to the polarization state of the incoming light.

  6. Spin effects and baryon resonance dynamics in φ-meson photoproduction at few GeV

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Lee, T.-S. H.

    2003-06-01

    The diffractive φ-meson photoproduction amplitude is dominated by the Pomeron-exchange process and contains the terms that govern the spin-spin and spin-orbital interactions. We show that these terms are responsible for the spin-flip transitions at forward photoproduction angles and appear in the angular distributions of φ→K+K- decay in reactions with unpolarized and polarized photon beams. At large momentum transfers, the main contribution to the φ-meson photoproduction is found to be due to the excitation of nucleon resonances. Combined analysis of ω and φ photoproduction indicates strong Okubo-Zweig-Iizuka rule violation in φNN* couplings. We also show that the spin observables are sensitive to the dynamics of φ-meson photoproduction at large angles and could help to distinguish different theoretical models of nucleon resonances. Predictions for spin effects in φ-meson photoproduction are presented for future experimental tests.

  7. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  8. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  9. A novel resonant inductive magnetic coupling wireless charger with TiO2 compound interlayer

    NASA Astrophysics Data System (ADS)

    Ho, S. L.; Wang, Junhua; Fu, W. N.; Sun, Mingui

    2011-04-01

    A nonradiative energy transformer exploiting TiO2 nano-powder and (C4H6O2)x latex as a combined interlayer is proposed. The transformer works on `strong coupling' between two coils (i.e., resonators), which are physically separated from each other by distances that are longer than the characteristic sizes of each resonator, to realize efficient wireless energy transfer. Nonradiative energy transfer between the two resonators is facilitated through the coupling of their resonant-field evanescent tails. Finite element analysis and experiments have been carried out to facilitate quantitative comparison. The efficiency of the proposed system is 70.6% at 5 cm and 26.3% at 15 cm at an operating frequency of 1.74 MHz. When compared with typical magnetic inductive coupling energy transmission devices with low dielectric constants, the efficiency of the proposed system is much higher.

  10. Monolithic integration of high-Q wedge resonators with vertically coupled waveguides

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Prtljaga, Nikola; Pavesi, Lorenzo; Pucker, Georg; Ghulinyan, Mher

    2013-05-01

    Typical UHQ resonators, microspheres and microtoroids, lack the possibility of integration into lightwave circuits due to their planarity constrains. In this context, CMOS-compatible alternatives in the form of wedge resonators have been proposed. However, the mode retraction from the wedge cavity inhibits the possibility to side couple with integrated waveguides and therefore, halts the full integration within a planar lightwave circuit. In this work, we propose and demonstrate experimentally the complete integration of wedge resonators with vertically coupled dielectric bus waveguides. This coupling scheme permits to use arbitrary gaps, geometries and materials, enables simplified and precise control of the light injection into the cavity and opens the door to an industrial mass-fabrication of UHQ resonators.

  11. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    NASA Astrophysics Data System (ADS)

    Zanotto, Simone; Tredicucci, Alessandro

    2016-04-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  12. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    PubMed Central

    Zanotto, Simone; Tredicucci, Alessandro

    2016-01-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results. PMID:27091489

  13. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators.

    PubMed

    Zanotto, Simone; Tredicucci, Alessandro

    2016-04-19

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  14. Optically induced strong intermodal coupling in mechanical resonators at room temperature

    SciTech Connect

    Ohta, R.; Okamoto, H.; Yamaguchi, H.; Hey, R.; Friedland, K. J.

    2015-08-31

    Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperatures and provides a wide variety of applications of integrated mechanical systems.

  15. Optimization of coupled device based on optical fiber with crystalline and integrated resonators

    NASA Astrophysics Data System (ADS)

    Bassir, David; Salzenstein, Patrice; Zhang, Mingjun

    2017-05-01

    Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.

  16. Lower Bounds on the Frequency Estimation Error in Magnetically Coupled MEMS Resonant Sensors.

    PubMed

    Paden, Brad E

    2016-02-01

    MEMS inductor-capacitor (LC) resonant pressure sensors have revolutionized the treatment of abdominal aortic aneurysms. In contrast to electrostatically driven MEMS resonators, these magnetically coupled devices are wireless so that they can be permanently implanted in the body and can communicate to an external coil via pressure-induced frequency modulation. Motivated by the importance of these sensors in this and other applications, this paper develops relationships among sensor design variables, system noise levels, and overall system performance. Specifically, new models are developed that express the Cramér-Rao lower bound for the variance of resonator frequency estimates in terms of system variables through a system of coupled algebraic equations, which can be used in design and optimization. Further, models are developed for a novel mechanical resonator in addition to the LC-type resonators.

  17. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  18. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system.

    PubMed

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-31

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  19. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    PubMed Central

    2011-01-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip. PMID:22039926

  20. Localized Surface Plasmons Selectively Coupled to Resonant Light in Tubular Microcavities

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Li, Shilong; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Saei Ghareh Naz, Ehsan; Ma, Libo; Schmidt, Oliver G.

    2016-06-01

    Vertical gold nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold nanogap on the microcavities, which is conveniently achieved by rolling up specially designed thin dielectric films into three-dimensional microtube cavities. The coupling phenomenon is explained by a modified quasipotential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  1. Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide.

    PubMed

    Ghulinyan, M; Ramiro-Manzano, F; Prtljaga, N; Guider, R; Carusotto, I; Pitanti, A; Pucker, G; Pavesi, L

    2013-04-19

    We report on a theoretical and experimental study of the optical coupling between a whispering-gallery type resonator and a waveguide lying on different planes. In contrast to the usual in-plane geometry, the present vertical one is characterized by an oscillatory behavior of the effective coupling as a function of the vertical gap. This behavior manifests itself as oscillations in both the resonance peak waveguide transmission and the mode quality factor. An analytical description based on coupled-mode theory and a two-port beam-splitter model of the waveguide-resonator vertical coupling is developed for arbitrary phase-matching conditions and is successfully used to interpret the experimental observations.

  2. Tunable acoustic filters assisted by coupling vibrations of a flexible Helmholtz resonator and a waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wei, Zhi; Zhang, Xiang; Fan, Li; Qu, Jianmin; Zhang, Shu-yi

    2017-04-01

    We report a coupling structure to realize tunable sound transmission in various frequency ranges. The structure, consisting of a flexible Helmholtz resonator and a waveguide, excites three main coupling modes that generate bandpass and bandstop filter effects. Importantly, the coupling modes are controlled by membrane tension or the device structure. These properties show that a tunable filter can be realized simply by regulating the coupling vibration states by changing the membrane tension with different electromagnetic forces. In applications, the flexible Helmholtz resonator operating at its multiple resonances can be fabricated on the sub-wavelength scale, making it easy to achieve acoustic devices with small size for noise suppression or sound control at low frequencies.

  3. Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Jin, Da-Yu; Jing, Jun; Lam, Chi-Hang; You, J. Q.

    2015-09-01

    We study a tripartite quantum system consisting of a coplanar-waveguide (CPW) resonator and a nanomechanical resonator (NAMR) connected by a flux qubit, where the flux qubit has a large detuning from both resonators. By a unitary transformation and a second-order approximation, we obtain a strong and controllable (i.e., magnetic-field-dependent) effective coupling between the NAMR and the CPW resonator. Due to the strong coupling, vacuum Rabi splitting can be observed from the voltage-fluctuation spectrum of the CPW resonator. We further study the properties of single-photon transport as inferred from the reflectance or equivalently the transmittance. We show that the reflectance and the corresponding phase-shift spectra both exhibit doublet of narrow spectral features due to vacuum Rabi splitting. By tuning the external magnetic field, the reflectance and the phase shift can be varied from 0 to 1 and -π to π , respectively. The results indicate that this hybrid quantum system can act as a quantum router.

  4. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  5. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  6. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    SciTech Connect

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-28

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  7. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-01

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  8. Suppression of arbitrary internal coupling in a quantum register

    NASA Astrophysics Data System (ADS)

    Stollsteimer, Marcus; Mahler, Günter

    2001-11-01

    For the implementation of a quantum computer it is necessary to exercise complete control over the Hamiltonian of the used physical system. For nuclear magnetic resonance quantum computing the effectively acting Hamiltonian can be manipulated via pulse sequences. Here we examine a register consisting of N selectively addressable spins with pairwise coupling between each spin pair. We show that complete decoupling of the spins is possible, independent of the particular form of the spin-spin interaction. The proposed method based on orthogonal arrays is efficient in the sense that the effort regarding time and amount of pulses increases only polynomially with the size N of the register. However, the effect of external control errors in terms of inaccurate control pulses eventually limits the achievable precision.

  9. Solution structure of murine epidermal growth factor: determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry

    SciTech Connect

    Montelione, G.T.; Wuethrich, K.; Nice, E.C.; Burgess, A.W.; Scheraga, H.A.

    1987-08-01

    The polypeptide backbone fold in the solution structure of murine epidermal growth factor has been determined by nuclear magnetic resonance spectroscopy and distance geometry calculations. The results are based on nearly complete sequence-specific resonance assignments and on 333 distance and dihedral-angle constraints; these were determined from nuclear Overhauser effect measurements, identification of hydrogen-bonded amide protons, the known locations of disulfide bonds, and backbone vicinal spin-spin coupling constants. The polypeptide chains of the protein is arranged into two distinct domains. The structures of these domains were determined independently in separate calculations and then combined to obtain an overall view of the protein. The backbone fold thus determined includes the regular backbone structure elements that were previously identified using different techniques for the analysis of the nuclear magnetic resonance data. The distance geometry calculations also provided additional details about the conformations of bends and loops and about the twists of the ..beta..-sheets.

  10. Investigation of fabrication and resonant optical coupling in various 2D micro-resonator structures in a UV210 polymer

    NASA Astrophysics Data System (ADS)

    Pluchon, D.; Huby, N.; Lhermite, H.; Duval, D.; Bêche, B.

    2012-08-01

    In this paper, we report on the design and the overall realization of micro-resonators based on the development of adequate processes on a UV210 polymer. These micro-optical structures are developed by deep ultraviolet lithography allowing fabrication of nano-structured devices by means of low cost and reproducible processes. Two families of resonant micro-structures shaped on disk and stadium with various sizes are investigated. Structural and optical imaging characterizations have been carried out to ensure their ability to act as resonant integrated micro-structures. At first, scanning electron microscopy and Nomarsky microscopy studies confirm the UV-light process resolution down to 450 nm developed on a UV210 polymer. Then, optical characterizations have been performed as regards intensity and spectral properties of such micro-resonators. Field intensity measurements in visible and infrared ranges have been realized and validate light propagation by evanescent coupling between waveguides and micro-resonators. Finally, spectral analyses on TE modes demonstrate the presence of optical resonances with 1.45 nm and 2.19 nm free spectral range values for respectively disk and stadium micro-structures. The UV210 polymer appears appropriate for the realization of micro-structures requiring a few hundred nanometers gap-scale while maintaining adequate spectral properties for versatile applications in telecommunication and metrology.

  11. Analysis of light propagation in slotted resonator based systems via coupled-mode theory.

    PubMed

    Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt

    2011-04-25

    Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties.

  12. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.

    PubMed

    Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice

    2013-06-12

    Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.

  13. Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance

    NASA Astrophysics Data System (ADS)

    Xiao, S.; Yoon, Y.; Lee, Y.-H.; Bird, J. P.; Ochiai, Y.; Aoki, N.; Reno, J. L.; Fransson, J.

    2016-04-01

    A critical aspect of quantum mechanics is the nonlocal nature of the wave function, a characteristic that may yield unexpected coupling of nominally isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work, we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasibound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, intruder, continuum. According to this theory, the observed distortions in the Fano resonance arise only in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.

  14. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    SciTech Connect

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  15. Resonance-enhanced waveguide-coupled silicon-germanium detector

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Ram, R. J.

    2016-02-01

    A photodiode with 0.55 ± 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  16. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-09-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors.

