Science.gov

Sample records for resonance transition 795-nm

  1. Hydrocarbon-free resonance transition 795-nm rubidium laser

    SciTech Connect

    Wu, S Q; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-01-09

    An optical resonance transition rubidium laser (5{sup 2}P{sub 1/2} {yields} 5{sup 2}S{sub 1/2}) is demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a 'clean' helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.

  2. Resonance transition 795-nm Rubidium laser using 3He buffer gas

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2007-08-02

    We report the first demonstration of a 795-nm Rubidium resonance transition laser using a buffer gas consisting of pure {sup 3}He. This follows our recent demonstration of a hydrocarbon-free 795-nm Rubidium resonance laser which used naturally-occurring He as the buffer gas. Using He gas that is isotopically enriched with {sup 3}He yields enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure, improving thermal management in high average power Rb lasers and enhancing the power scaling potential of such systems.

  3. Developments toward a reliable diode-pumped hydrocarbon-free 795-nm rubidium laser

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-05-07

    We report a 795-nm diode-pumpable Rb laser using a buffer gas of pure {sup 3}He. {sup 3}He gas enhances mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He pressures and improved thermal management.

  4. Nucleon Resonance Transition Form factors

    SciTech Connect

    Burkert, Volker D.; Mokeev, Viktor I.; Aznauryan, Inna G.

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  5. Electromagnetic Transition Form Factors of Nucleon Resonances

    SciTech Connect

    Burkert, Volker D.

    2008-10-13

    Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data resolve a long-standing puzzle of the nature of the Roper resonance, and confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q{sup 2} n{pi}{sup +} production confirm the slow fall off of the S{sub 11}(1535) transition form factor with Q{sup 2}, and better constrain the branching ratios {beta}{sub N{pi}} = 0.50 and {beta}{sub N{eta}} = 0.45. For the first time, the longitudinal transition amplitude to the S{sub 11}(1535) was extracted from the n{pi}{sup +} data. Also, new results on the transition amplitudes for the D{sub 13}(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q{sup 2}.

  6. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  7. Dynamics and Transit Variations of Resonant Exoplanets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M *)-2/3, where m and M * are the planetary and stellar masses. For m = 10-4 M *, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  8. The {Delta}(1232) resonance transition form factor

    SciTech Connect

    Staurt, L.M. |; Bosted, P.E.; Lung, A.

    1993-08-01

    Old and new measurements of inclusive e--p cross sections in the {Delta}(1232) resonance region have been combined, and a global data fit has been made. Using this fit to parameterize the nonresonant background, the transition form factors have been extracted out to a four-momentum transfer, Q{sup 2}, of 9.8 (GeV/c){sup 2}. The results are systematically higher than those from a previous analysis, but agree within errors. A similar analysis has been done with e--d cross sections, and {sigma}{sub n}/{sigma}{sub p} in the {Delta}(1232) resonance region has been extracted out to a Q{sup 2} of 7.9 (GeV/c){sup 2}. {sigma}{sub n}/{sigma}{sub p} for {Delta}(1232) production is consistent with unity, while {sigma}{sub n}/{sigma}{sub p} for the nonresonant background is constant with Q{sup 2} at approximately 0.4.

  9. Coherent control through near-resonant Raman transitions

    SciTech Connect

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-02-15

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li{sub 2} by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li{sub 2}. The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet.

  10. Improved Tracking of an Atomic-Clock Resonance Transition

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  11. Modulation of Attosecond Beating by Resonant Two-Photon Transition

    NASA Astrophysics Data System (ADS)

    Jiménez Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2015-09-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the π jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  12. Resonant Auger for the detection of quadrupolar transitions

    SciTech Connect

    Danger, J.; Le Fevre, P.; Chandesris, D.; Magnan, H.; Jupille, J.; Bourgeois, S.; Eickhoff, T.; Drube, W.

    2003-01-24

    Quadrupolar transitions can play an important role in X-ray absorption spectroscopy, especially when it is used for magnetic measurements, like in X-ray Magnetic Circular Dichroism or Resonant Magnetic Scattering. We show here that resonantly excited Ti KL2,3L2,3 Auger spectra of TiO2 (110) carry a clear signature of quadrupolar transitions from the 1s to localized eg and t2g d-like states. The quadrupolar nature of the observed additional spectator lines are clearly demonstrated by their angular dependence, and their intensity is used to locate and quantify the quadrupolar transitions in the absorption spectrum.

  13. Modeling Developmental Transitions in Adaptive Resonance Theory

    ERIC Educational Resources Information Center

    Raijmakers, Maartje E. J.; Molenaar, Peter C. M.

    2004-01-01

    Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…

  14. Transition representations of quantum evolution with application to scattering resonances

    SciTech Connect

    Strauss, Y.

    2011-03-15

    A Lyapunov operator is a self-adjoint quantum observable whose expectation value varies monotonically as time increases and may serve as a marker for the flow of time in a quantum system. In this paper it is shown that the existence of a certain type of Lyapunov operator leads to representations of the quantum dynamics, termed transition representations, in which an evolving quantum state {psi}(t) is decomposed into a sum {psi}(t) ={psi}{sup b}(t) +{psi}{sup f}(t) of a backward asymptotic component and a forward asymptotic component such that the evolution process is represented as a transition from {psi}{sup b}(t) to {psi}{sup f}(t). When applied to the evolution of scattering resonances, such transition representations separate the process of decay of a scattering resonance from the evolution of outgoing waves corresponding to the probability 'released' by the resonance and carried away to spatial infinity. This separation property clearly exhibits the spatial probability distribution profile of a resonance. Moreover, it leads to the definition of exact resonance states as elements of the physical Hilbert space corresponding to the scattering problem. These resonance states evolve naturally according to a semigroup law of evolution.

  15. A resonant chain of four transiting, sub-Neptune planets.

    PubMed

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  16. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  17. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  18. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  19. Classical theory of resonant transition radiation in multilayer structures.

    PubMed

    Pardo, B; André, J M

    2001-01-01

    A rigorous classical electromagnetic theory of the transition radiation in finite and infinite multilayer structures is presented. It makes the standard results of thin-film optics, such as the matrix formalism, accountable; it allows thus an exact treatment of the propagation of the waves induced by the electron. This method is applied to the particular case of the periodic structures to treat the resonant transition radiation (RTR). It is noted that the present theory gives, in the hard x-ray domain, results previously published. The reason for this approach is to make the numerical calculations rigorous and easy. The numerical results of our theory are compared to experimental RTR data obtained recently by Yamada et al. [Phys. Rev. A 59, 3673 (1999)] with a nickel-carbon multilayer structure.

  20. PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE

    SciTech Connect

    Cordes, J. M.

    2013-09-20

    Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.

  1. Axial transition form factors and pion decay of baryon resonances

    SciTech Connect

    Julia-Diaz, B.; Riska, D.O.; Coester, F.

    2004-10-01

    The pion decay constants of the lowest orbitally excited states of the nucleon and the {delta}(1232) along with the corresponding axial transition form factors are calculated with Poincare covariant constituent-quark models with instant, point, and front forms of relativistic kinematics. The model wave functions are chosen such that the calculated electromagnetic and axial form factors of the nucleon represent the empirical values in all three forms of kinematics, when calculated with single-constituent currents. The pion decay widths calculated with the three forms of kinematics are smaller than the empirical values. Front and instant form kinematics provide a similar description, with a slight preference for front form, while the point form values are significantly smaller in the case of the lowest positive parity resonances.

  2. On transition from Alfvén resonance to forced magnetic reconnection

    SciTech Connect

    Luan, Q.; Wang, X.

    2014-07-15

    We revisit the transition from Alfvén resonance to forced magnetic reconnection with a focus on the property of their singularities. As the driven frequency tends to zero, the logarithmic singularity of Alfvén resonance shifts to the power-law singularity of forced reconnection, due to merging of the two resonance layers. The transition criterion depends on either kinetic effects or dissipations that resolve the singularity. As an example, a small but finite resistivity η is introduced to investigate the transition process. The transition threshold is then obtained as the driven frequency reaches a level of ∼O((η/k){sup 1/3})

  3. Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise.

    PubMed

    Jia, Yanbing; Gu, Huaguang

    2015-12-01

    The effect of phase noise on the coherence dynamics of a neuronal network composed of FitzHugh-Nagumo (FHN) neurons is investigated. Phase noise can induce dissimilar coherence resonance (CR) effects for different coupling strength regimes. When the coupling strength is small, phase noise can induce double CRs. One corresponds to the average frequency of phase noise, and the other corresponds to the intrinsic firing frequency of the FHN neuron. When the coupling strength is large enough, phase noise can only induce single CR, and the CR corresponds to the intrinsic firing frequency of the FHN neuron. The results show a transition from double CRs to single CR with the increase in the coupling strength. The transition can be well interpreted based on the dynamics of a single neuron stimulated by both phase noise and the coupling current. When the coupling strength is small, the coupling current is weak, and phase noise mainly determines the dynamics of the neuron. Moreover, the phase-noise-induced double CRs in the neuronal network are similar to the phase-noise-induced double CRs in an isolated FHN neuron. When the coupling strength is large enough, the coupling current is strong and plays a key role in the occurrence of the single CR in the network. The results provide a novel phenomenon and may have important implications in understanding the dynamics of neuronal networks.

  4. Electron Spin Resonance of Tetrahedral Transition Metal Oxyanions (MO4n-) in Solids.

    ERIC Educational Resources Information Center

    Greenblatt, M.

    1980-01-01

    Outlines general principles in observing sharp electron spin resonance (ESR) lines in the solid state by incorporating the transition metal ion of interest into an isostructural diamagnetic host material in small concentration. Examples of some recent studies are described. (CS)

  5. EIT resonance features in strong magnetic fields in rubidium atomic columns with length varying by 4 orders

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Sargsyan, A.; Sarkisyan, D.; Wojciechowski, A.; Stabrawa, A.; Gawlik, W.

    2016-06-01

    Electromagnetically induced transparency (EIT) resonances are investigated with the 85Rb D 1 line (795 nm) in strong magnetic fields (up to 2 kG) with three different types of spectroscopic vapor cells: the nano-cell with a thickness along the direction of laser light L ≈ 795 nm, the micro-cell with L = 30 μm with the addition of a neon buffer gas, and the centimeter-long glass cell. These cells allowed us to observe systematic changes of the EIT spectra when the increasing magnetic field systematically decoupled the total atomic electron and nuclear angular moments (the Paschen-Back/Back-Goudsmit effects). The observations agree well with a theoretical model. The advantages and disadvantages of a particular type of cell are discussed along with the possible practical applications.

  6. Dual structure of saturated absorption resonance at an open atomic transition

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. V.; Velichanskii, V. L.; Zibrov, S. A.; Sivak, A. V.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.

    2011-05-01

    Experiments on open transitions of the D 1 line of alkali metals (Cs and Rb isotopes) reveal the dual structure of saturated absorption resonance in the signal of a high-intensity optical wave in the presence of a low-intensity counterpropagating wave. Theoretical analysis shows that the observed shape of the resonance is associated with the openness of the atomic transition as well as with the Doppler effect for atoms in a gas. The results are of general physical significance for nonlinear spectroscopy and can also find application in metrology (frequency and time standards on open transitions).

  7. Dual structure of saturated absorption resonance at an open atomic transition

    SciTech Connect

    Vasil'ev, V. V. Velichanskii, V. L. Zibrov, S. A.; Sivak, A. V.; Brazhnikov, D. V. Taichenachev, A. V. Yudin, V. I.

    2011-05-15

    Experiments on open transitions of the D{sub 1} line of alkali metals (Cs and Rb isotopes) reveal the dual structure of saturated absorption resonance in the signal of a high-intensity optical wave in the presence of a low-intensity counterpropagating wave. Theoretical analysis shows that the observed shape of the resonance is associated with the openness of the atomic transition as well as with the Doppler effect for atoms in a gas. The results are of general physical significance for nonlinear spectroscopy and can also find application in metrology (frequency and time standards on open transitions).

  8. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  9. RESONANT INELASTIC X-RAY SCATTERING FROM TRANSITION METAL OXIDES.

    SciTech Connect

    HILL,J.P.

    1999-08-23

    Recent developments in hard x-ray resonant inelastic x-ray scattering as a probe of strongly correlated systems are reviewed. Particular attention is paid to studies of Nd{sub 2}CuO{sub 4}. A charge transfer excitation is observed when the incident photon energy is tuned in the vicinity of the copper K-edge. It is shown that the presence of resonant enhancements is controlled by the polarization dependence of the excitation process and by the overlap between a given intermediate state and the particular excitation being studied. This latter observation has shed light on the non-local effects present in certain intermediate states.

  10. Resonance transition energies and oscillator strengths in lutetium and lawrencium.

    PubMed

    Zou, Yu; Fischer, C Froese

    2002-05-06

    The transition energies and oscillator strengths for nd (2)D(3/2)-(n+1)p (2)P(o)(1/2,3/2) transitions in Lu ( n = 5, Z = 71) and Lr ( n = 6, Z = 103) were calculated with the multiconfiguration Dirac-Hartree-Fock method. The present study confirmed that the ground state of atomic Lr is [Rn]5f(14)7s(2)7p (2)P(o)(1/2). The calculation for Lr required wave function expansions of more than 330 000 configuration states. In Lu, the transition energies, with Breit and QED corrections included, agree with experiment to within 126 cm(-1). In lighter elements, core correlation is usually neglected but was found to be of extreme importance for these heavy elements, affecting the oscillator strengths by a factor of 3 and 2 in Lu and Lr, respectively.

  11. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  12. Resonances due to the Landau-Zener transition

    SciTech Connect

    Tazawa, T. ); Abe, Y. )

    1990-01-01

    We have derived a new useful analytic formula for the {ital T} matrix in the quantum-mechanical perturbation approach within the two-state problem with finite-range coupling which is appropriate for the discussion of the Landau-Zener transition. The resonancelike behaviors were predicted by classical or semiclassical approach in which constant coupling between two adiabatic states was assumed. In the quantum-mechanical approach, inclusion of the effect of reasonable finite-range coupling would not destroy the pattern of the resonancelike structures so much, while the magnitude of the calculated cross section is merely about 10% of that calculated by the semiclassical approach.

  13. Transition paths to stochastic oscillations of a self-excited oscillator with a ferrite resonator

    SciTech Connect

    Aranson, I.S.; Pavlov, D.A.

    1986-01-01

    It is demonstrated experimentally that the transition to stochastic oscillations in a self-excited oscillator with ferrite resonator occurs through the complexification of the structure of self-modulation. All basic types of bifurcations are recorded: doubling, intermittency, hard onset of chaos, and critical behavior of strange attractors. Tripling of the self-modulation period was observed for special values of the parameters.

  14. Magnetic resonance imaging of microstructure transition in stainless steel.

    PubMed

    Peeters, Johannes M; van Faassen, Ernst E H; Bakker, Chris J G

    2006-06-01

    Magnetic resonance images are prone to artifacts caused by metallic objects. Such artifacts may not only hamper image interpretation, but also have been shown to provide information about the magnetic properties of the substances involved. In this work, we aim to explore the potential of MRI to detect, localize and characterize changes in magnetic properties that may occur when certain alloys have been exposed to a thermomechanical stress. For this purpose, stainless steel 304 L wires were drawn to induce a change from paramagnetic austenitic into ferromagnetic martensitic microstructure. The changes in magnetic behavior were quantified by analyzing the geometric distortion in spin echo and the geometric distortion and intravoxel dephasing in gradient echo images at 0.5, 1.5 and 3 T. The results of both imaging strategies were in agreement and in accordance with independent measurements with a vibrating sample magnetometer. Drawing wire to 2% of its cross-sectional area was found to increase the volume fraction of the ferromagnetic martensite from 0.3% to 80% and to enhance the magnetization up to two or three orders of magnitude. The results demonstrate the potential of MRI to locate and quantify stress-induced changes in the magnetic properties of alloys in a completely noninvasive and nondestructive way.

  15. Bounce-Transit and Drift Resonance and Neoclassical Toroidal Plasma Viscosity in Tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Chu, M. S.; Sabbagh, S. A.

    2009-05-01

    The importance of the resonance between the bounce frequency of the trapped particles and precession drift frequency in tokamaks to the low frequency magnetohydroynamic instabilities has been recognized for a long time. The resonance is also important in the transport processes as demonstrated by Park, et al. in calculating the neoclassical toroidal plasma viscosity [1]. They found that the transport fluxes are independent of the collision frequency, i.e., a resonant plateau regime. Here, we develop a theory for neoclassical toroidal plasma viscosity to include not only the bounce and drift resonance of the trapped particles but also the transit and drift resonance the circulating particles [2]. In the resonant plateau regime, our results are similar to those obtained by Park, et al., except that bounce average over the trapped particle trajectories is not performed and that the contributions from the circulating particles are included. In the collisional limit, it is found that the resonant plateau regime is connected to the Pfirsch-Schluter regime. [1] PARK, J.-K.,et al., IAEA,Fusion Energy Conference, Geneva, October 2008, Paper EX/5-3Rb. [2] SHAING, K. C., CHU, M. S., and SABBAGH, S. A., (to be submitted to Plasma Phys. Control. Fusion)

  16. Extraction of Electromagnetic Transition Form Factors for Nucleon Resonances within a Dynamical Coupled-Channels Model

    SciTech Connect

    N. Suzuki, T. Sato, T.-S. H. Lee

    2010-10-01

    We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.

  17. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  18. Dynamically tracking the strain across the metal-insulator transition in VO2 measured using electromechanical resonators.

    PubMed

    Parikh, Pritesh; Chakraborty, Chitraleema; Abhilash, T S; Sengupta, Shamashis; Cheng, Chun; Wu, Junqiao; Deshmukh, Mandar M

    2013-10-09

    We study the strain state of doubly clamped VO2 nanobeam devices by dynamically probing resonant frequency of the nanoscale electromechanical device across the metal-insulator transition. Simultaneous resistance and resonance measurements indicate M1-M2 phase transition in the insulating state with a drop in resonant frequency concomitant with an increase in resistance. The resonant frequency increases by ~7 MHz with the growth of metallic domain (M2-R transition) due to the development of tensile strain in the nanobeam. Our approach to dynamically track strain coupled with simultaneous resistance and resonance measurements using electromechanical resonators enables the study of lattice-involved interactions more precisely than static strain measurements. This technique can be extended to other phase change systems important for device applications.

  19. Nonlinear reversal of the PT -symmetric phase transition in a system of coupled semiconductor microring resonators

    NASA Astrophysics Data System (ADS)

    Hassan, Absar U.; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N.

    2015-12-01

    A system of two coupled semiconductor-based resonators is studied when lasing around an exceptional point. We show that the presence of nonlinear saturation effects can have important ramifications on the transition behavior of this system. In sharp contrast with linear PT -symmetric configurations, nonlinear processes are capable of reversing the order in which the symmetry breaking occurs. Yet, even in the nonlinear regime, the resulting non-Hermitian states still retain the structural form of the corresponding linear eigenvectors expected above and below the phase-transition point. The conclusions of our analysis are in agreement with experimental data.

  20. Continuum-continuum transitions between resonant states using the RABITT technique

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; Argenti, L.; Martín, F.

    2014-04-01

    We present a study of radiative continuum-continuum transitions in helium in the presence of doubly-excited states by using the attosecond RABITT technique beyond the Single Active Electron approximation. On the one hand, transition amplitudes between correlated continuum states are calculated both by direct numerical solution of the time-dependent Schrodinger equation as well as with a two-photon perturbative model. The effect of autoionizing states on the sideband phaseshift is thus analyzed. On the other hand, we apply the soft-photon approximation to quantify the effects the IR probe intensity on the sideband non-resonant overtone components.

  1. Transition from nonresonant to resonant random lasers by the geometrical confinement of disorder.

    PubMed

    Ghofraniha, N; Viola, I; Zacheo, A; Arima, V; Gigli, G; Conti, C

    2013-12-01

    We report on a transition in random lasers that is induced by the geometrical confinement of the emitting material. Different dye doped paper devices with controlled geometry are fabricated by soft lithography and show two distinguished behaviors in the stimulated emission: in the absence of boundary constraints, the energy threshold decreases for larger laser volumes showing the typical trend of diffusive nonresonant random lasers, while when the same material is lithographed into channels, the walls act as cavity and the resonant behavior typical of standard lasers is observed. The experimental results are consistent with the general theories of random and standard lasers and a clear phase diagram of the transition is reported.

  2. Numerical study of Resonant inelastic x-ray scattering for cuprates and transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Jia, Chunjing; Wang, Yao; Chen, Cheng-Chien; Moritz, Brian; Devereaux, Thomas

    A theoretical understanding of resonant inelastic x-ray scattering (RIXS) measurements on cuprates and other transition-metal oxides remains an important yet challenging topic, especially for its ability to resolve the momentum and photon-polarization dependence of low energy elementary excitations. Here we present our exact diagonalization studies for RIXS spectra at the Cu L-edge for cuprates, with a focus on the dependence of both incoming and outgoing photon polarization and incoming photon energy. A more general method for calculating RIXS on other transition-metal oxides (such as NiO), which includes the multiplet and charge-transfer effects, will also be discussed.

  3. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    SciTech Connect

    Pérez Moyet, Richard; Rossetti, George A.; Stace, Joseph; Amin, Ahmed; Finkel, Peter

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  4. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    DOE PAGES

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less

  5. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    SciTech Connect

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can also escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.

  6. Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator

    DTIC Science & Technology

    2013-03-01

    state, 5 2P3/2. Collisional relaxation with buffer gases cause the alkali atoms to transition to the 52P1/2 excited state. Stimulated emission occurs when...beam to exit the cavity. The 795 nm beam then exits the cavity through the output coupler H. line. The beam propagates to the gain cell heater block...the cavity. The lasing beam then exits the cavity through a dichroic output coupler with 25% transmission and a radius of curvature of 60 cm. The

  7. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics.

    PubMed

    Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.

    2000-06-01

    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L(1) and the other around L(2), with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L(1) and L(2) as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena. (c) 2000 American Institute of Physics.

  8. Resonant Ultrasound studies of spin- and orbital ordering transitions in RVO3

    NASA Astrophysics Data System (ADS)

    Koehler, M.; Yan, J.-Q.; Ren, Y.; Sales, B. C.; Mandrus, D.; Keppens, V.

    2013-03-01

    RVO3 perovskites (R = rare earth) have been shown to undergo multiple spin and orbital transitions due to the Jahn-Teller active V3+ electrons. We have initiated a study of the elastic response of RVO3, (R = Dy, Gd, Ce) as well as Y1-xLaxVO3 (x = 0.05, 0.3, 1) using resonant ultrasound spectroscopy. The temperature-dependence of the elastic response is dominated by the ordering transitions, with transition temperatures that change with the size of the rare earth. For CeVO3 and LaVO3, two transitions are observed, separated by 17K and 2K, respectively. DyVO3 and Y0.95La0.05VO3 show three transitions below 220K while GdVO3 only shows one. The full elastic tensor of Y0 . 7 La0.3VO3 has also been determined from 300K to 50K, yielding the temperature dependence of the 9 orthorhombic elastic moduli. Work at ORNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  9. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  10. Computational study of phononic resonators and waveguides in monolayer transition metal dichalcogenides.

    PubMed

    Konstantopoulou, A; Sgouros, A P; Sigalas, M M

    2017-03-15

    Using molecular dynamics and semi-empirical potentials, large scale transition metal dichalcogenides monolayers (TMDM) were examined. The focus of the study was the modification of the phonon spectrum of TMDMs by engineering substitutional defects to produce phononic resonators and waveguides on the atomic scale. The resonant frequencies of the aforementioned structures can be tuned by applying tensile or compressive stresses. The TMDMs exhibited wide phononic band gaps (PBG) in their phonon spectrum because they consist of atoms with quite different atomic masses. The PBG from the present semi-empirical calculations were found to be in reasonable agreement with previous ab initio calculations. The problem is very broad since many varieties of TMDMs (with or without defects) can be made. The present study focused on MX2 composites with M being Mo or W and X being S or Se. The most interesting behavior was found in WS2 with substitutional defects of either S ↔ Se or W ↔ Mo.

  11. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  12. 18-Electron Resonance Structures in the BCC Transition Metals and Their CsCl-type Derivatives.

    PubMed

    Vinokur, Anastasiya I; Fredrickson, Daniel C

    2017-03-06

    Bonding in elemental metals and simple alloys has long been thought of as involving intense delocalization, with little connection to the localized bonds of covalent systems. In this Article, we show that the bonding in body-centered cubic (bcc) structures of the group 6 transition metals can in fact be represented, via the concepts of the 18-n rule and isolobal bonding, in terms of two balanced resonance structures. We begin with a reversed approximation Molecular Orbital (raMO) analysis of elemental Mo in its bcc structure. The raMO analysis indicates that, despite the low electron count (six valence electrons per Mo atom), nine electron pairs can be associated with any given Mo atom, corresponding to a filled 18-electron configuration. Six of these electron pairs take part in isolobal bonds along the second-nearest neighbor contacts, with the remaining three (based on the t2g d orbitals) interacting almost exclusively with first-nearest neighbors. In this way, each primitive cubic network defined by the second-nearest neighbor contacts comprises an 18-n electron system with n = 6, which essentially describes the full electronic structure of the phase. Of course, either of the two interpenetrating primitive cubic frameworks of the bcc structure can act as a basis for this discussion, leading us to write two resonance structures with equal weights for bcc-Mo. The electronic structures of CsCl-type variants with the same electron count can then be interpreted in terms of changing the relative weights of these two resonance structures, as is qualitatively confirmed with raMO analysis. This combination of raMO analysis with the resonance concept offers an avenue to extend the 18-n rule into other transition metal-rich structures.

  13. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    SciTech Connect

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-15

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  14. Transition from Coulomb Blockade to Resonant Transmission in a MoS2 Nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Yanjing; Mason, Nadya

    2014-03-01

    We have measured a side-gated nanoribbon of MoS2 at low temperature, and observed the transition from Coulomb blockade to resonant transmission when the Fermi level is tuned with a gate. We show that near the crossover between these regimes, the entire nanoribbon acts as a single quantum dot. Our findings may shed light on quasi-ballistic transport in the material. We also discuss the quantum dot formation in terms of a substrate-induced disorder potential, and consider other possible origins of disorder.

  15. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M.; Fehrenbacher, Markus

    2014-08-04

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263 K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  16. A TTV-fueled study of non-resonant companions to multiple-transiting systems in the Kepler sample

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Montet, B.; Swift, J.; Johnson, J. A.

    2014-01-01

    The high precision, continuous time coverage and long baseline of the Kepler mission have allowed for the first analyses of transit timing variations (TTVs) induced by dynamical interactions between planets. Nearly all previous TTV studies have focused on the detection, characterization, and validation of planetary systems in near-resonant configurations. Transit timing data also contains potentially useful information about the existence of massive, non-resonant companions. We have begun a new study to search for such companions. Here, we present preliminary results from our analysis of the first 16 quarters of Kepler data and discuss the implications for the presence of massive, non-transiting companions in these systems.

  17. Transit Timing Variations for Planets near Eccentricity-type Mean Motion Resonances

    NASA Astrophysics Data System (ADS)

    Deck, Katherine M.; Agol, Eric

    2016-04-01

    We derive the transit timing variations (TTVs) of two planets near a second-order mean motion resonance (MMR) on nearly circular orbits. We show that the TTVs of each planet are given by sinusoids with a frequency of {{jn}}2-(j-2){n}1, where j≥slant 3 is an integer characterizing the resonance and n2 and n1 are the mean motions of the outer and inner planets, respectively. The amplitude of the TTV depends on the mass of the perturbing planet, relative to the mass of the star, and on both the eccentricities and longitudes of pericenter of each planet. The TTVs of the two planets are approximated anti-correlated, with phases of ϕ and ≈ φ +π , where the phase ϕ also depends on the eccentricities and longitudes of pericenter. Therefore, the TTVs caused by proximity to a second-order MMR do not in general uniquely determine both planet masses, eccentricities, and pericenters. This is completely analogous to the case of TTVs induced by two planets near a first-order MMR. We explore how other TTV signals, such as the short-period synodic TTV or a first-order resonant TTV, in combination with the second-order resonant TTV, can break degeneracies. Finally, we derive approximate formulae for the TTVs of planets near any order eccentricity-type MMR; this shows that the same basic sinusoidal TTV structure holds for all eccentricity-type resonances. Our general formula reduces to previously derived results near first-order MMRs.

