Science.gov

Sample records for resonance spin-spin coupling

  1. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, P.; Buckingham, A. D.

    2016-11-01

    It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.

  2. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling.

    PubMed

    Garbacz, P; Buckingham, A D

    2016-11-28

    It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.

  3. Spin-Spin Coupling in Asteroidal Binaries

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-11-01

    Gravitationally bound binaries constitute a substantial fraction of the small body population of the solar system, and characterization of their rotational states is instrumental to understanding their formation and dynamical evolution. Unlike planets, numerous small bodies can maintain a perpetual aspheroidal shape, giving rise to a richer array of non-trivial gravitational dynamics. In this work, we explore the rotational evolution of triaxial satellites that orbit permanently deformed central objects, with specific emphasis on quadrupole-quadrupole interactions. Our analysis shows that in addition to conventional spin-orbit resonances, both prograde and retrograde spin-spin resonances naturally arise for closely orbiting, highly deformed bodies. Application of our results to the illustrative examples of (87) Sylvia and (216) Kleopatra multi-asteroid systems implies capture probabilities slightly below ~10% for leading-order spin-spin resonances. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  4. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: analysis of basic electronic effects.

    PubMed

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-22

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. (1)J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas (2)J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of (1)J(C,H) and (2)J(H,H), respectively, for hydrocarbons.

  5. Paramagnetic Enhancement of Nuclear Spin-Spin Coupling.

    PubMed

    Cherry, Peter John; Rouf, Syed Awais; Vaara, Juha

    2017-03-14

    We present a derivation and computations of the paramagnetic enhancement of the nuclear magnetic resonance (NMR) spin-spin coupling, which may be expressed in terms of the hyperfine coupling (HFC) and (for systems with multiple unpaired electrons) zero-field splitting (ZFS) tensors. This enhancement is formally analogous to the hyperfine contributions to the NMR shielding tensor as formulated by Kurland and McGarvey. The significance of the spin-spin coupling enhancement is demonstrated by using a combination of density-functional theory and correlated ab initio calculations, to determine the HFC and ZFS tensors, respectively, for two paramagnetic 3d metallocenes, a Cr(II)(acac)2 complex, a Co(II) pyrazolylborate complex, and a lanthanide system, Gd-DOTA. Particular attention is paid to relativistic effects in HFC tensors, which are calculated using two methods: a nonrelativistic method supplemented by perturbational spin-orbit coupling corrections, and a fully relativistic, four-component matrix-Dirac-Kohn-Sham approach. The paramagnetic enhancement lacks a direct dependence on the distance between the coupled nuclei, and represents more the strength and orientation of the individual hyperfine couplings of the two nuclei to the spin density distribution. Therefore, the enhancement gains relative importance as compared to conventional coupling as the distance between the nuclei increases, or generally in the cases where the conventional coupling mechanisms result in a small value. With the development of the experimental techniques of paramagnetic NMR, the more significant enhancements, e.g., of the (13)C(13)C couplings in the Gd-DOTA complex (as large as 9.4 Hz), may eventually become important.

  6. Spin-Spin Coupling in the Solar System

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-09-01

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole-quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin-spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  7. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.

    PubMed

    Dracínský, Martin; Kaminský, Jakub; Bour, Petr

    2009-03-07

    Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in

  8. Finite-Perturbation Intermediate - Neglect - of - Differential - Overlap Molecular Orbital Calculations of Nuclear Magnetic Resonance Spin-Spin Coupling Constants for Polycyclic Aromatic Hydrocarbons and Aromatic Nitrogen Heterocyclics

    NASA Astrophysics Data System (ADS)

    Long, Sheila Ann Thibeault

    The H-H, C-H, and C-C spin-spin coupling constants were calculated by the finite-perturbation, intermediate -neglect-of-differential-overlap method using the Fermi contact interaction for benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations were made using both the actual and the average molecular geometries. For all six of these molecules, the agreements between the calculated and the experimental coupling constants were comparable to those previously reported for other, predominantly smaller, molecules. The actual molecular geometries always gave the correct relative order of values for the H-H coupling constants, whereas the average molecular geometries did not always do so. The magnitudes, but not the signs, of the calculated coupling constants were sensitive to small changes in molecular geometry. The results were the best (next best) for the H-H (C-H) coupling constants. In addition the H-H, C-H, N-H, C-C, and N-C spin -spin coupling constants were calculated in a similar manner for pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, quinoline, quinoxaline, phthalazine, benzo g quinoxaline, and benzo b phenazine. The agreements between the theoretical and the experimental values were comparable to those for the polycyclic aromatic hydrocarbons.

  9. Unusual long-range spin-spin coupling in fluorinated polyenes: A mechanistic analysis

    NASA Astrophysics Data System (ADS)

    Gräfenstein, Jürgen; Cremer, Dieter

    2007-11-01

    Nuclear magnetic resonance (NMR) is a prospective means to realize quantum computers. The performance of a NMR quantum computer depends sensitively on the properties of the NMR-active molecule used, where one requirement is a large indirect spin-spin coupling over large distances. F-F spin-spin coupling constants (SSCCs) for fluorinated polyenes F -(CHCH)n-F (n=1⋯5) are >9Hz across distances of more than 10Å. Analysis of the F,F spin-spin coupling mechanism with our recently developed decomposition of J into Orbital Contributions with the help of Orbital Currents and Partial Spin Polarization (J-OCOC-PSP=J-OC-PSP) method reveals that coupling is dominated by the spin-dipole (SD) term due to an interplay between the π lone-pair orbitals at the F atoms and the π(C2n) electron system. From our investigations we conclude that SD-dominated SSCCs should occur commonly in molecules with a contiguous π-electron system between the two coupling nuclei and that a large SD coupling generally is the most prospective way to provide large long-range spin-spin coupling. Our results give guidelines for the design of suitable active molecules for NMR quantum computers.

  10. Limits on Anomalous Spin-Spin Couplings between Neutrons

    NASA Astrophysics Data System (ADS)

    Glenday, Alexander G.; Cramer, Claire E.; Phillips, David F.; Walsworth, Ronald L.

    2008-12-01

    We report experimental limits on new spin-dependent macroscopic forces between neutrons. We measured the nuclear Zeeman frequencies of a He3/Xe129 maser while modulating the nuclear spin polarization of a nearby He3 ensemble in a separate glass cell. We place limits on the coupling strength of neutron spin-spin interactions mediated by light pseudoscalar particles like the axion [gpgp/(4πℏc)] at the 3×10-7 level for interaction ranges longer than about 40 cm. This limit is about 10-5 the size of the magnetic dipole-dipole interaction between neutrons.

  11. Investigation of the resonance-assisted hydrogen bond in model β-diketones through localized molecular orbital analysis of the spin-spin coupling constants related to the O-H···O hydrogen bond.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F

    2015-02-01

    The resonance-assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin-spin coupling constants between atoms either involved or close to the O-H···O system of some β-diketones and their saturated counterparts. The analysis, carried out at the level of the second-order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π-electron structure supporting the idea of the existence of the resonance-assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π-electrons.

  12. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    NASA Astrophysics Data System (ADS)

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-01

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.

  13. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  14. Indirect NMR spin-spin coupling constants in diatomic alkali halides.

    PubMed

    Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2016-12-28

    We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

  15. Optical switching of nuclear spin-spin couplings in semiconductors.

    PubMed

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-07-05

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.

  16. Calculation of indirect nuclear spin-spin coupling constants within the regular approximation for relativistic effects.

    PubMed

    Filatov, Michael; Cremer, Dieter

    2004-06-22

    A new method for calculating the indirect nuclear spin-spin coupling constant within the regular approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic in the sense that it does not employ numeric integration for the evaluation of relativistic corrections to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or density functional theory. In the latter case, both pure and hybrid density functionals can be used for the calculation of the quasirelativistic spin-spin coupling constants. The new method is used in connection with the infinite-order regular approximation with modified metric (IORAmm) to calculate the spin-spin coupling constants for molecules containing heavy elements. The importance of including exact exchange into the density functional calculations is demonstrated.

  17. New effective-one-body Hamiltonian with next-to-leading order spin-spin coupling

    NASA Astrophysics Data System (ADS)

    Balmelli, Simone; Damour, Thibault

    2015-12-01

    We present a new effective-one-body (EOB) Hamiltonian with next-to-leading order (NLO) spin-spin coupling for black hole binaries endowed with arbitrarily oriented spins. The Hamiltonian is based on the model for parallel spins and equatorial orbits developed in [Physical Review D 90, 044018 (2014)] but differs from it in several ways. In particular, the NLO spin-spin coupling is not incorporated by a redefinition of the centrifugal radius rc but by separately modifying certain sectors of the Hamiltonian, which are identified according to their dependence on the momentum vector. The gauge-fixing procedure we follow allows us to reduce the 25 different terms of the NLO spin-spin Hamiltonian in Arnowitt-Deser-Misner coordinates to only nine EOB terms. This is an improvement with respect to the EOB model recently proposed in [Physical Review D 91, 064011 (2015)], where 12 EOB terms were involved. Another important advantage is the remarkably simple momentum structure of the spin-spin terms in the effective Hamiltonian, which is simply quadratic up to an overall square root. Moreover, a Damour-Jaranowski-Schäfer-type gauge could be established, thus allowing one to concentrate, in the case of circular and equatorial orbits, the whole spin-spin interaction in a single radial potential.

  18. Analyzing and Interpreting NMR Spin-Spin Coupling Constants Using Molecular Orbital Calculations

    ERIC Educational Resources Information Center

    Autschbach, Jochen; Le Guennic, Boris

    2007-01-01

    Molecular orbital plots are used to analyze and interpret NMR spin-spin coupling constants, also known as J coupling constants. Students have accepted the concept of contributions to molecular properties from individual orbitals without the requirement to provide explicit equations.

  19. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru

    2013-03-01

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form {r}_{12}⊗ {r}_{12}/r_{12}^n over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation.

  20. Calculations of spin-spin coupling constants in aromatic nitrogen heterocyclics

    NASA Astrophysics Data System (ADS)

    Long, S. A. T.; Memory, J. D.

    HH, CH, NH, CC, and NC spin-spin coupling constants were calculated using the FP-INDO method and the Fermi contact interaction for pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, quinoline, quinoxaline, phthalazine, isoquinoline, cinnoline, quinazoline, acridine, phenazine, benzo[ g]quinoxaline, and benzo[ b]-phenazine. The agreement between theory and experiment was comparable to that for polynuclear aromatic hydrocarbons reported earlier.

  1. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  2. Molecular properties in the Tamm-Dancoff approximation: indirect nuclear spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.

    2015-07-01

    The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.

  3. Density functional theory study of indirect nuclear spin-spin coupling constants with spin-orbit corrections

    NASA Astrophysics Data System (ADS)

    Oprea, Corneliu I.; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2005-07-01

    This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X =C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.

  4. NMR spin-spin coupling constants in polymethine dyes as polarity indicators.

    PubMed

    Murugan, N Arul; Aidas, Kestutis; Kongsted, Jacob; Rinkevicius, Zilvinas; Ågren, Hans

    2012-09-10

    Herein, we explore the use of spin-spin coupling constants (SSCCs) in merocyanine (MCYNE) dyes as indicators of polarity. For this purpose, we use Car-Parrinello hybrid quantum mechanics/molecular mechanics (QM/MM) to determine the structures of MCYNE in solvents of different polarity, followed by computations of the SSCCs by using QM/MM linear-response theory. The molecular geometry of MCYNE switches between neutral, cyanine-like, and zwitterionic depending on the polarity of the solvent. This structural variation is clearly reflected in the proton SSCCs in the polymethine backbone, which are highly sensitive to the dielectric nature of the environment; this mechanism can be used as a "polarity indicator" for different microenvironments. This result is highlighted by computing the SSCCs of the MCYNE probe in the cavity of the beta-lactoglobulin protein. The computed SSCCs clearly indicate a non-polar hydrophobic dielectric nature of this cavity.

  5. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    SciTech Connect

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  6. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    NASA Astrophysics Data System (ADS)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  7. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-06

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  8. On the calculations of the nuclear spin spin coupling constants in small water clusters

    NASA Astrophysics Data System (ADS)

    Cybulski, Hubert; Pecul, Magdalena; Sadlej, Joanna

    2006-08-01

    The calculations of the nuclear spin-spin coupling constants were carried out for small water clusters (H 2O) n, n = 2-6, 12, and 17, using density functional theory (DFT) and second-order polarization propagator method (SOPPA). A wide range of different standard and modified basis sets was tested to enable the choice of the possibly smallest and most flexible basis set. The changes in the oxygen-proton coupling constants upon the cluster formation between the nuclei involved in hydrogen bonding cover a range of ca. 13 Hz. The range of the calculated changes in intramolecular 1JOH couplings shows that the simple model of rigid water clusters seems to be sufficient to reproduce properly the sign and to estimate the magnitude of the gas-to-liquid shift. The sign of the complexation-induced changes in the intramolecular 2JHH coupling constant is different for molecules with a different coordination number. While the sign is positive for the molecules of the single donor-single acceptor (DA) and single donor-double acceptor (DAA) types, it is negative for the double donor-single acceptor (DDA) molecules. In the four-coordinated double donor-double acceptor (DDAA) molecules the sign of Δ 2JHH varies. The hydrogen-bond transmitted intermolecular coupling constants are substantial: 1hJOH spans the range from 2.8 to 8.4 Hz while 2hJOO varies from -0.6 to 7.5 Hz. The average intermolecular 1hJOH coupling constant decays slowly with the H⋯O distance in the cyclic clusters n = 2-6. The average 2hJOO coupling decreases exponentially with the O⋯O separation for the cyclic clusters n = 2-6.

  9. 15N- 15N spin-spin coupling constants through intermolecular hydrogen bonds in the solid state

    NASA Astrophysics Data System (ADS)

    Claramunt, Rosa M.; Pérez-Torralba, Marta; María, Dolores Santa; Sanz, Dionisia; Elena, Bénédicte; Alkorta, Ibon; Elguero, José

    2010-10-01

    A 2hJNN intermolecular spin-spin coupling constant (SSCC) of 10.2 ± 0.4 Hz has been measured for the powdered tetrachlorogallate salt of pyridinium solvated by pyridine (pyridine-H +⋯pyridine cation 3). Density Functional Theory (DFT) calculations at the B3LYP/6-311++G( d, p) level reproduced this value and two others reported in the literature for 2hJ intermolecular SSCCs, which were measured for complexes in solution.

  10. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  11. Importance of Triples Contributions to NMR Spin-Spin Coupling Constants Computed at the CC3 and CCSDT Levels.

    PubMed

    Faber, Rasmus; Sauer, Stephan P A; Gauss, Jürgen

    2017-02-14

    We present the first analytical implementation of CC3 second derivatives using the spin-unrestricted approach. This allows, for the first time, the calculation of nuclear spin-spin coupling constants (SSCC) relevant to NMR spectroscopy at the CC3 level of theory in a fully analytical manner. CC3 results for the SSCCs of a number of small molecules and their fluorine substituted derivatives are compared with the corresponding coupled cluster singles and doubles (CCSD) results obtained using specialized basis sets. For one-bond couplings the change when going from CCSD to CC3 is typically 1-3%, but much higher corrections were found for (1)JCN in FCN, 15.7%, and (1)JOF in OF2, 6.4%. The changes vary significantly in the case of multibond couplings, with differences of up to 10%, and even 13.6% for (3)JFH in fluoroacetylene. Calculations at the coupled cluster singles, doubles, and triples (CCSDT) level indicate that the most important contributions arising from connected triple excitations in the coupled cluster expansion are accounted for at the CC3 level. Thus, we believe that the CC3 method will become the standard approach for the calculation of reference values of nuclear spin-spin coupling constants.

  12. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    PubMed

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict (1) J O H , (2) J H H and (2h) J O O couplings, while (1h) J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for (1) J O H and (2) J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  13. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V

    2013-08-21

    This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.

  14. Elucidation of the electronic structure of molecules with the help of NMR spin-spin coupling constants: the FH molecule.

    PubMed

    Gräfenstein, Jürgen; Tuttle, Tell; Cremer, Dieter

    2005-03-17

    It is demonstrated how the one-bond NMR spin-spin coupling constant (SSCC) (1)J(FH) can be used as a source of information on the electronic structure of the FH molecule. For this purpose, the best possible agreement between measured and calculated SSCC is achieved by large basis set coupled perturbed density functional theory calculations. Then, the calculated value is dissected into its four Ramsey terms: Fermi contact, the paramagnetic spin-orbit term, the diamagnetic spin-orbit term, and the spin dipole term, which in turn are decomposed into orbital contributions and then described by their spin densities and orbital current densities. In this way, the SSCC gives detailed information about the electronegativity of F, the bond polarity, the bond polarizability, the volume and the polarizability of sigma and pi lone pair orbitals, the s- or p-character of the bond orbital, the nature of the LUMO, and the density distribution around F.

  15. Calculation of nuclear spin-spin couplings. VIII. Vicinal proton-proton coupling constants in ethane

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Inomata, H.; Baba, T.; Miura, K.; Matsuda, H.

    1995-10-01

    Ab initio self-consistent-field (SCF) and electron correlation calculations have been carried out for the dihedral angle dependence of the vicinal proton-proton coupling constants, 3JHH, in ethane molecule. The four contributions to 3JHH, (JFC, JSD, JOP, and JOD) have been computed with the three different basis sets, [5s2p1d/2s1p], [5s3p1d/3s1p], and [7s4p2d/5s2p]. The Fermi contact (FC) contribution was largest and the spin-dipole (SD) contribution was smallest. The FC and orbital paramagnetic (OP) contributions showed large basis set dependence, but the SD and orbital diamagnetic (OD) contributions presented little basis set dependence. The calculated total SCF contribution to 3JHH was higher than the experimental coupling. Using the Møller-Plesset perturbation theory we have introduced electron correlation effects on the FC and OP terms. The correlation effects on the OP term was shown to be negligible. The second-order correlation in the FC term was very large and amounted to half of its SCF value in magnitude with opposite sign. However, the third-order correlation in the FC contribution was small. Unfortunately, the calculated 3JHH value including correlation corrections through third order was too small compared to the experimental one. The poor agreement between calculation and experiment is claimed to be due to higher than third-order correlations in the FC term.

  16. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (spin-spin couplings in several saturated and unsaturated fluorinated hydrocarbons. We find that the choice of the basis set for each atom belonging to our studied model compounds depends on its location with respect to the coupled fluorine atoms and on the cis/trans or synperiplanar/antiperiplanar conformation of the molecule. Carbon atoms in the bonding path connecting the coupled fluorine atoms have to be described with better basis sets than the carbon atoms outside this path. For the hydrogen atoms directly connected to the coupling pathway in molecules with trans or antiperiplanar conformations and for all hydrogen atoms not directly connected to the coupling pathway one can employ a minimal basis set with only one s-function. Employing these type of LDBSs we can reduce the number of necessary basis functions by about 30% without losing more than about 1 Hz in accuracy. The analysis of the four contributions to the vicinal fluorine-fluorine coupling constants shows that the non-contact orbital paramagnetic term is the most important contribution followed by the also non-contact spin-dipolar term. The Fermi contact term is the largest contribution only in the synperiplanar conformations of 1,2-difluoroethane and -propane.

  17. On the discrepancy between theory and experiment for the F-F spin-spin coupling constant of difluoroethyne.

    PubMed

    Faber, Rasmus; Sauer, Stephan P A

    2012-12-21

    The vicinal indirect nuclear spin-spin coupling constant (SSCC) between the two fluorine atoms in difluoroethyne has been reinvestigated. This coupling has previously proved to be difficult to calculate accurately. In this study we have therefore systematically investigated the dependence of this coupling on the choice of one-electron basis set, the choice of correlated wave function method and the inclusion of zero-point vibrational and temperature corrections. All terms of the SSCC have been evaluated at the second-order polarization propagator, SOPPA and SOPPA(CCSD), and coupled cluster singles and doubles (CCSD) levels of theory and for the most correlation dependent term, the paramagnetic spin-orbit contribution (PSO), also at the very accurate CC3 level. We find that in order to get results that are well converged with respect to the basis set, one needs to use special SSCC optimized basis sets of at least quadruple zeta quality and with added diffuse functions. Furthermore, the PSO term is not yet converged at the CCSD level as shown by the CC3 calculations. Finally, it is shown that vibrational effects are very important, as they are in this case of the same order of magnitude as the equilibrium geometry value of the coupling constant. Only by using a converged basis set and including both vibrational and higher order correlation effects can we obtain agreement with the experimental value for this coupling.

  18. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. IV. Radiation reaction for binary systems with spin-spin coupling

    NASA Astrophysics Data System (ADS)

    Wang, Han; Will, Clifford M.

    2007-03-01

    Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)5] and O[(v/c)7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies, including spin-spin effects. In particular we determine the effects of radiation-reaction coupled to spin-spin effects on the two-body equations of motion, and on the evolution of the spins. We find that radiation damping causes a 3.5PN order, spin-spin induced precession of the individual spins. This contrasts with the case of spin-orbit coupling, where we earlier found no effect on the spins at 3.5PN order. Employing the equations of motion and of spin precession, we verify that the loss of total energy and total angular momentum induced by spin-spin effects precisely balances the radiative flux of those quantities calculated by Kidder et al.

  19. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Omar, S.; García de la Vega, J. M.

    2016-08-01

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF)n]- and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  20. Open-chain unsaturated selanyl sulfides: stereochemical structure and stereochemical behavior of their 77Se-1H spin-spin coupling constants.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Penzik, Maxim V; Potapov, Vladimir A; Amosova, Svetlana V

    2012-10-01

    Stereochemical structure of nine Z-2-(vinylsulfanyl)ethenylselanyl organyl sulfides has been investigated by means of experimental measurements and second-order polarization propagator approach calculations of their (1)H-(1)H, (13)C-(1)H, and (77)Se-(1)H spin-spin coupling constants together with a theoretical conformational analysis performed at the MP2/6-311G** level. All nine compounds were shown to adopt the preferable skewed s-cis conformation of their terminal vinylsulfanyl group, whereas the favorable rotational conformations with respect to the internal rotations around the C-S and C-Se bonds of the internal ethenyl group are both skewed s-trans. Stereochemical trends of (77)Se-(1)H spin-spin coupling constants originating in the geometry of their coupling pathways and the selenium lone pair effect were rationalized in terms of the natural J-coupling analysis within the framework of the natural bond orbital approach.

  1. Anisotropic indirect nuclear spin-spin coupling in InP: 31P CP NMR study under slow MAS condition

    NASA Astrophysics Data System (ADS)

    Iijima, Takahiro; Hashi, Kenjiro; Goto, Atsushi; Shimizu, Tadashi; Ohki, Shinobu

    2006-02-01

    The indirect nuclear spin-spin interaction tensor between neighboring 113,115In- 31P spins in Fe-doped InP semiconductor has been studied by 31P NMR spectra measured using CP of 113In → 31P and 115In → 31P under slow MAS condition. The isotropic ( Jiso) and anisotropic ( Janiso = 2/3[ J∥ - J⊥]) parts of the indirect interaction tensor are obtained from the spectral simulation. The acceptable combinations of these values are found to be as follows: ( Jiso, Janiso) = (224 ± 5, 500 ± 100 Hz) or (-224 ± 5, 2100 ± 100 Hz). Although, the coupling constants estimated in this study are slightly different from previously reported values of ∣ Jiso∣ = 350 Hz, Janiso = 1298 Hz [M. Engelsberg, R.E. Norberg, Phys. Rev. B 5 (1972) 3395] and of ∣ Jiso∣ = 225 ± 10, Janiso = (813 ± 50) or (1733 ± 50) Hz [M. Tomaselli et al., Phys. Rev. B 58 (1998) 8627], all of these has the trend that Janiso is rather larger than Jiso.

  2. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    SciTech Connect

    Wodyński, Artur; Pecul, Magdalena

    2014-01-14

    The {sup 1}J{sub CC} and {sup 1}J{sub CH} spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  3. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    NASA Astrophysics Data System (ADS)

    Wodyński, Artur; Pecul, Magdalena

    2014-01-01

    The 1JCC and 1JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants.

  4. Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: the importance of the large amplitude inversion mode.

    PubMed

    Yachmenev, Andrey; Yurchenko, Sergei N; Paidarová, Ivana; Jensen, Per; Thiel, Walter; Sauer, Stephan P A

    2010-03-21

    Analytic internal-coordinate representations are reported for two accurate ab initio spin-spin coupling surfaces of the ammonia molecule, (1)J ((15)N,H) and (2)J(H,H). Calculations were carried out at the level of the second-order polarization propagator approximation involving coupled-cluster singles and doubles amplitudes (CCSD) and using a large specialized basis set, for a total of 841 different geometries corresponding to 2523 distinct points on the (1)J ((15)N,H) and (2)J(H,H) surfaces. The results were fitted to power series expansions truncated after the fourth-order terms. While the one-bond nitrogen-hydrogen coupling depends more on the internuclear distance, the geminal hydrogen-hydrogen coupling exhibits a pronounced dependence on the bond angle. The spin-spin parameters are first vibrationally averaged, using vibrational wave functions obtained variationally from the TROVE computer program with a CCSD(T) based potential energy surface, for ammonia and its various deuterated isotopologues. The vibrationally averaged quantities are then thermally averaged to give values of the couplings at absolute temperatures of 300 and 600 K. We find that the nuclear-motion corrections are rather small. The computed one-bond couplings and their minute isotope effects are in excellent agreement with the experimental values.

  5. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    SciTech Connect

    Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.

    2015-03-21

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  6. Relativistic four-component calculations of indirect nuclear spin-spin couplings with efficient evaluation of the exchange-correlation response kernel

    NASA Astrophysics Data System (ADS)

    Křístková, Anežka; Komorovsky, Stanislav; Repisky, Michal; Malkin, Vladimir G.; Malkina, Olga L.

    2015-03-01

    In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.

  7. Using bio-functionalized magnetic nanoparticles and dynamic nuclear magnetic resonance to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection.

    PubMed

    Liao, Shu-Hsien; Chen, Kuen-Lin; Wang, Chun-Min; Chieh, Jen-Jie; Horng, Herng-Er; Wang, Li-Min; Wu, C H; Yang, Hong-Chang

    2014-11-12

    In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ΔT2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 μg/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins.

  8. First example of the correlated calculation of the one-bond tellurium-carbon spin-spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects.

    PubMed

    Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B

    2016-06-05

    This work reports on the comprehensive calculation of the NMR one-bond spin-spin coupling constants (SSCCs) involving carbon and tellurium, (1) J((125) Te,(13) C), in four representative compounds: Te(CH3 )2 , Te(CF3 )2 , Te(CCH)2 , and tellurophene. A high-level computational treatment of (1) J((125) Te,(13) C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4-component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium-containing compounds, basis sets, and methods used for obtainig spin-spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium-carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of (1) J((125) Te,(13) C) reaching as much as almost 50% of the total value of (1) J((125) Te,(13) C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3-6% and 0-4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non-relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc.

  9. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  10. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    SciTech Connect

    Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.

    2015-12-14

    The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  11. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  12. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  13. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  14. How to Calculate Spin-Spin Coupling and Spin-Rotation Coupling Strengths and Their Uncertainties from Spectroscopic Data: Application to the c(1^3Σ_g^+) State of Diatomic Lithium

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Li, Xuan

    2013-06-01

    Recent high-resolution (± 0.00002 cm^{-1}) photo-association spectroscopy (PAS) data of seven previously unexplored vibrational levels of the 1^3Σ_g^+ state of Li_2 have allowed for the first ever experimental determination of the spin-spin (λ_v) and spin-rotation (γ_v) coupling constants in a diatomic lithium system. For triplet states of diatomic molecules such as the 1^3Σ_g^+ state of Li_2, the three spin-spin/spin-rotation resolved energies associated with a ro-vibrational state |v,N> were expressed explicity in terms of B_v, λ_v, and γ_v in 1929 by Kramer's first-order formulas and then in 1937 by Schlapp's more refined formulas. Given spectroscopic data, while it has never been difficult to extract λ_v and γ_v from Schlapp's formulas, it has been a challenge to reliably predict how accurate these extracted values are. This is for two reasons: (1) the lack of a rigorous method to estimate the uncertainty in B_v, (2) the non-linearity of Schlapp's coupled equations has meant that traditionally they have had to be solved numerically by Newton iterations which makes error propagation difficult. The former challenge has been this year solved by Le Roy with a modification of Hutson's perturbation theory of, and the latter problem has now been solved by symbolic computing software that solves Schlapp's coupled non-linear equations analytically for the first time since their introduction in 1937. M. Semczuk, X. Li, W. Gunton, M. Haw, N. Dattani, J. Witz, A. Mills, D. Jones, K. Madison, Physical Review A {87}, XX (2013) H. Kramers, Zeitschrift fur Physik {53}, 422 (1929) R. Schlapp, Physical Review {51}, 342 (1937) J. Hutson, J. Phys. B, {14}, 851 (1981)

  15. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    SciTech Connect

    Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)

  16. Limiting values of the one-bond Csbnd H spin-spin coupling constants of the imidazole ring of histidine at high-pH

    NASA Astrophysics Data System (ADS)

    Vila, Jorge A.; Scheraga, Harold A.

    2017-04-01

    Assessment of the relative amounts of the forms of the imidazole ring of Histidine (His), namely the protonated (H+) and the tautomeric Nε2-H and Nδ1-H forms, respectively, is a challenging task in NMR spectroscopy. Indeed, their determination by direct observation of the 15N and 13C chemical shifts or the one-bond Csbnd H, 1JCH, Spin-Spin Coupling Constants (SSCC) requires knowledge of the "canonical" limiting values of these forms in which each one is present to the extent of 100%. In particular, at high-pH, an accurate determination of these "canonical" limiting values, at which the tautomeric forms of His coexist, is an elusive problem in NMR spectroscopy. Among different NMR-based approaches to treat this problem, we focus here on the computation, at the DFT level of theory, of the high-pH limiting value for the 1JCH SSCC of the imidazole ring of His. Solvent effects were considered by using the polarizable continuum model approach. The results of this computation suggest, first, that the value of 1JCε1H = 205 ± 1.0 Hz should be adopted as the canonical high-pH limiting value for this SSCC; second, the variation of 1JCε1H SSCC during tautomeric changes is minor, i.e., within ±1 Hz; and, finally, the value of 1JCδ2H SSCC upon tautomeric changes is large (15 Hz) indicating that, at high-pH or for non-protonated His at any pH, the tautomeric fractions of the imidazole ring of His can be predicted accurately as a function of the observed value of 1JCδ2H SSCC.

  17. Efficient spin-spin scalar coupling mediated C-13 homonuclear polarization transfer in biological solids without proton decoupling.

    PubMed

    Mou, Yun; Chao, John Chin Hao; Chan, Jerry C C

    2006-06-01

    We demonstrate that an efficient C' <--> C alpha polarization transfer based on J-coupling can be realized under fast magic-angle spinning (MAS) condition without 1H decoupling. Experimental results are presented for model crystalline compounds as well as a non-crystalline 17-residue polypeptide MB(i + 4)EK. Measurements on MB(i + 4)EK demonstrate that 53% of the initial C' polarization was transferred to the cross peaks at 7.05 T under 25 kHz MAS spinning.

  18. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  19. Stereospecificity of the /sup 3/J /SUB CH/ spin-spin coupling constants in bicyclic cis-diaziridines. Stereochemistry of 2,4,6-Trialkvl-1,3,5-triazabicyclo (3. 1. 0)hexanes --

    SciTech Connect

    Denisenko, S.N.; Chervin, I.I.; Kostyanovskii, R.G.; Shustov, G.V.

    1986-04-01

    Stereospecificity of the /sup 3/JC,N,C,H spin-spin coupling constants (/sup 3/ /SUB J/ trans > /SUB J/ gauche) in the /sup 13/C NMR spectra of 1,5-diaza- and 1,3,5-triazabicyclo (3.1.0)hexanes was observed. Proceeding from this, the preferred conformations of the d,/ZETA/ and meso isomers of 2,4,6-trialkyl-1,3,5-triazabicyclo (3.1.0) hexanes were established, and a mechanism for the interconversion of these isomers via openings of the five-membered ring and an imino-enamine equilibrium was proposed. It is also shown that the stereochemical result of the Schmitz reaction is determined in the step involving cyclization of the iminium intermediate.

  20. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    PubMed

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study.

  1. Spin pseudogap and interplane coupling in Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15}: A {sup 63}Cu nuclear spin-spin relaxation study

    SciTech Connect

    Stern, R.; Mali, M.; Roos, J.; Brinkmann, D.

    1995-06-01

    We report measurements of the Gaussian contribution {ital T}{sub 2{ital G}} to the plane {sup 63}Cu nuclear spin-spin relaxation time in the YBa{sub 2}Cu{sub 3}O{sub 7} and YBa{sub 2}Cu{sub 4}O{sub 8} blocks of normal and superconducting Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15}. The data confirm our previous results that adjacent CuO{sub 2} planes have different doping levels and that these planes are strongly coupled. The static spin susceptibility at the antiferromagnetic wave vector exhibits a Curie-Weiss-like temperature dependence in the normal state. The Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15} data are incompatible with a phase diagram based on a single CuO{sub 2} plane theory but point to the importance of the interplane coupling in the spin-gap formation. Additional data for YBa{sub 2}Cu{sub 4}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 6.982} are in acord with the single-plane theory. The temperature dependence of {ital T}{sub 2{ital G},ind} below {ital T}{sub {ital c}} excludes isotropic {ital s}-wave superconductivity in all three compounds.

