Science.gov

Sample records for resonance-enhanced two-photon ionization

  1. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    PubMed

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  2. Probing Competitive Noncovalent Interactions: Resonance Enhanced Two-Photon Ionization (R2PI) Spectroscopy of Haloaromatic Clusters

    NASA Astrophysics Data System (ADS)

    Nyambo, Silver; Muzangwa, Lloyd; Uhler, Brandon; Reid, Scott A.

    2013-06-01

    Non-covalent interactions in bromobenzene have been studied here using resonance two-photon ionization (R2PI) spectroscopy combined with a linear TOF-mass spectrometer. Bromobenzene clusters were created in a supersonic expansion with helium as a carrier gas. The molecules were excited and ionized from the ground state in a two stage process. The general trend observed in the R2PI spectra of all the clusters is the broadness and a red-shift relative to the monomer absorption. Optimized dimer and trimer structures were calculated at the M06-2x/aug-cc-pVDZ level, which show that π-stacked and C-H/π interactions are most important in these clusters. TD-DFT calculations of the different cluster conformers have been carried out to assess the geometry changes active upon electronic excitation. The theoretical studies are helpful in explaining trends observed in the R2PI spectra.

  3. Slow-electron velocity-map imaging study of aniline via resonance-enhanced two-photon ionization method

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Qin, Zhengbo; Zheng, Xianfeng; Wang, Hui; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2017-02-01

    Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1 + 1‧) ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and 2B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271 ± 6 cm- 1. Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242 cm- 1). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.

  4. Slow-electron velocity-map imaging study of aniline via resonance-enhanced two-photon ionization method.

    PubMed

    Qu, Zehua; Qin, Zhengbo; Zheng, Xianfeng; Wang, Hui; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2017-02-15

    Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1+1') ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and (2)B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271±6cm(-1). Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242cm(-1)). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.

  5. Resonance-enhanced two-photon ionization mass spectroscopy of ephedrine: Indication for a state-selective fragmentation in a flexible molecule

    NASA Astrophysics Data System (ADS)

    Karaminkov, R.; Chervenkov, S.; Härter, P.; Neusser, H. J.

    2007-07-01

    The vibronic structure of the S 1 ← S 0 spectrum of ephedrine was measured by resonance-enhanced two-photon ionization spectroscopy with mass resolution under cold molecular beam conditions. The spectra recorded at four different mass channels, m/ z = 165 (parent), 58, and the hitherto unknown 71, 85 fragment ions show dissimilar vibronic fine structure and the observed mass pattern strongly depends on the selected intermediate vibrational state. This points to an intermediate state-selected process resulting in a different fragmentation mass pattern. Ab initio calculations at the MP2/6-311++G ∗∗ level demonstrate that the AG (a) conformer is more stable by 238 cm -1 than the next stable GG (a) conformer.

  6. High resolution UV resonance enhanced two-photon ionization spectroscopy with mass selection of biologically relevant molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Karaminkov, R.; Chakraborty, T.; Braun, Juergen E.; Neusser, Hans J.

    2005-04-01

    The high resolution Doppler-free resonance-enhanced two-photon ionization (R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular species is a powerful experimental method providing comprehensive information on both isolated molecules and molecular clusters. We have demonstrated for the first time that this technique can be applied to large molecules and provides detailed information on their conformational structure. It allows rotationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the S1<--S0 electronic transition of the studied molecular systems to be measured. A specially designed computer-assisted fitting routine based on genetic algorithms is used to determine their rotational constants in the ground and excited electronic states, respectively, and the transition moment ratio. To interpret the experimental information and to discriminate and unambiguously assign the observed approach to the study of the neurotransmitter molecule, ephedrine. The results elucidate the role of the intramolecular hydrogen bonds stabilizing the respective conformations and affecting their intrinsic properties.

  7. Resonance-enhanced two-photon ionization of helium using an Ar{sup +} mode-locked laser synchronized with VUV synchrotron radiation pulses

    SciTech Connect

    Lacoursiere, Jean; Meyer, Michael; Nahon, Laurent; Morin, Paul; Larzilliere, Michel

    1995-04-01

    We report a new experimental set-up consisting in the synchronization of 74.9094 MHz pulses from a mode-locked Ar{sup +} laser with 8.32 MHz pulses of vacuum ultraviolet (VUV) synchrotron radiation from the Super-ACO storage ring of the Laboratorie pour l'Utilisation du Rayonnement Electromagnetique (LURE). The capabilities of the set-up are demonstrated in a time-resolved pump-probe (VUV+visible) experiment in which free helium atoms are resonantly ionized via the short-lived 1s3p ({sup 1}P) state. This experiment allowed us to show the relevance of this technique for the investigation of nanosecond dynamics on gas phase species.

  8. State-selective preparation of A r2 + and K r2 + by resonantly enhanced two-photon double ionization via intermediate Rydberg states using high-order harmonics

    NASA Astrophysics Data System (ADS)

    Yamada, Kana; Iwasaki, Atsushi; Sato, Takahiro; Midorikawa, Katsumi; Yamanouchi, Kaoru

    2016-11-01

    Simultaneous two-electron emission processes of Ar induced by high-order harmonics of near-infrared femtosecond laser pulses were investigated by coincidence photoelectron spectroscopy. Two-photon double ionization processes via the 3 s 3 p6n p (n ˜25 ) intermediate resonances of Ar were observed, which selectively created the 3 s 3 p51P state of A r2 + . The similar double ionization processes were also observed in Kr. The selective creation indicates that the core electron configuration of the doubly ionized state tends to be the same as that of the intermediate state and that the emitted two electrons tend to form the singlet state.

  9. Suppression of two-photon resonantly enhanced nonlinear processes in extended media

    SciTech Connect

    Garrett, W.R.; Moore, M.A.; Payne, M.G.; Wunderlich, R.K.

    1988-11-01

    On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs.

  10. Plasma induced by resonance enhanced multiphoton ionization in inert gas

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2007-12-15

    We present a detailed model for the evolution of resonance enhanced multiphoton ionization (REMPI) produced plasma during and after the ionizing laser pulse in inert gas (argon, as an example) at arbitrary pressures. Our theory includes the complete process of the REMPI plasma generation and losses, together with the changing gas thermodynamic parameters. The model shows that the plasma expansion follows a classical ambipolar diffusion and that gas heating results in a weak shock or acoustic wave. The gas becomes involved in the motion not only from the pressure gradient due to the heating, but also from the momentum transfer from the charged particles to gas atoms. The time dependence of the total number of electrons computed in theory matches closely with the results of coherent microwave scattering experiments.

  11. Resonance Enhanced Multiphoton Ionization (rempi) Spectroscopy of Weakly Bound Complexes

    NASA Astrophysics Data System (ADS)

    Muzangwa, Lloyd; Nyambo, Silver; Uhler, Brandon; Reid, Scott A.

    2012-06-01

    We have recently implemented Resonance Enhanced Multiphoton Ionization (REMPI) spectroscopy in our laboratory as a spectroscopic probe of transient species. We will report on initial gas-phase studies of the spectra of weakly bound van der Waals and halogen bonded complexes involving aromatic organic donors. The complexes are formed in the rarified environment of a supersonic molecular beam, which is skimmed prior to passing into the differentially pumped flight tube of a linear time-of-flight mass spectrometer. Ionization is initiated both by 1+1 and 1+1' REMPI schemes; the latter is used to minimize fragmentation. Our initial studies have examined van der Waals and halogen bonded complexes involving the phenol and toluene chromophores. Progress in the coupling of a discharge source into this apparatus will also be discussed.

  12. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  13. Flame temperature measurements by radar resonance-enhanced multiphoton ionization of molecular oxygen.

    PubMed

    Wu, Yue; Sawyer, Jordan; Zhang, Zhili; Adams, Steven F

    2012-10-01

    Here we report nonintrusive local rotational temperature measurements of molecular oxygen, based on coherent microwave scattering (radar) from resonance-enhanced multiphoton ionization (REMPI) in room air and hydrogen/air flames. Analyses of the rotational line strengths of the two-photon molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition have been used to determine the hyperfine rotational state distribution of the ground X(3)Σ(v'=0) state. Rotationally resolved 2+1 REMPI spectra of the molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition at different temperatures were obtained experimentally by radar REMPI. Rotational temperatures have been determined from the resulting Boltzmann plots. The measurements in general had an accuracy of ~±60 K in the hydrogen/air flames at various equivalence ratios. Discussions about the decreased accuracy for the temperature measurement at elevated temperatures have been presented.

  14. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  15. Photofragmentation, state interaction, and energetics of Rydberg and ion-pair states: Resonance enhanced multiphoton ionization of HI

    SciTech Connect

    Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst

    2014-06-28

    Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.

  16. Two-photon ionization of atomic hydrogen with elliptically polarized light

    NASA Technical Reports Server (NTRS)

    Kassaee, A.; Rustgi, M. L.; Long, S. A. T.

    1988-01-01

    The theory of two-photon ionization of a hydrogenic state in the nonrelativistic dipole approximation is generalized for elliptically polarized light. An application to the metastable 2S state of atomic hydrogen is made. Significant differences in the angular distribution of the outgoing electrons are found depending upon the polarization of the photons. It is claimed that two-photon ionization employing elliptically polarized photons from lasers may provide an additional test for the theories of multiphoton ionization.

  17. Resonance enhanced multiphoton ionization spectroscopy of carbonyl sulphide

    NASA Astrophysics Data System (ADS)

    Morgan, Ross A.; Orr-Ewing, Andrew J.; Ascenzi, Daniela; Ashfold, Michael N. R.; Buma, Wybren Jan; Scheper, Connie R.; de Lange, Cornelis A.

    1996-08-01

    Rydberg excited states of the OCS molecule in the energy range 70500-86000 cm-1 have been investigated via the two and three photon resonance enhancements they provide in the mass resolved multiphoton ionization (MPI) spectrum of a jet-cooled sample of the parent molecule. Spectral interpretation has been assisted by companion measurements of the kinetic energies of the photoelectrons that accompany the various MPI resonances. The present study supports the earlier conclusions of Weinkauf and Boesl [J. Chem. Phys. 98, 4459 (1993)] regarding five Rydberg origins in the 70500-73000 cm-1 energy range, attributable to, respectively, states of 3Π, 1Π, 3Δ, 1Δ and 1Σ+ symmetry arising from the 4pλ←3π orbital promotion. We also identify a further 21 Rydberg origins at higher energies. These partition into clumps with quantum defects ca. 3.5 and 4.5, which we associate with the orbital promotions npλ←3π (n=5,6), and others with near integer quantum defect which are interpretable in terms of excitation to s,d and (possibly) f Rydberg orbitals. We also identify MPI resonances attributable to CO(X 1Σ+) fragments and to S atoms in both their ground (3P) and excited (1D) electronic states. Analysis of the former resonances confirms that the CO(X) fragments resulting from one photon dissociation of OCS at excitation wavelengths ca. 230 nm are formed with a highly inverted, bimodal rotational state population distribution, whilst the latter are consistent with previous reports of the wavelength dependence for forming ground and excited state S atoms in the near uv photolysis of OCS.

  18. Modulation of attosecond beating in resonant two-photon ionization.

    PubMed

    Jiménez-Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2014-12-31

    We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena by means of a general analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  19. Modulation of Attosecond Beating in Resonant Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2014-12-01

    We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena by means of a general analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N =2 doubly excited states.

  20. Nonsequential Two-Photon Double Ionization of Atoms: Identifying the Mechanism

    SciTech Connect

    Foerre, Morten; Nepstad, Raymond; Selstoe, Soelve

    2010-10-15

    We develop an approximate model for the process of direct (nonsequential) two-photon double ionization of atoms. Employing the model, we calculate (generalized) total cross sections as well as energy-resolved differential cross sections of helium for photon energies ranging from 39 to 54 eV. A comparison with results of ab initio calculations reveals that the agreement is at a quantitative level. We thus demonstrate that this complex ionization process can be described by the simple model, providing insight into the underlying physical mechanism. Finally, we use the model to calculate generalized cross sections for the two-photon double ionization of neon in the nonsequential regime.

  1. Relativistic calculations of the nonresonant two-photon ionization of neutral atoms

    NASA Astrophysics Data System (ADS)

    Hofbrucker, J.; Volotka, A. V.; Fritzsche, S.

    2016-12-01

    The nonresonant, two-photon, one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K -shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section; for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold; for the case of Ne, for example, the cross section drops there by a factor of three.

  2. Spectroscopic Study of ThCl+ by Two-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael; Peterson, Kirk

    2016-06-01

    Despite the irreplaceable role experimental data plays for evaluating the performance of computational predictions, diatomic actinide species have not received much spectroscopic attention. As an early actinide element, thorium-containing species are ideal candidates for these types of studies. The electronic structure is expected to be relatively simple compared to later actinides, and therefore allows straightforward assessment of calculations. Here, we have studied ThCl+ for the first time via resonant two-photon ionization of jet-cooled ThCl produced by laser ablation of the metal reacted with dilute Cl2. Laser-induced Fluorescence (LIF) spectra have been recorded for the neutral molecule from 16000 - 23500 cm-1 in search of a suitable intermediate state for subsequent two-photon ionization experiments. Monochromator dispersion of the fluorescence has recovered the ground state vibration and anharmonic constants of ThCl. Resonant Two-Photon Ionization (R2PI) within a time-of-flight mass spectrometer was used to confirm ThCl production, and Pulsed Field Ionization Zero Kinetic Energy photoelectron spectroscopy (PFI-ZEKE) has been performed to identify the ionization energy as well as several of the low-lying states of the ThCl+ molecule. These constants have been predicted at the CASPT2 and CCSD(T) levels of theory, and a discussion of the calculations' performance will be presented alongside the recorded spectra.

  3. Two-photon double ionization of the helium atom by ultrashort pulses

    SciTech Connect

    Palacios, Alicia; Horner, Daniel A; Rescigno, Thomas N; McCurdy, C William

    2010-05-14

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate \\textit{ab initio} calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  4. Electronic spectroscopy of large van der waals molecules by resonant two-photon ionization

    NASA Astrophysics Data System (ADS)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua

    1982-03-01

    Tunable laser two-photon ionization of large van der Waals molecules, combined with time-of-flight mass spectroscopy. was applied to the identification of the electronic origin and of some low vibrational excitations of the S 0 — S 1 electronic transition of fluorene·Ar 1, fluorene·Ar 2 and fluorene·Kr 1 produced in supersonic expansions.

  5. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  6. Angular distributions in two-colour two-photon ionization of He

    NASA Astrophysics Data System (ADS)

    Rey, H. F.; van der Hart, H. W.

    2014-11-01

    We present R-Matrix with time dependence (RMT) calculations for the photoionization of helium irradiated by an EUV laser pulse and an overlapping IR pulse with an emphasis on the anisotropy parameters of the sidebands generated by the dressing laser field. We investigate how these parameters depend on the amount of atomic structure included in the theoretical model for two-photon ionization. To verify the accuracy of the RMT approach, our theoretical results are compared with the experiment.

  7. Photo-ionization probability of 3+1 resonance enhanced multi-photon process

    NASA Astrophysics Data System (ADS)

    Zhang, Guiyin; Li, Mengjun; Jin, Yidong

    2012-11-01

    Analytic expression of the ionization probability about 3+1 resonance enhanced multi-photon ionization (REMPI) process is deduced with the theory of rate equation, which implies the interaction of photon and material. Based on the expressions, the influence of laser intensity, laser pulse duration and spontaneous radiation lifetime on the ionization probability is analyzed theoretically. It is found that the ionization probability increases with laser intensity and laser pulse duration until gets to saturation. After that, the ionization probability will oscillate around the saturation value if laser intensity increases further. The amplitude of oscillation increases with laser intensity at first, and then it will decrease even get to zero after a maximum peak comes out. We attribute the appearance of the oscillation to the phenomena of quantum coherence caused by the splitting of energy level in strong laser field. As to the fact that the ionization probability becomes to zero with the increase of laser intensity, it indicates that laser intensity is strong enough so as to make the neutral particles getting to the region of ionization suppression. It is also found that the variation of ionization probability with spontaneous radiation lifetime is far smaller than the one with ionization rate. So the influence of the spontaneous radiation lifetime on ionization probability could be ignored.

  8. Resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS): applications for process analysis.

    PubMed

    Streibel, Thorsten; Zimmermann, Ralf

    2014-01-01

    Process analysis is an emerging discipline in analytical sciences that poses special requirements on analytical techniques, especially when conducted in an online manner. Mass spectrometric methods seem exceedingly suitable for this task, particularly if a soft ionization method is applied. Resonance-enhanced multiphoton ionization (REMPI) in combination with time-of-flight mass spectrometry (TOFMS) provides a selective and sensitive means for monitoring (poly)aromatic compounds in process flows. The properties of REMPI and various variations of the ionization process are presented. The potential of REMPI for process analysis is highlighted with several examples, and drawbacks of the method are also noted. Applications of REMPI-TOFMS for the detection and monitoring of aromatic species in a large variety of combustion processes comprising flames, vehicle exhaust, and incinerators are discussed. New trends in technical development and combination with other analytical methods are brought forward.

  9. Resonance-Enhanced Multiphoton Ionization Mass Spectrometry (REMPI-MS): Applications for Process Analysis

    NASA Astrophysics Data System (ADS)

    Streibel, Thorsten; Zimmermann, Ralf

    2014-06-01

    Process analysis is an emerging discipline in analytical sciences that poses special requirements on analytical techniques, especially when conducted in an online manner. Mass spectrometric methods seem exceedingly suitable for this task, particularly if a soft ionization method is applied. Resonance-enhanced multiphoton ionization (REMPI) in combination with time-of-flight mass spectrometry (TOFMS) provides a selective and sensitive means for monitoring (poly)aromatic compounds in process flows. The properties of REMPI and various variations of the ionization process are presented. The potential of REMPI for process analysis is highlighted with several examples, and drawbacks of the method are also noted. Applications of REMPI-TOFMS for the detection and monitoring of aromatic species in a large variety of combustion processes comprising flames, vehicle exhaust, and incinerators are discussed. New trends in technical development and combination with other analytical methods are brought forward.

  10. Interference effects in one- and two-photon ionization by femtosecond VUV pulses

    NASA Astrophysics Data System (ADS)

    Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Grum-Grzhimailo, Alexei N.; Venzke, Joel; Bartschat, Klaus

    2015-05-01

    Investigations of coherent control of atomic and molecular processes have rapidly developed since the advent of coherent light sources such as X-ray free electron lasers (XFELs) and achievements in high harmonic generation. In practice, radiation from XFELs contains a small fraction of the second harmonic, which is difficult to filter out but can strongly influence experimental data on the two-photon ionization process, such as the angular distribution. Specifically, the direct first-order second-harmonic ionization process may interfere with, and possibly even dominate a second-order two-photon process caused by the fundamental. While this interference has been investigated in the optical regime with many-cycle pulses, possible effects due to short pulses, as well as a physical intermediate resonance state that may serve as a stepping stone for the second-order process, need a careful study for particular experimental conditions. Here we consider the photoionization of atomic hydrogen for photon energies near the excitation energy of the 2p state (0.375 a.u. or 121.6 nm). We compare results obtained from a direct numerical solution of the time-dependent Schrödinger equation and second-order perturbation theory. This work is supported by the United States National Science Foundation under grant No. PHY-1430245 and the XSEDE allocation PHY-090031, and by the Russian Foundation for Basic Research under Grant No. 12-02-01123.

  11. Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses

    SciTech Connect

    Collins, Lee

    2009-01-01

    We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort pulses in the extreme ultraviolet (XUV) regime with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for pulses with mean frequencies in the so-called 'sequential' regime ({Dirac_h}{omega} > 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct ('nonsequential') and indirect ('sequential') double photoionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route towards measuring the pulse duration of x-ray free-electron laser (XFEL) pulses.

  12. Resonantly enhanced multiphoton ionization under XUV FEL radiation: a case study of the role of harmonics

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, G. M.; Lambropoulos, P.

    2015-12-01

    We provide a detailed quantitative study of the possible role of a small admixture of harmonics on resonant two-photon ionization. The motivation comes from the occasional presence of 2nd and 3rd harmonics in FEL radiation. We obtain the dependence of ionic yields on the intensity of the fundamental, the percentage of 2nd harmonic and the detuning of the fundamental from resonance. Having examined the cases of one and two intermediate resonances, we arrive at results of general validity and global behaviour, showing that even a small amount of harmonic may seem deceptively innocuous.

  13. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets

    SciTech Connect

    Krasnokutski, Serge A.; Huisken, Friedrich

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al–He{sub n} vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm{sup −1}). However, using the same laser wavelength, we were unable to detect any Al{sub n} photoion with n larger than two.

  14. Cross sections for non-sequential two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Feist, Johannes; Nagele, Stefan; Pazourek, Renate; Persson, Emil; Burgdörfer, Joachim; Schneider, Barry; Collins, Lee

    2008-05-01

    The generalized cross sections for non-sequential two-photon double ionization of helium at photon energies from 39.5,V to 54.4,V have been the subject of several recent theoretical studies. Quantitative agreement between the different approaches has not yet been reached. In this contribution, we present converged results for the total integrated and triply differential cross sections for the above process, which are based on the direct integration of the time-dependent Schr"odinger equation. We compare our data with calculations from other authors and investigate to what extent electronic correlation in the representation of the double continuum affects the cross sections. We also study the influence of the pulse shape on the value of the cross sections extracted from time-dependent approaches.

  15. Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene

    NASA Astrophysics Data System (ADS)

    Tzeng, Sheng Yuan; Wu, Jui Yang; Zhang, Shudong; Tzeng, Wen Bih

    2012-11-01

    We applied the resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of 1-fluoronaphthalene (1FN) and 2-fluoronaphthalene (2FN) by ionizing via several intermediate vibronic states. The adiabatic ionization energies of 1FN and 2FN are found to be 66 194 and 66 771 ± 5 cm-1, respectively. Distinct MATI bands resulting from in-plane ring deformation are found at 437, 517, 703, and 779 cm-1 for 1FN; and 286, 455, 494, 764, and 1031 cm-1 for 2FN. Frequencies of these modes are slightly greater than the corresponding ones in the vibronic spectra. This indicates that the molecular geometry in the cationic D0 state is slightly more rigid than that in the neutral S1 state. Comparing the present experimental data with those of naphthalene suggests that the frequency difference of each mode depends on the vibrational pattern, location of the F atom, and degree of the F atom involved in the overall vibration.

  16. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih

    2015-03-01

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

  17. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    SciTech Connect

    Xu, Yanqi; Tzeng, Sheng Yuan; Takahashi, Kaito; Shivatare, Vidya; Zhang, Bing; Tzeng, Wen Bih

    2015-03-28

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S{sub 1}← S{sub 0} electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm{sup −1}, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm{sup −1} for these isomeric species. Most of the observed active vibrations in the electronically excited S{sub 1} and cationic ground D{sub 0} states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S{sub 1} and D{sub 0} states.

  18. Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2009-12-21

    We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.

  19. Verification Results of Jet Resonance-enhanced Multiphoton Ionization as a Real-time PCDD/F Emission Monitor

    EPA Science Inventory

    The Jet REMPI (Resonance Enhanced Multiphoton Ionization) monitor was tested on a hazardous waste firing boiler for its ability to determine concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI is a real time instrument capable of highly selec...

  20. One-color two-photon mass-analyzed threshold ionization spectroscopy of ethyl bromide through a dissociative intermediate state

    NASA Astrophysics Data System (ADS)

    Tang, Bifeng; Zhang, Song; Wang, Yanmei; Tang, Ying; Zhang, Bing

    2005-10-01

    Mass-analyzed threshold ionization (MATI) spectra of ethyl bromide were obtained using one-color two-photon ionization through a dissociative intermediate state. Accurate values for the adiabatic ionization energy have been obtained, 83099±5 and 85454±5cm-1 for the X˜1E2 and X˜2E2 states of the ethyl bromide cation, respectively, giving a splitting of 2355±10cm-1. Compared with conventional photoelectron data, the two-photon MATI spectrum exhibited a more extensive vibrational structure with a higher resolution, mainly containing the modes involving the dissociation coordinate. The observed modes were analyzed and discussed in terms of wave packet evolving on the potential-energy surface of the dissociative state.

  1. Resonant two-photon ionization of fluorene rare-gas van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua

    1983-12-01

    Resonant two-photon ionization combined with time-of-flight mass spectrometry was applied for the interrogation of the S0 → S1 electronic-vibrational excitations of van der Waals complexes of fluorene (FL) with rare-gas atoms and N2 in supersonic jets. Energy-resolved and mass-resolved spectra of FL ṡ Ne, FL ṡ Arn (n=1-3), FL ṡ Kr, FL ṡ Xe, and FL ṡ N2 were recorded over the energy range 0-800 cm-1 above the electronic origin of S1. The red microscopic spectral shifts of the electronic origins of FL ṡ R (R=Ar, Kr, and Xe) complexes are dominated by dispersive interactions, being proportional to the polarizability of R. The vibrational level structure of FL ṡ Rn (R=Ar, Kr, and Xe) complexes exhibits intramolecular vibrational excitations of FL, as well as intermolecular vibrations, which involve the relative motion of FL and R in the complex. The spectra of FL ṡ Ne and FL ṡ N2 reveal a rich vibrational structure in the vicinity of the electronic origin, indicating a substantial change of the nuclear configuration upon electronic excitation. Upper and lower bounds on the dissociation energies of FL ṡ R (R=Ne, Kr, and Xe) and FL ṡ Ar2 were inferred from the vibrational level structure in the mass-resolved spectra, where the disappearance of the signal of the parent van der Waals ion and the appearance of the ion signal of the fragments mark the onset of the vibrational predissociation process.

  2. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.

    PubMed

    Wu, Yue; Zhang, Zhili; Ombrello, Timothy M

    2013-07-01

    Coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization (REMPI) was demonstrated to directly and nonintrusively measure singlet delta oxygen, O(2)(a(1)Δ(g)), with high spatial resolution. Two different approaches, photodissociation of ozone and microwave discharge plasma in an argon and oxygen flow, were utilized for O(2)(a(1)Δ(g)) generation. The d(1)Π(g)←a(1)Δ(g) (3-0) and d(1)Π(g)←a(1)Δ(g) (1-0) bands of O(2)(a(1)Δ(g)) were detected by Radar REMPI for two different flow conditions. Quantitative absorption measurements using sensitive off-axis integrated cavity output spectroscopy (ICOS) was used simultaneously to evaluate the accuracy and sensitivity of the Radar REMPI technique. The detection limit of Radar REMPI was found to be comparable to the ICOS technique with a detection threshold of approximately 10(14) molecules/cm(3) but with a spatial resolution that was 8 orders of magnitude smaller than the ICOS technique.