  18. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    SciTech Connect

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  19. Transit Timing Variation of Near-resonance Planetary Pairs: Confirmation of 12 Multiple-planet Systems

    NASA Astrophysics Data System (ADS)

    Xie, Ji-Wei

    2013-10-01

    We extract transit timing variation (TTV) signals for 12 pairs of transiting planet candidates that are near first-order mean motion resonances (MMR), using publicly available Kepler light curves (Q0-Q14). These pairs show significant sinusoidal TTVs with theoretically predicted periods, which demonstrate these planet candidates are orbiting and interacting in the same system. Although individual masses cannot be accurately extracted based only on TTVs because of the well-known degeneracy between mass and eccentricity, TTV phases and amplitudes can still place upper limits on the masses of the candidates, confirming their planetary nature. Furthermore, the mass ratios of these planet pairs can be relatively tightly constrained using these TTVs. The planetary pair in KOI 880 seems to have particularly high mass and density ratios, which might indicate very different internal compositions of these two planets. Some of these newly confirmed planets are also near MMR with other candidates in the system, forming unique resonance chains (e.g., KOI 500).

  20. TRANSIT TIMING VARIATION OF NEAR-RESONANCE PLANETARY PAIRS: CONFIRMATION OF 12 MULTIPLE-PLANET SYSTEMS

    SciTech Connect

    Xie, Ji-Wei E-mail: jwxie@astro.utoronto.ca

    2013-10-01

    We extract transit timing variation (TTV) signals for 12 pairs of transiting planet candidates that are near first-order mean motion resonances (MMR), using publicly available Kepler light curves (Q0-Q14). These pairs show significant sinusoidal TTVs with theoretically predicted periods, which demonstrate these planet candidates are orbiting and interacting in the same system. Although individual masses cannot be accurately extracted based only on TTVs because of the well-known degeneracy between mass and eccentricity, TTV phases and amplitudes can still place upper limits on the masses of the candidates, confirming their planetary nature. Furthermore, the mass ratios of these planet pairs can be relatively tightly constrained using these TTVs. The planetary pair in KOI 880 seems to have particularly high mass and density ratios, which might indicate very different internal compositions of these two planets. Some of these newly confirmed planets are also near MMR with other candidates in the system, forming unique resonance chains (e.g., KOI 500)

  1. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    PubMed Central

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  2. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor.

    PubMed

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-06-16

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2.

  3. Coherent population trapping resonances in the presence of the frequency-phase noises of an exciting field

    SciTech Connect

    Sokolov, A V; Matveev, A N; Samokotin, A Yu; Akimov, A V; Sorokin, Vadim N; Kolachevsky, Nikolai N

    2009-05-31

    The influence of noises of the frequency and phase difference of an exciting bichromatic field on the parameters of coherent population trapping resonances is studied experimentally. When the phase difference fluctuates within a limited interval near its average value with a short correlation time, the resonance contrast decreases proportionally to exp({phi}{sup 2}{sub rms}), where {phi}{sup 2}{sub rms} is the phase dispersion (in rad{sup 2}). In this case, the spectral width of the resonance remains constant. In another limiting case, when the phase noise has a long correlation time, the resonance contour broadens, the area under the contour being invariable. Experiments were performed with the Zeeman sublevels of the ground state of {sup 87}Rb by exciting rubidium vapour in a glass cell at the resonance wavelength of 795 nm. (interaction of laser radiation with matter)

  4. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Broccio, M.; Corsaro, C.; Faraone, A.; Wanderlingh, U.; Liu, L.; Mou, C.-Y.; Chen, S. H.

    2006-04-01

    By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature TL=223±2K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1/D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time ⟨τT⟩, as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.

  5. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results.

    PubMed

    Mallamace, F; Broccio, M; Corsaro, C; Faraone, A; Wanderlingh, U; Liu, L; Mou, C-Y; Chen, S H

    2006-04-28

    By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature T(L)=223+/-2 K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280 K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time tau(T), as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.

  6. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-01

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10-9 to 10-5 s) and a scattering vector Q range (9.6-40 nm-1), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow β-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature Tc in the mode coupling theory. The results suggest the important roles of hopping motions below Tc, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  7. High field nuclear magnetic resonance in transition metal substituted BaFe2As2

    NASA Astrophysics Data System (ADS)

    Garitezi, T. M.; Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Reyes, A. P.; Kuhns, P. L.; Pagliuso, P. G.; Urbano, R. R.

    2014-05-01

    We report high field 75As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe2As2 single crystals displaying same structural/magnetic transition T0≃128 K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency νQ≃2.57(1) MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe2As2 compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe-As tetrahedra, must be the most probable tuning parameter to determine T0 in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T0 suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe2As2 [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

  8. Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Yu; Lin, Chun-Hung; Chen, Wei-Ting

    2013-09-01

    Phase transition that occurs around the spectral position of localized surface plasmon resonance (LSPR) has various applications for light manipulation and refractive index sensing. Previous studies focused on phase responses of specific plasmonic structures, whereas the general theoretical analysis remains inadequate. In this study, we analytically modeled the phase spectra and the intensity spectra of silver nanodots with temporal coupled-mode theory. The phase transition occurs at the transmission dip, whereas the phase of reflection varies much more gradually. We further derived the equation for the slope of the phase at the transmission dip, which is a function of the rates of Ohmic dissipation and emission. The theoretical analysis is also applicable for wide varieties of LSPR systems and provides an intuitive physical mechanism for phase properties. Then, based on the fundamental discussion, we further investigated plasmonic phase retardation in anisotropic nanodots for the application of boosting the figure of merit (FOM) of refractive index sensing. The anisotropic nanodots induce plasmonic phase transitions, which spectrally split, for transmission waves polarized along the symmetric axes. Thus, anisotropy induces relative phase retardation in the narrow spectral region between the wavelengths of the LSPRs. We numerically manipulated the full width at half maximum of the ellipsometric spectra by adjusting the aspect ratio of the nanodots and observed an FOM of 24.3. In addition, experiments were performed to demonstrate the feasibility of this arrangement.Phase transition that occurs around the spectral position of localized surface plasmon resonance (LSPR) has various applications for light manipulation and refractive index sensing. Previous studies focused on phase responses of specific plasmonic structures, whereas the general theoretical analysis remains inadequate. In this study, we analytically modeled the phase spectra and the intensity spectra of

  9. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.

    PubMed

    Zhang, Yundong; Zhang, Xuenan; Wang, Ying; Zhu, Ruidong; Gai, Yulong; Liu, Xiaoqi; Yuan, Ping

    2013-04-08

    We theoretically propose and experimentally perform a novel dispersion tuning scheme to realize a tunable Fano resonance in a coupled-resonator-induced transparency (CRIT) structure coupled Mach-Zehnder interferometer. We reveal that the profile of the Fano resonance in the resonator coupled Mach-Zehnder interferometers (RCMZI) is determined not only by the phase shift difference between the two arms of the RCMZI but also by the dispersion (group delay) of the CRIT structure. Furthermore, it is theoretically predicted and experimentally demonstrated that the slope and the asymmetry parameter (q) describing the Fano resonance spectral line shape of the RCMZI experience a sign reversal when the dispersion of the CRIT structure is tuned from abnormal dispersion (fast light) to normal dispersion (slow light). These theoretical and experimental results indicate that the reversible Fano resonance which holds significant implications for some attractive device applications such as highly sensitive biochemical sensors, ultrafast optical switches and routers can be realized by the dispersion tuning scheme in the RCMZI.

  10. KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE

    SciTech Connect

    Nesvorný, David; Terrell, Dirk; Kipping, David; Hartman, Joel; Bakos, Gáspár Á.; Buchhave, Lars A.

    2013-11-01

    The transit timing variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Many Kepler Objects of Interest (KOIs) exhibit significant TTVs, but KOI-142.01 stands out among them with an unrivaled ≅12 hr TTV amplitude. Here we report a thorough analysis of KOI-142.01's transits. We discover periodic transit duration variations (TDVs) of KOI-142.01 that are nearly in phase with the observed TTVs. We show that KOI-142.01's TTVs and TDVs uniquely detect a non-transiting companion with a mass ≅0.63 that of Jupiter (KOI-142c). KOI-142.01's mass inferred from the transit variations is consistent with the measured transit depth, suggesting a Neptune-class planet (KOI-142b). The orbital period ratio P{sub c} /P{sub b} = 2.03 indicates that the two planets are just wide of the 2:1 resonance. The present dynamics of this system, characterized here in detail, can be used to test various formation theories that have been proposed to explain the near-resonant pairs of exoplanets.

  11. KOI-142, The King of Transit Variations, is a Pair of Planets near the 2:1 Resonance

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Kipping, David; Terrell, Dirk; Hartman, Joel; Bakos, Gáspár Á.; Buchhave, Lars A.

    2013-11-01

    The transit timing variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Many Kepler Objects of Interest (KOIs) exhibit significant TTVs, but KOI-142.01 stands out among them with an unrivaled sime12 hr TTV amplitude. Here we report a thorough analysis of KOI-142.01's transits. We discover periodic transit duration variations (TDVs) of KOI-142.01 that are nearly in phase with the observed TTVs. We show that KOI-142.01's TTVs and TDVs uniquely detect a non-transiting companion with a mass sime0.63 that of Jupiter (KOI-142c). KOI-142.01's mass inferred from the transit variations is consistent with the measured transit depth, suggesting a Neptune-class planet (KOI-142b). The orbital period ratio Pc /Pb = 2.03 indicates that the two planets are just wide of the 2:1 resonance. The present dynamics of this system, characterized here in detail, can be used to test various formation theories that have been proposed to explain the near-resonant pairs of exoplanets.

  12. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  13. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state.

    PubMed

    Gerasimov, V S; Ershov, A E; Gavrilyuk, A P; Karpov, S V; Ågren, H; Polyutov, S P

    2016-11-14

    Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

  14. Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions

    NASA Astrophysics Data System (ADS)

    Schunk, G.; Vogl, U.; Sedlmeir, F.; Strekalov, D. V.; Otterpohl, A.; Averchenko, V.; Schwefel, H. G. L.; Leuchs, G.; Marquardt, Ch.

    2016-11-01

    Quantum repeaters rely on interfacing flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications to narrowband atomic systems. We resonantly address the D1 transitions of caesium and rubidium with this optical parametric oscillator pumped above its oscillation threshold. Below threshold, the efficient coupling of single photons to atomic transitions heralded by single telecom-band photons is demonstrated. Finally, we present an accurate analytical description of our observations. Providing the demonstrated flexibility in connecting various atomic transitions with telecom wavelengths, we show a promising approach to realize an essential building block for quantum repeaters.

  15. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    SciTech Connect

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  16. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  17. Evidence for the 2B1-2A1 electronic transition in chlorine dioxide from resonance Raman depolarization ratios

    NASA Astrophysics Data System (ADS)

    Reid, Philip J.; Esposito, Anthony P.; Foster, Catherine E.; Beckman, Robert A.

    1997-11-01

    The resonance Raman depolarization ratios of chlorine dioxide (OClO) dissolved in cyclohexane are measured and analyzed to establish the existence of a 2A1 excited state that is nearly degenerate with the optically stronger, 2A2 excited state. The depolarization ratio of the symmetric stretch fundamental transition is measured at several excitation wavelengths spanning the lowest-energy electronic transition centered at ˜360 nm. The depolarization ratio of this transition reaches a maximum value of 0.25±0.04 directly on resonance suggesting that scattered intensity is not derived from a single excited state. The depolarization ratios are modeled utilizing the time-dependent formalism for Raman scattering. This analysis demonstrates that the observed Raman depolarization ratios are derived from contributions of two excited states of 2A1 and 2A2 symmetry to the observed scattering. The results presented here support the emerging picture of OClO excited-state reaction dynamics in which photoexcitation to the 2A2 excited state is followed by internal conversion from this state to the 2A1 surface. Both the role of the 2A1 state in the photochemistry of OClO and the importance of this state in modeling resonance Raman intensities are discussed.

  18. Nonlinear Transition from Mitigation to Suppression of the Edge Localized Mode with Resonant Magnetic Perturbations in the EAST Tokamak.

    PubMed

    Sun, Y; Liang, Y; Liu, Y Q; Gu, S; Yang, X; Guo, W; Shi, T; Jia, M; Wang, L; Lyu, B; Zhou, C; Liu, A; Zang, Q; Liu, H; Chu, N; Wang, H H; Zhang, T; Qian, J; Xu, L; He, K; Chen, D; Shen, B; Gong, X; Ji, X; Wang, S; Qi, M; Song, Y; Yuan, Q; Sheng, Z; Gao, G; Fu, P; Wan, B

    2016-09-09

    Evidence of a nonlinear transition from mitigation to suppression of the edge localized mode (ELM) by using resonant magnetic perturbations (RMPs) in the EAST tokamak is presented. This is the first demonstration of ELM suppression with RMPs in slowly rotating plasmas with dominant radio-frequency wave heating. Changes of edge magnetic topology after the transition are indicated by a gradual phase shift in the plasma response field from a linear magneto hydro dynamics modeling result to a vacuum one and a sudden increase of three-dimensional particle flux to the divertor. The transition threshold depends on the spectrum of RMPs and plasma rotation as well as perturbation amplitude. This means that edge topological changes resulting from nonlinear plasma response plays a key role in the suppression of ELM with RMPs.

  19. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-12-01

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  20. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    SciTech Connect

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L.; Bezuglov, N. N.; Arimondo, E.

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  1. Spin reorientation transition in Fe/CeH2 multilayers probed by soft X-ray resonant magnetic scattering

    NASA Astrophysics Data System (ADS)

    Dürr, H. A.; Münzenberg, M.; Felsch, W.; Dhesi, S. S.

    The magnetic domain configurations of Fe 3d spins in Fe/CeH2 multilayers were measured by soft X-ray resonant magnetic scattering. The interface region could be probed by setting up X-ray standing waves due to the multilayer periodicity. By resolving first- and second-order magnetic scattering contributions, we show that the latter probe directly the magneto-crystalline anisotropy which is dominated by the Fe interface layers causing a spin reorientation transition when the temperature is lowered.

  2. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    SciTech Connect

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program.

  3. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  4. Two-state transition between molten globule and unfolded states of acetylcholinesterase as monitored by electron paramagnetic resonance spectroscopy.

    PubMed Central

    Kreimer, D I; Szosenfogel, R; Goldfarb, D; Silman, I; Weiner, L

    1994-01-01

    Cys-231 of Torpedo californica acetylcholinesterase (EC 3.1.1.7) was selectively labeled with the mercury derivative of a stable nitroxyl radical. In 1.5 M guanidinium chloride, this conjugate exists in a molten globule state (MG), whereas in 5 M denaturant, it is in an unfolded state (U). The transition between the two states is reversible. In the MG, the label is highly immobilized, whereas in the U, it is almost freely rotating. The clearly distinct electron paramagnetic resonance (EPR) spectra of the two states permits the study of this transition. Upon elevating the guanidinium chloride concentration, a decrease in the EPR signal of the MG occurs concomitantly with an increase in the U signal, the total intensity of the EPR spectra remaining constant. This behavior is characteristic of a two-state transition. The thermodynamic characteristics of this transition (delta G0 and m), whether estimated directly from the EPR data or from both CD and fluorescence data analyzed by assuming a two-state scheme, are in good agreement. PMID:7991597

  5. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  6. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    SciTech Connect

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical and electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.

  7. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    DOE PAGES

    Li, Qian; Jesse, Stephen; Tselev, Alexander; ...

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less

  8. Interband resonant transitions in two-dimensional hexagonal lattices: Rabi oscillations, Zener tunnelling, and tunnelling of phase dislocations.

    PubMed

    Shchesnovich, Valery S; Desyatnikov, Anton S; Kivshar, Yuri S

    2008-09-01

    We study, analytically and numerically, the dynamics of interband transitions in two-dimensional hexagonal periodic photonic lattices. We develop an analytical approach employing the Bragg resonances of different types and derive the effective multi-level models of the Landau-Zener-Majorana type. For two-dimensional periodic potentials without a tilt, we demonstrate the possibility of the Rabi oscillations between the resonant Fourier amplitudes. In a biased lattice, i.e., for a two-dimensional periodic potential with an additional linear tilt, we identify three basic types of the interband transitions or Zener tunnelling. First, this is a quasi-one-dimensional tunnelling that involves only two Bloch bands and occurs when the Bloch index crosses the Bragg planes away from one of the high-symmetry points. In contrast, at the high-symmetry points (i.e., at the M and Gamma points), the Zener tunnelling is essentially two-dimensional, and it involves either three or six Bloch bands being described by the corresponding multi-level Landau-Zener-Majorana systems. We verify our analytical results by numerical simulations and observe an excellent agreement. Finally, we show that phase dislocations, or optical vortices, can tunnel between the spectral bands preserving their topological charge. Our theory describes the propagation of light beams in fabricated or optically-induced two-dimensional photonic lattices, but it can also be applied to the physics of cold atoms and Bose-Einstein condensates tunnelling in tilted two-dimensional optical potentials and other types of resonant wave propagation in periodic media.

  9. Model for the {Delta}(1600) resonance and {gamma}N{yields}{Delta}(1600) transition

    SciTech Connect

    Ramalho, G.; Tsushima, K.

    2010-10-01

    A covariant spectator constituent quark model is applied to study the {gamma}N{yields}{Delta}(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the {Delta}(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming {Delta}(1600) as the first radial excitation of {Delta}(1232), the pion cloud contributions are estimated based on an analogy with the {gamma}N{yields}{Delta}(1232) transition. To estimate the pion cloud contributions in the {gamma}N{yields}{Delta}(1600) transition, we include the relevant intermediate states, {pi}N, {pi}{Delta}, {pi}N(1440) and {pi}{Delta}(1600). Dependence on the four-momentum transfer squared, Q{sup 2}, is predicted for the magnetic dipole transition form factor, G{sub M}*(Q{sup 2}), as well as the helicity amplitudes, A{sub 1/2}(Q{sup 2}) and A{sub 3/2}(Q{sup 2}). The results at Q{sup 2}=0 are compared with the existing data.

  10. A model for the Delta(1600) resonance and gamma N -> Delta(1600) transition

    SciTech Connect

    G. Ramalho, K. Tsushima

    2010-10-01

    A covariant spectator constituent quark model is applied to study the gamma N -> Delta(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the Delta(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming Delta(1600) as the first radial excitation of Delta(1232), the pion cloud contributions are estimated based on an analogy with the gamma N -> Delta(1232) transition. To estimate the pion cloud contributions in the gamma N -> Delta(1600) transition, we include the relevant intermediate states, pi-N, pi-Delta, pi-N(1440) and pi-Delta(1600). Dependence on the four-momentum transfer squared, Q2, is predicted for the magnetic dipole transition form factor, GM*(Q2), as well as the helicity amplitudes, A_1/2(Q2) and A_3/2(Q2). The results at Q2=0 are compared with the existing data.

  11. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  12. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Resonant-Triad Interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.

  13. Protein unfolding transitions in an intrinsically unstable annexin domain: molecular dynamics simulation and comparison with nuclear magnetic resonance data.

    PubMed

    Huynh, Tru; Smith, Jeremy C; Sanson, Alain

    2002-08-01

    Unfolding transitions of an intrinsically unstable annexin domain and the unfolded state structure have been examined using multiple approximately 10-ns molecular dynamics simulations. Three main basins are observed in the configurational space: native-like state, compact partially unfolded or intermediate compact state, and the unfolded state. In the native-like state fluctuations are observed that are nonproductive for unfolding. During these fluctuations, after an initial loss of approximately 20% of the core residue native contacts, the core of the protein transiently completely refolds to the native state. The transition from the native-like basin to the partially unfolded compact state involves approximately 75% loss of native contacts but little change in the radius of gyration or core hydration properties. The intermediate state adopts for part of the time in one of the trajectories a novel highly compact salt-bridge stabilized structure that can be identified as a conformational trap. The intermediate-to-unfolded state transition is characterized by a large increase in the radius of gyration. After an initial relaxation the unfolded state recovers a native-like topology of the domain. The simulated unfolded state ensemble reproduces in detail experimental nuclear magnetic resonance data and leads to a convincing complete picture of the unfolded domain.

  14. Resonant single-photon and multiphoton coherent transitions in a detuned regime

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Martens, M.; Egels, M.; Barakel, D.; Chiorescu, I.

    2015-07-01

    We performed quantum manipulations of the multilevel spin system S =5 /2 of a Mn2 + ion, by means of a two-tone pulse drive. The detuning between the excitation and readout radio frequency pulses allows one to select the number of photons involved in a Rabi oscillation as well as increase the frequency of this nutation. Thus detuning can lead to a resonant multiphoton process. Our analytical model for a two-photon process as well as a numerical generalization fit well the experimental findings, with implications for the use of multilevel spin systems as tunable solid state qubits.

  15. Resonant absorption and mode conversion in a transition layer between positive-index and negative-index media.

    PubMed

    Kim, Kihong; Lee, D-H; Lim, H

    2008-10-27

    We study the propagation of electromagnetic waves through a transition layer between positive-index and negative-index media theoretically. We consider three models where both the dielectric permittivity epsilon and the magnetic permeability micro change linearly from positive values to negative values. At the positions where epsilon or micro vanishes, the mode conversion of the incident electromagnetic waves into longitudinal plasma oscillations can occur. Using the invariant imbedding theory of mode conversion in inhomogeneous media, we calculate the mode conversion coefficient and the electromagnetic field profile in a numerically exact manner. We find that strong mode conversion can occur for both s- and p-polarized incident waves. The dependence of mode conversion on polarization is influenced very sensitively by the spatial profiles of epsilon and micro. We also discuss the interaction effects between mode conversion phenomena occurring at two resonance points located nearby.

  16. Transit Timing Variation of Near-resonance Planetary Pairs. II. Confirmation of 30 Planets in 15 Multiple-planet Systems

    NASA Astrophysics Data System (ADS)

    Xie, Ji-Wei

    2014-02-01

    Following on from Paper I in this series, I report the confirmation of a further 30 planets in 15 multiple-planet systems via transit timing variations (TTVs), using the publicly available Kepler light curves (Q0-Q16). All 15 pairs are near first-order mean motion resonances, showing sinusoidal TTVs consistent with theoretically predicted periods, which demonstrate they are orbiting and interacting in the same systems. Although individual masses cannot be accurately extracted based only on TTVs (because of the well known degeneracy between mass and eccentricity), the measured TTV phases and amplitudes can still place relatively tight constraints on their mass ratios and upper limits on their masses, which confirm their planetary nature. Some of these systems (KOI-274, KOI-285, KOI-370, and KOI-2672) are relatively bright and thus suitable for further follow-up observations.

  17. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    SciTech Connect

    Flores-Arias, Yesica Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul; Ammar, Souad

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  18. Phase transitions in the boson-fermion resonance model in one dimension

    NASA Astrophysics Data System (ADS)

    Orignac, E.; Citro, R.

    2006-06-01

    We study one-dimensional fermions with photoassociation or with a narrow Fano-Feshbach resonance described by the boson-fermion resonance model. Using the bosonization technique, we derive a low-energy Hamiltonian of the system. We show that at low energy, the order parameters for the Bose condensation and fermion superfluidity become identical, while a spin gap and a gap against the formation of phase slips are formed. As a result of these gaps, charge density wave correlations decay exponentially in contrast with the phases where only bosons or only fermions are present. We find a Luther-Emery point where the phase slips and the spin excitations can be described in terms of pseudofermions. This allows us to provide closed form expressions of the density-density correlations and the spectral functions. The spectral functions of the fermions are gapped, whereas the spectral functions of the bosons remain gapless. The application of a magnetic field results in a loss of coherence between the bosons and the fermion and the disappearance of the gap. Changing the detuning has no effect on the gap until either the fermion or the boson density is reduced to zero. Finally, we discuss the formation of a Mott insulating state in a periodic potential. The relevance of our results for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.

  19. Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Verlinde, M.; Sonnenschein, V.; Flanagan, K. T.; Moore, I.; Neyens, G.

    2017-03-01

    Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nuclear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1%-10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spectroscopy line shapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitation laser pulse is crucial: the use of a delayed ionization step permits the best resolving powers and line shapes. A high efficiency is maintained if the intermediate level has a lifetime that is at least of the order of the excitation laser pulse width. A model that describes this process reproduces well the observed features and will help to optimize the conditions for future experiments. The simulation code is available upon request to the authors.

  20. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    NASA Technical Reports Server (NTRS)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  1. Resonance and intersystem transition lines of astrophysical importance in neutral sulfur

    NASA Astrophysics Data System (ADS)

    Deb, N. C.; Hibbert, A.

    2006-10-01

    A systematic study of S I levels belonging to 3s23p4, 3s3p5, 3s23p3(4So, 2Do, 2Po)nell, where nell = 4s, 5s, 6s, 4p, 5p, 6p, 3d, 4d, 5d, 4f and 5f configurations and optically allowed and intersystem transitions among them are presented. A very large set of basis functions are generated using up to three electron promotions from the ground configurations for each of the 24 symmetries considered belonging to two parities. Many of the levels are reported for the first time. Relativistic effects are included through the Breit-Pauli Hamiltonian. The resulting fine-structure levels and oscillator strengths for some astrophysically important transitions are then presented and compared with the available measured and calculated values. Excellent agreement between the present lifetimes and the measurement of Berzinsh et al (1997 Phys. Rev. A 55 1836) and Beideck et al (1994 Astrophys. J. 428 393) are achieved for the 3s23p3(4So)ns(3S1o), 4 <= n <= 6, 3s23p3(4So)4p(3P0,1,2o) and 3s23p3(2Po)4s(3P0,1,2o) levels, respectively.

  2. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…

  3. Time-domain separation of optical properties from structural transitions in resonantly bonded materials.

    PubMed

    Waldecker, Lutz; Miller, Timothy A; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

  4. Differential electron scattering cross sections for the first optically forbidden and resonance transitions in Mg II, Zn II and Cd II

    NASA Technical Reports Server (NTRS)

    Williams, I. D.; Chutjian, A.; Mawhorter, R. J.

    1986-01-01

    Differential electron scattering cross sections have been measured for dipole-forbidden and resonance transitions in Mg II, Zn II and Cd II in the angular range theta = 4-17 deg at 50 eV. These provide the first recorded angular distributions for an optically forbidden transition. It is found that while the cross section for excitation of the 4s (2)S-3d(9)4s(2) (2)D transition in Zn II is small, those for the 3s (2)S-3d (2)D, 4s (2)S (unresolved lines) in Mg II, and the 5s (2)S-4d(9)5s(2) D in Cd II are comparable in magnitude with the cross sections for resonance excitation. In addition, for Cd II it is found that the allowed and forbidden transitions have very similar angular distributions, and it is proposed that excitation to the 2D state may be dominated by a virtual 'double-dipole' transition via the 2P state. Also, the total excitation cross section of the resonance 2P state in Cd II is a factor of four higher than that predicted by the Gaunt factor approximation, suggesting that the accepted value for the oscillator strength may be too low.