  2. Coupled resonator vertical cavity laser

    SciTech Connect

    Choquette, K.D.; Chow, W.W.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-01-01

    The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. The authors report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.

  3. A theoretical study of the NMR spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-) (n = 0-3) and [(NC)(5)Pt-Tl-Pt(CN)(5)](3-): a lesson on environmental effects.

    PubMed

    Autschbach, Jochen; Le Guennic, Boris

    2003-11-05

    The molecular geometries and the nuclear spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-), n = 0-3, and the related system [(NC)(5)Pt-Tl-Pt(CN)(5)](3-) are studied. These complexes have received considerable interest since the first characterization of the n = 1 system by Glaser and co-workers in 1995 [J. Am. Chem. Soc. 1995, 117, 7550-7551]. For instance, these systems exhibit outstanding NMR properties, such as extremely large Pt-Tl spin-spin coupling constants. For the present work, all nuclear spin-spin coupling constants J(Pt-Tl), J(Pt-C), and J(Tl-C) have been computed by means of a two-component relativistic density functional approach. It is demonstrated by the application of increasingly accurate computational models that both the huge J(Pt-Tl) for the complex (NC)(5)Pt-Tl and the whole experimental trend among the series are entirely due to solvent effects. An approximate inclusion of the bulk solvent effects by means of a continuum model, in addition to the direct coordination, proves to be crucial. Similarly drastic effects are reported for the coupling constants between the heavy atoms and the carbon nuclei. A computational model employing the statistical average of orbital-dependent model potentials (SAOP) in addition to the solvent effects allows to accurately reproduce the experimental coupling constants within reasonable limits.

  4. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  5. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  6. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  7. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Sauer, Stephan P. A.; Provasi, Patricio F.

    2014-10-01

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the 1J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the 1J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  8. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane.

    PubMed

    Zarycz, M Natalia C; Sauer, Stephan P A; Provasi, Patricio F

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the (1)J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the (1)J(N-H) coupling constant in NH3. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes--SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  9. A re-investigation of (4)JFF and (5)JFF nuclear spin-spin couplings in substituted benzenes, a novel conformational tool.

    PubMed

    Abraham, Raymond J; Cooper, M Ashley

    2016-06-21

    A theoretical analysis of the (4)JFF and (5)JFF couplings in fluorobenzenes separates the σ and π components of the substituent coefficients. The π bond mechanism is dominant but the σ bond mechanism must be included to give accurate values of the couplings. For monosubstituted difluorobenzenes the (4)JFF and (5)JFF couplings can be predicted from the calculated π densities by linear equations. The use of additive substituent effects allows the prediction of the meta(4)JFF couplings for multisubstituted compounds. The π dependence of the (4)JFF coupling in 2,6-difluorobenzenes provides a novel and simple method of determining the torsional angle of the C1 substituent and the benzene ring for non-symmetrical functional groups (acetyl, carboxymethyl, dimethylamino, amide, nitro etc.). This could be used to determine the geometries of such molecules in biological systems. The π dependence of the (4)JFF coupling is also of importance in the charged species of 2,6-difluoroanilinium ((4)JFF 2.1 Hz) and 2,6-difluoro-N,N,N-trimethylanilinium ((4)JFF 0.0 Hz) due to the very different π electron densities.

  10. NMR chemical shielding and spin-spin coupling constants of liquid NH3: a systematic investigation using the sequential QM/MM method.

    PubMed

    Gester, Rodrigo M; Georg, Herbert C; Canuto, Sylvio; Caputo, M Cristina; Provasi, Patricio F

    2009-12-31

    The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the (1)J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, sigma((15)N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  11. NMR Chemical Shielding and Spin-Spin Coupling Constants of Liquid NH3: A Systematic Investigation using the Sequential QM/MM Method

    NASA Astrophysics Data System (ADS)

    Gester, Rodrigo M.; Georg, Herbert C.; Canuto, Sylvio; Caputo, M. Cristina; Provasi, Patricio F.

    2009-09-01

    The NMR spin coupling parameters, 1J(N,H) and 2J(H,H), and the chemical shielding, σ(15N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the 1J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the 2J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for 1J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, σ(15N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Δσ(15N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  12. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  13. Indirect "no-bond" ³¹P···³¹P spin-spin couplings in P,P-[3]ferrocenophanes: insights from solid-state NMR spectroscopy and DFT calculations.

    PubMed

    Wiegand, Thomas; Eckert, Hellmut; Ren, Jinjun; Brunklaus, Gunther; Fröhlich, Roland; Daniliuc, Constantin G; Lübbe, Gerrit; Bussmann, Kathrin; Kehr, Gerald; Erker, Gerhard; Grimme, Stefan

    2014-03-27

    ··P distances, such measurements can also serve to estimate the magnitude of the anisotropy ΔJ of these no-bond indirect spin-spin couplings. The DFT results suggest that in the present series of compounds the magnitude of ΔJ is strongly correlated with that of the isotropic component, as both parameters have analogous distance dependences. While our studies indicate a sizable J-anisotropy for the model compound 1,8-bis(diphenylphosphino)napthalene (ΔJ ~ -70 Hz), the corresponding values for the P,P-[3]ferrocenophanes are significantly smaller, affecting their DQ-DRENAR curves only in a minor way. Based on the above insights, the structural aspects of conformational disorder and polymorphism observed in some of the P,P-[3]ferrocenophanes are discussed.

  14. Method for estimating spin-spin interactions from magnetization curves

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Hukushima, Koji

    2017-02-01

    We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method. The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.

  15. Fano resonances in prism-coupled multimode square micropillar resonators

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Tong; Zhou, Linjie; Poon, Andrew W.

    2005-06-01

    We report Fano resonances in a multimode square glass micropillar resonator; the resonances were obtained by using angle-resolved prism coupling. Our experiments reveal characteristically asymmetric line shapes of high-Q resonances and of detuned low-Q resonances in multimode reflection spectra. The asymmetric resonance line shapes evolve for an approximately pi phase within a 0.5° range of reflection angles. We model our observed asymmetric multimode resonances by the far-field interference between a light wave that is evanescently coupled with a high-Q mode orbit and a coherent light wave that is refractively coupled with a detuned low-Q mode orbit.

  16. Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.

    PubMed

    Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L

    2012-10-08

    The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.

  17. Nonlocality without inequality for spin-s systems

    SciTech Connect

    Kunkri, Samir; Choudhary, Sujit K.

    2005-08-15

    We critically review earlier works on Hardy's nonlocality argument for two spin-s systems and show that solutions previously found in this regard were restricted due to imposition of some conditions which have no role in the argument of nonlocality. We provide a compact form of the nonlocality condition for two spin-s particles, and we also extend it to n number of spin-s particles. Finally we apply a more general kind of nonlocality argument, still without an inequality, to higher-spin systems.

  18. Substituent effect in 2-benzoylmethylenequinoline difluoroborates exhibiting through-space couplings. Multinuclear magnetic resonance, X-ray diffraction, and computational study.

    PubMed

    Zakrzewska, Anna; Kolehmainen, Erkki; Valkonen, Arto; Haapaniemi, Esa; Rissanen, Kari; Chęcińska, Lilianna; Ośmiałowski, Borys

    2013-01-10

    The series of nine 2-benzoylmethylenequinoline difluoroborates have been synthesized and characterized by multinuclear magnetic resonance, X-ray diffraction (XRD), and computational methods. The through-space spin-spin couplings between (19)F and (1)H/(13)C nuclei have been observed in solution. The NMR chemical shifts have been correlated to the Hammett substituent constants. The crystal structures of six compounds have been solved by XRD. For two derivatives the X-ray wave function refinement was performed to evaluate the character of bonds in the NBF(2)O moiety by topological and integrated bond descriptors.

  19. Matrix model for strings beyond the c =1 barrier: The spin-s Heisenberg model on random surfaces

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Khachatryan, Sh.; Sedrakyan, A.

    2015-07-01

    We consider a spin-s Heisenberg model coupled to two-dimensional quantum gravity. We quantize the model using the Feynman path integral, summing over all possible two-dimensional geometries and spin configurations. We regularize this path integral by starting with the R-matrices defining the spin-s Heisenberg model on a regular 2d Manhattan lattice. Two-dimensional quantum gravity is included by defining the R-matrices on random Manhattan lattices and summing over these, in the same way as one sums over 2d geometries using random triangulations in noncritical string theory. We formulate a random matrix model where the partition function reproduces the annealed average of the spin-s Heisenberg model over all random Manhattan lattices. A technique is presented which reduces the random matrix integration in the partition function to an integration over their eigenvalues.

  20. Loop coupled resonator optical waveguides.

    PubMed

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  1. Pair entanglement in dimerized spin-s chains

    NASA Astrophysics Data System (ADS)

    Boette, A.; Rossignoli, R.; Canosa, N.; Matera, J. M.

    2016-12-01

    We examine the pair entanglement in the ground state of finite dimerized spin-s chains interacting through anisotropic X Y couplings immersed in a transverse magnetic field by means of a self-consistent pair mean-field approximation. The approach, which makes no a priori assumptions on the pair states, predicts, for sufficiently low coupling between pairs, 2 s distinct dimerized phases for increasing fields below the pair factorizing field, separated by spin-parity-breaking phases. The dimerized phases lead to approximate magnetization and pair entanglement plateaus, while the parity-breaking phases are characterized by weak pair entanglement but non-negligible entanglement of the pair with the rest of the system. These predictions are confirmed by the exact results obtained in finite s =1 and s =3 /2 chains. It is also shown that for increasing values of the spin s , the entanglement of an isolated pair, as measured by the negativity, rapidly saturates in the anisotropic X Y case but increases as s1 /2 in the X X case, reflecting a distinct single-spin entanglement spectrum.

  2. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  3. Low-loss coupling to dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-01-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  4. Controllable optomechanical coupling in serially-coupled triple resonators

    SciTech Connect

    Huang, Chenguang Zhao, Yunsong; Fan, Jiahua; Zhu, Lin

    2014-12-15

    Radiation pressure can efficiently couple mechanical modes with optical modes in an optical cavity. The coupling efficiency is quite dependent on the interaction between the optical mode and mechanical mode. In this report, we investigate a serially-coupled triple resonator system, where a freestanding beam is placed in the vicinity of the middle resonator. In this coupled system, we demonstrate that the mechanical mode of the free-standing beam can be selectively coupled to different resonance supermodes through the near field interaction.

  5. Spin-Spin Interactions in Organic Magnetoresistance Probed by Angle-Dependent Measurements

    NASA Astrophysics Data System (ADS)

    Wagemans, W.; Schellekens, A. J.; Kemper, M.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B.

    2011-05-01

    The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.

  6. CP observables with spin spin correlations in chargino production

    NASA Astrophysics Data System (ADS)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.

    2008-10-01

    We study the CP-violating terms of the spin-spin correlations in chargino production ee→χ˜1±χ˜2∓, and their subsequent two-body decays into sneutrinos plus leptons. We propose novel CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both charginos, with one polarization perpendicular to the production plane. We identify two classes of CP-sensitive observables; one requires the reconstruction of the production plane, the other not. Our framework is the Minimal Supersymmetric Standard Model with complex parameters.

  7. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  8. Critical coupling in plasmonic resonator arrays

    NASA Astrophysics Data System (ADS)

    Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2011-08-01

    We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

  9. A proof for negative vicinal proton-proton and proton-carbon spin-spin couplings in aliphatic aldehydes by using temperature and solvent dependence. Conformational studies on glycolaldehyde and di- tert-butyl ethanal

    NASA Astrophysics Data System (ADS)

    Laatikainen, Reino; Král, Vladimir; Äyräs, Pertti

    A negative 1H, 1H three-bond coupling 3J( CHO), H) was found for glycolaldehyde by varying solvent composition. A negative 3J( CHO), C) is demonstrated for di- tert-butyl ethanal by following the temperature dependence of the coupling. 3JgB( CHO), H) of -0.73 and 3Jg( CHO), C) of -0.26 Hz (g = gauche) for the compounds were estimated by fitting the temperature dependence of the couplings by using the two-site approach. The conformational behavior of the vicinal couplings in aliphatic aldehydes and the conformations of the title compounds are briefly discussed.

  10. Spin-spin relaxation of protons in ferrofluids characterized with a high-Tc superconducting quantum interference device-detected magnetometer in microtesla fields

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien; Liu, Chieh-Wen; Yang, Hong-Chang; Chen, Hsin-Hsien; Chen, Ming-Jye; Chen, Kuen-Lin; Horng, Herng-Er; Wang, Li-Min; Yang, Shieh-Yueh

    2012-06-01

    In this work, the spin-spin relaxation of protons in ferrofluids is characterized using a high-Tc SQUID-based detector in microtesla fields. We found that spin-spin relaxation rate is enhanced in the presence of superparamagnetic nanoparticles. The enhanced relaxation rates are attributed to the microscopic field gradients from magnetic nanoparticles that dephase protons' spins nearby. The relaxation rates decrease when temperatures increase. Additionally, the alternating current magnetic susceptibility was inversely proportional to temperature. Those characteristics explained the enhanced Brownian motion of nanoparticles at high temperatures. Characterizing the relaxation will be helpful for assaying bio-molecules and magnetic resonance imaging in microtesla fields.

  11. Dynamical Coupling of Pygmy and Giant Resonances

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos; Brady, Nathan; Aumann, Thomas; Thomas, James

    2016-03-01

    One of the effects overseen in studies of excitation of pygmy resonances is the fact that both pygmy and giant resonances are strongly coupled. This coupling leads to dynamical effects such as the modification of transition probabilities and and cross sections. We make an assessment of such effects by means of the relativistic coupled channels equations developed by our group. Supported by the U.S. NSF Grant No. 1415656 and the U.S. DOE Grant No. DE-FG02-08ER41533.

  12. Structures, energies, and spin-spin coupling constants of fluoro-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes: four-member B-P-B-P rings B2P2F(n)H(8-n) with n = 0, 1, 2, 4.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2011-05-05

    An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 15 fluoro-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)F(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. Except for B(2)P(2)F(4)H(4) with four fluorines bonded to two borons, these rings are puckered in a butterfly conformation. For a fixed number of fluorines, the isomers with B-F bonds are significantly more stable than those with P-F bonds. As the number of fluorines increases, the energy difference between the most stable isomer and the other isomers increases. Transition structures which interconvert axial and equatorial positions present relatively small inversion barriers. Coupling constants involving (31)P, namely, (1)J(B-P), (1)J(P-F), (2)J(P-P), (2)J(P-F), and (3)J(P-F) are large and are capable of providing structural information. They are sensitive to the number of fluorines present and can discriminate between axial, equatorial, and geminal B-F and P-F bonds, although not all do this to the same extent. (1)J(B-P) and (2)J(P-P) are similar in equilibrium and transition structures. Although transition structures no longer discriminate between axial and equatorial bonds, (1)J(P-F) and (3)J(P-F) remain sensitive to the number of fluorine atoms present.

  13. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  14. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  15. Dynamic nonlinear thermal optical effects in coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Huang, Chenguang; Fan, Jiahua; Zhu, Lin

    2012-09-01

    We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple "shark fins" and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  16. Structures, energies, and spin-spin coupling constants of methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes: four-member B-P-B-P rings B2P2(CH3)(n)H(8-n), with n = 0, 1, 2, 4.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2011-09-29

    An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 17 methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)(CH(3))(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. The B-P-B-P rings are puckered in a butterfly conformation, in agreement with experimental data for related molecules. Isomers with the CH(3) group bonded to P are more stable than those with CH(3) bonded to B. If there is only one methyl group or if two methyl groups are bonded to two different P or B atoms, isomers with equatorial bonds are more stable than those with axial bonds. However, when two methyl groups are present, the gem isomers are the most stable for molecules B(2)P(2)(CH(3))(2)H(6) with P-C and B-C bonds, respectively. Transition structures present barriers to the interconversion of two equilibrium structures or to the interchange of axial and equatorial positions in the same isomer. These barriers are very low for the isomer with two methyl groups bonded to B in axial positions for the isomer with four axial bonds and for the isomer with geminal B-C bonds at both B atoms. Coupling constants (1)J(B-P), (1)J(P-C), (1)J(B-C), (2)J(P-P), and (3)J(P-C) are capable of providing structural information. They are sensitive to the number of methyl groups present and can discriminate between axial, equatorial, and geminal bonds, although not all do this to the same extent. The one-bond coupling constants (1)J(B-P), (1)J(P-C), and (1)J(B-C) are similar in equilibrium and transition structures, but (3)J(P-C) and (2)J(P-P) are not. These coupling constants and those of the corresponding fluoro-derivatives of the 1,3-diborata-2,4-diphosphoniocyclobutanes demonstrate the great sensitivity of phosphorus coupling to structural and electronic effects.

  17. Induced transparency in optomechanically coupled resonators

    NASA Astrophysics Data System (ADS)

    Duan, Zhenglu; Fan, Bixuan; Stace, Thomas M.; Milburn, G. J.; Holmes, Catherine A.

    2016-02-01

    In this work we theoretically investigate a hybrid system of two optomechanically coupled resonators, which exhibits induced transparency. This is realized by coupling an optical ring resonator to a toroid. In the semiclassical analyses, the system displays bistabilities, isolated branches (isolas), and self-sustained oscillation dynamics. Furthermore, we find that the induced transparency window sensitively relies on the mechanical motion. Based on this fact, we show that the described system can be used as a weak force detector and the optimal sensitivity can beat the standard quantum limit without using feedback control or squeezing under available experimental conditions.

  18. Multimode vibrational couplings in resonant positron annihilation.

    PubMed

    d'A Sanchez, Sergio; Lima, Marco A P; Varella, Márcio T do N

    2011-09-02

    The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.

  19. Coupled Resonator Vertical Cavity Laser Diode

    SciTech Connect

    CHOQUETTE, KENT D.; CHOW, WENG W.; FISCHER, ARTHUR J.; GEIB, KENT M.; HOU, HONG Q.

    1999-09-16

    We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

  20. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  1. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce T.; Freericks, J. K.

    2016-05-01

    Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  2. Nonlinearly Coupled Superconducting Lumped Element Resonators

    NASA Astrophysics Data System (ADS)

    Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light

  3. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  4. Coupling Between Split-Ring Resonators

    SciTech Connect

    Koenig, Michael; Stannigel, Kai; Niegemann, Jens; Busch, Kurt

    2009-10-07

    Numerical methods have become invaluable tools for research in the field of photonics and plasmonics. The Discontinuous Galerkin Time-Domain (DGTD) method, complemented by numerous extensions, allows us to solve Maxwell's equations on unstructured grids while maintaining an efficient, explicit time-stepping scheme. In this contribution we employ our DGTD computer code to analyse dimers of split-ring resonators (SRRs), metallic nano-structures often used as building blocks for metamaterials. We find that electromagnetic coupling between two SRRs heavily influences the dimers' resonances. Results for two SRRs facing each other are presented and the influence of the particle spacing is investigated.

  5. Spin-spin and spin-orbit interactions in nanographene fragments: a quantum chemistry approach.

    PubMed

    Perumal, S; Minaev, B; Ågren, H

    2012-03-14

    The relativistic behavior of graphene structures, starting from the fundamental building blocks--the poly-aromatic hydrocarbons (PAHs) along with other PAH nanographenes--is studied to quantify any associated intrinsic magnetism in the triplet (T) state and subsequently in the ground singlet (S) state with account of possible S-T mixture induced by spin-orbit coupling (SOC). We employ a first principle quantum chemical-based approach and density functional theory (DFT) for a systematic treatment of the spin-Hamiltonian by considering both the spin-orbit and spin-spin interactions as dependent on different numbers of benzene rings. We assess these relativistic spin-coupling phenomena in terms of splitting parameters which cause magnetic anisotropy in absence of external perturbations. Possible routes for changes in the couplings in terms of doping and defects are also simulated and discussed. Accounting for the artificial character of the broken-symmetry solutions for strong spin polarization of the so-called "singlet open-shell" ground state in zigzag graphene nanoribbons predicted by spin-unrestricted DFT approaches, we interpolate results from more sophisticated methods for the S-T gaps and spin-orbit coupling (SOC) integrals and find that these spin interactions become weak as function of size and increasing decoupling of electrons at the edges. This leads to reduced electron spin-spin interaction and hence almost negligible intrinsic magnetism in the carbon-based PAHs and carbon nanographene fragments. Our results are in agreement with the fact that direct experimental evidence of edge magnetism in pristine graphene has been reported so far. We support the notion that magnetism in graphene only can be ascribed to structural defects or impurities.

  6. Hybridized/coupled multiple resonances in nacre

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2014-01-01

    We report that nacre (also known as mother-of-pearl), a wondrous nanocomposite found in nature, is a rich photonic nanomaterial allowing the experimental realization of collective excitation and light amplification via coupled states. Localized modes in three-dimensional complex media are typically isolated in frequency and space. However, multiple local resonances can be hybridized in multilayered nanostructures of nacre so that the effective cavity size for efficient disordered resonators is scaled up. Localized modes in hybridized states in nacre are overlapped in frequency with similar shapes in space, thus being collectively excited and synergistically amplified. These hybridized states boost light amplification, leading to stable and regular multimode lasing at low excitation energy. The simplicity of ameliorating disordered resonators by mimicking nacre can further serve as platforms for developing cost-effective photonic systems and provide materials for fundamental research on complex media.

  7. Mode Profiles in Waveguide-Coupled Resonators

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Cameron, Tom; Saw, John C. B.; Kim, Yoonkee

    1993-01-01

    Surface acoustic wave (SAW) waveguide-coupled resonators are of considerable interest for narrow-band filter applications, though to date there has been very little published on the acoustic details of their operation. As in any resonator, one must fully understand its mode structure and herein we study the SAW mode profiles in these devices. Transverse mode profiles in the resonant cavity of the device were measured at various frequencies of interest using a knife-edge laser probe. In addition we predict the mode profiles for the device structure by two independent methods. One is a stack-matrix approach adapted from integrated optics and the other is a conventional analytical eigenmode analysis of the Helmholtz equation. Both modeling techniques are in good agreement with the measured results.

  8. Tunable coupling between two superconducting resonators

    NASA Astrophysics Data System (ADS)

    Deppe, F.; Wulschner, F.; Baust, A.; Hoffmann, E.; Menzel, E. P.; Marx, A.; Gross, R.; Solano, E.; Zueco, D.; Garcia Ripoll, J.-J.

    2014-03-01

    During the last decade, tremendous progress has been made towards quantum computation and quantum simulation with superconducting circuits. In such architectures, the controlled exchange of information between two superconducting transmission line resonators via a tunable coupling is a useful tool. Here, we present experimental progress on such devices. Specifically, the coupling is mediated either by a superconducting flux qubit or by an RF SQUID. Our results allow us to analyze the tunable coupling in frequency and time domain. We acknowledge support from: the DFG via SFB 631; the German excellence initiative via NIM; the EU projects CCQED, PROMISCE, SCALEQIT; Spanish MINECO FIS2009-12773-C02-01, FIS2011-25167, FIS2012-36673-C03-02; UPV/EHU UFI 11/55; Basque Government IT472-10.

  9. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  10. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  11. MEASUREMENT OF LINEAR COUPLING RESONANCE IN RHIC.

    SciTech Connect

    BAI,M.PILAT,F.SATOGATA,T.TOMAS,R.

    2002-05-12

    Linear coupling is one of the factors that determine beam lifetime in RHIC. The traditional method of measuring the minimum tune separation requires a tune scan and can't be done parasitically or during the acceleration ramp. A new technique of using ac dipoles to measure linear coupling resonance has been developed at RHIC. This method measures the degree of coupling by comparing the amplitude of the horizontal coherent excitation with the amplitude of the vertical coherent excitation if the beam is excited by the vertical AC dipole and vice versa. One advantage of this method is that it can be done without changing tunes from the normal machine working points. In principle, this method can also localize the coupling source by mapping out the coupling driving terms throughout the ring. This is very useful for local decoupling the interaction regions in RHIC. A beam experiment of measuring linear coupling has been performed in RHIC during its 2003 run, and the analysis of the experimental data is discussed in this paper.

  12. Effective spin-spin interaction in neutron matter

    SciTech Connect

    Zverev, M.V.; Khafizov, R.U.; Khodel, V.A.; Shaginyan, V.R.

    1995-09-01

    A set of equations for calculating the effective-interaction matrix R{sup ik}(q, {omega}) and the response function X{sup ik}(q, {omega}) is derived. These equations take into account the spin degrees of freedom of infinite neutron matter. For isotropic neutron matter with the Bethe interaction, the effective spin-spin interaction g(k) is calculated in the local approximation of the functional approach in the density range from {rho} = 0.17 to 25 fm{sup -3}. It is shown that this interaction weakly depends on the density within the range under consideration and that neither ferromagnetic nor antiferromagnetic phase transitions occur in the system. 7 refs., 2 figs.

  13. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  14. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    SciTech Connect

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs.

  15. Tailored Asymmetry for Enhanced Coupling to WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

  16. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  17. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope.

    PubMed

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-06

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator's Q value and to optimize the coupling coefficient to maximize the RMOG's sensitivity. GeO₂-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times.

  18. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  19. The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters

    NASA Astrophysics Data System (ADS)

    Ganyushin, Dmitry; Gilka, Natalie; Taylor, Peter R.; Marian, Christel M.; Neese, Frank

    2010-04-01

    In this work, the resolution of the identity (RI) approximation is developed for the calculation of the electron-electron spin-spin coupling (SSC) interaction that is a central component of the zero-field splitting (ZFS) term in the effective spin Hamiltonian. The approximated integrals are then used in large-scale multireference configuration interaction treatments of the SSC interaction. The SSC contribution to the ZFS is treated using the Breit-Pauli spin-spin Hamiltonian in conjunction with first-order perturbation theory. Test calculations on a set of diatomic molecules reveal that the error of the RI approximation does not exceed 0.01 cm-1 even if standard auxiliary basis sets are used. This error of less than 1% is considered to be negligible compared to the presently achievable accuracy of the SSC calculations relative to experimental data. The present development allows the correlated ab initio calculation of ZFS parameters of larger systems such as linear polyenes and linear polyacenes. The basis set convergence of the calculated ZFS values was investigated, and the effect of electronic correlation on the calculated ZFS parameters is discussed.

  20. Thermally tunable slot-coupled dielectric resonator antenna

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Chen, Cong; Wang, Qingmin; Liu, Wenjun; Hao, Yanan; Gao, Xinlu; Huang, Shanguo; Lei, Ming

    2017-02-01

    A thermally tunable slot-coupled dielectric resonator antenna (DRA) has been designed and prepared by placing a thermosensitive ceramic resonator onto the slot. Typical magnetic resonance occurs in the resonator, which is closely related to its dielectric constant. Because the dielectric constant of the ceramic resonator decreases as the temperature increases, the resonance frequency of the proposed DRA increases as the temperature increases. The simulated results are in good agreement with the measured ones, which confirms the thermally tunable behavior. This approach provides a way for designing the frequency tunable antennas.

  1. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope

    PubMed Central

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-01

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator’s Q value and to optimize the coupling coefficient to maximize the RMOG’s sensitivity. GeO2-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times. PMID:28067824

  2. On the Mutual Coupling Between Circular Resonant Slots

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.; Kharkovsky, S.; Zoughi, R.

    2007-01-01

    For near- and far-field microwave imaging purposes, array of circular resonant slots can be utilized to sample the electric field at a given reference plane. In general, the sensitivity of such array probes is impaired by the mutual coupling present between the radiating elements. The mutual coupling problem poses a design tradeoff between the resolution of the array and its sensitivity. In this paper, we investigate the mutual coupling between circular resonant slots in conducting ground plane both numerically and experimentally. Based on the analysis of the dominant coupling mechanism, i.e., the surface currents, various remedies to reduce the slots' mutual coupling are proposed and verified.

  3. The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

    PubMed Central

    Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming

    2014-01-01

    The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314

  4. Electrically small, complementary electric-field-coupled resonator antennas

    NASA Astrophysics Data System (ADS)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka <1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  5. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    PubMed

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications.

  6. The dynamics of large-scale arrays of coupled resonators

    NASA Astrophysics Data System (ADS)

    Borra, Chaitanya; Pyles, Conor S.; Wetherton, Blake A.; Quinn, D. Dane; Rhoads, Jeffrey F.

    2017-03-01

    This work describes an analytical framework suitable for the analysis of large-scale arrays of coupled resonators, including those which feature amplitude and phase dynamics, inherent element-level parameter variation, nonlinearity, and/or noise. In particular, this analysis allows for the consideration of coupled systems in which the number of individual resonators is large, extending as far as the continuum limit corresponding to an infinite number of resonators. Moreover, this framework permits analytical predictions for the amplitude and phase dynamics of such systems. The utility of this analytical methodology is explored through the analysis of a system of N non-identical resonators with global coupling, including both reactive and dissipative components, physically motivated by an electromagnetically-transduced microresonator array. In addition to the amplitude and phase dynamics, the behavior of the system as the number of resonators varies is investigated and the convergence of the discrete system to the infinite-N limit is characterized.

  7. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    PubMed Central

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-01-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices. PMID:28186145

  8. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    NASA Astrophysics Data System (ADS)

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-02-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices.

  9. On the Mutual Coupling between Circular Resonant Slots

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.; Kharkovshy, S.; Zoughi, R.

    2007-01-01

    For near- and far-field microwave imaging purposes, array of circular resonant slots can be utilized to sample the electric field at a given reference plane. In general, the sensitivity of such an array is impaired by the existing mutual coupling between the radiating elements or in this case circular slots. The mutual coupling problem imposes a design tradeoff between the resolution of the array and the overall system sensitivity and dynamic range. In this paper, the mutual coupling between circular resonant slots in conducting ground plane is investigated both numerically and experimentally. In particular, the mutual coupling in the E- and H-plane configurations of two identical slots is studied.

  10. OVERCOMING INTRINSIC AND COUPLING SPIN RESONANCES IN THE AGS.

    SciTech Connect

    BAI,M.AHRENS,L.ROSER,T.

    2002-11-06

    In the Brookhaven AGS, polarized protons are accelerated from G{sub {gamma}} = 4.5 to G{sub {gamma}} = 46.5. During the acceleration, a total of 42 imperfection spin depolarization resonances and 7 intrinsic spin resonances are crossed. Currently, the depolarization at each imperfection spin resonance is overcome by a solenoid 5% snake and full spin flips are induced at 4 out of the 7 intrinsic resonances by the AGS rf dipole to avoid the polarization loss. No correction schemes are applied at the remaining 3 weak spin resonances. In addition, coupling spin resonances are also observed due to the solenoidal field of the snake and no correction is applied for these spin resonances other than keeping the horizontal and vertical betatron tunes separated. In order to achieve {ge} 50% beam polarization out of AGS, all of those spin resonances need to be corrected. This paper proposes three correction methods to overcome the. strong intrinsic spin resonances as well as the weak intrinsic spin resonances and the coupling spin resonances.

  11. Strong and tunable mode coupling in carbon nanotube resonators

    NASA Astrophysics Data System (ADS)

    Castellanos-Gomez, Andres; Meerwaldt, Harold B.; Venstra, Warner J.; van der Zant, Herre S. J.; Steele, Gary A.

    2012-07-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage, allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders of magnitude larger than the mechanical-mode coupling in micromechanical resonators.

  12. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion.

  13. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    NASA Astrophysics Data System (ADS)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  14. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system.

    PubMed

    Li, Shilei; Zhang, Yunyun; Song, Xiaokang; Wang, Yilin; Yu, Li

    2016-07-11

    In this paper, an asymmetric plasmonic structure composed of two MIM (metal-insulator-metal) waveguides and two rectangular cavities is reported, which can support triple Fano resonances originating from three different mechanisms. And the multimode interference coupled mode theory (MICMT) including coupling phases is proposed based on single mode coupled mode theory (CMT), which is used for describing and explaining the multiple Fano resonance phenomenon in coupled plasmonic resonator systems. Just because the triple Fano resonances originate from three different mechanisms, each Fano resonance can be tuned independently or semi-independently by changing the parameters of the two rectangular cavities. Such, a narrow 'M' type of double Lorentzian-like line-shape transmission windows with the position and the full width at half maximum (FWHM) can be tuned freely is constructed by changing the parameters of the two cavities appropriately, which can find widely applications in sensors, nonlinear and slow-light devices.

  15. Fiber-coupled short Fabry-Perot resonators

    SciTech Connect

    Stone, J.; Marcuse, D. )

    1989-05-01

    Fabry-Perot resonators intended as filters in wavelength-multiplexed optical communications systems may have to be very short (on the order of 10 {mu}m) in order to increase their free spectral range. Short, yet tunable cavities can be designed as air gaps between two fibers placed in close proximity with highly reflecting mirrors deposited on their ends. However, an air-gap resonator with plane mirrors between closely spaced fiber ends may yield low throughout because of the poor match between the modes of typical single-mode fibers and the resonant mode in the air-gap cavity. The throughput can be improved by confining the resonant mode by means of a hollow dielectric tube placed inside the resonator. This paper compares short fiber-coupled Fabry-Parot resonators with and without an inserted hollow dielectric waveguide and derives expressions for their transmission losses. The authors show that the throughput of both types of resonator can be improved significantly by using a special fiber with large mode size to couple to the resonator. The special fiber is then spliced to a conventional single-mode fiber. They conclude that the resonator with an inserted hollow dielectric waveguide offers increased throughput for resonators with high finesse.

  16. CP-sensitive spin-spin correlations in neutralino production at the ILC

    NASA Astrophysics Data System (ADS)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.