  3. Investigating two-photon double ionization of D{sub 2} by XUV-pump-XUV-probe experiments

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Toppin, M.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Perez-Torres, J. F.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Tilborg, J. van; Belkacem, A.

    2010-05-15

    We used a split-mirror setup attached to a reaction microscope at the free-electron laser in Hamburg (FLASH) to perform an XUV-pump-XUV-probe experiment by tracing the ultrafast nuclear wave-packet motion in the D{sub 2}{sup +}(1s{sigma}{sub g}) with <10 fs time resolution. Comparison with time-dependent calculations shows excellent agreement with the measured vibrational period of 22{+-}4 fs in D{sub 2}{sup +}, points to the importance of accurately knowing the internuclear distance-dependent ionization probability, and paves the way to control sequential and nonsequential two-photon double-ionization contributions.

  4. Electron capture of dopants in two-photonic ionization in a poly(methyl methacrylate) solid

    SciTech Connect

    Tsuchida, Akira; Sakai, Wataru; Nakano, Mitsuru; Yamamoto, Masahide

    1992-10-29

    Behavior of the electron produced by two-photonic excitation of an aromatic donor in a poly(methyl methacrylate) solid was studied by the addition of the electron scavengers to the system. According to the Perrin type analysis for the two-photonically ejected electron, the capture radii (R{sub c}) of the scavengers examined were estimated to be from 8 to 40 {Angstrom}. For the two-photonically ejected electrons, R{sub c} is a capture radius for thermalized electrons. In this case the parent electron donor is not necessarily within this radius. On the other hand, for the fluorescence quenching, the distance between the donor and acceptor is within the static quenching radius (R{sub q}) of the donor. 13 refs., 4 figs., 2 tabs.

  5. The influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Miao; Li, Jing-Lun; Yu, Jie; Cong, Shu-Lin

    2017-03-01

    We investigate theoretically the influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization (REMPI) dynamics, taking the LiH molecule for example. The LiH molecule is first pre-oriented by a single-cycle pulse (SCP) in terahertz (THz) region, and then excited by the femtosecond pump pulse, and finally ionized by the femtosecond probe pulse. We focus on the impact of the pre-orientation on the ionization probability, energy- and angle-resolved photoelectron spectra and photoelectron angular distribution (PAD). It is found that the ionization probability and peak intensity of energy-resolved photoelectron spectra are significantly affected by molecular orientation. The angle-resolved photoelectron spectra are related to the molecular orientation. The PAD can be changed by varying the delay time between the THz SCP and pump pulse. We also investigate the effect of temperature on excitation and ionization dynamics.

  6. Grid-based methods for diatomic quantum scattering problems II: Time-dependent treatment of single- and two-photon ionization of H2+

    SciTech Connect

    Rescigno, Thomas N.; Tao, L.; McCurdy, C.W.

    2009-04-20

    The time-dependent Schr\\"odinger equation for H2+ in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element/ discrete variable representation in prolate spheroidal coordinates. Amplitudes for single- and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one-and two-photon ionization for both parallel and perpendicular polarization of the photon field, as well as photoelectron angular distributions for two-photon ionization.

  7. Electronic dynamics of charge resonance enhanced ionization probed by laser-induced alignment in C2H2

    NASA Astrophysics Data System (ADS)

    Cornaggia, C.

    2016-10-01

    Although charge resonance enhanced ionization (CREI) be an ubiquitous effect in molecules in strong laser fields, the associated electron emission remains difficult to deal with. The main reason relies on the fact that CREI is part of an overall multielectron ionization, where the initial steps of single and dissociative ionization of neutral species dominate the electron spectrum. Using the rescattered electrons, we show that it is possible to address the electron signal from CREI without any contribution from other electron signals. The electrons from CREI are preferentially emitted when the molecular axis is parallel to the laser electric field as expected from its electronic dynamics. Acetylene is chosen for demonstration purpose because single ionization, which is not related to CREI, is more pronounced when the C2H2 molecular axis is perpendicular to the laser electric field.

  8. Polarization effects in two-photon nonresonant ionization of argon with extreme-ultraviolet and infrared femtosecond pulses

    SciTech Connect

    O'Keeffe, P.; Lopez-Martens, R.; Mauritsson, J.; Johansson, A.; L'Huillier, A.; Veniard, V.; Taieeb, R.; Maquet, A.; Meyer, M.

    2004-05-01

    We report the results of experimental and theoretical investigations of the two-color, two-photon ionization of Ar atoms, using femtosecond pulses of infrared laser radiation in combination with its extreme-ultraviolet harmonics. It is shown that the intensities of the photoelectron lines resulting from the absorption of photons from both fields strongly depend both on the respective phases of the fields and on atomic quantities such as the asymmetry parameter. These phases, which are notoriously difficult to measure, can be estimated by changing the polarization state of the laser radiation.

  9. Generation of highly vibrationally excited H2 and detection by 2+1 resonantly enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Robie, Daniel C.; Jusinski, Leonard E.; Bischel, William K.

    1990-02-01

    We report the first detection by optical means of highly vibrationally excited H2 X1Σ+g(vx=6-11). Vibrationally excited H2 was generated using a recently discovered hot-wire effect in H2 gas, and was detected in 40 bands with 2+1 resonantly enhanced multiphoton ionization via the EF state (vEF=0-14). Rotational temperatures are in the range 200-650 K, well below that required for thermal excitation of the observed vibrational levels.

  10. (2 + 1) resonant enhanced multiphoton ionization of H2 via the E,F 1Sigma(+)g state

    NASA Technical Reports Server (NTRS)

    Rudolph, H.; Lynch, D. L.; Dixit, S. N.; Mckoy, V.; Huo, Winifred M.

    1987-01-01

    In this paper, the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2 + 1) resonant enhanced multiphoton ionization (REMPI) of H2 via the E,F 1Sigma(+)g state are reported, and these are compared with the experimental data of Anderson et al. (1984). These results show that the observed non-Franck-Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg-valence mixing in the resonant intermediate state.

  11. Investigating two-photon double ionization of D2 by XUV-Pump -- XUV-Probe experiments at FLASH

    SciTech Connect

    FLASH Collaboration; Jiang, Y.; Rudenko, A.; Perez-Torres, J.; Foucar, L.; Kurka, M.; Kuhnel, K.; Toppin, M.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M.; Jahnke, T.; Dorner, R.; Sanz-Vicario, J.; van Tilborg, J.; Belkacem, A.; Schulz, M.; Ueda, K.; Zouros, T.; Dusterer, S.; Treusch, R.; Schroter, C.; Moshammer, R.; Ullrich, J.

    2010-08-02

    Using a novel split-mirror set-up attached to a Reaction Microscope at the Free electron LASer in Hamburg (FLASH) we demonstrate an XUV-pump -- XUV-probe ((hbar omega = 38 eV) experiment by tracing the ultra-fast nuclear wave-packet motion in the D2+ (1s sigma g-state) with<10 fs time resolution. Comparison with time-dependent calculations yields excellent agreement with the measured vibrational period of 22+-4 fs in D2+, points to the importance of the inter-nuclear distance dependent ionization probability and paves the way to control sequential and non-sequential two-photon double ionization contributions.

  12. Identification of Two Allylbenzene Conformers by One- and Two-Photon Resonant Multiphoton Ionization Spectroscopy in a Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Philis, John G.; Kosmidis, Constantine

    1997-02-01

    Two allylbenzene conformers have been identified using resonance-enhanced multiphoton ionization spectroscopy (REMPI) in a supersonic jet expansion. Their existence has been confirmed by the vibrational analysis of theS1← S0ππ* transition, recorded under (1 + 1) and (2 + 2) REMPI schemes and by the intensity variation of their spectra under various expansion conditions. The conformer with higher excitation energy shows strong dependence on the terminal beam temperature, which is consistent with a shallow potential energy well as predicted by theory. The relative abundance of the two conformers and the frequency values of several vibrational modes in their lower excited singlet electronic stateS1have been determined.

  13. One- and two-photon ionization of DNA single and double helices studied by laser flash photolysis at 266 nm.

    PubMed

    Marguet, Sylvie; Markovitsi, Dimitra; Talbot, Francis

    2006-06-15

    The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.

  14. Two-photon double ionization of helium in the region of photon energies 42-50eV

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-01

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.

  15. Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Hsin Chang; Shiung, Kui Shiu; Jin, Bih Yaw; Tzeng, Wen Bih

    2013-11-01

    We apply the resonant two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) techniques to record the vibronic and cation spectra of m-chloroanisole. The vibronic features appear in two series, built on 35,822 ± 2 and 35,868 ± 2 cm-1, corresponding to the origins of the S1 ← S0 electronic transition (E1's) of the two rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 67,645 ± 5 and 68,008 ± 5 cm-1 for these two isomeric species. Comparing these data with those of anisole, we find that the chlorine substitution at the meta position leads to a red shift in the E1 and a blue shift in the IE. The observed R2PI and MATI bands mainly result from the in-plane ring deformation and substituent-sensitive bending vibrations of these species in the electronically excited S1 and cationic ground D0 states.

  16. Double-arm three-dimensional ion imaging apparatus for the study of ion pair channels in resonance enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Poretskiy, M. S.; Chichinin, A. I.; Maul, C.; Gericke, K.-H.

    2016-02-01

    We present a novel experimental configuration for the full quantitative characterization of the multichannel resonance enhanced multiphoton ionization (REMPI) of small molecules in cases when the ion-pair dissociation channel is important. For this purpose, a double-arm time-of-flight mass spectrometer with three-dimensional (3D) ion imaging detectors at both arms is constructed. The REMPI of HCl molecules is used to examine the constructed setup. The apparatus allows us to perform simultaneous measurements of the 3D velocity vector distributions of positive (H+, HCl+, and Cl+) and negative (Cl-) photoions. The characterization consists of the determination of "two-photon absorption cross sections" for the process HCl(X)+2hν → HCl∗, one-photon absorption cross sections for subsequent processes HCl∗ + hν → HCl∗∗, and the probability of the subsequent non-adiabatic transition HCl∗∗ → HCl(B) → H+ + Cl-, which leads to ionic pairs. All these data should be obtained from the analysis of the dependencies of the number of ions on the laser energy. The full characterization of the laser beam and the knowledge of the ion detection probability are necessary parts of the analysis. Detailed knowledge of losses of produced ions in the mass spectrometer before detection requires understanding and characterization of such processes like electron emission from metallic grids under ion bombardment or charge transfer between positive ions and the metal surface of the grids, like Cl+ + (grid) → Cl-. These important phenomena from surface science are rarely discussed in the imaging literature, and here, we try to compensate for this shortcoming.

  17. Alignment effects in two-photon double ionization of H{sub 2} in femtosecond xuv laser pulses

    SciTech Connect

    Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2011-09-15

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schroedinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  18. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  19. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  20. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  1. Rotationally Resolved Vacuum Ultraviolet Resonance-Enhanced Multiphoton Ionization (VUV REMPI) of Acetylene via the G̃ Rydberg State.

    PubMed

    Schmidt-May, Alice F; Grütter, Monika; Neugebohren, Jannis; Kitsopoulos, T N; Wodtke, Alec M; Harding, Dan J

    2016-07-14

    We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states.

  2. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  3. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  4. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  5. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  6. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline

    NASA Astrophysics Data System (ADS)

    Lin, Jung Lee; Huang, Chen-Jso; Lin, Cheng-Huang; Tzeng, Wen Bih

    2007-07-01

    We report the resonant two-photon ionization and mass-analyzed threshold ionization (MATI) spectra of m-methoxyaniline and o-methoxyaniline. The vibronic features of m-methoxyaniline are built on 34308 ± 2 and 34495 ± 2 cm -1 corresponding to the origins of the S 1 ← S 0 electronic transition ( E1's) of the cis and trans rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 59983 ± 5 and 60879 ± 5 cm -1 for these two species. o-Methoxyaniline is found to have only one stable structure whose E1 and IE are 33875 ± 2 and 58678 ± 5 cm -1, respectively. Most of the active vibrations of m- and o-methoxyaniline in the electronically excited S 1 and cationic ground D 0 states result from the in-plane ring vibrations. Comparing these data with those of p-methoxyaniline allows us to learn about the vicinal substitution effects resulting from the relative locations of the NH 2 and OCH 3 substituents.

  7. Resonance Enhanced Multi-Photon Ionization (rempi) and Double Resonance Uv-Uv and Ir-Uv Spectroscopic Investigation Isocytosine

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Min, Ahreum; Ahn, Ahreum; Moon, Cheol Joo; Choi, Myong Yong; Ishiuchi, Shun-Ichi; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2013-06-01

    Isocytosine(iC), 2-aminouracil, is a non-natural nucleobase and its functional group's positions resemble those of guanine; therefore, its spectroscopic investigation is worthy of attention especially for the natural/unnatural base pairs with guanine and isoguanine. In this study, resonance enhanced multi-photon ionization (REMPI) and UV/IR-UV double resonance spectra of iC in the gas phase are presented. The collaboration work between Tokyo Institute of Technology, Japan and Gyeongsang National University, Korea using laser ablation and thermal evaporation, respectively, for producing jet-cooled iC is presented and discussed. The REMPI spectrum of iC monomers is recorded in the spectral range of 35000 to 36400cm-1, showing very congested π-π* vibronic bands. UV-UV hole burning spectroscopy is further conducted to investigate the conformational landscapes of iC monomers. Moreover, the presence of free OH band from IR-UV double resonance spectroscopy in combination with quantum chemical calculations convinces that the iC monomer in free-jet expansion experiment is an enol tautomer. However, a possible presence of a keto tautomer of iC may be provided by employing a pico-second experiment on iC.

  8. Resonance enhanced multiphoton ionization/secondary neutral mass spectrometry and cesium attachment secondary ion mass spectrometry of bronze : a comparison.

    SciTech Connect

    McCann, M. P.; Calaway, W. F.; Pellin, M. J.; Veryovkin, I. V.; Constantinides, I.; Adriaens, A.; Adams, F.; Materials Science Division; Sam Houston State Univ.; Univ. of Antwerp

    2002-05-01

    Archaeologists have considerable interests in ancient bronzes. They want to know how these alloys were produced and how they corroded with time. Modern bronzes, with compositions very close to that of some ancient bronzes, have been produced and two methods were examined to characterize one of these modern bronzes. Analysis of this modern bronze using resonance enhanced multiphoton ionization/secondary neutral mass spectrometry (REMPI/SNMS) is examined in detail and compared to cesium attachment secondary ion mass spectrometry (CsAMS) results. Both REMPI/SNMS and CsAMS were used to quantify the composition of Fe, Ni and Mn in a modern quaternary bronze designed to serve as a certified reference material for an ancient bronze. Both methods exhibit reduced matrix effects when compared to secondary ion mass spectrometry (SIMS) and thus quantification should be simplified. It was found that when relative sensitivity factors obtained from a standard bronze material are used to calibrate the instruments, the REMPI/SNMS measurements yield results that were more sensitive and more accurate.

  9. Tracing direct and sequential two-photon double ionization of D{sub 2} in femtosecond extreme-ultraviolet laser pulses

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Ergler, Th.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Plesiat, E.; Perez-Torres, J. F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Titze, J.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Schoeffler, M.; Tilborg, J. van

    2010-02-15

    Two-photon double ionization (TPDI) of D{sub 2} is studied for 38-eV photons at the Free Electron Laser in Hamburg (FLASH). Based on model calculations, instantaneous and sequential absorption pathways are identified as separated peaks in the measured D{sup +}+D{sup +} fragment kinetic energy release (KER) spectra. The instantaneous process appears at high KER, corresponding to ionization at the molecule's equilibrium distance, in contrast to sequential ionization mainly leading to low-KER contributions. Measured fragment angular distributions are in good agreement with theory.

  10. Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 1Δ2 Rydberg state

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, V.

    1991-12-01

    Results of studies of rotational ion distributions in the X 2Π3/2 and X 2Π1/2 spin-orbit states of HCl+ resulting from (2+1') resonance enhanced multiphoton ionization (REMPI) via the S(0) branch of the F 1Δ2 Rydberg state are reported and compared with measured threshold-field-ionization zero-kinetic-energy spectra reported recently [K. S. Haber, Y. Jiang, G. Bryant, H. Lefebvre-Brion, and E. R. Grant, Phys. Rev. A (in press)]. These results show comparable intensities for J+=3/2 of the X 2Π3/2 ion and J+=1/2 of the X 2Π1/2 ion. Both transitions require an angular momentum change of ΔN=-1 upon photoionization. To provide further insight into the near-threshold dynamics of this process, we also show rotationally resolved photoelectron angular distributions, alignment of the ion rotational levels, and rotational distributions for the parity components of the ion rotational levels. About 18% population is predicted to occur in the (+) parity component, which would arise from odd partial-wave contributions to the photoelectron matrix element. This behavior is similar to that in (2+1) REMPI via the S(2) branch of the F 1Δ2 state of HBr and was shown to arise from significant l mixing in the electronic continuum due to the nonspherical molecular ion potential. Rotational ion distributions resulting from (2+1) REMPI via the S(10) branch of the F 1Δ2 state are also shown.

  11. Comparison of the resonance-enhanced multiphoton ionization spectra of pyrrole and 2,5-dimethylpyrrole: Building toward an understanding of the electronic structure and photochemistry of porphyrins

    NASA Astrophysics Data System (ADS)

    Beames, Joseph M.; Nix, Michael G. D.; Hudson, Andrew J.

    2009-11-01

    The photophysical properties of porphyrins have relevance for their use as light-activated drugs in cancer treatment and sensitizers in solid-state solar cells. However, the appearance of their UV-visible spectra is usually explained inadequately by qualitative molecular-orbital theories. We intend to gain a better insight into the intense absorption bands, and excited-state dynamics, that make porphyrins appropriate for both of these applications by gradually building toward an understanding of the macrocyclic structure, starting with studies of smaller pyrrolic subunits. We have recorded the (1+1) and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectra of pyrrole and 2,5-dimethylpyrrole between 25 600 cm-1 (390 nm) and 48 500 cm-1 (206 nm). We did not observe a (1+1) REMPI signal through the optically bright B12 (ππ ∗) and A11 (ππ ∗) states in pyrrole due to ultrafast deactivation via conical intersections with the dissociative A12 (πσ ∗) and B11 (πσ ∗) states. However, we did observe (2+1) REMPI through Rydberg states with a dominant feature at 27 432 cm-1 (two-photon energy, 54 864 cm-1) assigned to a 3d←π transition. In contrast, 2,5-dimethylpyrrole has a broad and structured (1+1) REMPI spectrum between 36 000 and 42 500 cm-1 as a result of vibronic transitions to the B12 (ππ ∗) state, and it does not show the 3d←π Rydberg transition via (2+1) REMPI. We have complemented the experimental studies by a theoretical treatment of the excited states of both molecules using time-dependent density functional theory (TD-DFT) and accounted for the contrasting features in the spectra. TD-DFT modeled the photochemical activity of both the optically dark π1σ∗ states (dissociative) and optically bright π1π∗ states well, predicting the barrierless deactivation of the B12 (ππ ∗) state of pyrrole and the bound minimum of the B12 (ππ ∗) state in 2,5-dimethylpyrrole. However, the quantitative agreement between vibronic

  12. Comparison of the resonance-enhanced multiphoton ionization spectra of pyrrole and 2,5-dimethylpyrrole: Building toward an understanding of the electronic structure and photochemistry of porphyrins.

    PubMed

    Beames, Joseph M; Nix, Michael G D; Hudson, Andrew J

    2009-11-07

    The photophysical properties of porphyrins have relevance for their use as light-activated drugs in cancer treatment and sensitizers in solid-state solar cells. However, the appearance of their UV-visible spectra is usually explained inadequately by qualitative molecular-orbital theories. We intend to gain a better insight into the intense absorption bands, and excited-state dynamics, that make porphyrins appropriate for both of these applications by gradually building toward an understanding of the macrocyclic structure, starting with studies of smaller pyrrolic subunits. We have recorded the (1+1) and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectra of pyrrole and 2,5-dimethylpyrrole between 25 600 cm(-1) (390 nm) and 48 500 cm(-1) (206 nm). We did not observe a (1+1) REMPI signal through the optically bright (1)B(2) (pipi( *)) and (1)A(1) (pipi( *)) states in pyrrole due to ultrafast deactivation via conical intersections with the dissociative (1)A(2) (pisigma( *)) and (1)B(1) (pisigma( *)) states. However, we did observe (2+1) REMPI through Rydberg states with a dominant feature at 27 432 cm(-1) (two-photon energy, 54 864 cm(-1)) assigned to a 3d<--pi transition. In contrast, 2,5-dimethylpyrrole has a broad and structured (1+1) REMPI spectrum between 36 000 and 42 500 cm(-1) as a result of vibronic transitions to the (1)B(2) (pipi( *)) state, and it does not show the 3d<--pi Rydberg transition via (2+1) REMPI. We have complemented the experimental studies by a theoretical treatment of the excited states of both molecules using time-dependent density functional theory (TD-DFT) and accounted for the contrasting features in the spectra. TD-DFT modeled the photochemical activity of both the optically dark (1)pisigma( *) states (dissociative) and optically bright (1)pipi( *) states well, predicting the barrierless deactivation of the (1)B(2) (pipi( *)) state of pyrrole and the bound minimum of the (1)B(2) (pipi( *)) state in 2,5-dimethylpyrrole

  13. New perspectives in laser analytics: Resonance-enhanced multiphoton ionization in a Paul ion trap combined with a time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bisling, Peter; Heger, Hans Jörg; Michaelis, Walfried; Weitkamp, Claus; Zobel, Harald

    1995-04-01

    A new laser analytical device has been developed that is based on resonance-enhanced multiphoton ionization in the very center of a radio-frequency quadrupole ion trap. Applications in speciation anlaysis of biological and enviromental samples and in materials science will all benefit from laser-optical selectivity in the resonance excitation process, combined with mass-spectropic sensivity which is further enhanced by the ion accumulation and storage capability.

  14. Investigation of the photoionization properties of pharmaceutically relevant substances by resonance-enhanced multiphoton ionization spectroscopy and single-photon ionization spectroscopy using synchrotron radiation.

    PubMed

    Kleeblatt, Juliane; Ehlert, Sven; Hölzer, Jasper; Sklorz, Martin; Rittgen, Jan; Baumgärtel, Peter; Schubert, Jochen K; Zimmermann, Ralf

    2013-08-01

    The photoionization properties of the pharmaceutically relevant substances amantadine, diazepam, dimethyltryptamine, etomidate, ketamine, mescaline, methadone, and propofol were determined. At beamline U125/2-10m-NIM of the BESSY II synchrotron facility (Berlin, Germany) vacuum ultraviolet (VUV) photoionization spectra were recorded in the energy range 7.1 to 11.9 eV (174.6 to 104.2 nm), showing the hitherto unknown ionization energies and fragmentation appearance energies of the compounds under investigation. Furthermore, (1+1)-resonance-enhanced multiphoton ionization (REMPI) spectra of selected compounds (amantadine, diazepam, etomidate, ketamine, and propofol) were recorded by a continuous scan in the energy range between 3.6 and 5.7 eV (345 to 218 nm) using a tunable optical parametric oscillator (spectral resolution: 0.1 nm) laser system. The resulting REMPI wavelength spectra of these compounds are discussed and put into context with already known UV absorption data. Time-of-flight mass spectrometry was used for ion detection in both experiments. Finally, the implications of the obtained physical-chemical results for potential analytical applications are discussed. In this context, fast detection approaches for the considered compounds from breath gas using photoionization mass spectrometry and a rapid pre-concentration step (e.g., needle trap device) are of interest.

  15. Time-dependent configuration-interaction-singles calculation of the 5 p -subshell two-photon ionization cross section in xenon

    NASA Astrophysics Data System (ADS)

    Karamatskou, Antonia; Santra, Robin

    2017-01-01

    The 5 p two-photon ionization cross section of xenon in the photon-energy range below the one-photon ionization threshold is calculated within the time-dependent configuration-interaction-singles (TDCIS) method. The TDCIS calculations are compared to random-phase-approximation calculations [Wendin et al., J. Opt. Soc. Am. B 4, 833 (1987), 10.1364/JOSAB.4.000833] and are found to reproduce the energy positions of the intermediate Rydberg states reasonably well. The effect of interchannel coupling is also investigated and found to change the cross section of the 5 p shell only slightly compared to the intrachannel case.

  16. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  17. Fraunhofer-like diffracted lateral photoelectron momentum distributions of H2+ in charge-resonance-enhanced ionization in strong laser fields

    NASA Astrophysics Data System (ADS)

    Xin, Lin; Qin, Han-Cheng; Wu, Wan-Yang; He, Feng

    2015-12-01

    For H2+ at the critical internuclear distance where the charge-resonance-enhanced ionization is most prominent, the lateral photoelectron momentum distribution presents the Fraunhofer-like diffraction pattern: a central disk surrounded by one or more rings. We study this phenomenon by simulating the time-dependent Schrödinger equation and unveil the mechanism: the stretched molecule constructs an interatomic Coulomb potential, which works as a circular aperture and diffracts the electron when it travels between two nuclei. This distinct lateral photoelectron momentum distribution offers another perspective to look into molecular structures.

  18. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    NASA Astrophysics Data System (ADS)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  19. Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Buganov, O.; Korjik, M.; Fedorov, A.; Nargelas, S.; Tamulaitis, G.; Tikhomirov, S.; Vaitkevičius, A.

    2015-12-01

    This work was aimed at searching for fast phenomena in scintillators in sub-10-ps range, a benchmark timing for the time response of radiation detectors in particle colliders. The pump-and-probe optical absorption technique with a tunable-wavelength parametric oscillator as the pump and a continuous-spectrum source as the probe beam was used to study lead tungstate PbWO4 (PWO) single crystals. It is shown that the rise time of the probe pulse absorption induced by the pump pulse is shorter than the pump pulse width of 200 fs. The approximately linear dependence of the probe absorption on the pump pulse energy density evidences that the induced absorption is caused by two-photon absorption involving one probe and one pump photon. We demonstrate that the intensity of the induced absorption at certain wavelengths is influenced by gamma irradiation, provided that an appropriate light polarization is selected. The application of the irradiation-sensitive nonlinearity for fast timing in radiation detectors is discussed.