  5. Change in resonance parameters of a linear molecule as it bends: Evidence in electron-impact vibrational transitions of hot COS and CO2 molecules*

    NASA Astrophysics Data System (ADS)

    Hoshino, Masamitsu; Ishijima, Yohei; Kato, Hidetoshi; Mogi, Daisuke; Takahashi, Yoshinao; Fukae, Katsuya; Limão-Vieira, Paulo; Tanaka, Hiroshi; Shimamura, Isao

    2016-04-01

    Inelastic and superelastic electron-impact vibrational excitation functions of hot carbonyl sulphide COS (and hot CO2) are measured for electron energies from 0.5 to 3.0 eV (1.5 to 6.0 eV) and at a scattering angle of 90°. Based on the vibrational populations and the principle of detailed balance, these excitation functions are decomposed into contributions from state-to-state vibrational transitions involving up to the second bending overtone (030) in the electronically ground state. Both the 2Π resonance for COS around 1.2 eV and the 2Πu resonance for CO2 around 3.8 eV are shifted to lower energies as the initial vibrational state is excited in the bending mode. The width of the resonance hump for COS changes only little as the molecule bends, whereas that of the overall boomerang resonance for CO2 becomes narrower. The angular distribution of the electrons resonantly scattered by hot COS and hot CO2 is also measured. The different shapes depending on the vibrational transitions and gas temperatures are discussed in terms of the symmetry of the vibrational wave functions. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Impact of resonant magnetic perturbations on zonal modes, drift-wave turbulence and the L-H transition threshold

    NASA Astrophysics Data System (ADS)

    Leconte, M.; Diamond, P. H.; Xu, Y.

    2014-01-01

    We study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows and confinement in the framework of resistive drift-wave turbulence. This work was motivated, in parts, by experiments reported at the IAEA 2010 conference (Xu et al 2011 Nucl. Fusion 51 062030) which showed a decrease of long-range correlations during the application of RMPs. We derive and apply a zero-dimensional predator-prey model coupling the drift-wave-zonal-mode system (Leconte and Diamond 2012 Phys. Plasmas 19 055903) to the evolution of mean quantities. This model has both density-gradient drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. This model allows a description of the full L-H transition evolution with RMPs, including the mean sheared flow evolution. The key results are the following: (i) the L-I and I-H power thresholds both increase with RMP amplitude |\\tilde b_x| , the relative increase of the L-I threshold scales as \\Delta P_LI \\propto |\\tilde b_x|^2 \

  7. INTERACTION OF LASER RADIATION WITH MATTER: Numerical simulation of the quasi-resonance regime of a transient double resonance in a scheme with a common upper level at a large inhomogeneous broadening of quantum transitions

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. E.; Parshkov, O. M.

    2005-08-01

    The transient double resonance in the Λ scheme is numerically investigated in the case of a strong inhomogeneous spectral broadening of a medium and nonzero detunings of the frequencies of interacting pulses from the central frequencies of corresponding quantum transitions. It is shown that the signal pulse efficiently interacts with the pump pulse only when a certain condition imposed on the nonzero detunings is satisfied. If this condition is strongly violated at the input to the resonance medium, only a weak field of the rear edge of the input signal pulse mainly interacts with the pump field. In this case, two pulses with different frequencies are formed in the signal channel. This is explained by the specific interaction of radiation with Doppler-broadened quantum transitions.

  8. Low-temperature effects of resonance electronic states at transition-element impurities in the kinetic, magnetic, and acoustic properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Okulov, V. I.; Govorkova, T. E.; Gudkov, V. V.; Zhevstovskikh, I. V.; Korolyev, A. V.; Lonchakov, A. T.; Okulova, K. A.; Pamyatnykh, E. A.; Paranchich, S. Yu.

    2007-02-01

    New research results on phenomena due to the existence of electronic resonance energy levels and hybridized states at impurities of transition elements in semiconductors are presented. The data show that the thermal conductivity and ultrasonic parameters of mercury selenide containing iron impurities have resonance anomalies due to the influence of these impurities. A consistent and detailed interpretation is offered for the set of observed effects of hybridized states in mercury selenide with iron impurities. The proposed interpretation of the data obtained on other systems is discussed.

  9. Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4-delta.

    PubMed

    Wilson, Stephen D; Dai, Pengcheng; Li, Shiliang; Chi, Songxue; Kang, H J; Lynn, J W

    2006-07-06

    In conventional superconductors, the interaction that pairs the electrons to form the superconducting state is mediated by lattice vibrations (phonons). In high-transition-temperature (high-T(c)) copper oxides, it is generally believed that magnetic excitations might play a fundamental role in the superconducting mechanism because superconductivity occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Indeed, a sharp magnetic excitation termed 'resonance' has been observed by neutron scattering in a number of hole-doped materials. The resonance is intimately related to superconductivity, and its interaction with charged quasi-particles observed by photoemission, optical conductivity, and tunnelling suggests that it might play a part similar to that of phonons in conventional superconductors. The relevance of the resonance to high-T(c) superconductivity, however, has been in doubt because so far it has been found only in hole-doped materials. Here we report the discovery of the resonance in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta (T(c) = 24 K). We find that the resonance energy (E(r)) is proportional to T(c) via E(r) approximately 5.8k(B)T(c) for all high-T(c) superconductors irrespective of electron- or hole-doping. Our results demonstrate that the resonance is a fundamental property of the superconducting copper oxides and therefore must be essential in the mechanism of superconductivity.

  10. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  11. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  12. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  13. Conduction electrons as dissipation channel in friction experiments at the metal-metal transition of LSMO measured by contact-resonance atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pfahl, V.; Phani, M. K.; Büchsenschütz-Göbeler, M.; Kumar, A.; Moshnyaga, V.; Arnold, W.; Samwer, K.

    2017-01-01

    We report on friction measurements on a La0.6Sr0.4MnO3 (LSMO) thin film using atomic force microscopy cantilever contact-resonances. There is a contribution to the damping of the cantilever oscillations, which is caused by micro-sliding of the cantilever tip on the surface of the thin film. This frictional part decreases with temperature parallel to the increase in the resistivity of the thin film. The LSMO is well-known for a ferromagnetic to paramagnetic phase transition that occurs without changes in the rhombohedral (R-3c) crystalline structure. The magnetic transition at the Curie temperature TC ˜ 360 K is accompanied by a metal-to-metal transition with a large increase in electrical resistivity. The behavior of the cantilever damping constant demonstrates that there is a direct coupling between mechanical friction and the mobility of the electrons in the LSMO film.

  14. State transition analysis of spontaneous branch migration of the Holliday junction by photon-based single-molecule fluorescence resonance energy transfer.

    PubMed

    Okamoto, Kenji; Sako, Yasushi

    2016-02-01

    Branch migration of Holliday junction (HJ) DNA in solution is a spontaneous conformational change between multiple discrete states. We applied single-molecule fluorescence resonance energy transfer (smFRET) measurement to three-state branch migration. The photon-based variational Bayes-hidden Markov model (VB-HMM) method was applied to fluorescence signals to reproduce the state transition trajectories and evaluate the transition parameters, such as transition rate. The upper limit of time resolution suggested in simulation was nearly achieved for the state dynamics with relatively small FRET changes, and the distinctions in the populations of different states were successfully retrieved. We also discuss the suitability of the HJ as a standard sample for smFRET dynamics measurements and data analysis.

  15. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  16. Observation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium using optical-optical double-resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2015-10-01

    Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.

  17. Self-organised aggregation of a pair of particles with different resonant frequencies and electric dipole moments of transitions, controlled by an external quasi-resonant field

    SciTech Connect

    Slabko, V V; Tsipotan, A S; Aleksandrovsky, A S

    2013-05-31

    The influence of the oscillation phases of the dipole moments induced in metal nanoparticles and quantum dots by an external laser field on their interaction energy is considered. It is shown that a difference in resonant frequencies leads to the formation of additional minima and maxima, which are absent in the spectral dependence of the interaction energy of identical particles at similar orientations of the pair of particles with respect to the plane of polarisation of radiation. These features are due to the fact that the oscillation phase difference of the induced dipole moments of particles reaches values close to {pi}. (interaction of laser radiation with matter. laser plasma)

  18. Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    SciTech Connect

    Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lang, J. C.; Islam, Z.; Lograsso, T.; Schlagel, D.; Pecharsky, V.; Gschneidner, K.; Canfield, P.; Harmon, B.; McQueeney, R.; Goldman, A.

    2008-02-21

    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd{sub 5}Ge{sub 4} and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90{sup o} from the c axis to the a axis when a magnetic field, H{sub sf} = 9 kOe, is applied along the c axis at T = 9 K. The magnetic space group changes from Pnm'a to Pn'm'a' for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition.

  19. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements.

    PubMed

    Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele

    2016-01-12

    Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.

  20. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  1. Mechanism-based inhibition reveals transitions between two conformational states in the action of lysine 5,6-aminomutase: a combination of electron paramagnetic resonance spectroscopy, electron nuclear double resonance spectroscopy, and density functional theory study.

    PubMed

    Chen, Yung-Han; Maity, Amarendra N; Frey, Perry A; Ke, Shyue-Chu

    2013-01-16

    An "open"-state crystal structure of lysine 5,6-aminomutase suggests that transition to a hypothetical "closed"-state is required to bring the cofactors adenosylcobalamin (AdoCbl) and pyridoxal-5'-phosphate (PLP) and the substrate into proximity for the radical-mediated 1,2-amino group migration. This process is achieved by transaldimination of the PLP-Lys144β internal aldimine with the PLP-substrate external aldimine. A closed-state crystal structure is not available. UV-vis and electron paramagnetic resonance studies show that homologues of substrate D-lysine, 2,5-DAPn, 2,4-DAB, and 2,3-DAPr bind to PLP as an external aldimine and elicit the AdoCbl Co-C bond homolysis and the accumulations of cob(II)alamin and analogue-based radicals, demonstrating the existence of a closed state. (2)H- and (31)P-electron nuclear double resonance studies, supported by computations, show that the position for hydrogen atom abstraction from 2,5-DAPn and 2,4-DAB by the 5'-deoxyadenosyl radical occurs at the carbon adjacent to the imine, resulting in overstabilized radicals by spin delocalization through the imine into the pyridine ring of PLP. These radicals block the active site, inhibit the enzyme, and poise the enzyme into two distinct conformations: for even-numbered analogues, the cob(II)alamin remains proximal to and spin-coupled with the analogue-based radical in the closed state while odd-numbered analogues could trigger the transition to the open state of the enzyme. We provide here direct spectroscopic evidence that strongly support the existence of a closed state and its analogue-dependent transition to the open state, which is one step that was proposed to complete the catalytic turnover of the substrate lysine.

  2. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  3. High-temperature nuclear magnetic resonance study of phase transition kinetics in LiNaSO{sub 4}

    SciTech Connect

    Shakhovoy, R. A. E-mail: r.a.shakhovoy@gmail.com; Sarou-Kanian, V.; Rakhmatullin, A.; Véron, E.; Bessada, C.

    2015-12-28

    A new high-temperature NMR technique for measurements of the phase transition kinetics in solids has been developed. The technique allows measuring the time evolution of the volume of the appearing phase at controlled cooling rates. Developed method was applied to study the phase transition kinetics in the superionic conductor LiNaSO{sub 4}. It was revealed that the phase transition in LiNaSO{sub 4} is governed by the diffusion-controlled growth of nuclei (“germs”). An effect of the crystallite rearrangement in the LiNaSO{sub 4} powder after cooling through the phase transition was also revealed. This effect was studied by means of high-temperature XRD and NMR.

  4. Elastic relaxations associated with the Pm3m-R3c transition in LaA103 III: superattenuation of acoustic resonances

    SciTech Connect

    Darling, Timothy W; Carpenter, M A; Buckley, A; Taylor, P A; Mcknight, R E A

    2009-01-01

    Resonant Ultrasound Spectroscopy has been used to characterize elastic softening and a variety of new acoustic dissipation processes associated with the Pm{bar 3}m {leftrightarrow} R{bar 3}c transition in single crystal and ceramic samples of LaAlO{sub 3}. Softening of the cubic structure ahead of the transition point is not accompanied by an increase in dissipation but follows different temperature dependences for the bulk modulus, 1/3(C{sub 11} + 2C{sub 12}), and the shear components 1/2(C{sub 11}-C{sub 12}) and C{sub 44} as if the tilting instability contains two slightly different critical temperatures. The transition itself is marked by the complete disappearance of resonance peaks (superattenuation), which then reappear below {approx}700 K in spectra from single crystals. Comparison with low frequency, high stress data from the literature indicate that the dissipation is not due to macroscopic displacement of needle twins. An alternative mechanism, local bowing of twin walls under low dynamic stress, is proposed. Pinning of the walls with respect to this displacement process occurs below {approx}350 K. Anelasticity maps, analogous to plastic deformation mechanism maps, are proposed to display dispersion relations and temperature/frequency/stress fields for different twin wall related dissipation mechanisms. An additional dissipation process, with an activation energy of 43 {+-} 6 kJ.mole{sup -1}, occurs in the vicinity of 250 K. The mechanism for this is not known, but it is associated with C{sub 44} and therefore appears to be related in some way to the cubic {leftrightarrow} rhombohedral transition at {approx}817 K. Slight softening in the temperature interval {approx}220 {yields} 70 K of resonance peaks determined by shear elastic constants hints at an incipient E{sub g} ferroelastic instability in LaAlO{sub 3}. The softening interval ends with a further dissipation peak at {approx} 60 K, the origin of which is discussed in terms of freezing of atomic

  5. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kořínek, R.; Mikulka, J.; Hřib, J.; Hudec, J.; Havel, L.; Bartušek, K.

    2017-02-01

    The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  6. Reply to ``Comment on `Unusual magnetic transitions and nature of magnetic resonance spectra in oxide glasses containing gadolinium' ''

    NASA Astrophysics Data System (ADS)

    Kliava, Janis; Malakhovskii, Alexander; Edelman, Irina; Potseluyko, Anatoly; Melnikova, Svetlana; Petrakovskaja, Eleonora; Zarubina, Tat'Jana; Petrovskii, Gurii; Bruckental, I.; Yeshurun, Y.

    2006-07-01

    In this Reply we show that, contrary to the suggestion of Dubroca, Hack, and Hummel (DHH), the feature observed at ca. 55K in the magnetic susceptibility of gadolinium-containing oxide glasses [as in our earlier paper, Kliava Phys. Rev. B 71, 104406 (2005)] cannot be due to a magnetic transition in oxygen contaminant. In support of this statement, we supply transformed data at low Gd content as well as magnetization curves for a series of glasses containing dysprosium oxide measured with the same superconducting quantum interference device as in our earlier paper. In all these cases the feature in question is absent. Thus, our previous assignment of the 55K feature to a paramagnetic-to-ferromagnetic transition in Gd clusters in the glass remains the only one consistent with the experimental results.

  7. New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions.

    PubMed

    Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria

    2015-07-15

    Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

  8. Reactive scattering of F+HD -> HF(v,J)+D: HF(v,J) nascent product state distributions and evidence for quantum transition state resonances

    SciTech Connect

    Harper, Warren W. ); Nizkorodov, Sergey A.; Nesbitt, David

    2001-12-01

    Single collision reactive scattering dynamics of F+ HDHF(v,J)+ D have been investigated exploiting high-resolution (0.0001 cm?1) infrared laser absorption for quantum state resolved detection of nascent HF(v,J) product states. State resolved Doppler profiles are recorded for a series of HF rovibrational transitions and converted into state resolved fluxes via density-to-flux analysis, yielding cross-section data for relative formation of HF(v,J) at Ecom0.6(2), 1.0(3), 1.5(3), and 1.9(4) kcal/mol. State resolved HF(v,J) products at all but the lowest collision energy exhibit Boltzmann-type populations, characteristic of direct reactive scattering dynamics. At the lowest collision energy[Ecom0.6(2) kcal/mol], however, the HF(v= 2,J) populations behave quite anomalously, exhibiting a nearly''flat'' distribution out to J11 before dropping rapidly to zero at the energetic limit. These results provide strong experimental support for quantum transition state resonance dynamics near Ecom0.6 kcal /mol corresponding classically to H atom chattering between the F and D atoms, and prove to be in remarkably quantitative agreement with theoretical wave packet predictions by Skodje et al.[J. Chem. Phys. 112, 4536 (2000)]. These fully quantum state resolved studies therefore nicely complement the recent crossed beam studies of Dong et al.[J. Chem. Phys. 113, 3633 (2000)], which confirm the presence of this resonance via angle resolved differential cross-section measurements. The observed quantum state distributions near threshold also indicate several rotational states in the HF(v= 3) vibrational manifold energetically inaccessible to F(2P3/2) reagent, but which are consistent with a minor (5%) nonadiabatic contribution from spin?orbit excited F*(2P1/2).?2002 American Institute of Physics.

  9. Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    NASA Astrophysics Data System (ADS)

    Kónya, G.; Szirmai, G.; Domokos, P.

    2011-11-01

    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.

  10. Spin Texture and Spin Dynamics in Superconducting Cuprates Near the Phase Transition Revealed by the Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kochelaev, B. I.

    2016-12-01

    A short review of experimental results and theoretical models of the spin texture and spin dynamics in superconducting cuprates near the phase transition developed on the basis of the EPR measurements is given. Distortions of the long-range antiferromagnetic order in the YBa_2Cu_3O_{6+y} were investigated for y=0.1-0.4 using Yb^{3+} ions as the EPR probe. In weakly doped samples with y=0.1, a strong anisotropy of the EPR linewidth is revealed which was related to the indirect spin-spin interaction between the ytterbium ions via antiferromagnetic spin-waves. In the case of the doping level y=0.2-0.3, the EPR signal consists of narrow and broad lines, which were attributed to formation of charged domain walls. A theoretical analysis is well consistent with experimental results for the case of coplanar elliptical domain walls. A discussion of possible reasons for the observed unusual planar oxygen isotope effect on a critical temperature T_c related to charge heterogeneity in underdoped cuprates is given.

  11. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    SciTech Connect

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-14

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the

  12. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  13. Stable tetrabenzo-Chichibabin's hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms.

    PubMed

    Zeng, Zebing; Sung, Young Mo; Bao, Nina; Tan, Davin; Lee, Richmond; Zafra, José L; Lee, Byung Sun; Ishida, Masatoshi; Ding, Jun; López Navarrete, Juan T; Li, Yuan; Zeng, Wangdong; Kim, Dongho; Huang, Kuo-Wei; Webster, Richard D; Casado, Juan; Wu, Jishan

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin's hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin's hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl(3) and/or concentrated H(2)SO(4). The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm).

  14. Use of surface plasmon resonance for real-time measurements of the global conformational transition in human phenylalanine hydroxylase in response to substrate binding and catalytic activation.

    PubMed

    Flatmark, T; Stokka, A J; Berge, S V

    2001-07-15

    In the present study the optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the reversible binding of the pterin cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and l-phenylalanine (l-Phe) to human phenylalanine hydroxylase (hPAH). When BH(4) (241 Da) was injected over the sensor chip with immobilized tetrameric wt-hPAH a positive DeltaRU response was observed with a square-wave type of sensorgram and a saturable response (about 25 RU/(pmol subunit/mm(2)) with a [S](0.5) value of 5.6 +/- 0.8 microM for the pterin cofactor. The rapid on-and-off rates were, however, not possible to determine. By contrast, when l-Phe (165 Da) was injected a time-dependent increase in RU (up to about 3 min) and a much higher saturable DeltaRU response (about 75 RU/(pmol subunit/mm(2)) at 2 mM l-Phe) than expected (i.e., <5 RU/(pmol subunit/mm(2))) from the low molecular mass of l-Phe were observed in the sensorgram. The half-time for the on-and-off rates were 6 +/- 2 and 9 +/- 1 s, respectively, at 2 mM l-Phe. The steady-state (apparent equilibrium) response revealed a hyperbolic concentration dependence with a [S](0.5) value of 98 +/- 7 microM. The [S](0.5) values of both pterin cofactor and l-Phe were lower than those determined by steady-state enzyme kinetic analysis. Evidence is presented that the DeltaRU response to l-Phe is accounted for by the global conformational transition which occurs in the enzyme upon l-Phe binding, i.e., by the slow reversible transition from a low activity state ("T"-state) to a high activity state ("R"-state) characteristic of this hysteretic enzyme.

  15. Double Resonance Sub-Doppler Study of the Allowed and DeltaK = -3 Forbidden Q(3, 3) Transitions to the nu2 Vibrational State of 14NH3.

    PubMed

    Fichoux; Khelkhal; Rusinek; Legrand; Herlemont; Urban

    1998-11-01

    The IR-IR sub-Doppler double resonance and standard saturation sideband spectroscopy have been used to measure the allowed and Deltak = -3 forbidden transitions to the nu2 vibrational level of 14NH3. The IR-IR double resonance technique has made it possible to observe quadrupole hyperfine structures which correspond to the sums as well as differences of the -3Q(3, 3) and Q(3, 3) hyperfine components. The "sum" and "difference" double resonance frequencies have been measured with accuracy better than 30 and 5 kHz, respectively. In addition to this, the hyperfine structure of the allowed Q(3, 3) transition has been independently measured using the "standard" saturation sideband spectroscopy with accuracy better than 15 kHz. A simultaneous analysis of all measured data provides an improved set of effective nuclear quadrupole and spin-rotation parameters for the excited nu2 vibrational state and frequencies of the "pure" rotation-vibration transitions deperturbed from the hyperfine effects at the experimental sample pressure of about 3 mTorr, including a very precise zero pressure value of the "forbidden" spacing between energies of the nu2 ||s, J = 3, K = 3> and ||s, J = 3, K = 0> pure rotational levels of 2883.6795(19) MHz [0.096189194(63) cm-1]. Copyright 1998 Academic Press.

  16. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  17. Observation of the Symmetry-Forbidden 5σu→kσu CS2 Transition: A Vibrationally Driven Photoionization Resonance

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.

    2004-04-01

    Vibrationally resolved photoelectron spectroscopy and Schwinger calculations are used to characterize a new resonance phenomenon in the 5σu→kσu photoionization of CS2. This resonant channel is symmetry forbidden, yet is observable because it is activated by the antisymmetric stretching vibration. In addition, we show that a Franck-Condon breakdown occurs even though the energy dependence of the cross section is insensitive to geometry changes, which is unprecedented in photoionization.

  18. The Nucleon Resonance Program at Jlab

    SciTech Connect

    Ralf W. Gothe

    2006-02-01

    The status of the program to study baryon resonances at Jefferson Lab will be exemplified by the latest results on resonance parameters and transition form factors in single and double-pion production as well as kaon-hyperon decays.

  19. A new model for broadband waveguide to microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1986-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  20. Electromagnetic Transition from the 4+ to 2+ Resonance in Be8 Measured via the Radiative Capture in He4+He4

    NASA Astrophysics Data System (ADS)

    Datar, V. M.; Chakrabarty, D. R.; Kumar, Suresh; Nanal, V.; Pastore, S.; Wiringa, R. B.; Behera, S. P.; Chatterjee, A.; Jenkins, D.; Lister, C. J.; Mirgule, E. T.; Mitra, A.; Pillay, R. G.; Ramachandran, K.; Roberts, O. J.; Rout, P. C.; Shrivastava, A.; Sugathan, P.

    2013-08-01

    An earlier measurement on the 4+ to 2+ radiative transition in Be8 provided the first electromagnetic signature of its dumbbell-like shape. However, the large uncertainty in the measured cross section does not allow a stringent test of nuclear structure models. This Letter reports a more elaborate and precise measurement for this transition, via the radiative capture in the He4+He4 reaction, improving the accuracy by about a factor of 3. Ab initio calculations of the radiative transition strength with improved three-nucleon forces are also presented. The experimental results are compared with the predictions of the alpha cluster model and ab initio calculations.

  1. Distinguishing S-plus-minus and S-plus-plus electron pairing symmetries by neutron spin resonances in superconducting Sodium-Iron-Cobalt-Arsenic (transitional temperature = 18 Kelvin)

    SciTech Connect

    Das, Tanmoy; Balatsky, Alexander V.; Zhang, Chenglin; Li, Haifeng; Su, Yiki; Nethertom, Tucker; Redding, Caleb; Carr, Scott; Schneidewind, Astrid; Faulhaber, Enrico; Li, Shiliang; Yao, Daoxin; Bruckel, Thomas; Dai, Pengchen; Sobolev, Oleg

    2012-06-05

    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.

  2. Power Enhancement of a Rubidium Vapor Laser With a Master Oscillator Power Amplifier (Postprint)

    DTIC Science & Technology

    2009-09-15

    Phys. Lett. 34, 655-658 (1979). 5 . W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett...Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31 , 353-355 (2006). 10. Y. Wang, T. Kasamatsu, Y.Zheng, H...OPTICS EXPRESS 8050 #94531 - $15.00 USD Received 7 Apr 2008; revised 4 May 2008; accepted 7 May 2008; published 19 May 2008 (DPAL) started rapidly gaining

  3. Electromagnetic properties of baryon resonances

    NASA Astrophysics Data System (ADS)

    Tiator, Lothar

    2013-10-01

    Longitudinal and transverse transition form factors for most of the four-star nucleon resonances have been obtained from high-quality cross section data and polarization observables measured at MAMI, ELSA, BATES, GRAAL and CEBAF. As an application, we further show how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown and compared for the Roper and S11 nucleon resonances.

  4. Parametric Resonance Revisited

    NASA Astrophysics Data System (ADS)

    van den Broeck, C.; Bena, I.

    The phenomenon of parametric resonance is revisited. Several physical examples are reviewed and an exactly solvable model is discussed. A mean field theory is presented for globally coupled parametric oscillators with randomly distributed phases. A new type of collective instability appears, which is similar in nature to that of noise induced phase transitions.

  5. High-resolution {sup 13}C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    SciTech Connect

    Bouhrara, M.; Saih, Y.; Waagberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2011-09-01

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  6. Time-resolved resonant soft x-ray diffraction with free-electron lasers: Femtosecond dynamics across the Verwey transition in magnetite

    SciTech Connect

    Pontius, N.; Kachel, T.; Schuessler-Langeheine, C.; Schlotter, W. F.; Beye, M.; Sorgenfrei, F.; Wurth, W.; Chang, C. F.; Foehlisch, A.; Berglund, M.; Metcalf, P.

    2011-05-02

    Resonant soft x-ray diffraction (RSXD) with femtosecond (fs) time resolution is a powerful tool for disentangling the interplay between different degrees of freedom in strongly correlated electron materials. It allows addressing the coupling of particular degrees of freedom upon an external selective perturbation, e.g., by an optical or infrared laser pulse. Here, we report a time-resolved RSXD experiment from the prototypical correlated electron material magnetite using soft x-ray pulses from the free-electron laser FLASH in Hamburg. We observe ultrafast melting of the charge-orbital order leading to the formation of a transient phase, which has not been observed in equilibrium.

  7. Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser.

    PubMed

    Chen, Hao; Zhao, Ting; Yang, Hao; Zhang, Le; Zhou, Tianyuan; Tang, Dingyuan; Wong, Chingping; Chen, Yung-Fu; Shen, Deyuan

    2016-11-28

    We presented a Ho:LuAG ceramic laser in-band pumped by a narrow emission line-width Tm fiber laser at 1907 nm. All of potential transitions between 5I7 and 5I8 manifold were discussed to form the Ho's in-band-pump energy level systems, which were not described in details earlier. For the emission band centered at ~2095 nm, both laser absorption and emission transition separately consisted of two groups were first analyzed and observed. Using output couplers (OCs) with different transmittances (T = 6, 10 and 20%), the similar ~0.5 W continuous-wave (CW) output power under an incident pump power of ~4.9 W was obtained, with twin (or triplet) emission bands respectively. The blue shift of center emission wavelengths was observed with the increase of transmittances.

  8. Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide.

    PubMed

    Kobayashi, Takumi; Akamatsu, Daisuke; Nishida, Yoshiki; Tanabe, Takehiko; Yasuda, Masami; Hong, Feng-Lei; Hosaka, Kazumoto

    2016-05-30

    We demonstrate a compact and robust method for generating a 399-nm light resonant on the 1S0 - 1P1 transition in ytterbium using a single-pass periodically poled LiNbO3 waveguide for second harmonic generation (SHG). The obtained output power at 399 nm was 25 mW when a 798-nm fundamental power of 380 mW was coupled to the waveguide. We observed no degradation of the SHG power for 13 hours with a low power of 6 mW. The obtained SHG light has been used as a seed light for injection locking, which provides sufficient power for laser cooling ytterbium.