    2009-07-01

    We study the CP-violating terms of the spin-spin correlations in neutralino production and their subsequent two-body decays into sleptons plus leptons at the ILC. We analyze CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both neutralinos, with one polarization perpendicular to the production plane. We present a detailed numerical study of the CP-sensitive observables, cross sections, and neutralino branching ratios in the Minimal Supersymmetric Standard Model with complex parameters.

  17. Terahertz plasmons in coupled two-dimensional semiconductor resonators

    NASA Astrophysics Data System (ADS)

    Sydoruk, O.; Wu, J. B.; Mayorov, A.; Wood, C. D.; Mistry, D. K.; Cunningham, J. E.

    2015-11-01

    Advances in theory are needed to match recent progress in measurements of coupled semiconductor resonators supporting terahertz plasmons. Here, we present a field-based model of plasmonic resonators that comprise gated and ungated two-dimensional electron systems. The model is compared to experimental measurements of a representative system, in which the interaction between the gated and ungated modes leads to a rich spectrum of hybridized resonances. A theoretical framework is thus established for the analysis and design of gated low-dimensional systems used as plasmonic resonators, underlining their potential application in the manipulation of terahertz frequency range signals.

  18. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients.

  19. Active and Passive Coupled-Resonator Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Poon, Joyce Kai See

    Coupled-Resonator Optical Waveguides (CROWs) are chains of resonators in which light propagates by virtue of the coupling between the resonators. The dispersive properties of these waveguides are controllable by the inter-resonator coupling and the geometry of the resonators. If the inter-resonator coupling is weak, light can be engineered to propagate slowly in these structures. The small group velocities possible in CROWs may enable applications in and technologies for optical delay lines, interferometers, buffers, nonlinear optics, and lasers. This thesis reports on achieving and controlling the optical delay in passive and active CROWs. Both theoretical and experimental results are presented. Transfer matrices, tight-binding models, and coupled-mode approaches are developed to analyze and design a variety of coupled resonator systems in the space, frequency, and time domains. Although each analytical method is fundamentally different, in the limit of weak inter-resonator coupling these approaches are consistent with each other. From these formalisms, simple expressions for the delay, loss, bandwidth, and a figure of merit are derived to compare the performance of CROW delay lines. Using a time-domain tight-binding model, we examine the resonant gain enhancement and spontaneous emission noise in amplifying CROWs to find that the net amplification of a propagating wave does not always vary with the group velocity but instead depends on the termination and excitation of the CROW. CROWs in the form of high-order (> 10) weakly coupled passive polymer microring resonators were fabricated and measured. The measured transmission, group delay, and dispersive properties of the CROWs agreed with the theoretical results. Delays in excess of 100 ps and slowing factors of about 25 over bandwidths of about 20 GHz were observed. The main limitation of the passive CROWs was the optical losses. To overcome the losses and to enable electrical integration, we demonstrated active

  20. Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities.

    PubMed

    Li, Peng-Bo; Li, Hong-Rong; Li, Fu-Li

    2016-01-12

    We investigate the electromechanical coupling between a nanomechanical resonator and two parametrically coupled superconducting coplanar waveguide cavities that are driven by a two-mode squeezed microwave source. We show that, with the selective coupling of the resonator to the cavity Bogoliubov modes, the radiation-pressure type coupling can be greatly enhanced by several orders of magnitude, enabling the single photon strong coupling to be reached. This allows the investigation of a number of interesting phenomena such as photon blockade effects and the generation of nonclassical quantum states with electromechanical systems.

  1. Energy Harvesting with Coupled Magnetorestrictive Resonators

    DTIC Science & Technology

    2013-09-01

    Plexiglas® is a registered trademark of Rohm & Haas . Released by K. S. Simonsen, Head Advanced Concepts and Applied Research...value of effective mass m or beam inductance Lm in Figure 6 was determined. Using this value of effective mass as an approximation, the damping...1) (2) where, m = mass of the resonator [kg] = Lm in Table 1, b = damping parameter [N*s/m] = Rm in

  2. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  3. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF/sub 3/

    SciTech Connect

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-02-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF/sub 3/ and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF/sub 3/ is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs.

  4. Direct Coupling From WGM Resonator Disks to Photodetectors

    NASA Technical Reports Server (NTRS)

    Savchenkov, Antoliy; Maleki, Lute; Mohageg, Makan; Le, Thanh

    2007-01-01

    Output coupling of light from a whispering- gallery-mode (WGM) optical resonator directly to a photodetector has recently been demonstrated. By directly is meant that the coupling is effected without use of intervening optical components. Heretofore, coupling of light into and out of WGM resonators has been a complex affair involving the use of such optical components as diamond or glass prisms, optical fibers, coated collimators, and/or fiber tapers. Alignment of these components is time-consuming and expensive. To effect direct coupling, one simply mounts a photodetector in direct mechanical contact with a spacer that is, in turn, in direct mechanical contact with a WGM resonator disk. The spacer must have a specified thickness (typically of the order of a wavelength) and an index of refraction lower, by an adequate margin, than the indices of refraction of the photodetector and the WGM resonator disk. This mechanically simple approach makes it possible to obtain an optimum compromise between maximizing optical coupling and maximizing the resonance quality factor (Q).

  5. Linear Coupling between Transverse Modes of a Nanomechanical Resonator

    NASA Astrophysics Data System (ADS)

    Truitt, Patrick; Hertzberg, Jared; Schwab, Keith

    2013-03-01

    Recently, several groups have identified a linear coupling between different vibrational modes of nanomechanical resonators. We report observations of such a coupling between the two transverse modes of a doubly-clamped Si3N4 resonator with transverse resonance frequencies of 8.4 and 8.7 MHz. The resonator is voltage biased with respect to a nearby gate electrode for capactive readout. Increasing the gate bias introduces an electrostatic contribution to the spring constant of each mode, reducing the frequency gap between the two modes. At degeneracy, we observe an avoided crossing of 100 kHz. Measurements of the displacement amplitudes and quality factors through degeneracy is consistent with a linear superposition of the two modes. Magnetomotive measurements, which are sensitive to the projection of each mode's displacement onto an applied field, show that the coupled modes remain linearly polarized, with the direction of polarization rotating with increasing gate bias. In an effort to identify the source of the coupling, we constructed a finite element model of the resonator-gate capacitance and find that the observed coupling is an order of magnitude larger than what is expected from electrostatic gradients alone.

  6. Photoelastic coupling in gallium arsenide optomechanical disk resonators.

    PubMed

    Baker, Christopher; Hease, William; Nguyen, Dac-Trung; Andronico, Alessio; Ducci, Sara; Leo, Giuseppe; Favero, Ivan

    2014-06-16

    We analyze the magnitude of the radiation pressure and electrostrictive stresses exerted by light confined inside GaAs semiconductor WGM optomechanical disk resonators, through analytical and numerical means, and find the electrostrictive stress to be of prime importance. We investigate the geometric and photoelastic optomechanical coupling resulting respectively from the deformation of the disk boundary and from the strain-induced refractive index changes in the material, for various mechanical modes of the disks. Photoelastic optomechanical coupling is shown to be a predominant coupling mechanism for certain disk dimensions and mechanical modes, leading to total coupling gom and g(0) reaching respectively 3 THz/nm and 4 MHz. Finally, we point towards ways to maximize the photoelastic coupling in GaAs disk resonators, and we provide some upper bounds for its value in various geometries.

  7. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.

    PubMed

    Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2017-04-06

    A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

  8. Syntheses and spin-spin exchange interactions of calix[4]arene biradicals.

    PubMed

    Hu, Xiaojun; Yang, Haijun; Li, Yong

    2008-07-01

    Three novel paramagnetic calix[4]arenes (2, 3 and 4) with two opposite nitroxide radicals on the upper rims were synthesized and characterized. The through-space spin-spin exchange interactions of these calixarene biradicals were investigated, and found to be affected by many factors, such as molecular conformational flexibility, steric hindrance, temperature, solvent effect and complexation of silver ion.

  9. Control of critical coupling in a coiled coaxial cable resonator

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  10. Control of critical coupling in a coiled coaxial cable resonator.

    PubMed

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  11. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator

    NASA Astrophysics Data System (ADS)

    Binfeng, Yun; Hu, Guohua; Zhang, Ruohu; Yiping, Cui

    2016-05-01

    A coupled plasmonic waveguide resonator system which can produce sharp and asymmetric Fano resonances was proposed and analyzed. Two Fano resonances are induced by the interactions between the narrow discrete whispering gallery modes in a plasmonic square cavity resonator and the broad spectrum of the metal-insulator-metal stub resonator. The relative peak amplitudes between the 1st and 2nd order Fano resonances can be adjusted by changing the structure parameters, such as the square cavity size, the stub size and the center-to-center distance between the square cavity and the stub resonators. And the 1st order Fano resonant peak, which is a standing-wave mode, will split into two resonant peaks (one standing-wave mode and one traveling-wave mode) when it couples with the 2nd Fano resonance. Also, the potential of the proposed Fano system as an integrated slow-light device and refractive index sensor was investigated. The results show that a maximum group index of about 100 can be realized, and a linear refractive index sensitivity of 938 nm/RIU with a figure of merit of about 1.35 × 104 can be obtained.

  12. Characterization of complementary electric field coupled resonant surfaces

    NASA Astrophysics Data System (ADS)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  13. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    SciTech Connect

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  14. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-11-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κE and/or magnetic κM components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  15. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  16. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  17. Resonant excitation of coupled skyrmions by spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Dai, Y. Y.; Wang, H.; Yang, T.; Zhang, Z. D.

    2016-12-01

    Resonant excitations of coupled skyrmions in Co/Ru/Co nanodisks activated by spin-transfer torque (STT) have been studied by micromagnetic simulations. It is found that STT is an effective method to manipulate skyrmion dynamics. Unlike the dynamics driven by a microwave field, two skyrmions with opposite chiralities move synchronously in the same direction when they are driven by STT, which makes it easier to observe the dynamics of coupled skyrmions in experiments. Resonant excitations of coupled skyrmions can be controlled by changing the frequency or amplitude ratio of a dual-frequency alternating current (AC). In addition, the magnetostatic interaction between the two skyrmions plays an important role in the dynamics of coupled skyrmions.

  18. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  19. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Beaudoin, Félix; Lachance-Quirion, Dany; Coish, W. A.; Pioro-Ladrière, Michel

    2016-11-01

    Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin- and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order ˜1 MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double-dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.

  20. Indirect coupling between two cavity modes via ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Hyde, Paul; Bai, Lihui; Harder, Michael; Match, Christophe; Hu, Can-Ming

    2016-10-01

    We experimentally realize an indirect coupling between two cavity modes via strong coupling with ferromagnetic resonance in Yttrium Iron Garnet. We find that some indirectly coupled modes of this system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. The properties of the indirectly coupled modes can be controlled using an external magnetic field or by tuning the cavity height. The relation between cavity transmission and the relative phase difference between cavity modes should be useful for developing tunable optical devices and improved information processing technologies.

  1. Plasmon coupling in vertical split-ring resonator metamolecules.

    PubMed

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I; Sun, Greg; Tsai, Din Ping

    2015-06-05

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity.

  2. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect

    Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  3. N-leg spin-S Heisenberg ladders: A density-matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Ramos, F. B.; Xavier, J. C.

    2014-03-01

    We investigate the N-leg spin-S Heisenberg ladders by using the density matrix renormalization group method. We present estimates of the spin gap Δs and of the ground-state energy per site e∞N in the thermodynamic limit for ladders with widths up to six legs and spin S≤5/2. We also estimate the ground-state energy per site e∞2D for the infinite two-dimensional spin-S Heisenberg model. Our results support that for ladders with semi-integer spins the spin excitation is gapless for N odd and gapped for N even, whereas for integer spin ladders the spin gap is nonzero, independent of the number of legs. Those results agree with the well-known conjectures of Haldane and Sénéchal-Sierra for chains and ladders, respectively. We also observe edge states for ladders with N odd, similar to what happens in spin chains.

  4. Photon transfer in a system of coupled superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Muirhead, C. M.; Gunupudi, B.; Colclough, M. S.

    2016-08-01

    A novel scheme is proposed for the study of energy transfer in a pair of coupled thin film superconducting microwave resonators. We show that the transfer could be achieved by modulating the kinetic inductance and that this has a number of advantages over earlier theoretical and experimental schemes, which use modulation of capacitance by vibrating nanobars or membranes. We show that the proposed scheme lends itself to the study of the classical analogues of Rabi and Landau-Zener-Stueckelberg oscillations and Landau-Zener transitions using experimentally achievable parameters. We consider a number of ways in which energy transfer (photon shuttle) between the two resonators could be achieved experimentally.

  5. Strong coupling between whispering gallery modes and chromium ions in ruby

    NASA Astrophysics Data System (ADS)

    Farr, Warrick G.; Goryachev, Maxim; Creedon, Daniel L.; Tobar, Michael E.

    2014-08-01

    We report the study of interactions between cavity photons and paramagnetic Cr3+ spins in a ruby (Cr3+:Al2O3) whispering gallery mode (WGM) resonator. Examining the system at microwave frequencies and millikelvin temperatures, spin-photon couplings up to 610 MHz or about 5% of photon energy are observed between the impurity spins and high quality factor (Q >105) WGM. Large tunability and spin-spin interaction allows operation in the strong coupling regime. The system exhibits behavior not predicted by the usual Tavis-Cummings model because of interactions within the two-level spin bath, and the existence of numerous photonic modes.

  6. Analysis of coupled resonator optical waveguide gyroscope based on periodically modulated coupling and circumferences

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Zhang, Hailiang; Yang, Junbo; Zhang, Jingjing; Wu, Wenjun; Chang, Shengli

    2016-12-01

    Based on periodically modulated coupling and circumferences, we developed a new structure for coupled resonator optical waveguide (CROW) gyroscopes. Its sensitivity and resolution were significantly improved. With our new structure, which overcomes the individual limitations of the previous schemes, the sensitivity and resolution of our gyroscope are higher than those with coupling-coefficient modulation alone and circumference modulation alone. The resolution of the gyroscope gradually declines with increasing resonator propagation loss; when the quality factor Q ≤ 2 ×106 , the height of the center resonance peak of the transmission band decreases by more than 90%. Fortunately, this effect can be weakened by increasing the circumference difference. We also numerically analyzed the influence of manufacturing errors on the performance of the gyroscope. We found that the fluctuations of radius have a greater influence than the fluctuations of quality factor.

  7. Collective behavior of quantum resonators coupled to a metamaterial

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier; Rousseau, Emmanuel

    2016-09-01

    We study a device that consist of quantum resonators coupled to a mesoscopic photonic structure, such as a metasurface or a 2D metamaterial. For metasurfaces, we use surface Bloch modes in order to reach various coupling regimes between the metasurface and a quantum emitter, modelized semi-classically by an oscillator. Using multiple scattering theory and complex plane techniques, we show that the coupling can be characterized by means of a pole-and-zero structure. The regime of strong coupling is shown to be reached when the pole-and- zero pair is broken. For 2D metamaterial, we show the possibility of controlling optically the opening or closing of a gap.

  8. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  9. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  10. Resonant self-pulsations in coupled nonlinear microcavities

    SciTech Connect

    Grigoriev, Victor; Biancalana, Fabio

    2011-04-15

    A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.

  11. Coupling thermal atomic vapor to an integrated ring resonator

    NASA Astrophysics Data System (ADS)

    Ritter, R.; Gruhler, N.; Pernice, W. H. P.; Kübler, H.; Pfau, T.; Löw, R.

    2016-10-01

    Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom-cavity systems.

  12. Coupled-resonator-induced-transparency concept for wavelength routing applications.

    PubMed

    Mancinelli, M; Guider, R; Bettotti, P; Masi, M; Vanacharla, M R; Pavesi, L

    2011-06-20

    The presence of coupled resonators induced transparency (CRIT) effects in side-coupled integrated spaced sequence of resonators (SCISSOR) of different radii has been studied. By controlling the rings radii and their center to center distance, it is possible to form transmission channels within the SCISSOR stop-band. Two different methods to exploit the CRIT effect in add/drop filters are proposed. Their performances, e. g. linewidth, crosstalk and losses, are examined also for random variations in the structural parameters. Finally, few examples of high performances mux/demux structures and 2 × 2 routers based on these modified SCISSOR are presented. CRIT based SCISSOR optical devices are particularly promising for ultra-dense wavelength division multiplexing applications.

  13. Characterizing a Superconducting Resonator with Frequency-Compensated Tunable Coupling

    NASA Astrophysics Data System (ADS)

    Wenner, James; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; White, T. C.; Barends, R.; Chen, Y.; Fowler, A. G.; Jeffrey, E.; Mutus, J. Y.; Roushan, P.; Sank, D.; Martinis, John M.

    2015-03-01

    Deterministic quantum state transfer between devices on different chips requires the ability to transfer quantum states between traveling qubits and fixed logic qubits. Reflections must be minimized to avoid energy loss and phase interference; this requires tunable coupling to an inter-chip line while the two devices are at equal frequencies. To achieve this, we present a 6GHz superconducting coplanar resonator with tunable coupling to a 50 Ohm transmission line. We compensate for the resulting shift in resonator frequency by simultaneously tuning a second SQUID. We further demonstrate the device coherence and the ability both to release a single-frequency shaped pulse into the transmission line and to efficiently capture a shaped pulse, prerequisites for efficient inter-chip deterministic quantum state transfer.

  14. Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

    SciTech Connect

    Arena,D.; Vescovo, E.; Kao, C.; Guan, Y.; Bailey, W.

    2006-01-01

    We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni{sub 81}Fe{sub 19}/Cu/Co{sub 93}Zr{sub 7} trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 deg), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precessional oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.

  15. Monitoring microbial metabolites using an inductively coupled resonance circuit

    PubMed Central

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-01-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power. PMID:26264183

  16. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  17. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  18. Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2007-01-01

    Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.

  19. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    SciTech Connect

    Jin, L.

    2016-07-15

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  20. Λ and Σ resonances coupled to vector and pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Khemchandani, K. P.; Martínez Torres, A.; Nagahiro, H.; Hosaka, A.

    2013-09-01

    The vector and pseudoscalar meson-baryon systems have been studied in a coupled channel formalism recently, which has lead to findings of some important results. The formalism consists of obtaining a detailed vector meson-baryon interaction originating from the s-, t-, u-channel diagrams and a contact interaction, all derived from the Lagrangian invariant under the gauge of the hidden local symmetry (HLS). We find the contributions from all the diagrams (except s-channel) to be important, contrary to the systems involving light Goldstone bosons where Weinberg-Tomozawa interaction gives the dominant contribution. Further, the transitions between the pseudoscalar meson-baryon (PB) and vector meson-baryon (VB) channels is obtained consistently by extending the Kroll-Ruderman theorem by replacing the photon by a vector meson, assuming the vector meson dominance. We find that the low-lying resonances couple strongly to VB channels. This information can be very useful in studying processes like photoproduction of low-lying resonances. Further, we find dynamical generation of new states in PB-VB coupled systems which can be related to the known resonances: Λ(2000), Σ(1750), Σ(1940) and Σ(2000).

  1. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering

  2. Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit

    NASA Astrophysics Data System (ADS)

    Xu, Xun-Wei; Chen, Ai-Xi; Liu, Yu-xi

    2016-12-01

    We study phonon statistics in a nanomechanical resonator (NAMR) which is resonantly coupled to a qubit. We find that there are two different mechanisms for phonon blockade in such a resonantly coupled NAMR-qubit system. One is due to the strong anharmonicity of the NAMR-qubit system with large coupling strength; the other one is due to the destructive interference between different paths for two-phonon excitation in the NAMR-qubit system with a moderate coupling strength. We find that the phonon blockade is fragile towards thermal mode occupations and can only be observed for NAMR being at ultracold effective temperature. In order to enlarge the mean phonon number for strong phonon antibunching with a moderate NAMR-qubit coupling strength, we assume that two external driving fields are applied to the NAMR and qubit, respectively. In this case, we find that the phonon blockades under two mechanisms can appear at the same frequency regime by optimizing the strength ratio and phase difference of the two external driving fields.

  3. An antenna-coupled split-ring resonator for biosensing

    NASA Astrophysics Data System (ADS)

    Torun, H.; Cagri Top, F.; Dundar, G.; Yalcinkaya, A. D.

    2014-09-01

    An antenna-coupled split-ring resonator-based microwave sensor is introduced for biosensing applications. The sensor comprises a metallic ring with a slit and integrated monopole antennas on top of a dielectric substrate. The backside of the substrate is attached to a metallic plate. Integrated antennas are used to excite the device and measure its electromagnetic characteristics. The resonant frequency of the device is measured as 2.12 GHz. The characteristics of the device with dielectric loading at different locations across its surface are obtained experimentally. The results indicate that dielectric loading reduces the resonant frequency of the device, which is in good agreement with simulations. The shift in resonant frequency is employed as the sensor output for biomolecular experiments. The device is demonstrated as a resonant biomolecular sensor where the interactions between heparin and fibroblast growth factor 2 are probed. The sensitivity of the device is obtained as 3.7 MHz/(μg/ml) with respect to changes in concentration of heparin.

  4. The effect of coupling line loss in microstrip to dielectric resonator coupling

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.

    1990-01-01

    The interaction between a dielectric resonator and a microstrip transmission line is fundamentally a field phenomenon. However, the model of Figure 1b widely is used to represent the arrangement in Figure 1a, and predicts the behavior encountered in practice. The microstrip line of length l = n(lambda)/4 between the input and coupling planes and the lambda/4 open-circuit stub usually is assumed to be lossless. This paper considers the effect of coupling line loss on the unloaded-Q and coupling coefficient beta of the combination. It shows that transmission line loss can cause the decrease in unloaded-Q that has been observed to occur with tight coupling, and limits the coupling coefficient to a much lower value than would be obtained with a lossless coupling line.

  5. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    NASA Astrophysics Data System (ADS)

    Hajjaj, Amal Z.; Hafiz, Md Abdullah; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  6. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    PubMed Central

    Hajjaj, Amal Z.; Hafiz, Md Abdullah; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage. PMID:28134329

  7. Transmission of asymmetric coupling double-ring resonator

    NASA Astrophysics Data System (ADS)

    Zhao, C. Y.; Tan, W. H.

    2015-02-01

    Based on the asymmetry between waveguide and double ring, the transmission and phase characteristics of coupled double-ring resonators are analyzed systemically. It is shown that the initial detuning determines the shape of transmission spectrum. The transmission spectrum of all-optical analog to electromagnetic inducted transparency (EIT) is controlled by tuning the asymmetric coupled parameter and loss. With the increasing of asymmetric coupled parameter, the transmission spectrum changes from EIT-like profile to Lorenz profile. The EIT-like transmission spectrum results from the interference between two Lorenz profiles. With the increasing of the loss, the transmission spectrum full frequency width at half-maximum broadens and its peak declines. The detuning and loss also make significant influences on the phase profile.

  8. Coupled modes of the resonance box of the guitar.

    PubMed

    Elejabarrieta, M J; Ezcurra, A; Santamaria, C

    2002-05-01

    Vibrations of the resonance box of the guitar have been studied by means of the modal analysis technique and the finite-element method. An expert craftsman constructed the guitar box with all the structures, internal and external, characteristic of a real instrument for the experimental measurements. The boundary conditions were chosen in order to clarify the soundboard-back interaction only via the internal air coupling. The numerical model allows one to study the influence of each component on the whole box, and the contribution of the modes of the components (wooden box and its parts, and air), to the coupled modes by calculating their participation factors. The coupled modes of the guitar box are discussed taking into account both the finite-element and modal analysis results.

  9. Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals.

    PubMed

    Agrawal, Ankit; Singh, Ajay; Yazdi, Sadegh; Singh, Amita; Ong, Gary K; Bustillo, Karen; Johns, Robert W; Ringe, Emilie; Milliron, Delia J

    2017-04-12

    Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.

  10. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    PubMed

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  11. PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS

    SciTech Connect

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-22

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.

  12. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  13. Superharmonic resonances in a strongly coupled cavity-atom system

    NASA Astrophysics Data System (ADS)

    Buks, Eyal; Deng, Chunqing; Orgazzi, Jean-Luc F. X.; Otto, Martin; Lupascu, Adrian

    2016-09-01

    We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity. The fundamental cavity mode is externally driven and the response is investigated in the weak nonlinear regime. We find that near the crossing point, at which the resonance frequencies of the cavity mode and qubit coincide, the sign of the Kerr coefficient changes, and consequently the type of nonlinear response changes from softening to hardening. Furthermore, the cavity response exhibits superharmonic resonances (SHR) when the ratio between the qubit frequency and the cavity fundamental mode frequency is tuned close to an integer value. The nonlinear response is characterized by the method of intermodulation and both signal and idler gains are measured. The experimental results are compared with theoretical predictions and good qualitative agreement is obtained. The SHRs have potential for applications in quantum amplification and generation of entangled states of light.

  14. Continuum channel coupling of shape resonances in N2

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Kakar, Sandeep; Rosenberg, R. A.

    1992-02-01

    We have measured vibrational branching ratios for 2σ-1u photoionization of N2 in an effort to elucidate fundamental aspects of continuum channel coupling. Calculations have shown that photoejection of a 2σu electron from N2 should be influenced by a shape resonance in the 3σg →ɛσu photoionization channel and that this continuum channel coupling can result in deviations from Franck-Condon behavior for the resulting N+2(B 2Σ+u) ion. In the present study, the N2 molecules are ionized by monochromatic synchrotron radiation (25coupling between the 2σ-1u and 3σ-1g ionization channels. However, our results exhibit significant discrepancies with theory. The areas of agreement and disagreement suggest useful avenues of further study to clarify the nature of continuum channel coupling in molecular photoionization.

  15. Modulating the Near Field Coupling through Resonator Displacement in Planar Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Mohan Rao, S. Jagan; Kumar, Deepak; Kumar, Gagan; Chowdhury, Dibakar Roy

    2017-01-01

    We present the effect of vertical displacements between the resonators inside the unit cell of planar coupled metamaterials on their near field coupling and hence on the terahertz (THz) wave modulation. The metamolecule design consists of two planar split- ring resonators (SRRs) in a unit cell which are coupled through their near fields. The numerically simulated transmission spectrum is found to have split resonances due to the resonance mode hybridization effect. With the increase in displacement between the near field coupled SRRs, this metamaterial system shows a transition from coupled to uncoupled state through merging of the split resonances to the single intrinsic resonance. We have used a semi-analytical model describing the effect of displacements between the resonators and determine that it can predict the numerically simulated results. The outcome could be useful in modulating the terahertz waves employing near field coupled metamaterials, hence, can be useful in the development of terahertz modulators and frequency tunable devices in future.

  16. Coupled-mode-theory framework for nonlinear resonators comprising graphene.

    PubMed

    Christopoulos, Thomas; Tsilipakos, Odysseas; Grivas, Nikolaos; Kriezis, Emmanouil E

    2016-12-01

    A general framework combining perturbation theory and coupled-mode theory is developed for analyzing nonlinear resonant structures comprising dispersive bulk and sheet materials. To allow for conductive sheet materials, a nonlinear current term is introduced in the formulation in addition to the more common nonlinear polarization. The framework is applied to model bistability in a graphene-based traveling-wave resonator system exhibiting third-order nonlinearity. We show that the complex conductivity of graphene disturbs the equality of electric and magnetic energies on resonance (a condition typically taken for granted), due to the reactive power associated with the imaginary part of graphene's surface conductivity. Furthermore, we demonstrate that the dispersive nature of conductive materials must always be taken into account, since it significantly impacts the nonlinear response. This is explained in terms of the energy stored in the surface current, which is zeroed-out when linear dispersion is neglected. The results obtained with the proposed framework are compared with full-wave nonlinear finite-element simulations with excellent agreement. Very low characteristic power for bistability is obtained, indicating the potential of graphene for nonlinear applications.

  17. Coupled-mode-theory framework for nonlinear resonators comprising graphene

    NASA Astrophysics Data System (ADS)

    Christopoulos, Thomas; Tsilipakos, Odysseas; Grivas, Nikolaos; Kriezis, Emmanouil E.

    2016-12-01

    A general framework combining perturbation theory and coupled-mode theory is developed for analyzing nonlinear resonant structures comprising dispersive bulk and sheet materials. To allow for conductive sheet materials, a nonlinear current term is introduced in the formulation in addition to the more common nonlinear polarization. The framework is applied to model bistability in a graphene-based traveling-wave resonator system exhibiting third-order nonlinearity. We show that the complex conductivity of graphene disturbs the equality of electric and magnetic energies on resonance (a condition typically taken for granted), due to the reactive power associated with the imaginary part of graphene's surface conductivity. Furthermore, we demonstrate that the dispersive nature of conductive materials must always be taken into account, since it significantly impacts the nonlinear response. This is explained in terms of the energy stored in the surface current, which is zeroed-out when linear dispersion is neglected. The results obtained with the proposed framework are compared with full-wave nonlinear finite-element simulations with excellent agreement. Very low characteristic power for bistability is obtained, indicating the potential of graphene for nonlinear applications.

  18. Entanglement resonance in driven spin chains

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zueco, David; Kohler, Sigmund; Lutz, Eric; Hänggi, Peter

    2009-03-01

    We consider a spin-1/2 anisotropic XY model with time-dependent spin-spin coupling as means of creating long-distance entanglement. We predict the emergence of significant entanglement between the first spin and the last spin whenever the ac part of the coupling has a frequency matching the Zeeman splitting. In particular, we find that the concurrence assumes its maximum with a vanishing dc part. Mapping the time-dependent Hamiltonian within a rotating-wave approximation to an effective static model provides qualitative and quantitative understanding of this entanglement resonance. Numerical results for the duration of the entanglement creation and its length dependence substantiate the effective static picture.

  19. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  20. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    SciTech Connect

    Pierre, Mathieu Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-06-09

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  1. Wireless power feeding to mobile objects with strongly coupled resonance

    NASA Astrophysics Data System (ADS)

    Koizumi, Masayoshi; Komurasaki, Kimiya; Mizuno, Yoshihiro; Shibata, Takayuki; Kano, Kazuhiko

    2011-04-01

    Wireless power feeding transmission is now in demand in the various fields. Electrical products of this modern age such as mobile phones, laptop monitoring sensors and electrical vehicles are spreading everywhere. Those electric device need to feed frequently because amount of consumed electric power of those devices are gradually increasing. Nonetheless content of battery show signs of leveling off. This is why it is important to develop a method of wireless power transmitting system with high efficiency. Strongly coupled magnetic resonance is the latest type of wireless power transmission technology. The main feature of this technology is the effectiveness in the mid-range that covers many attractive applications. The theory of transmitting efficiency is derived as a function of impedance ratio r and RF frequency ω.

  2. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T).

  3. Quantum plasmon resonances and coupling of small nanoparticles

    NASA Astrophysics Data System (ADS)

    Mario, Zapata-Herrera; Jefferson, Florez; Angela, Camacho

    2013-03-01

    In this work, we propose to extend a theoretical quantum approach to describe the behavior of the optical response as a function of both size and shape of small metal nanoparticles. By using classical models as well as quantum approaches we also want to study the nanoparticle's permittivity in the whole range of nanometers in order to define the different regimes at the nanoscale. In particular, we are interested in examining size and shape effects on the enhancement field factor and the absorption spectra for comparing with possible experiments. We study the role played by Localized Surface Plasmon Resonance in the coupling of small metal nanoparticles pairs by varying the distance between them by using an analogy between molecular electronic states and plasmonic excitations as a function of particle size and shape. We pay special atention on tunnelling and multipolar effects in order to predict the regime of dimer formation. The main interest in understanding the plasmon resonances of small nanoparticles lies in the applications in biology, catalysis and quantum optics.

  4. Focused Magnetic Resonance Coupling Coils for Electromagnetic Therapy Applications.

    PubMed

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-11-01

    This paper presents the design and construction of a pair of figure-of-eight coils, coupled by magnetic resonance coupling (MRC), which could generate (150 V/m per Ampere) electric field at the focal points for electromagnetic therapy related applications. The E field generated at the targeted site would be significantly enhanced under the same amount of current flowing through the MRC figure-of-eight coils compared to normal coils, due to the superposition of E field contributed by the coils. Furthermore, the MRC figure-of-eight coil is designed and the results are verified in theory, simulation, and experiments. In the ex vivo tissue measurement, 35% current and 82% ohmic power improvements were observed. Since it can enhance the current and ohmic power, the MRC figure-of-eight coils are promising solutions for electromagnetic therapy applications. The potential applications of the coils include noninvasive radio frequency (RF) stimulation, thermoacoustic imaging, electromagnetic field therapies, and RF ablation, etc.

  5. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  6. Coherent interference induced transparency in self-coupled optical waveguide-based resonators.

    PubMed

    Zhou, Linjie; Ye, Tong; Chen, Jianping

    2011-01-01

    We propose a self-coupled optical waveguide (SCOW)-based resonator to generate an optical resonance analogous to electromagnetically induced transparency (EIT). The EIT-like effect is formed by the coherent interference between two resonance paths inherent to the SCOW resonator. For cascaded SCOW resonators, the spectrum they produce is significantly affected by the phase shift between them, with the EIT-like peak flattened or split as the two extreme cases. We also investigate the dispersion characteristics of an infinite array of SCOW resonators and show that the dispersion relation and group index in the EIT subband can be greatly changed by a small phase shift between the SCOW resonators.