  20. Photofragmentations, state interactions, and energetics of Rydberg and ion-pair states: two-dimensional resonance enhanced multiphoton ionization of HBr via singlet-, triplet-, Ω = 0 and 2 states.

    PubMed

    Long, Jingming; Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst

    2012-06-07

    Mass spectra were recorded for one-colour resonance enhanced multiphoton ionization (REMPI) of H(i)Br (i = 79, 81) for the two-photon resonance excitation region 79,040-80,300 cm(-1) to obtain two-dimensional REMPI data. The data were analysed in terms of rotational line positions, intensities, and line-widths. Quantitative analysis of the data relevant to near-resonance interactions between the F(1)Δ(2)(v' = 1) and V(1)Σ(+)(v' = m + 7) states gives interaction strengths, fractional state mixing, and parameters relevant to dissociation of the F state. Qualitative analysis further reveals the nature of state interactions between ion-pair states and the E(1)Σ(+) (v' = 1) and H(1)Σ(+)(v' = 0) Rydberg states in terms of relative strengths and J' dependences. Large variety in line-widths, depending on electronic states and J' quantum numbers, is indicative of number of different predissociation channels. The relationship between line-widths, line-shifts, and signal intensities reveals dissociation mechanisms involving ion-pair to Rydberg state interactions prior to direct or indirect predissociations of Rydberg states. Quantum interference effects are found to be important. Moreover, observed bromine atom (2 + 1) REMPI signals support the importance of Rydberg state predissociation channels. A band system, not previously observed in REMPI, was observed and assigned to the k(3)Π(0)(v' = 0) ←← X transition with band origin 80,038 cm(-1) and rotational parameter B(v('))=7.238 cm(-1).

  1. Angular and internal state distributions of H2+ generated by (2 + 1) resonance enhanced multiphoton ionization of H2 using time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Perreault, William E.; Mukherjee, Nandini; Zare, Richard N.

    2016-06-01

    We report direct measurement of the anisotropy parameter β for the angular distribution of the photoelectron and photoion in (2 + 1) resonance enhanced multiphoton ionization process of H2 X 1 Σg + (v = 0, J = 0) molecules through the intermediate H2 E,F 1 Σg + (v' = 0, J' = 0) level (λ = 201.684 nm) using a time-of-flight mass spectrometer. The time-of-flight spectra were recorded as the direction of polarization of the ionizing laser was varied with respect to the flight axis of the H2 molecular beam and were fitted to an angular distribution in an appropriately rotated coordinate system with the z-axis oriented along the time-of-flight axis. The anisotropy parameter β was found to be 1.72 ± 0.13 by fitting the time-of-flight spectra and agreed with previous measurements. Using secondary ionization with a delayed laser pulse of different wavelength, we also determined the vibrational energy distribution of the ions, showing that 98% ± 4% of the ions are generated in their ground vibrational state, in agreement with the calculated Franck-Condon factors between the H2 E,F 1 Σg + (v' = 0) and H 2+ X 1 Σg + (v″) vibrational levels.

  2. Isotopically-selective two-photon ionization of 12C- and 13C-benzene and hexadeuterobenzene in a time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    de La Cruz, A.; Ortiz, M.; Cabrera, J. A.; Campos, J.

    1994-04-01

    In this work the 610 band spectra for 12C6H6, 12C6D6, 13C12C5H6 and 13C12C5D6 isotopically-substituted benzenes are reported. Spectra of deuterated species are given for the first time. These molecular spectra can be employed to test the technical performances of REMPI-TOFMS systems. The experimental method was laser-induced two-photon ionization of molecules cooled in a He supersonic beam followed by time-of-flight mass spectrometry. A splitting of the 610 band appears when a 13C atom is present in the benzene-ring, favoring the isotope selectivity. In the present experiment a complete mass discrimination has been accomplished by using appropriate electronic circuits. A proportional counter has been used to obtain the corresponding spectra of the molecules at 300 K. The device is very useful to tune the laser wavelength to resonance in this kind of mass spectrometry experiment.

  3. Photofragmentations, state interactions, and energetics of Rydberg and ion-pair states: resonance enhanced multiphoton ionization via E and V (B) states of HCl and HBr.

    PubMed

    Long, Jingming; Wang, Huasheng; Kvaran, Ágúst

    2013-01-28

    (2 + n) resonance enhanced multiphoton ionization mass spectra for resonance excitations to diabatic E(1)Σ(+) (v') Rydberg and V (1)Σ(+) (v') ion-pair states (adiabatic B(1)Σ(+)(v') states) of H(i)Cl (i = 35,37) and H(i)Br (i = 79,81) were recorded as a function of excitation wavenumber (two-dimensional REMPI). Simulation analyses of ion signal intensities, deperturbation analysis of line shifts and interpretations of line-widths are used to derive qualitative and quantitative information concerning the energetics of the states, off-resonance interactions between the E states and V states, closest in energy as well as on predissociation channels. Spectroscopic parameters for the E(1)Σ(+) (v')(v' = 1) for H(35)Cl and v' = 0 for H(79)Br states, interaction strengths for E - V state interactions and parameters relevant to dissociation of the E states are derived. An overall interaction and dynamical scheme, to describe the observations for HBr, is proposed.

  4. Rotational branching ratios and photoelectron angular distributions in resonance enhanced multiphoton ionization of HBr via the F sup 1. Delta. sub 2 Rydberg state

    SciTech Connect

    Wang, K.; McKoy, V. )

    1991-12-01

    Results of theoretical studies of rotational ion distributions in the {ital X} {sup 2}{Pi}{sub 1/2} ground state of HBr{sup +} resulting from (2+1) resonance enhanced multiphoton ionization (REMPI) via the {ital S}(2) branch of the {ital F} {sup 1}{Delta}{sub 2} Rydberg state are reported. These results show a strongly parity-favored ion distribution with about 80% population in the ({minus}) component of the {Lambda} doublet of {ital J}{sup +} rotational levels. The 20% population in the other parity component of the {Lambda} doublet can be seen to be due to odd partial wave contributions to the photoelectron matrix elements which arise primarily from non-atomic-like behavior of the electronic continuum. This, in turn, is due to angular momentum coupling in the photoelectron orbital brought about by the torques of the nonspherical molecular ion potential. We demonstrate that the effect of alignment on these ion distributions, although not large, is important. Photoelectron angular distributions and alignment of the {ital J} levels of the HBr{sup +} ions are also presented. Rotational branching ratios and photoelectron angular distributions resulting from (2+1{prime}) REMPI of HBr via several {ital S} branches of the {ital F} {sup 1}{Delta}{sub 2} state are also shown for near-threshold photoelectron energies.

  5. A spectroscopic study of nicotine analogue 2-phenylpyrrolidine (PPD) using resonant two-photon ionization (R2PI), microwave, and 2D NMR techniques.

    PubMed

    Martin, Danielle E; Robertson, Evan G; MacLellan, Jonathan G; Godfrey, Peter D; Thompson, Christopher D; Morrison, Richard J S

    2009-02-25

    Conformational preferences of the nicotine analogue 2-phenylpyrrolidine (PPD) have been studied in both gaseous and solution phases. Theoretical calculations at the MP2 and B3LYP levels point to 5-6 stable conformers which differ in three degrees of conformational freedom; torsion between the two rings, inversion at the pyrrolidine (PY) amine, and PY ring puckering, characterized using the Cremer-Pople definition for pseudorotation. Only one conformer has a trans arrangement between the amino hydrogen and the phenyl substituent. It is 6-8 kJ mol(-1) more stable than the cis conformers, has a perpendicular ring arrangement, and puckers at the nitrogen atom--similar to structures reported for nicotine. Resonant two-photon ionization (R2PI) data, including hole burn spectra, indicate only one conformer is present in the free jet expansion, and band contour analysis suggests assignment to the trans conformer. Confirmation was provided by microwave spectroscopy. Fifty-seven lines measured in the 48-72 GHz region were assigned to 206 b-type transitions and fitted to yield rotational constants within 2 MHz of MP2 values predicted for the trans conformer. The solution-phase conformers of PPD were studied using 1D and 2D (1)H NMR spectroscopy and solvent-based theoretical calculations. In marked contrast to the gas phase, NMR data reveals only cis conformers present in solution. Calculations confirm increased stability for these conformers when placed in simulated chloroform or water environments. Solvent molecules are believed to disrupt a crucial N...H(ortho) stabilizing interaction present within the trans conformer.

  6. Vibronic spectra of jet-cooled 2-aminopurine·H2O clusters studied by UV resonant two-photon ionization spectroscopy and quantum chemical calculations.

    PubMed

    Sinha, Rajeev K; Lobsiger, Simon; Trachsel, Maria; Leutwyler, Samuel

    2011-06-16

    For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine·H(2)O monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift δν of the S(1) ← S(0) transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (δν = -889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H(2)O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D(e) = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)ππ* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S(0) state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)ππ* state to the lower-lying (1)nπ* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)ππ* state of B is planar and decoupled from the (1)nπ* state. These observations agree with the calculations, which predict the (1)nπ* above the (1)ππ* state for isomer B but below the (1)ππ* for both 9H-2AP and isomer A.

  7. Resonance Enhanced Multi-photon Spectroscopy of DNA

    NASA Astrophysics Data System (ADS)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  8. Two-photon cryomicroscope

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  9. Theoretical investigation of the origin of the multipeak structure of kinetic-energy-release spectra from charge-resonance-enhanced ionization of H{sub 2}{sup +} in intense laser fields

    SciTech Connect

    He Haixiang; Guo Yahui; Lu Ruifeng; Zhang Peiyu; Han Keli; He Guozhong

    2011-09-15

    The dynamics of hydrogen molecular ions in intense laser pulses (100 fs, I = 0.77 x 10{sup 14} W/cm{sup 2} to 2.5 x 10{sup 14} W/cm{sup 2}) has been studied, and the kinetic-energy-release spectra of Coulomb explosion channel have been calculated by numerically solving the time-dependent Schroedinger equation. In a recent experiment, a multipeak structure from charge-resonance-enhanced ionization is interpreted by a vibrational 'comb' at a critical nuclear distance. We found that the peaks could not be attributed to a single vibrational level but a collective contribution of some typical vibrational states in our calculated Coulomb explosion spectra, and the main peak shifts toward the low-energy region with increasing vibrational level, which is also different from the explanation in that experiment. We have also discussed the proton's kinetic-energy-release spectra for different durations with the same laser intensity.

  10. Resonance-enhanced multiphoton ionization and VUV-single photon ionization as soft and selective laser ionization methods for on-line time-of-flight mass spectrometry: investigation of the pyrolysis of typical organic contaminants in the steel recycling process.

    PubMed

    Cao, L; Mühlberger, F; Adam, T; Streibel, T; Wang, H Z; Kettrup, A; Zimmermann, R

    2003-11-01

    A newly conceived compact and mobile time-of flight mass spectrometer (TOFMS) for real-time monitoring of highly complex gas mixtures is presented. The device utilizes two selective and sensitive soft ionization techniques, viz., resonance-enhanced multiphoton ionization (REMPI) and single-photon ionization (SPI) in a (quasi)-simultaneous mode. Both methods allow a fragmentationless ionization. The REMPI method selectively addresses aromatic species, while with SPI applying vacuum ultaviolet light (118 nm) in principle all compounds with an ionization potential below 10.5 eV are accessible. This provides comprehensive information of the chemical composition of complex matrixes. The combustion and pyrolysis behavior of five organic materials typically used in steel processing in China was studied. The trace amounts of organic compounds in the gas phase during combustion and pyrolysis were monitored selectively and sensitively by real-time SPI/REMPI-TOFMS. The measurements were carried out at several constant temperatures in the range from 300 to 1190 degrees C in both synthetic air and nitrogen. Timely resolved mass spectra reveal the formation and subsequent growth of aromatic molecules. At lower temperatures, highly alkylated PAHs predominate, while at temperatures above 800 degrees C, the more stable benzene and PAHs without side chains prevail. Potential hyphenation of SPI/REMPI-TOFMS to methods of thermal analysis is discussed.

  11. Ab initio study of the one- and two-photon circular dichroism of R-(+)-3-methyl-cyclopentanone

    NASA Astrophysics Data System (ADS)

    Rizzo, Antonio; Lin, Na; Ruud, Kenneth

    2008-04-01

    One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.

  12. EUV two-photon-ionization cross sections of helium from the solution of the time-dependent Schrödinger equation, and comparison with measurements using free-electron lasers

    NASA Astrophysics Data System (ADS)

    Mercouris, Theodoros; Komninos, Yannis; Nicolaides, Cleanthes A.

    2016-12-01

    Two recent experimental papers reported the first measurements of absolute two-photon-ionization cross sections σ (2 ) of helium, for EUV wavelengths, using free-electron laser (FEL) pulses [Sato et al., J. Phys. B 44, 161001 (2011), 10.1088/0953-4075/44/16/161001; Fushitani et al., Phys. Rev. A 88, 063422 (2013), 10.1103/PhysRevA.88.063422]. The wavelengths correspond to transitions that are off resonance as well as on resonance with the 1 s 2 p and 1 s 3 p 1Po Rydberg states. Inspection of their results reveals considerable discrepancies, while their comparison with theoretical results obtained earlier from time-independent calculations, one perturbative and two nonperturbative ones, cannot lead to secure conclusions as to the true values of σ (2 ) . We examined this prototypical problem by implementing a time-dependent approach, which utilizes the nonperturbative solution of the time-dependent Schrödinger equation. This solution was obtained in terms of the state-specific expansion approach, in an upgraded version where the coupling matrix elements are computed using the full electric operator of the multipolar Hamiltonian. The σ (2 ) were obtained for pulses of 300 fs, as in the 2011 FEL experiment. Their computation was achieved by fitting the time-dependent ionization survival probability to e-Γ t, where Γ is the rate of ionization. The wavelengths and intensities are those of the FEL experiments, as well as others, such as the wavelengths 52.22 and 51.56 nm, for which the 1 s 4 p 1Po and 1 s 5 p 1Po levels are on resonance with the initial 1S state. Apart from the predictions for these wavelengths, the paper contains characteristic comparisons among all the results on these EUV σ (2 ) , experimental and theoretical. In general, the trends predicted by nonperturbative methods are confirmed by the FEL measurements. However, discrepancies exist among the absolute numbers. Furthermore, comparison among the results of the three nonperturbative approaches

  13. Two Photon Detection Techniques for Atomic Fluorine

    DTIC Science & Technology

    1988-06-30

    to the two-photon detection technique. ’.d. %.. %9I Flowing He/F Mixture CaF 2 (20% F) from Pellin- Broca ionization Microwave Discharge Prism 1~~T6th...Stokes (AS) orders are separated using a CaF2 Pellin- Broca prism. The sixth AS at 170 un is propagated through an evacuated beam path (10 .5 torr) and...CaF2 Pellin- Broca prism. The atoms Br (Ref. 5) and Cl (Ref. 6) with limited sensitiv- sixth AS wave at 170 nm is propagated through a series ity6

  14. Analysis of the (1)A' S1 ← (1)A' S0 and (2)A' D0 ← (1)A' S1 band systems in 1,2-dichloro-4-fluorobenzene by means of resonance-enhanced-multi-photon-ionization (REMPI) and mass-analyzed-threshold-ionization (MATI) spectroscopy.

    PubMed

    Krüger, Sascha; Grotemeyer, Jürgen

    2016-03-14

    Resonance enhanced multiphoton ionization (REMPI) and mass analyzed threshold ionization (MATI) spectroscopy have been applied in order to investigate the vibrational structure of 1,2-dichloro-4-fluorobenzene (1,2,4-DCFB) in its first excited state (S1) and the cationic ground state (D0). The selection of the state prior to ionization resulted in MATI spectra with different intensity distributions thus giving access to many vibrational levels. To support the experimental findings, geometry optimizations and frequency analyses at DFT (density functional) and TDDFT (time-dependent density functional) levels of theory have been applied. Additionally, a multidimensional Franck-Condon approach has been used to calculate the vibrational intensities from the DFT calculations. An excellent agreement between simulated and measured REMPI and MATI spectra allowed for a confident assignment of vibrational levels and mechanisms active during excitation and ionization. In order to avoid any ambiguity regarding the assignment of the vibrational bands to normal modes, Duschinsky normal mode analysis has been performed to correlate the ground state (S0) normal modes of 1,2,4-DCFB with the benzene derived Wilson nomenclature. From the REMPI spectra the electronic excitation energy (EE) of 1,2-dichloro-4-fluorobenzene could be determined to be 35 714 ± 2 cm(-1) while the MATI spectra yielded the adiabatic ionization energy (IE) of 1,2-dichloro-4-fluorobenzene which could be determined to be 73 332 ± 7 cm(-1).

  15. Two-Photon Absorption and Two-Photon Four-Wave Mixing for the Terbium Ion in Insulators.

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    Resonant enhancement of over two orders of magnitude of direct two-photon absorption from the ground state ^7F_6 to the excited state ^5G_6 of the 4f^8 configuration of Tb^{3+} at 40,200 cm ^{-1} has been observed in time resolved experiments with two separate lasers. The results provide clear evidence for resonant enhancement of two-photon absorption in rare earth compounds and imply the same for Raman scattering. Two separate transition mechanisms have been observed. When a single laser frequency was used, the intermediate states making the largest contribution were from excited configurations of opposite parity which were far from resonance. Detailed two-frequency experiments showed, however, that near the single photon resonance, there was a much stronger contribution from the 4f ^8 configuration ^5D _4 intermediate state. The phase-matching-induced frequency selectivity in the single-photon-resonant four-wave mixing has been observed in further rare earth compounds. These observations provide additional evidence that the phase matching effects, resulting from anomalous dispersion associated with the single-photon resonance, play a major role in determining both the intensity and the line narrowing of the mixing signal, and that similar effects will be observable in any rare earth compound. An effect of two-photon-resonant four-wave mixing has been observed for a transition to the 4f^8 configuration ^5K _8 state of the Tb^{3+ } ion in LiYF_4. The strength of the resonance is comparable to that of single -photon resonances. This technique holds promise as a new spectroscopic tool, especially for studies of two-photon transitions in non-fluorescent materials.

  16. Two-Photon Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  17. Two photon physics at RHIC

    SciTech Connect

    Klein, S.

    1995-05-01

    Because the two photon cross section is proportional to Z{sup 4}, heavy ion colliders offer an unmatched luminosity. However, because nuclei have finite sizes, the photon spectrum is gradually cut off by a nuclear form factor. For RHIC, this cutoff occurs at a few GeV; below this energy, RHIC will have the highest {gamma}{gamma} luminosity in the world when it turns on. In addition to the high rates, because Z{alpha} {approximately} 0.6, the nuclear environment provides a window to strong field QED and new phenomena like multiple pair production. To study {gamma}{gamma} physics, regions where the nuclei interact hadronically must be avoided; this leads to roughly a factor of two loss in usable luminosity. The rates expected by the Solenoidal Tracker at RHIC (STAR) collaboration will be given. Backgrounds will be discussed, along with several rejection techniques.

  18. Two-photon transitions in primordial hydrogen recombination

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.

    2008-07-01

    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from cosmic microwave background observations. While the central role of the two-photon decay 2s→1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns, nd→1s (n≥3). Simple attempts to include these processes in recombination calculations with an effective two-photon decay coefficient analogous to the 2s decay coefficient Λ2s=8.22s-1 have suffered from physical problems associated with the existence of kinematically allowed sequences of one-photon decays, e.g. 3d→2p→1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick to two-photon absorption, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However, we find that some photons between Lyα and Lyβ are produced, mainly by 3d→1s two-photon decay and 2s→1s Raman scattering. At later times, these photons redshift down to Lyα, excite hydrogen atoms, and act to slow recombination. Thus, the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. Our calculation involves a very different physical argument than the recent studies of Wong and Scott and Chluba and Sunyaev, and produces a much larger effect on the ionization history. The implied correction to the cosmic microwave

  19. Two Photon Exchange for Exclusive Pion Electroproduction

    SciTech Connect

    Afanaciev, Andrei V.; Aleksejevs, Aleksandrs G.; Barkanova, Svetlana G.

    2013-09-01

    We perform detailed calculations of two-photon-exchange QED corrections to the cross section of pion electroproduction. The results are obtained with and without the soft-photon approximation; analytic expressions for the radiative corrections are derived. The relative importance of the two-photon correction is analyzed for the kinematics of several experiments at Jefferson Lab. A significant, over 20%, effect due to two-photon exchange is predicted for the backward angles of electron scattering at large transferred momenta.

  20. Two-photon excitation fluorescence microscopy.

    PubMed

    So, P T; Dong, C Y; Masters, B R; Berland, K M

    2000-01-01

    Two-photon fluorescence microscopy is one of the most important recent inventions in biological imaging. This technology enables noninvasive study of biological specimens in three dimensions with submicrometer resolution. Two-photon excitation of fluorophores results from the simultaneous absorption of two photons. This excitation process has a number of unique advantages, such as reduced specimen photodamage and enhanced penetration depth. It also produces higher-contrast images and is a novel method to trigger localized photochemical reactions. Two-photon microscopy continues to find an increasing number of applications in biology and medicine.

  1. Two-photon collisions and QCD

    SciTech Connect

    Gunion, J.F.

    1980-05-01

    A critical review of the applications of QCD to low- and high-p/sub T/ interactions of two photons is presented. The advantages of the two-photon high-p/sub T/ tests over corresponding hadronic beam and/or target tests of QCD are given particular emphasis.

  2. Fano interference in two-photon transport

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Fan, Shanhui

    2016-10-01

    We present a general input-output formalism for the few-photon transport in multiple waveguide channels coupled to a local cavity. Using this formalism, we study the effect of Fano interference in two-photon quantum transport. We show that the physics of Fano interference can manifest as an asymmetric spectral line shape in the frequency dependence of the two-photon correlation function. The two-photon fluorescence spectrum, on the other hand, does not exhibit the physics of Fano interference.

  3. Two-Photon Laser Scanning Microscopy

    NASA Astrophysics Data System (ADS)

    Nimmerjahn, A.; Theer, P.; Helmchen, F.

    Since its inception more than 15 years ago, two-photon laser scanning microscopy (2PLSM) has found widespread use in biological and medical research. Two-photon microscopy is based on simultaneous absorption of two photons by fluorophores and subsequent fluorescence emission, a process which under normal illumination conditions is highly improbable. Theoretically described around 1930 by Maria Göppert-Mayer [1], the first experimental demonstration of two-photon excitation had to await the invention of the laser, which produced sufficiently high light intensities to observe two-photon absorption events [2]. Only after the development of ultrafast lasers providing subpicosecond light pulses with high peak power intensities, however, two-photon-excited fluorescence became practical in a laser-scanning microscope [3]. Since then 2PLSM has developed into the method of choice for high-resolution imaging in living animals (reviewed in [4,5]). One of the main reasons is the low sensitivity of 2PLSM to light scattering, which enables imaging relatively deep inside biological tissue and direct observation of the dynamic behavior of cells in their native environment. In this chapter, we introduce the physical principles governing 2PLSM and briefly describe the key instrument components. We give an overview of fluorescence labeling techniques and how they are combined with 2PLSM for functional imaging and photomanipulation in living tissue. Finally, we discuss limitations and provide some future perspectives.

  4. Multiphoton inner-shell ionization of the carbon atom

    NASA Astrophysics Data System (ADS)

    Rey, H. F.; van der Hart, H. W.

    2015-07-01

    We apply time-dependent R -matrix theory to study inner-shell ionization of C atoms in ultrashort high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W /cm2, ionization is dominated by single-photon emission of a 2 ℓ electron, with two-photon emission of a 1 s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2 ℓ contributing about 0.5-1%. Three-photon emission of a 1 s electron is estimated to contribute about 0.01-0.03%. Around a photon energy of 225 eV, two-photon emission of a 1 s electron, leaving C+ in either 1 s 2 s 2 p3 or 1 s 2 p4 , is resonantly enhanced by intermediate 1 s 2 s22 p3 states. The results demonstrate the capability of time-dependent R -matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.

  5. Two-photon polymerization of polydiacetylene.

    PubMed

    Shusterman, Olga; Berman, Amir; Golan, Yuval; Horovitz, Baruch; Zeiri, Leila

    2009-02-05

    We show that visible light can polymerize diacetylene monomers into polydiacetylene (PDA) in a two-photon process. We monitor the process by measuring Raman intensities of PDA using a Raman laser at 633 nm with variable intensity I and show that the Raman cross section at short times increases as I3, corresponding to a two-photon process. The process generates a relatively stable blue phase PDA, in contrast with UV polymerization that leads to a fast blue to red phase transformation.

  6. Determination of Hexachlorocyclohexane by Gas Chromatography Combined with Femtosecond Laser Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Imasaka, Tomoko; Li, Adan; Imasaka, Totaro

    2016-12-01

    Structural isomers and enantiomers of hexachlorocyclohexane (HCH) were separated using a chiral column by gas chromatography and quantitatively determined by multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (200 and 267 nm) as the ionization source. The order of elution of the enantiomers (i.e., (+)-α-HCH and (-)-α-HCH) was predicted from stabilization energies calculated for the complexes using permethylated γ-cyclodextrin as the stationary phase of the column, and the results were compared with the experimental data. The molecular ions observed for HCH were weak, even though they can be ionized through a process of resonance enhanced two-photon ionization at 200 nm. This unfavorable result can be attributed to the dissociation of the molecular ion, as predicted from quantum chemical calculations.

  7. Two photon photoemission of deposited silver clusters

    NASA Astrophysics Data System (ADS)

    Busolt, U.; Cottancin, E.; Röhr, H.; Socaciu, L.; Leisner, T.; Wöste, L.