  9. Excitation cross sections for the ns 2S yields np 2P resonance transitions in Mg(+) (n = 3) and Zn(+) (n = 4) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Mitroy, J.; Tayal, S. S.; Henry, Ronald J. W.; Man, K.-F.; Mawhorter, R. J.; Williams, I. D.

    1993-01-01

    Electron-excitation cross sections are reported for the 3s 2S yields 3p 2P(h, k) resonance transition in Mg(+) at energies from threshold (4.43 eV) to approximately 9 times threshold (40.0 eV). The electron-energy-loss merged-beams technique used in these measurements is described in detail. In addition, the method of separating contributions of the elastically scattered (Coulomb) and the inelastically scattered electrons in the present Mg(+) case and previously reported Zn(+) results is described. Comparisons in the experimental energy range are made for Mg(+) with the two five-state close-coupling theoretical calculations carried out herein, and with other published close-coupling, distorted-wave, and semiempirical calculations. The present Mg(+) cross sections and Zn(+) cross sections from earlier measurements are tabulated.

  10. Resonantly amplified vibronic symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.

    2001-05-01

    The energy dependence of the vibrational branching ratio for exciting one quantum of bending is determined for CO2 4σg-1 photoionization. This nominally forbidden transition becomes allowed for a photoionization transition as a result of instantaneous symmetry breaking due to zero point motion, and is strongly enhanced by a continuum shape resonance.

  11. Intense, narrow atomic-clock resonances.

    PubMed

    Jau, Y-Y; Post, A B; Kuzma, N N; Braun, A M; Romalis, M V; Happer, W

    2004-03-19

    We present experimental and theoretical results showing that magnetic resonance transitions from the "end" sublevels of maximum or minimum spin in alkali-metal vapors are a promising alternative to the conventional 0-0 transition for small-size gas-cell atomic clocks. For these "end resonances," collisional spin-exchange broadening, which often dominates the linewidth of the 0-0 resonance, decreases with increasing spin polarization and vanishes for 100% polarization. The end resonances also have much stronger signals than the 0-0 resonance, and are readily detectable in cells with high buffer-gas pressure.

  12. Resonance Raman and photophysical studies of transition metal complexes in solution and entrapped in zeolites. Progress report, August 1, 1990--January 1993

    SciTech Connect

    Kincaid, J.R.

    1993-09-01

    Area of most intense activity involves study of effects of entrapment of ruthenium(II)-polypyridyl complexes within the supercages of Y-zeolite. Results of initial studies document alterations in photophysical properties of entrapped complexes and provide insight into the factors responsible for these changes. A second major activity was to undertake an investigation of the feasibility of entrapment of metallophthalocyanines within the Y-zeolite supercages. Initial problems in preparative methodology used for these systems have been overcome and several systems have now been prepared and purified for projected photoredox studies. A third major objective was to develop and utilize a sound interpretive framework for resonance Raman (RR) and time-resolved RR (TR{sup 3}) methods for investigating subtle perturbations in ground- and {sup 3}MLCT-state electronic structure which might be induced by substituent or environmentally-induced asymmetry, effects which could possibly lead to critical functional alterations.

  13. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: probing first-row transition-metal M-edges in chemical complexes.

    PubMed

    Wang, Hongxin; Young, Anthony T; Guo, Jinghua; Cramer, Stephen P; Friedrich, Stephan; Braun, Artur; Gu, Weiwei

    2013-07-01

    X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d-d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed.

  14. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  15. Self-diffusion nuclear magnetic resonance, microstructure transitions, and solubilization capacity of phytosterols and cholesterol in Winsor IV food-grade microemulsions.

    PubMed

    Spernath, Aviram; Yaghmur, Anan; Aserin, Abraham; Hoffman, Roy E; Garti, Nissim

    2003-04-09

    Microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. The incorporation of molecular phytosterols, cholesterol-lowering agents, in food products is of great interest to the food industry. In this work is demonstrated the use of water dilutable food-grade microemulsions consisting of ethoxylated sorbitan ester (Tween 60), water, R-(+)-limonene, ethanol, and propylene glycol as vehicles for enhancing the phytosterols solubilization. Phytosterols were solubilized up to 12 times more than the dissolution capacity of the oil [R-(+)-limonene] for the same compounds. The solubilization capacity of phytosterols and cholesterol along a dilution line in a pseudo-ternary phase diagram [on this dilution line the weight ratio of R-(+)-limonene/ethanol/Tween 60 is constant at 1:1:3] was correlated to the microstructure transitions along the dilution line. Structural aspects were studied by self-diffusion NMR spectroscopy. The ability of phytosterols to compete with cholesterol for penetration into bile salt micelles in the gut may be limited to rich aqueous systems (O/W microemulsion).

  16. Low-temperature spin-state transition in LaCoO{sub 3} investigated using resonant x-ray absorption at the Co K edge

    SciTech Connect

    Medarde, M.; Pomjakushina, E.; Conder, K.; Dallera, C.; Grioni, M.; Voigt, J.; Podlesnyak, A.; Neisius, Th.; Tjernberg, O.; Barilo, S. N.

    2006-02-01

    LaCoO{sub 3} displays two broad anomalies in the DC magnetic susceptibility {chi}{sup DC}, occurring, respectively, around 50 K and 500 K. We have investigated the first of them within the 10 Ktransition from a lower to a higher spin state, have been analyzed using a minimal model including the Co 3d and O 2p hybridization in the initial state. The temperature dependence of the Co magnetic moment obtained from the estimated e{sub g} and t{sub 2g} occupations could be satisfactorily reproduced. Also, the decrease of the Co 3d and O 2p hybridization by increasing temperature obtained from this simple model compares favorably with the values estimated from thermal evolution of the crystallographic structure.

  17. Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900-1550 nm region.

    PubMed

    Takaya, Tomohisa; Iwata, Koichi

    2016-07-21

    Charge transfer and charge delocalisation processes play key roles in the functions of large biomolecular systems and organic/inorganic devices. Many of the short-lived transients involved in these processes can be sensitively detected by monitoring their low-energy electronic transitions in the near-IR region. Ultrafast time-resolved near-IR Raman spectroscopy is a promising tool for investigating the structural dynamics of the short-lived transients as well as their electronic dynamics. In this study, we have developed a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer using the Raman pump pulse at 1190 nm and a broadband probe pulse covering the 900-1550 nm region. Spectral and temporal instrument responses of the spectrometer are estimated to be 5 cm(-1) and 120 fs, respectively. Time-resolved near-IR stimulated Raman spectra of poly(3-dodecylthiophene) (P3DDT) are recorded in toluene solution for investigating its structural changes following the photoexcitation. The spectra strongly indicate conformational changes of P3DDT in excited states associated with the elongation of its effective conjugation length. The results on P3DDT fully demonstrate the effectiveness of the newly developed femtosecond time-resolved near-IR stimulated Raman spectrometer.

  18. Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6 - x Nd x Sr0.3Mn1.1O3-δ ceramics

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Prokopenko, V. K.; Revenko, Yu. F.; Kisel, N. G.; Kamenev, V. I.; Sil'cheva, A. G.; Ledenev, N. A.; Burkhovetskii, V. V.; Levchenko, G. G.

    2014-05-01

    The structure, lattice imperfection, and properties of ceramic samples La0.6 - x Nd x Sr0.3Mn1.1O3-δ ( x = 0-0.4) have been investigated using the X-ray diffraction, resistive, magnetic (χac, 55Mn NMR), magnetoresistive and microscopic methods. It has been shown that there is a satisfactory agreement between the concentration decrease in the lattice parameters a of the rhombohedral ( x = 0, 0.1, 0.2) and cubic ( x = 0.3, 0.4) perovskite structures and the average ionic radii for the lattice containing anion vacancies, cation vacancies, and nanostructured clusters with Mn2+ ions in A-positions. With an increase in the neodymium concentration x, the vacancy-type imperfection increases, the cluster-type imperfection decreases, the temperatures of metal-semiconductor phase transition T ms and ferromagnetic-paramagnetic phase transition T C decrease, and the content of the ferromagnetic phase decreases. The anomalous hysteresis is associated with the appearance of unidirectional exchange anisotropy induced in a clustered perovskite structure consisting of a ferromagnetic matrix and a planar antiferromagnetic cluster coherently coupled with it. An analysis of the asymmetrically broadened 55Mn NMR spectra has revealed a high-frequency electronic double exchange (Mn3+-O2--Mn4+) ↔ (Mn4+-O2--Mn3+) and an inhomogeneity of the magnetic and charge states of manganese due to the heterogeneous environment of the manganese ions by other ions and defects. The observed changes in the resonant frequency and width of the resonance curve are caused by changes in the ratio Mn3+/Mn4+ and magnetic inhomogeneity. An increase in the neodymium concentration x leads to a decrease in the ferromagnetic phase content determined from the dependences 4π Nχac( T) and the 55Mn NMR curves. The phase diagram characterizes an interrelation between the composition, the imperfection of the structure, and the transport, magnetic, and magnetoresistive properties of lanthanum neodymium manganite

  19. A new model for broadband waveguide-to-microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1988-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  20. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  1. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  2. Nonlinear resonance

    NASA Astrophysics Data System (ADS)

    Kevorkian, J.

    This report discusses research in the area of slowly varying nonlinear oscillatory systems. Some of the topics discussed are as follows: adiabatic invariants and transient resonance in very slowly varying Hamiltonian systems; sustained resonance in very slowly varying Hamiltonian systems; free-electron lasers with very slow wiggler taper; and bursting oscillators.

  3. Nonlinear resonance

    NASA Astrophysics Data System (ADS)

    Kevorkian, J.; Pernarowski, Mark; Bosley, David L.

    1990-04-01

    The subjects discussed are: transient and sustained resonance for systems with very slowly varying parameters; free electron lasers with very slow wiggler taper; and bursting oscillations in biological systems. Plans are discussed for: FEL applications; transient and sustained resonance; and bursting oscillations.

  4. Acoustic Resonators

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-11-01

    Recently my collection of historical physics teaching apparatus was given a group of 19th-century tuning forks on resonant boxes. Figure 1 shows the smallest fork sitting on the largest one. The large tuning fork oscillates at 128 Hz and has a resonator that is 57.9 cm long. The small fork has a frequency 10 times higher, but its resonator has a length of 11.0 cm instead of the 5.8 cm that simple scaling would suggest. How is this possible?

  5. πππγ* amplitude and the resonant ρπγ* transition from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; Shultz, Christian J.; Thomas, Christopher E.; Wilson, David J.

    2016-06-01

    We present a determination of the $P$-wave $\\pi\\pi\\to\\pi\\gamma^\\star$ transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-L\\"uscher formalism. We determine the amplitude for a range of discrete values of the $\\pi\\pi$ energy and virtuality of the photon, and observe the expected dynamical enhancement due to the $\\rho$ resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the $\\rho$ pole extract the $\\rho\\to\\gamma^\\star\\pi$ transition form factor. This calculation, at $m_\\pi\\approx 400$~MeV, is the first time a form factor of a hadron resonance has been calculated within a first-principles approach to QCD.

  6. Identifying non-resonant Kepler planetary systems

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Ford, Eric B.

    2012-02-01

    The Kepler mission has discovered a plethora of multiple transiting planet candidate exosystems, many of which feature putative pairs of planets near mean motion resonance commensurabilities. Identifying potentially resonant systems could help guide future observations and enhance our understanding of planetary formation scenarios. We develop and apply an algebraic method to determine which Kepler two-planet systems cannot be in a first-fourth order resonance, given the current, publicly available data. This method identifies when any potentially resonant angle of a system must circulate. We identify and list 70 near-resonant systems which cannot actually reside in resonance, assuming a widely used formulation for deriving planetary masses from their observed radii and that these systems do not contain unseen bodies that affect the interactions of the observed planets. This work strengthens the argument that a high fraction of exoplanetary systems may be near resonance but not actually in resonance.

  7. Site-directed spin labeling electron paramagnetic resonance study of the calcium-induced structural transition in the N-domain of human cardiac troponin C complexed with troponin I.

    PubMed

    Ueki, Shoji; Nakamura, Motoyoshi; Komori, Tomotaka; Arata, Toshiaki

    2005-01-11

    Calcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y. (2003) Nature 424, 35-41]. In contrast to skeletal TnC, Ca(2+)-binding site I (an EF-hand motif that consists of an A helix-loop-B helix motif) is inactive in cardiac TnC. The question arising from comparisons with skeletal TnC is how both helices move according to Ca(2+) binding or interact with TnI in cardiac TnC. In this study, we examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a cardiac TnC monomer state and TnC-TnI binary complex by means of site-directed spin labeling electron paramagnetic resonance (EPR). Doubly spin-labeled TnC mutants were prepared, and the spin-spin distances were estimated by analyzing dipolar interactions with the Fourier deconvolution method. An interspin distance of 18.4 A was estimated for mutants spin labeled at G42C on the B helix and C84 on the D helix in a Mg(2+)-saturated monomer state. The interspin distance between Q58C on the C helix and C84 on the D helix was estimated to be 18.3 A under the same conditions. Distance changes were observed by the addition of Ca(2+) ions and the formation of a complex with TnI. Our data indicated that the C helix moved away from the D helix in a distinct Ca(2+)-dependent manner, while the B helix did not. A movement of the B helix by interaction with TnI was observed. Both Ca(2+) and TnI were also shown to be essential for the full opening of the N-domain in cardiac TnC.

  8. Polarization effects in recoil-induced resonances

    NASA Astrophysics Data System (ADS)

    Lazebnyi, D. B.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.

    2017-01-01

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  9. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  10. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  11. Multiquark resonances

    DOE PAGES

    Esposito, A.; Pilloni, A.; Polosa, Antonio D.

    2016-12-02

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building.more » Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.« less

  12. Multiquark resonances

    SciTech Connect

    Esposito, A.; Pilloni, A.; Polosa, Antonio D.

    2016-12-02

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  13. Multiquark resonances

    NASA Astrophysics Data System (ADS)

    Esposito, A.; Pilloni, A.; Polosa, A. D.

    2017-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  14. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  15. Autostereogram resonators

    NASA Astrophysics Data System (ADS)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  16. Pulsed electron-nuclear-electron triple resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomann, Hans; Bernardo, Marcelino

    1990-05-01

    A new experimental technique, pulsed electron-nuclear-electron triple resonance spectroscopy, is demonstrated. It is based on a modification of the pulse sequence for electron-nuclear double resonance (ENDOR) in which two EPR and one NMR transition are irradiated. The irradiation of one EPR transition is detected via a second EPR transition. The nuclear hyperfine coupling, which separates these EPR transition frequencies, is the irradiated NMR transition. The major advantages of triple resonance spectroscopy include the ability to resolve overlapping nuclear resonances in the ENDOR spectrum and a more direct quantitative assignment of nuclear hyperfine and quadrupole couplings. The triple resonance experiment is an alternative to the recently proposed method of employing rapid magnetic field jumps between microwave pulses for generating hyperfine selective ENDOR spectra.

  17. Measuring the acoustic response of Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Marti, Arturo C.; Vogt, Patrik; Kasper, Lutz; Quarthal, Dominik

    2015-04-01

    Many experiments have been proposed to investigate acoustic phenomena in college and early undergraduate levels, in particular the speed of sound,1-9 by means of different methods, such as time of flight, transit time, or resonance in tubes. In this paper we propose to measure the acoustic response curves of a glass beaker filled with different gases, used as an acoustic resonator. We show that these curves expose many interesting peaks and features, one of which matches the resonance peak predicted for a Helmholtz resonator fairly well, and gives a decent estimate for the speed of sound in some cases. The measures are obtained thanks to the capabilities of smartphones.

  18. Noise in nonlinear nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Cleland, Andrew

    2006-03-01

    Noise limits the sensitivity of linear sensors, in a manner that is well understood, but also limits nonlinear systems in a less trivial way. Nonlinear nanomechanical resonators present interesting possibilities for the sensitive detection of forces and masses, but the noise limitations have not been explored much to date. Here we report on noise effects on nonlinear resonators operated in regimes where they have either one or two stable attractors. We have made quantitative measurements of the nonlinear response of a radiofrequency mechanical resonator with very high quality factor, measuring the noise-free transitions between the two attractors, and find good agreement with theory. We measure the transition rate response to controlled levels of white noise, and extract the basin activation energy. This allows us to obtain precise values for the relevant frequencies and the cubic nonlinearity in the Duffing oscillator, with applications to parametric sensing, in particular mass sensing. References: ``Noise-enabled precision measurements of a Duffing nanomechanical resonator,'' J.S. Aldridge and A.N. Cleland, Phys. Rev. Lett. 94, 156403 (2005). ``Thermomechanical noise limits on parametric sensing with nanomechanical resonators,'' A.N. Cleland, New J. Phys. 7, 235 (2005).

  19. Demographics of Resonances in Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin; Conaway, James L.; MacDonald, Mariah G.; Sallee, Victor

    2016-10-01

    NASA's Kepler Space Telescope has identified ~700 systems of multiple transiting exoplanets containing ~1700 planets. Most of these multi-transiting systems have 3-5 planets small planets with periods of roughly 5-50 days and are known as Systems with Tightly-spaced Inner Planets (STIPs). These information-rich exoplanetary systems have precisely measured period ratios which allows for the identification and characterization of orbital mean motion resonances. Improved understanding of the resonant populations will reveal much about the formation and evolution of planetary systems. Lissauer, Ragozzine, et al. 2011 found that most Kepler systems were not in resonance, but that there was a small excess of planets wide of resonance. We present new analyses that rigorously identify the frequency of planets in multiple resonances (including three-body resonances) and thus identify many specific new results on the demographics of resonances. We also show that the apparent over-abundance of resonances can be attributed to a difference in inclinations (potentially from dissipation) with implications for the true underlying frequency of resonant systems. We compare the period ratio distribution of Kepler (corrected for inclination biases) to Radial Velocity (RV) surveys and conclude that RV systems are often missing small intermediate planets. This has serious implications for the completeness of RV identification of planets in STIPs.

  20. Negative refraction using Raman transitions and chirality

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2011-11-15

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  1. Simulation methods for looping transitions.

    PubMed

    Gaffney, B J; Silverstone, H J

    1998-09-01

    Looping transitions occur in field-swept electron magnetic resonance spectra near avoided crossings and involve a single pair of energy levels that are in resonance at two magnetic field strengths, before and after the avoided crossing. When the distance between the two resonances approaches a linewidth, the usual simulation of the spectra, which results from a linear approximation of the dependence of the transition frequency on magnetic field, breaks down. A cubic approximation to the transition frequency, which can be obtained from the two resonance fields and the field-derivatives of the transition frequencies, along with linear (or better) interpolation of the transition-probability factor, restores accurate simulation. The difference is crucial for accurate line shapes at fixed angles, as in an oriented single crystal, but the difference turns out to be a smaller change in relative intensity for a powder spectrum. Spin-3/2 Cr3+ in ruby and spin-5/2 Fe3+ in transferrin oxalate are treated as examples.

  2. Extraordinary acoustic transmission mediated by Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-01

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  3. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  4. Transition Probability and the ESR Experiment

    ERIC Educational Resources Information Center

    McBrierty, Vincent J.

    1974-01-01

    Discusses the use of a modified electron spin resonance apparatus to demonstrate some features of the expression for the transition probability per second between two energy levels. Applications to the third year laboratory program are suggested. (CC)

  5. Resonantly amplified vibronic symmetry breaking

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Rathbone, G. J.; Bozek, J. D.; Lucchese, R. R.

    2002-05-01

    In photoelectron spectroscopy, it is normally assumed that excitation of a single quantum of a non-totally symmetric vibrational mode is forbidden owing to symmetry constraints. Using vibrationally resolved photoelectron spectroscopy over a broad spectral range, we have shown that a previously overlooked mechanism can lead to these nominally forbidden transitions. Specifically, the photoelectron can mediate the oscillator strength for such a transition via resonantly amplified vibronic symmetry breaking, and this effect results from intrachannel rather than interchannel coupling. In our first experiments, we focused on bending excitation accompanying CO2 photoionization. Photoelectron spectroscopy on the CO_2^+(C^2Σ_g^+) state showed that the excitation of the (010) vibrational mode is mediated by a shape resonant continuum electron. The degree of vibrational excitation can be substantial, and extensions to other types of symmetry breaking are currently being investigated.

  6. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  7. Stochastic resonance across bifurcation cascades

    NASA Astrophysics Data System (ADS)

    Nicolis, C.; Nicolis, G.

    2017-03-01

    The classical setting of stochastic resonance is extended to account for parameter variations leading to transitions between a unique stable state, bistability, and multistability regimes, across singularities of various kinds. Analytic expressions for the amplitude and the phase of the response in terms of key parameters are obtained. The conditions for optimal responses are derived in terms of the bifurcation parameter, the driving frequency, and the noise strength.

  8. Work transitions.

    PubMed

    Fouad, Nadya A; Bynner, John

    2008-01-01

    Individuals make choices in, and adjust to, a world of work that is often a moving target. Because work is so central to human functioning, and transitions in and out of work can have major mental health repercussions, the authors argue that applied psychologists in health services need to understand those transitions. This article focuses on the different types of transition throughout a person's working life and the resources needed at different stages to ensure the success of these transitions. The authors start by examining the roles of capability and adaptability in supporting and facilitating adjustment to work transitions and their relation to identity development. They then examine the role of social and institutional contexts in shaping work transitions and their outcomes. The authors focus on voluntary versus involuntary transitions and then broaden the lens in discussing the policy implications of research on work transitions.

  9. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-01

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  10. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    SciTech Connect

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-15

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  11. Nuclear magnetic resonance study of potassium dihydrophosphate

    NASA Astrophysics Data System (ADS)

    Uskova, N. I.; Podorozhkin, D. Yu.; Charnaya, E. V.; Nefedov, D. Yu.; Baryshnikov, S. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.

    2016-04-01

    A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.

  12. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  13. de Sitter Space as a Resonance

    NASA Astrophysics Data System (ADS)

    Maltz, Jonathan; Susskind, Leonard

    2017-03-01

    A quantum mechanical formulation of de Sitter cosmological spacetimes still eludes string theory. In this Letter we conjecture a potentially rigorous framework in which the status of de Sitter space is the same as that of a resonance in a scattering process. We conjecture that transition amplitudes between certain states with asymptotically supersymmetric flat vacua contain resonant pole characteristic metastable intermediate states. A calculation employing constrained instantons illustrates this idea.

  14. de Sitter harmonies: Cosmological spacetimes as resonances

    NASA Astrophysics Data System (ADS)

    Maltz, Jonathan

    2017-03-01

    The aim of this work is to provide the details of a calculation summarized in the recent paper by Maltz and Susskind which conjectured a potentially rigorous framework where the status of de Sitter space is the same as that of a resonance in a scattering process. The conjecture is that transition amplitudes between certain states with asymptotically supersymmetric flat vacua contain resonant poles characteristic metastable intermediate states. A calculation employing constrained instantons is presented that illustrates this idea.

  15. Enhanced optical transmission at the cutoff transition.

    PubMed

    Laux, E; Genet, C; Ebbesen, T W

    2009-04-27

    The phenomenon of extraordinary transmission in the optical regime for circular hole arrays in optically thick metal films is studied as a function of hole size and depth. In the limit of small holes compared to the depth, the transmission properties follow a waveguide type behavior. By describing the transmission process as resulting from the interference between a resonant and a non-resonant contribution, a transition is clearly revealed through the specific spectral variations of the resonance at a given hole depth. This transition is associated to a change in the attenuation through the hole as its size increases, and corresponds to the optimal condition for surface plasmon excitation.

  16. Quantum Transition State Theory

    NASA Astrophysics Data System (ADS)

    Waalkens, Holger

    2009-03-01

    The main idea of Wigner's transition state theory (TST) is to compute reaction rates from the flux through a dividing surface placed between reactants and products. In order not to overestimate the rate the dividing surface needs to have the no- recrossing property, i.e. reactive trajectories cross the dividing surface exactly once, and nonreactive trajectories do not cross it at all. The long standing problem of how to construct such a diving surface for multi-degree-of-freedom systems was solved only recently using ideas from dynamical systems theory. Here a normal form allows for a local decoupling of the classical dynamics which leads to the explicit construction of the phase space structures that govern the reaction dynamics through transition states. The dividing surface is spanned by a normally hyperbolic manifold which is the mathematical manifestation of the transition state as an unstable invariant subsystem of one degree of freedom less than the full system. The mere existence of a quantum version of TST is discussed controversially in the literature. The key isssue is the presence of quantum mechanical tunneling which prohibits the existence of a local theory analogous to the classical case. Various approaches have been devloped to overcome this problem by propagating quantum wavefunctions through the transition state region. These approaches have in common that they are computationally very expensive which seriously limits their applicability. In contrast the approach by Roman Schubert, Stephen Wiggins and myself is local in nature. A quantum normal form allows us to locally decouple the quantum dynamics to any desired order in Planck's constant. This yields not only the location of the scattering and resonance wavefunctions relative to the classical phase space structures, but also leads to very efficient algorithms to compute cumulative reaction probabilities and Gamov-Siegert resonances which are the quantum imprints of the transition state.

  17. Chirped nonlinear resonance dynamics in phase space

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Armon, Tsafrir

    2016-10-01

    Passage through and capture into resonance in systems with slowly varying parameters is one of the outstanding problems of nonlinear dynamics. Examples include resonant capture in planetary dynamics , resonant excitation of nonlinear waves, adiabatic resonant transitions in atomic and molecular systems and more. In the most common setting the problem involves a nonlinear oscillator driven by an oscillating perturbation with a slowly varying frequency, which passes through the resonance with the unperturbed oscillator. The process of resonant capture in this case involves crossing of separatrix and, therefore, the adiabatic theorem cannot be used in studying this problem no matter how slow is the variation of the driving frequency. It will be shown that if instead of analyzing complicated single orbit dynamics in passage through resonance, one considers the evolution of a distribution of initial conditions in phase space, simple adiabaticity and phase space incompressibility arguments yield a solution to the resonant capture probability problem. The approach will be illustrated in the case of a beam of charged particles driven by a chirped frequency wave passing through the Cherenkov resonance with the velocity distribution of the particles. Supported by Israel Science Foundation Grant 30/14.

  18. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  19. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  20. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  1. Magnetism of gold nanorods probed using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Inagaki, Y.; Yonemura, H.; Sakai, N.; Makihara, Y.; Kawae, T.; Yamada, S.

    2016-08-01

    Electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammonium bromide. ESR signals were detected in AuNRs except the largest one. Two smallest AuNRs showed an abrupt change in the temperature dependence of resonance field and line width at around 60 K, indicating ferromagnetic phase transition. In medium-size AuNRs, the resonance with a large shift was observed below 100 K. The resonance field shifts at the lowest temperature exhibit systematic variation with the system size, which is explained by considering magnetic anisotropy for the ferromagnetic resonance.

  2. Broadband electrically detected magnetic resonance using adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  3. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  4. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  5. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  6. Transitional Care

    ERIC Educational Resources Information Center

    Naylor, Mary; Keating, Stacen A.

    2008-01-01

    Transitional care encompasses a broad range of services and environments designed to promote the safe and timely passage of patients between levels of health care and across care settings. High-quality transitional care is especially important for older adults with multiple chronic conditions and complex therapeutic regimens, as well as for their…

  7. Resonance beyond frequency-matching: multidimensional resonance

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Li, Mingzhe; Wang, Ruifang

    2017-03-01

    Resonance, conventionally defined as the oscillation of a system when the temporal frequency of an external stimulus matches a natural frequency of the system, is important in both fundamental physics and applied disciplines. However, the spatial character of oscillation is not considered in this definition. We reveal the creation of spatial resonance when the stimulus matches the space pattern of a normal mode in an oscillating system. The complete resonance, which we call multidimensional resonance, should be a combination of both the temporal and the spatial resonance. We further elucidate that the spin wave produced by multidimensional resonance drives considerably faster reversal of the vortex core in a magnetic nanodisc. Multidimensional resonance provides insight into the nature of wave dynamics and opens the door to novel applications.