  17. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    PubMed Central

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-01-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors. PMID:27640809

  18. Advanced coupled-micro-resonator architectures for dispersion and spectral engineering applications

    NASA Astrophysics Data System (ADS)

    Van, Vien

    2009-02-01

    We report recent progress in the design and fabrication of coupled optical micro-resonators and their applications in realizing compact OEIC devices for optical spectral engineering. By leveraging synthesis techniques for analog and digital electrical circuits, advanced coupled-microring device architectures can be realized with the complexity and functionality approaching that of state-of-the-art microwave filters. In addition, the traveling wave nature of microring resonators can be exploited to realize novel devices not possible with standing wave resonators. Applications of coupledmicro- resonator devices in realizing complex optical transfer functions for amplitude, phase and group delay engineering will be presented. Progress in the practical implementation of these devices in the Silicon-on-Insulator OEIC platform will be highlighted along with the challenges and potential for constructing very high order optical filters using coupledmicroring architectures.

  19. Resonance width distribution in RMT: Weak-coupling regime beyond Porter-Thomas

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Savin, Dmitry V.

    2015-05-01

    We employ the random matrix theory (RMT) framework to revisit the distribution of resonance widths in quantum chaotic systems weakly coupled to the continuum via a finite number M of open channels. In contrast to the standard first-order perturbation theory treatment we do not a priori assume the resonance widths being small compared to the mean level spacing. We show that to the leading order in weak coupling the perturbative χ^2M distribution of the resonance widths (in particular, the Porter-Thomas distribution at M = 1) should be corrected by a factor related to a certain average of the ratio of square roots of the characteristic polynomial (“spectral determinant”) of the underlying RMT Hamiltonian. A simple single-channel expression is obtained that properly approximates the width distribution also at large resonance overlap, where the Porter-Thomas result is no longer applicable.

  20. Miniaturized optical gyroscope using active three-dimensional vertically coupled resonators

    NASA Astrophysics Data System (ADS)

    Chen, Jiayang; Zhang, Hao; Jin, Junjie; Lin, Jian; Zhao, Long; Bi, Zhuanfang; Huang, Anping; Xiao, Zhisong

    2015-10-01

    We propose and analyze a gyroscope using active three-dimensional vertically coupled resonators (3D-VCRs), which allows for loss compensation, unidirectional propagation, and a larger sensing area while maintaining the same bulk volume. For the ideal uniform case, the minimum detectable rotation rate ΔΩmin of the active 3D-VCR gyroscope can be decreased by above three orders of magnitude after optimization compared with the passive case. The minimal measurable rotation rates of the 3D-VCR gyroscope, the loss-compensated coupled resonator optical waveguide (LC-CROW) gyroscope, and the equivalent resonant waveguide optical gyroscope (RWOG) decrease with a higher number N of the resonators. Finally, it is shown that the uniform active 3D-VCR gyroscope has a better resolution ΔΩmin than the equivalent LC-CROW and RWOG.

  1. Bifurcation, mode coupling and noise in a nonlinear multimode superconducting microwave resonator

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Ithier, G.; Meeson, P. J.

    2013-08-01

    The addition of nonlinearity to an harmonic resonator provides a route to complex dynamical behaviour of resonant modes, including coupling between them. We present a superconducting device that makes use of the nonlinearity of Josephson junctions to introduce a controlled, tunable, nonlinear inductance to a thin film coplanar waveguide resonator. Considering the device as a potential quantum optical component in the microwave regime, we create a sensitive bifurcation amplifier and then demonstrate spectroscopy of other resonant modes via the intermode coupling. We find that the sensitivity of the device approaches within a factor two quantitative agreement with a quantum model by Dykman but is limited by a noise that has its source(s) on-chip.

  2. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect

    Wisby, I. Tzalenchuk, A. Ya.; Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E.; Gwilliam, R.; Meeson, P. J.; Lindström, T.

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1 MHz and spin linewidths of 50–65 MHz.

  3. Measurements of complex coupling coefficients in a ring resonator of a laser gyroscope

    NASA Astrophysics Data System (ADS)

    Bessonov, A. S.; Makeev, A. P.; Petrukhin, E. A.

    2017-07-01

    A method is proposed for measuring complex coupling coefficients in a ring optical resonator in the absence of an active gas mixture. A setup is described on which measurements are performed in ring resonators of ring He-Ne lasers with a wavelength of 632.8 nm. A model of backscattering field interference between conservative and dissipative sources is presented. Within the framework of this model, the unusual behaviour of backscattering fields in ring resonators observed in experiments is explained: a significant difference in the moduli of coupling coefficients of counterpropagating waves and variation of the magnitude of the total phase shift in a wide range. It is proposed to use this method as a metrological method when assembling and aligning a ring resonator of a laser gyroscope.

  4. Optical properties of surface plasmon resonances of coupled metallic nanorods.

    PubMed

    Smythe, Elizabeth J; Cubukcu, Ertugrul; Capasso, Federico

    2007-06-11

    We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

  5. Resonance Coupling in Plasmonic Nanomatryoshka Homo- and Heterodimers

    DTIC Science & Technology

    2016-08-16

    symmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction ...profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and...as spheres and rods have been stud- ied experimentally and theoretically for their energy levels and extinction cross-section properties.14

  6. Resonant coupling of Rayleigh waves through a narrow fluid channel causing extraordinary low acoustic transmission.

    PubMed

    Garcia-Chocano, Victor M; Nagaraj; Lòpez-Rios, Tomàs; Gumen, Lyudmila; Sànchez-Dehesa, Josè; Krokhin, Arkadii

    2012-10-01

    Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid channel is predicted and experimentally observed. Although the coupling through a fluid (water) is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in the design of acoustic metamaterial screens and reflectors.

  7. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures.

    PubMed

    Butet, Jérémy; Martin, Olivier J F

    2014-12-01

    The coupling between metallic nanostructures is a common and easy way to control the optical properties of plasmonic systems. Even though the coupling between plasmonic oscillators has been widely studied in the linear regime, its influence on the nonlinear optical response of metallic nanostructures has been sparsely considered. Using a surface integral equation method, we investigate the second order nonlinear optical response of plasmonic metamolecules supporting Fano resonances revealing that the typical lineshape of Fano resonances is also clearly observable in the nonlinear regime. The physical mechanisms leading to nonlinear Fano resonances are revealed by the coupled oscillator model and the symmetry subgroup decomposition. It is found that the origin of the nonlinear scattered wave, i. e. the active plasmonic oscillator, can be selectively chosen. Furthermore, interferences between nonlinear emissions are clearly observed in specific configurations. The results presented in this article pave the way for the design of efficient nonlinear plasmonic metamolecules with controlled nonlinear radiation.

  8. Optimization of gyroscope properties with active coupled resonator optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Chen, Jiayang; Zhang, Hao; Jin, Junjie; Lin, Jian; Zhao, Long; Bi, Zhuanfang; Huang, Anping; Xiao, Zhisong

    2015-03-01

    Active coupled resonator optical waveguide (CROW) structure can significantly enhance the performance of optical gyroscope due to its loss compensation effect and highly dispersive properties. In this paper, we analyze the effect of optical gain and its induced noise, i.e. spontaneous emission noise, on the properties of the active CROWs. A thorough investigation of the impact of various disorder degrees on the performance of the active three dimensional vertically coupled resonators (3D-VCR) gyroscope has been performed. It shows how the disorder interacted with coupling coefficient affects the achievable resolution ΔΩmin of gyroscope, and the degree of disorder will supplant the propagation loss to become an ultimate limitation. Finally, it is shown that the active 3D-VCR gyroscope (the number of ring, N>6) has better resolution ΔΩmin than that of the equivalent resonant waveguide optical gyroscope (RWOG).

  9. Theory of beat-resonant coupling of electrostatic modes. [in nonuniform Vlasov plasma

    NASA Technical Reports Server (NTRS)

    Crawford, John David; Kaufman, Allan N.; Oberman, Carl; Johnston, Shayne

    1986-01-01

    A general expression is derived for the beat-resonant coupling electrostatic modes in a Vlasov plasma. The result for the coupling of two modes has a simple structure: the appropriate momentum gradient of the equilibrium particle distribution is weighted by a positive coupling coefficient and averaged over the resonance surface in momentum space. The contributions of all the resonance surfaces are then summed. This basic structure had been previously exhibited only for specific homogeneous plasma models. The present theory, which unifies and greatly simplifies these individual treatments, is based on a variational formulation of the Vlasov-Poisson equations. Using Lie transforms, the variational principle is reexpressed in oscillation-center variables, and then the nonlinear wave dynamics are obtained from the independent variations of the wave phase and the wave amplitude. The power of the method is then applied to a strongly magnetized, strongly inhomogeneous, non-neutral plasma model.

  10. Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED.

    PubMed

    Nataf, Pierre; Ciuti, Cristiano

    2011-11-04

    We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic "anisotropic" nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic "cat" state.

  11. Dynamical coupled-channels model of meson photo- and electroproduction in the nucleon resonance region

    NASA Astrophysics Data System (ADS)

    Sato, T.

    2007-12-01

    A dynamical approach of the meson production reaction for extracting nucleon resonance parameters has been developed. We report on the γ N Δ form factors extracted from the recent pion electroproduction data and the coupled-channels model of π N scattering up to W ≤ 2 GeV. An analysis of the resonance poles extracted using the speed-plot and time-delay methods is briefly discussed.

  12. A study of 15N- 15N and 15N- 13C spin couplings in some 15N labeled mesoionic 1-oxa and 1-thia-2,3,4-triazoles

    NASA Astrophysics Data System (ADS)

    Jaźwiński, J.; Staszewska, O.; Stefaniak, L.; Webb, G. A.

    1996-03-01

    15N- 15N and 15N- 13C spin-spin couplings are reported for seven 15N labeled 1-oxa and 1-thia-2,3,4-triazoles and three sydnonimines. For the former class of compounds the spin-spin coupling data show a close similarity between the N2N3 and N3N4 bonds which had not previously been suspected from chemical shift measurements.

  13. Localized one-dimensional single voxel magnetic resonance spectroscopy without J coupling modulations.

    PubMed

    Lin, Yanqin; Lin, Liangjie; Wei, Zhiliang; Zhong, Jianhui; Chen, Zhong

    2016-12-01

    To acquire single voxel localized one-dimensional (1) H magnetic resonance spectroscopy (MRS) without J coupling modulations, free from amplitude and phase distortions. A pulse sequence, named PRESSIR, is developed for volume localized MRS without J modulations at arbitrary echo time (TE). The J coupling evolution is suppressed by the J-refocused module that uses a 90° pulse at the midpoint of a double spin echo. The localization performance of the PRESSIR sequence was tested with a two-compartment phantom. The proposed sequence shows similar voxel localization accuracy as PRESS. Both PRESSIR and PRESS sequences were performed on MRS brain phantom and pig brain tissue. PRESS spectra suffer from amplitude and phase distortions due to J modulations, especially under moderate and long TEs, while PRESSIR spectra are almost free from distortions. The PRESSIR sequence proposed herein enables the acquisition of single voxel in-phase MRS within a single scan. It allows an enhanced signal intensity of J coupling metabolites and reducing undesired broad resonances with short T2s while suppressing J modulations. Moreover, it provides an approach for direct measurement of nonoverlapping J coupling peaks and of transverse relaxation times T2s. Magn Reson Med 76:1661-1667, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  14. Optical coupling and emission of metal-insulator confined circular resonators.

    PubMed

    Che, Kai-Jun; Lei, Mei-Xin; Cai, Zhi-Ping

    2013-02-25

    We numerically investigate the direct and indirect optical interactions of pair circular resonators laterally confined by metal-insulator waveguide. The direct optical interaction shows the split of quality (Q) factors of bonding and antibonding states only happens for thick insulator. The indirect optical interaction through a waveguide is proposed to control the modes resonance and collect the output emissions. The Q factors of resonant modes versus the coupling distance (width of waveguide) are studied. The results show whispering gallery modes(WGMs) engaged into interaction are strongly coupled with the guided waves of waveguide once its width is close to the cut-off width of guided waves, while the coupled mode of two WGMs is not limited by this condition. High Q factor mode, combined with a robust wide emission waveguide(close to the cut-off width of second-order guided waves), can be realized from the bonding states of WGM and coupled WGM with an added wave envelope in waveguide. In addition to the pair resonators, the studies on four resonators interacted with each other through waveguide are also addressed and wide waveguide output is anticipated.