    We use time resolved two photon photoemission to study the stability of size selected silver clusters deposited onto highly oriented pyrolytic graphite (HOPG) substrates. Size-selected Agn+ clusters (n=2-9) are deposited at low coverage onto HOPG surfaces at liquid nitrogen temperatures. After deposition, the samples are irradiated by a series of ultrashort laser pulse pairs. Photoelectrons created by two photon photoemission are collected in a magnetic bottle type time-of-flight photoelectron spectrometer. Their kinetic energy distribution is recorded as a function of the delay time between subsequent light pulses. With the exception of Ag3 the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the deposited clusters retain their size and identity on the sample. The lifetime of the photoexcitation rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters.

  8. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  9. Determination of Nerve Agent Metabolites by Ultraviolet Femtosecond Laser Ionization Mass Spectrometry.

    PubMed

    Hamachi, Akifumi; Imasaka, Tomoko; Nakamura, Hiroshi; Li, Adan; Imasaka, Totaro

    2017-04-04

    Nerve agent metabolites, i.e., isopropyl methylphosphonic acid (IMPA) and pinacolyl methylphosphonic acid (PMPA), were derivatized by reacting them with 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) and were determined by mass spectrometry using an ultraviolet femtosecond laser emitting at 267 and 200 nm as the ionization source. The analytes of the derivatized compounds, i.e., IMPA-PFB and PMPA-PFB, contain a large side-chain, and molecular ions are very weak or absent in electron ionization mass spectrometry. The use of ultraviolet femtosecond laser ionization mass spectrometry, however, resulted in the formation of a molecular ion, even for compounds such as these that contain a highly-bulky functional group. The signal intensity was larger at 200 nm due to resonance-enhanced two-photon ionization. In contrast, fragmentation was suppressed at 267 nm (non-resonant two-photon ionization) especially for PMPA-PFB, thus resulting in a lower background signal. This favorable result can be explained by the small excess energy in ionization at 267 nm and by the low-frequency vibrational mode of a bulky trimethylpropyl group in PMPA.

  10. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry.

    PubMed

    Constapel, M; Schellenträger, M; Schmitz, O J; Gäb, S; Brockmann, K J; Giese, R; Benter, Th

    2005-01-01

    We report on the development of a new laser-ionization (LI) source operating at atmospheric pressure (AP) for liquid chromatography/mass spectrometry (LC/MS) applications. APLI is introduced as a powerful addition to existing AP ionization techniques, in particular atmospheric-pressure chemical ionization (APCI), electrospray ionization (ESI), and atmospheric pressure photoionization (APPI). Replacing the one-step VUV approach in APPI with step-wise two-photon ionization strongly enhances the selectivity of the ionization process. Furthermore, the photon flux during an ionization event is drastically increased over that of APPI, leading to very low detection limits. In addition, the APLI mechanism generally operates primarily directly on the analyte. This allows for very efficient ionization even of non-polar compounds such as polycyclic aromatic hydrocarbons (PAHs). The APLI source was characterized with a MicroMass Q-Tof Ultima II analyzer. Both the effluent of an HPLC column containing a number of PAHs (benzo[a]pyrene, fluoranthene, anthracene, fluorene) and samples from direct syringe injection were analyzed with respect to selectivity and sensitivity of the overall system. The liquid phase was vaporized by a conventional APCI inlet (AP probe) with the corona needle removed. Ionization was performed through selective resonance-enhanced multi-photon ionization schemes using a high-repetition-rate fixed-frequency excimer laser operating at 248 nm. Detection limits well within the low-fmol regime are readily obtained for various aromatic hydrocarbons that exhibit long-lived electronic states at the energy level of the first photon. Only molecular ions are generated at the low laser fluxes employed ( approximately 1 MW/cm(2)). The design and performance of the laser-ionization source are presented along with results of the analysis of aromatic hydrocarbons.

  11. Denoising two-photon calcium imaging data.

    PubMed

    Malik, Wasim Q; Schummers, James; Sur, Mriganka; Brown, Emery N

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.

  12. Epifluorescence collection in two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Beaurepaire, Emmanuel; Mertz, Jerome

    2002-09-01

    We present a simple model to describe epifluorescence collection in two-photon microscopy when one images in a turbid slab with an objective. Bulk and surface scattering determine the spatial and angular distributions of the outgoing fluorescence photons at the slab surface, and geometrical optics determines how efficiently the photons are collected. The collection optics are parameterized by the objective's numerical aperture and working distance and by an effective collection field of view. We identify the roles of each of these parameters and provide simple rules of thumb for the optimization of the epifluorescence collection efficiency. Analytical results are corroborated by Monte Carlo simulation.

  13. Platinum Acetylide Two-Photon Chromophores (Postprint)

    DTIC Science & Technology

    2007-01-01

    L.; Pierce, B. M. Science 1994, 265, 632. (14) Prasad, P. N.; Reinhardt, B. A. Chem. Mater. 1990, 2, 660. (15) Larson, E . J.; Friesen , L. A.; Johnson...PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER 4348 5e. TASK NUMBER RG 6. AUTHOR(S) Joy E . Rogers (UES) Jonathan E . Slagle (AT&T Government...afford T1. Platinum Acetylide Two-Photon Chromophores Joy E . Rogers,†,‡ Jonathan E . Slagle,†,§ Douglas M. Krein,†,| Aaron R. Burke,†,| Benjamin C. Hall

  14. Erasing nonlocal like two photon interference

    NASA Astrophysics Data System (ADS)

    Olindo, C.; Sagioro, M. A.; Pádua, S.; Monken, C. H.

    2015-12-01

    Over the years, since the 1980s, various two photon interference experiments have been reported with photon pairs generated by parametric down conversion. Some of them have shown local interference features and non-local ones. An experiment is shown here which joins the two features at the same time in a Hong-Ou-Mandel interferometer. However, the non-local effects are lost if the photons' arrival time difference at the beam splitter is much larger than the pulse length of the pump beam that generates the photon pair.

  15. Encoded multisite two-photon microscopy

    PubMed Central

    Ducros, Mathieu; Houssen, Yannick Goulam; Bradley, Jonathan; de Sars, Vincent; Charpak, Serge

    2013-01-01

    The advent of scanning two-photon microscopy (2PM) has created a fertile new avenue for noninvasive investigation of brain activity in depth. One principal weakness of this method, however, lies with the limit of scanning speed, which makes optical interrogation of action potential-like activity in a neuronal network problematic. Encoded multisite two-photon microscopy (eMS2PM), a scanless method that allows simultaneous imaging of multiple targets in depth with high temporal resolution, addresses this drawback. eMS2PM uses a liquid crystal spatial light modulator to split a high-power femto-laser beam into multiple subbeams. To distinguish them, a digital micromirror device encodes each subbeam with a specific binary amplitude modulation sequence. Fluorescence signals from all independently targeted sites are then collected simultaneously onto a single photodetector and site-specifically decoded. We demonstrate that eMS2PM can be used to image spike-like voltage transients in cultured cells and fluorescence transients (calcium signals in neurons and red blood cells in capillaries from the cortex) in depth in vivo. These results establish eMS2PM as a unique method for simultaneous acquisition of neuronal network activity. PMID:23798397

  16. Encoded multisite two-photon microscopy.

    PubMed

    Ducros, Mathieu; Goulam Houssen, Yannick; Bradley, Jonathan; de Sars, Vincent; Charpak, Serge

    2013-08-06

    The advent of scanning two-photon microscopy (2PM) has created a fertile new avenue for noninvasive investigation of brain activity in depth. One principal weakness of this method, however, lies with the limit of scanning speed, which makes optical interrogation of action potential-like activity in a neuronal network problematic. Encoded multisite two-photon microscopy (eMS2PM), a scanless method that allows simultaneous imaging of multiple targets in depth with high temporal resolution, addresses this drawback. eMS2PM uses a liquid crystal spatial light modulator to split a high-power femto-laser beam into multiple subbeams. To distinguish them, a digital micromirror device encodes each subbeam with a specific binary amplitude modulation sequence. Fluorescence signals from all independently targeted sites are then collected simultaneously onto a single photodetector and site-specifically decoded. We demonstrate that eMS2PM can be used to image spike-like voltage transients in cultured cells and fluorescence transients (calcium signals in neurons and red blood cells in capillaries from the cortex) in depth in vivo. These results establish eMS2PM as a unique method for simultaneous acquisition of neuronal network activity.

  17. LASERS IN MEDICINE: Two-photon excitation of aluminium phthalocyanines

    NASA Astrophysics Data System (ADS)

    Meshalkin, Yu P.; Alfimov, E. E.; Vasil'ev, N. E.; Denisov, A. N.; Makukha, V. K.; Ogirenko, A. P.

    1999-12-01

    A demonstration is given of the feasibility of two-photon excitation of aluminium phthalocyanine and of the pharmaceutical preparation 'Fotosens', used in photodynamic therapy. The excitation source was an Nd:YAG laser emitting at the 1064 nm wavelength. The spectra of the two-photon-excited luminescence were obtained and the two-photon absorption cross sections were determined.

  18. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  19. Resonantly enhanced four-wave mixing

    DOEpatents

    Begley, Richard F.; Kurnit, Norman A.

    1978-01-01

    A method and apparatus for achieving large susceptibilities and long interaction lengths in the generation of new wavelengths in the infrared spectral region. A process of resonantly enhanced four-wave mixing is employed, utilizing existing laser sources, such as the CO.sub.2 laser, to irradiate a gaseous media. The gaseous media, comprising NH.sub.3, CH.sub.3 F, D.sub.2, HCl, HF, CO, and H.sub.2 or some combination thereof, are of particular interest since they are capable of providing high repetition rate operation at high flux densities where crystal damage problems become a limitation.

  20. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    NASA Astrophysics Data System (ADS)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  1. Two-photon mapping of neocortical circuits

    NASA Astrophysics Data System (ADS)

    Nikolenko, Volodymyr

    The synaptic circuits of the cerebral cortex are still poorly understood, yet knowing their basic structure appears key for understanding their function (Lorente de No, 1949). While some argue that there is a basic modular circuit present in all cortical regions (Douglas et al., 1989; Hubel and Wiesel, 1977), others suggest that synaptic circuits could be randomly structured (Braitenberg and Schuz, 1998). To investigate the patterns of synaptic connections present in neocortex, I have developed a novel two-photon optical mapping method (Nikolenko et al., 2007) to systematically reveal cells that connect to four classes of neurons in slices of mouse primary sensory cortex. Inputs to these cells originated preferentially from specific cortical layers and often were laterally restricted, revealing functional columnar circuits with sharp boundaries. Moreover, many neurons extensively sampled particular territories, and, in some cases, virtually every cell from a particular layer was connected to the postsynaptic target. The results reveal circuits with dense columnar connectivity, approximating in some cases the complete sampling from every potential presynaptic cell in an input layer. I discuss the implications of these findings in the context of the computational strategies used by the cortex.

  2. Two-photon absorption properties of fluorescent proteins

    PubMed Central

    Drobizhev, Mikhail; Makarov, Nikolay S.; Tillo, Shane E.; Hughes, Thomas E.; Rebane, Aleksander

    2016-01-01

    Two-photon excitation of fluorescent proteins is an attractive approach for imaging living systems. Today researchers are eager to know which proteins are the brightest, and what the best excitation wavelengths are. Here we review the two-photon absorption properties of a wide variety of fluorescent proteins, including new far-red variants, to produce a comprehensive guide to choosing the right FP and excitation wavelength for two-photon applications. PMID:21527931

  3. Ordering of azobenzenes by two-photon isomerization

    SciTech Connect

    Ishitobi, Hidekazu; Sekkat, Zouheir; Kawata, Satoshi

    2006-10-28

    We report on light induced orientation by two-photon isomerization of azobenzenes in films of polymer. The dynamics of isomerization and orientation by one-photon absorption and two-photon absorption (TPA) are similar, and TPA creates a degree of molecular orientation which is comparable to that achieved by single-photon isomerization, in agreement with the theoretical predictions of two-photon isomeric orientation.

  4. Two-photon absorption by a quantum dot pair

    NASA Astrophysics Data System (ADS)

    Scheibner, Michael; Economou, Sophia E.; Ponomarev, Ilya V.; Jennings, Cameron; Bracker, Allan S.; Gammon, Daniel

    2015-08-01

    The biexciton absorption spectrum of a pair of InAs/GaAs quantum dots is being studied by photoluminescence excitation spectroscopy. An absorption resonance with the characteristics of an instantaneous two-photon process reveals a coherent interdot two-photon transition. Pauli-selective tunneling is being used to demonstrate the transduction of the two-photon coherence into a nonlocal spin singlet state. The two-photon transition can be tuned spectrally by electric field, enabling amplification of its transition strength.

  5. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  6. Two-photon absorption in arsenic sulfide glasses

    NASA Astrophysics Data System (ADS)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  7. Two-photon fluorescence excitation spectroscopy of biological molecules

    NASA Astrophysics Data System (ADS)

    Meshalkin, Yuri P.; Alfimov, E. E.; Groshev, D. E.; Makukha, V. K.

    1996-06-01

    The UV fluorescence spectra of aromatic amino-acids and some proteins at two photon excitation by second harmonic of Nd:YAG laser are received. Two-photon absorption cross sections of tryptophan, tyrosine, phenylalanine and proteins: bovine serum albumin, lysozyme, trypsin, (alpha) - chymotrypsinogen and pepsin at wavelength 532 nm were measured by means of the two-quantum standard method.

  8. Two-photon excitation based photochemistry and neural imaging

    NASA Astrophysics Data System (ADS)

    Hatch, Kevin Andrew

    Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.

  9. Neutron elastic backscattering with resonance enhancement

    SciTech Connect

    Gomberg, H.J.; McEllistrem, M.T.

    1993-12-31

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon, Oxygen, and Nitrogen which provide specific elemental ratios and chemical signatures. Neutron-induced reaction methods are rapid and non-invasive means of probing container interiors for special element-ratio signatures which signal the presence of significant amounts of contraband. Among these reactions the highest probabilities occur for neutron from different light elements, allowing determination of relative abundance of these elements. The authors have already demonstrated signature for simulated explosives and simulated narcotics in experimental tests at 1-4 MeV at the University of Kentucky accelerator labs. Intensities of neutron scatter at angles near 150{degrees} from three different elements, C, N, and O, were determined. Fast neutron time-of-flight detection methods enabled measurement of neutron energies, and thus separation of scattering from the different elements. Making measurements on and off strong resonances for specific elements, increases PFD and reduces PFA. Measurements illustrating this resonance enhancement technique will be presented.

  10. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  11. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  12. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  13. Two-photon interference of temporally separated photons

    NASA Astrophysics Data System (ADS)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  14. Random access three-dimensional two-photon microscopy.

    PubMed

    Rózsa, Balázs; Katona, Gergely; Vizi, E Sylvester; Várallyay, Zoltán; Sághy, Attila; Valenta, Lásló; Maák, Pál; Fekete, Júlia; Bányász, Akos; Szipocs, Róbert

    2007-04-01

    We propose a two-photon microscope scheme capable of real-time, three-dimensional investigation of the electric activity pattern of neural networks or signal summation rules of individual neurons in a 0.6 mm x 0.6 mm x 0.2 mm volume of the sample. The points of measurement are chosen according to a conventional scanning two-photon image, and they are addressed by separately adjustable optical fibers. This allows scanning at kilohertz repetition rates of as many as 100 data points. Submicrometer spatial resolution is maintained during the measurement similarly to conventional two-photon microscopy.

  15. Three-dimensional two-photon imaging in polymeric materials

    NASA Astrophysics Data System (ADS)

    Belfield, Kevin D.; Schafer, Katherine J.; Andrasik, Stephen; Yavuz, Ozlem; Van Stryland, Eric W.; Hagan, David J.; Hales, Joel M.

    2002-01-01

    We report image formation via single and two-photon photoinduced fluorescence changes in a polymeric medium with two-photon fluorescence readout of multiplayer structures. Photoinduced acid generation in the presence of a two-photon fluorescent dye possessing strongly basic functional groups (7-benzothiazolyl-9,9-didecyl-2,2-(N,N- diphenylamino)fluorene underwent protonation upon exposure with UV or near-IR (740 nm fs pulses). Solution studies demonstrate formation of monoprotonated and diprotonated species upon irradiation, each resulting in distinctly different absorption and fluorescence properties. The fluorescence of the original, neutral, fluorophore is quenched upon monoprotonation with a concomitant increase in fluorescence at longer wavelengths due to the monoprotonated form. Hence, two channel two-photon fluorescence imaging provides 'positive' or 'negative' image readout capability. Results of solution and solid polymer thin films experiments are presented.

  16. Two-Photon Fluorescence Microscopy for Biomedical Research

    NASA Technical Reports Server (NTRS)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  17. Two-photon directed evolution of green fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-07-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.

  18. Pulse-shaping based two-photon FRET stoichiometry.

    PubMed

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  19. Two photon couplings of the lightest isoscalars from BELLE data

    SciTech Connect

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ππ and K¯K, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the σ/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  20. Two-photon photovoltaic effect in gallium arsenide.

    PubMed

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  1. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  2. Antecedents of two-photon excitation laser scanning microscopy.

    PubMed

    Masters, Barry R; So, Peter T C

    2004-01-01

    In 1931, Maria Göppert-Mayer published her doctoral dissertation on the theory of two-photon quantum transitions (two-photon absorption and emission) in atoms. This report describes and analyzes the theoretical and experimental work on nonlinear optics, in particular two-photon excitation processes, that occurred between 1931 and the experimental implementation of two-photon excitation microscopy by the group of Webb in 1990. In addition to Maria Göppert-Mayer's theoretical work, the invention of the laser has a key role in the development of two-photon microscopy. Nonlinear effects were previously observed in different frequency domains (low-frequency electric and magnetic fields and magnetization), but the high electric field strength afforded by lasers was necessary to demonstrate many nonlinear effects in the optical frequency range. In 1978, the first high-resolution nonlinear microscope with depth resolution was described by the Oxford group. Sheppard and Kompfner published a study in Applied Optics describing microscopic imaging based on second-harmonic generation. In their report, they further proposed that other nonlinear optical effects, such as two-photon fluorescence, could also be applied. However, the developments in the field of nonlinear optical stalled due to a lack of a suitable laser source. This obstacle was removed with the advent of femtosecond lasers in the 1980s. In 1990, the seminal study of Denk, Strickler, and Webb on two-photon laser scanning fluorescence microscopy was published in Science. Their paper clearly demonstrated the capability of two-photon excitation microscopy for biology, and it served to convince a wide audience of scientists of the potential capability of the technique.

  3. Two photon couplings of the lightest isoscalars from BELLE data

    DOE PAGES

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ππ and K¯K, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the σ/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  4. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  5. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  6. Two-photon microscopy of cells and tissue.

    PubMed

    Rubart, Michael

    2004-12-10

    Two-photon excitation fluorescence imaging provides thin optical sections from deep within thick, scattering specimens by way of restricting fluorophore excitation (and thus emission) to the focal plane of the microscope. Spatial confinement of two-photon excitation gives rise to several advantages over single-photon confocal microscopy. First, penetration depth of the excitation beam is increased. Second, because out-of-focus fluorescence is never generated, no pinhole is necessary in the detection path of the microscope, resulting in increased fluorescence collection efficiency. Third, two-photon excitation markedly reduces overall photobleaching and photodamage, resulting in extended viability of biological specimens during long-term imaging. Finally, localized excitation can be used for photolysis of caged compounds in femtoliter volumes and for diffusion measurements by two-photon fluorescence photobleaching recovery. This review aims to provide an overview of the use of two-photon excitation microscopy. Selected applications of this technique will illustrate its excellent suitability to assess cellular and subcellular events in intact, strongly scattering tissue. In particular, its capability to resolve differences in calcium dynamics between individual cardiomyocytes deep within intact, buffer-perfused hearts is demonstrated. Potential applications of two-photon laser scanning microscopy as applied to integrative cardiac physiology are pointed out.

  7. Resonance enhanced laser mass spectrometry for process- and environmental-analysis: Applications and perspectives

    NASA Astrophysics Data System (ADS)

    Zimmermann, Ralf; Heger, Hans Jörg; Dorfner, Ralph; Boesl, Ulrich; Kettrup, Antonius

    1998-12-01

    Laser induced Resonance-Enhanced Multi-Photon Ionization Time-Of-Flight Mass Spectrometry (REMPI TOFMS) is a highly selective as well as sensitive analytical technique, well suited for species selective, on-line monitoring of trace-substances. In this contribution some analytical applications of a mobile REMPI-TOFMS are presented. This includes REMPI-TOMS on-line analysis of coffee roasting gas and waste incineration flue gas as well as headspace measurements of pulp processing lye or rapid analysis of polycyclic aromatic hydrocarbons from soil samples via thermal desorption.

  8. Resonance enhanced laser mass spectrometry for process- and environmental-analysis: Applications and perspectives

    SciTech Connect

    Zimmermann, Ralf; Dorfner, Ralph; Kettrup, Antonius; Heger, Hans Joerg; Boesl, Ulrich

    1998-12-16

    Laser induced Resonance-Enhanced Multi-Photon Ionization Time-Of-Flight Mass Spectrometry (REMPI TOFMS) is a highly selective as well as sensitive analytical technique, well suited for species selective, on-line monitoring of trace-substances. In this contribution some analytical applications of a mobile REMPI-TOFMS are presented. This includes REMPI-TOMS on-line analysis of coffee roasting gas and waste incineration flue gas as well as headspace measurements of pulp processing lye or rapid analysis of polycyclic aromatic hydrocarbons from soil samples via thermal desorption.

  9. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~105 photons/Å2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  10. X-ray two-photon absorption with high fluence XFEL pulses

    SciTech Connect

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; Błachucki, W.; Kayser, Y.; Milne, Ch.; Pajek, M.; Boutet, S.; Messerschmidt, M.; Williams, G.; Chantler, C. T.

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~105 photons/Å2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  11. Two-photon fluorescent probe for cadmium imaging in cells.

    PubMed

    Liu, Yongyou; Dong, Xiaohu; Sun, Jian; Zhong, Cheng; Li, Boheng; You, Ximeng; Liu, Bifeng; Liu, Zhihong

    2012-04-21

    A novel two-photon excited fluorescent probe for cadmium (named as TPCd) was designed and synthesized utilizing a prodan (6-acetyl-2-methoxynaphthalene) derivative as the two-photon fluorophore and an o-phenylenediamine derivative as the Cd(2+) chelator, which possessed favorable photophysical properties and good water-solubility. The probe was designed with a photoinduced electron transfer (PET) mechanism and thus was weakly fluorescent itself. After binding with Cd(2+) which blocked the PET process, the fluorescence intensity of the probe was enhanced by up to 15-fold under one-photon excitation (OPE) and 27-fold under two-photon excitation (TPE), respectively. The two-photon action cross-section (Φδ) of the TPCd-Cd complex at 740 nm reached 109 GM compared to 3.6 GM for free TPCd, indicating the promising prospect of the probe in two-photon application. TPCd chelated Cd(2+) with 1 : 1 stoichiometry, and the apparent dissociation constant (K(d)) was 6.1 × 10(-5) M for the one-photon mode and 7.2 × 10(-5) M for the two-photon mode. The probe responded to Cd(2+) over a wide linear range from 0.1 to 30 μM with a detection limit of 0.04 μM. High selectivity of the probe towards Cd(2+) was acquired in Tris-HCl/sodium phosphate buffer. The probe was pH-independent in the biologically relevant pH range and non-toxic to living cells at reasonable concentration levels, warranting its in vivo applications. Through two-photon microscopy imaging, the probe was successfully applied to detect Cd(2+) uptake in living HepG2 cells.

  12. Three-dimensional microfabrication using two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina

    1998-09-01

    Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two-photon

  13. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  14. Two-photon interference between disparate sources for quantum networking

    PubMed Central

    McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.

    2013-01-01

    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 ± 4%, which paves the way to hybrid universal quantum networks. PMID:23783585

  15. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOEpatents

    Glownia, James H.; Sander, Robert K.

    1985-01-01

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  16. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOEpatents

    Glownia, J.H.; Sander, R.K.

    1982-06-29

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  17. Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging

    PubMed Central

    Yang, Yanlong; Yao, Baoli; Lei, Ming; Dan, Dan; Li, Runze; Horn, Mark Van; Chen, Xun; Li, Yang; Ye, Tong

    2016-01-01

    Bessel beams have been successfully used in two-photon laser scanning fluorescence microscopy to extend the depth of field (EDF), which makes it possible to observe fast events volumetrically. However, the depth information is lost due to integration of fluorescence signals along the propagation direction. We describe the design and implementation of two-photon lasers scanning stereomicroscopy, which allows viewing dynamic processes in three-dimensional (3D) space stereoscopically in real-time with shutter glasses at the speed of 1.4 volumes per second. The depth information can be appreciated by human visual system or be recovered with correspondence algorithms for some cases. PMID:27997624

  18. A fluorescent benzothiazole probe with efficient two-photon absorption

    NASA Astrophysics Data System (ADS)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  19. Two-photon photoassociation spectroscopy of an ultracold heteronuclear molecule

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Pérez-Ríos, Jesús; Elliott, D. S.; Chen, Yong P.

    2017-01-01

    We report on two-photon photoassociation (PA) spectroscopy of ultracold heteronuclear LiRb molecules. This is used to determine the binding energies of the loosely bound levels of the electronic ground singlet and the lowest triplet states of LiRb. We observe strong two-photon PA lines with power broadened linewidths greater than 20 GHz at relatively low laser intensity of 30 W /c m2 . The implication of this observation on direct atom to molecule conversion using stimulated Raman adiabatic passage is discussed and the prospect for electronic ground-state molecule production is theoretically analyzed.

  20. Two-photon interference with non-identical photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  1. Two-photon in vivo imaging of retinal microstructures

    NASA Astrophysics Data System (ADS)

    Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2014-02-01

    Non-invasive fluorescence retinal imaging in small animals is an important requirement in an array of translational vision applications. Two-photon imaging has the potential for long-term investigation of healthy and diseased retinal function and structure in vivo. Here, we demonstrate that two-photon microscopy through a mouse's pupil can yield high-quality optically sectioned fundus images. By remotely scanning using an electronically tunable lens we acquire highly-resolved 3D fluorescein angiograms. These results provide an important step towards various applications that will benefit from the use of infrared light, including functional imaging of retinal responses to light stimulation.

  2. Modulation of Attosecond Beating by Resonant Two-Photon Transition

    NASA Astrophysics Data System (ADS)

    Jiménez Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2015-09-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the π jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  3. Quinoline-Derived Two-Photon Sensitive Quadrupolar Probes.