  8. A triple resonance hyperfine sublevel correlation experiment for assignment of electron-nuclear double resonance lines

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Epel, Boris; Goldfarb, Daniella

    2008-02-01

    A new, triple resonance, pulse electron paramagnetic resonance (EPR) sequence is described. It provides spin links between forbidden electron spin transitions (ΔMS=±1, ΔMI≠0) and allowed nuclear spin transitions (ΔMI=±1), thus, facilitating the assignment of nuclear frequencies to their respective electron spin manifolds and paramagnetic centers. It also yields the relative signs of the hyperfine couplings of the different nuclei. The technique is based on the combination of electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected NMR experiments in a way similar to the TRIPLE experiment. The feasibility and the information content of the method are demonstrated first on a single crystal of Cu-doped L-histidine and then on a frozen solution of a Cu-histidine complex.

  9. Superconducting Transition at 38 K in Insulating-Overdoped La2CuO4-La1:64Sr0:36CuO4 Superlattices: Evidence for Interface Electronic Redistribution from Resonant Soft X-Ray Scattering

    SciTech Connect

    Smadici, S.; Bozovic, I.; Lee, J. C. T.; Wang, S.; Abbamonte, P.; Logvenov, G.; Gozar, A.; Deville Cavellin, C.

    2009-03-12

    We use resonant soft x-ray scattering (RSXS) to quantify the hole distribution in a superlattice of insulating La{sub 2}CuO{sub 4} (LCO) and overdoped La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO). Despite its nonsuperconducting constituents, this structure is superconducting with T{sub c} = 38 K. We found that the conducting holes redistribute electronically from LSCO to the LCO layers. The LCO layers were found to be optimally doped, suggesting they are the main drivers of superconductivity. Our results demonstrate the utility of RSXS for separating electronic from structural effects at oxide interfaces.

  10. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  11. Transition metals

    PubMed Central

    Rodrigo-Moreno, Ana; Poschenrieder, Charlotte; Shabala, Sergey

    2013-01-01

    Transition metals such as Iron (Fe) and Copper (Cu) are essential for plant cell development. At the same time, due their capability to generate hydroxyl radicals they can be potentially toxic to plant metabolism. Recent works on hydroxyl-radical activation of ion transporters suggest that hydroxyl radicals generated by transition metals could play an important role in plant growth and adaptation to imbalanced environments. In this mini-review, the relation between transition metals uptake and utilization and oxidative stress-activated ion transport in plant cells is analyzed, and a new model depicting both apoplastic and cytosolic mode of ROS signaling to plasma membrane transporters is suggested. PMID:23333964

  12. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  13. Feshbach-Resonance-Enhanced Coherent Atom-Molecule Conversion with Ultranarrow Photoassociation Resonance

    NASA Astrophysics Data System (ADS)

    Taie, Shintaro; Watanabe, Shunsuke; Ichinose, Tomohiro; Takahashi, Yoshiro

    2016-01-01

    We reveal the existence of high-density Feshbach resonances in the collision between the ground and metastable states of 171Yb and coherently produce the associated Feshbach molecules by photoassociation. The extremely small transition rate is overcome by the enhanced Franck-Condon factor of the weakly bound Feshbach molecule, allowing us to observe Rabi oscillations with long decay time between an atom pair and a molecule in an optical lattice. We also perform the precision measurement of the binding energies, which characterizes the observed resonances. The ultranarrow photoassociation will be a basis for practical implementation of optical Feshbach resonances.

  14. Trion formation dynamics in monolayer transition metal dichalcogenides

    SciTech Connect

    Singh, Akashay; Moody, Galan; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Xu, Xiaodong; Li, Xiaoqun; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; Berghauser, Gunnar; Seifert, Edward J.; Pleskot, Dennis; Gabor, Nathaniel M.; Richter, Marten; Malic, Ermin

    2016-01-05

    Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  15. Trion formation dynamics in monolayer transition metal dichalcogenides

    DOE PAGES

    Singh, Akashay; Moody, Galan; Schaibley, John R.; ...

    2016-01-05

    Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  16. Response to 'Comment on 'Resonant dissociative electron transfer of the presolvated electron to CCl{sub 4} in liquid: Direct observation and lifetime of the CCl{sub 4}*{sup -} transition state' [J. Chem. Phys. 129, 027101 (2008)]'

    SciTech Connect

    Wang, C.-R.; Drew, K.; Luo, T.; Lu, M.-J.; Lu, Q.-B.

    2008-07-14

    In our recent paper [J. Chem. Phys.128, 041102 (2008)], we reported a femtosecond time-resolved laser spectroscopic study of the electron transfer reaction of CCl{sub 4} in liquid ethanol. Our results provide direct evidence of the resonant dissociative electron transfer (RDET) of the presolvated electron to CCl{sub 4}, and indicate that RDET can be an efficient process in an aqueous environment. In a recent Comment, the author argues that the relevance of diethanolamine (DEA) induced destruction of chlorofluorocarbons (CFCs) in the polar stratosphere as a possible pathway for chemical ozone destruction should not be a motivation for further studies of DEA on CFC molecules, as no correlation is observed between polar chemical ozone loss and cosmic ray activity. Here, we show that this claim is misleading: it is made by using inconclusive and ambiguous data while ignoring pronounced and well-documented data.

  17. Effect of the. delta. (1236) resonance on magnetic dipole properties of nuclei

    SciTech Connect

    Lawson, R.D.

    1983-01-01

    The effect of the ..delta..(1236) resonance on magnetic moments, M1 transition rates and beta decay is discussed. The main effect of including this resonance is to renormalize the g-factor of the valence nucleons and explicit values for this renormalization are given. The effect on l-forbidden M1 transitions is investigated.

  18. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  19. Raman-assisted Rabi resonances in two-mode cavity QED

    SciTech Connect

    Gruenwald, P.; Singh, S. K.; Vogel, W.

    2011-06-15

    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.

  20. Partially orthogonal resonators for magnetic resonance imaging

    PubMed Central

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-01-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density. PMID:28186135

  1. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  2. Calculating Few-Body Resonances Using an Oscillator Trap

    NASA Astrophysics Data System (ADS)

    Fedorov, D. V.; Jensen, A. S.; Thøgersen, M.; Garrido, E.; de Diego, R.

    2009-05-01

    We investigate the possibility of calculating the parameters of few-body resonances using the oscillator trap boundary conditions. We place the few-body system in an oscillator trap and calculate the energy spectrum and the strength function of a suitably chosen transition. Broader resonances are identified as Lorentzian peaks in the strength function. Narrower resonances are identified through the pattern of avoided crossings in the spectrum of the system as function of the trap size. As an example we calculate {0^+_2} and {0^+_3} resonances in 12C within the 3 α model.

  3. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  4. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  5. Eccentricities & Resonances among Planetary Systems Identified by Kepler

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Kepler Science Team

    2011-05-01

    NASA's Kepler mission has identified over 1200 transiting planet candidates, including 170 sets of transiting planet candidates with a common host stars. First, we compare the distribution of transit durations for single and multiple planet candidate systems to investigate the potential differences in the eccentricity distributions between these populations. Second, we compare the frequency of pairs of planets (or planet candidates in the case of Kepler) in or near mean-motion resonances based on Kepler and Doppler planet searches. This comparison helps to address a long-standing question regarding the frequency of small planets in mean-motion resonances that are difficult to identify from Doppler data alone. Finally, we compare the frequency of pairs of planet candidates in or near mean-motion resonances with the frequency of transit timing variations in systems with a single or widely separated planet candidates.

  6. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  7. THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD

    SciTech Connect

    Stark, Christopher C.

    2011-10-15

    Planets embedded within debris disks gravitationally perturb nearby dust and can create clumpy, azimuthally asymmetric circumstellar ring structures that rotate in lock with the planet. The Earth creates one such structure in the solar zodiacal dust cloud. In an edge-on system, the dust 'clumps' periodically pass in front of the star as the planet orbits, occulting and forward-scattering starlight. In this paper, we predict the shape and magnitude of the corresponding transit signal. To do so, we model the dust distributions of collisional, steady-state exozodiacal clouds perturbed by planetary companions. We examine disks with dusty ring structures formed by the planet's resonant trapping of in-spiraling dust for a range of planet masses and semi-major axes, dust properties, and disk masses. We synthesize edge-on images of these models and calculate the transit signatures of the resonant ring structures. The transit light curves created by dusty resonant ring structures typically exhibit two broad transit minima that lead and trail the planetary transit. We find that Jupiter-mass planets embedded within disks hundreds of times denser than our zodiacal cloud can create resonant ring structures with transit depths up to {approx}10{sup -4}, possibly detectable with Kepler. Resonant rings produced by planets more or less massive than Jupiter produce smaller transit depths. Observations of these transit signals may provide upper limits on the degree of asymmetry in exozodiacal clouds.

  8. Dynamical Coupling of Pygmy and Giant Resonances

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos; Brady, Nathan; Aumann, Thomas; Thomas, James

    2016-03-01

    One of the effects overseen in studies of excitation of pygmy resonances is the fact that both pygmy and giant resonances are strongly coupled. This coupling leads to dynamical effects such as the modification of transition probabilities and and cross sections. We make an assessment of such effects by means of the relativistic coupled channels equations developed by our group. Supported by the U.S. NSF Grant No. 1415656 and the U.S. DOE Grant No. DE-FG02-08ER41533.

  9. Feshbach resonances of harmonically trapped atoms

    SciTech Connect

    Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2011-03-15

    Employing a short-range two-channel description, we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a parametrization of the energy-dependent scattering length that differs from the one previously employed. We validate the model by comparison to full numerical calculations for {sup 6}Li-{sup 87}Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.

  10. Optofluidic Fano resonance photonic crystal refractometric sensors

    NASA Astrophysics Data System (ADS)

    Wang, Shuling; Liu, Yonghao; Zhao, Deyin; Yang, Hongjun; Zhou, Weidong; Sun, Yuze

    2017-02-01

    We report an ultra-compact surface-normal optofluidic refractometric sensor based on a two-dimensional silicon photonic crystal on insulator. In contrast to the conventional symmetric Lorentzian resonance that is prevalently used in the label-free sensors, the asymmetric lineshape and steep peak-to-dip transition of a Fano resonance enable the enhanced detection sensitivity. The detection limit of 1.3 × 10-6 refractive index units is achieved, which is among the lowest reported experimentally in the defect-free photonic crystal sensors.

  11. Presidential Transitions

    DTIC Science & Technology

    2006-06-09

    Podesta for the Heads of Executive Departments and Agencies, “Presidential Transition Guidance,” Nov. 13, 2000. 89 U.S. General Services Administration...2000, presidential election, White House Chief of Staff John Podesta issued a November 13, 2000, memorandum to executive branch agencies stating that

  12. Tessellations & Transitions.

    ERIC Educational Resources Information Center

    Cassidy, Joan

    1998-01-01

    Describes two sixth-grade lessons on the work of M. C. Escher: (1) the first lesson instructs students on tessellations, or tiles that interlock in a repeated pattern; (2) the second lesson explores Escher's drawings of transitions from two- to three-dimensional space. (DSK)

  13. The spherical birdcage resonator

    NASA Astrophysics Data System (ADS)

    Harpen, Michael D.

    A description of the operation of a spherical resonator capable of producing a uniform magnetic induction throughout a spherical volume is presented. Simple closed-form expressions for the spectrum of resonant frequencies are derived for both the low-pass and the high-pass configuration of the resonator and are shown to compare favorably with observation in an experimental coil system. It is shown that the spherical resonator produces a uniform spherical field of view when used as a magnetic resonance imaging radiofrequency coil.

  14. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  15. Progress in the Calculation of Nucleon Transition form Factors

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot

    2016-10-01

    We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

  16. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    PubMed Central

    Chen, Lin; Wei, YuMing; Zang, XiaoFei; Zhu, YiMing; Zhuang, SongLin

    2016-01-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices. PMID:26903382

  17. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Wei, Yuming; Zang, Xiaofei; Zhu, Yiming; Zhuang, Songlin

    2016-02-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices.

  18. An Exoplanet Radius and Transit Timing Survey

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Jennings, Jonald; Sada, Pedro

    2010-02-01

    Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A continuing explosion of discoveries by transit surveys have given us a sample of 45 hot Jupiters transiting planets brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (~ 180 second) perturbations they induce on the giant planet transits. Moreover, the discovery photometry for these systems usually provides only relatively coarse photometric precision, but larger-aperture follow-up can determine the giant planet radius to a precision limited only by knowledge of the stellar mass, and thereby reveal the diversity of giant exoplanet structure, such as the presence of heavy element cores. The relatively large sample now available means that a radius- and transit timing-survey is well matched to classical observing and telescope scheduling. We propose continued observations to perform transit photometry using FLAMINGOS on the 2.1-meter in the J-band, where stellar limb darkening is minimal and transit photometry has excellent sensitivity to planetary radii and shifts in transit time.

  19. An Exoplanet Radius and Transit Timing Survey

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Jennings, Jonald; Sada, Pedro

    2009-08-01

    Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A recent explosion of discoveries by transit surveys have given us a sample of 37 hot Jupiters transiting planets brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (~ 180 second) perturbations they induce on the giant planet transits. Moreover, the discovery photometry for these systems usually provides only relatively coarse photometric precision, but larger-aperture follow-up can determine the giant planet radius to a precision limited only by knowledge of the stellar mass, and thereby reveal the diversity of giant exoplanet structure, such as the presence of heavy element cores. The relatively large sample now available means that a radius- and transit timing-survey is well matched to classical observing and telescope scheduling. We propose continued observations to perform transit photometry using FLAMINGOS on the 2.1-meter in the J-band, where stellar limb darkening is minimal and transit photometry has excellent sensitivity to planetary radii and shifts in transit time.

  20. Optical Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

    2014-08-01

    Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the λ/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

  1. Resonance splitting in gyrotropic ring resonators.

    PubMed

    Jalas, Dirk; Petrov, Alexander; Krause, Michael; Hampe, Jan; Eich, Manfred

    2010-10-15

    We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator.

  2. Electromagnetic Transmission Through Resonant Structures

    NASA Astrophysics Data System (ADS)

    Young, Steven M.

    Electromagnetic resonators store energy in the form of oscillatory electric and magnetic fields and gradually exchange that energy by coupling with their environment. This coupling process can have profound effects on the transmission and reflection properties of nearby interfaces, with rapid transitions from high transmittance to high reflectance over narrow frequency ranges, and has been exploited to design useful optical components such as spectral filters and dielectric mirrors. This dissertation includes analytic, numeric, and experimental investigations of three different electromagnetic resonators, each based on a different method of confining electromagnetic fields near the region of interest. First, we show that a structure with two parallel conducting plates, each containing a subwavelength slit, supports a localized resonant mode bound to the slits and therefore exhibits (in the absence of nonradiative losses), perfect resonant transmission over a narrow frequency range. In practice, the transmission is limited by conduction losses in the sidewalls; nevertheless, experimental results at 10 GHz show a narrowband transmission enhancement by a factor of 104 compared to the non-resonant transmission, with quality factor (ratio of frequency to peak width) Q ~ 3000. Second, we describe a narrowband transmission filter based on a single-layer dielectric grating. We use a group theory analysis to show that, due to their symmetry, several of the grating modes cannot couple to light at normal incidence, while several others have extremely large coupling. We then show how selectively breaking the system symmetry using off-normal light incidence can produce transmission peaks by enabling weak coupling to some of the previously protected modes. The narrowband filtering capabilities are validated by an experimental demonstration in the long wavelength infrared, showing transmission peaks of quality factor Q ~ 100 within a free-spectral range of 8-15 mum. Third, we

  3. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D. ||||

    1995-10-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, {ital Regular} {ital and} {ital Stochastic} {ital Motion} (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, {ital S}{approx_gt}1 GW/cm{sup 2}. We also discuss the possibility of experimentally observing this transition.

  4. Eliminating Transitions

    ERIC Educational Resources Information Center

    Gallick, Barb; Lee, Lisa

    2010-01-01

    Adults often find themselves transitioning from one activity to another in a short time span. Most of the time, they do not feel they have a lot of control over their schedules, but wish that they could carve out extended time to relax and focus on one project. Picture a group of children in the block area who have spent 15 or 20 minutes building…

  5. High frequency properties of resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.

  6. White-Light Whispering Gallery Mode Optical Resonator System and Method

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  7. Stochastic Modeling of Laminar-Turbulent Transition

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Choudhari, Meelan

    2002-01-01

    Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.

  8. Radiative decays of resonances on the lattice

    SciTech Connect

    Agadjanov, Andria; Bernard, Véronique; Rusetsky, Akaki

    2016-01-22

    We discuss a generalization of the Lüscher approach to the calculation of the matrix elements of the unstable states. A theoretical framework for the lattice extraction of the ΔNγ* transition form factors is formulated. The procedure to measure the form factors at the resonance pole is given. The current theoretical progress on the B → K*γ* decays is briefly summarized.

  9. Resonant pairing of excitons in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Andreev, S. V.

    2016-10-01

    We suggest indirect excitons in two-dimensional semiconductor heterostructures as a platform for the realization of a bosonic analog of the Bardeen-Cooper-Schrieffer superconductor. The quantum phase transition to a biexcitonic gapped state can be controlled in situ by tuning the electric field applied to the structure in the growth direction. The proposed playground should allow one to go to strongly correlated and high-temperature regimes, unattainable with Feshbach resonant atomic gases.

  10. Exotic Baryon Resonances in the Skyrme Model

    NASA Astrophysics Data System (ADS)

    Diakonov, Dmitri; Petrov, Victor

    We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colors the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Θ+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Θ+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Θ+ resonance is briefly reviewed and affirmed.

  11. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  12. Electromagnetic excitation of the Delta(1232) resonance

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang

    2006-09-05

    We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.

  13. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  14. Double resonance in the infinite-range quantum Ising model.

    PubMed

    Han, Sung-Guk; Um, Jaegon; Kim, Beom Jun

    2012-08-01

    We study quantum resonance behavior of the infinite-range kinetic Ising model at zero temperature. Numerical integration of the time-dependent Schrödinger equation in the presence of an external magnetic field in the z direction is performed at various transverse field strengths g. It is revealed that two resonance peaks occur when the energy gap matches the external driving frequency at two distinct values of g, one below and the other above the quantum phase transition. From the similar observations already made in classical systems with phase transitions, we propose that the double resonance peaks should be a generic feature of continuous transitions, for both quantum and classical many-body systems.

  15. On open electromagnetic resonators: relation between interferometers and resonators

    SciTech Connect

    Manenkov, Aleksandr A; Bykov, Vladimir P; Kuleshov, N V

    2010-05-26

    The physical difference between the concepts 'Fabry-Perot interferometer' and 'open resonator' is discussed. It is shown that the use of the term 'Fabry-Perot resonator' for open laser resonators is incorrect both from the historical viewpoint and from the viewpoint of the physical meaning of the processes occurring in these resonators. (laser beams and resonators)

  16. Baryon transition form factors at the pole

    NASA Astrophysics Data System (ADS)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  17. Baryon transition form factors at the pole

    SciTech Connect

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  18. Resonant spectra of quadrupolar anions

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  19. The resonator handbook

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Zhou, Shiliang

    1993-01-01

    The purpose of this work is to extend resonator theory into the region in which the planar mirror is quite small. Results of the theoretical description are then extended to resonator design and experimental arrangements as discussed in further sections of this work. Finally, a discussion of dielectric measurements for small samples is included as a specific application of this work.

  20. The Concept of Resonance

    ERIC Educational Resources Information Center

    Truhlar, Donald G.

    2007-01-01

    A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

  1. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  2. Monolithic MACS micro resonators

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  3. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  4. Vibrationally resolved shape resonant photoionization of N2O

    NASA Astrophysics Data System (ADS)

    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.

    1989-02-01

    A vibrationally resolved dispersed fluorescence study of 7sigma exp -1 shape resonant photoionization in N2O is presented. It is shown that the lower energy shape resonance results in non-Franck-Condon vibrational branching ratios over a wide range. It is found that the cross section curves for alternative vibrational modes behave differently and that the resonance behavior is influenced more by symmetric stretch than by the asymmetric stretching vibration. Spectroscopic data on the ionic potential surfaces and ratios of Franck-Condon factors for N2O(+) (A to X) transitions are obtained.

  5. Electronic Transitions of Yttrium Monoxide

    NASA Astrophysics Data System (ADS)

    Ng, Y. W.; Wang, Na; Clark, Andrew B.; Cheung, A. S.-C.

    2013-06-01

    The electronic transition spectrum of yttrium monoxide (YO) in the spectral region between 284nm and 307nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence (LIF) spectroscopy. The YO molecule was produced by reacting laser-ablated yttrium atoms with O_{2} seeded in argon. Twenty transition bands were observed in that region and a few bands were selected for further study using optical-optical double resonance (OODR) spectroscopy. The excited C^{2} Π state has been reached via the intermediate B^{2} Σ^{+} state from the ground X^{2} Σ^{+} state. The excited sub-states observed so far have Ω = 0.5 and 1.5. A least squares fit of the measured rotational lines yielded molecular constants for the newly observed excited states.

  6. Prediction and identification of multiple-photon resonant ionization processes

    SciTech Connect

    Smith, D.H.; McKown, H.S.; Young, J.P.; Shaw, R.W.; Donohue, D.L.

    1988-08-01

    Many single-color, multiple-photon transitions leading to ionization are observed for lanthanide and actinide elements in experiments using resonance ionization mass spectrometry (RIMS). It is desirable both to identify the energy levels involved in observed transitions and to be able to predict in advance their location. A computer code, ETRANS, has been written to perform these functions. Examples of both types of operation are given.

  7. LABCOM resonator Phase 3

    SciTech Connect

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

  8. Spin Resonance Strength Calculations

    NASA Astrophysics Data System (ADS)

    Courant, E. D.

    2009-08-01

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  9. Resonances in UH

    SciTech Connect

    Badalyan, A.M.; Belova, T.I.; Konyukhova, N.B.; Efros, V.D.

    1985-06-01

    Resonances in UH are calculated using a microscopic approach with only central NN potentials. It is shown that there are broad resonances in the channels with S=1 and 0. P-wave resonances in UH are found at E/sub R/A 4.7-i2.7 MeV (S=1) and E/sub R/approx. = 6.4-i3.7 MeV (S=0) where the energy E is measured from the two-particle t + n threshold.

  10. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  11. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K [Kensington, CA; Jensen, Kenneth J [Berkeley, CA; Girit, Caglar [Albany, CA; Mickelson, William E [San Francisco, CA; Grossman, Jeffrey C [Berkeley, CA

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  12. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  13. A review of dynamical resonances in A  +  BC chemical reactions

    NASA Astrophysics Data System (ADS)

    Ren, Zefeng; Sun, Zhigang; Zhang, Donghui; Yang, Xueming

    2017-02-01

    The concept of the transition state has played an important role in the field of chemical kinetics and reaction dynamics. Reactive resonances in the transition-state region can dramatically enhance the reaction probability; thus investigation of the reactive resonances has attracted great attention from chemical physicists for many decades. In this review, we mainly focus on the recent progress made in probing the elusive resonance phenomenon in the simple A  +  BC reaction and understanding its nature, especially in the benchmark F/Cl  +  H2 and their isotopic variants. The signatures of reactive resonances in the integral cross section, differential cross section (DCS), forward- and backward-scattered DCS, and anion photodetachment spectroscopy are comprehensively presented in individual prototype reactions. The dynamical origins of reactive resonances are also discussed in this review, based on information on the wave function in the transition-state region obtained by time-dependent quantum wave-packet calculations.

  14. A review of dynamical resonances in A  +  BC chemical reactions.

    PubMed

    Ren, Zefeng; Sun, Zhigang; Zhang, Donghui; Yang, Xueming

    2017-02-01

    The concept of the transition state has played an important role in the field of chemical kinetics and reaction dynamics. Reactive resonances in the transition-state region can dramatically enhance the reaction probability; thus investigation of the reactive resonances has attracted great attention from chemical physicists for many decades. In this review, we mainly focus on the recent progress made in probing the elusive resonance phenomenon in the simple A  +  BC reaction and understanding its nature, especially in the benchmark F/Cl  +  H2 and their isotopic variants. The signatures of reactive resonances in the integral cross section, differential cross section (DCS), forward- and backward-scattered DCS, and anion photodetachment spectroscopy are comprehensively presented in individual prototype reactions. The dynamical origins of reactive resonances are also discussed in this review, based on information on the wave function in the transition-state region obtained by time-dependent quantum wave-packet calculations.

  15. The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles.

    PubMed

    Ding, Si-Jing; Yang, Da-Jie; Li, Jin-Ling; Pan, Gui-Ming; Ma, Liang; Lin, Yong-Jie; Wang, Jia-Hong; Zhou, Li; Feng, Min; Xu, Hongxing; Gao, Shiwu; Wang, Qu-Quan

    2017-03-02

    The surface plasmon resonance (SPR) of metal nanoparticles exhibits quantum behaviors as the size decreases owing to the transitions of quantized conduction electrons, but most studies are limited to the monotonous SPR blue-shift caused by off-resonant transitions. Here, we demonstrate the nonmonotonous SPR red-shift caused by resonant electron transitions and photocatalytic activity enhanced by the quantum plasmon resonance of colloidal gold nanoparticles. A maximal SPR wavelength and the largest photocatalytic activity are observed in the quantum regime for the first time for the gold nanoparticles with a diameter of 3.6 nm. Theoretical analysis based on a quantum-corrected model reveals the evolution of SPR with quantized electron transitions and well explains the nonmonotonous size-dependencies of the SPR wavelength and absorption efficiency. These findings have profound implications for the understanding of the quantum nature of the SPR of metal nanoparticles and their applications in areas ranging from photophysics to photochemistry.

  16. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  17. Noise-induced transitions and resonant effects in nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich erwiesen. Außerordentlich interessant aus dieser Sicht sind auch Reizleitungsprozesse: Reize werden nur weitergleitet, wenn die strukturlosen Signale der Neuronen mit ausreichend starker Intensität erfolgen, also ein Schwellwert überschritten ist. Der Physiker Dr. Alexei Zaikin von der Universität Potsdam beschäftigt sich mit sogenannten rauschinduzierten Phänomenen aus theorischer Sicht. Sein Forschungsgebiet sind Prozesse, bei denen Rauschen mehrfach das Systemverhalten beeinflusst: ist es ausreichend gross, d.h. größer als ein kritischer Wert, wird eine reguläre Struktur gebildet, die durch das immernoch vorhandene Rauschen mit der Struktur des Nachbarsystems synchronisiert. Um ein solches System mit kritischem Wert zu erhalten, bedarf es einer weiteren Rauschquelle. Herr Zaikin analysierte noch weitere Beispiele solcher doppelt stochastischen Effekte. Die Ausarbeitung derartiger theoretischer Grundlagen ist wichtig, da diese Prozesse in der Neurophysik, in technischen Kommunikationssystemen und in den Lebenswissenschaften eine Rolle spielen.

  18. Measurement-Induced State Transitions in a Superconducting Qubit: Beyond the Rotating Wave Approximation

    NASA Astrophysics Data System (ADS)

    Sank, Daniel; Chen, Zijun; Khezri, Mostafa; Kelly, J.; Barends, R.; Campbell, B.; Chen, Y.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; White, T.; Wenner, J.; Korotkov, Alexander N.; Martinis, John M.

    2016-11-01

    Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number. We develop a theory for these observations based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian that are typically ignored by the rotating wave approximation. We find that the most important of these terms comes from an unexpected broken symmetry in the qubit potential. We confirm the theory by measuring the photon occupation of the resonator when transitions occur while varying the detuning between the qubit and resonator.