  15. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-06-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.

  16. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Kim, Seonghwan; Van Neste, C. W.; Lee, Moonchan; Jeon, Sangmin; Thundat, Thomas

    2014-01-01

    A rapid method of obtaining photoacoustic spectroscopic signals for trace amounts of surface adsorbed molecules using a nanostructured coupled resonator array is described. Explosive molecules adsorbed on a nanoporous anodic aluminum oxide cantilever, which has hexagonally ordered nanowells with diameters and well-to-well distances of 35 nm and 100 nm, respectively, are excited using pulsed infrared (IR) light with a frequency matching the common mode resonance frequency of the coupled resonator. The common mode resonance amplitudes of the coupled resonator as a function of illuminating IR wavelength present a photoacoustic IR absorption spectrum representing the chemical signatures of the adsorbed explosive molecules. In addition, the mass of the adsorbed molecules as an orthogonal signal for quantitative analysis is determined by measuring the variation of the localized, individual mode resonance frequency of a cantilever on the array. The limit of detection of the ternary mixture of explosive molecules (1:1:1 of trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) is estimated to be ˜100 ng cm-2. These multi-modal signals enable us to perform quantitative and rapid chemical sensing and analysis in ambient conditions.

  17. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators.

    PubMed

    Smith, Clinton J; Shankar, Raji; Laderer, Matthew; Frish, Michael B; Loncar, Marko; Allen, Mark G

    2015-03-09

    We report the initial evaluation of a mid-infrared QCL-coupled silicon-on-sapphire ring resonator gas sensor. The device probes the N(2)O 2241.79 cm(-1) optical transition (R23 line) in the ν(3) vibrational band. N(2)O concentration is deduced using a non-linear least squares fit, based on coupled-mode theory, of the change in ring resonator Q due to gas absorption losses in the evanescent portion of the waveguide optical mode. These early experiments demonstrated response to 5000 ppmv N(2)O.

  18. Dynamic coupling of magnetic resonance modes in pairs of mesoscopic rectangles

    NASA Astrophysics Data System (ADS)

    Swoboda, Christian; Kuhlmann, Nils; Martens, Michael; Vogel, Andreas; Meier, Guido

    2013-07-01

    We investigate the magnetization dynamics in pairs of mesoscopic permalloy (Ni80Fe20) rectangles by means of broadband-ferromagnetic resonance measurements and micromagnetic simulations. Each pair consists of two rectangles that differ in their geometry. The local effective field at each element is significantly affected by the stray field of its neighbor for small center-to-center distances between the rectangles. In antiparallel magnetization alignment, this dynamic dipolar coupling becomes prominent and anticrossing between ferromagnetic resonance modes and higher-order spin-wave modes is observed. Combination of the experimental and the simulational findings provides a comprehensive understanding of dynamically coupled rectangles.

  19. The introduction of spurious models in a hole-coupled Fabry-Perot open resonator

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Long, Kenwyn J.; Heinen, Vernon O.; Stankiewicz, Norbert

    1992-01-01

    A hemispherical open resonator has previously been used to make relative comparisons of the surface resistivity of metallic thin-film samples in the submillimeter wavelength region. This resonator is fed from a far-infrared laser via a small coupling hole in the center of the concave spherical mirror. The experimental arrangement, while desirable as a coupling geometry for monitoring weak emissions from the cavity, can lead to the introduction of spurious modes into the cavity. Sources of these modes are identified, and a simple alteration of the experimental apparatus to eliminate such modes is suggested.

  20. Possible New Resonance from W_{L}W_{L}-hh Interchannel Coupling.

    PubMed

    Delgado, Rafael L; Dobado, Antonio; Llanes-Estrada, Felipe J

    2015-06-05

    We propose and theoretically study a possible new resonance caused by strong coupling between the Higgs-Higgs and the W_{L}W_{L} (Z_{L}Z_{L}) scattering channels, without regard to the intensity of the elastic interaction in either channel at low energy (that could be weak as in the standard model). We expose this channel-coupling resonance from unitarity and dispersion relations encoded in the inverse amplitude method, applied to the electroweak chiral Lagrangian with a scalar Higgs boson.

  1. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  2. Collisionless bounce resonance heating in dual-frequency capacitively coupled plasmas.

    PubMed

    Liu, Yong-Xin; Zhang, Quan-Zhi; Jiang, Wei; Hou, Lu-Jing; Jiang, Xiang-Zhan; Lu, Wen-Qi; Wang, You-Nian

    2011-07-29

    We present the experimental evidence of the collisionless electron bounce resonance heating (BRH) in low-pressure dual-frequency capacitively coupled plasmas. In capacitively coupled plasmas at low pressures when the discharge frequency and gap satisfy a certain resonant condition, the high energy beamlike electrons can be generated by fast sheath expansion, and heated by the two sheaths coherently, thus the BRH occurs. By using a combined measurement of a floating double probe and optical emission spectroscopy, we demonstrate the effect of BRH on plasma properties, such as plasma density and light emission, especially in dual-frequency discharges.

  3. Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit

    NASA Astrophysics Data System (ADS)

    Suri, B.; Keane, Z. K.; Bishop, Lev S.; Novikov, S.; Wellstood, F. C.; Palmer, B. S.

    2015-12-01

    We measure photon occupancy in a thin-film superconducting lumped element resonator coupled to a transmon qubit at 20 mK and find a nonlinear dependence on the applied microwave power. The transmon-resonator system was operated in the strong dispersive regime, where the ac Stark shift (2 χ ) due to a single microwave photon present in the resonator was larger than the linewidth (Γ ) of the qubit transition. When the resonator was coherently driven at 5.474 325 GHz, the transition spectrum of the transmon at 4.982 GHz revealed well-resolved peaks, each corresponding to an individual photon number-state of the resonator. From the relative peak heights we obtain the occupancy of the photon states and the average photon occupancy n ¯ of the resonator. We observe a nonlinear variation of n ¯ with the applied drive power Prf for n ¯<5 and compare our results to numerical simulations of the system-bath master equation in the steady state, as well as to a semiclassical model for the resonator that includes the Jaynes-Cummings interaction between the transmon and the resonator. We find good quantitative agreement using both models and analysis reveals that the nonlinear behavior is principally due to shifts in the resonant frequency caused by a qubit-induced Jaynes-Cummings nonlinearity.

  4. Dynamical coupling of pygmy and giant resonances in relativistic Coulomb excitation

    DOE PAGES

    Brady, N. S.; Aumann, T.; Bertulani, C. A.; ...

    2016-04-20

    We study the Coulomb excitation of pygmy dipole resonances (PDR) in heavy ion reactions at 100 MeV/nucleon and above. The reactions Ni-68 + Au-197 and Ni-68 + Pb-208 are taken as practical examples. Our goal is to address the question of the influence of giant resonances on the PDR as the dynamics of the collision evolves. We show that the coupling to the giant resonances affects considerably the excitation probabilities of the PDR, a result that indicates the need of an improved theoretical treatment of the reaction dynamics at these bombarding energies. (C) 2016 The Authors. Published by Elsevier B.V.

  5. Subterahertz chaos generation by coupling a superlattice to a linear resonator.

    PubMed

    Hramov, A E; Makarov, V V; Koronovskii, A A; Kurkin, S A; Gaifullin, M B; Alexeeva, N V; Alekseev, K N; Greenaway, M T; Fromhold, T M; Patanè, A; Kusmartsev, F V; Maksimenko, V A; Moskalenko, O I; Balanov, A G

    2014-03-21

    We investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs/AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator. Our results are applicable to other active solid state devices and provide a generic approach for developing modern chaos-based high-frequency technologies including broadband chaotic wireless communication and superfast random-number generation.

  6. Subterahertz Chaos Generation by Coupling a Superlattice to a Linear Resonator

    NASA Astrophysics Data System (ADS)

    Hramov, A. E.; Makarov, V. V.; Koronovskii, A. A.; Kurkin, S. A.; Gaifullin, M. B.; Alexeeva, N. V.; Alekseev, K. N.; Greenaway, M. T.; Fromhold, T. M.; Patanè, A.; Kusmartsev, F. V.; Maksimenko, V. A.; Moskalenko, O. I.; Balanov, A. G.

    2014-03-01

    We investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs /AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator. Our results are applicable to other active solid state devices and provide a generic approach for developing modern chaos-based high-frequency technologies including broadband chaotic wireless communication and superfast random-number generation.

  7. Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Goo; Kim, Seong-Han; Kim, Kap-Joong; Kee, Chul-Sik

    2017-03-01

    We present two photonic systems that make it possible to realize polarization-independent electromagnetically induced transparency based on guided-mode resonances. Each system is composed of two planar dielectric waveguides and a two-dimensional photonic crystal. Using finite-difference time-domain simulations, we demonstrate that by coupling the two guided-mode resonances with low- and high-quality factors, a narrow transparency window is generated inside a broad background transmission dip produced by the guided-mode resonances. We also show that the time delay that occurs when light beams pass through the proposed systems can be controlled by adjusting the distance between the two waveguides.

  8. Anti-resonance in a one-dimensional chain of driven coupled oscillators

    NASA Astrophysics Data System (ADS)

    Belbasi, Somayyeh; Ebrahim Foulaadvand, M.; Joe, Yong S.

    2014-01-01

    We investigate a driven system of N one-dimensional coupled oscillators with identical masses. The first mass is connected to a sinusoidal driving force of frequency ω. In the steady state, when all the masses perform simple harmonic motion, we analytically obtain the dependence of their amplitudes on ω and show that there are resonance and anti-resonance frequencies. At an anti-resonance frequency, the amplitude of one of the masses becomes exactly zero. The mass directly connected to the driving force has the largest number of anti-resonance frequencies, N - 1. The phase of each mass's motion is either 0 or π with respect to the driving force. The case where damping forces are present is also considered, and the amplitude dependence on driving frequency is analytically obtained. In the presence of damping, there is no anti-resonance.

  9. High-resolution surface plasmon resonance sensor with Fano resonance in waveguide-coupled multilayer structures

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Cong, Jiawei; Xu, Linhua; Wang, Jicheng

    2017-04-01

    An ultra-high resolution refractive-index sensor with the Kretschmann configuration was proposed and experimentally demonstrated. The Fano resonance (FR) in the attenuated total reflection curve arose from the interactions between the surface plasmon polariton and planar waveguide modes. It was shown to depend strongly on the structural parameters that governed the position of the FR and to be in good agreement with the results of electromagnetic calculations. The sensitivity by intensity was estimated to be 3.56 × 102-fold higher than that of conventional surface plasmon resonance sensors.

  10. Phase-noise-induced resonance in arrays of coupled excitable neural models.

    PubMed

    Xiaoming Liang; Liang Zhao

    2013-08-01

    Recently, it is observed that, in a single neural model, phase noise (time-varying signal phase) arising from an external stimulating signal can induce regular spiking activities even if the signal is subthreshold. In addition, it is also uncovered that there exists an optimal phase noise intensity at which the spiking rhythm coincides with the frequency of the subthreshold signal, resulting in a phase-noise-induced resonance phenomenon. However, neurons usually do not work alone, but are connected in the form of arrays or blocks. Therefore, we study the spiking activity induced by phase noise in arrays of globally and locally coupled excitable neural models. We find that there also exists an optimal phase noise intensity for generating large neural response and such an optimal value is significantly decreased compared to an isolated single neuron case, which means the detectability in response to the subthreshold signal of neurons is sharply improved because of the coupling. In addition, we reveal two new resonance behaviors in the neuron ensemble with the presence of phase noise: there exist optimal values of both coupling strength and system size, where the coupled neurons generate regular spikes under subthreshold stimulations, which are called as coupling strength and system size resonance, respectively. Finally, the dependence of phase-noise-induced resonance on signal frequency is also examined.