    PubMed

    Tran, Christine; Berqouch, Nawel; Dhimane, Hamid; Clermont, Guillaume; Blanchard-Desce, Mireille; Ogden, David; Dalko, Peter I

    2017-02-03

    Quadrupolar probes derived from 8-dimethylamino-quinoline (8-DMAQ) having a pegylated fluorene core were prepared and studied under "one-photon" (λ=365 nm) and "two-photon" (TP) (λ=730 nm) irradiation conditions. Compound 1 a was identified as the most efficient probe by UV activation that showed sequential release of acetic acid as a model. Although the probe showed high two-photon absorption it stayed inert under femtosecond irradiation conditions. Fast and selective photolysis was observed, however, by using picosecond irradiation conditions with a remarkably high TP uncaging cross-section (δu =2.3 GM).

  4. Spatial solitons in two-photon photorefractive media

    SciTech Connect

    Hou Chunfeng; Pei Yanbo; Zhou Zhongxiang; Sun Xiudong

    2005-05-15

    We provide a theory for spatial solitons due to the two-photon photorefractive effect based on the Castro-Camus model [Opt. Lett. 28, 1129 (2003)]. We present the evolution equation of one-dimensional spatial solitons in two-photon photorefractive media. In steady state and under appropriate external bias conditions, we obtain the dark and bright soliton solutions of the optical wave evolution equation, and also discuss the self-deflection of the bright solitons theoretically by taking into account the diffusion effect.

  5. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    PubMed

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications.

  6. Two-photon excitation endoscopy through a multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Morales Delgado, Edgar E.; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    The vast number of propagating solutions to the wave equation in multimode optical fibers represents a larger information capacity than provided by fiber bundles of the same diameter. Therefore, in the field of imaging, multimode fibers potentially allow the transmission of images with higher resolution. However, image transmission through multimode fibers is not direct as in the fiber bundle case, in which each of the fiber cores can relay a portion of the distal image. In multimode fiber transmission, a distribution of intensity is scrambled in time and space by the propagating modes, leading to a speckle-like pattern that does not resemble the initial distribution. Here, we demonstrate two-photon excitation imaging of fluorescent beads through a multimode optical fiber. We show that our method maintains the advantages of two-photon excitation microscopy compared to single-photon excitation such as reduced photo-bleaching, deeper penetration depth and sectioning capability. Our method is based on time-gated digital phase conjugation, which allows the generation of focused pulses on the other side of a multimode fiber. To acquire an image, the focused femtosecond pulse is scanned in a three-dimensional mesh, producing two-photon excitation on each spatial location of the sample. By collecting the fluorescence through the fiber, a 3D two-photon image is reconstructed.

  7. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  8. Imaging melanin by two-photon absorption microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Yurtsever, Gunay; Fischer, Martin; Simon, John D.; Warren, Warren S.

    2006-02-01

    Multiphoton excitation fluorescence microscopy has proven to be a powerful method for non-invasive, in vivo, thick tissue imaging with molecular specificity. However, many important endogenous biomolecules do not fluoresce (NAD) or fluoresce with low efficiency (Melanin). In this report femtosecond pulse shaping methods are used to measure two-photon absorption (TPA) directly with very high sensitivity. Combining with the laser scanning microscope, this Two-photon Absorption Microscopy (TPAM) retains the penetration and localization advantages of two-photon fluorescence microscopy and permits direct observation of important endogenous molecular markers (melanin or hemoglobin) which are invisible in multiphoton fluorescence microscopy. We have demonstrated here for the first time that TPAM can successfully and more efficiently image melanoma cells and tissues and provide a good melanin contrast in optical sectioning of the melanoma lesions which are comparable to pathological histology. Combining with the two-photon fluorescence images acquired simultaneously, the distribution patterns of the melanocytes and their intratissue behavior could be studied without cutting the lesions from patients. TPAM will undoubtedly find the applications in the clinical diagnosis and biomedical research.

  9. Ultrafast Laser Studies of Two-Photon Excited Fluorescence Intermittency in Single CdSe/ZnS Quantum Dots.

    PubMed

    Early, Kevin T; Nesbitt, David J

    2015-12-09

    Two-photon fluorescence microscopy of single quantum dots conditions has been reported by several groups, with contrasting observations regarding the kinetics and dynamics of fluorescence intermittency or "blinking". Here, we investigate the power dependence, kinetics, and statistics of two photon-excited fluorescence intermittency from single CdSe/ZnS quantum dots in a solid PMMA film as a function of sub-bandgap laser intensity at 800 nm. Fluorescence intermittency is observed at all excitation powers and a quadratic (n = 1.97(3)) dependence of the shot noise-limited fluorescence intensity on the incident laser power is verified, confirming essentially zero background contribution from one-photon excitation processes. Such analyses permit two photon absorption cross sections for single quantum dots to be extracted quantitatively from the data, which reveal good agreement with those obtained from previous two-photon FCS measurements. Strictly inverse power law-distributed off-state dwell times are observed for all excitation powers, with a mean power law exponent ⟨m(off)⟩ = 1.65(4) in excellent agreement with the behavior observed under one-photon excitation conditions. Finally, a superquadratic (n = 2.3(2)) rather than quartic (n = 4) power dependence is observed for the on-state blinking dwell times, which we kinetically analyze and interpret in terms of a novel 2 + 1 "hot" exciton ionization/blinking mechanism due to partially saturated 1-photon sub-bandgap excitation out of the two-photon single exciton state. The kinetic results are consistent with quantum dot photoionization quantum yields from "hot" exciton states (4(1) × 10(-6)) comparable with experimental estimates (10(-6)-10(-5)) of Auger ionization efficiencies out of the biexcitonic state.

  10. Two-photon absorption of Zn(II) octupolar molecules.

    PubMed

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  11. One- and two-photon detachment of O-

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Urbain, Xavier; Dochain, Arnaud; Cyr, Alain; Dunseath, Kevin M.; Terao-Dunseath, Mariko

    2016-08-01

    Cross sections for one- and two-photon detachment of O-(1 s22 s22 p5P2o) have been determined in a joint experimental and theoretical study. The absolute measurement is based on the animated-crossed-beam technique, which is extended to the case of pulsed lasers, pulsed ion beams, and multiphoton detachment. The ab initio calculations employ R -matrix Floquet theory, with simple descriptions of the initial bound state and the residual oxygen atom which reproduce well the electron affinity and ground-state polarizability. For one-photon detachment, the measured and computed cross sections are in good mutual agreement, departing significantly from previous reference experiments and calculations. The generalized two-photon detachment cross section, measured at the Nd:YAG laser wavelength, is in good agreement with the R -matrix Floquet calculations. Long-standing discrepancies between theory and experiment are thus resolved.

  12. Two-Photon-Excited Fluorescence-Encoded Infrared Spectroscopy.

    PubMed

    Mastron, Joseph N; Tokmakoff, Andrei

    2016-11-23

    We report on a method for performing ultrafast infrared (IR) vibrational spectroscopy using fluorescence detection. Vibrational dynamics on the ground electronic state driven by femtosecond mid-infrared pulses are detected by changes in fluorescence amplitude resulting from modulation of a two-photon visible transition by nuclear motion. We examine a series of coumarin dyes and study the signals as a function of solvent and excitation pulse parameters. The measured signal characterizes the relaxation of vibrational populations and coherences but yields different information than conventional IR transient absorption measurements. These differences result from the manner in which the ground-state dynamics are projected by the two-photon detection step. Extensions of this method can be adapted for a variety of increased-sensitivity IR measurements.

  13. Two-photon microscopy using fiber-based nanosecond excitation

    PubMed Central

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-01-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements. PMID:27446680

  14. Two-photon-excited photoluminescence from porous silicon

    SciTech Connect

    Diener, J.; Shen, Y.R. |; Kovalev, D.I.; Polisski, G.; Koch, F.

    1998-11-01

    Two-photon-excited photoluminescence can be readily observed from porous silicon (PSi) with pulsed lasers. While its spectrum and lifetime are identical to those under one-photon excitation, it has a degree of polarization significantly higher than the latter and depending on the orientation of the input polarization with respect to the crystalline axes of the sample. The degree of polarization is a maximum when the input polarization is along [110] in the surface plane of PSi prepared from a Si (100) wafer and a minimum along [010]. The results can be understood from selective excitation of ellipsoidal nanoparticles by linearly polarized light and intrinsic anisotropy in two-photon excitation of crystalline Si. {copyright} {ital 1998} {ital The American Physical Society}

  15. Direct frequency comb two-photon laser cooling and trapping

    NASA Astrophysics Data System (ADS)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  16. Combinatorial discovery of two-photon photoremovable protecting groups

    PubMed Central

    Pirrung, Michael C.; Pieper, Wolfgang H.; Kaliappan, Krishna P.; Dhananjeyan, Mugunthu R.

    2003-01-01

    A design principle for a two-photon photochemically removable protecting group based on sequential one-photon processes has been established. The expected performance of such groups in spatially directed photoactivation/photodeprotection has been shown by a kinetic analysis. One particular molecular class fitting into this design, the nitrobenzyl ethers of o-hydroxycinnamates, has been presented. An initial demonstration of two-photon deprotection of one such group prompted further optimization with respect to photochemical deprotection rate. This was accomplished by the preparation and screening of a 135-member indexed combinatorial library. Optimum performance for λ >350 nm deprotection in organic solvent was found with 4,5-dialkoxy and α-cyano substitution in the nitrobenzyl group and 4-methoxy substitution in the cinnamate. PMID:14557545

  17. Development of glucose sensor using two-photon adsorbed photopolymerization.

    PubMed

    Kim, Jong Min; Park, Jung-Jin; Lee, Haeng-Ja; Kim, Woo-Sik; Muramatsu, Hiroshi; Chang, Sang-Mok

    2010-01-01

    A novel glucose sensor was constructed, and its analytical potential examined. A chip-type three-electrode system for use in a flow-type electrochemical glucose sensor was fabricated using a UV lithography technique on a glass slide. An Ag/AgCl reference electrode was made by electroplating silver onto a Pt electrode and dipping in a saturated KCl solution for 30 min. In addition, a glucose-sensing electrode was fabricated using a two-photon adsorbed photopolymerization technique with a photo-reactive resin containing a glucose oxidase enzyme, ferrocene mediator, non-ionic surfactant, and carbon nanotubes. The cyclic voltammetry of the potassium ferrocyanide in the Pt sensor system showed a stable electrode condition. The response of the modified Pt sensor confirms the feasibility of using a two-photon adsorbed photopolymerization technique for the easy fabrication of functional biosensors.

  18. Two-photon microscopy using fiber-based nanosecond excitation.

    PubMed

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  19. Simultaneous two-photon excitation of photodynamic therapy agents

    SciTech Connect

    Wachter, E.A.; Fisher, W.G. |; Partridge, W.P.; Dees, H.C.; Petersen, M.G.

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  20. Two-photon exchange corrections to the pion form factor

    DOE PAGES

    Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.

    2010-01-06

    Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.

  1. Two-photon Shack-Hartmann wavefront sensor.

    PubMed

    Xia, Fei; Sinefeld, David; Li, Bo; Xu, Chris

    2017-03-15

    We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.

  2. Two-Photon Cavity Solitons in Active Optical Media

    SciTech Connect

    Vilaseca, R.; Torrent, M. C.; Garcia-Ojalvo, J.; Brambilla, M.; San Miguel, M.

    2001-08-20

    We show that broad-area cascade lasers with no absorbing intracavity elements support the spontaneous formation of two-dimensional bright localized structures in a dark background. These cavity solitons consist of islands of two-photon emission embedded in a background of single-photon emission. We discuss the mechanisms through which these structures are formed and interact, along with their properties and stability.

  3. Two-photon injection of polaritons in semiconductor microstructures.

    PubMed

    Leménager, Godefroy; Pisanello, Ferruccio; Bloch, Jacqueline; Kavokin, Alexey; Amo, Alberto; Lemaitre, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; De Vittorio, Massimo; Giacobino, Elisabeth; Bramati, Alberto

    2014-01-15

    We experimentally demonstrate that two-photon pumping of "dark" excitons in quantum wells embedded in semiconductor microcavities can result in exciton-polariton injection and photon lasing. In the case of a semiconductor micropillar pumped at half of the exciton frequency, we observe a clear threshold behavior, characteristic of the vertical cavity surface emitting laser transition. These results are interpreted in terms of stimulated emission of terahertz photons, which allows for conversion of "dark" excitons into exciton-polaritons.

  4. Two-Photon Absorption Characterization of HgCdTe

    DTIC Science & Technology

    1990-07-30

    8c. ADDRESS (City, State. and ZIP Code) 10, SOURCE OF FUNDING NUMBERS Fort Belvoir, VA 22060-5677 PROGRAM 0. PROJECT 10 TASK ~ WORK UNIT ELEMENT NO NO...Investigation of Lifetimes ................................ 50 0 0 Other Areas Phonon -Assisted Magneto-Optical Effects ....................... 58 _valablilti...5. According to second order perturbation theory, two-photon absorption transition probablities are proportional to the product of two matrix elements

  5. Two-Photon Porphyrin Core Dendrimers for Optical Power Limiting

    DTIC Science & Technology

    2006-09-30

    Gryko (Polish Acad. Sci,), we studied 2PA of novel corroles [9]. 7. We studied the requirements imposed on organic photochromes for 2PA terabyte...imposed on organic photochromes for two-photon absorption (2PA) terabyte volumetric optical storage. We present a quantitative model of signal-to...noise ratio (SNR) and signal-to-background ratio (SBR) when 2PA-induced photochromic switching is used for writing, and 2PA-induced fluorescence is

  6. Development of Novel Two-Photon Absorbing Chromophores

    DTIC Science & Technology

    2006-08-01

    M. Urbas, Paul A. Fleitz, Joy E . Rogers, Jonathan E . Slagle, Daniel G. McLean, Richard L. Sutherland, Mark Brant , Douglas M. Krein, and...A. Fleitz (Exploratory Development, Hardened Materials Branch) Joy E . Rogers (UES) Jonathan E . Slagle (AT&T Government Solutions) Daniel G. McLean...Prescribed by ANSI Std. Z39-18 Invited Paper Development of novel two-photon absorbing chromophores Joy E . ~ o ~ e r s * " ’ ~ , Jonathan E . Slagle

  7. Improved deep two-photon calcium imaging in vivo.

    PubMed

    Birkner, Antje; Tischbirek, Carsten H; Konnerth, Arthur

    2016-12-21

    Two-photon laser scanning calcium imaging has emerged as a useful method for the exploration of neural function and structure at the cellular and subcellular level in vivo. The applications range from imaging of subcellular compartments such as dendrites, spines and axonal boutons up to the functional analysis of large neuronal or glial populations. However, the depth penetration is often limited to a few hundred micrometers, corresponding, for example, to the upper cortical layers of the mouse brain. Light scattering and aberrations originating from refractive index inhomogeneties of the tissue are the reasons for these limitations. The depth penetration of two-photon imaging can be enhanced through various approaches, such as the implementation of adaptive optics, the use of three-photon excitation and/or labeling cells with red-shifted genetically encoded fluorescent sensors. However, most of the approaches used so far require the implementation of new instrumentation and/or time consuming staining protocols. Here we present a simple approach that can be readily implemented in combination with standard two-photon microscopes. The method involves an optimized protocol for depth-restricted labeling with the red-shifted fluorescent calcium indicator Cal-590 and benefits from the use of ultra-short laser pulses. The approach allows in vivo functional imaging of neuronal populations with single cell resolution in all six layers of the mouse cortex. We demonstrate that stable recordings in deep cortical layers are not restricted to anesthetized animals but are well feasible in awake, behaving mice. We anticipate that the improved depth penetration will be beneficial for two-photon functional imaging in larger species, such as non-human primates.

  8. Temporal coherence and indistinguishability in two-photon interference effects

    SciTech Connect

    Jha, Anand Kumar; O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2008-02-15

    We show that temporal two-photon interference effects involving the signal and idler photons created by parametric down-conversion can be fully characterized in terms of the variations of two length parameters--called the biphoton path-length difference and the biphoton path-asymmetry-length difference--which we construct using the six different length parameters that a general two-photon interference experiment involves. We perform an experiment in which the effects of the variations of these two parameters can be independently controlled and studied. In our experimental setup, which does not involve mixing of signal and idler photons at a beam splitter, we further report observations of Hong-Ou-Mandel- (HOM-)like effects both in coincidence and in one-photon count rates. As an important consequence, we argue that the HOM and the HOM-like effects are best described as observations of how two-photon coherence changes as a function of the biphoton path-asymmetry-length difference.

  9. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  10. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  11. Two-Photon Fluorescence Microscope for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the

  12. Resonant two-photon absorption of extreme-ultraviolet free-electron-laser radiation in helium

    SciTech Connect

    Nagasono, Mitsuru; Suljoti, Edlira; Pietzsch, Annette; Hennies, Franz; Wellhoefer, Michael; Hoeft, Jon-Tobias; Martins, Michael; Wurth, Wilfried; Foehlisch, Alexander; Treusch, Rolf; Feldhaus, Josef; Schneider, Jochen R.

    2007-05-15

    We have investigated the nonlinear response of helium to intense extreme-ultraviolet radiation from the free-electron laser in Hamburg (FLASH). We observe a spectral feature between 24 and 26 eV electron kinetic energy in photoemission which shows a quadratic fluence dependence. The feature is explained as a result of subsequent processes involving a resonant two-photon absorption process into doubly excited levels of even parity (N=5 and 6), radiative decay to the doubly excited states in the vicinity of the He{sup +} (N=2) ionization threshold and finally the photoionization of the inner electron by the radiation of the next microbunches. This observation suggests that even-parity states, which have been elusive to be measured with the low pulse energy of synchrotron radiation sources, can be investigated with the intense radiation of FLASH. This also demonstrates a first step to bring nonlinear spectroscopy into the xuv and soft-x-ray regime.

  13. Two-photon imaging and analysis of neural network dynamics

    NASA Astrophysics Data System (ADS)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  14. Two-photon inner-shell transitions in molybdenum

    NASA Astrophysics Data System (ADS)

    Bannett, Yigal B.; Freund, Isaac

    1984-07-01

    The two-photon x-ray emission spectra of inner-shell transitions in metallic Mo have been studied using large-area energy-dispersive Si(Li) detectors and fast, computer-controlled, time-coincidence electronics. The discrete energy-summation spectrum displays a peak at 17.1 keV corresponding to the expected 2s-->1s transition, as well as a second, more intense peak at 19.7 keV. Based upon very recent analytical H-atom calculations by Florescu, this latter peak is tentatively identified as due primarily to 3d-->1s transitions. The continuous two-photon spectrum has also been measured on an absolute intensity scale and compared with a frozen-orbital calculation based upon direct summation of the second-order perturbation expansion for the relevant matrix elements. For the 2s-->1s transition, excellent quantitative agreement is found using the self-consistent-field Hartree-Fock wave functions of Clementi and Roetti. The same calculation predicts that the 3s-->1s transition is of negligible relative amplitude. Because the calculational method is inapplicable to d states, a simple closure approximation is developed which is found to be reasonably good for both the 2s and 3s two-photon transitions, but apparently fails for the 3d transition since it predicts a result which is relatively much too small. Our data are the first for inner-shell transitions and it is anticipated that further developments in both instrumentation and in theory will yield a new, rich, multiphoton inner-shell spectroscopy.

  15. Hyperspectral imaging of microalgae using two-photon excitation.

    SciTech Connect

    Sinclair, Michael B.; Melgaard, David Kennett; Reichardt, Thomas A.; Timlin, Jerilyn Ann; Garcia, Omar Fidel; Luk, Ting Shan; Jones, Howland D. T.; Collins, Aaron M.

    2010-10-01

    A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon

  16. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  17. Two-Photon Exchange in (Semi-)Inclusive DIS

    SciTech Connect

    Schlegel, M.; Metz, A.

    2009-08-04

    In this note we consider effects of a Two-Photon Exchange (TPE) in inclusive DIS and semi-inclusive DIS (SIDIS). In particular, transverse single spin asymmetries are generated in inclusive DIS if more than one photon is exchanged between the lepton and the hadron. We briefly summarize the TPE in DIS in the parton model and extend our approach to SIDIS, where a new leading twist sin(2{phi}) contribution to the longitudinal beam spin asymmetry shows up. Possible TPE effects for the Sivers and the Collins asymmetries in SIDIS are power-suppressed.

  18. Two-Photon Exchange in (Semi-)Inclusive DIS

    SciTech Connect

    Schlegel, Marc; Metz, Andreas

    2009-01-01

    In this note we consider effects of a Two-Photon Exchange (TPE) in inclusive DIS and semi-inclusive DIS (SIDIS). In particular, transverse single spin asymmetries are generated in inclusive DIS if more than one photon is exchanged between the lepton and the hadron. We briefly summarize the TPE in DIS in the parton model and extend our approach to SIDIS, where a new leading twist $\\sin(2\\phi)$ contribution to the longitudinal beam spin asymmetry shows up. Possible TPE effects for the Sivers and the Collins asymmetries in SIDIS are power-suppressed.

  19. Two-photon exchange corrections to the pion form factor

    SciTech Connect

    Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.

    2010-01-06

    Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.

  20. Two-photon exchange in electron-trinucleon elastic scattering

    NASA Astrophysics Data System (ADS)

    Kobushkin, A. P.; Timoshenko, Ju. V.

    2013-10-01

    We discuss two-photon exchange (TPE) in elastic electron scattering off the trinucleon systems, 3He and 3H. The calculations are done in the semirelativistic approximation with the trinucleon wave functions obtained with the Paris and CD-Bonn nucleon-nucleon potentials. An applicability area of the model is wide enough and includes the main part of kinematical domain where experimental data exist. All three TPE amplitudes (generalized form factors) for electron 3He elastic scattering are calculated. We find that the TPE amplitudes are a few times more significant in the scattering of electrons off 3He then in the electron-proton scattering.

  1. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect

    Atwater, J. H.; Spinelli, P.; Kosten, E.; Parsons, J.; Van Lare, C.; Van de Groep, J.; Garcia de Abajo, J.; Polman, A.; Atwater, H. A.

    2011-10-10

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 μm high and 10 μm in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  2. Two-photon quantum interference in plasmonics: theory and applications.

    PubMed

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  3. Two-photon spectroscopy of excitons with entangled photons.

    PubMed

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  4. Nonlinear Dual-Comb Spectroscopy with Two-Photon Excitation

    NASA Astrophysics Data System (ADS)

    Meek, S. A.; Hipke, A.; Hansch, T. W.; Picque, N.

    2013-06-01

    Dual frequency comb spectroscopy has proven to be a powerful method for acquiring broadband, high resolution spectra with measurement times that are much shorter than in traditional moving-mirror Fourier transform spectroscopy. Because the measurements are carried out with femtosecond lasers, this technique has great potential for decreasing the measurement times and improving the signal-to-noise ratio of nonlinear spectroscopic measurements, such as two-photon excitation or Raman processes. In the case of two-photon excitation, an entire spectrum can be obtained at a given signal level using dual-comb spectroscopy in the same time that a measurement of a single transition frequency would be obtained with a continuous laser of the same average power. In this presentation, I will show the latest results in extending the dual-comb technique to two-photon excitation spectroscopy, with measurements on gas-phase rubidium and liquid-phase dye samples. In our realization of dual-comb spectroscopy, two frequency combs with slightly different repetition rates are combined on a beam splitter and directed into a sample, and we measure the intensity of the resulting fluorescence as a function of time. Because of the different repetition rates, the time delay between a pulse from the first comb and the next pulse from the second comb changes linearly with time, simulating the action of the moving mirror in a traditional Michelson interferometer. The Fourier transform of the measured time-domain interferogram produces a radio-frequency spectrum that can be directly converted to a broadband optical spectrum through a linear scaling of the frequency. To achieve the highest possible resolution, it is necessary to compensate the residual relative fluctuations of the repetition rate and the carrier-envelope offset frequency of the frequency combs. Measuring RF beatnotes of each comb with two CW lasers provides two error signals that can be used to correct the recorded interferograms

  5. Two-photon exclusive processes in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1986-07-01

    QCD predictions for ..gamma gamma.. annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in ..gamma gamma.. reactions.

  6. Two-photon physics as a probe of hadron dynamics

    SciTech Connect

    Brodsky, S.J.

    1981-05-01

    Two-photon collisions provide an ideal laboratory for testing many features of quantum chromodynamics, especially the interplay between the vector-meson-dominated and point-like hadronic interactions of the photon. A number of QCD applications are discussed, including: jet and single-particle production at large transverse momentum; the photon structure function and its relationship to the ..gamma.. ..-->.. q anti q wave function; and the possible role of gluonium states in the ..gamma gamma.. ..-->.. rho/sup 0/rho/sup 0/ channel. Evidence that even low momentum transfer photon-hadron interactions are sensitive to the point-like ..gamma.. ..-->.. q anti q coupling is discussed.

  7. Metastable Krypton Beam Source via Two-Photon Pumping Technique

    SciTech Connect

    Wong, W.W.; Young, L.

    2003-01-01

    Metastable beams of rare gas atoms have wide applications in chemical analysis of samples, as well as in aiding understanding of fundamental processes and physical attributes. Most current sources of metastable rare gas atomic beams, however, are limited in their flux density, which greatly reduces their utility in applications such as low level trace analysis and precision measurements. Previous work has demonstrated feasibility of metastable krypton production via two-photon pumping, and this paper extends that possibility into beam form. Further optimization on this scheme, moreover, promises 100-fold increase of metastable krypton flux density over that of an rf-driven discharge.

  8. Imaging nanowire plasmon modes with two-photon polymerization

    SciTech Connect

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich; Ditlbacher, Harald; Hohenau, Andreas; Krenn, Joachim R.; Hirzer, Andreas; Schmidt, Volker

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.

  9. Nonlocal Pancharatnam phase in two-photon interferometry

    SciTech Connect

    Mehta, Poonam; Samuel, Joseph; Sinha, Supurna

    2010-09-15

    We propose a polarized intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury-Brown-Twiss photons. The setup involves two polarized thermal sources illuminating two polarized detectors. Varying the relative polarization angle of the detectors introduces a two-photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three-slit experiment and suggests ways of tuning entanglement.

  10. Pulse front adaptive optics in two-photon microscopy.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  11. Polarization rotation under two-photon Raman resonance for magnetometry

    SciTech Connect

    Pradhan, S.; Behera, R.; Das, A. K.