  7. Nuclear magnetic resonance predictions for graphenes: concentric finite models and extrapolation to large systems.

    PubMed

    Vähäkangas, Jarkko; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2013-04-07

    Nuclear magnetic resonance (NMR) data for graphenes are mainly lacking in the literature. We provide quantitative first-principles quantum-chemical calculations of NMR chemical shifts and shielding anisotropies as well as spin-spin couplings and anisotropies for increasingly large, hexagon-like fragments of graphene, hydrogenated graphene (graphane) and fluorinated graphene (fluorographene). Due to the rapid convergence of finite molecular model results, the parameter values in the innermost region of large flakes of these materials approach the bulk limit. For nuclear shieldings in the finite band-gap graphane and fluorographene systems, as well as deuterium quadrupole couplings in graphane, these limiting values are verified by periodic gauge-including projector augmented wave (PAW) calculations at corresponding theoretical levels. The periodic PAW wave method was used for all systems to obtain periodic structures. A quantum-chemical cluster approach was used with novel completeness-optimised basis sets to calculate both the shielding and coupling tensors for planar carbon nanoflakes of increasing size. The geometry of the innermost part of the nanoflakes as well as the nuclear shieldings converge toward the periodic counterparts. The cluster method allows the calculation of the spin-spin coupling tensors of all the graphenes and--in contrast to the periodic approach--all the NMR properties for the zero-band-gap graphene itself. The obtained parameters provide a plausible starting point for experimental NMR investigations of graphenes.

  8. Coupled mode parametric resonance in a vibrating screen model

    NASA Astrophysics Data System (ADS)

    Slepyan, Leonid I.; Slepyan, Victor I.

    2014-02-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy exchange between the longitudinal and transverse modes of free oscillations is demonstrated. An exact analytical solution is found for the forced oscillations, where the coupling plays the role of a stabilizer. In a more general case, the harmonic analysis is used with neglect of the higher harmonics. Explicit expressions for all parameters of the steady nonlinear oscillations are determined. The domains are found where the analytically obtained steady oscillation regimes are stable. Over the frequency ranges, where the steady oscillations exist, a perfect correspondence is found between the amplitudes obtained analytically and numerically. Illustrations based on the analytical and numerical simulations are presented.

  9. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance

    NASA Astrophysics Data System (ADS)

    Wu, Gaojian; Nan, Tianxiang; Zhang, Ru; Zhang, Ning; Li, Shandong; Sun, Nian X.

    2013-10-01

    Resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites under the same electric and magnetic bias conditions. Resonant direct ME effect (DME) occurs at antiresonance frequency while resonant converse ME effect (CME) occurs at resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. A model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with experimental results.

  10. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling

    NASA Astrophysics Data System (ADS)

    Schneeweiss, Philipp; Zeiger, Sophie; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen

    2017-01-01

    We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.

  11. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling.

    PubMed

    Schneeweiss, Philipp; Zeiger, Sophie; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen

    2017-01-01

    We experimentally realize an optical fiber ring resonator that includes a tapered section with a subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as the out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75±1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.

  12. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun; Wang, Shen-yun

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  13. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Laser with resonators coupled by a dynamic hologram

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. B.; Golyanov, A. V.; Luk'yanchuk, B. S.; Ogluzdin, Valerii E.; Rubtsova, I. L.; Sugrobov, V. A.; Khizhnyak, A. I.

    1987-11-01

    The nature of operation of a laser with a phase-conjugate mirror utilizing multibeam interaction was found to have a considerable influence on the coupling of its resonator to the resonator of a laser used to pump the mirror. A system of this kind with resonators coupled by a dynamic hologram exhibited "soft" lasing in the presence of a self-pumped phase-conjugate mirror.

  14. Fokker-Planck formalism in magnetic resonance simulations.

    PubMed

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  15. Fokker-Planck formalism in magnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  16. Quantum kinetics of ultracold fermions coupled to an optical resonator

    NASA Astrophysics Data System (ADS)

    Piazza, Francesco; Strack, Philipp

    2014-10-01

    We study the far-from-equilibrium statistical mechanics of periodically driven fermionic atoms in a lossy optical resonator. We show that the interplay of the Fermi surface with cavity losses leads to subnatural cavity linewidth narrowing, squeezed light, and nonthermal quantum statistics of the atoms. Adapting the Keldysh approach, we set up and solve a quantum kinetic Boltzmann equation in a systematic 1/N expansion with N the number of atoms. In the strict thermodynamic limit N ,V→∞,N/V=const. we find that the atoms (fermions or bosons) remain immune against cavity-induced heating or cooling. At next-to-leading order in 1/N, we find a "one-way thermalization" of the atoms determined by cavity decay. In absence of an equilibrium fluctuation-dissipation relation, the long-time limit Δt →∞ does not commute with the thermodynamic limit N →∞, such that for the physically relevant case of large but finite N, the dynamics ultimately becomes strongly coupled, especially close to the superradiance phase transition.

  17. Acoustic metamaterials with coupled local resonators for broadband vibration suppression

    NASA Astrophysics Data System (ADS)

    Hu, Guobiao; Tang, Lihua; Das, Raj; Gao, Shiqiao; Liu, Haipeng

    2017-02-01

    This paper investigates a modified acoustic metamaterial system with local resonators coupled through linear springs. The proposed acoustic metamaterial system can provide three band gaps for broadband vibration suppression. First, the band structure of the modified acoustic metamaterial is calculated by using Bloch's theorem under the assumption of infinite lattice. The existence of three band gaps is confirmed in the band structure. Effects of mass and spring parameters on the band gap behaviour of the modified metamaterial are investigated through a dimensionless parametric study. Based on the parametric study, optimal dimensionless parameters are proposed to achieve maximal total band gap width in the low frequency range. Subsequently, a more realistic finite lattice model is established. The transmittances of the conventional and modified metamaterial systems are compared. The three band gaps predicted from transmittances and broadband vibration suppression behaviour are consistent with the predictions from infinite lattice model using Bloch's theorem. Finally, the time-domain responses are simulated and the superiority of the modified acoustic metamaterial over the conventional one is demonstrated.

  18. Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation.

    PubMed

    Integlia, Ryan A; Yin, Lianghong; Ding, Duo; Pan, David Z; Gill, Douglas M; Jiang, Wei

    2011-08-01

    A parallel-coupled dual racetrack silicon micro-resonator structure is proposed and analyzed for M-ary quadrature amplitude modulation. The over-coupled, critically coupled, and under-coupled scenarios are systematically studied. Simulations indicate that only the over-coupled structures can generate arbitrary M-ary quadrature signals. Analytic study shows that the large dynamic range of amplitude and phase of a modulated over-coupled structure stems from the strong cross-coupling between two resonators, which can be understood through a delicate balance between the direct sum and the "interaction" terms. Potential asymmetries in the coupling constants and quality factors of the resonators are systematically studied. Compensations for these asymmetries by phase adjustment are shown feasible.

  19. Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators

    NASA Astrophysics Data System (ADS)

    Yang, Chui-Ping; Su, Qi-Ping; Zheng, Shi-Biao; Nori, Franco

    2016-04-01

    In a circuit consisting of two or more resonators, the intercavity crosstalk is inevitable, which could create some problems, such as degrading the performance of quantum operations and the fidelity of various quantum states. The focus of this work is to propose a crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators, which is important in large-scale quantum information processing and communication in a network consisting of resonators or cavities. In this work, we consider 2 N resonators of different frequencies, which are coupled to a three-level quantum system (qutrit). By applying a strong pulse to the coupler qutrit, we show that an effective Hamiltonian can be constructed for simultaneously coupling multiple pairs of resonators. The main advantage of this proposal is that the effect of inter-resonator crosstalks is greatly suppressed by using resonators of different frequencies. In addition, by employing the qutrit-resonator dispersive interaction, the intermediate higher-energy level of the qutrit is virtually excited and thus decoherence from this level is suppressed. This effective Hamiltonian can be applied to implement quantum operations with photonic qubits distributed in different resonators. As one application of this Hamiltonian, we show how to simultaneously generate multiple Einstein-Podolsky-Rosen pairs of photonic qubits distributed in 2 N resonators. Numerical simulations show that it is feasible to prepare two high-fidelity EPR photonic pairs using a setup of four one-dimensional transmission line resonators coupled to a superconducting flux qutrit with current circuit QED technology.

  20. Gap Plasmon Resonance in a Suspended Plasmonic Nanowire Coupled to a Metallic Substrate.

    PubMed

    Miyata, Masashi; Holsteen, Aaron; Nagasaki, Yusuke; Brongersma, Mark L; Takahara, Junichi

    2015-08-12

    We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.

  1. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants.

  2. Multi-gap individual and coupled split-ring resonator structures.

    PubMed

    Penciu, R S; Aydin, K; Kafesaki, M; Koschny, Th; Ozbay, E; Economou, E N; Soukoulis, C M

    2008-10-27

    We present a systematic numerical study, validated by accompanied experimental data, of individual and coupled split ring resonators (SRRs) of a single rectangular ring with one, two and four gaps. We discuss the behavior of the magnetic resonance frequency, the magnetic field and the currents in the SRRs, as one goes from a single SRR to strongly interacting SRR pairs in the SRR plane. We show that coupling of the SRRs along the E direction results to shift of the magnetic resonance frequency to lower or higher values, depending on the capacitive or inductive nature of the coupling. Strong SRR coupling along propagation direction usually results to splitting of the single SRR resonance into two distinct resonances, associated with peculiar field and current distributions.

  3. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  4. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    NASA Astrophysics Data System (ADS)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  5. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  6. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.

    PubMed

    Zhang, Yundong; Zhang, Xuenan; Wang, Ying; Zhu, Ruidong; Gai, Yulong; Liu, Xiaoqi; Yuan, Ping

    2013-04-08

    We theoretically propose and experimentally perform a novel dispersion tuning scheme to realize a tunable Fano resonance in a coupled-resonator-induced transparency (CRIT) structure coupled Mach-Zehnder interferometer. We reveal that the profile of the Fano resonance in the resonator coupled Mach-Zehnder interferometers (RCMZI) is determined not only by the phase shift difference between the two arms of the RCMZI but also by the dispersion (group delay) of the CRIT structure. Furthermore, it is theoretically predicted and experimentally demonstrated that the slope and the asymmetry parameter (q) describing the Fano resonance spectral line shape of the RCMZI experience a sign reversal when the dispersion of the CRIT structure is tuned from abnormal dispersion (fast light) to normal dispersion (slow light). These theoretical and experimental results indicate that the reversible Fano resonance which holds significant implications for some attractive device applications such as highly sensitive biochemical sensors, ultrafast optical switches and routers can be realized by the dispersion tuning scheme in the RCMZI.

  7. [Spin-spin interaction upon introduction of a spin label into immunoglobulins M and G at the carbohydrate moiety].

    PubMed

    Timofeev, V P; Nikol'skiĭ, D O; Lapuk, V A; Aleshkin, V A

    2002-01-01

    By spin labeling the monoclonal IgM and normal IgG at the carbohydrate moiety with 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl, preparations were obtained whose ESR spectra indicate rapid exchange spin-spin interactions between two spin labels. It was shown that, in the case of spin-labeled IgM, this spectrum is determined by a glycopeptide noncovalently bound to IgM, which incorporates two spin labels.

  8. Synchronization in a mechanical resonator array coupled quadratically to a common electromagnetic field mode.

    PubMed

    León Aveleyra, G; Holmes, C A; Milburn, G J

    2014-06-01

    Optomechanical systems are based on the nonlinear coupling between the electromagnetic (EM) field in a resonator and one or more bulk mechanical resonators such that the frequency of the EM field resonator depends on the displacement coordinates of each of the mechanical resonators. In this paper we consider the case of multiple mechanical resonators interacting with a common field for which the frequency of the EM resonance is tuned to depend quadratically (to lowest order) on the displacement of the resonators. By using the method of amplitude equations around a critical point, it is shown that groups of near-identical bulk mechanical resonators with low driving fail to synchronize unless their natural frequencies are identical, in which case the resulting system can exhibit multistability.

  9. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity.

    PubMed

    Chiu, Chien-Chang; Chen, Wei-Min; Sung, Kuen-Wei; Hsiao, Fu-Li

    2017-03-20

    We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

  10. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  11. Regulating the surface plasmon resonance coupling between Au-nanoparticle and Au-film

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Li, Kewu; Zhang, Rui; Jing, Ning; Chen, Youhua; Chen, Yuanyuan; Wang, Zhibin

    2017-01-01

    In this paper, we report the coupling between the localized surface plasmon resonance (LSPR) of Au-nanoparticles and surface plasmon resonance (SPR) of the Au-film. According to the conditions for SPR excitation of the classical Kretschmann-Raether structure with 50nm Au thin film, the commonly used classes of spherical Au-nanoparticle is studied and optimized. We used the finite element analysis (COMSOL Multiphysics 5.0), to simulate the coupling. The results from calculation and simulation indicate that the resonant plasmonic coupling between Au-nanoparticles and Au-film could lead to a large field enhancement and thus improve SPR. We demonstrate that the resonant plasmonic coupling could be regulated by the size of nanoparticles, the distance between nanoparticles .

  12. Research on transmission characteristics of side-coupled rectangular-ring resonator

    NASA Astrophysics Data System (ADS)

    Cui, Luna; Yu, Li

    2016-11-01

    We investigate the characteristics of resonant modes in the side-coupled rectangular-ring resonator (SRR). The results show we can manipulate the resonant wavelengths of TMa mode and TMs mode by adjusting the outer wall width (Lx1) or the inner wall width (Lx2) of the ring resonators, and the effects of coupling distance on the full-width at half-maximum (FWHM) of resonant spectra are discussed. In sensing application, the proposed structure can work as a highly sensitive plasmonic nanosensor with a sensitivity of 1000 nm/RIU and a figure of merit (FOM) of 67. The values are comparable to periodic structures and the structures based on Fano resonance.

  13. On the calculation of resonances by means of analytic continuation in coupling constant

    NASA Astrophysics Data System (ADS)

    Horáček, J.; Paidarová, I.

    2010-11-01

    The method of analytic continuation in the coupling constant in combination with the use of statistical Padé approximation designed to determine resonance parameters is introduced. It is shown that standard quantum chemistry codes provide accurate data which can be used for the process of analytic continuation in coupling constant. Resonance parameters, both the energy and the width, can be inferred for real molecules with accuracy comparable to other more elaborated methods.

  14. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    PubMed

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  15. Vanishing chiral couplings in the large-N{sub C} resonance theory

    SciTech Connect

    Portoles, Jorge; Rosell, Ignasi; Ruiz-Femenia, Pedro

    2007-06-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-N{sub C} chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/N{sub C} expansion.

  16. Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields.

    PubMed

    Longhi, Stefano

    2014-10-15

    We suggest a method for trapping photons in quasi-one-dimensional waveguide or coupled-resonator lattices, which is based on an optical analogue of the Aharonov-Bohm cages for charged particles. Light trapping results from a destructive interference of Aharonov-Bohm type induced by a synthetic magnetic field, which is realized by periodic modulation of the waveguide/resonator propagation constants/resonances.

  17. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  18. Zero-coupling-gap degenerate band edge resonators in silicon photonics.

    PubMed

    Burr, Justin R; Reano, Ronald M

    2015-11-30

    Resonances near regular photonic band edges are limited by quality factors that scale only to the third power of the number of periods. In contrast, resonances near degenerate photonic band edges can scale to the fifth power of the number periods, yielding a route to significant device miniaturization. For applications in silicon integrated photonics, we present the design and analysis of zero-coupling-gap degenerate band edge resonators. Complex band diagrams are computed for the unit cell with periodic boundary conditions that convey characteristics of propagating and evanescent modes. Dispersion features of the band diagram are used to describe changes in resonance scaling in finite length resonators. Resonators with non-zero and zero coupling gap are compared. Analysis of quality factor and resonance frequency indicates significant reduction in the number of periods required to observe fifth power scaling when degenerate band edge resonators are realized with zero-coupling-gap. High transmission is achieved by optimizing the waveguide feed to the resonator. Compact band edge cavities with large optical field distribution are envisioned for light emitters, switches, and sensors.

  19. Coupled-resonator-induced transparency in two microspheres as the element of angular velocity sensing

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Tang, Jun; Guo, Hao; Zhang, Wei; Liu, Jian-Hua; Liu, Jun; Xue, Chen-Yang; Zhang, Wen-Dong

    2016-11-01

    We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect. We analyzed the theoretical model of the two coupled microspheres, and derived the coupled-resonator-induced transparency (CRIT) transfer function, the effective phase shift, and the group delay. Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure. We calculated that the group index of the two-coupled sphere reaches n g = 180.46, while the input light at a wavelength of 1550 nm. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225504, 61171056, and 91123036) and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China.

  20. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

  1. Simple model of a Feshbach resonance in the strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Wasak, T.; Krych, M.; Idziaszek, Z.; Trippenbach, M.; Avishai, Y.; Band, Y. B.

    2014-11-01

    We use the dressed potentials obtained in the adiabatic representation of two coupled channels to calculate s -wave Feshbach resonances in a three-dimensional spherically symmetric potential with an open channel interacting with a closed channel. Analytic expressions for the s -wave scattering length a and number of resonances are obtained for a piecewise constant model with a piecewise constant interaction of the open and closed channels near the origin. We show analytically and numerically that, for strong enough coupling strength, Feshbach resonances can exist even when the closed channel does not have a bound state.

  2. Tunable band notch filters by manipulating couplings of split ring resonators.

    PubMed

    Sun, Haibin; Wen, Guangjun; Huang, Yongjun; Li, Jian; Zhu, Weiren; Si, Li-Ming

    2013-11-01

    The couplings between single/dual split ring resonators (SRRs) and their mirror images in a rectangular waveguide are systematically investigated through theoretical analysis and experimental measurements. Such couplings can be manipulated mechanically by rotating the SRRs along a dielectric rod and/or shifting the SRRs up/down along the sidewall of the rectangular waveguide, resulting in shifts of the resonant frequencies and modulations of the resonant magnitudes. These controllable properties of SRRs pave the routers toward designing tunable band notch filters. In particular, it is experimentally demonstrated that the designed filters possess 7.5% tuning range in the X-band.

  3. Enhanced four-wave mixing via photonic bandgap coupled defect resonances.

    PubMed

    Blair, S

    2005-05-16

    Frequency conversion efficiency via four-wave mixing in coupled 1-D photonic crystal defect structures is studied numerically. In structures where all interacting frequencies coincide with intraband defect resonances, energy conversion efficiencies greater than 5% are predicted. Because the frequency spacings are determined by the free-spectral range, thereby requiring long defects for small spacings using intraband resonances, four-wave mixing using coupled-defect miniband resonances in more compact structures is also studied. Conversion efficiencies of greater than 1% are obtained in this case.

  4. Dispersive Thermometry with a Josephson Junction Coupled to a Resonator

    NASA Astrophysics Data System (ADS)

    Saira, O.-P.; Zgirski, M.; Viisanen, K. L.; Golubev, D. S.; Pekola, J. P.

    2016-08-01

    We embed a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range of 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 μ K /√{Hz } . At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.

  5. Resonant elements contactless coupled to bolometric micro-stripes

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; Silva-López, Manuel; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, José M.; González, Francisco J.; Alda, Javier

    2015-08-01

    One of the main technical difficulties in the fabrication of optical antennas working as light detectors is the proper design and manufacture of auxiliary elements as load lines and signal extraction structures. These elements need to be quite small to reach the location of the antennas and should have a minimal effect on the response of the device. Unfortunately this is not an easy task and signal extraction lines resonate along with the antenna producing a complex signal that usually masks the one given by the antenna. In order to decouple the resonance from the transduction we present in this contribution a parametric analysis of the response of a bolometric stripe that is surrounded by resonant dipoles with different geometries and orientations. We have checked that these elements should provide a signal proportional to the polarization state of the incoming light.

  6. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    PubMed

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  7. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  8. Monolithic integration of high-Q wedge resonators with vertically coupled waveguides

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Prtljaga, Nikola; Pavesi, Lorenzo; Pucker, Georg; Ghulinyan, Mher

    2013-05-01

    Typical UHQ resonators, microspheres and microtoroids, lack the possibility of integration into lightwave circuits due to their planarity constrains. In this context, CMOS-compatible alternatives in the form of wedge resonators have been proposed. However, the mode retraction from the wedge cavity inhibits the possibility to side couple with integrated waveguides and therefore, halts the full integration within a planar lightwave circuit. In this work, we propose and demonstrate experimentally the complete integration of wedge resonators with vertically coupled dielectric bus waveguides. This coupling scheme permits to use arbitrary gaps, geometries and materials, enables simplified and precise control of the light injection into the cavity and opens the door to an industrial mass-fabrication of UHQ resonators.

  9. Lower Bounds on the Frequency Estimation Error in Magnetically Coupled MEMS Resonant Sensors.

    PubMed

    Paden, Brad E

    2016-02-01

    MEMS inductor-capacitor (LC) resonant pressure sensors have revolutionized the treatment of abdominal aortic aneurysms. In contrast to electrostatically driven MEMS resonators, these magnetically coupled devices are wireless so that they can be permanently implanted in the body and can communicate to an external coil via pressure-induced frequency modulation. Motivated by the importance of these sensors in this and other applications, this paper develops relationships among sensor design variables, system noise levels, and overall system performance. Specifically, new models are developed that express the Cramér-Rao lower bound for the variance of resonator frequency estimates in terms of system variables through a system of coupled algebraic equations, which can be used in design and optimization. Further, models are developed for a novel mechanical resonator in addition to the LC-type resonators.

  10. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  11. Optically induced strong intermodal coupling in mechanical resonators at room temperature

    SciTech Connect

    Ohta, R.; Okamoto, H.; Yamaguchi, H.; Hey, R.; Friedland, K. J.

    2015-08-31

    Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperatures and provides a wide variety of applications of integrated mechanical systems.

  12. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems

    NASA Astrophysics Data System (ADS)

    Furman, Gregory B.; Goren, Shaul D.; Meerovich, Victor M.; Sokolovsky, Vladimir L.

    2016-02-01

    Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.

  13. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems.

    PubMed

    Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L

    2016-02-01

    Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.

  14. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    PubMed Central

    Zanotto, Simone; Tredicucci, Alessandro

    2016-01-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results. PMID:27091489

  15. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    NASA Astrophysics Data System (ADS)

    Zanotto, Simone; Tredicucci, Alessandro

    2016-04-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  16. Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Jin, Da-Yu; Jing, Jun; Lam, Chi-Hang; You, J. Q.

    2015-09-01

    We study a tripartite quantum system consisting of a coplanar-waveguide (CPW) resonator and a nanomechanical resonator (NAMR) connected by a flux qubit, where the flux qubit has a large detuning from both resonators. By a unitary transformation and a second-order approximation, we obtain a strong and controllable (i.e., magnetic-field-dependent) effective coupling between the NAMR and the CPW resonator. Due to the strong coupling, vacuum Rabi splitting can be observed from the voltage-fluctuation spectrum of the CPW resonator. We further study the properties of single-photon transport as inferred from the reflectance or equivalently the transmittance. We show that the reflectance and the corresponding phase-shift spectra both exhibit doublet of narrow spectral features due to vacuum Rabi splitting. By tuning the external magnetic field, the reflectance and the phase shift can be varied from 0 to 1 and -π to π , respectively. The results indicate that this hybrid quantum system can act as a quantum router.

  17. Spin effects and baryon resonance dynamics in φ-meson photoproduction at few GeV

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Lee, T.-S. H.

    2003-06-01

    The diffractive φ-meson photoproduction amplitude is dominated by the Pomeron-exchange process and contains the terms that govern the spin-spin and spin-orbital interactions. We show that these terms are responsible for the spin-flip transitions at forward photoproduction angles and appear in the angular distributions of φ→K+K- decay in reactions with unpolarized and polarized photon beams. At large momentum transfers, the main contribution to the φ-meson photoproduction is found to be due to the excitation of nucleon resonances. Combined analysis of ω and φ photoproduction indicates strong Okubo-Zweig-Iizuka rule violation in φNN* couplings. We also show that the spin observables are sensitive to the dynamics of φ-meson photoproduction at large angles and could help to distinguish different theoretical models of nucleon resonances. Predictions for spin effects in φ-meson photoproduction are presented for future experimental tests.

  18. Localized Surface Plasmons Selectively Coupled to Resonant Light in Tubular Microcavities

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Li, Shilong; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Saei Ghareh Naz, Ehsan; Ma, Libo; Schmidt, Oliver G.

    2016-06-01

    Vertical gold nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold nanogap on the microcavities, which is conveniently achieved by rolling up specially designed thin dielectric films into three-dimensional microtube cavities. The coupling phenomenon is explained by a modified quasipotential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  19. Generation of entanglement in electro-mechanical systems: two micro-mechanical resonators coupled to a transmission-line resonator

    NASA Astrophysics Data System (ADS)

    Jalali, J.; Soltani, M.; Rashedi, G.; Azizi, E.; Ezatabadipour, H.

    2015-07-01

    We propose a method to generate stationary entanglement between two macroscopic vibrating elements (micro-mechanical resonators (MRs)), via a transmission line resonator (TLR) field mode, where the MRs are coupled to the TLR capacitively. In this paper two situations are studied; (i) a driving on TLR field with an external microwave pulse, (ii) driving on TLR field and simultaneous driving on two MRs. Here, the entanglement is quantified by the logarithmic negativity. As our proposed system is a continuous variable system, the logarithmic negativity is defined in terms of covariance matrix. We have shown that the second case leads to much stronger entanglement, even at a few milli Kelvin temperatures.

  20. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  1. Analysis of light propagation in slotted resonator based systems via coupled-mode theory.

    PubMed

    Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt

    2011-04-25

    Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties.

  2. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.

    PubMed

    Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice

    2013-06-12

    Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.

  3. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    SciTech Connect

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  4. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    SciTech Connect

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-28

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  5. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-01

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  6. Bifurcation, mode coupling and noise in a nonlinear multimode superconducting microwave resonator

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Ithier, G.; Meeson, P. J.

    2013-08-01

    The addition of nonlinearity to an harmonic resonator provides a route to complex dynamical behaviour of resonant modes, including coupling between them. We present a superconducting device that makes use of the nonlinearity of Josephson junctions to introduce a controlled, tunable, nonlinear inductance to a thin film coplanar waveguide resonator. Considering the device as a potential quantum optical component in the microwave regime, we create a sensitive bifurcation amplifier and then demonstrate spectroscopy of other resonant modes via the intermode coupling. We find that the sensitivity of the device approaches within a factor two quantitative agreement with a quantum model by Dykman but is limited by a noise that has its source(s) on-chip.

  7. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect

    Wisby, I. Tzalenchuk, A. Ya.; Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E.; Gwilliam, R.; Meeson, P. J.; Lindström, T.

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1 MHz and spin linewidths of 50–65 MHz.

  8. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    PubMed Central

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-01-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors. PMID:27640809

  9. Resonance width distribution in RMT: Weak-coupling regime beyond Porter-Thomas

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Savin, Dmitry V.

    2015-05-01

    We employ the random matrix theory (RMT) framework to revisit the distribution of resonance widths in quantum chaotic systems weakly coupled to the continuum via a finite number M of open channels. In contrast to the standard first-order perturbation theory treatment we do not a priori assume the resonance widths being small compared to the mean level spacing. We show that to the leading order in weak coupling the perturbative χ^2M distribution of the resonance widths (in particular, the Porter-Thomas distribution at M = 1) should be corrected by a factor related to a certain average of the ratio of square roots of the characteristic polynomial (“spectral determinant”) of the underlying RMT Hamiltonian. A simple single-channel expression is obtained that properly approximates the width distribution also at large resonance overlap, where the Porter-Thomas result is no longer applicable.

  10. Advanced coupled-micro-resonator architectures for dispersion and spectral engineering applications

    NASA Astrophysics Data System (ADS)

    Van, Vien

    2009-02-01

    We report recent progress in the design and fabrication of coupled optical micro-resonators and their applications in realizing compact OEIC devices for optical spectral engineering. By leveraging synthesis techniques for analog and digital electrical circuits, advanced coupled-microring device architectures can be realized with the complexity and functionality approaching that of state-of-the-art microwave filters. In addition, the traveling wave nature of microring resonators can be exploited to realize novel devices not possible with standing wave resonators. Applications of coupledmicro- resonator devices in realizing complex optical transfer functions for amplitude, phase and group delay engineering will be presented. Progress in the practical implementation of these devices in the Silicon-on-Insulator OEIC platform will be highlighted along with the challenges and potential for constructing very high order optical filters using coupledmicroring architectures.

  11. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-09-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors.

  12. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures.

    PubMed

    Butet, Jérémy; Martin, Olivier J F

    2014-12-01

    The coupling between metallic nanostructures is a common and easy way to control the optical properties of plasmonic systems. Even though the coupling between plasmonic oscillators has been widely studied in the linear regime, its influence on the nonlinear optical response of metallic nanostructures has been sparsely considered. Using a surface integral equation method, we investigate the second order nonlinear optical response of plasmonic metamolecules supporting Fano resonances revealing that the typical lineshape of Fano resonances is also clearly observable in the nonlinear regime. The physical mechanisms leading to nonlinear Fano resonances are revealed by the coupled oscillator model and the symmetry subgroup decomposition. It is found that the origin of the nonlinear scattered wave, i. e. the active plasmonic oscillator, can be selectively chosen. Furthermore, interferences between nonlinear emissions are clearly observed in specific configurations. The results presented in this article pave the way for the design of efficient nonlinear plasmonic metamolecules with controlled nonlinear radiation.

  13. Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED.

    PubMed

    Nataf, Pierre; Ciuti, Cristiano

    2011-11-04

    We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic "anisotropic" nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic "cat" state.

  14. Optical properties of surface plasmon resonances of coupled metallic nanorods.

    PubMed

    Smythe, Elizabeth J; Cubukcu, Ertugrul; Capasso, Federico

    2007-06-11

    We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

  15. Resonant coupling of Rayleigh waves through a narrow fluid channel causing extraordinary low acoustic transmission.

    PubMed

    Garcia-Chocano, Victor M; Nagaraj; Lòpez-Rios, Tomàs; Gumen, Lyudmila; Sànchez-Dehesa, Josè; Krokhin, Arkadii

    2012-10-01

    Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid channel is predicted and experimentally observed. Although the coupling through a fluid (water) is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in the design of acoustic metamaterial screens and reflectors.

  16. Dynamical coupled-channels model of meson photo- and electroproduction in the nucleon resonance region

    NASA Astrophysics Data System (ADS)

    Sato, T.

    2007-12-01

    A dynamical approach of the meson production reaction for extracting nucleon resonance parameters has been developed. We report on the γ N Δ form factors extracted from the recent pion electroproduction data and the coupled-channels model of π N scattering up to W ≤ 2 GeV. An analysis of the resonance poles extracted using the speed-plot and time-delay methods is briefly discussed.

  17. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-06-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.

  18. Optical coupling and emission of metal-insulator confined circular resonators.

    PubMed

    Che, Kai-Jun; Lei, Mei-Xin; Cai, Zhi-Ping

    2013-02-25

    We numerically investigate the direct and indirect optical interactions of pair circular resonators laterally confined by metal-insulator waveguide. The direct optical interaction shows the split of quality (Q) factors of bonding and antibonding states only happens for thick insulator. The indirect optical interaction through a waveguide is proposed to control the modes resonance and collect the output emissions. The Q factors of resonant modes versus the coupling distance (width of waveguide) are studied. The results show whispering gallery modes(WGMs) engaged into interaction are strongly coupled with the guided waves of waveguide once its width is close to the cut-off width of guided waves, while the coupled mode of two WGMs is not limited by this condition. High Q factor mode, combined with a robust wide emission waveguide(close to the cut-off width of second-order guided waves), can be realized from the bonding states of WGM and coupled WGM with an added wave envelope in waveguide. In addition to the pair resonators, the studies on four resonators interacted with each other through waveguide are also addressed and wide waveguide output is anticipated.

  19. High-resolution surface plasmon resonance sensor with Fano resonance in waveguide-coupled multilayer structures

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Cong, Jiawei; Xu, Linhua; Wang, Jicheng

    2017-04-01

    An ultra-high resolution refractive-index sensor with the Kretschmann configuration was proposed and experimentally demonstrated. The Fano resonance (FR) in the attenuated total reflection curve arose from the interactions between the surface plasmon polariton and planar waveguide modes. It was shown to depend strongly on the structural parameters that governed the position of the FR and to be in good agreement with the results of electromagnetic calculations. The sensitivity by intensity was estimated to be 3.56 × 102-fold higher than that of conventional surface plasmon resonance sensors.

  20. Possible New Resonance from W_{L}W_{L}-hh Interchannel Coupling.

    PubMed

    Delgado, Rafael L; Dobado, Antonio; Llanes-Estrada, Felipe J

    2015-06-05

    We propose and theoretically study a possible new resonance caused by strong coupling between the Higgs-Higgs and the W_{L}W_{L} (Z_{L}Z_{L}) scattering channels, without regard to the intensity of the elastic interaction in either channel at low energy (that could be weak as in the standard model). We expose this channel-coupling resonance from unitarity and dispersion relations encoded in the inverse amplitude method, applied to the electroweak chiral Lagrangian with a scalar Higgs boson.

  1. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  2. Dynamic coupling of magnetic resonance modes in pairs of mesoscopic rectangles

    NASA Astrophysics Data System (ADS)

    Swoboda, Christian; Kuhlmann, Nils; Martens, Michael; Vogel, Andreas; Meier, Guido

    2013-07-01

    We investigate the magnetization dynamics in pairs of mesoscopic permalloy (Ni80Fe20) rectangles by means of broadband-ferromagnetic resonance measurements and micromagnetic simulations. Each pair consists of two rectangles that differ in their geometry. The local effective field at each element is significantly affected by the stray field of its neighbor for small center-to-center distances between the rectangles. In antiparallel magnetization alignment, this dynamic dipolar coupling becomes prominent and anticrossing between ferromagnetic resonance modes and higher-order spin-wave modes is observed. Combination of the experimental and the simulational findings provides a comprehensive understanding of dynamically coupled rectangles.