  11. Plasmonic devices based on the dual coupled graphene-integrated ring resonators

    NASA Astrophysics Data System (ADS)

    Wang, Jicheng; Xia, Xiushan; Liang, Xiuye; Chen, Jing; Liu, Dongdong

    2015-08-01

    We have proposed a couple of plasmonic devices based on graphene sheets and ring resonators. The highly frequency-tunable multi-mode plasmonically induced transparency (PIT) device based on monolayer graphene and rings for the mid-IR region is presented in theory firstly. The multi-mode transparency windows in the spectral responses and slow light effects can be achieved in plasmonic configuration composed of two graphene resonators coupled with single-layer graphene waveguide. By varying the Fermi energy of the graphene, the multi-mode PIT resonance can be dynamic controlled without reoptimizing the geometric parameters of the structures. Based on the coupled mode theory (CMT) and Fabry-Perot (FP), we numerically investigated direct coupling and indirect coupling in the graphene-integrated PIT systems. In addition, the theoretical plasmonic devices based on graphene sheets and ring resonators are also proposed to perform as 1×2 optical spatial switch or ultra -compact Mach-Zehnder interferometer. The finite element method (FEM) is carried on to verify our designs. Those designs may pave the ways for the further development of the compact high-performance plasmonic communication devices.

  12. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  13. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    NASA Astrophysics Data System (ADS)

    Fabbietti, L.

    2016-01-01

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N* resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c2 in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000)++ are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  14. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    SciTech Connect

    Fabbietti, L.

    2016-01-22

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  15. Fast Fourier Transform Chlorine Nuclear Quadrupole Resonance Spectroscopy.

    NASA Astrophysics Data System (ADS)

    D'Iorio, Marie

    A nuclear quadrupole resonance spectrometer operating in the frequency range 1-40 MHz was updated for fast Fourier transform spectroscopy and coupled to a Nicolet 1180 computer and data acquisition system. It was used with a low temperature cryostat for studies shown down to liquid helium temperature and with a high pressure/low temperature system for studies down to liquid nitrogen temperature and up to six kilobars. The study of the ('35)Cl NQR spectrum of K(,2)OsCl(,6) at 298 K and 77 K revealed the presence of a satellite associated with the nearest neighbour chlorines to H('+) ion impurities located at vacant octahedral sties. This result is in agreement with the predictions of a point charge model calculation. A residence time for the H('+) ion was deduced and is consistent with the result obtained from dielectric measurements. A detailed study of the ('35)Cl NQR frequency in K(,2)ReCl(,6) was performed in the temperature range 85 - 130K where two structural phase transitions occur, and at pressures from 1 to 2643 bars. A number of unusual features were revealed and discussed as the possible signature of incommensurate behavior. The primary effect of the pressure was to alter the temperatures at which the phase transitions occurred. Contrary to the behavior expected, the transition temperature for the antiferrorotative transition has a negative pressure coefficient. The spin-lattice and spin-spin relaxation times for the ('35)Cl and ('37)Cl isotopes of the one dimensional XY system, PrCl(,3), were measured at 4.2K. The spin-lattice relaxation is exponential and dominated by magnetic dipole -dipole interactions. The spin-spin relaxation is non-exponential and dominated by electric quadrupolar interactions arising from the coupling of the electric dipole moment at the praseodymium site and the quadrupole moment of the chlorine ion. The temperature dependence of the spin-spin relaxation time was investigated. At 17.4 K both magnetic dipolar and electric

  16. Investigation of electromagnetic couplings between planar open-loop triangular-shaped resonators in microstrip and in multilayer technologies

    NASA Astrophysics Data System (ADS)

    Militaru, Nicolae

    2016-12-01

    The paper presents a study of the electromagnetic couplings between planar open-loop triangular-shaped resonators. Based on the proposed single-mode resonator, various couplings schemes are considered: between a single microstrip resonator and its 50Ω feeding line, between two identical triangular-shaped resonators designed in microstrip technology, and between pairs of synchronously-tuned resonators located on different metallization layers, in a multilayer configuration. In this last case, properly located slots, cut out in the common ground plane, ensure and control the coupling between resonators. The results shown in the paper can be used in the design of different miniature planar band-pass filters, including filters with cross-coupled resonators, in microstrip and in multilayer technologies.

  17. Quantum-limited amplification and entanglement in coupled nonlinear resonators.

    PubMed

    Eichler, C; Salathe, Y; Mlynek, J; Schmidt, S; Wallraff, A

    2014-09-12

    We demonstrate a coupled cavity realization of a Bose-Hubbard dimer to achieve quantum-limited amplification and to generate frequency entangled microwave fields with squeezing parameters well below -12  dB. In contrast to previous implementations of parametric amplifiers, our dimer can be operated both as a degenerate and as a nondegenerate amplifier. The large measured gain-bandwidth product of more than 250 MHz for the nondegenerate operation and the saturation at input photon numbers as high as 2000 per μs are both expected to be improvable even further, while maintaining wide frequency tunability of about 2 GHz. Featuring flexible control over all relevant system parameters, the presented Bose-Hubbard dimer based on lumped element circuits has significant potential as an elementary cell in nonlinear cavity arrays for quantum simulations.

  18. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2016-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  19. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2016-02-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ˜ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20-30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  20. On the heating of inductively coupled resonators (stents) during MRI examinations.

    PubMed

    Busch, Martin; Vollmann, Wolfgang; Bertsch, Thomas; Wetzler, Rainer; Bornstedt, Axel; Schnackenburg, Bernhard; Schnorr, Jörg; Kivelitz, Dietmar; Taupitz, Matthias; Grönemeyer, Dietrich

    2005-10-01

    Stents that have been implanted to preserve the results of vascular dilatation are frequently affected by in-stent restenosis, which ideally should be followed up by a noninvasive diagnostic modality. Active MRI stents can enable this kind of follow-up, while normal metallic stents can not. The prototype stents investigated in this study were designed as electric resonating circuits without a direct connection to the MR imager, and function as inductively coupled transmit coils. The model of a long solenoid coil is used to describe the additional power loss caused by such resonators. The theoretically estimated temperature increase is verified by measurements for different resonators and discussed for worst-case conditions. The RF power absorption of an active resonator is negligible compared to the total power absorbed during MRI. The local temperature increase observed for prototypes embedded in phantoms is in a range that excludes direct tissue damage. However, ruptures in the conducting structure of a resonator can cause hot spots, which may establish a high local temperature. This hazard can be reduced by designing resonators with a low quality (Q) factor or by setting the circuit slightly off resonance; however, this would lower the nominal amplification for which the resonator was designed.

  1. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    PubMed

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  2. Efficiency enhancement of coupled-cavity TWT's through cavity resonance tapering

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1979-01-01

    The paper examines efficiency enhancement of coupled-cavity traveling-wave tube (TWT) through cavity resonance tapering. Beam-wave resynchronization through circuit velocity reduction is used for TWT efficiency enhancement, with circuit velocity reduction in coupled cavity TWT's accomplished through period tapering. However, the amount of the latter is limited by the stability considerations, so that beyond a critical value of velocity reduction, the tube may be subject to zero drive oscillations originating in the velocity taper region. The coupled-cavity resonance tapering allows the velocity reduction to continue beyond the limit of stable period tapering, and it is accomplished by a gradual reduction in the cavity resonance frequency, with the period and the circuit bandwidth unchanged. The advantages of cavity resonance tapering vs period tapering are discussed, and test data are presented with the results of large-signal computer calculations. It is shown that cavity resonance tapering can produce efficiencies as period tapering without incurring the same risk of lower band-edge oscillations.

  3. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    PubMed Central

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243

  4. Resonance Structure of Preheating after multifield inflation with nonminimal couplings (Part 2)

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda; Decross, Matthew; Kaiser, David; Prabhu, Anirudh; Sfakianakis, Evangelos

    2016-03-01

    Post-inflation reheating is a critical phase in the history of the cosmos, necessary to connect early-universe inflation to the successes of the standard hot big bang scenario. Reheating falls between two regimes that are well constrained by observations and match the latest observations remarkably well. After reheating, the energy density should include contributions from multiple species of matter, including the Standard Model particles or types of matter that decay into Standard Model particles prior to big-bang nucleosynthesis. Reheating therefore must be a multifield phenomenon. In this talk we continue our investigation of multifield inflation with nonminimal couplings, focusing on the ``preheating'' phase after inflation during which the scalar-field condensate(s) that drove inflation decay resonantly into higher-momentum quanta. Here we present the structure of resonances in this family of models semi-analytically and numerically across wide regions of parameter space. We construct Floquet charts for a wide range of non-minimal couplings. We also compare the resonance structure with the well-known minimally coupled quartic model, showing how the introduction of non-niminal couplings affects the resonance bands.

  5. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect

    Garnett, R.W.

    1989-03-01

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  6. Effect of defects on phonons and the effective spin-spin interactions of an ultracold Penning-trap quantum simulator

    NASA Astrophysics Data System (ADS)

    McAneny, M.; Yoshimura, B.; Freericks, J. K.

    2013-10-01

    We generalize the analysis of the normal modes for a rotating ionic Coulomb crystal in a Penning trap to allow for inhomogeneities in the system. Our formal developments are completely general, but we choose to examine a crystal of Be+ ions with BeH+ defects to compare with current experimental efforts. We examine the classical phonon modes (both transverse and planar) and we determine the effective spin-spin interactions when the system is driven by an axial spin-dependent optical dipole force. We examine situations with up to approximately 15% defects. We find that most properties are not strongly influenced by the defects, indicating that the presence of a small number of defects will not significantly affect experiments.

  7. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-19

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  8. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  9. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  10. Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system

    SciTech Connect

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-10-15

    Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.

  11. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-02-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties.

  12. Coupling Light from a High-Q Microsphere Resonator Using a UV-induced Surface Grating

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Starodubov, D. S.; Gorodetsky, M. L.; Maleki, L.; Feinberg, J.

    2000-01-01

    High-Q microspheres with whispering-gallery modes have very narrow resonances that can be used for fiber-optic filters, ultra-compact narrow-linewidth lasers and optical/microwave oscillators. Whispering-gallery modes were previously excited in microspheres using evanescent optical fields. The necessary phase synchronism was obtained by adjusting the incident angle of input light beam (prism coupler) or adjustment of the waveguide propagation constant (fiber taper coupler). For many applications, however, bulky near-field couplers are undesirable. They compromise the symmetry and generate stray fields. Also, the control of coupling is crucial for the performance of microsphere resonators: in analogy with radio frequency circuits, the loading Q-factor should be less than the intrinsic Q-factor, Q(sub L) less than or equal to Q(sub O). Ideally one should combine a stable coupling element and a resonator into a single microsphere component.

  13. Dual coupled-resonator system for plasmon-induced transparency and slow light effect

    NASA Astrophysics Data System (ADS)

    Wang, Qinghao; Meng, Hongyun; Huang, Ben; Wang, Huihao; Zhang, Xing; Yu, Wei; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2016-12-01

    We proposed a dual coupled-resonator system based on the metal-insulator-metal bus waveguide and numerically investigated the plasmon-induced transparency and slow light effect with the Finite-Difference Time-Domain simulations in this paper. The electromagnetically induced transparency-like spectral response will occur between two adjacent stub resonators with detuned resonant wavelength due to the phase-coupled effect. The transmissivity and group index equations were been deduced, which indicated that the system can achieve the effect of the multiple electromagnetically induced transparency-like and slow light. With the optimization, the single peak transmission can reach to as high as 92%, dual PIT transmission peaks appear, as well as group index can reach over 75. These characteristics indicate multiple applications of our system in integrated optical circuits.

  14. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    PubMed

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  15. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.