    2012-04-23

    The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.

  12. Rate for annihilation of galactic dark matter into two photons

    NASA Technical Reports Server (NTRS)

    Giudice, Gian F.; Griest, Kim

    1989-01-01

    A calculation of the cross section for neutralino-neutralino annihilation into two photons is performed and applied to dark matter in the galactic halo to find the counting rate in a large gamma ray detector such as EGRET (Energetic Gamma Ray Experiment Telescope) or ASTROGAM. Combining constraints from particle accelerators with the requirement that the neutralinos make up the dark matter, it is found that rates of over a few dozen events per year are unlikely. The assumptions that go into these conclusions are listed. Other particle dark matter candidates which could give larger and perhaps observable signals are suggested.

  13. Acetylene-substituted two-photon absorbing molecules with rigid elongated pi-conjugation: synthesis, spectroscopic properties and two-photon fluorescence cell imaging applications.

    PubMed

    Liu, Bo; Zhang, Hai-Li; Liu, Jun; Huang, Zhen-Li; Zhao, Yuan-Di; Luo, Qing-Ming

    2007-09-01

    Two asymmetrical molecules with substituted acetylene as central rigid elongated conjugation are reported as potential chromophores for two-photon microscopic imaging. These molecules consist of a typical D-pi-A structure, have different donors (D), the same pi-conjugated center (pi) and the same acceptor (A). Structural characterization and spectroscopic properties, including single-photon (linear) absorption, quantum yields, single-photon fluorescence, and two-photon absorption spectra, were studied in solvents with different polarity. These acetylene-substituted molecules were found to have high two-photon absorption cross-sections (for example, 690 GM for molecule 1 in toluene), which were determined by a two-photon induced fluorescence method using a femtosecond Ti: sapphire laser as excitation source. Single- and two-photon cellular imaging experiments demonstrate that the substituted acetylene derivatives could be one kind of promising two-photon fluorescence probes for cellular imaging.

  14. One-step theory of two-photon photoemission

    NASA Astrophysics Data System (ADS)

    Braun, J.; Rausch, R.; Potthoff, M.; Ebert, H.

    2016-09-01

    A theoretical frame for two-photon photoemission is derived from the general theory of pump-probe photoemission, assuming that not only the probe but also the pump pulse is sufficiently weak. This allows us to use a perturbative approach to compute the lesser Green function within the Keldysh formalism. Two-photon photoemission spectroscopy is a widely used analytical tool to study nonequilibrium phenomena in solid materials. Our theoretical approach aims at a material-specific, realistic, and quantitative description of the time-dependent spectrum based on a picture of effectively independent electrons as described by the local-density approximation in band-structure theory. To this end we follow Pendry's one-step theory of the photoemission process as close as possible and heavily make use of concepts of relativistic multiple-scattering theory, such as the representation of the final state by a time-reversed low-energy electron diffraction state. The formalism allows for a quantitative calculation of the time-dependent photocurrent for moderately correlated systems like simple metals or more complex compounds like topological insulators. An application to the Ag(100) surface is discussed in detail.

  15. Femtosecond two-photon-excited fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Teuchner, Klaus; Mueller, Susanne; Freyer, Wolfgang; Leupold, Dieter; Altmeyer, Peter; Stuecker, Markus; Hoffmann, Klaus

    2003-02-01

    Spectral and time-resolved fluorescence studies of different eumelanins (natural, synthetic, enzymatic) in solution have been carried out by two-photon excitation at 800 nm, using 80 fs pulses with photon flux densities <= 1027 cm-2.s-1. Whereas all samples show monotonously decreasing absorption between near UV and near IR, their fluorescence behavior indicates strong heterogeneity. With respect to the also measured one-photon excited fluorescence (OPF) of melanin at 400 nm, the overall spectral shape of the two-photon excited fluorescence (TPF) is red-shifted. Both OPF and TPF exhibit three-exponential decay with a shortest component # 200 ps. As is also shown, the fluorescence properties of melanin are dependent on the micro-environment. This allows the hypothesis, that the process of malignant transformation in skin tissue could be reflected in the fluorescence, provided the melanin in skin is selectively excited. The latter is realized by the described stepwise absorption of two 800 nm photons. In this way, indeed characteristic differences between the TPF spectra of healthy tissue, nevus cell nevi and malignant melanoma have been found.

  16. Nonresonant two-photon transitions in length and velocity gauges

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2016-08-01

    We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi frequencies under the "gauge" transformation from the length to the velocity gauge. It is shown that gauge invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color absorption. The arguments leading to this conclusion are supported by analytic calculations which express the matrix elements in terms of hypergeometric functions, and ramified by a "master identity" which is fulfilled by off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the length gauge. The study of the gauge dependence of atomic processes highlights subtle connections between the concept of asymptotic states, the gauge transformation of the wave function, and infinitesimal damping parameters for perturbations and interaction Hamiltonians that switch off the terms in the infinite past and future [of the form exp(-ɛ |t |)] . We include a pertinent discussion.

  17. Two-Photon Holographic Stimulation of ReaChR

    PubMed Central

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  18. Two-Photon-Induced Fluorescence of Isomorphic Nucleobase Analogs

    PubMed Central

    Lane, Richard S. K.; Jones, Rosemary; Sinkeldam, Renatus W.

    2014-01-01

    Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the two-photon excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both furan-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications. PMID:24604669

  19. Theory of Two-Photon Absorptions in Graphene Fragments

    NASA Astrophysics Data System (ADS)

    Aryanpour, K.; Shukla, A.; Mazumdar, S.; Sandhu, A.; Roberts, A.

    2012-02-01

    Electron-electron correlations in graphene is currently an active field of research [1-3]. The carbon atoms in graphene have the same sp^2 hybridization as in strongly correlated π-conjugated polymer systems. The low energy behavior in graphene however appears to be reasonably described within the one-electron Dirac massless fermions model. Historically, the occurrence of the lowest two-photon state below the optical one-photon state provided the strongest proof for strong electron correlations in linear polyenes [4]. We systematically study the Coulomb interaction effects on the ground state and nonlinear absorptions in graphene fragments as a function of system size, beginning from the smallest stable fragment coronene. We report high order calculations of one- vs two-photon spin singlet and triplet states, in coronene, hexabenzocoronene and other molecular fragments that clearly indicate the strong role of electron-electron interactions. We will discuss the implications of our work on molecular systems for the thermodynamic limit of graphene. [4pt] [1] Siegel David A.; et al., PNAS, v108, 28, 11365-11369 (2011)[0pt] [2] Gr"onqvist J. H.; et al., arXiv: 1107.5653v1[0pt] [3] Uchoa B.; et al., arXiv: 1109.1577v1[0pt] [4] Ramasesha S.; et al., J. Chem. Phys. 80, 3278 (1984)

  20. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  1. High-order dispersion effects in two-photon interference

    NASA Astrophysics Data System (ADS)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  2. Temperature dependence of the two photon absorption in indium arsenide

    SciTech Connect

    Berryman, K.W.; Rella, C.W.

    1995-12-31

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms.

  3. Two-photon multiplane imaging of neural circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Miller, Jae-eun K.; Carrillo-Reid, Luis; Pnevmatikakis, Eftychios; Paninski, Liam; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Imaging the neuronal activity throughout the brain with high temporal and spatial resolution is an important step in understanding how the brain works. Two-photon laser scanning microscopy with fluorescent calcium indicators has enabled this type of experiments in vivo. Most of these microscopes acquire images serially, with a single laser beam, limiting the overall imaging speed. To overcome this limit, multiple beamlets can be used to image in parallel multiple regions. Here, we demonstrate a novel scheme of a two-photon laser-scanning microscope that can simultaneously record neuronal activity at multiple planes of the sample with a single photomultiplier tube. A spatial light modulator is used to generate the designated multiple beamlets, and a constrained non-negative matrix factorization algorithm is used to demix the signals from multiple scanned planes. We simultaneously record neuronal activity of multiple layers of a mouse cortex at 10 fps in vivo. This novel imaging scheme provides a powerful tool for mapping the brain activity.

  4. Simultaneous two-photon excitation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  5. Multidimensional two-photon imaging of diseased skin

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sestini, S.; De Giorgi, V.; Massi, D.; Lotti, T.; Pavone, F. S.

    2008-02-01

    We used combined two photon intrinsic fluorescence (TPE), second harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two photon emission detection (MTPE) to investigate different kinds of human cutaneous ex-vivo skin lesions. Morphological and spectroscopic analyses allowed to characterize both healthy and pathological skin samples, including tumors, as well as to discriminate between healthy and diseased tissue, in a good agreement with common routine histology. In particular, we examined tissue samples from normal and pathological scar tissue (keloid), and skin tumors, including basal cell carcinoma (BCC) and malignant melanoma (MM). By using combined TPE-SHG microscopy we investigated morphological features of different skin regions, as BCC, tumor-stroma interface, healthy dermis, fibroblastic proliferation, and keloids. The SHG to autofluorescence aging index of dermis (SAAID) score was used to characterize each region, finding differences between BCC, healthy skin, tumor-stroma interface, keloids, and fibroblastic proliferation. Further comparative analysis of healthy skin and neoplastic samples was performed using FLIM. In particular, BCC showed a blue-shifted fluorescence emission, a higher absorption at 800 nm excitation wavelength, and a slightly longer mean fluorescence lifetime. MM showed a lifetime distribution similar to the corresponding melanocytic nevus (MN) lifetime distribution for the slow lifetime component, and different for the fast lifetime component.

  6. One- and two-photon absorption of highly conjugated multiporphyrin systems in the two-photon Soret transition region

    NASA Astrophysics Data System (ADS)

    Fisher, Jonathan A. N.; Susumu, Kimihiro; Therien, Michael J.; Yodh, Arjun G.

    2009-04-01

    This study presents a detailed investigation of near-infrared one- and two-photon absorption (TPA) in a series of highly conjugated (porphinato)zinc(II) compounds. The chromophores interrogated include meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers (PZnn species), (porphinato)zinc(II)-spacer-(porphinato)zinc(II) (PZn-Sp-PZn) complexes, PZnn structures featuring terminal electron-releasing and -withdrawing substituents, related conjugated arrays in which electron-rich and -poor PZn units alternate, and benchmark PZn monomers. Broadband TPA cross-section measurements were performed ratiometrically using fluorescein as a reference. Superficially, the measurements indicate very large TPA cross-sections (up to ˜104GM; 1GM =1×10-50cm4sphoton-1) in the two-photon Soret (or B-band) resonance region. However, a more careful analysis of fluorescence as a function of incident photon flux suggests that significant one-photon absorption is present in the same spectral region for all compounds in the series. TPA cross-sections are extracted for the first time for some of these compounds using a model that includes both one-photon absorption and TPA contributions. Resultant TPA cross-sections are ˜10GM. The findings suggest that large TPA cross-sections reported in the Soret resonance region of similar compounds might contain significant contributions from one-photon absorption processes.

  7. Resonantly enhanced selective photochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Trichas, E.; Kayambaki, M.; Iliopoulos, E.; Pelekanos, N. T.; Savvidis, P. G.

    2009-04-01

    Wavelength dependent photochemical etching of GaN films reveals a strong resonant enhancement of the photocurrent at the GaN gap, in close agreement with the excitonic absorption profile of GaN. The corresponding etching rate of GaN strongly correlates with the measured photocurrent. No photocurrent, nor etching is observed for AlGaN films under same excitation conditions. The method could pave the way to the development of truly selective etching of GaN on AlGaN for the fabrication of nitride based optoelectronic devices.

  8. Time-Resolved Measurement of Interatomic Coulombic Decay Induced by Two-Photon Double Excitation of Ne2

    NASA Astrophysics Data System (ADS)

    Takanashi, T.; Golubev, N. V.; Callegari, C.; Fukuzawa, H.; Motomura, K.; Iablonskyi, D.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Nagaya, K.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Faccialà, D.; Calegari, F.; Trabattoni, A.; Castrovilli, M. C.; Ovcharenko, Y.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Jabbari, G.; Prince, K. C.; Cederbaum, L. S.; Demekhin, Ph. V.; Kuleff, A. I.; Ueda, K.

    2017-01-01

    The hitherto unexplored two-photon doubly excited states [Ne*(2 p-13 s )]2 were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne2+ ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390 (-130 /+450 ) fs , and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

  9. Two-photon excited UV fluorescence for protein crystal detection

    SciTech Connect

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-10-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC.

  10. Measurement of two-photon exchange effects in CLAS

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak; Raue, Brian; Adikaram, Dasuni; Weinstein, Lawrence

    2014-03-01

    There is a significant discrepancy between the Rosenbluth and the polarization transfer measurements of the proton's electric to magnetic form factor ratio GEp/GEp. One possible explanation of this discrepancy is the contribution from two-photon exchange (TPE) effects, which are not typically accounted for in standard radiative corrections. The ratio of positron-proton to electron-proton elastic scattering cross sections, R =σ/(e+ p) σ (e- p) , provides a model independent measurement of the TPE contribution to elastic electron-proton scattering. We measured this ratio at Jefferson Lab using a mixed electron-positron beam. Both electrons and positrons were elastically scattered from a liquid hydrogen target. The resulting scattered particles were detected in CLAS. The experimental details and results will be discussed. U.S. Dept. of Energy.

  11. Two-photon exchange effect studied with neural networks

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-09-15

    An approach to the extraction of the two-photon exchange (TPE) correction from elastic ep scattering data is presented. The cross-section, polarization transfer (PT), and charge asymmetry data are considered. It is assumed that the TPE correction to the PT data is negligible. The form factors and TPE correcting term are given by one multidimensional function approximated by the feedforward neural network (NN). To find a model-independent approximation, the Bayesian framework for the NNs is adapted. A large number of different parametrizations is considered. The most optimal model is indicated by the Bayesian algorithm. The obtained fit of the TPE correction behaves linearly in {epsilon} but it has a nontrivial Q{sup 2} dependence. A strong dependence of the TPE fit on the choice of parametrization is observed.

  12. High contrast two-photon imaging of fingermarks

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  13. Two-photon quantum walk in a multimode fiber

    PubMed Central

    Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A.; Smith, Brian J.; Gigan, Sylvain

    2016-01-01

    Multiphoton propagation in connected structures—a quantum walk—offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication. PMID:27152325

  14. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility.

    PubMed

    Suter, Marcel; Zhang, Li; Siringil, Erdem C; Peters, Christian; Luehmann, Tessa; Ergeneman, Olgac; Peyer, Kathrin E; Nelson, Bradley J; Hierold, Christofer

    2013-12-01

    This work presents the fabrication and controlled actuation of swimming microrobots made of a magnetic polymer composite (MPC) consisting of 11-nm-diameter magnetite (Fe3O4) nanoparticles and photocurable resin (SU-8). Two-photon polymerization (TPP) is used to fabricate the magnetic microstructures. The material properties and the cytotoxicity of the MPC with different nanoparticle concentrations are characterized. The live/dead staining tests indicate that MPC samples with varied concentrations, up to 10 vol.%, have negligible cytotoxicity after 24 h incubation. Fabrication parameters of MPC with up to 4 vol.% were investigated. We demonstrate that the helical microdevices made of 2 vol.% MPC were capable of performing corkscrew motion in water applying weak uniform rotating magnetic fields.

  15. Two-photon transition form factor of c ¯ quarkonia

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  16. Fluorescent Pluronic nanodots for in vivo two-photon imaging

    NASA Astrophysics Data System (ADS)

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Marder, Seth R.; Sanden, Boudewijn Van der; Stephan, Olivier

    2009-06-01

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 µm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  17. Fluorescent Pluronic nanodots for in vivo two-photon imaging.

    PubMed

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Marder, Seth R; Van der Sanden, Boudewijn; Stephan, Olivier

    2009-06-10

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 microm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  18. Two-photon quantum walk in a multimode fiber.

    PubMed

    Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A; Smith, Brian J; Gigan, Sylvain

    2016-01-01

    Multiphoton propagation in connected structures-a quantum walk-offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication.

  19. On the two-photon width of the δ(980)

    NASA Astrophysics Data System (ADS)

    Narison, S.

    1986-07-01

    The two-photon width of the δ(980) is evaluated using three-point function sum rules which are able to predict accurately the anomalous π0 --> γ and non-anomalous δ --> ηπ decay rates. The prediction, though smaller than previous results based on vector meson dominance, is still higher than the present Crystal Ball data. An analysis of the three-point function with one-gluon exchange cannot support the previous successful explanation of the data within the four-quark scheme. On leave of absence from Laboratoire de Physique Mathématique, Université des Sciences et Techniques du Languedoc, Place Eugène Batailon, F-34100 Montpellier Cedez, France.

  20. Clinical multiphoton tomography and clinical two-photon microendoscopy

    NASA Astrophysics Data System (ADS)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  1. Arbitrary-scan imaging for two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Botcherby, Edward; Smith, Christopher; Booth, Martin; Juskaitis, Rimas; Wilson, Tony

    2010-02-01

    In this paper, we present details of a scanning two-photon fluorescence microscope we have built with a nearisotropic scan rate. This means that the focal spot can be scanned at high speed along any direction in the specimen, without introducing systematic aberrations. We present experimental point spread function measurements for this system using an Olympus 0.8 NA 40X water dipping objective lens that demonstrates an axial range of operation greater than 200 μm. We give details of a novel actuator device used to displace the focusing element and demonstrate axial scan responses up to 3.5 kHz. Finally, we present a bioscience application of this system to image dendritic processes that follow non-linear paths in three-dimensional space. The focal spot was scanned along one such process at 400 Hz with an axial range of more than 90 μm.

  2. High contrast two-photon imaging of fingermarks

    PubMed Central

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-01-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples. PMID:27053515

  3. Two-photon quantum interference for an undergraduate lab

    NASA Astrophysics Data System (ADS)

    Ourjoumtsev, A.; Dheur, M.-C.; Avignon, T.; Jacubowiez, L.

    2015-11-01

    We present a simple setup allowing undergraduate students to reproduce the Hong-Ou-Mandel experiment during a half-day labwork session and observe the coalescence of two indistinguishable photons merging on a balanced beamsplitter. This two-photon interference effect, fundamentally related to the bosonic character of the photons, is commonly used in the fields of quantum communication and computing to test the indistinguishability of two single-photon wavepackets. The setup makes use of very few optical elements and requires little alignement that can be performed by students themselves. It allows them to gather essential experimental skills related to parametric crystals, fibre optics and single-photon detection, and to transpose abstract concepts of quantum physics to a hands-on experiment in the lab.

  4. Anomalous two-photon spectral features in warm rubidium vapor

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Milburn, T. J.; Kielpinski, D.; Stace, T. M.; Luiten, A. N.

    2016-09-01

    We report observation of anomalous fluorescence spectral features in the environs of a two-photon transition in a rubidium vapor when excited with two different wavelength lasers that are both counterpropagating through the vapor. These features are characterized by an unusual trade-off between the detunings of the driving fields. Three different hypothetical processes are presented to explain the observed spectra: a simultaneous three-atom and four-photon collision, a four-photon excitation involving a light field produced via amplified spontaneous emission, and population pumping perturbing the expected steady-state spectra. Numerical modeling of each hypothetical process is presented, supporting the population pumping process as the most plausible mechanism.

  5. Two-photon patterning of optical waveguides in flexible polymers

    NASA Astrophysics Data System (ADS)

    Bichler, Sabine; Feldbacher, Sonja; Woods, Rachel; Satzinger, Valentin; Schmidt, Volker; Jakopic, Georg; Langer, Gregor; Kern, Wolfgang

    2009-08-01

    Over the last few years two-photon based photo-processes have become an important method to generate 3D microstructures in organic materials without the use of masks and molds. The present work deals with the fabrication of optical waveguides in a flexible polysiloxane matrix for data transmission on printed circuit boards (PCB). In the developed system the waveguide core is formed by two-photon induced photo polymerization (TPIP) of selected monomers, which are dissolved in a silicone matrix. Through the photo-induced polymerization an interpenetrating network is generated, resulting in a refractive index change between the illuminated waveguide cladding and the illuminated core material. Because of the optical transparency, flexibility, chemical and thermal stability polysiloxanes were chosen as optical matrix material. Different types of phenyl methacrylates with a high refractive index were used as monomers. In order to obtain a high contrast in refractive index, the monomers were removed from non-illuminated regions in a vacuum process after laser exposure. The written optical waveguides were evidenced by phase contrast microscopy, revealing an excellent structuring behaviour of the developed material. Optical techniques e.g. cut-back measurements and light extraction tests were applied to characterize the inscribed waveguide structures and to detect the resulting optical loss. To determine the refractive index change upon UV-irradiation spectroscopic ellipsometry was applied. Thus, a difference of Δn=0.02 between the non-illuminated cladding and the illuminated core material was detected. Further, prototypes of optical interconnects on PCBs were fabricated by inscription of a waveguide bundle between a mounted laser and photo diode, resulting in the desired increase of the transmitted photocurrent after TPA structuring. In conclusion, the obtained results demonstrate that fully flexible optical interconnects are accessible by the developed process.

  6. Classes of two-photon states defined by linear interactions and destructive two-photon quantum interference in a single mode

    NASA Astrophysics Data System (ADS)

    Lund, A. P.

    2015-11-01

    We describe a two-photon quantum interference effect which differs from the Hong-Ou-Mandel effect in that the destructive quantum inference occurs on a component of the state where two photons are in a single output mode while maintaining the two-photon events in the alternative mode. This effect is manifestly nonclassical but requires more sophisticated technology to observe than the Hong-Ou-Mandel effect. The theory outlined in this paper can also be used to classify two-photon states into classes which are related by the ability to transform the states within the class by using only linear optical interactions. This theory shows that there is an infinite number of these classes of two photon states when there are two or more modes which can support the photons.

  7. Two-Photon Ghost Image and Interference-Diffraction

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  8. Resonant two-photon ionization spectroscopy of jet-cooled tantalum carbide, TaC.

    PubMed

    Krechkivska, Olha; Morse, Michael D

    2010-08-07

    The optical spectrum of diatomic TaC has been investigated for the first time, with transitions recorded in the range from 17,850 to 20,000 cm(-1). Six bands were rotationally resolved and analyzed to obtain ground and excited state parameters, including band origins, upper and lower state rotational constants and bond lengths, Fermi contact parameter b(F) for the ground state, and lambda doubling parameters for the excited states. The ground state of TaC was found to be X (2)Sigma(+), originating from the 1sigma(2)2sigma(2)1pi(4)3sigma(1) electronic configuration, in which only the valence orbitals arising from the Ta(5d+6s) and C(2s+2p) orbitals are listed. All of the rotationally resolved and analyzed bands were found to originate from the ground state, giving B(0)"=0.489 683(83) cm(-1), r(0)"=1.749 01(15) A, and b(F)"=0.131 20(36) cm(-1) (1sigma error limits) for (181)Ta (12)C. Comparison of the Fermi contact parameter to the atomic value shows that the 3sigma orbital is approximately 75% Ta 6s in character. The other group 5 transition metal carbides, VC and NbC, have long been known to have 1sigma(2)2sigma(2)1pi(4)1delta(1), (2)Delta ground states, with low-lying 1sigma(2)2sigma(2)1pi(4)3sigma(1), (2)Sigma(+) excited states. The emergence of a different ground state in TaC, as compared to VC and NbC, is due to the relativistic stabilization of the 6s orbital in Ta. This lowers the energy of the 6s-like 3sigma orbital in TaC, causing the 1sigma(2)2sigma(2)1pi(4)3sigma(1), (2)Sigma(+) state to fall below the 1sigma(2)2sigma(2)1pi(4)1delta(1), (2)Delta state.

  9. Measurement of two-photon exchange effect with CLAS

    SciTech Connect

    Raue, Brian A

    2010-08-01

    The structure of the proton is one the most important and most studied topics in nuclear physics. However, discrepant measurements of the proton's electromagnetic form factor ratio, GE/GM, seriously jeopardize a definitive understanding of the proton's structure. Measurements of GEGM using the Rosenbluth separation technique disagree with those using polarization transfer methods by about a factor of three at Q2~5.6 GeV2. It has been hypothesized that this discrepancy is due to two-photon exchange (TPE) effects that are not part of the usual radiative corrections. Theoretical corrections for the TPE effect are difficult due to the fact that a large number of excited nucleon states can contribute to the process. However, the TPE effect can be directly determined by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = sigma(e+)/sigma(e-), as the TPE effect changes sign with respect to the charge of the incident particle. A brief test run of a modified beamline and the CLAS detector at Jefferson Lab has resulted in the most precise measurements of the R to date. We will present results from the test run covering Q2<0.8 GeV2 and 0.78<=epsilon<=0.97. In addition, the test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality so that the measurements can be extended up to Q2~3.0 GeV2.

  10. Two-Photon-Exchange Effects and Δ (1232) Deformation

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Qing; Yang, Shin Nan

    The two-photon-exchange (TPE) contribution in ep to epπ 0 with W = MΔ and small Q2 is calculated and its corrections to the ratios of electromagnetic transition form factors REM = E1 + (3/2)/M1 + (3/2) and RSM = S1 + (3/2)/M1 + (3/2), are analysed. A simple hadronic model is used to estimate the TPE amplitude. Two phenomenological models, MAID2007 and SAID, are used to approximate the full ep to epπ 0 cross sections which contain both the TPE and the one-photon-exchange (OPE) contributions. The genuine OPE amplitude is then extracted from an integral equation by iteration. We find that the TPE contribution is not sensitive to whether MAID or SAID is used as input in the region with Q2 < 2 GeV2. It gives small correction to REM while for RSM, the correction is about -10% at small ɛ and about 1% at large ɛ for Q2 ≈ 2.5 GeV2. The large correction from TPE at small ɛ must be included in the analysis to get a reliable extraction of RSM.