  3. The introduction of spurious models in a hole-coupled Fabry-Perot open resonator

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Long, Kenwyn J.; Heinen, Vernon O.; Stankiewicz, Norbert

    1992-01-01

    A hemispherical open resonator has previously been used to make relative comparisons of the surface resistivity of metallic thin-film samples in the submillimeter wavelength region. This resonator is fed from a far-infrared laser via a small coupling hole in the center of the concave spherical mirror. The experimental arrangement, while desirable as a coupling geometry for monitoring weak emissions from the cavity, can lead to the introduction of spurious modes into the cavity. Sources of these modes are identified, and a simple alteration of the experimental apparatus to eliminate such modes is suggested.

  4. Anti-resonance in a one-dimensional chain of driven coupled oscillators

    NASA Astrophysics Data System (ADS)

    Belbasi, Somayyeh; Ebrahim Foulaadvand, M.; Joe, Yong S.

    2014-01-01

    We investigate a driven system of N one-dimensional coupled oscillators with identical masses. The first mass is connected to a sinusoidal driving force of frequency ω. In the steady state, when all the masses perform simple harmonic motion, we analytically obtain the dependence of their amplitudes on ω and show that there are resonance and anti-resonance frequencies. At an anti-resonance frequency, the amplitude of one of the masses becomes exactly zero. The mass directly connected to the driving force has the largest number of anti-resonance frequencies, N - 1. The phase of each mass's motion is either 0 or π with respect to the driving force. The case where damping forces are present is also considered, and the amplitude dependence on driving frequency is analytically obtained. In the presence of damping, there is no anti-resonance.

  5. Subterahertz chaos generation by coupling a superlattice to a linear resonator.

    PubMed

    Hramov, A E; Makarov, V V; Koronovskii, A A; Kurkin, S A; Gaifullin, M B; Alexeeva, N V; Alekseev, K N; Greenaway, M T; Fromhold, T M; Patanè, A; Kusmartsev, F V; Maksimenko, V A; Moskalenko, O I; Balanov, A G

    2014-03-21

    We investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs/AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator. Our results are applicable to other active solid state devices and provide a generic approach for developing modern chaos-based high-frequency technologies including broadband chaotic wireless communication and superfast random-number generation.

  6. Subterahertz Chaos Generation by Coupling a Superlattice to a Linear Resonator

    NASA Astrophysics Data System (ADS)

    Hramov, A. E.; Makarov, V. V.; Koronovskii, A. A.; Kurkin, S. A.; Gaifullin, M. B.; Alexeeva, N. V.; Alekseev, K. N.; Greenaway, M. T.; Fromhold, T. M.; Patanè, A.; Kusmartsev, F. V.; Maksimenko, V. A.; Moskalenko, O. I.; Balanov, A. G.

    2014-03-01

    We investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs /AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator. Our results are applicable to other active solid state devices and provide a generic approach for developing modern chaos-based high-frequency technologies including broadband chaotic wireless communication and superfast random-number generation.

  7. Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Goo; Kim, Seong-Han; Kim, Kap-Joong; Kee, Chul-Sik

    2017-03-01

    We present two photonic systems that make it possible to realize polarization-independent electromagnetically induced transparency based on guided-mode resonances. Each system is composed of two planar dielectric waveguides and a two-dimensional photonic crystal. Using finite-difference time-domain simulations, we demonstrate that by coupling the two guided-mode resonances with low- and high-quality factors, a narrow transparency window is generated inside a broad background transmission dip produced by the guided-mode resonances. We also show that the time delay that occurs when light beams pass through the proposed systems can be controlled by adjusting the distance between the two waveguides.

  8. Coupling loss theory of single-mode waveguide resonators

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Hall, D. R.

    1985-05-01

    In studies of mode coupling losses in circular and rectangular waveguide lasers, it has been frequently assumed that the laser mode is pure EH(11). A flaw is presently noted in the Laguerre-Gaussian mode expansion method as it appeared in Abrams (1972), and its reconciliation with later results is undertaken. Attention is also given to several discrepancies in the published accounts of the manner in which the EH(11) loss behaves in the frequently considered, near-Case I reflector constituted by a plane mirror located within a few widths of the guide aperture.

  9. Plasmonic devices based on the dual coupled graphene-integrated ring resonators

    NASA Astrophysics Data System (ADS)

    Wang, Jicheng; Xia, Xiushan; Liang, Xiuye; Chen, Jing; Liu, Dongdong

    2015-08-01

    We have proposed a couple of plasmonic devices based on graphene sheets and ring resonators. The highly frequency-tunable multi-mode plasmonically induced transparency (PIT) device based on monolayer graphene and rings for the mid-IR region is presented in theory firstly. The multi-mode transparency windows in the spectral responses and slow light effects can be achieved in plasmonic configuration composed of two graphene resonators coupled with single-layer graphene waveguide. By varying the Fermi energy of the graphene, the multi-mode PIT resonance can be dynamic controlled without reoptimizing the geometric parameters of the structures. Based on the coupled mode theory (CMT) and Fabry-Perot (FP), we numerically investigated direct coupling and indirect coupling in the graphene-integrated PIT systems. In addition, the theoretical plasmonic devices based on graphene sheets and ring resonators are also proposed to perform as 1×2 optical spatial switch or ultra -compact Mach-Zehnder interferometer. The finite element method (FEM) is carried on to verify our designs. Those designs may pave the ways for the further development of the compact high-performance plasmonic communication devices.

  10. Phase-noise-induced resonance in arrays of coupled excitable neural models.

    PubMed

    Xiaoming Liang; Liang Zhao

    2013-08-01

    Recently, it is observed that, in a single neural model, phase noise (time-varying signal phase) arising from an external stimulating signal can induce regular spiking activities even if the signal is subthreshold. In addition, it is also uncovered that there exists an optimal phase noise intensity at which the spiking rhythm coincides with the frequency of the subthreshold signal, resulting in a phase-noise-induced resonance phenomenon. However, neurons usually do not work alone, but are connected in the form of arrays or blocks. Therefore, we study the spiking activity induced by phase noise in arrays of globally and locally coupled excitable neural models. We find that there also exists an optimal phase noise intensity for generating large neural response and such an optimal value is significantly decreased compared to an isolated single neuron case, which means the detectability in response to the subthreshold signal of neurons is sharply improved because of the coupling. In addition, we reveal two new resonance behaviors in the neuron ensemble with the presence of phase noise: there exist optimal values of both coupling strength and system size, where the coupled neurons generate regular spikes under subthreshold stimulations, which are called as coupling strength and system size resonance, respectively. Finally, the dependence of phase-noise-induced resonance on signal frequency is also examined.

  11. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    NASA Astrophysics Data System (ADS)

    Fabbietti, L.

    2016-01-01

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N* resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c2 in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000)++ are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  12. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    SciTech Connect

    Fabbietti, L.

    2016-01-22

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  13. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  14. Investigation of electromagnetic couplings between planar open-loop triangular-shaped resonators in microstrip and in multilayer technologies

    NASA Astrophysics Data System (ADS)

    Militaru, Nicolae

    2016-12-01

    The paper presents a study of the electromagnetic couplings between planar open-loop triangular-shaped resonators. Based on the proposed single-mode resonator, various couplings schemes are considered: between a single microstrip resonator and its 50Ω feeding line, between two identical triangular-shaped resonators designed in microstrip technology, and between pairs of synchronously-tuned resonators located on different metallization layers, in a multilayer configuration. In this last case, properly located slots, cut out in the common ground plane, ensure and control the coupling between resonators. The results shown in the paper can be used in the design of different miniature planar band-pass filters, including filters with cross-coupled resonators, in microstrip and in multilayer technologies.

  15. Quantum-limited amplification and entanglement in coupled nonlinear resonators.

    PubMed

    Eichler, C; Salathe, Y; Mlynek, J; Schmidt, S; Wallraff, A

    2014-09-12

    We demonstrate a coupled cavity realization of a Bose-Hubbard dimer to achieve quantum-limited amplification and to generate frequency entangled microwave fields with squeezing parameters well below -12  dB. In contrast to previous implementations of parametric amplifiers, our dimer can be operated both as a degenerate and as a nondegenerate amplifier. The large measured gain-bandwidth product of more than 250 MHz for the nondegenerate operation and the saturation at input photon numbers as high as 2000 per μs are both expected to be improvable even further, while maintaining wide frequency tunability of about 2 GHz. Featuring flexible control over all relevant system parameters, the presented Bose-Hubbard dimer based on lumped element circuits has significant potential as an elementary cell in nonlinear cavity arrays for quantum simulations.

  16. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2016-02-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ˜ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20-30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  17. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2016-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  18. On the heating of inductively coupled resonators (stents) during MRI examinations.

    PubMed

    Busch, Martin; Vollmann, Wolfgang; Bertsch, Thomas; Wetzler, Rainer; Bornstedt, Axel; Schnackenburg, Bernhard; Schnorr, Jörg; Kivelitz, Dietmar; Taupitz, Matthias; Grönemeyer, Dietrich

    2005-10-01

    Stents that have been implanted to preserve the results of vascular dilatation are frequently affected by in-stent restenosis, which ideally should be followed up by a noninvasive diagnostic modality. Active MRI stents can enable this kind of follow-up, while normal metallic stents can not. The prototype stents investigated in this study were designed as electric resonating circuits without a direct connection to the MR imager, and function as inductively coupled transmit coils. The model of a long solenoid coil is used to describe the additional power loss caused by such resonators. The theoretically estimated temperature increase is verified by measurements for different resonators and discussed for worst-case conditions. The RF power absorption of an active resonator is negligible compared to the total power absorbed during MRI. The local temperature increase observed for prototypes embedded in phantoms is in a range that excludes direct tissue damage. However, ruptures in the conducting structure of a resonator can cause hot spots, which may establish a high local temperature. This hazard can be reduced by designing resonators with a low quality (Q) factor or by setting the circuit slightly off resonance; however, this would lower the nominal amplification for which the resonator was designed.

  19. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    PubMed

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  20. Efficiency enhancement of coupled-cavity TWT's through cavity resonance tapering

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1979-01-01

    The paper examines efficiency enhancement of coupled-cavity traveling-wave tube (TWT) through cavity resonance tapering. Beam-wave resynchronization through circuit velocity reduction is used for TWT efficiency enhancement, with circuit velocity reduction in coupled cavity TWT's accomplished through period tapering. However, the amount of the latter is limited by the stability considerations, so that beyond a critical value of velocity reduction, the tube may be subject to zero drive oscillations originating in the velocity taper region. The coupled-cavity resonance tapering allows the velocity reduction to continue beyond the limit of stable period tapering, and it is accomplished by a gradual reduction in the cavity resonance frequency, with the period and the circuit bandwidth unchanged. The advantages of cavity resonance tapering vs period tapering are discussed, and test data are presented with the results of large-signal computer calculations. It is shown that cavity resonance tapering can produce efficiencies as period tapering without incurring the same risk of lower band-edge oscillations.

  1. Resonance Structure of Preheating after multifield inflation with nonminimal couplings (Part 2)

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda; Decross, Matthew; Kaiser, David; Prabhu, Anirudh; Sfakianakis, Evangelos

    2016-03-01

    Post-inflation reheating is a critical phase in the history of the cosmos, necessary to connect early-universe inflation to the successes of the standard hot big bang scenario. Reheating falls between two regimes that are well constrained by observations and match the latest observations remarkably well. After reheating, the energy density should include contributions from multiple species of matter, including the Standard Model particles or types of matter that decay into Standard Model particles prior to big-bang nucleosynthesis. Reheating therefore must be a multifield phenomenon. In this talk we continue our investigation of multifield inflation with nonminimal couplings, focusing on the ``preheating'' phase after inflation during which the scalar-field condensate(s) that drove inflation decay resonantly into higher-momentum quanta. Here we present the structure of resonances in this family of models semi-analytically and numerically across wide regions of parameter space. We construct Floquet charts for a wide range of non-minimal couplings. We also compare the resonance structure with the well-known minimally coupled quartic model, showing how the introduction of non-niminal couplings affects the resonance bands.

  2. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  3. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  4. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-19

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  5. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  6. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    PubMed

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  7. Dual coupled-resonator system for plasmon-induced transparency and slow light effect

    NASA Astrophysics Data System (ADS)

    Wang, Qinghao; Meng, Hongyun; Huang, Ben; Wang, Huihao; Zhang, Xing; Yu, Wei; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2016-12-01

    We proposed a dual coupled-resonator system based on the metal-insulator-metal bus waveguide and numerically investigated the plasmon-induced transparency and slow light effect with the Finite-Difference Time-Domain simulations in this paper. The electromagnetically induced transparency-like spectral response will occur between two adjacent stub resonators with detuned resonant wavelength due to the phase-coupled effect. The transmissivity and group index equations were been deduced, which indicated that the system can achieve the effect of the multiple electromagnetically induced transparency-like and slow light. With the optimization, the single peak transmission can reach to as high as 92%, dual PIT transmission peaks appear, as well as group index can reach over 75. These characteristics indicate multiple applications of our system in integrated optical circuits.

  8. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-02-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties.

  9. Coupling Light from a High-Q Microsphere Resonator Using a UV-induced Surface Grating

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Starodubov, D. S.; Gorodetsky, M. L.; Maleki, L.; Feinberg, J.

    2000-01-01

    High-Q microspheres with whispering-gallery modes have very narrow resonances that can be used for fiber-optic filters, ultra-compact narrow-linewidth lasers and optical/microwave oscillators. Whispering-gallery modes were previously excited in microspheres using evanescent optical fields. The necessary phase synchronism was obtained by adjusting the incident angle of input light beam (prism coupler) or adjustment of the waveguide propagation constant (fiber taper coupler). For many applications, however, bulky near-field couplers are undesirable. They compromise the symmetry and generate stray fields. Also, the control of coupling is crucial for the performance of microsphere resonators: in analogy with radio frequency circuits, the loading Q-factor should be less than the intrinsic Q-factor, Q(sub L) less than or equal to Q(sub O). Ideally one should combine a stable coupling element and a resonator into a single microsphere component.

  10. Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system

    SciTech Connect

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-10-15

    Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.

  11. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  12. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  13. Dual-band-enhanced Transmission through a Subwavelength Aperture by Coupled Metamaterial Resonators

    PubMed Central

    Guo, Yunsheng; Zhou, Ji

    2015-01-01

    In classical mechanics, it is well known that a system consisting of two identical pendulums connected by a spring will steadily oscillate with two modes: one at the fundamental frequency of a single pendulum and one in which the frequency increases with the stiffness of the spring. Inspired by this physical concept, we present an analogous approach that uses two metamaterial resonators to realize dual-band-enhanced transmission of microwaves through a subwavelength aperture. The metamaterial resonators are formed by the periodically varying and strongly localized fields that occur in the two metal split-ring resonators, which are placed gap-to-gap on either side of the aperture. The dual-band frequency separation is determined by the coupling strength between the two resonators. Measured transmission spectra, simulated field distributions, and theoretical analyses verify our approach. PMID:25634496

  14. Nonlinear mode coupling and resonant excitations in two-component Bose-Einstein condensates.

    PubMed

    Xue, Ju-Kui; Li, Guan-Qiang; Zhang, Ai-Xia; Peng, Ping

    2008-01-01

    Nonlinear excitations in two-component Bose-Einstein condensates (BECs) described by two coupled Gross-Pitaevskii equations are investigated analytically and numerically. The beating phenomenon, the higher-harmonic generation, and the mixing of the excited modes are revealed by both variational approximation and numerical method. The strong excitations induced by the parametric resonance are also studied by time-periodic modulation for the intercomponent interaction. The resonance conditions in terms of the modulation frequency and the strength of intercomponent interaction are obtained analytically, which are confirmed by numerical method. Direct numerical simulations show that, when the resonance takes place, periodic phase separation and multisoliton configurations (including soliton trains, soliton pairs, and multidomain walls) can be excited. In particular, we demonstrate a method for formation of multisoliton configurations through parametric resonance in two-component BECs.

  15. Dual-band-enhanced Transmission through a Subwavelength Aperture by Coupled Metamaterial Resonators

    NASA Astrophysics Data System (ADS)

    Guo, Yunsheng; Zhou, Ji

    2015-01-01

    In classical mechanics, it is well known that a system consisting of two identical pendulums connected by a spring will steadily oscillate with two modes: one at the fundamental frequency of a single pendulum and one in which the frequency increases with the stiffness of the spring. Inspired by this physical concept, we present an analogous approach that uses two metamaterial resonators to realize dual-band-enhanced transmission of microwaves through a subwavelength aperture. The metamaterial resonators are formed by the periodically varying and strongly localized fields that occur in the two metal split-ring resonators, which are placed gap-to-gap on either side of the aperture. The dual-band frequency separation is determined by the coupling strength between the two resonators. Measured transmission spectra, simulated field distributions, and theoretical analyses verify our approach.

  16. Enhancing detection sensitivity of metallic nanostructures by resonant coupling mode and spectral integration analysis.

    PubMed

    Lin, En-Hung; Tsai, Wan-Shao; Lee, Kuang-Li; Lee, Ming-Chang M; Wei, Pei-Kuen

    2014-08-11

    We report a simple method to efficiently improve the detection limit of surface plasmon resonance in periodic metallic nanostructures by using small angle illumination and spectral integration analysis. The large-area gold nanoslit arrays were fabricated by thermal-annealing template-stripping method with a slit width of 60 nm and period of 500 nm. The small angle illumination induced a resonant coupling between surface plasmon mode and substrate mode. It increased ~2.24 times intensity sensitivity at 5.5° incident angle. The small-angle illumination also resulted in multiple resonant peaks. The spectral integration method integrated all changes near the resonant peaks and increased the signal to noise ratio about 5 times as compared to single-wavelength intensity analysis. Combining both small angle and spectral integration, the detection limit was increased to one order of magnitude. The improvement of the detection limit for antigen-antibody interactions was demonstrated.

  17. Electronic Couplings for Resonance Energy Transfer from CCSD Calculations: From Isolated to Solvated Systems.

    PubMed

    Caricato, Marco; Curutchet, Carles; Mennucci, Benedetta; Scalmani, Giovanni

    2015-11-10

    Quantum mechanical (QM) calculations of electronic couplings provide great insights for the study of resonance energy transfer (RET). However, most of these calculations rely on approximate QM methods due to the computational limitations imposed by the size of typical donor-acceptor systems. In this work, we present a novel implementation that allows computing electronic couplings at the coupled cluster singles and doubles (CCSD) level of theory. Solvent effects are also taken into account through the polarizable continuum model (PCM). As a test case, we use a dimer of indole, a common model system for tryptophan, which is routinely used as an intrinsic fluorophore in Förster resonance energy transfer studies. We consider two bright π → π* states, one of which has charge transfer character. Lastly, the results are compared with those obtained by applying TD-DFT in combination with one of the most popular density functionals, B3LYP.

  18. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  19. Periodic coupling strength-dependent multiple coherence resonance by time delay in Newman-Watts neuronal networks.

    PubMed

    Wu, Yanan; Gong, Yubing; Xu, Bo

    2013-12-01

    Recently, multiple coherence resonance induced by time delay has been observed in neuronal networks with constant coupling strength. In this paper, by employing Newman-Watts Hodgkin-Huxley neuron networks with time-periodic coupling strength, we study how the temporal coherence of spiking behavior and coherence resonance by time delay change when the frequency of periodic coupling strength is varied. It is found that delay induced coherence resonance is dependent on periodic coupling strength and increases when the frequency of periodic coupling strength increases. Periodic coupling strength can also induce multiple coherence resonance, and the coherence resonance occurs when the frequency of periodic coupling strength is approximately multiple of the spiking frequency. These results show that for periodic coupling strength time delay can more frequently optimize the temporal coherence of spiking activity, and periodic coupling strength can repetitively optimize the temporal coherence of spiking activity as well. Frequency locking may be the mechanism for multiple coherence resonance induced by periodic coupling strength. These findings imply that periodic coupling strength is more efficient for enhancing the temporal coherence of spiking activity of neuronal networks, and thus it could play a more important role in improving the time precision of information processing and transmission in neural networks.

  20. Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber

    PubMed Central

    Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang

    2017-01-01

    Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.

  1. Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber.

    PubMed

    Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang

    2017-04-11

    Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.

  2. Lateral Fano resonances and Kondo effect in the strong coupling regime of a T -coupled quantum dot

    NASA Astrophysics Data System (ADS)

    Franco, R.; Figueira, M. S.; Anda, E. V.

    2006-05-01

    We study the electronic transport through a quantum wire (QW), modeled by a tight-binding linear chain, with a side-coupled quantum dot (QD). We obtain the conductance with a strong Fano antiresonance. The calculated density of states shows that this behavior is associated to a many-body renormalized QD resonant level Ef˜ at the edge of the conduction band (CB) strongly hybridized with the Van Hove singularity of the one-dimensional density of states of the lead. Different from the Fano antiresonances experimentally found when this system is at the Kondo regime, this phenomenon appears above the Kondo temperature. It is due to the quantum interference between the ballistic channel and a thermal activated channel created by the QD resonance at the vicinity of the bottom of the CB.

  3. Purity assessment problem in quantitative NMR--impurity resonance overlaps with monitor signal multiplets from stereoisomers.

    PubMed

    Malz, Frank; Jancke, Harald

    2006-06-01

    This paper describes the situation that can emerge when the signals to be evaluated in quantitative NMR measurements-so-called "monitor signals"--consist of several resonance lines from the stereoisomers of the analyte in addition to an impurity signal underneath. The monitor signal problem is demonstrated in the purity assessment of two samples of 2-(isopropylamino)-4-(ethylamino)-6-chloro-1,3,5-triazine (atrazine), a common herbizide which served as analyte in a CCQM intercomparison. It is shown that, in DMSO-d6 solution, a mixture of stereoisomers leads to several individual overlapping singlets, which are further split by spin-spin coupling. A measurement protocol was developed for finding and identifying an impurity that has a signal that is positioned precisely beneath the methyl signal chosen as the monitor signal in one of the samples. Quantitative NMR purity assessment is still possible in this special case, but with higher uncertainty.

  4. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    PubMed

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  5. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    PubMed Central

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-01-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect. PMID:27872487

  6. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    SciTech Connect

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  7. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.

    PubMed

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2012-11-05

    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  8. Demonstration of polarization mode selection and coupling efficiency of optofluidic ring resonator lasers.

    PubMed

    Zhang, Yuanxian; Meng, Weidong; Yang, Hongyue; Chu, Yufei; Pu, Xiaoyun

    2015-11-01

    We demonstrate the polarization mode selection and the dependence of coupling efficiency on polarization state of pump light for an optofluidic ring resonator (OFRR) laser. An optical fiber is chosen to serve as the ring resonator and surrounded by rhodamine 6G dye solution of lower refractive index as the fluidic gain medium. When the ring resonator is pumped by a linearly s-polarized laser, the emitted whispering gallery mode (WGM) lasing is of parallel polarization (TM mode), while p-polarized laser excitation generates a vertically polarized lasing emission (TE mode), both TM and TE mode lasing emission coexist simultaneously if the ring resonator is pumped by the s- and p-mixed polarized light. Further investigation reveals that the lasing intensity of the TM mode is approximately twice that of the TE mode for the same pump energy density, meaning an obvious difference of coupling efficiency on the polarization state of pump light; the experimental results of coupling efficiency are well explained by an induced dipole model.

  9. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  10. Resonances in coupled πK, ηK scattering from lattice QCD

    SciTech Connect

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  11. Resonances in coupled πK, ηK scattering from lattice QCD

    DOE PAGES

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemore » related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.« less

  12. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.

    PubMed

    Woo, Kat Choi; Shao, Lei; Chen, Huanjun; Liang, Yao; Wang, Jianfang; Lin, Hai-Qing

    2011-07-26

    The plasmon coupling between metal nanocrystals can lead to large plasmon shifts, enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy. Consequently, the plasmon coupling between metal nanorods is much more complicated than that between nanospheres. For the latter, experimental approaches, simple scaling relationships, and exact analytic solutions have been developed for describing the plasmon coupling. In this study, we have carried out extensive finite-difference time-domain simulations to understand the plasmon coupling in the dimers of Au nanorods that are aligned along their length axes. The effects of the gap distance, longitudinal plasmon energy, and end shape of the nanorod monomers on the plasmon coupling have been scrutinized. The coupling energy diagrams show a general anticrossing behavior. All of them can be rescaled into one simple and universal hyperbolic formula. A theoretical model based on two interacting mechanical oscillators has been developed to understand the plasmon coupling between two arbitrarily varying Au nanorods. This model, together with the universal equation, allows for the determination of the coupled plasmon energies of Au nanorod dimers with high accuracies. Furthermore, the Fano interference has been observed in the nanorod heterodimers, with its behavior being dependent on the gap distance and plasmon energies of the nanorod monomers. Our results will be useful for predicting the coupled plasmon energies of metal nanorod dimers in a variety of plasmonic applications and understanding the Fano resonance in plasmonic nanostructures.

  13. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    PubMed

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  14. Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Landra, Alessandro; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-01

    We propose a promising hybrid quantum system, where a highly excited atom strongly interacts with a superconducting L C oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of the atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the dc Stark map of a Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on or off resonance with respect to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of the resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity-mediated state transmission.

  15. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    PubMed Central

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-01-01

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation. PMID:27527169

  16. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect

    Garnett, R.W.

    1989-03-01

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  17. Effect of defects on phonons and the effective spin-spin interactions of an ultracold Penning-trap quantum simulator

    NASA Astrophysics Data System (ADS)

    McAneny, M.; Yoshimura, B.; Freericks, J. K.

    2013-10-01

    We generalize the analysis of the normal modes for a rotating ionic Coulomb crystal in a Penning trap to allow for inhomogeneities in the system. Our formal developments are completely general, but we choose to examine a crystal of Be+ ions with BeH+ defects to compare with current experimental efforts. We examine the classical phonon modes (both transverse and planar) and we determine the effective spin-spin interactions when the system is driven by an axial spin-dependent optical dipole force. We examine situations with up to approximately 15% defects. We find that most properties are not strongly influenced by the defects, indicating that the presence of a small number of defects will not significantly affect experiments.

  18. Automatic Coupling Control of a Loop-Gap Resonator by a Variable Capacitor Attached Coupling Coil for EPR Measurements at 650 MHz

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hidekastu; Sato, Toshiyuki; Ogata, Tateaki; Ohya, Hiroaki; Kamada, Hitoshi

    2001-03-01

    A coupling coil was fabricated that can electrically change the magnetic coupling with a loop-gap resonator (LGR) for EPR studies at 650 MHz. It is composed of a single-turn coil and a coupling control circuit that includes a varactor diode. The coarse control of the magnetic coupling is made by mechanically changing the distance between the LGR and single-turn coil. The fine control is obtained by changing the capacitance of the varactor diode that is connected in parallel with the single-turn coil. This capacitance is controlled by changing reverse voltage from a variable bias voltage source. Because this can be located far from the resonator, remote control of coupling of the LGR is possible. Automatic coupling control (ACC) was accomplished by negative feedback of the DC component in the radiowaves reflected from the LGR to the coupling control circuit when the LGR was irradiated precisely at its resonant frequency. To accomplish this, automatic frequency control (AFC) is used. In EPR measurements of a phantom that included a physiological saline solution containing a nitroxide radical, it was confirmed that the drifts in the coupling and resonant frequency caused by the perturbation of the resonant nature could be sufficiently compensated by the ACC and AFC systems. In the in vivo EPR studies, it was found that the deviation of coupling at the chest of a mouse is greater than that at the head of a rat, but the ACC system could compensate for the respiratory motions of a living animal.

  19. Series-coupled double-ring resonators with asymmetric radii for use in channelizer

    NASA Astrophysics Data System (ADS)

    Gu, Xiaowen; Zhu, Dan; Zhao, Yongjiu; Pan, Shilong

    2014-10-01

    A series-coupled double-ring resonator with asymmetric radii is analyzed to achieve a filter response with a large free spectral range (FSR), a narrow passband of tens of MHz and a small shape factor simultaneously for use in microwave photonic channelizer. By introducing difference to the two radii, based on the vernier effect, the FSR of the resonator filter can be extended while maintaining the narrow passband and the small shape factor. A filter response with a FSR of 29.444 GHz, a 3-dB bandwidth of 96 MHz and a shape factor of 3.17 is realized by numerical analysis.

  20. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation.

    PubMed

    Ruffato, G; Romanato, F

    2012-07-01

    A grating-coupled surface plasmon resonance (GCSPR) technique based on polarization modulation in conical mounting is presented. A metallic grating is azimuthally rotated to support double-surface plasmon polariton excitation and exploit the consequent sensitivity enhancement. Corresponding to the resonance polar angle, a polarization scan of incident light is performed, and reflectivity data are collected before and after functionalization with a dodecanethiol self-assembled monolayer. The output signal exhibits a harmonic dependence on polarization, and the phase term is used as a parameter for sensing. This technique offers the possibility of designing extremely compact, fast, and cheap high-resolution plasmonic sensors based on GCSPR.

  1. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    PubMed

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  2. Mining the salivary proteome with grating-coupled surface plasmon resonance imaging and surface plasmon coupled emission microarrays.

    PubMed

    Molony, Ryan D; Rice, James M; Yuk, Jong Seol; Shetty, Vivek; Dey, Dipak; Lawrence, David A; Lynes, Michael A

    2012-08-01

    Biological indicators have numerous and widespread utility in personalized medicine, but the measurement of these indicators also poses many technological and practical challenges. Blood/plasma has typically been used as the sample source with which to measure these indicators, but the invasiveness associated with sample procurement has led to increased interest in saliva as an attractive alternative. However, there are unique issues associated with the measurement of saliva biomarkers. These issues are compounded by the imperfect correlation between saliva and plasma with respect to biomarker profiles. In this manuscript, we address the technical challenges associated with saliva biomarker quantification. We describe a high-content microarray assay that employs both grating-coupled surface plasmon resonance imaging and surface plasmon-coupled emission modalities in a highly sensitive assay with a large dynamic range. This powerful approach provides the tools to map the proteome of saliva, which in turn should greatly enhance the utility of salivary biomarker profiles in personalized medicine.

  3. Magnetic resonance spectroscopy editing techniques of coupled spin systems at high field

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff

    Magnetic resonance spectroscopy (MRS) provides a non-invasive tool for investigating chemical concentrations in the human brain. The detection of metabolites is useful in understanding functional pathways in healthy and diseased states. Many important metabolites are composed of multiple interacting spins coupled through chemical bonds in the molecule. Whereas the observation of strong uncoupled (singlet) resonances is straightforward, complex coupling patterns and signal overlap often hinder the detection of coupled spin systems, rendering quantification problematic. One of the primary goals of this project is to investigate spectral editing techniques to detect coupled spin systems and provide a means for increasing the accuracy of quantification. A new method of spectral editing based on subtraction spectroscopy is proposed, which relies on signal differences at constant echo time (TE) produced by varying the inter-pulse delays in an asymmetric PRESS sequence. The method requires no spectrally selective pulses or multiple quantum filters, and can be easily implemented with a standard PRESS sequence. All non-varying spectral information is maintained, in contrast to other popular editing techniques. In terms of strongly coupled spin systems, the procedure is demonstrated for glutamate and glutamine discrimination, as well as simulated optimization of field strength for detection of several strongly coupled metabolites. To produce the necessary TE space variations for weakly coupled systems, the flip angle of the second refocusing pulse was varied. This technique was applied for the detection of gamma-aminobutyric acid, which is completely obscured at standard clinical field strengths. A second editing method investigated the optimization of PRESS timing parameters at multiple field strengths for the simultaneous detection of glutamate and glutamine in vivo, by maximizing the signal yield and minimizing the significant overlap at lower field strengths. Finally

  4. Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Jinli; Chen, Huibin; Zhang, Zhidong; Tang, Jun; Cui, Jiangong; Xue, Chenyang; Yan, Shubin

    2017-01-01

    A metal-insulator-metal (MIM) waveguide-coupled trapezoid cavity is presented, and the transmission properties are investigated by finite-element method. Results show that an asymmetric Fano profile emerged in the transmission spectrum, which was caused by the asymmetrical break of the MIM waveguide-coupled trapezoid cavity system. A refractive index sensitivity, Q-factor and FOM of approximately 750nm/RIU, 68.3 and 65.2 were measured based on the Fano resonance. The effect of the structural parameters on the transmission properties is also investigated. The results provide a new possibility for designing high-performance plasmonic devices.

  5. Coupling of two counterpropagating modes in nonlinear split-ring resonators' chain

    NASA Astrophysics Data System (ADS)

    Cui, Wei-na; Lu, Wen; Li, Hong-xia; Sun, Min; Zhu, Yong-yuan

    2016-05-01

    The two coupled counterpropagating nonlinear magnetoinductive wave modes are analyzed theoretically in split ring resonator chain with Kerr nonlinear interaction. Starting from a general nonlinear lattice equation based on a quasi-discreteness approach we derive two coupled nonlinear Schrödinger equations governing the evolution of the slowly varying envelopes of these modes. It is shown that this system supports backward- and forward-propagating vector solitons of the bright-bright and dark-dark type through a cross-phase modulation.