  16. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  17. Coupling InSb quantum dots to a superconducting microwave resonator

    NASA Astrophysics Data System (ADS)

    Cassidy, Maja; Kammhuber, Jakob; Car, Diana; Plissard, Sebastien; Bakkers, Erik; Dicarlo, Leo; Kouwenhoven, Leo

    2014-03-01

    We present measurements of a superconducting half-wave resonator coupled to two InSb nanowire quantum dots. Precise nanowire alignment at the electric field antinodes at opposite ends of the microwave cavity allows for a maximal electric field along the wire axis, without compromising the intrinsic quality factor of the cavity. This architecture may be useful for reaching the strong coupling limit between a single spin and a microwave photon, paving the way to on-chip coupling of single spins for quantum information processing.

  18. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  19. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  20. Implementation of dynamic dual input multiple output logic gate via resonance in globally coupled Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Venkatesh, P. R.; Venkatesan, A.; Lakshmanan, M.

    2017-08-01

    We have used a system of globally coupled double-well Duffing oscillators under an enhanced resonance condition to design and implement Dual Input Multiple Output (DIMO) logic gates. In order to enhance the resonance, the first oscillator in the globally coupled system alone is excited by two forces out of which one acts as a driving force and the other will be either sub-harmonic or super-harmonic in nature. We report that for an appropriate coupling strength, the second force coherently drives and enhances not only the amplitude of the weak first force to all the coupled systems but also drives and propagates the digital signals if any given to the first system. We then numerically confirm the propagation of any digital signal or square wave without any attenuation under an enhanced resonance condition for an amplitude greater than a threshold value. Further, we extend this idea for computing various logical operations and succeed in designing theoretically DIMO logic gates such as AND/NAND, OR/NOR gates with globally coupled systems.

  1. Purity assessment problem in quantitative NMR--impurity resonance overlaps with monitor signal multiplets from stereoisomers.

    PubMed

    Malz, Frank; Jancke, Harald

    2006-06-01

    This paper describes the situation that can emerge when the signals to be evaluated in quantitative NMR measurements-so-called "monitor signals"--consist of several resonance lines from the stereoisomers of the analyte in addition to an impurity signal underneath. The monitor signal problem is demonstrated in the purity assessment of two samples of 2-(isopropylamino)-4-(ethylamino)-6-chloro-1,3,5-triazine (atrazine), a common herbizide which served as analyte in a CCQM intercomparison. It is shown that, in DMSO-d6 solution, a mixture of stereoisomers leads to several individual overlapping singlets, which are further split by spin-spin coupling. A measurement protocol was developed for finding and identifying an impurity that has a signal that is positioned precisely beneath the methyl signal chosen as the monitor signal in one of the samples. Quantitative NMR purity assessment is still possible in this special case, but with higher uncertainty.

  2. Periodic coupling strength-dependent multiple coherence resonance by time delay in Newman-Watts neuronal networks.

    PubMed

    Wu, Yanan; Gong, Yubing; Xu, Bo

    2013-12-01

    Recently, multiple coherence resonance induced by time delay has been observed in neuronal networks with constant coupling strength. In this paper, by employing Newman-Watts Hodgkin-Huxley neuron networks with time-periodic coupling strength, we study how the temporal coherence of spiking behavior and coherence resonance by time delay change when the frequency of periodic coupling strength is varied. It is found that delay induced coherence resonance is dependent on periodic coupling strength and increases when the frequency of periodic coupling strength increases. Periodic coupling strength can also induce multiple coherence resonance, and the coherence resonance occurs when the frequency of periodic coupling strength is approximately multiple of the spiking frequency. These results show that for periodic coupling strength time delay can more frequently optimize the temporal coherence of spiking activity, and periodic coupling strength can repetitively optimize the temporal coherence of spiking activity as well. Frequency locking may be the mechanism for multiple coherence resonance induced by periodic coupling strength. These findings imply that periodic coupling strength is more efficient for enhancing the temporal coherence of spiking activity of neuronal networks, and thus it could play a more important role in improving the time precision of information processing and transmission in neural networks.

  3. Nonlinear mode coupling and resonant excitations in two-component Bose-Einstein condensates.

    PubMed

    Xue, Ju-Kui; Li, Guan-Qiang; Zhang, Ai-Xia; Peng, Ping

    2008-01-01

    Nonlinear excitations in two-component Bose-Einstein condensates (BECs) described by two coupled Gross-Pitaevskii equations are investigated analytically and numerically. The beating phenomenon, the higher-harmonic generation, and the mixing of the excited modes are revealed by both variational approximation and numerical method. The strong excitations induced by the parametric resonance are also studied by time-periodic modulation for the intercomponent interaction. The resonance conditions in terms of the modulation frequency and the strength of intercomponent interaction are obtained analytically, which are confirmed by numerical method. Direct numerical simulations show that, when the resonance takes place, periodic phase separation and multisoliton configurations (including soliton trains, soliton pairs, and multidomain walls) can be excited. In particular, we demonstrate a method for formation of multisoliton configurations through parametric resonance in two-component BECs.

  4. Dual-band-enhanced Transmission through a Subwavelength Aperture by Coupled Metamaterial Resonators

    PubMed Central

    Guo, Yunsheng; Zhou, Ji

    2015-01-01

    In classical mechanics, it is well known that a system consisting of two identical pendulums connected by a spring will steadily oscillate with two modes: one at the fundamental frequency of a single pendulum and one in which the frequency increases with the stiffness of the spring. Inspired by this physical concept, we present an analogous approach that uses two metamaterial resonators to realize dual-band-enhanced transmission of microwaves through a subwavelength aperture. The metamaterial resonators are formed by the periodically varying and strongly localized fields that occur in the two metal split-ring resonators, which are placed gap-to-gap on either side of the aperture. The dual-band frequency separation is determined by the coupling strength between the two resonators. Measured transmission spectra, simulated field distributions, and theoretical analyses verify our approach. PMID:25634496

  5. Dual-band-enhanced Transmission through a Subwavelength Aperture by Coupled Metamaterial Resonators

    NASA Astrophysics Data System (ADS)

    Guo, Yunsheng; Zhou, Ji

    2015-01-01

    In classical mechanics, it is well known that a system consisting of two identical pendulums connected by a spring will steadily oscillate with two modes: one at the fundamental frequency of a single pendulum and one in which the frequency increases with the stiffness of the spring. Inspired by this physical concept, we present an analogous approach that uses two metamaterial resonators to realize dual-band-enhanced transmission of microwaves through a subwavelength aperture. The metamaterial resonators are formed by the periodically varying and strongly localized fields that occur in the two metal split-ring resonators, which are placed gap-to-gap on either side of the aperture. The dual-band frequency separation is determined by the coupling strength between the two resonators. Measured transmission spectra, simulated field distributions, and theoretical analyses verify our approach.

  6. Enhancing detection sensitivity of metallic nanostructures by resonant coupling mode and spectral integration analysis.

    PubMed

    Lin, En-Hung; Tsai, Wan-Shao; Lee, Kuang-Li; Lee, Ming-Chang M; Wei, Pei-Kuen

    2014-08-11

    We report a simple method to efficiently improve the detection limit of surface plasmon resonance in periodic metallic nanostructures by using small angle illumination and spectral integration analysis. The large-area gold nanoslit arrays were fabricated by thermal-annealing template-stripping method with a slit width of 60 nm and period of 500 nm. The small angle illumination induced a resonant coupling between surface plasmon mode and substrate mode. It increased ~2.24 times intensity sensitivity at 5.5° incident angle. The small-angle illumination also resulted in multiple resonant peaks. The spectral integration method integrated all changes near the resonant peaks and increased the signal to noise ratio about 5 times as compared to single-wavelength intensity analysis. Combining both small angle and spectral integration, the detection limit was increased to one order of magnitude. The improvement of the detection limit for antigen-antibody interactions was demonstrated.

  7. An a0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration

    2016-05-01

    We present the first calculation of coupled-channel meson-meson scattering in the isospin =1 , G -parity negative sector, with channels π η , K K ¯ and π η', in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the S -matrix, and find that the S -wave features a prominent cusplike structure in π η →π η close to the K K ¯ threshold coupled with a rapid turn-on of amplitudes leading to the K K ¯ final state. This behavior is traced to an a0(980 )-like resonance, strongly coupled to both π η and K K ¯ , which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of D -wave scattering suggests a narrow tensor resonance at higher energy.

  8. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  9. Electronic Couplings for Resonance Energy Transfer from CCSD Calculations: From Isolated to Solvated Systems.

    PubMed

    Caricato, Marco; Curutchet, Carles; Mennucci, Benedetta; Scalmani, Giovanni

    2015-11-10

    Quantum mechanical (QM) calculations of electronic couplings provide great insights for the study of resonance energy transfer (RET). However, most of these calculations rely on approximate QM methods due to the computational limitations imposed by the size of typical donor-acceptor systems. In this work, we present a novel implementation that allows computing electronic couplings at the coupled cluster singles and doubles (CCSD) level of theory. Solvent effects are also taken into account through the polarizable continuum model (PCM). As a test case, we use a dimer of indole, a common model system for tryptophan, which is routinely used as an intrinsic fluorophore in Förster resonance energy transfer studies. We consider two bright π → π* states, one of which has charge transfer character. Lastly, the results are compared with those obtained by applying TD-DFT in combination with one of the most popular density functionals, B3LYP.

  10. Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber

    PubMed Central

    Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang

    2017-01-01

    Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters. PMID:28397870

  11. Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber.

    PubMed

    Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang

    2017-04-11

    Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.

  12. Establishing the fundamental magnetic interactions in the chiral Skyrmionic Mott insulator Cu(2)OSeO(3) by terahertz electron spin resonance.

    PubMed

    Ozerov, M; Romhányi, J; Belesi, M; Berger, H; Ansermet, J-Ph; van den Brink, Jeroen; Wosnitza, J; Zvyagin, S A; Rousochatzakis, I

    2014-10-10

    The recent discovery of Skyrmions in Cu(2)OSeO(3) has established a new platform to create and manipulate Skyrmionic spin textures. We use high-field electron spin resonance with a terahertz free-electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. In addition to the previously observed long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency electron spin resonance. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this Skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra.

  13. Establishing the Fundamental Magnetic Interactions in the Chiral Skyrmionic Mott Insulator Cu2OSeO3 by Terahertz Electron Spin Resonance

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Romhányi, J.; Belesi, M.; Berger, H.; Ansermet, J.-Ph.; van den Brink, Jeroen; Wosnitza, J.; Zvyagin, S. A.; Rousochatzakis, I.

    2014-10-01

    The recent discovery of Skyrmions in Cu2OSeO3 has established a new platform to create and manipulate Skyrmionic spin textures. We use high-field electron spin resonance with a terahertz free-electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. In addition to the previously observed long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency electron spin resonance. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this Skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra.

  14. A simple model for coupled acoustic-structure resonance in Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Ginsberg, Jerry H.

    2005-04-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a joint project of NASA and the Deutsches Zentrum fur Luft- und Raumfahrt that has mounted a 2.5 m, 20 000 kg infrared telescope on a bulkhead of a specially modified Boeing 747-SP. A large sliding door will expose the observation bay to the exterior flow field at Mach 0.85 and 13 km altitude. In the open configuration the interaction of turbulence vortices generated at the leading and trailing edges of the opening has the possibility of inducing a strong acoustic signal. A concern has been raised that the peak frequencies of such a signal might coincide with the cavity resonances. The present work examines the transfer function for a known source in order to identify the cavity resonances. Simplistic reasoning argues that the worst case would occur if the cavity resonant frequencies are close to structural resonances. However, the structure's impedance is very low at its resonances, which means that the cavity resonant frequencies are shifted from their nominal values. The present work uses a simple one-dimensional waveguide model, in which one end is terminated by a damped single-degree-of-freedom oscillator, to explain the coupled-fluid structure resonance. The characteristic equation and formulas for the pressure and displacement transfer functions are derived. Analysis of these results leads to some surprising insights regarding the role of a structure's stiffness and mass. [Work supported by the NASA.