  19. New theoretical treatment of ion resonance phenomena.

    PubMed

    Vincze, G; Szasz, A; Liboff, A R

    2008-07-01

    Despite experimental evidence supporting ICR-like interactions in biological systems, to date there is no reasonable theoretical explanation for this phenomenon. The parametric resonance approach introduced by Lednev has enjoyed limited success in predicting the response as a function of the ratio of AC magnetic intensity to that of the DC field, explaining the results in terms of magnetically induced changes in the transition probability of calcium binding states. In the present work, we derive an expression for the velocity of a damped ion with arbitrary q/m under the influence of the Lorentz force. Series solutions to the differential equations reveal transient responses as well as resonance-like terms. One fascinating result is that the expressions for ionic drift velocity include a somewhat similar Bessel function dependence as was previously obtained for the transition probability in parametric resonance. However, in the present work, not only is there an explicit effect due to damping, but the previous Bessel dependence now occurs as a subset of a more general solution, including not only the magnetic field AC/DC ratio as an independent variable, but also the ratio of the cyclotronic frequency Omega to the applied AC frequency omega. In effect, this removes the necessity to explain the ICR interaction as stemming from ion-protein binding sites. We hypothesize that the selectively enhanced drift velocity predicted in this model can explain ICR-like phenomena as resulting from increased interaction probabilities in the vicinity of ion channel gates.

  20. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  1. Electrically detected ferromagnetic resonance

    SciTech Connect

    Goennenwein, S. T. B.; Schink, S. W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R. S.; Klapwijk, T. M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M. S.

    2007-04-16

    We study the magnetoresistance properties of thin ferromagnetic CrO{sub 2} and Fe{sub 3}O{sub 4} films under microwave irradiation. Both the sheet resistance {rho} and the Hall voltage V{sub Hall} characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic resonance (EDFMR) signals closely match the conventional FMR, measured simultaneously, in both resonance fields and line shapes. The sign and the magnitude of the resonant changes {delta}{rho}/{rho} and {delta}V{sub Hall}/V{sub Hall} can be consistently described in terms of a Joule heating effect. Bolometric EDFMR thus is a powerful tool for the investigation of magnetic anisotropy and magnetoresistive phenomena in ferromagnetic micro- or nanostructures.

  2. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  3. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  4. Resonances in QCD

    SciTech Connect

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  5. Triple-resonant transducers.

    PubMed

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  6. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  7. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  8. Injector with integrated resonator

    SciTech Connect

    Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier

    2014-07-29

    The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

  9. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  10. Cylindrical laser resonator

    DOEpatents

    Casperson, Lee W.

    1976-02-24

    The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.

  11. Developments in Planet Detection using Transit Timing Variations

    SciTech Connect

    Steffen, Jason H.; Agol, Eric; /Washington U., Seattle, Astron. Dept.

    2006-12-01

    In a transiting planetary system, the presence of a second planet will cause the time interval between transits to vary. These transit timing variations (TTV) are particularly large near mean-motion resonances and can be used to infer the orbital elements of planets with masses that are too small to detect by any other means. The author presents the results of a study of simulated data where they show the potential that this planet detection technique has to detect and characterize secondary planets in transiting systems. These results have important ramifications for planetary transit searches since each transiting system presents an opportunity for additional discoveries through a TTV analysis. They present such an analysis for 13 transits of the HD 209458 system that were observed with the Hubble Space Telescope. This analysis indicates that a putative companion in a low-order, mean-motion resonance can be no larger than the mass of the Earth and constitutes, to date, the most sensitive probe for extrasolar planets that orbit main sequence stars. The presence or absence of small planets in low-order, mean-motion resonances has implications for theories of the formation and evolution of planetary systems. Since TTV is most sensitive in these regimes, it should prove a valuable tool not only for the detection of additional planets in transiting systems, but also as a way to determine the dominant mechanisms of planet formation and the evolution of planetary systems.

  12. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  13. Fano resonances in prism-coupled multimode square micropillar resonators

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Tong; Zhou, Linjie; Poon, Andrew W.

    2005-06-01

    We report Fano resonances in a multimode square glass micropillar resonator; the resonances were obtained by using angle-resolved prism coupling. Our experiments reveal characteristically asymmetric line shapes of high-Q resonances and of detuned low-Q resonances in multimode reflection spectra. The asymmetric resonance line shapes evolve for an approximately pi phase within a 0.5° range of reflection angles. We model our observed asymmetric multimode resonances by the far-field interference between a light wave that is evanescently coupled with a high-Q mode orbit and a coherent light wave that is refractively coupled with a detuned low-Q mode orbit.

  14. Influence of film thickness in THz active metamaterial devices: A comparison between superconductor and metal split-ring resonators

    NASA Astrophysics Data System (ADS)

    Singh, Ranjan; Roy Chowdhury, Dibakar; Xiong, Jie; Yang, Hao; Azad, Abul K.; Taylor, Antoinette J.; Jia, Q. X.; Chen, Hou-Tong

    2013-08-01

    We experimentally demonstrate thickness-dependent resonance tuning in planar terahertz superconducting metamaterials. Inductive-capacitive resonance of arrays of split-ring resonators fabricated from 50, 100, and 200 nm thick YBa2Cu3O7-δ (YBCO) and gold films were characterized and compared as a function of temperature. In the YBCO metamaterials the resonance frequency strongly depends on the thickness, and they show high thermal tunability in both resonance strength and frequency below the superconducting transition temperature, where the imaginary conductivity varies by three orders of magnitude. In contrast, the resonance in the gold metamaterials exhibits little thickness-dependence and very small tunability.

  15. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  16. Plasmon resonances in linear noble-metal chains

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Ruud, Kenneth; Luo, Yi

    2012-11-01

    The electronic excitations of three noble-metall chains—copper, silver, and gold—have been investigated at the time-dependent density functional theory level. The reduced single-electron density matrix is propagated according to the Liouville-von Neumann equation in the real-time domain after an impulse excitation. The propagation in the real-time domain enables us to investigate the formation and size evolution of electronic excitations in these metallic chains with different number of atoms, up to a total of 26 atoms. The longitudinal oscillations at lower excitation energies are dominated by s → p transitions in these chains and have collective or central resonances, while the first peak involving d → p transitions in the longitudinal mode appears at a higher excitation energy and shows collective resonances. In the transverse oscillations, there are in most cases d → p transitions in each resonance, which can be attributed to either central or end resonances. Convergence of the oscillations, in particular those involving the collective and central resonances in the three noble-metal chains can only be observed for chains with 18 atoms or more. Different spectroscopic characteristics among these three metallic chains can be attributed to their different electronic structures, in particular the relativistic effects in the gold chains have a dramatic effect on their electronic structures and excitations.

  17. Topological Lifshitz transitions

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2017-01-01

    Different types of Lifshitz transitions are governed by topology in momentum space. They involve the topological transitions with the change of topology of Fermi surfaces, Weyl and Dirac points, nodal lines, and also the transitions between the fully gapped states.

  18. Transitions: A Personal Perspective.

    ERIC Educational Resources Information Center

    Wood, Ann Stace

    1995-01-01

    Distinguishes between unchosen transitions (children maturing and leaving, parents aging, companies downsizing) and chosen ones (moving, divorce, marriage, career changes). Describes the steps one goes through: uneasiness, renewed energy, complaining, exploration, partial transition, and the completed transition. (JOW)

  19. A microwave resonator integrated on a polymer microfluidic chip.

    PubMed

    Kiss, S Z; Rostas, A M; Heidinger, L; Spengler, N; Meissner, M V; MacKinnon, N; Schleicher, E; Weber, S; Korvink, J G

    2016-09-01

    We describe a novel stacked split-ring type microwave (MW) resonator that is integrated into a 10mm by 10mm sized microfluidic chip. A straightforward and scalable batch fabrication process renders the chip suitable for single-use applications. The resonator volume can be conveniently loaded with liquid sample via microfluidic channels patterned into the mid layer of the chip. The proposed MW resonator offers an alternative solution for compact in-field measurements, such as low-field magnetic resonance (MR) experiments requiring convenient sample exchange. A microstrip line was used to inductively couple MWs into the resonator. We characterised the proposed resonator topology by electromagnetic (EM) field simulations, a field perturbation method, as well as by return loss measurements. Electron paramagnetic resonance (EPR) spectra at X-band frequencies were recorded, revealing an electron-spin sensitivity of 3.7·10(11)spins·Hz(-1/2)G(-1) for a single EPR transition. Preliminary time-resolved EPR experiments on light-induced triplet states in pentacene were performed to estimate the MW conversion efficiency of the resonator.

  20. Shifts and widths of Feshbach resonances in atomic waveguides

    NASA Astrophysics Data System (ADS)

    Saeidian, Shahpoor; Melezhik, Vladimir S.; Schmelcher, Peter

    2012-12-01

    We develop and analyze a theoretical model which yields the shifts and widths of Feshbach resonances in an atomic waveguide. It is based on a multichannel approach for confinement-induced resonances (CIRs) and atomic transitions in the waveguides in the multimode regime. In this scheme we replace the single-channel scalar interatomic interaction by the four-channel tensorial potential modeling resonances of broad, narrow, and overlapping character according to the two-channel parametrization of Lange [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.79.013622 79, 013622 (2009)]. As an input the experimentally known parameters of Feshbach resonances in the absence of the waveguide are used. We calculate the shifts and widths of s-, d-, and g-wave magnetic Feshbach resonances of Cs atoms emerging in harmonic waveguides as CIRs and resonant enhancement of the transmission at zeros of the free space scattering length. We have found the linear dependence of the width of the resonance on the longitudinal atomic momentum and quadratic dependence on the waveguide width. Our model opens possibilities for quantitative studies of the scattering processes in ultracold atomic gases in waveguides beyond the framework of s-wave resonant scattering.

  1. A microwave resonator integrated on a polymer microfluidic chip

    NASA Astrophysics Data System (ADS)

    Kiss, S. Z.; Rostas, A. M.; Heidinger, L.; Spengler, N.; Meissner, M. V.; MacKinnon, N.; Schleicher, E.; Weber, S.; Korvink, J. G.

    2016-09-01

    We describe a novel stacked split-ring type microwave (MW) resonator that is integrated into a 10 mm by 10 mm sized microfluidic chip. A straightforward and scalable batch fabrication process renders the chip suitable for single-use applications. The resonator volume can be conveniently loaded with liquid sample via microfluidic channels patterned into the mid layer of the chip. The proposed MW resonator offers an alternative solution for compact in-field measurements, such as low-field magnetic resonance (MR) experiments requiring convenient sample exchange. A microstrip line was used to inductively couple MWs into the resonator. We characterised the proposed resonator topology by electromagnetic (EM) field simulations, a field perturbation method, as well as by return loss measurements. Electron paramagnetic resonance (EPR) spectra at X-band frequencies were recorded, revealing an electron-spin sensitivity of 3.7 ·1011spins ·Hz - 1 / 2G-1 for a single EPR transition. Preliminary time-resolved EPR experiments on light-induced triplet states in pentacene were performed to estimate the MW conversion efficiency of the resonator.

  2. Capture probabilities for secondary resonances

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1990-01-01

    A perturbed pendulum model is used to analyze secondary resonances, and it is shown that a self-similarity between secondary and primary resonances exists. Henrard's (1982) theory is used to obtain formulas for the capture probability into secondary resonances. The tidal evolution of Miranda and Umbriel is considered as an example, and significant probabilities of capture into secondary resonances are found.

  3. FERMILAB SWITCHYARD RESONANT BEAM POSITION MONITOR ELECTRONICS UPGRADE RESULTS

    SciTech Connect

    Petersen, T.; Diamond, J.; Liu, N.; Prieto, P. S.; Slimmer, D.; Watts, A.

    2016-10-12

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.

  4. Full counting statistics of quantum dot resonance fluorescence

    PubMed Central

    Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  5. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect

    Short Jr., Billy Joe

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  6. Entangled states and superradiant phase transitions

    SciTech Connect

    Aparicio Alcalde, M.; Cardenas, A. H.; Svaiter, N. F.; Bezerra, V. B.

    2010-03-15

    The full Dicke model is composed of a single bosonic mode and an ensemble of N identical two-level atoms. In the model, the coupling between the bosonic mode and the atoms generates resonant and nonresonant processes. We also consider a dipole-dipole interaction between the atoms, which is able to generate entangled states in the atomic system. By assuming thermal equilibrium with a reservoir at temperature {beta}{sup -1}, the transition from fluorescent to superradiant phase and the quantum phase transition are investigated. It is shown that the critical behavior of the full Dicke model is not modified by the introduction of the dipole-dipole interaction.

  7. Resonance frequency in ferromagnetic superlattices

    NASA Astrophysics Data System (ADS)

    Qiu, Rong-ke; Huang, An-dong; Li, Da; Zhang, Zhi-dong

    2011-10-01

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  8. Not-so-resonant, resonant absorption

    NASA Astrophysics Data System (ADS)

    Brunel, F.

    1987-07-01

    When an intense electromagnetic wave is incident obliquely on a sharply bounded overdense plasma, strong energy absorption can be accounted for by the electrons that are dragged into the vacuum and sent back into the plasma with velocities v~=vosc. This mechanism is more efficient than usual resonant absorption for vosc/ω>L, with L being the density gradient length. In the very high-intensity CO2-laser-target interaction, this mechanism may account for most of the energy absorption.

  9. Hyperbolic resonances of metasurface cavities.

    PubMed

    Keene, D; Durach, M

    2015-07-13

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications.

  10. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  11. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  12. Dissecting nucleon transition electromagnetic form factors

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge; Roberts, Craig D.

    2016-10-01

    In Poincaré-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the electromagnetically induced nucleon-Δ and nucleon-Roper transitions, providing a flavor separation of the latter and associated predictions that can be tested at modern facilities.

  13. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  14. Fundamental properties of resonances.

    PubMed

    Ceci, S; Hadžimehmedović, M; Osmanović, H; Percan, A; Zauner, B

    2017-03-27

    All resonances, from hydrogen nuclei excited by the high-energy gamma rays in deep space to newly discovered particles produced in Large Hadron Collider, should be described by the same fundamental physical quantities. However, two distinct sets of properties are used to describe resonances: the pole parameters (complex pole position and residue) and the Breit-Wigner parameters (mass, width, and branching fractions). There is an ongoing decades-old debate on which one of them should be abandoned. In this study of nucleon resonances appearing in the elastic pion-nucleon scattering we discover an intricate interplay of the parameters from both sets, and realize that neither set is completely independent or fundamental on its own.

  15. Nanowire Plasmon Resonators

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie; Shields, Brendan; Yu, Chun; Englund, Dirk; Akimov, Alexey; Lukin, Mikhail; Park, Hongkun

    2011-05-01

    Strong interactions between light and matter can be engineered by confining light to a small volume for an extended period of time. Nanoscale plasmonic structures can concentrate lighte well below the diffraction limit, but realization of small mode-volume plasmon cavities remains an outstanding challenge. We propose and demonstrate a new approach for realization of nanoscale plasmon resonators enabling strong light-matter interaction. In our approach, chemically synthesized silver nanowires are surrounded by patterned dielectric to create resonators with mode volumes that are two orders of magnitude below the diffraction limit and quality factors approaching 100. We show that they can be used to enhance spontaneous emission rates of CdSe quantum dots and single diamond nitrogen-vacancy centers by a factor larger than 20 at the cavity resonance.

  16. Spectroscopy of baryon resonances

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Thoma, Ulrike

    2017-01-01

    Within project A.1 of the SFB/TR16 "Subnuclear Structure of Matter", a large amount of data on photoproduction reactions has been accumulated at the Bonn Electron Stretcher Accelerator ELSA with the CBELSA/TAPS detector and was analysed in detail. In particular, data have been taken with unpolarized or with linearly or circularly polarized photons and with unpolarized or with longitudinally or transversely polarized protons. Photoproduction off neutrons was studied to determine the helicity amplitudes for the excitation of resonances off neutrons. In a partial wave analysis of the data, new resonances have been found and the properties of new and of known resonances have been determined, including the measurement of partial widths of so far unmeasured decay modes.

  17. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  18. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  19. Fundamental properties of resonances

    PubMed Central

    Ceci, S.; Hadžimehmedović, M.; Osmanović, H.; Percan, A.; Zauner, B.

    2017-01-01

    All resonances, from hydrogen nuclei excited by the high-energy gamma rays in deep space to newly discovered particles produced in Large Hadron Collider, should be described by the same fundamental physical quantities. However, two distinct sets of properties are used to describe resonances: the pole parameters (complex pole position and residue) and the Breit-Wigner parameters (mass, width, and branching fractions). There is an ongoing decades-old debate on which one of them should be abandoned. In this study of nucleon resonances appearing in the elastic pion-nucleon scattering we discover an intricate interplay of the parameters from both sets, and realize that neither set is completely independent or fundamental on its own. PMID:28345595

  20. Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.

    PubMed

    Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L

    2012-10-08

    The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.

  1. A resonance based model of biological evolution

    NASA Astrophysics Data System (ADS)

    Damasco, Achille; Giuliani, Alessandro

    2017-04-01

    We propose a coarse grained physical model of evolution. The proposed model 'at least in principle' is amenable of an experimental verification even if this looks as a conundrum: evolution is a unique historical process and the tape cannot be reversed and played again. Nevertheless, we can imagine a phenomenological scenario tailored upon state transitions in physical chemistry in which different agents of evolution play the role of the elements of a state transition like thermal noise or resonance effects. The abstract model we propose can be of help for sketching hypotheses and getting rid of some well-known features of natural history like the so-called Cambrian explosion. The possibility of an experimental proof of the model is discussed as well.

  2. Electroproduction of the {Delta}(1232) Resonance at High Momentum Transfer

    SciTech Connect

    Frolov, V.V.; Adams, G.S.; Davidson, R.M.; Klusman, M.; Mukhopadhyay, N.C.; Napolitano, J.; Nozar, M.; Price, J.W.; Stoler, P.; Witkowski, M.; Bosted, P.; Armstrong, C.S.; Meekins, D.; Assamagan, K.; Avery, S.; Baker, O.K.; Eden, T.; Gaskell, D.; Gueye, P.; Hinton, W.; Keppel, C.; Madey, R.; Niculescu, G.; Niculescu, I.; Tang, L.; Ahmidouch, A.; Madey, R.; Kim, W.; Baker, O.K.; Burkert, V.; Carlini, R.; Dunne, J.; Ent, R.; Keppel, C.; Mack, D.; Mitchell, J.; Tang, L.; Wood, S.; Koltenuk, D.; Minehart, R.; Mkrtchyan, H.; Tadevosian, V.

    1999-01-01

    We studied the electroproduction of the {Delta}(1232) resonance via the reaction p(e,thinspe{sup {prime}}p){pi}{sup 0} at four-momentum transfers Q{sup 2}=2.8 and 4.0 GeV{sup 2} . This is the highest Q{sup 2} for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for {Delta}{r_arrow}p{pi}{sup 0} were measured over a wide range of barycentric energies covering the resonance. The N{endash}{Delta} transition form factor G{sup {asterisk}}{sub M} and ratios of resonant multipoles E{sub 1+}/M{sub 1+} and S{sub 1+}/M{sub 1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers. {copyright} {ital 1998} {ital The American Physical Society }

  3. Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Gudowska-Nowak, Ewa

    2009-05-01

    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance.

  4. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  5. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  6. Method for resonant measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  7. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  8. Method for resonant measurement

    DOEpatents

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  9. Physics of Sports: Resonances

    NASA Astrophysics Data System (ADS)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  10. Tips for Transition

    ERIC Educational Resources Information Center

    Kellems, Ryan, Comp.; Morningstar, Mary E., Comp.

    2009-01-01

    The Tips for Transition contains 134 Transition Tips submitted from all over the country by practitioners. The purpose of the Tips was to identify grassroots transition practices being used by practitioners. Tips are categorized into the following domains: (1) Transition Planning; (2) Student Involvement; (3) Family Involvement; (4) Curriculum and…

  11. From chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    SciTech Connect

    Arriola, E. R.; Salcedo, L. L.; Megias, E.

    2013-03-25

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  12. Modulating the Near Field Coupling through Resonator Displacement in Planar Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Mohan Rao, S. Jagan; Kumar, Deepak; Kumar, Gagan; Chowdhury, Dibakar Roy

    2017-01-01

    We present the effect of vertical displacements between the resonators inside the unit cell of planar coupled metamaterials on their near field coupling and hence on the terahertz (THz) wave modulation. The metamolecule design consists of two planar split- ring resonators (SRRs) in a unit cell which are coupled through their near fields. The numerically simulated transmission spectrum is found to have split resonances due to the resonance mode hybridization effect. With the increase in displacement between the near field coupled SRRs, this metamaterial system shows a transition from coupled to uncoupled state through merging of the split resonances to the single intrinsic resonance. We have used a semi-analytical model describing the effect of displacements between the resonators and determine that it can predict the numerically simulated results. The outcome could be useful in modulating the terahertz waves employing near field coupled metamaterials, hence, can be useful in the development of terahertz modulators and frequency tunable devices in future.

  13. Resonant ultrasonic spectroscopy and resonant piezoelectric spectroscopy in ferroelastic lead phosphate, Pb3(PO4)2.

    PubMed

    Aktas, O; Salje, E K H; Carpenter, M A

    2013-11-20

    Elastic properties of the ferroelastic compound Pb3(PO4)2 were investigated using resonant ultrasonic spectroscopy. Results show softening of the mechanical resonance frequencies at the D3m → C2/c ferroelastic transition temperature Ttrans = 453.6 K with no noticeable frequency dispersion. The reduction of resonance frequencies corresponds to 25% softening of the effective elastic constants at Ttrans relative to the value at 700 K. The data analysis indicates that the elastic precursor softening is driven by a displacive soft mode that is coupled to the order-disorder movements of Pb atoms around the rhombohedral threefold axis, which gives rise to local monoclinicity in the paraelastic phase. Finally, resonant piezoelectric spectroscopy (RPS) is used to determine if microstructures are polar in the cubic phase. RPS measurements find no evidence of piezoelectric signals in Pb3(PO4)2, confirming that the possible polar behavior detected using second harmonic generation is due to crystal imperfections.

  14. Probing Students' Understanding of Resonance

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; McBride, Dyan; Gross, Josh; Zollman, Dean

    2009-11-01

    Resonant phenomena play a crucial role in magnetic resonance imaging (MRI), a widely used medical tool in today's society. The basic features of the resonance in MRI can be taught by looking at the resonance of a compass driven by an electromagnetic field. However, resonance in a oscillating magnetic field is not a phenomenon that is familiar to most students. Thus, as a precursor to creating instructional materials, we investigated how students applied their learning about resonance as traditionally taught to this novel system.

  15. Detection and Characterization of Non-Transiting Planets from Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Nesvorny, David; Kipping, David; Terrell, Dirk

    2014-11-01

    The Transit Timing Variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Here we conduct a photo-dynamical analysis of several Kepler Objects of Interest (KOIs) that exhibit significant TTVs. We show that KOI-142, KOI-227 and KOI-319 are (at least) two planet systems. KOI-142.01's TTVs uniquely detect a non-transiting companion with a mass 0.63 that of Jupiter. KOI-142.01's mass inferred from the TTVs is consistent with the measured transit depth, suggesting a Neptune-class planet. The orbital period ratio 2.03 indicates that the two planets are just wide of the 2:1 resonance. For KOI-319 and KOI-884, the observed TTVs of the inner transiting planet are used to detect an outer non-transiting planet. The outer planet in KOI-884 is 2.6 Jupiter masses and has the orbital period just narrow of the 3:1 resonance with the inner planet (orbital period ratio 2.93). The distribution of parameters inferred from KOI-319.01's TTVs is bimodal with either a 1.6 Neptune-mass planet wide of the 5:3 resonance (period 80.1 d) or a Saturn-mass planet wide of the 7:3 resonance (period 109.2 d). The radial velocity measurements can be used in this case to determine which of these parameter modes is correct. We discuss how the orbital architecture of KOI-142, KOI-227 and KOI-319 systems constrains their formation.

  16. Resonance propagation of electrons through three-barrier structures in a two-frequency electric field

    SciTech Connect

    Pashkovskii, A. B.

    2011-06-15

    The solution of the Schroedinger equation that describes resonance transitions between three equidistant quantum levels in asymmetric three-barrier resonance-tunnel structures in a high one-frequency electric field is extended to the case of differently separated levels and a two-frequency field, with the frequencies corresponding to resonance transitions in each of the coupled quantum wells. It is shown that, in the conditions of coherent electron transport, irrespective of the parameters of the structure, for any amplitude of the high resonance field in one well, there exists an amplitude of the resonance field in the other well such that the structure is absolutely transparent and most electrons (in the limiting case, all electrons) incident on the upper resonance level can emit two photons with different frequencies and leave the structure through the lower level with no intermediate interaction with phonons. The probability of the transitions substantially depends on the amplitudes of the fields and does not depend on the phase difference between the fields. It is found that the possibility exists of almost complete blocking of resonance transitions in one of the wells by a high-frequency field in the other well.

  17. Tuning Fano resonances of graphene-based gratings

    NASA Astrophysics Data System (ADS)

    de Ceglia, Domenico; Vincenti, Maria A.; Grande, Marco; Bianco, Giuseppe Valerio; Bruno, Giovanni; D'Orazio, Antonella; Scalora, Michael

    2016-09-01

    We present a strategy to control Fano resonances in hybrid graphene-silicon-on-insulator gratings. The presence of a mono- or few-layer graphene film allows to electrically and/or chemically tuning the Fano resonances that result from the interaction of narrow-band, quasi-normal modes and broad-band, Fabry-Perot-like modes. Transmission, reflection and absorption spectra undergo significant modulations under the application of a static voltage to the graphene film. In particular, for low values of the graphene chemical potential, the structure exhibits a symmetric Lorentzian resonance; when the chemical potential increases beyond a specific threshold, the grating resonance becomes Fano-like, hence narrower and asymmetric. This transition occurs when the graphene optical response changes from that of a lossy dielectric medium into that of a low-loss metal. Further increasing the chemical potential allows to blue-shift the Fano resonance, leaving its shape and linewidth virtually unaltered. We provide a thorough description of the underlying physics by resorting to the quasi-normal mode description of the resonant grating and retrieve perturbative expressions for the characteristic wavelength and linewidth of the resonance. The roles of number of graphene layers, waveguide-film thickness and graphene quality on the tuning abilities of the grating will be discussed. Although developed for infrared telecom wavelengths and silicon-on-insulator technology, the proposed structure can be easily designed for other wavelengths, including visible, far-infrared and terahertz, and other photonic platforms.

  18. High Quality Factor Mechanical Resonators Based on WSe2 Monolayers

    PubMed Central

    2016-01-01

    Suspended monolayer transition metal dichalcogenides (TMD) are membranes that combine ultralow mass and exceptional optical properties, making them intriguing materials for opto-mechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe2 resonators greatly increases below room temperature, reaching values as high as 1.6 × 104 at liquid nitrogen temperature and 4.7 × 104 at liquid helium temperature. This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe2 lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe2 monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons, valley pseudospins, and single quantum emitters and for quantum opto-mechanical experiments based on the Casimir interaction. PMID:27459399

  19. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  20. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  1. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Micromachined double resonator

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman (Inventor); Tang, Tony K. (Inventor); Shcheglov, Kirill (Inventor)

    2002-01-01

    A micromachined resonator mountable to an external support structure has a proof mass coupled to a base structure by a first spring structure, the base structure having a plurality of electrodes, and a second spring structure coupling the base structure to the external support structure.

  3. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  4. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  5. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  6. Simulation of quartz resonators

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Radius, R.; Mohr, R.

    Quartz resonators are suitable as novel sensor elements in the field of profilometry and three dimensional measurement techniques. This application requires a tailoring of the oscillator circuit which is performed by a network analysis program. The equivalent network parameters are computed by a finite element analysis. The mechanical loading of the quartz is modeled by a viscous damping approach.