  6. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGES

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  7. A triangular coupled-resonator antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Mahmud, Md Zulfiker; Alam, Touhidul; Islam, Mohammad Tariqul

    2017-01-01

    A triangle-shaped coupled-resonator microstrip patch antenna is presented for ultra-wideband wireless applications. The antenna achieves bandwidth of 116.5% with electrical dimension of 0.154 λ × 0.133 λ × 0.016 λ at the lower frequency band. The operating bandwidth of proposed antenna is 3.07-11.6 GHz with more than 80% efficiency and about 5.5 dBi gain. A triangular couple resonator is added on the patch to enhance the antenna performance, and antenna ground is modified to get higher bandwidth. The antenna performances have been analyzed using the finite integration technique of computer simulation technology microwave studio and validated with another EM simulating software HFSS and in measurement.

  8. Ferromagnetic resonance in coupled permalloy double films separated by a Cu interlayer

    NASA Astrophysics Data System (ADS)

    Maksymowicz, A. Z.; Whiting, J. S. S.; Watson, M. L.; Chambers, A.

    1991-03-01

    Ferromagnetic resonance (FMR) at 16 GHz was used to study the magnetic coupling between two-layers of permalloy separated by a nonmagnetic Cu layer. Samples with the same thickness (600 Å) of both permalloy layers were deposited from e-gun sources onto glass substrates in UHV. The thickness d of the Cu interlayer was varied from 5 to 37 Å. The exchange coupling energy ( E = - KM1· M2) model was used to describe the interaction between the two magnetic layers. It was found from the ferromagnetic resonance data in the perpendicular configuration that K( d) follows an exponential law, K = K0e - d/ q, where q = 9.3 Å.

  9. Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide

    NASA Astrophysics Data System (ADS)

    Wen, Mengting; Wang, Lingling; Zhai, Xiang; Lin, Qi; Xia, Shengxuan

    2016-11-01

    We demonstrate plasmon-induced absorption (PIA) in an ultra-compact graphene waveguide system which is composed of a single graphene sheet with two air cavities side-coupled to a graphene nanoribbon. By designing two coherent optical pathways, the pronounced PIA can be achieved due to the extreme destructive interference between the radiant and subradiant modes supported by the two graphene nanoribbons. The resonant strength shows strong dependence on the coupling distance between the two graphene nanoribbons and the resonance wavelength can be dynamically tuned by varying their Fermi energy. Furthermore, the group delay time up to -0.14 ps can be reached at the PIA window, suggesting unique fast-light feature. In addition, the double PIA phenomenon is also analyzed by introducing another graphene nanoribbon. Our results may pave the way for controlling the transmission of a light signal in the design of ultra-compact plasmonic devices.

  10. Topological phononic states of underwater sound based on coupled ring resonators

    SciTech Connect

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan; Lu, Ming-Hui Liu, Xiao-Ping; Chen, Yan-Feng

    2016-01-18

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  11. Electromagnetic coupling to centimeter-scale mechanical membrane resonators via RF cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond

    2016-11-01

    We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.

  12. Cross-polarization coupling and switching in an open nano-meta-resonator

    NASA Astrophysics Data System (ADS)

    Szabelak, W.; Nasalski, W.

    2011-11-01

    We demonstrate the reconfiguration process of optical beam fields circulating in an open nano-meta-resonator cavity. The cavity is composed of four corners or quadrants of space filled alternatively with dielectric and metamaterial media. The media are assumed to be lossless, nondispersive and of parameters precluding impedance matching at the boundaries between the subsequent corners. Beam path retracement in the cavity is obtained from a resonance condition of phase compensation along each optical ray contributed to the circulating beam. Cross-polarization coupling between TM and TE components of elegant higher-order Hermite-Gaussian beams propagating in the resonator is analysed. The existence of the phenomena of beam excitation, filtering and switching predicted on these grounds is explicitly confirmed by numerical simulations. All phenomena described depend substantially on a field cross-sectional diameter of the circulating beams.

  13. Reading, writing, and squeezing the entangled states of two nanomechanical resonators coupled to a SQUID

    NASA Astrophysics Data System (ADS)

    Cohen, Guy Z.; Di Ventra, Massimiliano

    2013-01-01

    We study a system of two nanomechanical resonators embedded in a dc superconducting quantum interference device (SQUID). We show that the inductively coupled resonators can be treated as two entangled quantum memory elements with states that can be read from, or written on, by employing the SQUID as a displacement detector or switching additional external magnetic fields, respectively. We present a scheme to squeeze the even mode of the state of the resonators and, consequently, reduce the noise in the measurement of the magnetic flux threading the SQUID. We finally analyze the effect of dissipation on the squeezing using the quantum master equation, and show the qualitatively different behavior for the weak and strong damping regimes. Our predictions can be tested using current experimental capabilities.

  14. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  15. Algebraic prediction of resonance couplings from assumptions about zero-trajectory slopes

    SciTech Connect

    Gehlen, G.v.; Pfeil, W.

    1980-04-01

    The slopes of the amplitude zeros in the Mandelstam plane passing through the intersection of s-channel I=3/2 resonances with the u-channel nucleon pole are considered for pion-nucleon scattering, for pion production by vector and axial-vector currents, and for Compton scattering. New striking regularities relevant for the construction of explicit dual models involving fermions and currents are found. If one demands the zero slopes to be equal for all helicity amplitudes of the same process, the spin and parity structure of the resonance excitation is predicted in good agreement with experiment. Demanding the zeros to pass the intersection points close to the direction t approx. = constant, the right order of magnitude of the resonance couplings is obtained.

  16. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  17. Performance of hole coupling resonator in the presence of asymmetric modes and FEL gain

    SciTech Connect

    Xie, Ming; Kim, Kwang-Je.

    1991-08-01

    We continue the study of the hole coupling resonator for free electron laser (FEL) application. The previous resonator code is further developed to include the effects of the azimutally asymmetric modes and the FEL gain. The implication of the additional higher order modes is that there are more degeneracies to be avoided in tuning the FEL wavelengths. The FEL interaction is modeled by constructing a transfer map in the small signal regime and incorporating it into the resonator code. The FEL gain is found to be very effective in selecting a dominant mode from the azimuthally symmetric class of modes. Schemes for broad wavelength tuning based on passive mode control via adjustable apertures are discussed. 12 refs., 7 figs., 1 tab.

  18. Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement.

    PubMed

    Boeck, Robi; Jaeger, Nicolas A; Rouger, Nicolas; Chrostowski, Lukas

    2010-11-22

    Silicon-on-insulator racetrack resonators can be used as multiplexers in wavelength division multiplexing applications. The free spectral range should be comparable to the span of the C-band so that a maximum number of channels can be multiplexed. However, the free spectral range is inversely proportional to the length of the resonator and, therefore, bending losses can become non-negligible. A viable alternative to increase the free spectral range is to use the Vernier effect. In this work, we present the theory of series-coupled racetrack resonators exhibiting the Vernier effect. We demonstrate the experimental performance of the device using silicon-on-insulator strip waveguides. The extended free spectral range is 36 nm and the interstitial peak suppression is from 9 dB to 17 dB.

  19. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared.

    PubMed

    Troia, Benedetto; Khokhar, Ali Z; Nedeljkovic, Milos; Penades, Jordi Soler; Passaro, Vittorio M N; Mashanovich, Goran Z

    2014-10-06

    In this paper we report the experimental demonstration of racetrack resonators in silicon-on-insulator technology platform operating in the mid-infrared wavelength range of 3.7-3.8 μm. Insertion loss lower than 1 dB and extinction ratio up to 30 dB were measured for single resonators. The experimental characterization of directional couplers and bending losses in silicon rib waveguides are also reported. Furthermore, we present the design and fabrication of cascade-coupled racetrack resonators based on the Vernier effect. Experimental spectra of Vernier architectures were demonstrated for the first time in the mid-infrared with insertion loss lower than 1 dB and maximum interstitial peak suppression of 10 dB.

  20. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes

    NASA Astrophysics Data System (ADS)

    Song, Qinghai; Ge, Li; Wiersig, Jan; Cao, Hui

    2013-08-01

    The recent progresses in single crystalline wide bandgap hexagonal disk have stimulated intense research attention on pursuing ultraviolet (UV) laser diodes with low thresholds. While whispering-gallery modes based UV lasers have been successfully obtained in GaN, ZnO nanorods, and nanopillars, the reported thresholds are still very high, due to the low-quality (Q) factors of the hexagonal resonances. Here we demonstrate resonances whose Q factors can be more than two orders of magnitude higher than the hexagonal modes, promising the reduction of the energy consumption. The key to our finding is the avoided resonance crossing between superscar states along two sets of nearly degenerated triangle orbits, which leads to the formation of hexagram modes. The mode couplings suppress the field distributions at the corners and the deviations from triangle orbits simultaneously and therefore enhance the Q factors significantly.

  1. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Escher, J. E.; Arbanas, G.

    2014-04-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  2. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    SciTech Connect

    Thompson, I J; Escher, Jutta E; Arbanas, Goran

    2013-01-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  3. Resonances in Coupled πK-ηK Scattering from Quantum Chromodynamics

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; ...

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  4. Bistable laser device with multiple coupled active vertical-cavity resonators

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  5. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  6. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    PubMed Central

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-01-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506

  7. Coupled-channel Treatment of Isobaric Analog Resonances in (p,p‧) Capture Processes

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Arbanas, G.

    2014-04-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in γ-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the non-orthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p'γ) coincidence data exists.

  8. Coupled-channel treatment of Isobaric Analog Resonances in (p,p') Capture Processes

    SciTech Connect

    Thompson, I J; Arbanas, Goran

    2013-01-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in gamma-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the nonorthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p g)

  9. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    NASA Astrophysics Data System (ADS)

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-02-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors.

  10. Strain Coupling of a Mechanical Resonator to a Single Quantum Emitter in Diamond

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth W.; Lee, Donghun; Ovartchaiyapong, Preeti; Minguzzi, Joaquin; Maze, Jero R.; Bleszynski Jayich, Ania C.

    2016-09-01

    The recent maturation of hybrid quantum devices has led to significant enhancements in the functionality of a wide variety of quantum systems. In particular, harnessing mechanical resonators for manipulation and control has expanded the use of two-level systems in quantum-information science and quantum sensing. Here, we report on a monolithic hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically control the optical transitions of a single nitrogen-vacancy (NV) defect center in diamond. We quantitatively characterize the strain coupling to the orbital states of the NV center and, with mechanical driving, we observe NV-strain couplings exceeding 10 GHz. Furthermore, we use this strain-mediated coupling to match the frequency and polarization dependence of the zero-phonon lines of two spatially separated and initially distinguishable NV centers. The experiments demonstrated here mark an important step toward engineering a quantum device capable of realizing and probing the dynamics of nonclassical states of mechanical resonators, spin systems, and photons.

  11. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    PubMed

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  12. Strong-coupling limit in cold-molecule formation via photoassociation or Feshbach resonance through Nikitin exponential resonance crossing

    SciTech Connect

    Ishkhanyan, Artur; Nakamura, H.

    2006-12-15

    The strong-coupling limit of molecule formation in an atomic Bose-Einstein condensate via two-mode one-color photoassociation or sweep across a Feshbach resonance is examined using a basic nonlinear time-dependent two-state model. For the general class of term-crossing models with constant coupling, a common strategy for attacking the problem is developed based on the reduction of the initial system of semiclassical equations for atom-molecule amplitudes to a third-order nonlinear differential equation for the molecular state probability. This equation provides deriving exact solution for a class of periodic level-crossing models. These models reveal much in common with the Rabi problem. Discussing the strong-coupling limit for the general case of variable detuning, the equation is further truncated to a limit first-order nonlinear equation. Using this equation, the strong nonlinearity regime for the first Nikitin exponential-crossing model is analyzed and accurate asymptotic expressions for the nonlinear transition probability to the molecular state are derived. It is shown that, because of a finite final detuning involved, this model displays essential deviations from the Landau-Zener behavior. In particular, it is shown that in the limit of strong coupling the final conversion probability tends to 1/6. Thus, in this case the strong interaction limit is not optimal for molecule formation. We have found that if optimal field intensity is applied the molecular probability is increased up to 1/4 (i.e., the half of the initial atomic population)

  13. Extraction of Electromagnetic Transition Form Factors for Nucleon Resonances within a Dynamical Coupled-Channels Model

    SciTech Connect

    N. Suzuki, T. Sato, T.-S. H. Lee

    2010-10-01

    We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.

  14. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators

    PubMed Central

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-01-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs’ radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography. PMID:27630076

  15. Three-mode resonant coupling of collective excitations in a Bose-Einstein condensate

    SciTech Connect

    Ma Yongli; Huang, Guoxiang; Hu Bambi

    2005-04-01

    We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature in a Bose-Einstein condensate (BEC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly coupled envelope equations for a three-mode resonant interaction (TMRI) by means of a method of multiple scales. (ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-state wave function of the condensate. (iii) We provide the selection rules in mode-mode interaction processes [including TMRI and second-harmonic generation (SHG)] according to the symmetry of the excitations. (iv) By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the present study on the TMRI of collective excitations in a BEC.

  16. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators

    NASA Astrophysics Data System (ADS)

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-09-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs’ radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography.

  17. Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits.

    PubMed

    Bonizzoni, C; Ghirri, A; Bader, K; van Slageren, J; Perfetti, M; Sorace, L; Lan, Y; Fuhr, O; Ruben, M; Affronte, M

    2016-11-14

    We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt(2-) = maleonitriledithiolate), [ErPc2](-)TBA(+) (where pc(2-) is the phtalocyaninato and TBA(+) is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.

  18. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  19. Optically detunable, inductively coupled coil for self-gating in small animal magnetic resonance imaging.

    PubMed

    Korn, Matthias; Umathum, Reiner; Schulz, Jessica; Semmler, Wolfhard; Bock, Michael

    2011-03-01

    An inductively coupled coil concept is presented, which improves the compensation of physiological motion by the self-gating (SG) technique. The animal is positioned in a conventional volume coil encompassing the whole animal. A small, resonant surface coil (SG-coil) is placed on the thorax so that its sensitive region includes the heart. Via inductive coupling the SG-coil amplifies selectively the MR signal of the beating heart. With an optical detuning mechanism, this coupling can be switched off during acquisition of the MR image information, whereas it is active during SG data sampling to provide the physiological information. In vivo experiments on a mouse show an amplification of the SG signal by at least 40%.

  20. Off-diagonal photonic Lamb shift in reactively coupled waveguide-resonator system

    NASA Astrophysics Data System (ADS)

    Bernard, M.; Ramiro-Manzano, F.; Prtljaga, N.; Pucker, G.; Pavesi, L.; Carusotto, I.; Ghulinyan, M.

    2015-06-01

    We report on a joint theoretical and experimental study of an analogue of the Lamb shift in the photonic framework. The platform is an integrated photonic device consisting of a single mode waveguide vertically coupled to a disk-shaped microresonator. The presence of a neighboring waveguide induces a reactive inter-mode coupling in the resonator, an effect analogous to an off-diagonal Lamb shift from atomic physics. Waveguide mediated coupling of different radial families results in peculiar Fano lineshapes in the waveguide transmission spectra, which manifests for different relative frequency shifts of the modes at different azimuthal numbers. Finally, a non-linear model for the dinamic tuning of the Fano lineshape under continuous wave pumping conditions is proposed.

  1. Quantum dots coupled to chip-based dielectric resonators via DNA origami mediated assembly (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mitskovets, Anya; Gopinath, Ashwin; Rothemund, Paul; Atwater, Harry A.

    2016-09-01

    Interfacing of single photon emitters, such as quantum dots, with photonic nanocavities enables study of fundamental quantum electrodynamic phenomena. In such experiments, the inability to precisely position quantum emitters at the nanoscale usually limits the ability to control spontaneous emission, despite sophisticated control of optical density of states by cavity design. Thus, effective light-matter interactions in photonic nanostructures strongly depend on deterministic positioning of quantum emitters. In this work by using directed self-assembly of DNA origami we demonstrate deterministic coupling of quantum dots with gallium phosphide (GaP) dielectric whispering gallery mode resonators design to enhance CdSe quantum dot emission at 600nm-650nm. GaP microdisk and microring resonators are dry-etched through 200nm layer of gallium phosphide on silicon dioxide/silicon substrates. Our simulations show that such GaP resonators may have quality factors up to 10^5, which ensures strong light-matter interaction. On the top surface of microresonators, we write binding sites in the shape of DNA origami using electron beam lithography, and use oxygen plasma exposure to chemically activate these binding sites. DNA origami self-assembly is accomplished by placing DNA origami - quantum dot complexes into these binding sites. This approach allows us to achieve deterministic placement of the quantum dots with a few nm precision in position relative to the resonator. We will report photoluminescence spectroscopy and lifetime measurements of quantum dot - resonator deterministic coupling to probe the cavity-enhanced spontaneous emission rate. Overall, this approach offers precise control of emitter positioning in nanophotonic structures, which is a critical step for scalable quantum information processing.

  2. High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement

    NASA Astrophysics Data System (ADS)

    Abdelrehim, Adel A. A.; Ghafouri-Shiraz, H.

    2016-09-01

    In this paper, three dimensional periodic structure composed of circular split ring resonators and thin wires is used to improve the performance of a microstrip patch antenna. The three dimensional periodic structure is placed at the top of the patch within a specific separation distance to construct the proposed antenna. The radiated electromagnetic waves intensity of the proposed antenna is improved compared with the conventional patch antenna due to the electric and magnetic coupling enhancements. These enhancements occur between the patch and the periodic structure resonators and between the different resonator pairs of the periodic structure. As a result, the electric and the magnetic fields at the top of the patch are improved, the radiated electromagnetic beam size reduces which results in a highly focused beam and hence the antenna directivity and gain are improved, while the beam are is reduced. The proposed antenna has been designed and simulated using CST microwave studio at 10 GHz. An infinite two dimensional periodicity unit cell of circular split ring resonator and thin wire is designed to resonate at a 10 GHz and simulated in CST software, the scattering parameters are extracted, the results showed that the infinite periodicity two dimensional structure has a pass band frequency response of good transmission and reflection characteristics around 10 GHz. The infinite periodicity of the two dimensional periodic structure is then truncated and multi layers of such truncated structure is used to construct a three dimensional periodic structure. A parametric analysis has been performed on the proposed antenna incorporated with the three dimensional periodic structure. The impacts of the separation distance between the patch and three dimensional periodic structures and the size of the three dimensional periodic structure on the radiation and impedance matching parameters of the proposed antenna are studied. For experimental verification, the proposed

  3. Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy

    PubMed Central

    Mett, R.R.; Sidabras, J.W.; Hyde, J.S.

    2009-01-01

    An analytic circuit model for slot coupling from a waveguide to a loop-gap resonator (LGR) in a context of electron paramagnetic resonance (EPR) spectroscopy is presented. The physical dimensions of the waveguide, iris, LGR, and aqueous sample are transformed into circuit values of inductance, capacitance, and resistance. These values are used in a solution of circuit equations that results in a prediction of the rf currents, magnitude and phase, frequency, and magnetic and electric stored energies near critical coupling. The circuit geometry reflects magnetic flux conservation between the iris and LGR as well as modification of the outer loop LGR currents by the iris. Unlike conventional models, coupling is not explicitly based on a mutual inductance between the iris and LGR. Instead, the conducting wall high frequency rf boundary condition is used to define surface currents, regions, and circuit topology with lumped-circuit values of self-inductance, capacitance, and resistance. Match is produced by a combination of self-inductive and capacitive circuit coupling. Two conditions must be met to achieve match. First, the equivalent resistance of the LGR as seen by the iris must be transformed into the waveguide characteristic impedance. This transformation is met at a particular frequency relative to the natural LGR resonance frequency. The frequency shift magnitude is largely determined by the LGR properties, weakly dependent on iris length and placement, and independent of other iris dimensions. The second condition for match is that the iris reactance at this frequency shift must cancel the residual reactance of the LGR. This second condition is sensitive to the iris dimensions. If both conditions are not simultaneously satisfied, overcoupling or undercoupling results. A slotted iris of equal length to the size of the large dimension of the waveguide is found to have many properties opposite to a conventional iris of shorter length. Notably, the magnetic field

  4. Strong Coupling of a Donor Spin Ensemble to a Volume Microwave Resonator

    NASA Astrophysics Data System (ADS)

    Rose, Brendon; Tyryshkin, Alexei; Lyon, Stephen

    We achieve the strong coupling regime between an ensemble of phosphorus donor spins (5e13 total donors) in highly enriched 28-Si (50 ppm 29-Si) and a standard dielectric resonator. Spins were polarized beyond Boltzmann equilibrium to a combined electron and nuclear polarization of 120 percent using spin selective optical excitation of the no-phonon bound exciton transition. We observed a spin ensemble-resonator splitting of 580 kHz (2g) in a cavity with a Q factor of 75,000 (κ << γ ~ 120 kHz where κ and γ are the external and internal resonator loss rates respectively). The spin ensemble has a long dephasing time (9 μs) providing a wide window for viewing the time evolution of the coupled spin ensemble-cavity system described by the Tavis-Cummings model The free induction decay shows repeated collapses and revivals revealing a coherent and complete exchange of excitations between the superradiant state of the spin ensemble and the cavity (about 10 cycles are resolved). This exchange can be viewed as a swap of information between a long lived spin ensemble memory qubit (T2 ~ 2 ms) and a cavity

  5. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    NASA Astrophysics Data System (ADS)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  6. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    PubMed

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  7. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    PubMed Central

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-01-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light–matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation. PMID:26584781

  8. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  9. Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators.

    PubMed

    Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L

    2011-04-15

    A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency.

  10. Synchronization and array-enhanced resonances in delayed coupled neuronal network with channel noise

    NASA Astrophysics Data System (ADS)

    Chen, Jianchun; Ding, Shaojie; Li, Hui; He, Guolong; Zhang, Xuejuan

    2014-09-01

    This paper studies the combined effect of transmission delay and channel fluctuations on population behaviors of an excitatory Erdös-Rényi neuronal network. First, it is found that the network reaches a perfect spatial temporal coherence at a suitable membrane size. Such a coherence resonance is stimulus-free and is array-enhanced. Second, the presence of transmission delay can induce intermittent changes of the population dynamics. Besides, two resonant peaks of the population firing rate are observed as delay changes: one is at τd≈7ms for all membrane areas, which reflects the resonance between the delayed interaction and the intrinsic period of channel kinetics; the other occurs when the transmission delay equals to the mean inter-spike intervals of the population firings in the absence of delay, which reflects the resonance between the delayed interaction and the firing period of the non-delayed system. Third, concerning the impact of network topology and population size, it is found that decreasing the connection probability does not change the range of transmission delay but broadens the range of synaptic coupling that supports population neurons to generate action potentials synchronously and temporally coherently. Furthermore, there exists a critical connection probability that distinguishes the population dynamics into an asynchronous and synchronous state. All the results we obtained are based on networks of size N = 500, which are shown to be robust to further increasing the population size.

  11. Coupling-of-modes analysis of STW resonators including loss mechanism.

    PubMed

    Yantchev, Ventsislav M; Strashilov, Vesseline L

    2002-03-01

    Surface transverse wave (STW) resonators exhibit substantial advantages over conventional surface acoustic wave (SAW) resonators. However, their analysis is more involved because of the complicated nature of STW. Many parameters have been studied, but the one that has been difficult to analyze accurately is the quality factor Q, which is of great importance for characterizing the devices. At present, none of the available analytical models is concerned with quantitative loss consideration, and the establishment of reliable design rules is difficult. We present a theoretical study that allows one to conduct coupling-of-modes (COM) STW loss analysis and estimate the resonator Q from material and layout parameters. The COM transmission coefficient chi11 is derived by Floquet analysis. Its imaginary part is obtained by numerically fitting available experimental data for the Q-factor of particular resonators. It is a measure of STW propagation loss that adds to the electrode reflection loss. As the overall loss is extremely sensitive to the choice of parameter values, the full numerical search for optimum design presently discussed can save considerable experimental effort.

  12. Bandwidth tunable guided-mode resonance filter using contact coupled gratings at oblique incidence

    NASA Astrophysics Data System (ADS)

    Sang, Tian; Wang, Yueke; Li, Junlang; Zhou, Jianyu; Jiang, Wenwen; Wang, Jicheng; Chen, Guoqing

    2017-01-01

    A novel bandwidth tunable guided-mode resonance filter (GMRF) is proposed based on the contact coupled gratings (CCGs) with the absentee layers at oblique incidence. The design principle of the CCGs with double absentee layers is presented. The lateral shift of the CCGs changes the magnetic field distributions of the waveguide mode in the grating cavity and the surface-confined mode at the cover/grating interface thus facilitates the dynamic control of both the spectral and angular bandwidth of the GMRF. The resonance locations are almost immune to the variation of the lateral shift of the CCGs. The sideband level of the GMRF is almost unaffected by the lateral shift due to the Brewster AR effect. The resonance peak red-shifts quasi-linearly as the incident angle is increased, and the resonance wavelength can be selected by merely tuning the incident angle. The tunable ranges of both the spectral and angular bandwidth can be significantly enhanced by increasing the refractive-index contrast. Low-sideband reflection with controllable bandwidth at 650 nm is designed to demonstrate this concept.

  13. Study of photon–magnon coupling in a YIG-film split-ring resonant system

    SciTech Connect

    Bhoi, B.; Aiyar, R.; Cliff, T.; Maksymov, I. S.; Kostylev, M.; Venkataramani, N.; Prasad, S.; Stamps, R. L.

    2014-12-28

    By using the stripline Microwave Vector–Network Analyser Ferromagnetic Resonance and Time Domain spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium–iron–garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9% at 3 GHz. Theoretically, we propose an equivalent circuit model of the SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetisation dynamics in the YIG film driven by the microwave currents in the SRR. The results obtained with the equivalent-circuit model are in good agreement with the experiment. This model provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in nonlinear and magnetically tuneable metamaterials exploiting the strong coupling of magnons to microwave photons.

  14. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron.

    PubMed

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-12-14

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor.

  15. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    NASA Astrophysics Data System (ADS)

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-12-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor.

  16. An a0 resonance in strongly coupled πη, KK¯ scattering from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.

    2016-05-11

    Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less

  17. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    PubMed Central

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-01-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598

  18. Temporal coupled mode theory of standing wave resonant cavities for infrared photodetection.

    PubMed

    Lesmanne, Emeline; De Lamaestre, Roch Espiau; Fowler, David; Boutami, Salim; Badano, Giacomo

    2015-03-23

    Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber's dielectric function to the index of the incident medium ε″(d)/n₀ is larger than 1.4, then the absorption cross section σ(a) can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σ(a) to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.

  19. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  20. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    PubMed Central

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices. PMID:27897221

  1. Free-electron maser with high-selectivity Bragg resonator using coupled propagating and trapped modes

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.

    2010-10-01

    A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.

  2. Tunable Plasmonic Band-Pass Filter with Dual Side-Coupled Circular Ring Resonators

    PubMed Central

    Liu, Dongdong; Wang, Jicheng; Zhang, Feng; Pan, Yuewu; Lu, Jian; Ni, Xiaowu

    2017-01-01

    A wavelength band-pass filter with asymmetric dual circular ring resonators in a metal-insulator-metal (MIM) structure is proposed and numerically simulated. For the interaction of the local discrete state and the continuous spectrum caused by the side-coupled resonators and the baffle, respectively, the transmission spectrum exhibits a sharp and asymmetric profile. By adjusting the radius and material imbedded in one ring cavity, the off-to-on plasmon-induced absorption (PIA) optical response can be tunable achieved. In addition, the structure can be easily extended to other similar compact structures to realize the filtering task. Our structures have important potential applications for filters and sensors at visible and near-infrared regions. PMID:28335398

  3. Nonlinear reversal of the PT -symmetric phase transition in a system of coupled semiconductor microring resonators

    NASA Astrophysics Data System (ADS)

    Hassan, Absar U.; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N.

    2015-12-01

    A system of two coupled semiconductor-based resonators is studied when lasing around an exceptional point. We show that the presence of nonlinear saturation effects can have important ramifications on the transition behavior of this system. In sharp contrast with linear PT -symmetric configurations, nonlinear processes are capable of reversing the order in which the symmetry breaking occurs. Yet, even in the nonlinear regime, the resulting non-Hermitian states still retain the structural form of the corresponding linear eigenvectors expected above and below the phase-transition point. The conclusions of our analysis are in agreement with experimental data.

  4. An interleaver with tunable bandwidth ratio based on microring resonator coupled Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Zhang, Yundong; Zhang, Xuenan; Wang, Kaiyang; Wu, Yongfeng; Zhai, Xianxin; Yuan, Ping

    2015-03-01

    A fundamental structure of a passive interleaver based on microring resonator coupled Mach-Zehnder interferometer is proposed in this paper. The most conspicuous advantage is the simplicity, compactness of the structure and the flatness of the passband top. Then we propose two methods of realizing a bandwidth tunability in this structure. A further analysis shows that both methods have their own strengths. We expect the compact and flexible interleaver can provide some potential and important implications for upgrading a hybrid Dense Wavelength Division Multiplexing (DWDM) system.

  5. Deformed microdisk coupled to a bus waveguide for applications in resonant filter.

    PubMed

    Song, Qinghai; Liu, Shuai; Gu, Zhiyuan; Zhang, Nan; Xiao, Shumin

    2014-03-01

    Here we explore the applications of a deformed microdisk as a passive photonic element by coupling it to a bus waveguide. We show that deformed microdisk-based resonant filters are able to have transmittance of more than 99%, and the dropped signals can be routed to two different ports for particular applications. Interestingly, our results show that the splitting ratio can be dynamically tuned by locally changing the refractive index of microdisk. Our research opens new opportunities for the applications of deformed microdisks.

  6. Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator

    SciTech Connect

    He Xiaoling; Luo Junyan; Yang Chuiping; Li Sheng; Han Siyuan

    2010-08-15

    We propose a way for realizing a two-qubit controlled phase gate with superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. In this proposal, the two lowest levels of each SQUID serve as the logical states and two intermediate levels of each SQUID are used for the gate realization. We show that neither adjustment of SQUID level spacings during the gate operation nor uniformity in SQUID parameters is required by this proposal. In addition, this proposal does not require the adiabatic passage or a second-order detuning and thus the gate is much faster.

  7. Fano-like anti-resonances in strongly coupled binary Coulomb systems

    NASA Astrophysics Data System (ADS)

    Silvestri, L.; Kalman, G. J.; Donkó, Z.; Hartmann, P.; Kählert, H.

    2015-01-01

    Molecular-dynamics (MD) simulations of a strongly coupled binary ionic mixture have revealed the appearance of sharp minima in the species-resolved dynamical density fluctuation spectra. This phenomenon is reminiscent of the well-known Fano anti-resonance, occurring in various physical processes. We give a theoretical analysis using the quasi-localized charge approximation, and demonstrate that the observed phenomenon in the equilibrium spectrum is a novel manifestation of the Fano mechanism, that occurs at characteristic frequencies of the system different from the conventional classical Fano frequencies.

  8. Numerical evaluation of aperture coupling in resonant cavities and frequency perturbation analysis

    NASA Astrophysics Data System (ADS)

    Dash, R.; Nayak, B.; Sharma, A.; Mittal, K. C.

    2014-01-01

    This paper presents a general formulation for numerical evaluation of the coupling between two identical resonant cavities by a small elliptical aperture in a plane common wall of arbitrary thickness. It is organized into two parts. In the first one we discuss the aperture coupling that is expressed in terms of electric and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical integrals. Carlson integrals have been numerically evaluated and under zero thickness approximation, the results match with the complete elliptical integrals of first and second kind. It is found that with zero wall thickness, the results obtained are the same as those of Bethe and Collin for an elliptical and circular aperture of zero thickness. In the second part, Slater's perturbation method is applied to find the frequency changes due to apertures of finite thickness on the cavity wall.

  9. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique

    NASA Astrophysics Data System (ADS)

    Li, Ai Ping; Peng, Jing Dong; Zhou, MingQiong; Zhang, Jin

    2016-02-01

    A simple, fast, costless, sensitive and selective method of resonance light scattering coupled with HPLC was established for the determination of 6-mercaptopurine in human urine sample. In a Britton-Robinson buffer solution of pH 5.5, the formation of coordination complex between 6-mercaptopurine and metal palladium (II) led to enhance the RLS intensity of the system. The RLS signal was detected by fluorescence detector at λex = λem = 315 nm. The analytical parameters were provided by the coupled system, the linear of 6-mercaptopurine response from 0.0615 to 2.40 μg L- 1 and the limit of detection (S/N = 3) was 0.05 μg L- 1. The presented method has been applied to determine 6-mercaptopurine in human urine samples which obtained satisfactory results. Moreover, the reaction mechanism and possible reasons for enhancement of RLS were fully discussed.

  10. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators

    PubMed Central

    Song, Wan-lu; Yang, Wan-li; Yin, Zhang-qi; Chen, Chang-yong; Feng, Mang

    2016-01-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994

  11. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique.

    PubMed

    Li, Ai Ping; Peng, Jing Dong; Zhou, MingQiong; Zhang, Jin

    2016-02-05

    A simple, fast, costless, sensitive and selective method of resonance light scattering coupled with HPLC was established for the determination of 6-mercaptopurine in human urine sample. In a Britton-Robinson buffer solution of pH5.5, the formation of coordination complex between 6-mercaptopurine and metal palladium (II) led to enhance the RLS intensity of the system. The RLS signal was detected by fluorescence detector at λ(ex)=λ(em)=315 nm. The analytical parameters were provided by the coupled system, the linear of 6-mercaptopurine response from 0.0615 to 2.40 μg L(-1) and the limit of detection (S/N=3) was 0.05 μg L(-1). The presented method has been applied to determine 6-mercaptopurine in human urine samples which obtained satisfactory results. Moreover, the reaction mechanism and possible reasons for enhancement of RLS were fully discussed.