  15. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  16. Lateral Fano resonances and Kondo effect in the strong coupling regime of a T -coupled quantum dot

    NASA Astrophysics Data System (ADS)

    Franco, R.; Figueira, M. S.; Anda, E. V.

    2006-05-01

    We study the electronic transport through a quantum wire (QW), modeled by a tight-binding linear chain, with a side-coupled quantum dot (QD). We obtain the conductance with a strong Fano antiresonance. The calculated density of states shows that this behavior is associated to a many-body renormalized QD resonant level Ef˜ at the edge of the conduction band (CB) strongly hybridized with the Van Hove singularity of the one-dimensional density of states of the lead. Different from the Fano antiresonances experimentally found when this system is at the Kondo regime, this phenomenon appears above the Kondo temperature. It is due to the quantum interference between the ballistic channel and a thermal activated channel created by the QD resonance at the vicinity of the bottom of the CB.

  17. Topography-coupled resonance between Mars normal-modes and the tidal force of the Phobos

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2016-12-01

    Phobos is the largest moon of Mars. The gravity attraction of Phobos to Mars is a periodic force, which may excite seismic waves inside Mars. Since Phobos is below the synchronous orbit, its orbit is continuously decreasing due to the tidal effect. This will result in a monotonic increase in its orbital frequency, which may eventually intrude into the seismic normal-mode frequency range to cause resonance. The objective of this research is to investigate whether such a resonance phenomenon can occur and what the consequence is. As we know, resonance happens when the periodic tidal force has a similar frequency as that of martian normal modes. It can be shown that such a resonance will not occur if Mars is perfectly spherical because the tidal force can only excite modes of the same angular order. For the same angular order, the tidal force frequencies are always smaller than those of the normal modes. However, when we consider the effect of topography of Mars, the resonance can occur because of coupling of normal modes. We use numerical method to calculate when the resonance will occur. We firstly solve for the normal modes of Mars by idealizing it as a solid elastic sphere. At the second step, we calculate the excitation effect of gravitational force from Phobos on each individual normal mode. For example, the gravity tidal force F at L=5, m=5 F55 can excite a normal mode 0S5 which can be coupled to 0T2. The third step is to calculate the frequency that the resonance will happen. For example, when the rotation frequency of Phobos increase to 0.8 mRad/s, the tidal force at L=5, m=5 can reach 4mRad/s which is the eigen-frequency of 0T2. Since we have calculated the coupling factors between each individual mode, the amplitude coefficients can be solved by a linear equation. We can observe a 100 times of amplitude increase of mode 0T2, which convince us the resonance will happen. The resonance may cause large amplitude of ground vibration of Mars. From our calculation

  18. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.

    PubMed

    Woo, Kat Choi; Shao, Lei; Chen, Huanjun; Liang, Yao; Wang, Jianfang; Lin, Hai-Qing

    2011-07-26

    The plasmon coupling between metal nanocrystals can lead to large plasmon shifts, enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy. Consequently, the plasmon coupling between metal nanorods is much more complicated than that between nanospheres. For the latter, experimental approaches, simple scaling relationships, and exact analytic solutions have been developed for describing the plasmon coupling. In this study, we have carried out extensive finite-difference time-domain simulations to understand the plasmon coupling in the dimers of Au nanorods that are aligned along their length axes. The effects of the gap distance, longitudinal plasmon energy, and end shape of the nanorod monomers on the plasmon coupling have been scrutinized. The coupling energy diagrams show a general anticrossing behavior. All of them can be rescaled into one simple and universal hyperbolic formula. A theoretical model based on two interacting mechanical oscillators has been developed to understand the plasmon coupling between two arbitrarily varying Au nanorods. This model, together with the universal equation, allows for the determination of the coupled plasmon energies of Au nanorod dimers with high accuracies. Furthermore, the Fano interference has been observed in the nanorod heterodimers, with its behavior being dependent on the gap distance and plasmon energies of the nanorod monomers. Our results will be useful for predicting the coupled plasmon energies of metal nanorod dimers in a variety of plasmonic applications and understanding the Fano resonance in plasmonic nanostructures.

  19. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    PubMed Central

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-01-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect. PMID:27872487

  20. Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays.

    PubMed

    Simpkins, B S; Long, J P; Glembocki, O J; Guo, J; Caldwell, J D; Owrutsky, J C

    2012-12-03

    We investigate coupling in arrays of nanoparticles resonating as half-wave antennas on both silicon and sapphire, and find a universal behavior when scaled by antenna length and substrate index. Three distinct coupling regimes are identified and characterized by rigorous finite-difference time domain simulations. As interparticle pitch is reduced below the oft-described radiative to evanescent transition, resonances blue shift and narrow and exhibit an asymmetric band consistent with a Fano lineshape. Upon further pitch reduction, a transition to a third regime, termed here as near-field coupling, is observed in which the resonance shifts red, becomes more symmetric, and broadens dramatically. This latter regime occurs when the extension of the resonant mode beyond the physical antenna end overlaps that of its neighbor. Simulations identify a clear rearrangement of field intensity accompanying this regime, illustrating that longitudinal modal fields localize in the air gap rather than in the higher index substrate at a pitch consistent with the experimentally observed transition.

  1. Demonstration of polarization mode selection and coupling efficiency of optofluidic ring resonator lasers.

    PubMed

    Zhang, Yuanxian; Meng, Weidong; Yang, Hongyue; Chu, Yufei; Pu, Xiaoyun

    2015-11-01

    We demonstrate the polarization mode selection and the dependence of coupling efficiency on polarization state of pump light for an optofluidic ring resonator (OFRR) laser. An optical fiber is chosen to serve as the ring resonator and surrounded by rhodamine 6G dye solution of lower refractive index as the fluidic gain medium. When the ring resonator is pumped by a linearly s-polarized laser, the emitted whispering gallery mode (WGM) lasing is of parallel polarization (TM mode), while p-polarized laser excitation generates a vertically polarized lasing emission (TE mode), both TM and TE mode lasing emission coexist simultaneously if the ring resonator is pumped by the s- and p-mixed polarized light. Further investigation reveals that the lasing intensity of the TM mode is approximately twice that of the TE mode for the same pump energy density, meaning an obvious difference of coupling efficiency on the polarization state of pump light; the experimental results of coupling efficiency are well explained by an induced dipole model.

  2. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    SciTech Connect

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  3. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.

    PubMed

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2012-11-05

    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  4. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    PubMed

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  5. Air-coupled ultrasound detection using capillary-based optical ring resonators.

    PubMed

    Kim, Kyu Hyun; Luo, Wei; Zhang, Cheng; Tian, Chao; Guo, L Jay; Wang, Xueding; Fan, Xudong

    2017-12-01

    We experimentally demonstrate and theoretically analyze high Q-factor (~10(7)) capillary-based optical ring resonators for non-contact detection of air-coupled ultrasound. Noise equivalent pressures in air as low as 215 mPa/√Hz and 41 mPa/√Hz at 50 kHz and 800 kHz in air, respectively, are achieved. Furthermore, non-contact detection of air-coupled photoacoustic pulses optically generated from a 200 nm thick Chromium film is demonstrated. The interaction of an acoustic pulse and the mechanical mode of the ring resonator is also studied. Significant improvement in detection bandwidth is demonstrated by encapsulating the ring resonator in a damping medium. Our work will enable compact and sensitive ultrasound detection in many applications, such as air-coupled non-destructive ultrasound testing, photoacoustic imaging, and remote sensing. It will also provide a model system for fundamental study of the mechanical modes in the ring resonator.

  6. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  7. Resonances in coupled πK, ηK scattering from lattice QCD

    SciTech Connect

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  8. Resonances in coupled πK, ηK scattering from lattice QCD

    DOE PAGES

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemore » related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.« less

  9. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    SciTech Connect

    Le Floch, J.-M. E-mail: jeanmichel.lefloch@uwa.edu.au; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-21

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  10. Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Landra, Alessandro; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-01

    We propose a promising hybrid quantum system, where a highly excited atom strongly interacts with a superconducting L C oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of the atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the dc Stark map of a Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on or off resonance with respect to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of the resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity-mediated state transmission.

  11. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    PubMed Central

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-01-01

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation. PMID:27527169

  12. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-10-15

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  13. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    PubMed

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  14. Automatic Coupling Control of a Loop-Gap Resonator by a Variable Capacitor Attached Coupling Coil for EPR Measurements at 650 MHz

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hidekastu; Sato, Toshiyuki; Ogata, Tateaki; Ohya, Hiroaki; Kamada, Hitoshi

    2001-03-01

    A coupling coil was fabricated that can electrically change the magnetic coupling with a loop-gap resonator (LGR) for EPR studies at 650 MHz. It is composed of a single-turn coil and a coupling control circuit that includes a varactor diode. The coarse control of the magnetic coupling is made by mechanically changing the distance between the LGR and single-turn coil. The fine control is obtained by changing the capacitance of the varactor diode that is connected in parallel with the single-turn coil. This capacitance is controlled by changing reverse voltage from a variable bias voltage source. Because this can be located far from the resonator, remote control of coupling of the LGR is possible. Automatic coupling control (ACC) was accomplished by negative feedback of the DC component in the radiowaves reflected from the LGR to the coupling control circuit when the LGR was irradiated precisely at its resonant frequency. To accomplish this, automatic frequency control (AFC) is used. In EPR measurements of a phantom that included a physiological saline solution containing a nitroxide radical, it was confirmed that the drifts in the coupling and resonant frequency caused by the perturbation of the resonant nature could be sufficiently compensated by the ACC and AFC systems. In the in vivo EPR studies, it was found that the deviation of coupling at the chest of a mouse is greater than that at the head of a rat, but the ACC system could compensate for the respiratory motions of a living animal.

  15. Series-coupled double-ring resonators with asymmetric radii for use in channelizer

    NASA Astrophysics Data System (ADS)

    Gu, Xiaowen; Zhu, Dan; Zhao, Yongjiu; Pan, Shilong

    2014-10-01

    A series-coupled double-ring resonator with asymmetric radii is analyzed to achieve a filter response with a large free spectral range (FSR), a narrow passband of tens of MHz and a small shape factor simultaneously for use in microwave photonic channelizer. By introducing difference to the two radii, based on the vernier effect, the FSR of the resonator filter can be extended while maintaining the narrow passband and the small shape factor. A filter response with a FSR of 29.444 GHz, a 3-dB bandwidth of 96 MHz and a shape factor of 3.17 is realized by numerical analysis.

  16. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation.

    PubMed

    Ruffato, G; Romanato, F

    2012-07-01

    A grating-coupled surface plasmon resonance (GCSPR) technique based on polarization modulation in conical mounting is presented. A metallic grating is azimuthally rotated to support double-surface plasmon polariton excitation and exploit the consequent sensitivity enhancement. Corresponding to the resonance polar angle, a polarization scan of incident light is performed, and reflectivity data are collected before and after functionalization with a dodecanethiol self-assembled monolayer. The output signal exhibits a harmonic dependence on polarization, and the phase term is used as a parameter for sensing. This technique offers the possibility of designing extremely compact, fast, and cheap high-resolution plasmonic sensors based on GCSPR.

  17. Resonance ultrasonic thermography: Highly efficient contact and air-coupled remote modes

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Busse, Gerd

    2013-02-01

    A frequency match between the driving ultrasonic wave and characteristic frequency of a defect provides an efficient energy pumping from the wave directly into the defect. The application of the concept of local defect resonance is shown to enhance substantially the efficiency of vibro-thermal conversion in ultrasonic thermography (ULT). Therefore, the resonance modes of ultrasonic thermography require much lower acoustic power to activate defects that makes it possible to avoid high-power ultrasonic instrumentation and proceed to a remote ultrasonic thermography version by using air-coupled ultrasonic excitation.

  18. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    SciTech Connect

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-03-30

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies.