  7. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  8. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  9. Resonant scanning mechanism

    NASA Astrophysics Data System (ADS)

    Wallace, John; Newman, Mike; Gutierrez, Homero; Hoffman, Charlie; Quakenbush, Tim; Waldeck, Dan; Leone, Christopher; Ostaszewski, Miro

    2014-10-01

    Ball Aerospace & Technologies Corp. developed a Resonant Scanning Mechanism (RSM) capable of combining a 250- Hz resonant scan about one axis with a two-hertz triangular scan about the orthogonal axis. The RSM enables a rapid, high-density scan over a significant field of regard (FOR) while minimizing size, weight, and power requirements. The azimuth scan axis is bearing mounted allowing for 30° of mechanical travel, while the resonant elevation axis is flexure and spring mounted with five degrees of mechanical travel. Pointing-knowledge error during quiescent static pointing at room temperature across the full range is better than 100 μrad RMS per axis. The compact design of the RSM, roughly the size of a soda can, makes it an ideal mechanism for use on low-altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) resonant springs which allow for a high-frequency scan axis with low power consumption; and ii) an independent lower-frequency scan axis allowing for a wide FOR. The pointing control system operates each axis independently and employs i) a position loop for the azimuth axis; and ii) a unique combination of parallel frequency and amplitude control loops for the elevation axis. All control and pointing algorithms are hosted on a 200-MHz microcontroller with 516 KB of RAM on a compact 3"×4" digital controller, also of Ball design.

  10. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  11. Wireless ferroelectric resonating sensor.

    PubMed

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  12. Isospin decomposition of γN→N* transitions within a dynamical coupled-channels model

    DOE PAGES

    Kamano, Hiroyuki; Nakamura, S. X.; Lee, T. -S. H.; ...

    2016-07-07

    Here, by extending the dynamical coupled-channels analysis performed in our previous work to include the available data of photoproduction of pi mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γn → N*, at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γp → N* transition amplitudes. Our results allow an isospin decomposition of the γN → N* transition amplitudes for the isospin I = 1/2 N* resonances, which is necessary for testing hadronmore » structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.« less

  13. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    PubMed Central

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2007-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

  14. Architecture and Dynamics of Kepler's Multi-transiting Planetary Systems

    NASA Astrophysics Data System (ADS)

    Fabrycky, Daniel C.; Kepler Science Team

    2012-05-01

    Having discovered almost 900 planet candidates in over 360 multiple-planet systems, Kepler has made transits a powerful method for studying the architecture and dynamics of planetary systems. Pairs of planets in this sample are typically not in orbital resonances. However, pairs with orbital period ratios within a few percent of a first-order resonance (e.g. 2:1, 3:2) prefer orbital spacings just wide of the resonance and avoid spacings just narrow of the resonance, requiring a dynamical mechanism. Several systems likely do show dynamical resonance behavior: some are engaged in very tight resonances (6:5, 9:7), and others have several planets in chains of first-order resonances. Finally, we discuss the statistics of mutual inclinations based on transit duration ratios. We infer that the inner planets of pairs tend to have a smaller impact parameter than their outer companions, suggesting these planetary systems are typically coplanar to within a few degrees. Funding for this mission is provided by NASA’s Science Mission Directorate. D. F. acknowledges support from NASA through Hubble Fellowship grant #HF-51272.01-A

  15. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    SciTech Connect

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    2015-07-31

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applications and other topics in quantum electronics)

  16. Coherent synchro-betatron resonance

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2006-12-01

    Coherent synchro-betatron resonances can present a serious limit for low-energy synchrotrons with strong space charge. Here, an excitation of a dipole transverse mode is considered at resonance condition.

  17. Neutral Pion Electroproduction in the Δ Resonance Region

    SciTech Connect

    Villano, Anthony

    2007-11-01

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π0 particles. Differential cross sections are extracted for exclusive π0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G$*\\atop{M}$ is extracted along with the scalar to magnetic dipole ratio C2/M1.

  18. Equivalent circuit for birdcage resonators.

    PubMed

    Harpen, M D

    1993-02-01

    We present an equivalent circuit analysis for both low pass and high pass birdcage resonators loaded with lossy samples. In a generalization of the method of Hoult and Lauterbur (J. Magn. Reson. 34, 425 (1979)), we also derive circuit component values by application of the laws of electrodynamics. Measured resonance spectra, quality factors, and feed point impedances in a test resonator are shown to be in agreement with those predicted by the proposed model.

  19. Double resonant wideband Purcell effect in wire metamaterials

    NASA Astrophysics Data System (ADS)

    Mirmoosa, M. S.; Kosulnikov, S. Yu; Simovski, C. R.

    2016-09-01

    In this paper, we theoretically show that a broadband resonant enhancement of emission may occur for infrared sources located in a polaritonic wire medium. The reason for this enhancement is the overlapping of two topological transitions of the wave dispersion in the medium. The first topological transition has been revealed as an effect inherent to polaritonic wire media at a certain frequency in the mid-infrared range. This work uncovers another topological transition for such wire media which holds at a higher frequency but still in the mid infrared. We show that the first transition frequency can be shifted towards the second one by variation of the design parameters. This shift enables a broadband resonant Purcell factor. We compare the results obtained for two orientations of a subwavelength electric dipole embedded into the wire medium—that along the optical axis and that perpendicular to it—and report on the resonant isotropic radiation enhancement. Also, we reveal the enhancement of radiation to the free space from a finite sample of the wire medium.

  20. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  1. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  2. Birth of a resonant attosecond wavepacket

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Taieb, R.; Martin, F.; Salieres, P.

    2016-05-01

    Both amplitude and phase are needed to characterize the dynamics of a wavepacket. However, such characterization is difficult when both attosecond and femtosecond timescales are involved, as it is the case for broadband photoionization to a continuum encompassing autoionizing states. Here we demonstrate that Rainbow RABBIT, a new attosecond interferometry, allows the measurement of amplitude and phase of a photoelectron wavepacket created through a Fano resonance with unprecedented precision. In the experiment, a tunable attosecond pulse train is combined with the fundamental laser pulse to induce two-photon transitions in helium via an intermediate autoionizing state. From the energy and time-delay resolved signal, we fully reconstruct the resonant electron wavepacket as it builds up in the continuum. Measurements accurately match the predictions of a new time-resolved multi-photon resonant model, known to reproduce ab initio calculations. This agreement confirms the potential of Rainbow RABBIT to investigate photoemission delays in ultrafast processes governed by electron correlation, as well as to control structured electron wavepackets. now at Univ. Central Florida, Orlando, FL (USA).

  3. Liquid crystal filled surface plasmon resonance thermometer.

    PubMed

    Lu, Mengdi; Zhang, Xinpu; Liang, Yuzhang; Li, Lixia; Masson, Jean-Francois; Peng, Wei

    2016-05-16

    A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement.

  4. Resonant tunnelling in a quantum oxide superlattice

    SciTech Connect

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typically observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.

  5. Resonant tunnelling in a quantum oxide superlattice

    DOE PAGES

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; ...

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typicallymore » observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.« less

  6. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  7. Detection of Hot Earths by Giant Planet Transit Tming

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Jennings, Donald E.; Sada, Pedro

    2008-08-01

    Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A recent explosion of discoveries by transit surveys have given us a sample of 25 hot Jupiters transiting stars brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (typically 180 second) perturbations they induce on the giant planet transits. The relatively large sample now available implies that a transit timing survey is well matched to classical observing and telescope scheduling. We propose exploratory observations to perform transit photometry using the 2.1-meter/FLAMINGOS instrument in the J-band, where stellar limb darkening is minimal and transit photometry has maximum sensitivity to shifts in transit time. If our exploratory observations confirm timing precision approaching the predicted values (about 10 seconds for a typical system), we will propose additional observations in later semesters to establish a timing survey.

  8. Secondary resonances of electrically actuated resonant microsensors

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Eihab M.; Nayfeh, Ali H.

    2003-05-01

    We investigate the response of a microbeam-based resonant sensor to superharmonic and subharmonic electric actuations using a model that incorporates the nonlinearities associated with moderately large displacements and electric forces. The method of multiple scales is used, in each case, to obtain two first-order nonlinear ordinary-differential equations that describe the modulation of the amplitude and phase of the response and its stability. We present typical frequency-response and force-response curves demonstrating, in both cases, the coexistence of multivalued solutions. The solution corresponding to a superharmonic excitation consists of three branches, which meet at two saddle-node bifurcation points. The solution corresponding to a subharmonic excitation consists of two branches meeting a branch of trivial solutions at two pitchfork bifurcation points. One of these bifurcation points is supercritical and the other is subcritical. The results provide an analytical tool to predict the microsensor response to superharmonic and subharmonic excitations, specifically the locations of sudden jumps and regions of hysteretic behavior, thereby enabling designers to safely use these frequencies as measurement signals. They also allow designers to examine the impact of various design parameters on the device behavior.

  9. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  10. Non-resonant triple alpha reaction rate at low temperature

    SciTech Connect

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K.; Carter, J.; Donaldson, L.; Sideras-Haddad, E.; Furuno, T.; Kawabata, T.; Kamimura, M.; Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C.

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  11. Resonant metamaterial detectors based on THz quantum-cascade structures

    PubMed Central

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-01-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  12. Photon transfer in a system of coupled superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Muirhead, C. M.; Gunupudi, B.; Colclough, M. S.

    2016-08-01

    A novel scheme is proposed for the study of energy transfer in a pair of coupled thin film superconducting microwave resonators. We show that the transfer could be achieved by modulating the kinetic inductance and that this has a number of advantages over earlier theoretical and experimental schemes, which use modulation of capacitance by vibrating nanobars or membranes. We show that the proposed scheme lends itself to the study of the classical analogues of Rabi and Landau-Zener-Stueckelberg oscillations and Landau-Zener transitions using experimentally achievable parameters. We consider a number of ways in which energy transfer (photon shuttle) between the two resonators could be achieved experimentally.

  13. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  14. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  15. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  16. Resonant diphoton phenomenology simplified

    NASA Astrophysics Data System (ADS)

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-06-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results.

  17. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  18. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  19. Cross resonant optical antenna.

    PubMed

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  20. Linear Resonance Cooler.

    DTIC Science & Technology

    1985-04-01

    for a Stirling cycle cryocooler . 26 * .*o .. * COMPRESSOR MOTOR FORCE VERSUS ROTOR AXIAL POSITION COMPRESSOR P-V DIAGRAM *COMPRESSOR MOTOR COMPRESSOR...potential. However, the limited test program has demonstrated the application of linear motor drive technology to a Stirling cycle cryocooler design. L...Ace-ss Ion& For flTIC TAB - TABLE OF CONTENTS TITLE IPAGE - 2. DETAILED DESIGN OF LINEAR RESONANCE CRYOCOOLER ......... 3 2.2 Expander

  1. Quantum chaos of atoms in a resonator driven by an external resonant field

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D. Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes at Krasnoyarsk Polytechnical Institute, Theoretical Department at Krasnoyarsk State University, 660036, Krasnoyarsk Theoretical Division, MS-B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 )

    1994-06-01

    A system of [ital N] two-level atoms in a resonator is considered interacting with a resonant eigenmode field and with an external coherent field, with a frequency slightly different from the frequency of the atomic transition. A model Hamiltonian is constructed for describing the slow quantum dynamics of the system, and a set of closed [ital c]-number equations for time-dependent quantum expectation values is derived in the boson and spin coherent states. In the region of parameters for developed chaos in the semiclassical limit (when the radiation field is considered classically) we show that the semiclassical approximation is violated by quantum effects at the time scale [tau][sub [h bar

  2. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  3. Resonant non-gaussianity

    SciTech Connect

    Flauger, Raphael; Pajer, Enrico E-mail: ep295@cornell.edu

    2011-01-01

    We provide a derivation from first principles of the primordial bispectrum of scalar perturbations produced during inflation driven by a canonically normalized scalar field whose potential exhibits small sinusoidal modulations. A potential of this type has been derived in a class of string theory models of inflation based on axion monodromy. We use this model as a concrete example, but we present our derivations and results for a general slow-roll potential with superimposed modulations. We show analytically that a resonance between the oscillations of the background and the oscillations of the fluctuations is responsible for the production of an observably large non-Gaussian signal. We provide an explicit expression for the shape of this resonant non-Gaussianity. We show that there is essentially no overlap between this shape and the local, equilateral, and orthogonal shapes, and we stress that resonant non-Gaussianity is not captured by the simplest version of the effective field theory of inflation. We hope our analytic expression will be useful to further observationally constrain this class of models.

  4. Resonant Alfven Wave Excitation

    NASA Astrophysics Data System (ADS)

    Hameiri, Eliezer

    1999-11-01

    Much of the theory of the Alfven wave resonance phenomenon was developed for a tokamak configuration where the magnetic field winds around the torus without entering the boundary. Thus, boundary conditions did not have to be considered.( J. Tataronis and W. Grossmann, Z. Phys. 261), 203 (1973). In most space plasma situations such as the magnetosphere or the Sun, as well as in the scrape-off layer of a divertor tokamak, this is not the case. When boundary conditions are considered, it is generally assumed for simplicity that the boundary is perfectly conducting, which implies that the Alfven wave bounce frequencies are real and the resonance phenomenon can be detected by some singularity in the equations. The nature of the singularity is usually described in terms of a Frobenius series.( A.N. Wright and M.J. Thompson, Phys. Plamsas 1), 691 (1994). In this work we consider resistive boundaries, which imply that the fast wave eigenfrequency is real, but the Alfven frequency is not. Thus, there is no exact resonance and no singularity in the equations. The solution of the problem is carried out asymptotically by finding an exact Laplace integral representation for the solution and then matching various regions. The energy transferred to the Alfven wave appears to be rather small.

  5. Resonance Raman spectroscopy.

    PubMed

    Robert, Bruno

    2009-01-01

    Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis.

  6. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  7. Conceptualizing Transitions to Adulthood

    ERIC Educational Resources Information Center

    Wyn, Johanna

    2014-01-01

    This chapter provides an overview of theories of the transition to young adulthood. It sets out the argument for conceptual renewal and discusses some implications of new patterns of transition for adult education.

  8. Transition to Adulthood

    MedlinePlus

    ... fix that! Keep reading… Back to top IDEA’s Definition of Transition Services Any discussion of transition services ... from special education. Back to top Considering the Definition A number of key words in the definition ...

  9. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  10. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  11. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  12. Stochastic resonance in a generalized Von Foerster population growth model

    SciTech Connect

    Lumi, N.; Mankin, R.

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  13. Internal Pair Decay of Giant Resonances in Hot LEAD-200.

    NASA Astrophysics Data System (ADS)

    Adami, Susan

    Electron-positron pairs emitted during the de -excitation of the hot ^{200}Pb were detected with the Stony Brook pair detector, a phoswich array, in order to observe the internal pair decay of giant resonances (GR) built on excited states. These collective excitations are particularly well defined in heavy nuclei, and the full GR sum rule had been found in the ground state excitations of both the giant dipole resonance and the isoscalar monopole resonance. The excited compound nucleus was formed by bombarding a ^{181} Ta target with a 95 MeV pulsed ^ {19}F beam. While the gamma-decay from giant resonances of multipolarities L >=q 1 results in cross-sections 3-4 orders of magnitudes bigger than the internal pair decay, the decay of giant monopole resonances via a collective E0 transition can only be observed in the e^+ - e^ --decay channel. Another advantage of investigating electro-magnetic transitions via the pair decay channel is the fact that the correlation angle (and also the energy sharing) between the electron and the positron provides insight in the multipolarity of the observed transition. Especially the angular correlation distribution of an L = 0 transition is easily distinguished from the L >=q 1 cases. In the data analysis, the pair spectra were compared to calculations using the statistical model code CASCADE, which was modified to include the internal pair decay of giant resonances from the compound nucleus as well as from the fission fragments. In addition, gamma measurements from the same reaction at a comparable excitation energy (93 MeV) were available. The extracted pair spectra confirmed the CASCADE prediction that the giant dipole resonance dominates the pair decay from a hot, heavy nucleus. Superior statistics would be necessary in order to extract weaker modes like the monopole or quadrupole resonances and due to the lack in statistics this work can only offer a rough estimate for the width and position of the isoscalar giant monopole

  14. Transition in Turbines

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.

  15. Cosmological phase transitions

    SciTech Connect

    Kolb, E.W. |

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  16. Persistence, resistance, resonance

    NASA Astrophysics Data System (ADS)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  17. Transition: Preschool to Kindergarten

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2007

    2007-01-01

    Transition is movement or change without interruption. It should be a smooth flow from one place or condition to another. While the transition plan for a student receiving special education services is designed to prepare him or her for life after high school, transition can start when a child enters preschool. The second of six distinct stages of…

  18. Transition. Feature Issue.

    ERIC Educational Resources Information Center

    Wallace, Teri, Ed.; And Others

    1992-01-01

    This feature issue of a quarterly bulletin on community integration addresses the topic of transition services for preparing youth with disabilities for adult community living. It contains articles with the following titles and authors: "Transition: The Next Five Years" (David R. Johnson and others); "Transition Policy in the 1990s:…

  19. Spectrum of a Resonator Coupled to a Driven Superconducting Qubit in the Strong Dispersive Regime of Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Chong, Yonuk; Hong, Hyun-Gue; Ha, Dong-Gwang

    The resonator spectrum in the strong dispersive coupling regime of circuit-QED has been a useful nondestructive indicator of a stationary qubit state. Here we present experimental observation of the further modification of the resonator spectrum as the qubit undergoes the dynamic transition by a resonant driving field. The quartet resonance associated with the polarized qubit is observed for the resonant driving at one-photon as well as the multi-photon transition in a 3D transmon qubit. The evolution of the resonance as a function of the driving power and the detuning of the driving field is well understood by a simple model which is based on the analytic diagonalization of Hamiltonian and described in terms of dressed states, Lamb shift, and AC Stark shift.

  20. Incommensurate spin resonance in URu2Si2

    SciTech Connect

    Balatsky, A V; Chantis, A; Dahal, Hari; Zhu, J X; Parker, David

    2008-01-01

    We propose to search for the spin resonance in URu{sub 2}Si{sub 2} at {omega}{sub res} = 4-6meV at the incommensurate wavector Q* = (1 {+-} 0.4, 0, 0). We expect that this spin resonance will set in at temperatures below HO transition and the intensity of this peak will scale as {approx} {Delta}{sub HO} {approx} (T{sub HO} - T). The resonance peak is know to occur in the states with superconducting gap and results in the gapping of the electronic spectrum add ref on SrruO and cel 15. In the case of HO the gap {Delta}{sub HO} results in the partially gapped electron spectrum. That appears to be a sufficient condition, as shown by Wiebe et al to produce a gap in spin excitation spectrum. In addition, we predict a peak in the spin excitation spectrum, as spectral weight redistribution produces the resonance feature. To the best of our knowledge, if the predicted resonance peak indeed occurs, it would be the first case where the spin resonance occurs at an incommensurate vector Q*.

  1. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGES

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; ...

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  2. Exciton Resonances in Novel Silicon Carbide Polymers

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  3. Resonant tunneling in fractional Hall effect

    NASA Astrophysics Data System (ADS)

    Shi, Chuntai; Jain, Jainendra

    2006-03-01

    We study theoretically the possible transitions of a fractional quantum Hall island surrounded by another fractional quantum Hall state, induced by either the variation of the magnetic field or a backgate voltage, and find a rich set of possibilities in addition to the one considered previously[1],The elementary transitions correspond to the addition or removal of a composite fermion from the edge or the interior of the island; combinations of elementary transitions may occur simultaneously due to electrostatic constraints. Relevance to a recent experiment[2] is considered, which measures the resonant tunneling of composite fermions through their quasi-bound states around such a 2/5 island surrounded by the 1/3 sea. It is shown that the results are consistent with the notion of fractional braiding statistics, but can be explained on the basis of fractional charge alone. We also perform calculations based on microscopic composite fermion wavefunctions of finite systems to test the theoretical considerations. [1]J.K.Jain, S.A.Kivelson, and D.J.Thouless, Phys.Rev.Lett.71, 3003(1993). [2]F.E.Camino, W.Zhou, and V.J.Goldman, Phys.Rev.B 72, 075342(2005).

  4. Transit pricing and performance

    SciTech Connect

    Pickerell, D.H.; Abkowitz, M.; Tozzi, J.; McCord, M.R.; Cheng, L.H.

    1986-01-01

    The 9 papers in the report deal with the following areas: Federal operating assistance for urban mass transit; a decade of experience; transit route characteristics and headway-based reliability control; day-of-week and part-of-month variation in bus ridership; job satisfaction and transit operator recognition programs; results of a survey of muni operators; bus marketing costs: the experience of 18 section 15 reporters from 1981 to 1983; prospects for differential transit pricing in the United States; an initial analysis of total factor productivity for public-transit coordination of transportation resources: the Georgia experience; absenteeism, accidents, and attrition: part-time versus full-time bus drivers.

  5. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  6. Seismic Resonant Emission

    NASA Astrophysics Data System (ADS)

    Korneev, V. A.

    2007-12-01

    There are several classes of underground objects which can produce resonant emission after being hit by incident seismic waves. Those objects include tunnels, pipes, buried containers, ground-filled excavations, unexploded ordinances, fluid-filled fractures, mine shafts, and the like. Being high contrast scatterers, these objects are capable of generating strong scattered waves where primary PP, PS, SS waves carry away most of the energy which was brought by incident waves. For both high- and low- velocity objects the primary scattered waves have the same order of magnitude as incident waves. The main difference between these groups of objects is in later arrivals of multiple scattered waves. While high-velocity objects effectively radiate most of the energy soon after impact, the low-velocity objects trap some fraction of incident wave energy in the form of circumferential waves which propagate rotating along the interface between the object and the embedding medium. Circumferential waves include surface Rayleigh-type waves (propagating mostly in the embedding medium), Stoneley waves (propagating mostly in the fluid, if present), and Frantz waves (body waves trapped in the object because of its curvature). Strong impedance contrast ensures small radiation loss for circumferential waves and they slowly decay in amplitude while rotating inside/around the object. Some circumferential waves exist in the high-velocity objects but their amplitudes decay very fast because of strong radiation in outer medium. Most of the secondary (multiply reflected from an object's boundaries or multiply circled around the object) resonant-scattered energy radiates in the embedding medium as shear waves. The possibility of neglecting P- waves in late scattering arrivals simplifies imaging as is demonstrated for the field and modeled data of the example. Resonant emission phenomenon provides an effective tool for active monitoring for a number of applications such as tunnel detection

  7. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III

    SciTech Connect

    Shore, B.W.; Sacks, R.; Karr, T.

    1987-02-18

    This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator.

  8. Resonance test system

    DOEpatents

    Musial, Walter [Boulder, CO; White, Darris [Superior, CO

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  9. Nanotube resonator devices

    DOEpatents

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  10. Ellipsometric surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Liang; Lee, Shu-Sheng; Lee, Chih-Kung

    2009-03-01

    We develop a new multifunctional optical biochip system that integrates an ellipsometer with a surface plasmon resonance (SPR) feature. This newly developed biochip biosensor, which we call ESPR for an ellipsometric SPR, provides us with a system to retrieve detailed information such as the optical properties of immobilized biomolecular monolayers, surface concentration variations of biomedical reactions, and kinetic affinity between biomolecules required for further biotech analysis. Our ESPR can also serve as both a research and development tool and a manufacturing tool for various biomedical applications.

  11. Pressure dependent resonant frequency of micromechanical drumhead resonators

    SciTech Connect

    Southworth, D. R.; Craighead, H. G.; Parpia, J. M.

    2009-05-25

    We examine the relationship between squeeze film effects and resonance frequency in drum-type resonators. We find that the resonance frequency increases linearly with pressure as a result of the additional restoring force contribution from compression of gas within the drum cavity. We demonstrate trapping of the gas by squeeze film effects and geometry. The pressure sensitivity is shown to scale inversely with cavity height and sound radiation is found to be the predominant loss mechanism near and above atmospheric pressure. Drum resonators exhibit linearity and sensitivity suitable to barometry from below 10 Torr up to several atmospheres.

  12. Detecting positron-atom bound states through resonant annihilation.

    PubMed

    Dzuba, V A; Flambaum, V V; Gribakin, G F

    2010-11-12

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  13. Electromagnetic Meson Production in the Nucleon Resonance Region

    SciTech Connect

    Volker Burkert; T.-S. H. Lee

    2004-10-01

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.

  14. Controlling condensate collapse and expansion with an optical Feshbach resonance.

    PubMed

    Yan, Mi; DeSalvo, B J; Ramachandhran, B; Pu, H; Killian, T C

    2013-03-22

    We demonstrate control of the collapse and expansion of an (88)Sr Bose-Einstein condensate using an optical Feshbach resonance near the (1)S(0)-(3)P(1) intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to ± 10a(bg), where the background scattering length of (88)Sr is a(bg) = -2a(0) (1a(0) = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the optical Feshbach resonance laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation.

  15. Resonant diffraction of synchrotron radiation in rubidium dihydrophosphate crystals

    SciTech Connect

    Mukhamedzhanov, E. Kh.; Kovalchuk, M. V.; Borisov, M. M.; Ovchinnikova, E. N.; Troshkov, E. V.; Dmitrienko, V. E.

    2010-03-15

    Purely resonant Bragg reflections 006, 55bar 0, and 666 in a rubidium dihydrophosphate (RbH{sub 2}PO{sub 4}) crystal at the K edge of rubidium have been experimentally and theoretically investigated. These reflections remain forbidden when the resonant dipole-dipole (E1E1) contribution to the resonant atomic factor is taken into account; they may be due to the dipole-quadrupole (E1E2) transitions as well as to the anisotropy atomic factor, which is caused by thermal atomic displacements (thermally induced contribution) and/or local jumps of hydrogen atoms. A numerical simulation showed that, at room temperature (experimental conditions), the thermally induced contribution to the 'forbidden' reflections is dominant.

  16. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion.

  17. Modulation of attosecond beating in resonant two-photon ionization.

    PubMed

    Jiménez-Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2014-12-31

    We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena by means of a general analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  18. Modulation of Attosecond Beating in Resonant Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2014-12-01

    We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena by means of a general analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N =2 doubly excited states.

  19. Structure of the pygmy dipole resonance in 124Sn

    NASA Astrophysics Data System (ADS)

    Endres, J.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Krücken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2012-06-01

    Background: In atomic nuclei, a concentration of electric dipole strength around the particle threshold, commonly denoted as pygmy dipole resonance, may have a significant impact on nuclear structure properties and astrophysical scenarios. A clear identification of these states and the structure of this resonance is still under discussion.Purpose: We present an experimental and theoretical study of the isospin character of the pygmy dipole resonance and investigation of a splitting of the electric dipole strength previously observed in experiments on N=82 nuclei.Method: The pygmy dipole resonance has been studied in the semi-magic Z=50 nucleus 124Sn by means of the (α,α'γ) coincidence method at Eα=136MeV using the Big-Bite Spectrometer at the Kernfysisch Versneller Instituut in Groningen, The Netherlands.Results: A splitting of the low-energy part of the electric dipole strength was identified in 124Sn by comparing the differential cross sections measured in (α,α'γ) to results stemming from (γ,γ') photon-scattering experiments. While an energetically lower-lying group of states is observed in both kinds of experiments, a higher-lying group of states is only excited in the (γ,γ') reaction. In addition, theoretical calculations using the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle-phonon model have been performed. Both calculations show a qualitative agreement with the experimental data and predict a low-lying isoscalar component that is dominated by neutron-skin oscillations as expected for the pygmy dipole resonance. Furthermore, the states at higher energies show a pronounced isovector component and a different radial dependence of the corresponding transition densities as expected for the tail of the giant dipole resonance.Conclusions: An experimental signature of the neutron-skin oscillation of the pygmy dipole resonance has been corroborated. The combination of the presented reactions might make it

  20. Pattern transitions in spatial epidemics: Mechanisms and emergent properties.

    PubMed

    Sun, Gui-Quan; Jusup, Marko; Jin, Zhen; Wang, Yi; Wang, Zhen

    2016-12-01

    Infectious diseases are a threat to human health and a hindrance to societal development. Consequently, the spread of diseases in both time and space has been widely studied, revealing the different types of spatial patterns. Transitions between patterns are an emergent property in spatial epidemics that can serve as a potential trend indicator of disease spread. Despite the usefulness of such an indicator, attempts to systematize the topic of pattern transitions have been few and far between. We present a mini-review on pattern transitions in spatial epidemics, describing the types of transitions and their underlying mechanisms. We show that pattern transitions relate to the complexity of spatial epidemics by, for example, being accompanied with phenomena such as coherence resonance and cyclic evolution. The results presented herein provide valuable insights into disease prevention and control, and may even be applicable outside epidemiology, including other branches of medical science, ecology, quantitative finance, and elsewhere.