  12. Nonlinear coupling of flexural mode and extensional bulk mode in micromechanical resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Ren, Juan; Wei, Xueyong; Jiang, Zhuangde; Huan, Ronghua

    2016-11-01

    The effect of coupling between the extensional bulk mode and the flexural mode of a cantilever beam resonator has been experimentally studied by exciting the two modes simultaneously. The modal frequency shift of linear extensional bulk mode shows a quadratic relationship with the square of flexural mode's amplitude displacement, and a frequency shift up to 1492 Hz is observed when the flexural mode is driven by a AC signal Vac of 3 V and a DC bias of 30 V. The flexural mode shows a Duffing-like behavior with a softening nonlinearity and its frequency shift is influenced not only by its own nonlinear amplitude-frequency effect but also the extensional mode's amplitude as predicted. The nonlinear coupling coefficient is found to be about two orders of magnitude larger than the softening nonlinearity.

  13. Analysis of the weak coupling of the IrMn/Co/Ru/NiFe structures by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Alayo, W.; Sousa, M. A.; Pelegrini, F.; Baggio-Saitovitch, E.

    2011-04-01

    The Ir20Mn80/Co/Ru/Ni81Fe19 spin valve structures have been produced by sputtering deposition and analyzed by ferromagnetic resonance. Two well resolved modes are identified in the FMR spectra as the resonance of the Co and NiFe layers. The in-plane angular dependence of the resonance peaks for the NiFe layer present a small asymmetry, which is attributed to the interlayer exchange interaction between ferromagnetic layers across the nonmagnetic spacer. The data were analyzed considering the exchange bias at the IrMn/Co interface and the indirect coupling between Co and NiFe. The in-plane angular dependence of the resonance fields of both Co and NiFe layers present an upward (downward) shift for antiferromagnetic (ferromagnetic) coupling with respect to a system with no interlayer coupling.

  14. Analysis of the weak coupling of the IrMn/Co/Ru/NiFe structures by ferromagnetic resonance

    SciTech Connect

    Alayo, W.; Baggio-Saitovitch, E.; Sousa, M. A.; Pelegrini, F.

    2011-04-15

    The Ir{sub 20}Mn{sub 80}/Co/Ru/Ni{sub 81}Fe{sub 19} spin valve structures have been produced by sputtering deposition and analyzed by ferromagnetic resonance. Two well resolved modes are identified in the FMR spectra as the resonance of the Co and NiFe layers. The in-plane angular dependence of the resonance peaks for the NiFe layer present a small asymmetry, which is attributed to the interlayer exchange interaction between ferromagnetic layers across the nonmagnetic spacer. The data were analyzed considering the exchange bias at the IrMn/Co interface and the indirect coupling between Co and NiFe. The in-plane angular dependence of the resonance fields of both Co and NiFe layers present an upward (downward) shift for antiferromagnetic (ferromagnetic) coupling with respect to a system with no interlayer coupling.

  15. Fabrication of GaP disk resonator arrays coupled to nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Thomas, Nicole K.; Barbour, Russell; Song, Yuncheng; Lee, Minjoo L.; Fu, Kai-Mei C.

    2014-02-01

    Nitrogen-vacancy (NV) centers coupled to scalable optical networks have the potential to realize solid-state quantum information processing platforms. Toward this goal, we demonstrate coupling of near-surface NV- centers to an array of GaP optical resonators. The use of GaP as the optical waveguiding materials is appealing due to the possibility of realizing integrated photonic switches based on the linear electro-optic effect. We explore large-area integration of GaP on diamond through two routes: molecular beam deposition directly onto diamond substrates and layer transfer of single-crystalline sheets. While the direct deposition benefits from simpler, monolithic processing, the layer transfer route benefits from higher material quality. In the latter approach, we demonstrate the transfer of submicrometer thick, mm2-sized GaP sheets from a GaP/AlGaP/GaP substrate to a diamond sample prepared with near-surface NV- centers. We fabricate large arrays of GaP disk resonators with varying diameters (1 to 20 μm) on the diamond substrate via electron beam lithography and dry etching, and show coupling of the NV- center emission to the cavity structures. Quality factors above 10,000 were observed in 5 μm diameter disks on the non-etched diamond substrate. Similar quality factors in smaller sized devices are expected with diamond substrate etching to further confine the optical mode. This approach opens a path towards the integration of coupled optical components in the hybrid GaP/diamond system, an essential step towards large-scale photonic networks utilizing NV- centers in diamond.

  16. Nuclear magnetic resonance of J-coupled quadrupolar nuclei: Use of the tensor operator product basis

    NASA Astrophysics Data System (ADS)

    Kemp-Harper, R.; Philp, D. J.; Kuchel, P. W.

    2001-08-01

    In nuclear magnetic resonance (NMR) of I=1/2 nuclei that are scalar coupled to quadrupolar spins, a tensor operator product (TOP) basis set provides a convenient description of the time evolution of the density operator. Expressions for the evolution of equivalent I=1/2 spins, coupled to an arbitrary spin S>1/2, were obtained by explicit algebraic density operator calculations in Mathematica, and specific examples are given for S=1 and S=3/2. Tensor operators are described by the convenient quantum numbers rank and order and this imparts to the TOP basis features that enable an intuitive understanding of NMR behavior of these spin systems. It is shown that evolution as a result of J coupling alone changes the rank of tensors for the coupling partner, generating higher-rank tensors, which allow efficient excitation of S-spin multiple-quantum coherences. Theoretical predictions obtained using the TOP formalism were confirmed using multiple-quantum filtered heteronuclear spin-echo experiments and were further employed to demonstrate polarization transfer directly to multiple-quantum transitions using the insensitive nucleus enhancement by polarization transfer pulse sequence. This latter experiment is the basis of two-dimensional heteronuclear correlation experiments and direct generation of multiple-quantum S-spin coherences can therefore be exploited to yield greater spectral resolution in such experiments. Simulated spectra and experimental results are presented.

  17. A photonic analog of Möbius strips using coupled optical ring resonators

    NASA Astrophysics Data System (ADS)

    Wu, Li-Ting; Guo, Rui-Peng; Cui, Tie-Jun; Chen, Jing

    2017-02-01

    A Möbius strip has an intriguing topological property in that it only has one non-orientable side. Here we propose to utilize coupled optical ring resonators (ORRs) to simulate the topological effect of Möbius strips. This scheme is based on the fact that the counter-clockwise mode in an ORR only couples to the clockwise mode of an adjacent ORR. We show that if an odd number of ORRs form a closed loop, after a round trip the handedness of the excited mode does not return to the initial one. Only after a double round trip does the mode come back to its initial state. Such a kind of Möbius-type coupling topology can be observed from the strong backward reflection in a common bus that provides the initial excitation. Eigenmodes, reflection and transmission spectra, and field distributions are calculated and analyzed. We also study the situation without Möbius-type coupling. The difference between these two categories is discussed. COMSOL simulations verify our analysis. The importance of this investigation and potential applications are briefly discussed.

  18. 1H NMR spin-spin relaxation and imaging in porous systems: an application to the morphological study of white portland cement during hydration in the presence of organics.

    PubMed

    Gussoni, M; Greco, F; Bonazzi, F; Vezzoli, A; Botta, D; Dotelli, G; Natali Sora, I; Pelosato, R; Zetta, L

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spin-spin relaxation and imaging have been applied to investigate white Portland cement pastes during hydration in the absence and in the presence of organic solvents. The main organic solvent investigated was methanol, alone or together with the organic waste 2-chloroaniline (2-CA), an aromatic amine representative of an important class of highly toxic compounds. For all the analysed samples, prepared with a solvent-to-cement ratio of 0.4, the decay of the echo magnetization has been fitted by adopting a model that combines an exponential component with a gaussian one. The calculated independent relaxation parameters have been discussed in terms of morphological and dynamical changes that occur during the cement hardening process and pore formation. Three kinds of water molecules: "solid-like" (chemically and physically bound), "liquid-like" (porous trapped) and "free" water, endowed with anisotropic, near isotropic and isotropic motion, respectively, were identified. Spin-echo images collected on the same samples during the hydration kinetics, allowed the changes of water and solvents spatial distribution in the porous network to be monitored, showing percolation phenomena and confirming the multimodal open channels structure of the hardened cement system. Both T(2) relaxation and imaging data indicated that a pronounced delay occurs in the cement hardening when organics are present.

  19. Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs

    SciTech Connect

    Yan, Yiying Lü, Zhiguo Zheng, Hang

    2016-08-15

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born–Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.

  20. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    PubMed Central

    Veltz, Romain; Sejnowski, Terrence J.

    2016-01-01

    Inhibition-stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from inhibitory interneurons, a circuit element found in the hippocampus and the primary visual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the properties of interconnected ISNs, we investigated periodic forcing of ISNs. We show that ISNs can be excited over a range of frequencies and derive properties of the resonance peaks. In particular, we studied the phase-locked solutions, the torus solutions, and the resonance peaks. Periodically forced ISNs respond with (possibly multistable) phase-locked activity, whereas networks with sustained intrinsic oscillations respond more dynamically to periodic inputs with tori. Hence, the dynamics are surprisingly rich, and phase effects alone do not adequately describe the network response. This strengthens the importance of phaseamplitude coupling as opposed to phase-phase coupling in providing multiple frequencies for multiplexing and routing information. PMID:26496044

  1. Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born-Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.

  2. Investigations and system design for simultaneous energy and data transmission through inductively coupled resonances

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Lloret Fuentes, E.; Buchholz, M.

    2015-11-01

    Wireless Power Transfer (WPT) with simultaneous data transmission through coupled magnetic resonators is investigated in this paper. The development of this system is dedicated to serve as a basis for applications in the field of Ambient Assisted Living (AAL), for example tracking vital parameters remotely, charge and control sensors and so on. Due to these different scenarios we consider, it is important to have a system which is reliable under the circumstance of changing positioning of the receiving device. State of the art radio systems would be able to handle this. Nevertheless, energy harvesting from far field sources is not sufficient to power the devices additionally on mid-range distances. For this reason, coupled magnetic resonant circuits are proposed as a promising alternative, although suffering from more complex positioning dependency. Based on measurements on a simple prototype system, an equivalent circuit description is used to model the transmission system dependent on different transmission distances and impedance matching conditions. Additionally, the simulation model is used to extract system parameters such as coupling coefficients, coil resistance and self-capacitance, which cannot be calculated in a simple and reliable way. Furthermore, a mathematical channel model based on the schematic model has been built in MATLAB©. It is used to point out the problems occurring in a transmission system with variable transmission distance, especially the change of the passband's centre frequency and its bandwidth. Existing solutions dealing with this distance dependent behaviour, namely the change of the transmission frequency dependent on distance and the addition of losses to the resonators to increase the bandwidth, are considered as not inventive. First, changing the transmission frequency increases the complexity in the data transmission system and would use a disproportional total bandwidth compared to the actually available bandwidth

  3. Magnetospheric and solar wind dependences of coupled fast-mode resonances outside the plasmasphere

    NASA Astrophysics Data System (ADS)

    Archer, M. O.; Hartinger, M. D.; Walsh, B. M.; Angelopoulos, V.

    2017-01-01

    We investigate the magnetospheric and solar wind factors that control the occurrence probabilities, locations, and frequencies of standing Alfvén waves excited via coupled fast-mode resonances (cFMRs) in the outer magnetosphere's dawn and dusk sectors. The variation of these cFMR properties with the observed magnetospheric plasma density profiles and inputs to the semiempirically modeled magnetic field from the numerical cFMR calculations of Archer et al. (2015) are studied. The probability of cFMR occurrence increases with distance between the magnetopause and the Alfvén speed's local maximum. The latter's location depends on magnetospheric activity: during high activity it is situated slightly outside the plasmapause, whereas at low activity it is found at much larger radial distances. The frequencies of cFMR are proportional to the Alfvén speed near the magnetopause, which is affected by both density and magnetic field variations. The location of the excited resonance, however, depends on the relative steepness of the Alfvén speed radial profile. The steeper this is, the closer the resonance is to the outer boundary and vice versa. The variation of the density profiles with solar wind conditions and activity is also shown.

  4. Performance of HTS SQUID using resonant coupling of cooled Cu pickup coil

    NASA Astrophysics Data System (ADS)

    Enpuku, K.; Hirakawa, S.; Momotomi, R.; Matsuo, M.; Yoshida, T.

    2011-11-01

    We designed and tested an HTS SQUID magnetometer using resonant coupling of a copper pickup coil cooled at T = 77 K. The pickup coil was made of a twisted multi-filamentary wire, the so-called Litz wire, to prevent the increase in coil resistance at high frequencies. First, we measured the coil characteristics in the frequency range from DC to 100 kHz when the diameter df of the elementary filament of the Litz wire was varied between 0.04 and 0.2 mm. We showed that the coil characteristics at high frequencies can be improved when the diameter df is reduced. Next, we constructed a magnetometer using a pickup coil with an average diameter D = 45 mm and number of turns N = 150. The measured magnetic field noise of the magnetometer was 3.3 fT/Hz1/2 at a resonant frequency of fr = 10.15 kHz. The Q value of the resonant circuit was Q = 153. The experimental results agreed well with the designed value. The obtained high sensitivity of the magnetometer is expected to be useful for its application to low-field NMR.

  5. Dynamical coupled-channels model for neutrino-induced meson productions in resonance region

    NASA Astrophysics Data System (ADS)

    Nakamura, S. X.; Kamano, H.; Sato, T.

    2015-10-01

    A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. Starting from the DCC model that we have previously developed through an analysis of π N ,γ N →π N ,η N ,K Λ ,K Σ reaction data for W ≤2.1 GeV , we extend the model of the vector current to Q2≤3.0 (GeV /c )2 by analyzing electron-induced reaction data for both proton and neutron targets. We derive axial-current matrix elements that are related to the π N interactions of the DCC model through the partially conserved axial current (PCAC) relation. Consequently, the interference pattern between resonant and nonresonant amplitudes is uniquely determined. We calculate cross sections for neutrino-induced meson productions, and compare them with available data. Our result for the single-pion production reasonably agrees with the data. We also make a comparison with the double-pion production data. Our model is the first DCC model that can give the double-pion production cross sections in the resonance region. We also make comparison of our result with other existing models to reveal an importance of testing the models in the light of PCAC and electron reaction data. The DCC model developed here will be a useful input for constructing a neutrino-nucleus reaction model and a neutrino event generator for analyses of neutrino experiments.

  6. Spectrum of a Resonator Coupled to a Driven Superconducting Qubit in the Strong Dispersive Regime of Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Chong, Yonuk; Hong, Hyun-Gue; Ha, Dong-Gwang

    The resonator spectrum in the strong dispersive coupling regime of circuit-QED has been a useful nondestructive indicator of a stationary qubit state. Here we present experimental observation of the further modification of the resonator spectrum as the qubit undergoes the dynamic transition by a resonant driving field. The quartet resonance associated with the polarized qubit is observed for the resonant driving at one-photon as well as the multi-photon transition in a 3D transmon qubit. The evolution of the resonance as a function of the driving power and the detuning of the driving field is well understood by a simple model which is based on the analytic diagonalization of Hamiltonian and described in terms of dressed states, Lamb shift, and AC Stark shift.

  7. Split resonance modes of a AuBRC plasmonic nanosystem caused by the coupling effect

    NASA Astrophysics Data System (ADS)

    Ni, Yuan; Kan, Caixia; Xu, Haiying; Wang, Changshun

    2016-12-01

    A plasmonic nanosystem can give rise to particular optical responses due to a coupling effect. In this work, we investigate the optical properties and field distributions of a novel ‘matrioska’ nanocavity structure composed of a Au nanorod (AuNR) within a nanobox (AuNB) via finite-difference time-domain (FDTD) simulation. This nanocavity can be fabricated by a two-step wet-chemical method. The multiple SPR modes of optical spectrum for nanocavity are caused by the strong interaction between the AuNR-core and AuNB-shell when the incident light is perpendicular or parallel to the long axis of the Au box/rod nanocavity (AuBRC). The SPR modes are known as the dipole-dipole bonding resonance mode in the lower-energy region and the antibonding resonance mode in the higher-energy region. It is proposed that AuBRC can escape the orientation confinement of AuNR because the multiple modes occur and provide a potential application for the enhancement of the photoluminescence signal. Additionally, the SPR modes red-shift with increasing the offset of the AuNR-core, whereas the SPR mode dramatically blue-shifts when the conductive coupling is formed. The intense ‘hot-spot’ could be induced within a small interaction region in the conductive coupled system. The SPR line-shape of high quality would also be promoted. The SPR is highly sensitive to the medium, which is promising in the sensing and detecting devices.

  8. Ferromagnetic resonance of an heterogeneous multilayer system with interlayer exchange coupling: an accessible model

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2016-09-01

    We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.

  9. Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers

    NASA Astrophysics Data System (ADS)

    Topkaya, R.; Erkovan, M.; Öztürk, A.; Öztürk, O.; Aktaş, B.; Özdemir, M.

    2010-07-01

    Magnetic properties of ultrathin Py/Cr/Py trilayers have been investigated as a function of Cr spacer layer thickness by using ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. The Cr spacer layer thickness was increased from 4 to 40 Å with 1 Å steps to determine the dependence of interlayer exchange coupling between ferromagnetic layers on the spacer layer thickness. Two strong and well resolved peaks were observed which correspond to a strong (acoustic) and weak (optic) modes of magnetization precession in the effective dc field due to the exciting external microwave field as the external dc field orientation comes close to the film normal. The separation of the two modes in the field axis depends on the thickness of Cr spacer layer. An interchange in the relative positions of the acoustic and optic modes has been observed for a particular thickness of Cr spacer layer as well. A computer program for magnetically exchange coupled N magnetic layers was written to simulate the experimental FMR spectra and to obtain the magnetic parameters of ultrathin Py/Cr/Py trilayers. FMR data have been analyzed from every aspect by using this program and interlayer exchange coupling constant was calculated for the prepared structures. It was found that the relative position of the peaks depends on the nature (sign) of the interlayer exchange coupling between ferromagnetic layers through Cr spacer layer. In Py/Cr/Py trilayers, strength of the interlayer exchange coupling constant oscillates and changes its sign with Cr spacer layer thickness with a period of about 11 Å.

  10. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Ridgeway, Mark E; Wolff, Jeremy J; Silveira, Joshua A; Lin, Cheng; Costello, Catherine E; Park, Melvin A

    2016-09-01

    Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed "Gated TIMS" that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.

  11. Directional thermal emission control by coupling between guided mode resonances and tunable plasmons in multilayered graphene

    NASA Astrophysics Data System (ADS)

    Ito, Kota; Iizuka, Hideo

    2016-10-01

    Directional thermal radiation is attracting interest because of its applicability to thermal management systems and mid-infrared light sources. Plasmons in a single graphene layer are tunable by the chemical potential, while the lateral wavenumber of the plasmon dispersion is too large for the directional coupling to the far field. In this paper, we achieve directional thermal radiation by utilizing tunable plasmons in multilayered graphene. The lateral wavenumber of the plasmon is shown to be reduced as the number of graphene layers increases, and the reduction is analytically explained. The thermally excited graphene plasmon couples to the guided mode resonance in a silicon grating through evanescent waves so as to realize angular-selective far-field emission. We develop a modal analysis in order to investigate the coupling condition. In addition, the directional thermal emission including asymmetric one can be tuned by varying the chemical potential of graphene layers. The calculated emissivity obtained by changing both the chemical potential and the height of the grating suggests the control of the angular heat flux profile.

  12. Magnetic resonance imaging study of the transport phenomena of solvent into the gel layer of hypromellose matrices containing tetracycline hydrochloride.

    PubMed

    Tritt-Goc, Jadwiga; Kowalczuk, Joanna; Pislewski, Narcyz

    2003-11-01

    Magnetic resonance imaging was used to study the diffusion of a water solution of hydrochloric acid into hypromellose (hydroxypropylmethylcellulose) matrices. Spatially resolved information was obtained about the self-diffusion coefficient and spin-spin relaxation time of solvent protons in the gel layer of hypromellose matrices loaded with different amounts of tetracycline hydrochloride. The data showed the influence of the drug concentration on the diffusion and spin-spin relaxation. Higher drug concentrations in the hypromellose matrix led to greater swelling of the matrix and faster diffusion of the water molecules inside the gel layer of the polymer. The observed differences between the radial and axial diffusion were interpreted in terms of the stresses imposed in the axial direction during the compression of the samples. The spin-spin and diffusion profiles indicated that the diffusion of a water solution of hydrochloric acid into hypromellose, pure and loaded with different amounts of tetracycline hydrochloride, was characterized as a Case II mechanism.

  13. Huge light-enhancement by coupling a Bowtie Nano-antenna's plasmonic resonance to a photonic crystal mode.

    PubMed

    Eter, Ali El; Grosjean, Thierry; Viktorovitch, Pierre; Letartre, Xavier; Benyattou, Taha; Baida, Fadi I

    2014-06-16

    We numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties. The proposed hybrid dielectric-plasmonic structure may open new avenues in the generation of deeply subwavelength intense optical sources, with direct applications in various domains such as data storage, non-linear optics, optical trapping and manipulation, microscopy, etc.

  14. Quantum switch in coupled-resonator array: Controlling single-photon transport by the state of two-level system

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Ke

    2016-12-01

    We present the model that two-level system (TLS) nonlocally interacts with one-dimensional coupled-resonator array (CRA). The coherent transport of single-photon inside CRA is well controlled by the state of TLS, which functions as quantum switch. Spin up and spin down correspond to switch on and switch off respectively, or vice versa, which originate from the constructive interference and the destructive interference of two coupling paths. We improve the fidelity of quantum switch by preadjusting the frequency of resonators which couple to TLS. Quantum switch realizes quantum beam splitter when TLS is in the superposition state. The single-photon wave packet would entangle with qubit and propagate to the remote resonators.

  15. Crossing resonance of wave fields in a medium with an inhomogeneous coupling parameter

    SciTech Connect

    Ignatchenko, V. A. Polukhin, D. S.

    2013-11-15

    The dynamic susceptibilities (Green functions) of the system of two coupled wave fields of different physical natures in a medium with an arbitrary relation between the mean value ε and rms fluctuation Δε of the coupling parameter have been examined. The self-consistent approximation involving all diagrams with noncrossing correlation lines has been developed for the case where the initial Green’s function of the homogeneous medium describes the system of coupled wave fields. The analysis has been performed for spin and elastic waves. Expressions have been obtained for the diagonal elements G{sub mm} and G{sub uu} of the matrix Green’s function, which describe spin and elastic waves in the case of magnetic and elastic excitations, and for the off-diagonal elements G{sub mu} and G{sub um}, which describe these waves in the case of cross excitation. Change in the forms of these elements has been numerically studied for the case of one-dimensional inhomogeneities with an increase in Δε and with a decrease in ε under the condition that the sum of the squares of these quantities is conserved: two peaks in the frequency dependences of imaginary parts of G{sub mm} and G{sub uu} are broadened and then joined into one broad peak; a fine structure appears in the form of narrow resonance at the vertex of the Green’s function of one wave field and narrow antiresonance at the vertex of the Green function of the other field; peaks of the fine structure are broadened and then disappear with an increase in the correlation wavenumber of the inhomogeneities of the coupling parameter; and the amplitudes of the off-diagonal elements vanish in the limit ε → 0.

  16. Biochip Spray: Simplified Coupling of Surface Plasmon Resonance Biosensing and Mass Spectrometry.

    PubMed

    Joshi, Sweccha; Zuilhof, Han; van Beek, Teris A; Nielen, Michel W F

    2017-02-07

    A simplified coupling of surface plasmon resonance (SPR) immuno-biosensing with ambient ionization mass spectrometry (MS) was developed. It combines two orthogonal analysis techniques: the biosensing capability of SPR and the chemical identification power of high resolution MS. As a proof-of-principle, deoxynivalenol (DON), an important mycotoxin, was captured using an SPR gold chip containing an antifouling layer and monoclonal antibodies against the toxin and, after washing, the chip could be taken out and analyzed by direct spray MS of the biosensor chip to confirm the identity of DON. Furthermore, cross-reacting conjugates of DON present in a naturally contaminated beer could be successfully identified, thus showing the potential of rapid identification of (un)expected cross-reacting molecules.

  17. Resonant magnetization switching conditions of an exchange-coupled bilayer under spin wave excitation

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Yamaji, T.; Seki, T.; Imamura, H.; Takanashi, K.

    2017-02-01

    We systematically investigated spin wave-assisted magnetization switching (SWAS) of a L10-FePt/Ni81Fe19 (permalloy; Py) exchange-coupled bilayer by using a pulse-like rf field (hrf) and mapped the switching events in the magnetic field (H)-hrf frequency (f) plane in order to reveal the switching conditions. Switching occurred only in a limited region followed by the dispersion relationship of the perpendicular standing spin wave modes in the Py. The results indicate that SWAS is a resonant magnetization switching process, which is different from the conventional microwave assisted switching and has the potential to be used for selective switching in multilevel recording media.

  18. Biochip Spray: Simplified Coupling of Surface Plasmon Resonance Biosensing and Mass Spectrometry

    PubMed Central

    2017-01-01

    A simplified coupling of surface plasmon resonance (SPR) immuno-biosensing with ambient ionization mass spectrometry (MS) was developed. It combines two orthogonal analysis techniques: the biosensing capability of SPR and the chemical identification power of high resolution MS. As a proof-of-principle, deoxynivalenol (DON), an important mycotoxin, was captured using an SPR gold chip containing an antifouling layer and monoclonal antibodies against the toxin and, after washing, the chip could be taken out and analyzed by direct spray MS of the biosensor chip to confirm the identity of DON. Furthermore, cross-reacting conjugates of DON present in a naturally contaminated beer could be successfully identified, thus showing the potential of rapid identification of (un)expected cross-reacting molecules. PMID:28208290

  19. Waveguide-coupled resonator filters on AlN on silicon

    NASA Technical Reports Server (NTRS)

    Liaw, H. M.; Cameron, T. P.; Hunt, W. D.; Hickernell, F. S.

    1994-01-01

    In the effort to continually reduce the size and cost of wireless communications products the level of integration has improved dramatically in recent years. In order to reduce future generations of wireless systems to single chip form, there is a need for on-chip filtering capabilities. In this paper, the first report of an experimental waveguide-coupled resonator filter for cellular radio applications is presented. Measured results indicate a typical insertion loss of 26 dB at a center frequency of 132 MHz using a 2 um AlN film on (001) less than 110 greater than Si. In addition, a laser probe analysis has been conducted and a theoretical analysis of the first order reflection coefficients is presented.

  20. Bistable output from a coupled-resonator vertical-cavity laser diode

    NASA Astrophysics Data System (ADS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K. M.

    2000-11-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

  1. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  2. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption.

    PubMed

    Jia, Jingguo; Liu, Chuyang; Ma, Ning; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2013-08-01

    Ti-doped barium ferrite powders BaFe12-x Ti x O19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol-gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe(3+) ions and the exchange coupling effect between Fe(3+) and Fe(2+) ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around -45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties.

  3. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption

    PubMed Central

    Jia, Jingguo; Liu, Chuyang; Ma, Ning; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2013-01-01

    Ti-doped barium ferrite powders BaFe12−xTixO19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol–gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe3+ ions and the exchange coupling effect between Fe3+ and Fe2+ ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around −45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties. PMID:27877595

  4. Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs

    NASA Astrophysics Data System (ADS)

    Ertler, C.; Matos-Abiague, A.; Gmitra, M.; Turek, M.; Fabian, J.

    2008-10-01

    Spintronics has attracted wide attention by promising novel functionalities derived from both the electron charge and spin. While branching into new areas and creating new themes over the past years, the principal goals remain the spin and magnetic control of the electrical properties—essentially the I-V characteristics—and vice versa. There are great challenges ahead to meet these goals. One challenge is to find niche applications for ferromagnetic semiconductors, such as GaMnAs. Another is to develop further the science of hybrid ferromagnetic metal/semiconductor heterostructures, as alternatives to all-semiconductor room temperature spintronics. Here we present our representative recent efiorts to address such challenges. We show how to make a digital magnetoresistor by combining two magnetic resonant diodes, or how introducing ferromagnetic semiconductors as active regions in resonant tunneling diodes leads to novel efiects of digital magnetoresistance and of magnetoelectric current oscillations. We also discuss the phenomenon of tunneling anisotropic magnetoresistance in Fe/GaAs junctions by introducing the concept of the spin-orbit coupling field, as an analog of such fields in all-semiconductor junctions. Finally, we look at fundamental electronic and optical properties of GaMnAs by employing reasonable tight-binding models to study disorder efiects.

  5. Coupled longitudinal-transverse dynamics of a marine propulsion shafting under superharmonic resonances

    NASA Astrophysics Data System (ADS)

    Zou, Donglin; Rao, Zhushi; Ta, Na

    2015-06-01

    In this paper, the transverse superharmonic resonances of a marine propulsion shafting are investigated under the first blade frequency excitation. A coupled longitudinal-transverse dynamic model due to geometrical nonlinearity is established by Hamilton's principle and then is discretized by Galerkin method. The method of multiple scales is applied to these equations. The steady-state response and the stabilities are analyzed. The effect of the support stiffness, load, mass of propeller, damping ratio and slender ratio on the nonlinear effect is discussed. Research shows smaller values of slender ratio, bigger values of load and smaller values of damping ratio lead to stronger nonlinear effect. The nonlinear effect is reduced by increasing the back stern bearing stiffness and increased by increasing the front stern bearing and thrust bearing stiffness and the propeller mass. While the middle bearing makes small influence to it. It is also shown that these resonance curves are of the hardening type. Results of perturbation method are agreement with numerical simulations.

  6. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    SciTech Connect

    Kupenko, I. Strohm, C.; McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L.; Glazyrin, K.; Vasiukov, D.; Aprilis, G.; Chumakov, A. I.; Rüffer, R.

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  7. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach

    NASA Astrophysics Data System (ADS)

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C.

    2017-02-01

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 106 leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  8. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

    PubMed Central

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald

    2016-01-01

    Summary Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  9. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.

    PubMed

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C

    2017-02-14

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 10(6) leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  10. Wavelength dependent specific plasmon resonance coupling of single silver nanoparticles with EGFP.

    PubMed

    Lee, Kerry J; Huang, Tao; Nallathamby, Prakash D; Xu, Xiao-Hong Nancy

    2015-11-14

    Noble metal nanoparticles (NPs) possess unique plasmonic properties, enabling them to serve as sub-diffraction light sources and nano- antennae for a wide range of applications. Here we report the specific interaction of single Ag NPs with single EGFP molecules and a high dependence of their interaction upon localized-surface-plasmon-resonance (LSPR) spectra of single Ag NPs and EGFP. The LSPR spectra of single red Ag NPs show a stunning 60 nm blue-shift during their incubation with EGFP, whereas they remain unchanged during their incubation with bovine serum albumin (BSA). Interestingly, the peak wavelengths of the LSPR spectra of green and blue Ag NPs remain essentially unchanged during their incubation with either EGFP or BSA. These interesting findings suggest that plasmon-resonance-energy-transfer (PRET) from single Ag NPs to EGFP might follow a two-photon excitation mechanism to excite EGFP and the fluorescence of the excited EGFP might couple with the plasmon of single NPs leading to a blue-shift of the red NPs. These distinctive phenomena are only observed by real-time single NP spectroscopic measurements. This study offers exciting new opportunities to design new sensing and imaging tools with high specificity and sensitivity to study long-range molecular interactions and dynamic events in single live cells, and to probe the underlying molecular mechanisms of PRET.

  11. Wavelength dependent specific plasmon resonance coupling of single silver nanoparticles with EGFP

    NASA Astrophysics Data System (ADS)

    Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2015-10-01

    Noble metal nanoparticles (NPs) possess unique plasmonic properties, enabling them to serve as sub-diffraction light sources and nano- antennae for a wide range of applications. Here we report the specific interaction of single Ag NPs with single EGFP molecules and a high dependence of their interaction upon localized-surface-plasmon-resonance (LSPR) spectra of single Ag NPs and EGFP. The LSPR spectra of single red Ag NPs show a stunning 60 nm blue-shift during their incubation with EGFP, whereas they remain unchanged during their incubation with bovine serum albumin (BSA). Interestingly, the peak wavelengths of the LSPR spectra of green and blue Ag NPs remain essentially unchanged during their incubation with either EGFP or BSA. These interesting findings suggest that plasmon-resonance-energy-transfer (PRET) from single Ag NPs to EGFP might follow a two-photon excitation mechanism to excite EGFP and the fluorescence of the excited EGFP might couple with the plasmon of single NPs leading to a blue-shift of the red NPs. These distinctive phenomena are only observed by real-time single NP spectroscopic measurements. This study offers exciting new opportunities to design new sensing and imaging tools with high specificity and sensitivity to study long-range molecular interactions and dynamic events in single live cells, and to probe the underlying molecular mechanisms of PRET.