  19. Comb spectra and coherent optical pulse propagation in a size-imbalanced coupled ring resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryuta; Tomita, Makoto

    2017-08-01

    Transmission spectra and coherent optical pulse propagation though a size-imbalanced coupled ring resonator are investigated, where the size of the first ring is extremely large and has a narrow free-spectral-range with an extremely high Q-value, and the second ring is small with a moderate Q-value. The system shows characteristic comb spectra due to interference effects between the two resonators. When an arbitrary-shaped coherent pulse propagates through this system, a series of oscillating output pulses appears. It is shown that this pulse train develops into coherent 0π optical pulses.

  20. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    PubMed

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  1. Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides

    NASA Astrophysics Data System (ADS)

    Xu, Xun-Wei; Chen, Ai-Xi; Li, Yong; Liu, Yu-xi

    2017-06-01

    We study the transport of a single photon in two coupled one-dimensional semi-infinite coupled-resonator waveguides (CRWs), in which both end sides are coupled to a dissipative cavity. We demonstrate that a single photon can transfer from one semi-infinite CRW to the other nonreciprocally. Based on such nonreciprocity, we further construct a three-port single-photon circulator by a T-shaped waveguide, in which three semi-infinite CRWs are pairwise mutually coupled to each other. The single-photon nonreciprocal transport is induced by the breaking of the time-reversal symmetry and the optimal conditions for these phenomena are obtained analytically. The CRWs with broken time-reversal symmetry will open up a kind of quantum device with versatile applications in quantum networks.

  2. Electromagnetic interactions in a pair of coupled split-ring resonators

    NASA Astrophysics Data System (ADS)

    Seetharaman, S. S.; King, C. G.; Hooper, I. R.; Barnes, W. L.

    2017-08-01

    Split-ring resonators (SRRs) are a fundamental building block of many electromagnetic metamaterials. Typically the response of a metamaterial is assumed to be independent of interelement interactions in the material. We show that SRRs in close proximity to each other exhibit a rich coupling that involves both electric and magnetic interactions. We study experimentally and computationally the strength and nature of the coupling between two identical SRRs as a function of their separation and relative orientation. We characterize the electric and magnetic couplings and find that, when SRRs are close enough to be in each other's near field, the electric and magnetic couplings may either reinforce each other or act in opposition. At larger separations retardation effects become important.

  3. Magnetic resonance spectroscopy editing techniques of coupled spin systems at high field

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff

    Magnetic resonance spectroscopy (MRS) provides a non-invasive tool for investigating chemical concentrations in the human brain. The detection of metabolites is useful in understanding functional pathways in healthy and diseased states. Many important metabolites are composed of multiple interacting spins coupled through chemical bonds in the molecule. Whereas the observation of strong uncoupled (singlet) resonances is straightforward, complex coupling patterns and signal overlap often hinder the detection of coupled spin systems, rendering quantification problematic. One of the primary goals of this project is to investigate spectral editing techniques to detect coupled spin systems and provide a means for increasing the accuracy of quantification. A new method of spectral editing based on subtraction spectroscopy is proposed, which relies on signal differences at constant echo time (TE) produced by varying the inter-pulse delays in an asymmetric PRESS sequence. The method requires no spectrally selective pulses or multiple quantum filters, and can be easily implemented with a standard PRESS sequence. All non-varying spectral information is maintained, in contrast to other popular editing techniques. In terms of strongly coupled spin systems, the procedure is demonstrated for glutamate and glutamine discrimination, as well as simulated optimization of field strength for detection of several strongly coupled metabolites. To produce the necessary TE space variations for weakly coupled systems, the flip angle of the second refocusing pulse was varied. This technique was applied for the detection of gamma-aminobutyric acid, which is completely obscured at standard clinical field strengths. A second editing method investigated the optimization of PRESS timing parameters at multiple field strengths for the simultaneous detection of glutamate and glutamine in vivo, by maximizing the signal yield and minimizing the significant overlap at lower field strengths. Finally

  4. Dual-color single-mode lasing in axially coupled organic nanowire resonators

    PubMed Central

    Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng

    2017-01-01

    Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731

  5. Intense energy transfer and superharmonic resonance in a system of two coupled oscillators.

    PubMed

    Kovaleva, Agnessa; Manevitch, Leonid; Manevitch, Elina

    2010-05-01

    The paper presents the analytic study of energy exchange in a system of coupled nonlinear oscillators subject to superharmonic resonance. The attention is given to complete irreversible energy transfer that occurs in a system with definite initial conditions corresponding to a so-called limiting phase trajectory (LPT). We show that the energy imparted in the system is partitioned among the principal and superharmonic modes but energy exchange can be due to superharmonic oscillations. Using the LPT concept, we construct approximate analytic solutions describing intense irreversible energy transfer in a harmonically excited Duffing oscillator and a system of two nonlinearly coupled oscillators. Numerical simulations confirm the accuracy of the analytic approximations.

  6. Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Jinli; Chen, Huibin; Zhang, Zhidong; Tang, Jun; Cui, Jiangong; Xue, Chenyang; Yan, Shubin

    2017-01-01

    A metal-insulator-metal (MIM) waveguide-coupled trapezoid cavity is presented, and the transmission properties are investigated by finite-element method. Results show that an asymmetric Fano profile emerged in the transmission spectrum, which was caused by the asymmetrical break of the MIM waveguide-coupled trapezoid cavity system. A refractive index sensitivity, Q-factor and FOM of approximately 750nm/RIU, 68.3 and 65.2 were measured based on the Fano resonance. The effect of the structural parameters on the transmission properties is also investigated. The results provide a new possibility for designing high-performance plasmonic devices.

  7. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    SciTech Connect

    Karna, S.P.

    1997-07-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. {copyright} {ital 1997} {ital The American Physical Society}

  8. Temporal coupled-mode theory model for resonant near-field thermophotovoltaics

    SciTech Connect

    Karalis, Aristeidis; Joannopoulos, J. D.

    2015-10-05

    A temporal Coupled-Mode Theory model is developed to predict performance of resonant near-field ThermoPhotoVoltaic systems, which typically requires numerically intensive calculations. It is formulated for both orthogonal and non-orthogonal (coupled) modes and includes load-voltage dependencies and non-idealities, such as background absorption and radiation losses. Its good accuracy is confirmed by comparing with exact transfer-matrix calculations for two simple planar systems: a plasmonic emitter across a bulk semiconductor absorber and a metal-backed thin-film semiconductor emitter across an identical absorber.

  9. Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide

    NASA Astrophysics Data System (ADS)

    Wen, Mengting; Wang, Lingling; Zhai, Xiang; Lin, Qi; Xia, Shengxuan

    2016-11-01

    We demonstrate plasmon-induced absorption (PIA) in an ultra-compact graphene waveguide system which is composed of a single graphene sheet with two air cavities side-coupled to a graphene nanoribbon. By designing two coherent optical pathways, the pronounced PIA can be achieved due to the extreme destructive interference between the radiant and subradiant modes supported by the two graphene nanoribbons. The resonant strength shows strong dependence on the coupling distance between the two graphene nanoribbons and the resonance wavelength can be dynamically tuned by varying their Fermi energy. Furthermore, the group delay time up to -0.14 ps can be reached at the PIA window, suggesting unique fast-light feature. In addition, the double PIA phenomenon is also analyzed by introducing another graphene nanoribbon. Our results may pave the way for controlling the transmission of a light signal in the design of ultra-compact plasmonic devices.

  10. Chimera-like states in an array of coupled-waveguide resonators.

    PubMed

    Clerc, M G; Ferré, M A; Coulibaly, S; Rojas, R G; Tlidi, M

    2017-08-01

    We consider coupled-waveguide resonators subject to optical injection. The dynamics of this simple device are described by the discrete Lugiato-Lefever equation. We show that chimera-like states can be stabilized, thanks to the discrete nature of the coupled-waveguide resonators. Such chaotic localized structures are unstable in the continuous Lugiato-Lefever model; this is because of dispersive radiation from the tails of localized structures in the form of two counter-propagating fronts between the homogeneous and the complex spatiotemporal state. We characterize the formation of chimera-like states by computing the Lyapunov spectra. We show that localized states have an intermittent spatiotemporal chaotic dynamical nature. These states are generated in a parameter regime characterized by a coexistence between a uniform steady state and a spatiotemporal intermittency state.

  11. Topological phononic states of underwater sound based on coupled ring resonators

    SciTech Connect

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan; Lu, Ming-Hui Liu, Xiao-Ping; Chen, Yan-Feng

    2016-01-18

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  12. A triangular coupled-resonator antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Mahmud, Md Zulfiker; Alam, Touhidul; Islam, Mohammad Tariqul

    2017-01-01

    A triangle-shaped coupled-resonator microstrip patch antenna is presented for ultra-wideband wireless applications. The antenna achieves bandwidth of 116.5% with electrical dimension of 0.154 λ × 0.133 λ × 0.016 λ at the lower frequency band. The operating bandwidth of proposed antenna is 3.07-11.6 GHz with more than 80% efficiency and about 5.5 dBi gain. A triangular couple resonator is added on the patch to enhance the antenna performance, and antenna ground is modified to get higher bandwidth. The antenna performances have been analyzed using the finite integration technique of computer simulation technology microwave studio and validated with another EM simulating software HFSS and in measurement.

  13. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGES

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  14. Ferromagnetic resonance in coupled permalloy double films separated by a Cu interlayer

    NASA Astrophysics Data System (ADS)

    Maksymowicz, A. Z.; Whiting, J. S. S.; Watson, M. L.; Chambers, A.

    1991-03-01

    Ferromagnetic resonance (FMR) at 16 GHz was used to study the magnetic coupling between two-layers of permalloy separated by a nonmagnetic Cu layer. Samples with the same thickness (600 Å) of both permalloy layers were deposited from e-gun sources onto glass substrates in UHV. The thickness d of the Cu interlayer was varied from 5 to 37 Å. The exchange coupling energy ( E = - KM1· M2) model was used to describe the interaction between the two magnetic layers. It was found from the ferromagnetic resonance data in the perpendicular configuration that K( d) follows an exponential law, K = K0e - d/ q, where q = 9.3 Å.

  15. Electromagnetic coupling to centimeter-scale mechanical membrane resonators via RF cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond

    2016-11-01

    We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.

  16. Air-coupled MUMPs capacitive micromachined ultrasonic transducers with resonant cavities.

    PubMed

    Octavio Manzanares, Alberto; Montero de Espinosa, Francisco

    2012-04-01

    This work reports performance improvements of air-coupled capacitive micromachined ultrasonic transducers (CMUTs) using resonant cavities. In order to perform this work, we have designed and manufactured a CMUT employing multi-user microelectromechanical systems (MEMS) processes (MUMPs). The transducer was designed using Helmholtz resonator principles. This was characterised by the dimensions of the cavity and several acoustic ports, which had the form of holes in the CMUT plate. The MUMPs process has the advantage of being low cost which allows the manufacture of economic prototypes. In this paper we show the effects of the resonant cavities and acoustic ports in CMUTs using laser Doppler vibrometry and acoustical measurements. We also use Finite Element (FE) simulations in order to support experimental measurements. The results show that it is possible to enhance the output pressure and bandwidth in air by tuning the resonance frequency of the plate (f(p)) with that of the Helmholtz resonator (f(H)). The experimental measurements show the plate resonance along with an additional resonance in the output pressure spectrum. This appears due to the effect of the new resonant cavities in the transducer. FE simulations show an increase of 11 dB in the output pressure with respect to that of a theoretical vacuum-sealed cavity MUMPs CMUT by properly tuning the transducer. The bandwidth has been also analyzed by calculating the mechanical Q factor of the tuned CMUT. This has been estimated as 4.5 compared with 7.75 for the vacuum-sealed cavity MUMPs CMUT.