  1. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  2. Magnetic Resonance Safety

    PubMed Central

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  3. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  4. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  5. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  6. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  7. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  8. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  9. A mirrorless spinwave resonator

    PubMed Central

    Pinel, Olivier; Everett, Jesse L.; Hosseini, Mahdi; Campbell, Geoff T.; Buchler, Ben C.; Lam, Ping Koy

    2015-01-01

    Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20 cm long Rb gas cell, yet it facilitates an effective FSR of 83 kHz, which would require a round-trip path of 3.6 km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters. PMID:26655839

  10. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  11. Geometry-invariant resonant cavities

    NASA Astrophysics Data System (ADS)

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-03-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.

  12. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  13. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  14. Fermi resonance in optical microcavities

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-04-01

    Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.

  15. Investigating hadronic resonances in pp interactions with HADES

    NASA Astrophysics Data System (ADS)

    Przygoda, Witold

    2015-06-01

    In this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e- were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e- channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.

  16. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  17. Resonance capture and Saturn's rings

    SciTech Connect

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab.

  18. Coupled resonator vertical cavity laser

    SciTech Connect

    Choquette, K.D.; Chow, W.W.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-01-01

    The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. The authors report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.

  19. Negative refraction with low absorption using Raman transitions with magnetoelectric coupling

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2010-07-15

    We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.

  20. Shear moduli in bcc-fcc structure transition of colloidal crystals.

    PubMed

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-14

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  1. Shear moduli in bcc-fcc structure transition of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-01

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  2. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  3. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  4. Fano resonances in nanoscale structures

    SciTech Connect

    Miroshnichenko, Andrey E.; Flach, Sergej; Kivshar, Yuri S.

    2010-07-15

    Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

  5. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  6. Electromagnetic production of hyperon resonances

    SciTech Connect

    K. Hicks, D. Keller, W. Tang

    2011-10-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  7. Acoustic detection of microbubble resonance

    NASA Astrophysics Data System (ADS)

    Thomas, D. H.; Looney, P.; Steel, R.; Pelekasis, N.; McDicken, W. N.; Anderson, T.; Sboros, V.

    2009-06-01

    Large numbers of acoustic signals from single lipid-shelled Definity® microbubbles have been measured using a calibrated microacoustic system and a two population response observed. Theoretical results based on the Mooney-Rivlin strain softening shell model have been used to identify these populations as primary resonant and off-primary resonant scatter. An experimentally measured size distribution was used to provide the initial resting radius for the simulations, and the responses agree well with the experimental data. In this way, the primary resonant or off-primary resonant behavior of a microbubble can be studied, with potential benefits to both signal processing techniques and microbubble manufacture.

  8. Theory of Adiabatic Fountain Resonance

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2017-01-01

    The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.

  9. Electromagnetic production of hyperon resonances

    SciTech Connect

    Hicks, K.; Keller, D.; Tang, W.

    2011-10-24

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800) meson. Properties of other hyperon resonances will also be studied in the near future.

  10. Orbital Resonances Around Black Holes

    NASA Astrophysics Data System (ADS)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-01

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  11. Surface states resonances at the single-layer graphene/Cu(111) interface

    NASA Astrophysics Data System (ADS)

    Tognolini, S.; Pagliara, S.; Bignardi, L.; Ponzoni, S.; Rudolf, P.; Parmigiani, F.

    2016-01-01

    By tuning the laser photon energy in the non-linear two-photons photoemission at a single-layer graphene/Cu(111) interface, it is possible to observe a strong resonance at hυ = 3.5 eV along with a weaker one at hυ = 3.85 eV. The main resonance photon energy is consistent with a direct optical transition between the occupied Cu(111) Shockley surface state and the n = 1 image potential state, located in the real gap-space between the single-layer graphene and the Cu(111) surface. The large amplitude of this resonance unveils a high value of the electric dipole matrix element integral that governs this transition. Furthermore, the Lorentzian shape of this resonance implies that these two states are decoupled from the continuum of states and the lifetime of the image potential state can be estimated.

  12. Cylindrical coils near self-resonance.

    PubMed

    Harpen, M D

    1993-10-01

    We present a model of birdcage resonator operation when the size of the resonator approaches a quarter wave length resulting in significant phase shifts along the current conducting elements. In the model resonators are treated as generalized transmission lines. Line termination determines whether the resonator is of the low pass or high pass type. The model correctly describes the dependence of resonant frequency on resonant mode number as well as the distribution of current along the length of the resonator.

  13. Transition from a spectrum filter to a polarizer in a metallic nano-slit array.

    PubMed

    Zhou, Jing; Guo, L Jay

    2014-01-09

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave.

  14. Transition Region Models

    NASA Astrophysics Data System (ADS)

    Hansteen, V.; Murdin, P.

    2000-11-01

    The SOLAR TRANSITION REGION comprises the PLASMA between the CHROMOSPHERE and the CORONA. In both of these regions the temperature is fairly uniform. The transition region, by contrast, is believed to be characterized by a very steep temperature rise from a chromospheric temperature of slightly less than 104 K to coronal temperatures on the order of 106 K. The goal of modeling the transition regi...

  15. Nonlinear Oscillations of Microscale Piezoelectric Resonators and Resonator Arrays

    DTIC Science & Technology

    2006-06-30

    static buckling deflection of the resonator d3E, kI(x) d 3 , k(x) can be expressed as Elt -t = Elk ----- T- at X = Xk-_ Here, it is important to note that...a number of the parameters can resonators clearly reveal nonlinear characteristics. Although b icted by usng the ro rg met ersal the dimensions of

  16. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  17. Passive separation control by acoustic resonance

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Spedding, G. R.

    2013-10-01

    At transitional Reynolds numbers, the laminar boundary layer separation and possible reattachment on a smooth airfoil, or wing section, are notoriously sensitive to small variations in geometry or in the fluid environment. We report here on the results of a pilot study that adds to this list of sensitivities. The presence of small holes in the suction surface of an Eppler 387 wing has a transformative effect upon the aerodynamics, by changing the mean chordwise separation line location. These changes are not simply a consequence of the presence of the small cavities, which by themselves have no effect. Acoustic resonance in the backing cavities generates tones that interact with intrinsic flow instabilities. Possible consequences for passive flow control strategies are discussed together with potential problems in measurements through pressure taps in such flow regimes.

  18. Barrier layers as resonators on deep centers

    NASA Astrophysics Data System (ADS)

    Oreshkin, P. T.

    1990-11-01

    A response is given to the paper of L. S. Barman and A. A. Lebedev (Izv. Vyssh. Uchebn. Zaved. SSSR, Fiz., No. 12, 88 90 (1989)), and it is shown that the arguments given there are not satisfactory. New experimental data have been obtained for n+-p junctions in Si, where square reverse-bias pulses U < Ures are observed to shift the DLTS peaks. Here Ures is the magnitude of the pulse for which all activation-drift processes become activation-transit processes and the barrier layer operates as a freshly prepared resonator on deep centers (see the paper by P. T. Oreshkin, Elektronnaya Tekhnika, Ser. 3, Mikroelektronika, No. 4 (128), 12 20 (1988).

  19. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGES

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  20. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  1. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  2. Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1−xCox)2As2 superconductors

    SciTech Connect

    Kim, Min Gyu; Kreyssig, Andreas; Lee, Yongbin; McQueeney, Robert J.; Harmon, Bruce N.; Goldman, Alan I.

    2012-06-15

    We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1−xCox)2As2 superconductors.

  3. Slope tunable Fano resonances in asymmetric embedded microring resonators

    NASA Astrophysics Data System (ADS)

    Wang, Gencheng; Dai, Tingge; Jiang, Jianfei; Yu, Hui; Hao, Yinlei; Wang, Yuehai; Li, Yubo; Jiang, Xiaoqing; Yang, Jianyi

    2017-02-01

    An asymmetric embedded microring resonant system is proposed and fabricated on a silicon-on-insulator (SOI) to achieve slope tunable Fano resonances. The Fano resonances originate from the nonlinear phase shift produced by adding an inner ring coupling with the outer ring. The slope of the Fano resonance can be well tuned to be ultra-high by controlling the microheaters to adjust the phase condition. Experimentally, we observe Fano resonance with a maximum extinction ratio of about 40 dB, and the slope can be tuned from -35 dB nm-1 to -93 dB nm-1, which shows good agreement with the theoretical analysis. This device could find potential applications in ultra-high sensitivity sensing systems.

  4. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  5. Resonant algebras and gravity

    NASA Astrophysics Data System (ADS)

    Durka, R.

    2017-04-01

    The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.

  6. Subinertial canyon resonance

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Van Gorder, Stephen

    2016-04-01

    Near the bottom of a narrow canyon currents that oscillate back and forth along the bottom slope hx in a stratified ocean of buoyancy frequency N do so with a natural internal gravitational frequency Nhx. From May 2012 to May 2013 Acoustic Doppler Current Profiler measurements were made at 715 m depth in the deep narrow part of the DeSoto Canyon south of Pensacola, Florida, in water with 2π/Nhx ≈ 2.5 days. Above the canyon the flow follows the large-scale isobaths, but beneath the canyon rim the current oscillates along the canyon axis with 2-3 day periodicity, and is much stronger than and uncorrelated with the overlying flow. A simple theoretical model explains the resonant response. Published observations from the Hudson and Gully canyons suggest that the strong subinertial current oscillations observed in these canyons occur close to the relevant local frequency Nhx, consistent with the proposed simple model physics.

  7. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  8. Resonant Compton Physics for Magnetar Astrophysics

    NASA Astrophysics Data System (ADS)

    Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.

    2016-01-01

    Various telescopes including RXTE, INTEGRAL, Suzaku, and Fermi have detected steady non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be the leading candidate for the production of this intense X-ray radiation. Scattering at ultra-relativistic energies leads to attractive simplifications in the analytics of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov basis states, focusing specifically on ground-state-ground-state scattering. Compton scattering in magnetar magnetospheres can cool electrons down to mildly relativistic energies. Moreover, soft gamma-ray flaring in magnetars may involve strong Comptonization in expanding clouds of mildly relativistic pairs. Such environs necessitate the development of more general magnetic scattering cross sections, in which the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron leading to arbitrary Landau excitations of the intermediate and final states. Due to the rapid transitions of the excited-state to the ground-state, the initial electron is still assumed to be in the ground state. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization and spin dependence of the cross section for the four scattering modes is compared to the cross section obtained with spin-averaged widths. We present numerical results to show the comparisons to highlight the role of the spin-dependent widths of the resonances. The findings presented here will have applications to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.

  9. Hunting Grounds for Jacobi Transitions and Hyperdeformations

    NASA Astrophysics Data System (ADS)

    Herskind, B.; Benzoni, G.; Wilson, J. N.; Dossing, T.; Hagemann, G. B.; Sletten, G.; Ronn Hansen, C.; Jensen, D. R.; Bracco, A.; Camera, F.; Leoni, S.; Mason, P.; Wieland, O.; Maj, A.; Brekiesz, M.; Kmiecik, M.; Huebel, H.; Bringel, P.; Neusser, A.; Singh, A. K.; Diamond, R. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Goergen, A.; Lee, I. Y.; Macchiavelli, A. O.; Ward, D.; Hannachi, F.; Korichi, A.; Lopez-Martens, A.; Byrski, T.; Curien, D.; Bednarczyk, P.; Dudek, J.; Amro, H.; Ma, W. C.; Lisle, J.; Odegard, S. W.; Petrache, C.; Petrache, D.; Steinhardt, T.; Thelen, O.

    2003-04-01

    In recent attempts to search for exotic shapes, hyperdeformation (HD), and Jacobi transitions in Hf, Ba, Xe, Sn and Nd nuclei, ridge structures presumably originating from nuclei of very elongated shapes have been observed in 126Ba, with Gammasphere (GS) and in 126Xe, with Euroball-IV (EB-IV). After the promising results from GS, a second experiment in 126Ba followed at EB-IV, taking advantage of the use of the BGO Inner Ball (IB) for selecting the highest spins. The decay of the Giant Dipole Resonances (GDR) is also studied, and the analysis in progress. The Quasi-continuum transitions in the Jacobi region, show a significant decrease in energy for both 126Ba and 126Xe, compared to the Thomas--Fermi- and the LSD model predictions. Similar effects were recently found for other nuclei by Ward et al.

  10. Resonant x-ray scattering study of the antiferroelectric and ferrielectric phases in liquid crystal devices

    SciTech Connect

    Matkin, L. S.; Watson, S. J.; Gleeson, H. F.; Pindak, R.; Pitney, J.; Johnson, P. M.; Huang, C. C.; Barois, P.; Levelut, A.-M.; Srajer, G.

    2001-08-01

    Resonant x-ray scattering has been used to investigate the interlayer ordering of the antiferroelectric and ferrielectric smectic C{sup *} subphases in a device geometry. The liquid crystalline materials studied contain a selenium atom and the experiments were carried out at the selenium K edge allowing x-ray transmission through glass. The resonant scattering peaks associated with the antiferroelectric phase were observed in two devices containing different materials. It was observed that the electric-field-induced antiferroelectric to ferroelectric transition coincides with the chevron to bookshelf transition in one of the devices. Observation of the splitting of the antiferroelectric resonant peaks as a function of applied field also confirmed that no helical unwinding occurs at fields lower than the chevron to bookshelf threshold. Resonant features associated with the four-layer ferrielectric liquid crystal phase were observed in a device geometry. Monitoring the electric field dependence of these ferrielectric resonant peaks showed that the chevron to bookshelf transition occurs at a lower applied field than the ferrielectric to ferroelectric switching transition.

  11. Conceptual basis of resonance ionization spectroscopy

    SciTech Connect

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references.

  12. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction

    NASA Astrophysics Data System (ADS)

    Colquitt, D. J.; Colombi, A.; Craster, R. V.; Roux, P.; Guenneau, S. R. L.

    2017-02-01

    We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials in the bulk and metasurfaces at the free surfaces. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve which corresponds to a mode that transitions from Rayleigh wave-like to shear wave-like behaviour and the resultant change in the fields from surface to bulk waves.

  13. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  14. Resonating feathers produce courtship song.

    PubMed

    Bostwick, Kimberly S; Elias, Damian O; Mason, Andrew; Montealegre-Z, Fernando

    2010-03-22

    Male Club-winged Manakins, Machaeropterus deliciosus (Aves: Pipridae), produce a sustained tonal sound with specialized wing feathers. The fundamental frequency of the sound produced in nature is approximately 1500 Hz and is hypothesized to result from excitation of resonance in the feathers' hypertrophied shafts. We used laser Doppler vibrometry to determine the resonant properties of male Club-winged Manakin's wing feathers, as well as those of two unspecialized manakin species. The modified wing feathers exhibit a response peak near 1500 Hz, and unusually high Q-values (a measure of resonant tuning) for biological objects (Q up to 27). The unmodified wing feathers of the Club-winged Manakin do not exhibit strong resonant properties when measured in isolation. However, when measured still attached to the modified feathers (nine feathers held adjacent by an intact ligament), they resonate together as a unit near 1500 Hz, and the wing produces a second harmonic of similar or greater amplitude than the fundamental. The feathers of the control species also exhibit resonant peaks around 1500 Hz, but these are significantly weaker, the wing does not resonate as a unit and no harmonics are produced. These results lend critical support to the resonant stridulation hypothesis of sound production in M. deliciosus.

  15. The Resonance of Renaissance Poetry.

    ERIC Educational Resources Information Center

    Greenblatt, Stephen

    1980-01-01

    Discusses reading and teaching Renaissance poetry in terms of the poem's "resonance," its capacity to speak to contemporary readers directly and draw them into its historical world. Advises teachers to expand the resonance to illuminate the poem's background, as exemplified by the poetry of Thomas Wyatt in the court of Henry VIII. (DF)

  16. Negative-Frequency Resonant Radiation

    NASA Astrophysics Data System (ADS)

    Rubino, E.; McLenaghan, J.; Kehr, S. C.; Belgiorno, F.; Townsend, D.; Rohr, S.; Kuklewicz, C. E.; Leonhardt, U.; König, F.; Faccio, D.

    2012-06-01

    Optical solitons or solitonlike states shed light to blueshifted frequencies through a resonant emission process. We predict a mechanism by which a second propagating mode is generated. This mode, called negative resonant radiation, originates from the coupling of the soliton mode to the negative-frequency branch of the dispersion relation. Measurements in both bulk media and photonic-crystal fibers confirm our predictions.

  17. Formation of continuous metallic film on quartz studied by noncontact resonant ultrasound spectroscopy

    SciTech Connect

    Nakamura, N. Yoshimura, N.; Ogi, H.; Hirao, M.

    2015-08-28

    Dynamics of continuous film formation of metallic films on quartz substrates is studied using an electrodeless resonance method. Bare quartz is used as a substrate, and a metallic film is deposited on it. We use antenna transmission technique to measure the evolution of resonance frequencies and internal friction of the substrate during and after deposition, and the morphological transition between discontinuous islands and a continuous film is detected. By comparison with atomic force microscopy images, we confirm that the frequency drop and the internal-friction peak that appear during deposition indicate this transition. We also find that Pt film shows unexpected morphology change after deposition.

  18. [From epidemiological transition to health transition].

    PubMed

    Meslé, F; Vallin, J

    2007-12-01

    The "Epidemiological Transition" concept proposed by Abdel Omran in 1971 was the first theory attempting to explain the extraordinary progess that industrialized countries have achieved in health since the 18th century. Within the broader framework of the demographic transition, an important implication of this concept was that life expectancy in modern societies would converge toward limits determined by the new epidemiological conditions. In the ensuing decades, however the convergence process appears to have stopped as a result of a number of setbacks including the health crisis in Eastern Europe and AIDS in Africa. These setbacks do not fundamentally contradict the theory. A much greater contradiction was the unexpected dramatic decrease in cardiovascular disease that began as early as the 70s and had a major positive impact on life expectancy. Based on the concept of "Health Transition" described by Julio Frenk et al., we propose a complete revision of the health implications of the demographic transition based the idea of successive cycles of divergences/convergences induced by the appearance and generalization of major breakthroughs in health technologies and strategies. Three such cycles can be clearly identified on an international level corresponding to control of infectious then cardiovascular diseases, and perhaps most recently to the initial successes achieved in the field of ageing.

  19. ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS

    SciTech Connect

    Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Ragozzine, Darin; Holman, Matthew J.; Carter, Joshua A.; Fabrycky, Daniel C.; Fortney, Jonathan J.; Steffen, Jason H.; Ford, Eric B.; Shporer, Avi; Rowe, Jason F.; Quintana, Elisa V.; Caldwell, Douglas A.; Ciardi, David; Gautier, Thomas N. III; and others

    2011-11-01

    About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.

  20. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  1. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  2. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  3. Transitional Division Algorithms.

    ERIC Educational Resources Information Center

    Laing, Robert A.; Meyer, Ruth Ann

    1982-01-01

    A survey of general mathematics students whose teachers were taking an inservice workshop revealed that they had not yet mastered division. More direct introduction of the standard division algorithm is favored in elementary grades, with instruction of transitional processes curtailed. Weaknesses in transitional algorithms appear to outweigh…

  4. Expanding Views on Transition.

    ERIC Educational Resources Information Center

    Repetto, Jeanne B.; Correa, Vivian I.

    1996-01-01

    This position paper proposes an expanded definition of transition, based on common components of early childhood and secondary perspectives. It advocates for a seamless model of transition service delivery for students with disabilities, including program planning, from birth through age 21. The model addresses curriculum, location of services,…

  5. Transition to Living.

    ERIC Educational Resources Information Center

    Repetto, Jeanne B.

    2003-01-01

    Discussion of transition for students with disabilities emphasizes transition skills needed for life beyond work. The importance of assisting students in planning for their life roles as workers, family members, friends, consumers, and community members is discussed. Suggestions are offered to better prepare students for all their life roles by…

  6. Modeling the transition region

    NASA Astrophysics Data System (ADS)

    Singer, Bart A.

    1994-04-01

    The calculation of engineering flows undergoing laminar-turbulent transition presents special problems. Mean-flow quantities obey neither the fully laminar nor the fully turbulent correlations. In addition, local maxima in skin friction, wall temperature, and heat transfer often occur near the end of the transition region. Traditionally, modeling this region has been important for the design of turbine blades, where the transition region is long in relation to the chord length of the blade. More recently, the need for better transition-region models has been recognized by designers of hypersonic vehicles where the high Mach number, the low Reynolds number, and the low-disturbance flight environment emphasize the importance of the transition region. Needless to say, a model that might work well for the transitional flows typically found in gas turbines will not necessarily work well for the external surface of a hypersonic vehicle. In Section 2 of this report, some of the important flow features that control the transition region will be discussed. In Section 3, different approaches to the modeling problem will be summarized and cataloged. Fully turbulent flow models will be discussed in detail in Section 4; models specifically designed for transitional flow, in Section 5; and the evaluation of models, in Section 6.

  7. Seamless Transition for All

    ERIC Educational Resources Information Center

    Test, David W.

    2008-01-01

    Postschool outcomes for students with disabilities have been dismal for quite some time now. Although recent data from the National Longitudinal Transition Study 2 indicate some improvement, students with severe intellectual disabilities continue to transition into segregated employment at unacceptable rates in spite of a multitude of studies,…

  8. Transitioning between Clerkship Directors

    ERIC Educational Resources Information Center

    Soltys, Stephen M.; Pary, Robert J.; Robinson, Stephen W.; Markwell, Stephen J.

    2011-01-01

    Objective: The authors report on succession-planning for mid-level academic positions. Method: The authors describe the process of succession-planning between clerkship directors and the smooth transition resulting in one case. Results: Gradually transitioning allowed a new faculty person to assume the clerkship-director position with minimal…

  9. Transitions in Spousal Caregiving.

    ERIC Educational Resources Information Center

    Burton, Lynda C.; Zdaniuk, Bozena; Schulz, Richard; Jackson, Sharon; Hirsch, Calvin

    2003-01-01

    Describes transitions over 5 years among community-dwelling elderly spouses into and within caregiving roles and associated health outcomes. The trajectory of health outcomes associated with caregiving was generally downward. Those who transitioned to heavy caregiving had more symptoms of depression, and poorer self-reported health and health…

  10. Transitivity of Preferences

    ERIC Educational Resources Information Center

    Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.

    2011-01-01

    Transitivity of preferences is a fundamental principle shared by most major contemporary rational, prescriptive, and descriptive models of decision making. To have transitive preferences, a person, group, or society that prefers choice option "x" to "y" and "y" to "z" must prefer "x" to…

  11. Good Transitions = Great Starts!

    ERIC Educational Resources Information Center

    Our Children: The National PTA Magazine, 2012

    2012-01-01

    The smooth transition of outgoing and incoming board members and officers is of vital importance and can determine the PTA's success for years to come. The transition process is the responsibility of both incoming and outgoing officers and board members. It gives closure to those leaving their positions and allows those coming in to be properly…

  12. Transition Coordinators: Define Yourselves.

    ERIC Educational Resources Information Center

    Asselin, Susan B.; Todd-Allen, Mary; deFur, Sharon

    1998-01-01

    Describes a technique that was used successfully to identify the changing roles and responsibilities of special educators as transition coordinators. The Developing a Curriculum (DACUM) model uses people who are currently working in the occupation to define job responsibilities. The duties of a transition coordinator are identified. (CR)

  13. Matter in transition

    SciTech Connect

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-13

    In this study, we explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  14. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  15. TRANSIT MONITORING IN THE SOUTH (TraMoS) PROJECT: DISCARDING TRANSIT TIMING VARIATIONS IN WASP-5b

    SciTech Connect

    Hoyer, S.; Rojo, P.; Lopez-Morales, M. E-mail: pato@das.uchile.cl

    2012-03-20

    We report nine new transit epochs of the extrasolar planet WASP-5b, observed in the Bessell I band with the Southern Astrophysical Research Telescope at the Cerro Pachon Observatory and with the SMARTS 1 m Telescope at the Cerro Tololo Inter-American Observatory, between 2008 August and 2009 October. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variation (TTV) analysis of its orbit. We find no evidence of TTV rms variations larger than 1 minute over a 3 year time span. This result discards the presence of planets more massive than about 5 M{sub Circled-Plus }, 1 M{sub Circled-Plus }, and 2 M{sub Circled-Plus} around the 1:2, 5:3, and 2:1 orbital resonances, respectively. These new detection limits exceed by {approx}5-30 times the limits imposed by current radial velocity observations in the mean motion resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth, also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to hot Jupiters.

  16. Core-Exciton Decay in Photoemission and the Nonmetal - Transition.

    NASA Astrophysics Data System (ADS)

    Zhang, Jiandi

    Ultra thin films or overlayers of materials, normally metallic in the bulk case, can exhibit nonmetallic characters. Typically, these systems undergo a nonmetal-to-metal transition with changing film density, crystalline structure, or thickness. The purpose of this thesis is to identify this electronic phase transition and to investigate the corresponding fundamental mechanisms by studying the detailed electronic structure. In particular, I attempted to look at the evolution of electronic structure in films undergoing this transition. The core -exciton decay in the resonant photoemission was probed, from both theoretical and experimental points of view, to correlate with the change of film metallicity. Resonant photoemission, combining with normal photoemission, was found to be a sensitive and successful method to identify the overlayer nonmetal-metal transition, both from static and dynamic pictures. In most of this work, we concentrate on the studies of the evolution of electronic structure of ultra thin films of divalent metals, on different crystalline surfaces. The formation of new Hg electronic states arising from the electron orbital hybridization between adjacent adatoms, the formation of quantum well states in the overlayers, and the evolution of mercury shape resonance due to 5d to epsilonf excitation, all provide indications of when mercury overlayers undergo a nonmetal to metal transition. This transition has been found to be associated the changes in adatom coordination number. On both Cu(100) and W(110), the interactions between the Hg adatoms and the substrates are very weak and the surface bonding is more like covalent bonding at low coverages. The Hg overlayers on these two surfaces resembles free-standing layers, and the metallicity of the overlayers is largely determined by the nearest neighbor interactions of Hg adatoms. Comparing Hg overlayers on Ni(111) where there exists a nonmetal to metal transition caused by the structure phase transition

  17. Landau-Zener-Stueckelberg theory for multiphoton intrashell transitions in Rydberg atoms: Bloch-Siegert shifts and widths

    SciTech Connect

    Foerre, Morten

    2004-07-01

    We derive closed analytic expressions for intrashell transitions in Rydberg atoms exposed to linearly polarized or circularly polarized periodic electromagnetic fields. The resonance energies and transition probabilities are calculated using multichannel Landau-Zener-Stueckelberg theory. The theory provides formulas for the resonance widths and positions for arbitrary field strength and frequency. The formulas are in excellent agreement with numerical solution of the evolution equations.

  18. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    NASA Astrophysics Data System (ADS)

    Droit, C.; Martin, G.; Ballandras, S.; Friedt, J.-M.

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  19. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    PubMed

    Droit, C; Martin, G; Ballandras, S; Friedt, J-M

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  20. Resonant Photoemission and M_{2,3}-Absorption Spectra in Nickel Dichloride

    NASA Astrophysics Data System (ADS)

    Igarashi, J.

    Ni 3p-resonant photoemission and Ni M_{2,3}-absorption spectra are calculated in detail on a cluster of (NiCl_6)^{4-} with the use of the transition matrix elements evaluated on the Herman-Skillman potential in Ni atom. Overall spectral shape agrees well with experiment, allowing a determination of the parameters which characterize Ni 3d and Cl 3p states. Resonance behavior is discussed near the Ni 3p-core level photothreshold. The resonant enhancement is found to be larger for the peak with higher binding energy in the d^7-multiplets.