  12. Chaotic Resonance in Coupled Inferior Olive Neurons with the Llinás Approach Neuron Model.

    PubMed

    Nobukawa, Sou; Nishimura, Haruhiko

    2016-09-14

    It is well known that cerebellar motor control is fine-tuned by the learning process adjusted according to rich error signals from inferior olive (IO) neurons. Schweighofer and colleagues proposed that these signals can be produced by chaotic irregular firing in the IO neuron assembly; such chaotic resonance (CR) was replicated in their computer demonstration of a Hodgkin-Huxley (HH)-type compartment model. In this study, we examined the response of CR to a periodic signal in the IO neuron assembly comprising the Llinás approach IO neuron model. This system involves empirically observed dynamics of the IO membrane potential and is simpler than the HH-type compartment model. We then clarified its dependence on electrical coupling strength, input signal strength, and frequency. Furthermore, we compared the physiological validity for IO neurons such as low firing rate and sustaining subthreshold oscillation between CR and conventional stochastic resonance (SR) and examined the consistency with asynchronous firings indicated by the previous model-based studies in the cerebellar learning process. In addition, the signal response of CR and SR was investigated in a large neuron assembly. As the result, we confirmed that CR was consistent with the above IO neuron's characteristics, but it was not as easy for SR.

  13. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    SciTech Connect

    Dantan, A.; Marler, J. P.; Albert, M.; Guenot, D.; Drewsen, M.

    2010-09-03

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them.

  14. Theory of inelastic confinement-induced resonances due to the coupling of center-of-mass and relative motion

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Saenz, Alejandro

    2016-08-01

    A detailed study of the anharmonicity-induced resonances caused by the coupling of center-of-mass and relative motion is presented for a system of two ultracold atoms in single-well potentials. As has been confirmed experimentally, these inelastic confinement-induced resonances are of interest since they can lead to coherent molecule formation, losses, and heating in ultracold atomic gases. A perturbative model is introduced to describe the resonance positions and the coupling strengths. The validity of the model and the behavior of the resonances for different confinement geometries are analyzed in comparison with exact numerical ab initio calculations. While such resonances have so far only been detected for large positive values of the s -wave scattering length, it is found that they are present also for negative s -wave scattering lengths, i.e., for attractive interactions. The possibility to coherently tune the resonances by a variation of the external confinement geometry might pave the way for coherent molecule association where magnetic Feshbach resonances are inaccessible.

  15. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators

    NASA Astrophysics Data System (ADS)

    Sun, Chengliang; Soon, Bo Woon; Zhu, Yao; Wang, Nan; Loke, Samuel Pei Hao; Mu, Xiaojing; Tao, Jifang; Gu, Alex Yuandong

    2015-06-01

    An AlN piezoelectric Lamb-wave resonator, which is excited by two dimensional electric field, is reported in this paper. Rhombus-shape electrodes are arranged on AlN thin film in a checkered formation. When out-of-phase alternating currents are applied to adjacent checkers, two dimensional acoustic Lamb waves are excited in the piezoelectric layer along orthogonal directions, achieving high electromechanical coupling coefficient, which is comparable to film bulk acoustic resonators. The electromechanical coupling coefficient of the 285.3 MHz resonator presented in this paper is 5.33%, which is the highest among AlN based Lamb-wave resonators reported in literature. Moreover, the spurious signal within a wide frequency range is significantly suppressed to be 90% lower than that of the resonance mode. By varying the electrode dimension and inter-electrode distance, resonators having different resonant frequencies can be fabricated on a single wafer, making single-chip broadband filters, duplexers, and multiplexers possible.

  16. Effect of coupling on stochastic resonance and stochastic antiresonance processes in a unidirectionally N-coupled systems in periodic sinusoidal potential

    NASA Astrophysics Data System (ADS)

    Wadop Ngouongo, Y. J.; Djuidjé Kenmoé, G.; Kofané, T. C.

    2017-04-01

    This work presents the characterization of stochastic resonance (SR) and stochastic antiresonance (SAR) in terms of hysteresis loop area (HLA). In connection with SR and SAR phenomena, we study the dynamics of a chain of particles coupled by nonlinear springs in a periodic sinusoidal potential. The dependence of the coupling parameter as well as the system size on SR and SAR is analysed. We consider the role played by the nonlinear coupling on the SR. We show that there is a range of coupling parameter where only SAR is observed, after this range the SR can occur, however, there also exists a range where neither SAR nor SR appear. It is noted that the maximum and the minimum of the average input energy increases with the coupling parameter. Also demonstrate that there exists an optimal value of the number of particles N for which the average input energy of the first particle reaches the saturation.

  17. Dispersive optomechanical coupling between a SiN nanomechanical oscillator and evanescent fields of a silica optical resonator

    NASA Astrophysics Data System (ADS)

    Dong, Chunhua; Htay Oo, Thein; Fiore, Victor; Wang, Hailin

    2013-03-01

    Tensile stressed SiN nanostrings can feature a picogram effective mass and a mechanical Q-factor exceeding a million. These remarkable nanomechanical oscillators can be dispersively-coupled to an ultra-high finesse optical microresonator via its evanescent field. This composite optomechanical system can potentially lead to a cooperativity that far exceeds that of monolithic optomechanical resonators. Here, we report an experimental study coupling a SiN nanostring to evanescent fields of a whispering gallery mode (WGM) in a silica microsphere. The slight deformation of the microsphere enables us to use free-space optical excitation to probe the optomechanical coupling. The dispersive coupling between a nanostring and the evanescent field of a WGM is generally expected to lead to a red shift in the resonance frequency of the WGM. Our experiments, however, reveal a blue frequency shift of the WGM. Detailed experimental studies and possible physical mechanisms for the blue shift will be presented.

  18. Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings

    NASA Astrophysics Data System (ADS)

    Matsuno, Yuki; Sakurai, Atsushi

    2017-02-01

    The purpose of this study is to clarify the optical characteristics of a Tungsten-SiO2-based film-coupled metamaterial with a fishnet-shaped grating, and we aim to show that this structure could potentially be used as a solar selective absorber for a solar thermophotovoltaic system. The proposed film-coupled metamaterial absorber combined with a fishnet-shaped grating shows significant enhancement in its absorption in the visible spectral region compared with a flat Tungsten surface, and it keeps its spectral emission low in the infrared region, thereby reducing radiative heat loss. The underlying mechanisms of the proposed absorber are discussed through a 3D full-wave electromagnetic simulation, the results of which are compared with that of theoretical equations. Furthermore, its spectral absorption under oblique incident light at the transverse magnetic and transverse electric waves is scrutinized. The underlying absorption mechanisms and relations between each optical resonance are discussed in this paper and will prove to be fundamental not only in the design of solar selective absorbers but also in other wavelength-selective thermal radiation controlling devices.

  19. Modulation instability in nonlinear coupled resonator optical waveguides and photonic crystal waveguides.

    PubMed

    Huang, Chih-Hsien; Lai, Ying-Hsiuan; Cheng, Szu-Cheng; Hsieh, Wen-Feng

    2009-02-02

    Modulation instability (MI) in a coupled resonator optical waveguide (CROW) and photonic-crystal waveguide (PCW) with nonlinear Kerr media was studied by using the tight-binding theory. By considering the coupling between the defects, we obtained a discrete nonlinear evolution equation and termed it the extended discrete nonlinear Schrödinger (EDNLS) equation. By solving this equation for CROWs and PCWs, we obtained the MI region and the MI gains, G(p,q), for different wavevectors of the incident plane wave (p) and perturbation (q) analytically. In CROWs, the MI region, in which solitons can be formed, can only occur for pa being located either before or after pi/2, where a is the separation of the cavities. The location of the MI region is determined by the number of the separation rods between defects and the sign of the Kerr coefficient. However, in the PCWs, pa in the MI region can exceed the pi/2. For those wavevectors close to pi/2, the MI profile, G(q), can possess two gain maxima at fixed pa. It is quite different from the results of the nonlinear CROWs and optical fibers. By numerically solving the EDNLS equation using the 4th order Runge-Kutta method to observe exponential growth of small perturbation in the MI region, we found it is consistent with our analytic solutions.

  20. Readout method from antiferromagnetically coupled perpendicular magnetic recording media using ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Yang, T.; Suto, H.; Nagasawa, T.; Kudo, K.; Mizushima, K.; Sato, R.

    2013-12-01

    We fabricate perpendicular magnetic recording media comprising two antiferromagnetically coupled Co/Pt multilayers and investigate its magnetic properties by ferromagnetic resonance (FMR) measurement. In such media, the magnetizations of the two perpendicular magnets are designed to compensate each other in the remanent state in order to reduce the dipolar field, which is a limiting factor in high-density magnetic recording devices. We measure FMR absorption spectra of the media and estimate the magnetic anisotropy and interlayer exchange coupling. We also demonstrate that FMR measurement can be employed to read out the magnetization direction. The principles behind this readout method are different from those behind the conventional method of detecting the stray field from the media by means of a magnetoresistive sensor; therefore, the proposed readout method is applicable to magnetic recording media having zero remanent magnetization. We expand this readout scheme to three-dimensional magnetic recording with several vertically stacked recording layers. By providing each recording layer with a different FMR frequency, we experimentally confirm that layer selective readout is possible.

  1. On the use of coupled shape priors for segmentation of magnetic resonance images of the knee

    PubMed Central

    Pang, Jincheng; Driban, Jeffrey B.; McAlindon, Timothy E.; Tamez-Peña, José G.; Fripp, Jurgen; Miller, Eric L.

    2015-01-01

    Active contour techniques have been widely employed for medical image segmentation. Significant effort has been focused on the use of training data to build prior statistical models applicable specifically to problems where the objects of interest are embedded in cluttered background. Usually the training data consists of whole shapes of certain organs or structures obtained manually by clinical experts. The resulting prior models enforce segmentation accuracy uniformly over the entire structure or structures to be identified. In this paper, we consider a new coupled prior shape model which is demonstrated to provide high accuracy, specifically in the region of the interest where precision is most needed for the application of the segmentation of the femur and tibia in magnetic resonance (MR) images. Experimental results for the segmentation of MR images of human knees demonstrate that the combination of the new coupled prior shape and a directional edge force provides the improved segmentation performance. Moreover, the new approach allows for equivalent accurate identification of bone marrow lesions (BMLs), a promising biomarker related to osteoarthritis (OA), to the current state of the art but requires significantly less manual interaction. PMID:25014973

  2. Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles.

    PubMed

    Cao, Yue; Xie, Tao; Qian, Ruo-Can; Long, Yi-Tao

    2017-01-01

    Plasmon resonance energy transfer (PRET) from a single metallic nanoparticle to the molecules adsorbed on its surface has attracted more and more attentions in recent years. Here, a molecular beacon (MB)-regulated PRET coupling system composed of gold nanoparticles (GNPs) and chromophore molecules has been designed to study the influence of PRET effect on the scattering spectra of GNPs. In this system, the chromophore molecules are tagged to the 5'-end of MB, which can form a hairpin structure and modified on the surface of GNPs by its thiol-labeled 3'-end. Therefore, the distance between GNPs and chromophore molecules can be adjusted through the open and close of the MB loop. From the peak shift, the PRET interactions of different GNPs-chromophore molecules coupling pairs have been calculated by discrete dipole approximation and the fitting results match well with the experimental data. Therefore, the proposed system has been successfully applied for the analysis of PRET situation between various metallic nanoparticles and chromophore molecules, and provides a useful tool for the potential application in screening the PRET-based nanoplasmonic sensors.

  3. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-11-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.

  4. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.

    PubMed

    Qiao, Yan; Polzer, Frank; Kirmse, Holm; Steeg, Egon; Kühn, Sergei; Friede, Sebastian; Kirstein, Stefan; Rabe, Jürgen P

    2015-02-24

    Resonant coupling between distinct excitons in organic supramolecular assemblies and inorganic semiconductors is supposed to offer an approach to optoelectronic devices. Here, we report on colloidal nanohybrids consisting of self-assembled tubular J-aggregates decorated with semiconductor quantum dots (QDs) via electrostatic self-assembly. The role of QDs in the energy transfer process can be switched from a donor to an acceptor by tuning its size and thereby the excitonic transition energy while keeping the chemistry unaltered. QDs are located within a close distance (<4 nm) to the J-aggregate surface, without harming the tubular structures and optical properties of J-aggregates. The close proximity of J-aggregates and QDs allows the strong excitation energy transfer coupling, which is around 92% in the case of energy transfer from the QD donor to the J-aggregate acceptor and approximately 20% in the reverse case. This system provides a model of an organic-inorganic light-harvesting complex using methods of self-assembly in aqueous solution, and it highlights a route toward hierarchical synthesis of structurally well-defined supramolecular objects with advanced functionality.

  5. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  6. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.

    PubMed

    Woods, Kristina N; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-11-16

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.

  7. Complementary split-ring resonator antenna coupled quantum dot infrared photodetector

    NASA Astrophysics Data System (ADS)

    Cerulo, Giancarlo; Liverini, Valeria; Fedoryshyn, Yuriy; Faist, Jérôme

    2017-02-01

    We present a study of the performance enhancement of a quantum dot infrared photodetector (QDIP), by means of complementary split-ring resonator (CSRR) nano-antennae. The QDIP is based on an asymmetric heterostructure containing a single layer of self-assembled InAs/GaAs quantum dots (QDs). The proximity of the QD plane to the top contact layer is exploited for the coupling with the near-field of the CSRR modes. The co-existence of the CSRR LC mode, at λLC = 7.4 μm, and of non-localized Bragg-like modes, is observed for the two-dimensional array of nano-antennae implemented on the QDIP. At λLC and a temperature T = 10 K, the antenna coupled device is characterized by a responsivity of 44 μA/W and a specific detectivity D* = 1.5 × 108Jones. For the highly localized LC mode, enhancements of a factor 1.7 in responsivity and 2.1 in specific detectivity are observed. Within the sub-wavelength LC mode effective surface, normalizing the overall response to the active surface of the detector, a responsivity enhancement of ˜19 is estimated, showing the potentiality of this approach for the realization of high-performance QDIPs working at normal incidence.

  8. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-01-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063

  9. Understanding the Potential of Aeroelastic Couplings to Stabilize Ground and Air Resonance in a Soft-Inplane Tiltrotor

    NASA Technical Reports Server (NTRS)

    Howard, Anna K. T.

    1999-01-01

    The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

  10. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    NASA Astrophysics Data System (ADS)

    WANG, Jiawei; YAO, Zhanshi; Poon, Andrew

    2015-04-01

    Silicon nitride (SiN) is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS)-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW) in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD) / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU), with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL) of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  11. Nuclear Magnetic Resonance Studies of Topological Insulators and Materials with a Large Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Nisson, David Mark

    Nuclear magnetic resonance (NMR) studies were performed on large single crystals of the topological insulator materials Bi2Se 3 and Bi2Te2Se, as well as the doped topological superconductor candidate CuxBi2Se3. Samples were grown using the facilities of the Department of Physics at the University of California, Davis. Bi2Se3 crystals were grown under different conditions to control the intrinsic concentration of carrier electrons, which arises from an inherent tendency for Se vacancies to form during growth. The electrical properties, including carrier concentration of each sample, were then characterized by electrical transport measurements. Frequency swept 209Bi spectra for these samples reveal a relatively weak electric field gradient producing a splitting of about 160 kHz, and a shift that depends on the carrier concentration. The correlation between shift and intrinsic carrier concentration determines the hyperfine coupling strength between the Bi nuclei and the bulk carrier electrons. The spin-lattice relaxation rate T1--1 was also measured as a function of temperature. It is mostly temperature-independent, indicating that in samples of Bi2Se3 grown by the Bridgman method, relaxation may occur by spin diffusion to impurities rather than by previously reported mechanisms. Nuclear magnetic resonance measurements were also performed on single crystals of Bi2Se3 as a function of the angle between the field and the c-axis of the crystal lattice. These frequency-swept measurements revealed anomalous behavior that deviated significantly from what would be expected of the angular dependence of the resonance spectrum. Powder samples reveal spectra that differ still from the expectations from the single-crystal data. These phenomena are explained in part by the fact that the nutation time tpi/2) depends on the angle as a result of overlap between the central and satellite transitions, but may in addition be the result of screening of the radiofrequency field by the

  12. Noncollinear antiferromagnetism of coupled spins and pseudospins in the double perovskite La2CuIrO6

    NASA Astrophysics Data System (ADS)

    Manna, Kaustuv; Sarkar, R.; Fuchs, S.; Onykiienko, Y. A.; Bera, A. K.; Cansever, G. Aslan; Kamusella, S.; Maljuk, A.; Blum, C. G. F.; Corredor, L. T.; Wolter, A. U. B.; Yusuf, S. M.; Frontzek, M.; Keller, L.; Iakovleva, M.; Vavilova, E.; Grafe, H.-J.; Kataev, V.; Klauss, H.-H.; Inosov, D. S.; Wurmehl, S.; Büchner, B.

    2016-10-01

    We report the structural, magnetic, and thermodynamic properties of the double perovskite compound La2CuIrO6 from x-ray, neutron diffraction, neutron depolarization, dc magnetization, ac susceptibility, specific heat, muon-spin-relaxation (μ SR ), electron-spin-resonance (ESR) and nuclear magnetic resonance (NMR) measurements. Below ˜113 K, short-range spin-spin correlations occur within the Cu2 + sublattice. With decreasing temperature, the Ir4 + sublattice is progressively involved in the correlation process. Below T =74 K, the magnetic sublattices of Cu (spin s =1/2 ) and Ir (pseudospin j =1/2 ) in La2CuIrO6 are strongly coupled and exhibit an antiferromagnetic phase transition into a noncollinear magnetic structure accompanied by a small uncompensated transverse moment. A weak anomaly in ac susceptibility as well as in the NMR and μ SR spin lattice relaxation rates at 54 K is interpreted as a cooperative ordering of the transverse moments which is influenced by the strong spin-orbit coupled 5 d ion Ir4 +. We argue that the rich magnetic behavior observed in La2CuIrO6 is related to complex magnetic interactions between the strongly correlated spin-only 3 d ions with the strongly spin-orbit coupled 5 d transition ions where a combination of the spin-orbit coupling and the low symmetry of the crystal lattice plays a special role for the spin structure in the magnetically ordered state.

  13. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  14. Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs

    PubMed Central

    Xu, B.; Dai, Y. M.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Trugman, S. A.; Zhu, J-X; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Qiu, X. G.

    2017-01-01

    Strong coupling between discrete phonon and continuous electron–hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. Here we reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. This behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. Our findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals. PMID:28358027

  15. Laser interaction based on resonance saturation (LIBORS): an alternative to inverse bremsstrahlung for coupling laser energy into a plasma.

    PubMed

    Measures, R M; Drewell, N; Cardinal, P

    1979-06-01

    Resonance saturation represents an efficient and rapid method of coupling laser energy into a gaseous medium. In the case of a plasma superelastic collision quenching of the laser maintained resonance state population effectively converts the laser beam energy into translational energy of the free electrons. Subsequently, ionization of the laser pumped species rapidly ensues as a result of both the elevated electron temperature and the effective reduction of the ionization energy for those atoms maintained in the resonance state by the laser radiation. This method of coupling laser energy into a plasma has several advantages over inverse bremsstrahlung and could therefore be applicable to several areas of current interest including plasma channel formation for transportation of electron and ion beams, x-ray laser development, laser fusion, negative ion beam production, and the conversion of laser energy to electricity.

  16. Coupling effect combined with incident polarization to modulate double split-ring-resonator in terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Zhu, Mei; Lin, Yu-Sheng; Lee, Chengkuo

    2014-11-01

    This work examines the coupling effect in concentric double split-ring-resonator devices in terahertz (THz) range when the inner ring changes its relative orientation to the outer ring. Through detailed analysis on the simulation results of surface current and electrical field distributions, we look into the changes of inductance and capacitance in the system caused by structural layouts, and present a set of coherent theory that is solely rooted in the inductance-capacitance circuit analogy to systematically account for the resonance change. Such coupling effect combined with polarization of the incident wave is further explored to demonstrate continuous modulation of THz resonances. A variation range of transmission intensity from 20% to 80% has been successfully achieved. These experimental results demonstrate the promise of realizing future tunable THz filters by means of rotating sub-structures of the device only.

  17. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  18. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering

    NASA Astrophysics Data System (ADS)

    Fang, Yingcui; Blinn, Kevin; Li, Xiaxi; Weng, Guojun; Liu, Meilin

    2013-04-01

    We made clean silver nano-clusters (AgNCs) on glass substrates by DC magnetron sputtering of a high purity Ag target in a high vacuum chamber. The AgNCs film shows strong localized surface plasmon resonance (LSPR) due to the coupling among Ag nanoparticles in the AgNCs and the coupling between AgNCs. The LSPR indicates strong coupling with Rhodamine 6G (R6G) adsorbed on the AgNC surface, which enhances the R6G absorption intensity and broadens the absorption wavelength range. This result promotes plasmonic nanoparticles to be better used in solar cells.

  19. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  20. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

    PubMed Central

    Zhang, Zhidong; Luo, Liang; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2016-01-01

    A refractive index sensor based on metal-insulator-metal (MIM) waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM). The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU. PMID:27164101

  1. Spectroscopic studies of resonant coupling of silver optical antenna arrays to a near-surface quantum well

    NASA Astrophysics Data System (ADS)

    Gehl, Michael; Zandbergen, Sander; Gibson, Ricky; Béchu, Muriel; Nader, Nima; Hendrickson, Joshua; Sears, Jasmine; Keiffer, Patrick; Wegener, Martin; Khitrova, Galina

    2014-11-01

    The coupling of radiation emitted on semiconductor inter-band transitions to resonant optical-antenna arrays allows for enhanced light-matter interaction via the Purcell effect. Semiconductor optical gain also potentially allows for loss reduction in metamaterials. Here we extend our previous work on optically pumped individual near-surface InGaAs quantum wells coupled to silver split-ring-resonator arrays to wire and square-antenna arrays. By comparing the transient pump-probe experimental results with the predictions of a simple model, we find that the effective coupling is strongest for the split rings, even though the split rings have the weakest dipole moment. The effect of the latter must thus be overcompensated by a smaller effective mode volume of the split rings. Furthermore, we also present a systematic variation of the pump-pulse energy, which was fixed in our previous experiments.

  2. Assessment of DFT functionals with fluorine-fluorine coupling constants

    NASA Astrophysics Data System (ADS)

    García de la Vega, J. M.; San Fabián, J.

    2015-07-01

    Density functional theory (DFT) calculations of nuclear magnetic resonance (NMR) spin-spin coupling constants (SSCCs) provide an important contribution for understanding experimentally observed values. It is known that calculated SSCCs using DFT methods correlate well with those experimentally measured. Unlike most of SSCCs, in fluorine compounds, fluorine-fluorine SSCC JFF shows that the Fermi contact (FC) term is not dominant, particularly for JFF in polyfluorinated organic molecules. In order to devise a DFT approach that would correctly reproduce the variation of SSCCs within a series of fluorine compounds, we test several DFT-based approaches, using different exchange and correlation functionals. Isotropic contributions to NMR fluorine-fluorine coupling constants (FC, spin-dipolar, SD, paramagnetic spin-orbit, PSO, and diamagnetic spin-orbit, DSO) have been calculated. Results show that DFT methods give appropriate values for nJFF (n = 4 to 7), while for geminal and vicinal JFF present large deviations from experimental values. For the latter SSCCs (2JFF and 3JFF), the four contributions (FC, SD, PSO and DSO) are analysed as a function of the local and nonlocal exchange in 1,1- and 1,2-difluoroethylene. Although FC term is not dominant for these SSCCs, the variation of this contribution with exchange is remarkable. On the other hand, SD and PSO contributions can be suitably computed without and with exact exchange, respectively. This article is dedicated to the memory of Prof. N. C. Handy, whose contributions to the development of Theoretical Chemistry have been widely recognized.

  3. GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection

    PubMed Central

    Chopard, Tony; Lacour, Vivien; Leblois, Therese

    2014-01-01

    This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation. PMID:25474375

  4. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

    PubMed

    Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C

    2010-06-01

    We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.

  5. Study of G-protein-coupled receptor-protein interactions by bioluminescence resonance energy transfer.

    PubMed

    Kroeger, Karen M; Eidne, Karin A

    2004-01-01

    Complex networks of protein-protein interactions are key determinants of cellular function, including those regulated by G-protein-coupled receptors (GPCRs). Formation of either stable or transitory complexes are involved in regulating all aspects of receptor function, from ligand binding through to signal transduction, desensitization, resensitization and downregulation. Today, 50% of all recently launched drugs are targeted against GPCRs. This particular class of proteins is extremely useful as a drug target because the receptors are partly located outside the cell, simplifying bioavailability and delivery of drugs directed against them. However, being located within the cell membrane causes difficulties for the study of GPCR function and bioluminescence resonance energy transfer (BRET), a naturally occurring phenomenon, represents a newly emerging, powerful tool with which to investigate and monitor dynamic interactions involving this receptor class. BRET is a noninvasive, highly sensitive technique, performed as a simple homogeneous assay. involving the proximity-dependent transfer of energy from an energy donor to acceptor resulting in the emission of light. This technology has several advantages over alternative approaches as the detection occurs within live cells, in real time, and is not restricted to a particular cellular compartment. The use of such biophysical techniques as BRET, will not only increase our understanding of the nature of GPCR regulation and the protein complexes involved, but could also potentially lead to the development of novel therapeutics that modulate these interactions.

  6. Enhanced Magnetic Trap Loading and Coupled Optical Resonance Spectroscopy in Strontium

    NASA Astrophysics Data System (ADS)

    Barker, Daniel S.; Reschovsky, Benjamin J.; Pisenti, Neal C.; Campbell, Gretchen K.

    2015-05-01

    We investigate a technique to improve the loading of atomic strontium into a magnetic trap using a 688 nm de-pump laser on the 3P1 - 3S1 transition. Strontium degenerate gas experiments typically use a magnetic trap continuously loaded from a Magneto-Optical Trap (MOT) operating on the 461 nm line. A slow (~1:50,000) leak from the MOT transition populates the magnetically trapped 3P2 state and the 3P1 state in a 1:2 ratio. Pumping 3P1 atoms into 3P2 accelerates magnetic trap loading. For this purpose, we stabilize a 688 nm laser using Coupled Optical Resonance Laser Locking (COReLL) to the 679 nm, 688 nm, and 707 nm lines. The technique allows us to lock multiple lasers while only detecting absorption on the 707 nm transition. Error signals are generated with incommensurate frequency modulation of the pump beams. Preliminary application of the 688 nm laser to our 88Sr MOT results in 20% enhancement of magnetic trap atom number. We discuss the limitations of the loading rate enhancement and the potential for loading enhancement with other repumping strategies.

  7. GaAs coupled micro resonators with enhanced sensitive mass detection.

    PubMed

    Chopard, Tony; Lacour, Vivien; Leblois, Therese

    2014-12-02

    This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation.

  8. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  9. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  10. Tailoring the multiple electrically resonant transparency through bi-layered metamaterial-induced coupling oscillators

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaxin; Han, Song; Lin, Hai; Yang, Helin

    2015-11-01

    Metamaterials (MMs) can be tailored to support electromagnetic interference, which is the kernel for the material-based electromagnetically induced transparency (EIT) phenomena, alternatively transparency based on electric interference can be deemed as electrically resonant transparency (ERT). Here, we experimentally and theoretically demonstrate two kinds of bi-layered MMs. The C3-C6 hybrid MM exhibits triple-mode ERT with transmission peaks of 0.84 at 9.6 GHz, 0.92 at 10.4 GHz, and 0.93 at 11.5 GHz for the horizontally polarized wave, and dual-mode ERT with transmission peaks of 0.84 at 8.8 GHz and 0.91 at 10.2 GHz for the vertically polarized wave. However, the C4-C8 hybrid MM, with two stable transparent peaks of 0.92 and 0.88 at 10.46 GHz and 11.61 GHz, is proven to be polarization independent. The measured results show excellent agreement with numerical simulations. A coupled oscillator model is employed to theoretically study the near field interference between the induced dipoles on the transmission properties. The results presented here will find their application value for multi-mode slow light devices, filters and attenuators, and so on.

  11. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators

    NASA Astrophysics Data System (ADS)

    Kenig, Eyal; Tsarin, Yuriy A.; Lifshitz, Ron

    2011-07-01

    We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica DPDNPDT0167-278910.1016/0167-2789(92)90092-2 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.

  12. Noise-tunable nonlinearity in a dispersively coupled diffusion-resonator system using superconducting circuits

    NASA Astrophysics Data System (ADS)

    Rhén, Christin; Isacsson, Andreas

    2017-01-01

    The harmonic oscillator is one of the most widely used model systems in physics: an indispensable theoretical tool in a variety of fields. It is well known that an otherwise linear oscillator can attain novel and nonlinear features through interaction with another dynamical system. We investigate such an interacting system: a superconducting LC-circuit dispersively coupled to a superconducting quantum interference device (SQUID). We find that the SQUID phase behaves as a classical two-level system, whose two states correspond to one linear and one nonlinear regime for the LC-resonator. As a result, the circuit’s response to forcing can become multistable. The strength of the nonlinearity is tuned by the level of noise in the system, and increases with decreasing noise. This tunable nonlinearity could potentially find application in the field of sensitive detection, whereas increased understanding of the classical harmonic oscillator is relevant for studies of the quantum-to-classical crossover of Jaynes-Cummings systems.

  13. Amplification of resonant field enhancement by plasmonic lattice coupling in metallic slit arrays

    NASA Astrophysics Data System (ADS)

    Klarskov, Pernille; Tarekegne, Abebe T.; Iwaszczuk, Krzysztof; Zhang, X.-C.; Jepsen, Peter Uhd

    2016-11-01

    Nonlinear spectroscopic investigation in the terahertz (THz) range requires significant field strength of the light fields. It is still a challenge to obtain the required field strengths in free space from table-top laser systems at sufficiently high repetition rates to enable quantitative nonlinear spectroscopy. It is well known that local enhancement of the THz field can be obtained for instance in narrow apertures in metallic films. Here we show by simulation, analytical modelling and experiment that the achievable field enhancement in a two-dimensional array of slits with micrometer dimensions in a metallic film can be increased by at least 60% compared to the enhancement in an isolated slit. The additional enhancement is obtained by optimized plasmonic coupling between the lattice modes and the resonance of the individual slits. Our results indicate a viable route to sensitive schemes for THz spectroscopy with slit arrays manufactured by standard UV photolithography, with local field strengths in the multi-ten-MV/cm range at kHz repetition rates, and tens of kV/cm at oscillator repetition rates.

  14. Amplification of resonant field enhancement by plasmonic lattice coupling in metallic slit arrays

    PubMed Central

    Klarskov, Pernille; Tarekegne, Abebe T.; Iwaszczuk, Krzysztof; Zhang, X.-C.; Jepsen, Peter Uhd

    2016-01-01

    Nonlinear spectroscopic investigation in the terahertz (THz) range requires significant field strength of the light fields. It is still a challenge to obtain the required field strengths in free space from table-top laser systems at sufficiently high repetition rates to enable quantitative nonlinear spectroscopy. It is well known that local enhancement of the THz field can be obtained for instance in narrow apertures in metallic films. Here we show by simulation, analytical modelling and experiment that the achievable field enhancement in a two-dimensional array of slits with micrometer dimensions in a metallic film can be increased by at least 60% compared to the enhancement in an isolated slit. The additional enhancement is obtained by optimized plasmonic coupling between the lattice modes and the resonance of the individual slits. Our results indicate a viable route to sensitive schemes for THz spectroscopy with slit arrays manufactured by standard UV photolithography, with local field strengths in the multi-ten-MV/cm range at kHz repetition rates, and tens of kV/cm at oscillator repetition rates. PMID:27886232

  15. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  16. Noise-tunable nonlinearity in a dispersively coupled diffusion-resonator system using superconducting circuits

    PubMed Central

    Rhén, Christin; Isacsson, Andreas

    2017-01-01

    The harmonic oscillator is one of the most widely used model systems in physics: an indispensable theoretical tool in a variety of fields. It is well known that an otherwise linear oscillator can attain novel and nonlinear features through interaction with another dynamical system. We investigate such an interacting system: a superconducting LC-circuit dispersively coupled to a superconducting quantum interference device (SQUID). We find that the SQUID phase behaves as a classical two-level system, whose two states correspond to one linear and one nonlinear regime for the LC-resonator. As a result, the circuit’s response to forcing can become multistable. The strength of the nonlinearity is tuned by the level of noise in the system, and increases with decreasing noise. This tunable nonlinearity could potentially find application in the field of sensitive detection, whereas increased understanding of the classical harmonic oscillator is relevant for studies of the quantum-to-classical crossover of Jaynes-Cummings systems. PMID:28120946

  17. A Photonic Crystal Magnetic Field Sensor Using a Shoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid

    PubMed Central

    Su, Delong; Pu, Shengli; Mao, Lianmin; Wang, Zhaofang; Qian, Kai

    2016-01-01

    A kind of photonic crystal magnetic field sensor is proposed and investigated numerically. The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and full width at half maximum increase with the number of infiltrated air holes. The figure of merit of the structure is defined to evaluate the sensing performance comprehensively. The best structure corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid is obtained. PMID:27999254

  18. A Photonic Crystal Magnetic Field Sensor Using a Shoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid.

    PubMed

    Su, Delong; Pu, Shengli; Mao, Lianmin; Wang, Zhaofang; Qian, Kai

    2016-12-16

    A kind of photonic crystal magnetic field sensor is proposed and investigated numerically. The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and full width at half maximum increase with the number of infiltrated air holes. The figure of merit of the structure is defined to evaluate the sensing performance comprehensively. The best structure corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid is obtained.

  19. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    PubMed Central

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-01-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW. PMID:27485470

  20. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.