  11. Perturbative QCD predictions for two-photon exchange

    SciTech Connect

    Borisyuk, Dmitry; Kobushkin, Alexander

    2009-02-01

    We study two-photon exchange (TPE) in the elastic electron-nucleon scattering at high Q{sup 2} in the framework of perturbative quantum chromodynamics. The obtained TPE amplitude is of order {alpha}/{alpha}{sub s} with respect to Born approximation. Its shape and value are sensitive to the choice of nucleon wave function, thus study of TPE effects can provide important information about nucleon structure. With the wave functions based on quantum chromodynamics sum rules, TPE correction to the electron-proton cross section has a negative sign, is almost linear in {epsilon}, and grows logarithmically with Q{sup 2} up to 7% at Q{sup 2}=30 GeV{sup 2}. The results of existing hadronic calculations, taking into account just the nucleon intermediate state, can be smoothly connected with the perturbative quantum chromodynamics result near Q{sup 2}{approx}3 GeV{sup 2}. Above this point two methods disagree, which implies that the hadronic approach becomes inadequate at high Q{sup 2}. Other relevant observables, such as the electron/positron cross section ratio, are also discussed.

  12. Two-Photon-Absorption Scheme for Optical Beam Tracking

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  13. Two-photon absorption in conjugated energetic molecule

    SciTech Connect

    Bjorgaard, Josiah August; Sifain, Andrew; Nelson, Tammie Renee; Myers, Thomas Winfield; Veauthier, Jacqueline Marie; Chavez, David E.; Scharff, Robert Jason; Tretiak, Sergei

    2016-06-03

    Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities are significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  14. Review of two-photon exchange in electron scattering

    SciTech Connect

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  15. Two-photon excited photoconversion of cyanine-based dyes.

    PubMed

    Kwok, Sheldon J J; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-31

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  16. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  17. Results from the OLYMPUS Two-Photon Exchange Experiment

    NASA Astrophysics Data System (ADS)

    O'Connor, Colton; Olympus Collaboration

    2017-01-01

    Measurements of the proton's electric-to-magnetic form factor ratio obtained by different methods disagree significantly in a way that depends on Q2. The OLYMPUS experiment was designed to empirically quantify two-photon exchange in lepton-proton scattering, an effect that, in some models, can fully account for this disagreement. This was achieved at the DORIS storage ring at DESY by measuring the ratio of the elastic cross-sections for positron-proton and electron-proton scattering with alternating 2.01 GeV lepton beams incident on an internal hydrogen gas target. Data were collected with an integrated luminosity of over 4.0 fb-1 using a large-acceptance toroidal spectrometer and multiple luminosity monitoring systems, allowing for precise results (<1% uncertainty) over the range of 0.6 <=Q2 <= 2.2 (GeV/ c)2. This work is supported by DOE Grant DE-FG02-94ER40818.

  18. Two-photon excited photoconversion of cyanine-based dyes

    PubMed Central

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-01-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue. PMID:27029524

  19. Mobile laser lithography station for microscopic two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Leinenbach, F.; Breunig, H. G.; König, K.

    2015-03-01

    We present a mobile laser lithography station for 3D structuring by microscopic two-photon polymerization. For structuring the Coherent Vitara UBB titanium:sapphire femtosecond laser is used, which has a power output of 500mW and generates pulses with a central wavelength of 810nm. The laser pulses have a tunable bandwidth from 50nm to 250nm. The pulses are temporally compressed using chirped mirrors to a minimum duration of less than 15fs at the sample. The laser power reaching the sample can be motionless controlled by a combination of a liquid crystal retarder and a polarizer within milliseconds. The sample is placed onto a microscope stage which has a movement range of 300µm in the X, Y and Z direction with an accuracy of 2nm. Sample imaging is possible with a microscope camera simultaneous to the structuring. The pulses are focused by a 40X microscope objective (1.3NA) onto the sample. To operate the lithography station, we developed a LabVIEW-based software which controls sample position, laser power and objective height and as well as the microscope camera. Furthermore, CAD data can be read and converted into sample position data. By combining all these components, a fully automatic structuring of a sample with sub-micrometer precision is possible.

  20. Two-photon polymerization for fabrication of biomedical devices

    NASA Astrophysics Data System (ADS)

    Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.

    2007-01-01

    Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.

  1. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  2. Two-photon autofluorescence spectroscopy of oral mucosa tissue

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Shilagard, Tuya; Qiu, Suimin; Vargas, Gracie

    2011-03-01

    The survival rate for individuals diagnosed with oral cancer is correlated with the stage of detection. Thus the development of novel techniques for the earliest possible detection of malignancies is of critical importance. Single photon (1P) autofluorescence spectroscopy has proven to be a powerful diagnostic tool in this regard, but 2P (two photon) spectroscopy remains essentially unexplored. In this investigation, a spectroscopic system was incorporated into a custom-built 2P laser scanning microscope. Oral cancer was induced in the buccal pouch of Syrian Golden hamsters by tri-weekly topical application of 9,10-dimethyl-1,2-benzanthracene (DMBA).Three separated sites where investigated in each hamster at four excitation wavelengths from 780 nm to 890 nm. A Total of 8 hamsters were investigated (4 normal and 4 DMBA treated). All investigated sites were imaged via 2p imaging, marked for biopsy, processed for histology and H&E staining, and graded by a pathologist. The in vivo emission spectrum for normal, mild/high grade dysplasia and squamous cell carcinoma is presented. It is shown that the hamsters with various stages of dysplasia are characterized by spectral differences as a function of depth and excitation wavelength, compared to normal hamsters.

  3. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  4. Two-Photon Absorption in Conjugated Energetic Molecules.

    PubMed

    Bjorgaard, Josiah A; Sifain, Andrew E; Nelson, Tammie; Myers, Thomas W; Veauthier, Jacqueline M; Chavez, David E; Scharff, R Jason; Tretiak, Sergei

    2016-07-07

    Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation. We found calculated vertical excitation energies to be in good agreement with experiment for most molecules. Peak TPA intensities were found to be significant and on the order of 10(2) GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity were used to examine the character of relevant transitions. Modification of molecular substituents, such as additional oxygen or other functional groups, produces significant changes in electronic structure, OPA, and TPA and improves oxygen balance. The results show that certain molecules are apt to undergo nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  5. Two-photon absorption in conjugated energetic molecule

    DOE PAGES

    Bjorgaard, Josiah August; Sifain, Andrew; Nelson, Tammie Renee; ...

    2016-06-03

    Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities aremore » significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.« less

  6. Two-photon excited photoconversion of cyanine-based dyes

    NASA Astrophysics Data System (ADS)

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  7. Vibrational resonance enhanced broadband multiphoton absorption in a triphenylamine derivative

    SciTech Connect

    Lu Changgui; Cui Yiping; Huang Wei; Yun Binfeng; Wang Zhuyuan; Hu Guohua; Cui Jing; Lu Zhifeng; Qian Ying

    2007-09-17

    Multiphoton absorption of 2,5-bis[4-(2-N,N-diphenylaminostyryl)phenyl]-1,3,4-oxadiazole was experimentally studied by using femtosecond laser pulses. This material demonstrates a very broad multiphoton absorption band of around 300 nm width with two peaks of 1250 and 1475 nm. The first peak results from the three-photon absorption process while the second is attributed to the vibrational resonance enhanced four-photon absorption process. Combination of these two processes provides a much broader multiphoton absorption band. In this letter, the analytical solution to nonlinear transmission of a three-photon absorption process is also given when the incident beam has a Gaussian transverse spatial profile.

  8. Reaction-based two-photon probes for mercury ions: fluorescence imaging with dual optical windows.

    PubMed

    Rao, Alla Sreenivasa; Kim, Dokyoung; Wang, Taejun; Kim, Ki Hean; Hwang, Sekyu; Ahn, Kyo Han

    2012-05-18

    For fluorescent imaging of mercury ions in living species, two-photon probes with dual optical windows are in high demand but remain unexplored. Several dithioacetals were evaluated, and a probe was found, which, upon reaction with mercury species, yielded a two-photon dye; this conversion accompanies ratiometric emission changes with a 97-nm shift, enabling fluorescent imaging of both the probe and mercury ions in cells by one- and two-photon microscopy for the first time.

  9. Measurement of two-photon exchange effect with CLAS

    SciTech Connect

    Raue, Brian A.

    2010-08-05

    The structure of the proton is one the most important and most studied topics in nuclear physics. However, discrepant measurements of the proton's electromagnetic form factor ratio, G{sub E}/G{sub M}, seriously jeopardize a definitive understanding of the proton's structure. Measurements of G{sub E}G{sub M} using the Rosenbluth separation technique disagree with those using polarization transfer methods by about a factor of three at Q{sup 2{approx}}5.6 GeV{sup 2}. It has been hypothesized that this discrepancy is due to two-photon exchange (TPE) effects that are not part of the usual radiative corrections. Theoretical corrections for the TPE effect are difficult due to the fact that a large number of excited nucleon states can contribute to the process. However, the TPE effect can be directly determined by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = {sigma}(e{sup +})/{sigma}(e{sup -}), as the TPE effect changes sign with respect to the charge of the incident particle. A brief test run of a modified beamline and the CLAS detector at Jefferson Lab has resulted in the most precise measurements of the R to date. We will present results from the test run covering Q{sup 2}<0.8 GeV{sup 2} and 0.78{<=}{epsilon}{<=}0.97. In addition, the test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality so that the measurements can be extended up to Q{sup 2{approx}}3.0 GeV{sup 2}.

  10. Voltage-sensitive rhodol with enhanced two-photon brightness.

    PubMed

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  11. Dynamical modeling of pulsed two-photon interference

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-11-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong-Ou-Mandel, and Mach-Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers.

  12. Determining the Quark Charges by One and Two Photon Processes.

    NASA Astrophysics Data System (ADS)

    Janah, Arjun

    1982-05-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known "color-suppression" effect. Single photon/weak-boson processes such as (nu)N (--->) (nu)X distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e('+)e('-) (--->) e('+)e('-) + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum -dependent) color suppression and (b) the added contribution from pair production of charged gluons. This is done, and it is observed that: (i) in icq, the ratio R('(gamma)(gamma)(2 jet)) is not simply a number given by the quark charges; it depends on the gluon mass, on kinematics and on the particular differential cross-section considered; (ii) the deviation of icq cross-sections from the fcq values depends crucially on whether one includes "untagged" events; if this is done, the deviation is large; the charged gluon contribution is mainly responsible for this deviation; the quark contribution is smaller than naively expected. Finally, comparison is made with experimental data on e('+)e('-) (--->) e('+)e('-) + 2 jets. Here, icq is found to be in better agreement than fcq, for a broad range of gluon masses. A suitably modified equivalent photon approximation is employed.

  13. Two-photon excitation photodynamic therapy with Photofrin

    NASA Astrophysics Data System (ADS)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  14. Two-photon decay of excited levels in hydrogen: The ambiguity of the separation of cascades and pure two-photon emission

    SciTech Connect

    Labzowsky, L.; Solovyev, D.; Plunien, G.

    2009-12-15

    The problem of the evaluation of the two-photon decay width of excited states in hydrogen is considered. Two different approaches to the evaluation of the width including cascades channels are employed: the summation of the transition probabilities for various decay channels and the evaluation of the imaginary part of the Lamb shift. As application, the two-photon decay channels for the 3s level of the hydrogen atom are evaluated, including the cascade transition probability 3s-2p-1s. An important role is assigned to the two-photon decays in astrophysics context, since processes of this kind provide a possibility for the decoupling of radiation and matter in the early universe. We demonstrate the ambiguity of separation of the 'pure' two-photon contribution and criticize the existing methods for such a separation.

  15. Two-photon absorption and nonlinear polariton effects in organic crystals

    SciTech Connect

    Johnson, C.K.

    1981-01-01

    Two-photon excitation (TPE) and second harmonic generation (SHG) have been studied in phenanthrene crystals at low temperatures (2 to 6K) in order to investigate mechanisms of two-photon absorption (TPA), the relationship between TPE and SHG, and polariton effects. The transition studied is of special interest because it is both one- and two-photon allowed in the dipole approximation. Consequently, polariton states and SHG play a role in the two-photon process. In the polariton model, both TPA and SHG are understood as resulting from the process of polariton fusion.

  16. Description of the states of two-photon interference in an optical gating Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Pongophas, Ekkarat; Sriklin, Watthana; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2016-01-01

    We investigate the interference of two photons in an optical gating Michelson interferometer. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two-photon state evolution. Both representations lead to identical results. The evolution analysis describes the result by the interference of four two-photon traveling states, whereas the space-time domain analysis reveals that the classical interference of the high-intensity light source is identical to two-photon interference in the quantum regime, except for a multiplicative factor of (n2), where n is the number of photons.

  17. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering

    PubMed Central

    Kneipp, Janina; Kneipp, Harald; Kneipp, Katrin

    2006-01-01

    Two-photon excitation is gaining rapidly in interest and significance in spectroscopy and microscopy. Here we introduce a new approach that suggests versatile optical labels suitable for both one- and two-photon excitation and also two-photon-excited ultrasensitive, nondestructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states called hyper-Raman scattering (HRS). The rather weak effect can be strengthened greatly if HRS takes place in the local optical fields of gold and silver nanostructures. This so-called surface-enhanced HRS (SEHRS) is the two-photon analogue to surface-enhanced Raman scattering (SERS). SEHRS provides structurally sensitive vibrational information complementary to those obtained by SERS. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy and the high-sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy. We infer effective two-photon cross-sections for SEHRS on the order of 10−46 to 10−45 cm4·s, similar to or higher than the best “action” cross-sections (product of the two-photon absorption cross-section and fluorescence quantum yield) for two-photon fluorescence, and we demonstrate HRS on biological structures such as single cells after incubation with gold nanoparticles. PMID:17088534

  18. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    NASA Astrophysics Data System (ADS)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  19. Interplay between resonant enhancement and quantum path dynamics in harmonic generation in helium

    NASA Astrophysics Data System (ADS)

    Camp, Seth; Schafer, Kenneth J.; Gaarde, Mette B.

    2015-07-01

    We present a theoretical study of the influence of resonant enhancement on quantum path dynamics in the generation of harmonics above and below the ionization threshold in helium. By varying the wavelength and intensity of the driving field from 425 to 500 nm and from 30 to 140 TW /cm 2 , respectively, we identify enhancements of harmonics 7, 9, and 11 that correspond to multiphoton resonances between the ground state and the Stark-shifted 1 s 2 p ,1 s 3 p , and 1 s 4 p excited states. A time-frequency analysis of the emission shows that both the short and the long quantum path contributions to the harmonic yield are enhanced through these bound-state resonances. We analyze the subcycle time structure of the ninth harmonic yield in the vicinity of the resonances and find that on resonance the long trajectory contribution is phase shifted by approximately π /4 . Finally, we compare the single atom and the macroscopic response of a helium gas and find that while the subcycle time profiles are slightly distorted by propagation effects, the phase shift of the long-trajectory contribution is still recognizable.

  20. Demonstration of Whispering-gallery-mode Resonant Enhancement of Optical Forces

    DTIC Science & Technology

    2014-06-25

    and demonstrated resonance enhancement of optical forces evanescently exerted on dielectric microspheres . We showed that the resonant light...techniques. 15. SUBJECT TERMS optical force, optical propulsion, resonantenhancement, WGMs, tapered fiber, optical tweezers, microsphere 16. SECURITY...resonance enhancement of optical forces evanescently exerted on dielectric microspheres . We showed that the resonant light pressure can be used for optical

  1. Resonantly Enhanced Emission from a Luminescent Nanostructured Waveguide

    PubMed Central

    Inada, Yasuhisa; Hashiya, Akira; Nitta, Mitsuru; Tomita, Shogo; Tsujimoto, Akira; Suzuki, Masa-aki; Yamaki, Takeyuki; Hirasawa, Taku

    2016-01-01

    Controlling the characteristics of photon emission represents a significant challenge for both fundamental science and device technologies. Research on microcavities, photonic crystals, and plasmonic nanocavities has focused on controlling spontaneous emission by way of designing a resonant structure around the emitter to modify the local density of photonic states. In this work, we demonstrate resonantly enhanced emission using luminescent nanostructured waveguide resonance (LUNAR). Our concept is based on coupling between emitters in the luminescent waveguide and a resonant waveguide mode that interacts with a periodic nanostructure and hence outcouples via diffraction. We show that the enhancement of resonance emission can be controlled by tuning the design parameters. We also demonstrate that the enhanced emission is attributable to the accelerated spontaneous emission rate that increases the probability of photon emission in the resonant mode, accompanied by enhanced the local density of photonic states. This study demonstrates that nanostructured luminescent materials can be designed to exhibit functional and enhanced emission. We anticipate that our concept will be used to improve the performance of a variety of photonic and optical applications ranging from bio/chemical sensors to lighting, displays and projectors. PMID:27682993

  2. Resonantly Enhanced Emission from a Luminescent Nanostructured Waveguide

    NASA Astrophysics Data System (ADS)

    Inada, Yasuhisa; Hashiya, Akira; Nitta, Mitsuru; Tomita, Shogo; Tsujimoto, Akira; Suzuki, Masa-Aki; Yamaki, Takeyuki; Hirasawa, Taku

    2016-09-01

    Controlling the characteristics of photon emission represents a significant challenge for both fundamental science and device technologies. Research on microcavities, photonic crystals, and plasmonic nanocavities has focused on controlling spontaneous emission by way of designing a resonant structure around the emitter to modify the local density of photonic states. In this work, we demonstrate resonantly enhanced emission using luminescent nanostructured waveguide resonance (LUNAR). Our concept is based on coupling between emitters in the luminescent waveguide and a resonant waveguide mode that interacts with a periodic nanostructure and hence outcouples via diffraction. We show that the enhancement of resonance emission can be controlled by tuning the design parameters. We also demonstrate that the enhanced emission is attributable to the accelerated spontaneous emission rate that increases the probability of photon emission in the resonant mode, accompanied by enhanced the local density of photonic states. This study demonstrates that nanostructured luminescent materials can be designed to exhibit functional and enhanced emission. We anticipate that our concept will be used to improve the performance of a variety of photonic and optical applications ranging from bio/chemical sensors to lighting, displays and projectors.

  3. Ionization Measurement and Spectroscopy of ThS and ThS^+

    NASA Astrophysics Data System (ADS)

    Bartlett, J. H.; Heaven, M. C.

    2013-06-01

    Gas-phase thorium sulfide has been produced via laser ablation of thorium in a jet-cooled expansion of 0.1% H_2S/He carrier gas. Electronic spectra have been recorded for the first time by laser-induced fluorescence (LIF) over the region 17500-23650 cm^{-1}. Resonance-enhanced multiphoton ionization (REMPI) was used in conjunction with a Wiley-McLaren time-of-flight mass spectrometer to confirm LIF assigments of seven rotationally-resolved bands belonging to ThS. Dispersing fluorescence from the {[22.13]}^1Π-{X}^1Σ_g transition revealed a vibrational progression of the ground electronic state of ThS, for which the vibrational constants were ω_e = 520.0(7) cm^{-1} and ω_eχ_e = 11.0(9) cm^{-1}. An accurate value for the ionization potential of ThS as well as term energies of ThS^+ up to v^+ = 7 in the ^2Σ^+ ground state and v^+ = 3 in the ^2Δ_{3/2} first excited state have been obtained using two-photon pulsed-field ionization zero kinetic energy photoelectron spectroscopy (PFI-ZEKE). Vibrational constants for these states have also been detemined. High-level electronic structure calculations performed for ThS and ThS^+ gave term energies and molecular parameters that are in excellent agreement with the experimental results. The change in bond characteristics upon ionization of ThS is found to be consistent with that observed for HfO, HfS, and ThO.

  4. Two-photon absorption of BF2-carrying compounds: insights from theory and experiment.

    PubMed

    Bednarska, Joanna; Zaleśny, Robert; Wielgus, Małgorzata; Jędrzejewska, Beata; Puttreddy, Rakesh; Rissanen, Kari; Bartkowiak, Wojciech; Ågren, Hans; Ośmiałowski, Borys

    2017-02-22

    This communication presents a structure-property study of a few novel pyridine-based difluoroborate compounds with a N-BF2-O core, which exhibit outstanding fluorescence properties. To exploit their potential for two-photon bioimaging, relationships between the two-photon action cross section and systematic structural modifications have been investigated and unravelled.

  5. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  6. Two-dimensional two-photon absorbing chromophores and solvent effects on their cross-sections

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Jen, Alex K.

    2003-02-01

    A series of 2-dimensional two-photon absorbing chromophores and their 1-dimensional analogs were studied. The influence of the solvents on the linear absorption, photoluminescence and two-photon absorption cross-sections were also examined for these chromophores. The stoke's shift increase with increasing solvent polarity, that can be adequately described by Lippert equation. Two-photon absorption cross sections were measured with femtosecond pulses by the two-photon-induced fluorescence technique. It was observed that two-photon cross-sections were also strongly dependent on the solvents, however no simple correlation with solvent polarity was found in this study. Interestingly, a linear relationship was observed in these chromophores between the molar extinction coefficient and the two-photon cross section when plotted in log-log formats. Understanding of the relationship may provide a better insight of the two-photon absorption processes, and potentially will contribute to the design of highly efficient two-photon absorbing chromophores.

  7. Two-photon fluorescence probes for imaging of mitochondria and lysosomes.

    PubMed

    Yang, Wanggui; Chan, Pui Shan; Chan, Miu Shan; Li, King Fai; Lo, Pik Kwan; Mak, Nai Ki; Cheah, Kok Wai; Wong, Man Shing

    2013-04-28

    Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.

  8. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy.

    PubMed

    Zeng, Leli; Kuang, Shi; Li, Guanying; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2017-02-07

    A glutathione (GSH)-activatable ruthenium(ii)-azo photosensitizer was prepared. The complex had low toxicity towards cells under dark conditions. It exhibited excellent phototoxicity under two-photon excitation (810 nm) and thus was developed as a two-photon photodynamic anticancer agent for cancer therapy.

  9. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  10. Two-photon excitation microscopy for the study of living cells and tissues.

    PubMed

    Benninger, Richard K P; Piston, David W

    2013-06-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application.

  11. Description of states of two-photon interference in optical gating Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Pongophas, Ekkarat; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2015-07-01

    The interference of two photons in the optical gating Michelson interferometer is investigated. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two photon state evolution. Both representations lead to an equivalent description of the two-photon states which is the interference of four cases of two-photon traveling states, as implied by the evolution analysis. Additionally, the space-time domain analysis reveals that the classical interference of high-intensity light source is identical to the two-photon interference in the quantum regime except for a multiplicative factor of (n 2), where n is the number of photons.

  12. Nonlinear theory of a two-photon correlated-spontaneous-emission laser: A coherently pumped two-level--two-photon laser

    SciTech Connect

    Lu, N.; Zhao, F.; Bergou, J.

    1989-05-15

    We develop a nonlinear theory of a two-photon correlated-spontaneous-emission laser (CEL) by using an effective interaction Hamiltonian for a two-level system coupled by a two-photon transition. Assuming that the active atoms are prepared initially in a coherent superposition of two atomic levels involved in the two-photon transition, we derive a master equation for the field-density operator by using our quantum theory for coherently pumped lasers. The steady-state properties of the two-photon CEL are studied by converting the field master equation into a Fokker-Planck equation for the antinormal-ordering Q representation of the field-density operator. Because of the injected atomic coherence, the drift and diffusion coefficients become phase sensitive. This leads to laser phase locking and an extra two-photon CEL gain. The laser field can build up from a vacuum in the no-population-inversion region, in contrast to an ordinary two-photon laser for which triggering is needed. We find an approximate steady-state solution of the Q representation for the laser field, which consists of two identical peaks of elliptical type. We calculate the phase variance and, for any given mean photon number, obtain the minimum variance in the phase quadrature as a function of the initial atomic variables. Squeezing of the quantum noise in the phase quadrature is found and it exhibits the following features: (1) it is possible only when the laser intensity is smaller than a certain value; (2) it becomes most significant for small mean photon number, which is achievable in the no-population-inversion region; and (3) a maximum of 50% squeezing can be asymptotically approached in the small laser intensity limit.

  13. A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues

    PubMed Central

    Fan, Jiangli; Han, Zhichao; Kang, Yao; Peng, Xiaojun

    2016-01-01

    Lysosome-specific fluorescent probes are exclusive to elucidate the functions of lysosomal thiols. Moreover, two-photon microscopy offers advantages of less phototoxicity, better three dimensional spatial localization, deeper penetration depth and lower self-absorption. However, such fluorescent probes for thiols are still rare. In this work, an efficient two-photon fluorophore 1,8-naphthalimide-based probe conjugating a 2,4-dinitrobenzenesulfonyl chloride and morpholine was designed and synthesized, which exhibited high selectivity and sensitivity towards lysosomal thiols by turn-on fluorescence method quantitatively and was successfully applied to the imaging of thiols in live cells and tissues by two-photon microscopy. PMID:26794434

  14. Nonsequential two-photon absorption from the K shell in solid zirconium

    NASA Astrophysics Data System (ADS)

    Ghimire, Shambhu; Fuchs, Matthias; Hastings, Jerry; Herrmann, Sven C.; Inubushi, Yuichi; Pines, Jack; Shwartz, Sharon; Yabashi, Makina; Reis, David A.

    2016-10-01

    We report the observation of nonsequential two-photon absorption from the K shell of solid Zr (atomic number Z =40 ) using intense x-ray pulses from the Spring-8 Angstrom Compact Free-Electron Laser (SACLA). We determine the generalized nonlinear two-photon absorption cross section at the two-photon threshold in the range of 3.9-57 ×10-60cm4s bounded by the estimated uncertainty in the absolute intensity. The lower limit is consistent with the prediction of 3.1 ×10-60cm4s from the nonresonant Z-6 scaling for hydrogenic ions in the nonrelativistic, dipole limit.

  15. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    SciTech Connect

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  16. Dicke coherent narrowing in two-photon and Raman spectroscopy of thin vapor cells

    SciTech Connect

    Dutier, Gabriel; Todorov, Petko; Hamdi, Ismahene; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-10-15

    The principle of coherent Dicke narrowing in a thin vapor cell, in which sub-Doppler spectral line shapes are observed under a normal irradiation for a {lambda}/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300-nm-thick Cs cell. Extension to the Raman situation is finally considered.

  17. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  18. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    PubMed

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  19. Role of laser-driven electron multi-scattering in resonance-enhanced below-threshold harmonic generation of He atoms

    NASA Astrophysics Data System (ADS)

    Li, Peng-Cheng; Chu, Shih-I.