  17. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes

    NASA Astrophysics Data System (ADS)

    Song, Qinghai; Ge, Li; Wiersig, Jan; Cao, Hui

    2013-08-01

    The recent progresses in single crystalline wide bandgap hexagonal disk have stimulated intense research attention on pursuing ultraviolet (UV) laser diodes with low thresholds. While whispering-gallery modes based UV lasers have been successfully obtained in GaN, ZnO nanorods, and nanopillars, the reported thresholds are still very high, due to the low-quality (Q) factors of the hexagonal resonances. Here we demonstrate resonances whose Q factors can be more than two orders of magnitude higher than the hexagonal modes, promising the reduction of the energy consumption. The key to our finding is the avoided resonance crossing between superscar states along two sets of nearly degenerated triangle orbits, which leads to the formation of hexagram modes. The mode couplings suppress the field distributions at the corners and the deviations from triangle orbits simultaneously and therefore enhance the Q factors significantly.

  18. Collective scattering in hybrid nanostructures with many atomic oscillators coupled to an electromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Fauché, Pierre; Kosionis, Spyridon G.; Lalanne, Philippe

    2017-05-01

    There is considerable interest in collective effects in hybrid systems formed by molecular or atomic ensembles strongly coupled by an electromagnetic resonance. For analyzing such collective effects, we develop an efficient and general theoretical formalism based on the natural modes of the resonator. The main strength of our approach is its generality and the high level of analyticity enabled by modal analysis, which allows one to model complex hybrid systems without any restriction on the resonator shapes or material properties, and to perform statistical computations to predict general properties that are robust to spatial and polarization disorders. Most notably, we establish that super-radiant modes remain even after ensemble averaging and act as an "invisibility cloak" with a spectral bandwidth that scales with the number of oscillators and the spatially averaged Purcell factor.

  19. Cross-polarization coupling and switching in an open nano-meta-resonator

    NASA Astrophysics Data System (ADS)

    Szabelak, W.; Nasalski, W.

    2011-11-01

    We demonstrate the reconfiguration process of optical beam fields circulating in an open nano-meta-resonator cavity. The cavity is composed of four corners or quadrants of space filled alternatively with dielectric and metamaterial media. The media are assumed to be lossless, nondispersive and of parameters precluding impedance matching at the boundaries between the subsequent corners. Beam path retracement in the cavity is obtained from a resonance condition of phase compensation along each optical ray contributed to the circulating beam. Cross-polarization coupling between TM and TE components of elegant higher-order Hermite-Gaussian beams propagating in the resonator is analysed. The existence of the phenomena of beam excitation, filtering and switching predicted on these grounds is explicitly confirmed by numerical simulations. All phenomena described depend substantially on a field cross-sectional diameter of the circulating beams.

  20. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  1. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Escher, J. E.; Arbanas, G.

    2014-04-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  2. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    SciTech Connect

    Thompson, I J; Escher, Jutta E; Arbanas, Goran

    2013-01-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  3. Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement.

    PubMed

    Boeck, Robi; Jaeger, Nicolas A; Rouger, Nicolas; Chrostowski, Lukas

    2010-11-22

    Silicon-on-insulator racetrack resonators can be used as multiplexers in wavelength division multiplexing applications. The free spectral range should be comparable to the span of the C-band so that a maximum number of channels can be multiplexed. However, the free spectral range is inversely proportional to the length of the resonator and, therefore, bending losses can become non-negligible. A viable alternative to increase the free spectral range is to use the Vernier effect. In this work, we present the theory of series-coupled racetrack resonators exhibiting the Vernier effect. We demonstrate the experimental performance of the device using silicon-on-insulator strip waveguides. The extended free spectral range is 36 nm and the interstitial peak suppression is from 9 dB to 17 dB.

  4. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared.

    PubMed

    Troia, Benedetto; Khokhar, Ali Z; Nedeljkovic, Milos; Penades, Jordi Soler; Passaro, Vittorio M N; Mashanovich, Goran Z

    2014-10-06

    In this paper we report the experimental demonstration of racetrack resonators in silicon-on-insulator technology platform operating in the mid-infrared wavelength range of 3.7-3.8 μm. Insertion loss lower than 1 dB and extinction ratio up to 30 dB were measured for single resonators. The experimental characterization of directional couplers and bending losses in silicon rib waveguides are also reported. Furthermore, we present the design and fabrication of cascade-coupled racetrack resonators based on the Vernier effect. Experimental spectra of Vernier architectures were demonstrated for the first time in the mid-infrared with insertion loss lower than 1 dB and maximum interstitial peak suppression of 10 dB.

  5. Performance of hole coupling resonator in the presence of asymmetric modes and FEL gain

    SciTech Connect

    Xie, Ming; Kim, Kwang-Je.

    1991-08-01

    We continue the study of the hole coupling resonator for free electron laser (FEL) application. The previous resonator code is further developed to include the effects of the azimutally asymmetric modes and the FEL gain. The implication of the additional higher order modes is that there are more degeneracies to be avoided in tuning the FEL wavelengths. The FEL interaction is modeled by constructing a transfer map in the small signal regime and incorporating it into the resonator code. The FEL gain is found to be very effective in selecting a dominant mode from the azimuthally symmetric class of modes. Schemes for broad wavelength tuning based on passive mode control via adjustable apertures are discussed. 12 refs., 7 figs., 1 tab.

  6. Advanced inductively coupled plasma etching processes for fabrication of resonator-quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Sun, J.; Choi, K. K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.; Olver, K.

    2015-05-01

    Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To achieve the expected performance, the detector geometry must be produced in precise specification. In particular, the height of the diffractive elements (DE) and the thickness of the active resonator must be uniformly and accurately realized to within 0.05 μm accuracy and the substrates of the detectors have to be removed totally. To achieve these specifications, two optimized inductively coupled plasma (ICP) etching processes are developed. Using these etching techniques, we have fabricated a number of R-QWIP test detectors and FPAs with the required dimensions and completely removed the substrates of the test detectors and FPAs. Their QE spectra were tested to be in close agreement with the theoretical predictions. The operability and spectral non-uniformity of the FPA is about 99.57% and 3% respectively.

  7. Reading, writing, and squeezing the entangled states of two nanomechanical resonators coupled to a SQUID

    NASA Astrophysics Data System (ADS)

    Cohen, Guy Z.; Di Ventra, Massimiliano

    2013-01-01

    We study a system of two nanomechanical resonators embedded in a dc superconducting quantum interference device (SQUID). We show that the inductively coupled resonators can be treated as two entangled quantum memory elements with states that can be read from, or written on, by employing the SQUID as a displacement detector or switching additional external magnetic fields, respectively. We present a scheme to squeeze the even mode of the state of the resonators and, consequently, reduce the noise in the measurement of the magnetic flux threading the SQUID. We finally analyze the effect of dissipation on the squeezing using the quantum master equation, and show the qualitatively different behavior for the weak and strong damping regimes. Our predictions can be tested using current experimental capabilities.

  8. Scattering of two coherent photons inside a one-dimensional coupled-resonator waveguide

    SciTech Connect

    Alexanian, Moorad

    2010-01-15

    We consider the coherent propagation of n photons in a one-dimensional coupled-resonator waveguide for n=2,3,4.... The scattering by a three-level atom, which resides in one of the resonators of the waveguide and gives rise to only two-photon transitions, results in a perfect quantum switch that allows either total reflection or total transmission. This is to be contrasted to the case of a single photon inside a one-dimensional resonant waveguide scattered by a two-level system with single-photon transitions where only total reflection can be accomplished; viz. the system behaves only as a perfect mirror but not as an ideal, transparent medium.

  9. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  10. Algebraic prediction of resonance couplings from assumptions about zero-trajectory slopes

    SciTech Connect

    Gehlen, G.v.; Pfeil, W.

    1980-04-01

    The slopes of the amplitude zeros in the Mandelstam plane passing through the intersection of s-channel I=3/2 resonances with the u-channel nucleon pole are considered for pion-nucleon scattering, for pion production by vector and axial-vector currents, and for Compton scattering. New striking regularities relevant for the construction of explicit dual models involving fermions and currents are found. If one demands the zero slopes to be equal for all helicity amplitudes of the same process, the spin and parity structure of the resonance excitation is predicted in good agreement with experiment. Demanding the zeros to pass the intersection points close to the direction t approx. = constant, the right order of magnitude of the resonance couplings is obtained.

  11. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wu, Xin; Mei, Li-Jie; Huang, Guo-Qing

    2017-09-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically.

  12. Bistable laser device with multiple coupled active vertical-cavity resonators

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  13. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  14. Resonances in Coupled πK-ηK Scattering from Quantum Chromodynamics

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; ...

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  15. Resonant excitations of single and two-qubit systems coupled to a tank circuit

    NASA Astrophysics Data System (ADS)

    Shevchenko, S. N.; van der Ploeg, S. H. W.; Grajcar, M.; Il'Ichev, E.; Omelyanchouk, A. N.; Meyer, H.-G.

    2008-11-01

    The interaction of flux qubits with a low-frequency tank circuit is studied. It is shown that changes in the state of the interacting qubits influence the effective inductance and resistance of the circuit, which is the essence of the so-called impedance measurement technique. The multiphoton resonant excitations in both single flux qubits and pairs of coupled flux qubits are investigated. In particular, we compare our theoretical results with recent spectroscopy measurements, Landau-Zener interferometry, and the multiphoton fringes.

  16. Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1992-01-01

    A new design of an active antenna with a dielectric resonator stabilized high electron mobility transistor (HEMT) oscillator (DRO) and an aperture-coupled patch antenna is reported. The circuit is fabricated using coplanar waveguide (CPW) with the oscillator and the antenna on opposite sides of the substrate. The active antenna was demonstrated at 7.6 GHz; however, the design can be scaled to higher frequencies. Excellent oscillator characteristics and radiation patterns were obtained.

  17. Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1992-01-01

    A design of an active antenna with a dielectric resonator stabilized high-electron-mobility transistor (HEMT) oscillator (DRO) and an aperture-coupled patch antenna is reported. The circuit is fabricated using coplanar waveguide (CPW) with the oscillator and the antenna on opposite sides of the substrate. The active antenna was demonstrated at 7.6 GHz; however, the design can be scaled to higher frequencies. Excellent oscillator characteristics and radiation patterns were obtained.

  18. A general design of magnetic coupling resonant wireless power transmission circuit

    NASA Astrophysics Data System (ADS)

    Yan, Wenxu; Chen, Jingjing

    2017-06-01

    As a new kind of power transmission way, wireless power transmission technology has great advantages compared with traditional power transmission way.This paper introduces the basic structure and working principle of magnetic coupling resonant wireless power transmission. Based on this, main circuit design and analysis of the transmission system is given. What’s more, about the future research work is its functional operation accomplishment.

  19. Rotation sensitivity analysis of a two-dimensional array of coupled resonators

    NASA Astrophysics Data System (ADS)

    Zamani Aghaie, Kiarash; Vigneron, Pierre-Baptiste; Digonnet, Michel J. F.

    2015-03-01

    In this paper, we study the rotation sensitivity of a gyroscope made of a two-dimensional array of coupled resonators consisting of N columns of one-dimensional coupled resonant optical waveguides (CROWs) connected by two bus waveguides, each CROW consisting of M identical ring resonators. We show that the maximum rotation sensitivity of this structure is a strong function of the parity of the number of rows M. For an odd number of rows, and when the number of columns is small, the maximum sensitivity is high, and it is slightly lower than the maximum sensitivity of a single-ring resonator with two input/output waveguides (the case M = N = 1), which is a resonant waveguide optical gyroscope (RWOG). For an even M and small N, the maximum sensitivity is much lower than that of the RWOG. Increasing the number columns N increases the sensitivity of an even-row 2D CROW sublinearly, as N0.39, up to 30 columns. In comparison, the maximum sensitivity of an RWOG of equal area increases faster, as √N. The sensitivity of the 2D CROW therefore always lags behind that of the RWOG. For a 2×2 CROW, if the spacing between the columns L is increased sufficiently the maximum sensitivity increases linearly with L due to the presence of a composite Mach- Zehnder interferometer in the structure. However, for equal footprints this sensitivity is also not larger than that of a single-ring resonator. Regardless of the number of rows and columns and the spacing, for the same footprint and propagation loss, a 2D CROW gyroscope is not more sensitive than an RWOG.

  20. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    PubMed Central

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-01-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506