    2014-05-01

    We perform an ab initio study of the resonance-enhanced harmonic generation of He atoms below the ionization threshold by solving the time-dependent Schr ∖''odinger equation and Maxwell's equation simultaneously. An accurate angular-momentum-dependent model potential is constructed for the description of the He atoms low-lying and Rydberg states. We find that the process of laser-driven electron multi-scattering can play a crucial role in resonance-enhanced below-threshold harmonic generation. This result is confirmed by simulations with an extended semiclassical model and time-frequency analysis of macroscopic harmonic spectra by means of the synchrosqueezed transform based on short time Fourier transform. Our results emphasize that the laser-driven electron multi-scattering must be taken into account to fully understand the quantum path contribution related to resonance-enhanced below-threshold harmonic spectra. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.

  20. Note: Derivation of two-photon circular dichroism—Addendum to “Two-photon circular dichroism” [J. Chem. Phys. 62, 1006 (1975)

    SciTech Connect

    Friese, Daniel H.

    2015-09-07

    This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  1. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  2. Solvent effects on two-photon absorption of dialkylamino substituted distyrylbenzene chromophore

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Ferrighi, Lara; Frediani, Luca; Wang, Chuan-Kui; Luo, Yi

    2007-05-01

    Solvent effects on the two-photon absorption of a symmetrical diamino substituted distyrylbenzene chromophore have been studied using the density functional response theory in combination with the polarizable continuum model. It is shown that the dielectric medium has a rather small effect both on the bond length alternation and on the one-photon absorption spectrum, but it affects significantly the two-photon absorption cross section. It is found that both one- and two-photon absorptions are extremely sensitive to the planarity of the molecule, and the absorption intensity can be dramatically reduced by the conformation distortion. It has led to the conclusion that the experimentally observed anomalous solvent effect on the two-photon absorption of dialkylamino substituted distyrylbenzene chromophores cannot be attributed to the intrinsic properties of a single molecule and its interaction with solvents.

  3. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  4. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  5. Two-photon absorption properties of a new series of 2CTσ chromophores

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  6. Dye-doped sol-gel materials for two-photon absorption induced fluorescence

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Roger, Gisèle; Cassagne, Florence; Lévy, Yves; Brun, Alain; Chaput, Frédéric; Boilot, Jean-Pierre; Rapaport, Alexandra; Heerdt, Céline; Bass, Michael

    2002-01-01

    Two-photon absorption (TPA) and subsequent fluorescence properties of laser dyes are retained when doped into solid state sol-gel materials. These properties were demonstrated to be applicable in true 3D displays.

  7. Y-shaped two-photon absorbing molecules with an imidazole-thiazole core

    NASA Technical Reports Server (NTRS)

    Feng, Ke; De Boni, Leonardo; Misoguti, Lino; Mendonca, C. R.; Meador, Michael; Hsu, Fu-Lian; Bu, Xiu R.

    2004-01-01

    Two new classes of two-photon absorbing Y-shaped molecules have been developed to possess an imidazole-thiazole core and a stilbene-type conjugation pathway with either nitro or sulfonyl as terminal electron-accepting group.

  8. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  9. Super-resolution two-photon microscopy via scanning patterned illumination

    NASA Astrophysics Data System (ADS)

    Urban, Ben E.; Yi, Ji; Chen, Siyu; Dong, Biqin; Zhu, Yongling; DeVries, Steven H.; Backman, Vadim; Zhang, Hao F.

    2015-04-01

    We developed two-photon scanning patterned illumination microscopy (2P-SPIM) for super-resolution two-photon imaging. Our approach used a traditional two-photon microscopy setup with temporally modulated excitation to create patterned illumination fields. Combing nine different illuminations and structured illumination reconstruction, super-resolution imaging was achieved in two-photon microscopy. Using 2P-SPIM we achieved a lateral resolution of 141 nm, which represents an improvement by a factor of 1.9 over the corresponding diffraction limit. We further demonstrated super-resolution cellular imaging by 2P-SPIM to image actin cytoskeleton in mammalian cells and three-dimensional imaging in highly scattering retinal tissue.

  10. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  11. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    NASA Astrophysics Data System (ADS)

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-04-01

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √{ N } -fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  12. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell

    NASA Astrophysics Data System (ADS)

    Zhang, TianYue; Lu, GuoWei; Shen, HongMing; Perriat, P.; Martini, M.; Tillement, O.; Gong, QiHuang

    2014-06-01

    Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently. The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method. The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect. The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations. Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label. The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

  13. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

    PubMed Central

    Aouani, Heykel; Schön, Peter; Brasselet, Sophie; Rigneault, Hervé; Wenger, Jérôme

    2010-01-01

    Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications. PMID:21258531

  14. Two-Photon Exchange in Elastic Electron-Proton Scattering: A QCD Factorization Approach

    SciTech Connect

    Kivel, Nikolai; Vanderhaeghen, Marc

    2009-08-28

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer Q{sup 2}. It is shown that the leading two-photon exchange amplitude behaves as 1/Q{sup 4}, and can be expressed in a model independent way in terms of the leading twist nucleon distribution amplitudes. Using several models for the nucleon distribution amplitudes, we provide estimates for existing data and for ongoing experiments.

  15. DURIP97 Instrumentation for Characterization of Two-Photon Absorbing Organic Materials

    DTIC Science & Technology

    2007-11-02

    Room Bl 15 Boiling AFB DC 20332- 8050 5 . FUNDING NUMBERS AFOSR Grant F49620-97-1-0200 8. PERFORMING ORGANIZATION REPORT NUMBER 11. SUPPLEMENTARY...REPORT 1 Final Technical ...u DATES CUVCHED 4/1/97 - 3/ 31 /98 4. TITLE AND SUBTITLE DURIP97 Instrumentation for Characterization of Two-Photon...in great demand for variety-of applications including, two-photon excited fluorescence microscopy (7- 4), optical limiting ( 5 - 7), three-dimensional

  16. Absolute frequency measurement of rubidium 5S-7S two-photon transitions.

    PubMed

    Morzyński, Piotr; Wcisło, Piotr; Ablewski, Piotr; Gartman, Rafał; Gawlik, Wojciech; Masłowski, Piotr; Nagórny, Bartłomiej; Ozimek, Filip; Radzewicz, Czesław; Witkowski, Marcin; Ciuryło, Roman; Zawada, Michał

    2013-11-15

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

  17. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging

    PubMed Central

    Ragan, Timothy; Kadiri, Lolahon R.; Venkataraju, Kannan Umadevi; Bahlmann, Karsten; Sutin, Jason; Taranda, Julian; Arganda-Carreras, Ignacio; Kim, Yongsoo; Seung, H. Sebastian

    2011-01-01

    Here we describe an automated method, which we call serial two-photon (STP) tomography, that achieves high-throughput fluorescence imaging of mouse brains by integrating two-photon microscopy and tissue sectioning. STP tomography generates high-resolution datasets that are free of distortions and can be readily warped in 3D, for example, for comparing multiple anatomical tracings. This method opens the door to routine systematic studies of neuroanatomy in mouse models of human brain disorders. PMID:22245809

  18. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-03

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.

  19. Two-Photon Laser Micro-Nano Fabrication; Understanding from Single-Voxel Level

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014231 TITLE: Two-Photon Laser Micro - Nano Fabrication; Understanding...758 @ 2003 Materials Research Society LL4.6 Two-Photon Laser Micro - Nano Fabrication; Understanding from Single-Voxel Level Satoshi Kawatal and Hong...spatial resolution by the radical quenching effect [8, 9], improvement of fabrication efficiency by using 3D vector scanning [9], 3D micro -diagnosis by

  20. Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches

    PubMed Central

    2015-01-01

    Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution. PMID:24857186

  1. Rapid prototyping of electrochromatography chips for improved two-photon excited fluorescence detection.

    PubMed

    Hackl, Claudia; Beyreiss, Reinhild; Geissler, David; Jezierski, Stefan; Belder, Detlev

    2014-04-15

    In the present study, we introduce two-photon excitation at 532 nm for label-free fluorescence detection in chip electrochromatography. Two-photon excitation at 532 nm offers a promising alternative to one-photon excitation at 266 nm, as it enables the use of economic chip materials instead of fused silica. In order to demonstrate these benefits, one-photon and two-photon induced fluorescence detection are compared in different chip layouts and materials with respect to the achievable sensitivity in the detection of polycyclic aromatic hydrocarbons (PAHs). Customized chromatography chips with cover or bottom slides of different material and thickness are produced by means of a rapid prototyping method based on liquid-phase lithography. The design of thin bottom chips (180 μm) enables the use of high-performance immersion objectives with low working distances, which allows one to exploit the full potential of two-photon excitation for a sensitive detection. The developed method is applied for label-free analysis of PAHs separated on a polymer monolith inside polymer glass sandwich chips made from fused silica or soda-lime glass. The obtained limits of detection range from 40 nM to 1.95 μM, with similar sensitivities in fused silica thin bottom chips for one-photon and two-photon excitation. In deep-UV non- or less-transparent devices two-photon excitation is mandatory for label-free detection of aromatics with high sensitivity.

  2. Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research

    PubMed Central

    PERRY, SETH W.; BURKE, RYAN M.; BROWN, EDWARD B.

    2012-01-01

    Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM—two-photon excitation fluorescence microscopy, and second harmonic generation microscopy—as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality. PMID:22258888

  3. Highly Selective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria.

    PubMed

    Niu, Weifen; Guo, Lei; Li, Yinhui; Shuang, Shaomin; Dong, Chuan; Wong, Man Shing

    2016-02-02

    A novel ratiometric mitochondrial cysteine (Cys)-selective two-photon fluorescence probe has been developed on the basis of a merocyanine as the fluorophore and an acrylate moiety as the biothiol reaction site. The biocompatible and photostable acrylate-functionalized merocyanine probe shows not only a mitochondria-targeting property but also highly selective detection and monitoring of Cys over other biothiols such as homocysteine (Hcy) and glutathione (GSH) and hydrogen sulfide (H2S) in live cells. In addition, this probe exhibits ratiometric fluorescence emission characteristics (F518/F452), which are linearly proportional to Cys concentrations in the range of 0.5-40 μM. More importantly, the probe and its released fluorophore, merocyanine, exhibit strong two-photon excited fluorescence (TPEF) with two-photon action cross-section (Φσmax) of 65.2 GM at 740 nm and 72.6 GM at 760 nm in aqueous medium, respectively, which is highly desirable for high contrast and brightness ratiometric two-photon fluorescence imaging of the living samples. The probe has been successfully applied to ratiometrically image and detect mitochondrial Cys in live cells and intact tissues down to a depth of 150 μm by two-photon fluorescence microscopy. Thus, this ratiometric two-photon fluorescent probe is practically useful for an investigation of Cys in living biological systems.

  4. Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike

    2015-08-12

    We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

  5. Two-photon fluorescent probes for biological Mg(2+) detection based on 7-substituted coumarin.

    PubMed

    Yin, Haijing; Zhang, Buchang; Yu, Haizhu; Zhu, Lin; Feng, Yan; Zhu, Manzhou; Guo, Qingxiang; Meng, Xiangming

    2015-05-01

    Two novel water-soluble coumarin-based compounds (OC7, NC7) were designed and synthesized as two-photon fluorescent probes for biological Mg(2+) detection. The compounds feature a β-keto acid as a high selective binding site for Mg(2+) and the coumarin framework as the two-photon fluorophore. OC7 and NC7 show significant "off-on" detecting signals (9.05-fold and 23.8-fold fluorescence enhancement) and lower detection limits compared with previous reported two-photon fluorescent probes for Mg(2+). Moreover, OC7-Mg(2+) and NC7-Mg(2+) exhibit large two-photon absorption cross sections (340 and 615 GM) at the near-infrared wavelengths (740 and 860 nm), which indicates that the probes are very suitable for detection of Mg(2+) in vivo. Both OC7 and NC7 are pH-insensitive and of low cytotoxicity and can be applied to image intracellular Mg(2+) under two-photon microscopy (TPM). Our results provide a strategy to modify the coumarin fluorophore to get better two-photon fluorescent properties. And the results also suggest that electronic density of β-keto acid plays a very important role in the recognition of Mg(2+).

  6. Piezoelectric resonance enhanced microwave and optoelectronic interactive devices

    NASA Astrophysics Data System (ADS)

    McIntosh, Robert

    Electro-optic (EO) devices that modulate optical signals by electric fields are an integrative part of the photonics industry and device optimization is an important area of research. As applications move to large bandwidth and higher frequency, low electro-optic effects and the requirement for large dimension become restrictive for microwave-optical devices. Both experimental and computational evaluations indicate that strain and polarization distribution have a significant impact on electromagnetic wave propagation resulting from a resonant structure; however, no systematic study or fundamental understandings are available. This dissertation research has been carried out to study and further develop the subject of piezoelectric resonance enhanced electro-acoustic-optic process, in order to improve the sensitivity and efficiency of electro-optic sensors and to explore novel applications. Many finite element models have been constructed for evaluating the mechanisms of the phenomena and the effectiveness of the device structure. The enhancement in transmission is found to be directly related to the strain-coupled local polarization. At piezoelectric resonance oscillating dipoles or local polarizations become periodic in the material and have the greatest impact on transmission. Results suggest that the induced charge distribution by a piezoelectric material at certain resonant frequencies is effective for aiding or impeding the transmission of a propagating wave. The behavior of both piezoelectric-defined (or intrinsic piezoelectric materials) and engineered periodic structures are reported. The piezoelectric response of the surface displacement of samples is investigated using an ultra-high frequency laser Doppler vibrometer. A two dimensional view of the surface is obtained and the surface displacement, velocity and acceleration are compared to the electro-optic response under the resonant condition. A study of the acousto-optic (AO) effect in a family of oxide

  7. Enhanced two-photon fluorescence imaging and therapy of cancer cells via Gold@bridged silsesquioxane nanoparticles.

    PubMed

    Croissant, Jonas; Maynadier, Marie; Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Chaix, Arnaud; Cattoën, Xavier; Wong Chi Man, Michel; Gallud, Audrey; Gary-Bobo, Magali; Garcia, Marcel; Raehm, Laurence; Durand, Jean-Olivier

    2015-01-21

    A two-photon photosensitizer with four triethoxysilyl groups is synthesized through the click reaction. This photosensitizer allows the design of bridged silsesquioxane (BS) nanoparticles through a sol-gel process; moreover, gold core BS shells or BS nanoparticles decorated with gold nanospheres are synthesized. An enhancement of the two-photon properties is noted with gold and the nanoparticles are efficient for two-photon imaging and two-photon photodynamic therapy of cancer cells.

  8. An experimental study of nonclassical effects in two-photon interferometry

    NASA Astrophysics Data System (ADS)

    Liang, Junlin

    Two-photon interferometry is a relatively new field with applications ranging from precise measurements of optical phase shifts to fundamental tests of quantum mechanics. In contrast to conventional single-photon interferometry, two-photon interferometry typically involves measuring correlations between two detectors placed in two different output ports of an interferometer. Of particular interest is two-photon interferometry with entangled photon pairs, in which case it is often possible to observe effects that are not possible with classical fields. Because these entanglement effects are becoming increasingly important in Quantum Information Processing (QIP) applications, there is currently a strong need for further exploration of new ideas, basic physics, and experimental techniques of two-photon interferometry. Contained herein are the results of three new two-photon interferometry experiments using entangled photon pairs produced by a Type-I Parametric Down-Conversion (PDC) source. In the first experiment, we demonstrate a new technique for compensating for two-photon interferometer beamsplitter asymmetries by manipulating the polarization degree of freedom in the system. Roughly speaking, projective polarization measurements are used to re-balance the magnitude of various two-photon amplitudes that were made distinguishable by non-ideal refection and transmission coefficients of a key beamsplitter. In the second experiment, we utilize a short coherence-length continuous-wave (CW) PDC pump laser to explore two-photon interferometry in a new intermediate regime between the more familiar extremal cases which use either a long coherence-length CW pump or an ultra-short pulsed pump laser. These results provide new insight into the role of PDC pump coherence in two-photon interferometry. Finally, we use two-photon interferometry to experimentally investigate entangled "photon holes", which is a new form of entanglement that arises from the correlated absence of

  9. Evaluation of the exothermicity of the chemi-ionization reaction Sm + O → SmO{sup +} + e{sup −}

    SciTech Connect

    Cox, Richard M; Kim, JungSoo; Armentrout, P. B. E-mail: mheaven@emory.edu; Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael C. E-mail: mheaven@emory.edu; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A. E-mail: mheaven@emory.edu; Melko, Joshua J.

    2015-04-07

    The exothermicity of the chemi-ionization reaction Sm + O → SmO{sup +} + e{sup −} has been re-evaluated through the combination of several experimental methods. The thermal reactivity (300–650 K) of Sm{sup +} and SmO{sup +} with a range of species measured using a selected ion flow tube-mass spectrometer apparatus is reported and provides limits for the bond strength of SmO{sup +}, 5.661 eV ≤ D{sub 0}(Sm{sup +}-O) ≤ 6.500 eV. A more precise value is measured to be 5.72{sub 5} ± 0.07 eV, bracketed by the observed reactivity of Sm{sup +} and SmO{sup +} with several species using a guided ion beam tandem mass spectrometer (GIBMS). Combined with the established Sm ionization energy (IE), this value indicates an exothermicity of the title reaction of 0.08 ± 0.07 eV, ∼0.2 eV smaller than previous determinations. In addition, the ionization energy of SmO has been measured by resonantly enhanced two-photon ionization and pulsed-field ionization zero kinetic energy photoelectron spectroscopy to be 5.7427 ± 0.0006 eV, significantly higher than the literature value. Combined with literature bond energies of SmO, this value indicates an exothermicity of the title reaction of 0.14 ± 0.17 eV, independent from and in agreement with the GIBMS result presented here. The evaluated thermochemistry also suggests that D{sub 0}(SmO) = 5.83 ± 0.07 eV, consistent with but more precise than the literature values. Implications of these results for interpretation of chemical release experiments in the thermosphere are discussed.

  10. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  11. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  12. A theoretical investigation of two typical two-photon pH fluorescent probes.

    PubMed

    Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang

    2013-01-01

    Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation.

  13. Long-Term Two-Photon Imaging in Awake Macaque Monkey.

    PubMed

    Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing; Tang, Shiming

    2017-03-08

    Successful application of two-photon imaging with genetic tools in awake macaque monkeys will enable fundamental advances in our understanding of higher cognitive function at the level of molecular and neuronal circuits. Here we report techniques for long-term two-photon imaging in awake macaque monkeys. Using genetically encoded indicators including GCaMP5 and GCaMP6s delivered by AAV2/1 into the visual cortex, we demonstrate that high-quality two-photon imaging of large neuronal populations can be achieved and maintained in awake monkeys for months. Simultaneous intracellular recording and two-photon calcium imaging confirm that fluorescence activity is linearly proportional to neuronal spiking activity across a wide range of firing rates (10 Hz to 150 Hz). By providing two-photon imaging access to cortical neuronal populations at single-cell or single dendritic spine resolution in awake monkeys, the techniques reported can help bridge the use of modern genetic and molecular tools and the study of higher cognitive function.

  14. Molecular engineering of two-photon fluorescent probes for bioimaging applications.

    PubMed

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-22

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  15. Sulfonated aluminum phthalocyanines for two-photon photodynamic cancer therapy: the effect of the excitation wavelength

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, W.; Yu, H. B.; Cheung, N. H.; Chen, J. Y.

    2014-03-01

    Sulfonated aluminum phthalocyanine (AlPcS) is a well-studied photosensitizer which has been widely used in research and in clinical applications of the photodynamic therapy of cancers. Conventionally, one-photon excitation was used, but it was unknown whether two-photon excitation of AlPcS was equally effective. In this study, the two-photon absorption cross sections of AlPcS at near infrared wavelengths were deduced from femtosecond (fs) laser-induced fluorescence. We found that the two-photon absorption cross section of AlPcS was strongly dependent on the excitation wavelength. It was about 19 GM when excited at 800 nm, but grew to 855 GM when excited at 750 nm. The 750 nm fs-laser-induced fluorescence images of AlPcS in human nasopharyngeal carcinoma cells were clearly visible while the corresponding images were very dim when excited at 800 nm. Singlet oxygen production was 13 times higher when excited at 750 nm relative to 800 nm. Our subsequent in vitro experiments showed that 750 nm two-photon excitation with an unfocused fs laser beam damaged cancer cells in a light-dose-dependent manner typical of photodynamic therapy (PDT). The killing at 750 nm was about 9-10 times more efficient than at 800 nm. These results demonstrated for the first time that AlPcS has good potential for two-photon PDT of cancers.

  16. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  17. A multidimensional screening method for the selection of two-photon enhanced fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb; Barnett, Lauren; Rebane, Aleksander; Hughes, Thomas; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhailov, Alexandr

    2014-03-01

    Two-photon excitation of fluorescent proteins (FPs) is widely used in imaging whole organisms or living tissues. Many different FPs are now available but these proteins have only been optimized for their one-photon properties. We have developed a technique for screening entire libraries of E. coli colonies expressing FPs that utilizes multiple wavelengths of linear excitation as well as two-photon excitation. Single mutations in a particular protein that affect one or twophoton properties are easily identified, providing new views of structure/function relationships. An amplified femtosecond Ti:sapphire laser and a spectrally filtered lamp source are used to acquire the fluorescence signals of up to ~1000 E. coli colonies on a standard Petri dish. Automation of the analysis and acquisition of the fluorescent signals makes it feasible to rapidly screen tens of thousands of colonies. In a proof of principle experiment with the commonly used EGFP, we used two rounds of error prone PCR and selection to evolve new proteins with shifted absorption and increased two-photon cross sections at 790nm. This method of screening, coupled with careful measurements of photo bleaching dynamics and two-photon cross sections, should make it possible to optimize a wide variety of fluorescent proteins and biosensors for use in two-photon microscopes.

  18. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  19. Design, synthesis, and characterization of photoinitiators for two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Whitby, Reece; MacMillan, Ryan; Janssens, Stefaan; Raymond, Sebastiampillai; Clarke, Dave; Kay, Andrew; Jin, Jianyong; Simpson, Cather M.

    2016-09-01

    A series of dipolar and quadrupolar two-photon absorption (2PA) photoinitiators (PIs) based around the well-known triphenylamine (TPA) core and tricyanofuran (TCF) acceptors have been prepared for use in two-photon polymerisation (TPP). The synthesised dipolar species are designated as 5 and 7, and the remaining quadrupolar species are 6, 8, 9 and 10. Large two-photon absorption cross-sections (δ2PA) ranging between 333 - 507 GM were measured at 780 nm using the z-scan technique. Fluorescence quantum yields (ΦF) were below 3% across the series when compared to Rhodamine 6G as a reference standard. Finally, TPP tests were conducted on PIs 7 and 8 to assess their ability to initiate the polymerisation of acrylate monomers using an 800 nm femtosecond Ti:Sapphire laser system.

  20. Selective two-photon excitation of a vibronic state by correlated photons.

    PubMed

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  1. Fluorescence imaging of single molecules and photosynthetic membranes with two-photon excitation

    SciTech Connect

    Sanchez, E.J.; Novotny, L.; Xie, X.S.

    1997-12-31

    We report the imaging of single-molecule fluorescence induced by two-photon excitation in ambient conditions. Using an inverted fluorescence microscope, we obtained the two-photon images of different single fluorophores (Rhodamine B, Sulforhodamine 101, Coumarin 535 on poly-methyl methacrylate films) and biological membrane fragments by Faster scanning the sample with respect to a diffraction limited focus of a mode-locked Ti: sapphire laser beam. The signal to background ratio was as high as 50:1 and the full width at half maximum (250nm) of a single-molecule peak was significantly shorter than that for one photon excitation. With its high sensitivity and simplicity, the two-photon experiment offers a valuable approach for spectroscopic studies on individual immobilized molecules.

  2. Two-photon Calcium Imaging in Mice Navigating a Virtual Reality Environment

    PubMed Central

    Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B.

    2014-01-01

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior1-6. Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice. PMID:24637961

  3. 420nm alkali blue laser based on two-photon absorption

    NASA Astrophysics Data System (ADS)

    Tan, Yan-nan; Li, Yi-min; Liu, Tong; Gong, Fa-quan; Jia, Chun-yan; Hu, Shu; Gai, Bao-dong; Guo, Jing-wei; Liu, Wan-fa

    2015-02-01

    Based on two-photon absorption, a 420nm blue laser of alkali Rb vapor was demonstrated, and a dye laser was used as the pumping laser. Utilizing the energy level structure of Rb atom, lasering mechanism and two-photon absorption process are analyzed. Absorbing two 778.1nm photons, Rb atoms were excited from 52 S1/2 to 52 D5/2, then relaxed to 62 P3/2 with mid infrared photon radiation. 420nm blue laser was achieved by the transition 62 P3/2-->52 S1/2. To improve efficiency of the blue laser, two-photon resonant excitation pumped alkali vapor blue lasers are proposed, which will be good beam quality, high efficiency and scalable blue lasers. The development of diode pumped alkali vapor blue laser is expected.

  4. Long-term two-photon neuroimaging with a photostable AIE luminogen.

    PubMed

    Qian, Jun; Zhu, Zhenfeng; Leung, Chris Wai Tung; Xi, Wang; Su, Liling; Chen, Guangdi; Qin, Anjun; Tang, Ben Zhong; He, Sailing

    2015-04-01

    In neuroscience, fluorescence labeled two-photon microscopy is a promising tool to visualize ex vivo and in vivo tissue morphology, and track dynamic neural activities. Specific and highly photostable fluorescent probes are required in this technology. However, most fluorescent proteins and organic fluorophores suffer from photobleaching, so they are not suitable for long-term imaging and observation. To overcome this problem, we utilize tetraphenylethene-triphenylphosphonium (TPE-TPP), which possesses aggregation-induced emission (AIE) and two-photon fluorescence characteristics, for neuroimaging. The unique AIE feature of TPE-TPP makes its nanoaggregates resistant to photobleaching, which is useful to track neural cells and brain-microglia for a long period of time. Two-photon fluorescence of TPE-TPP facilitates its application in deep in vivo neuroimaging, as demonstrated in the present paper.

  5. In vivo two-photon calcium imaging in the visual system.

    PubMed

    Ohki, Kenichi; Reid, R Clay

    2014-04-01

    Two-photon imaging of calcium-sensitive dyes in vivo has become a common tool used by neuroscientists, largely because of the development of bolus loading techniques, which can label every neuron in a local circuit with calcium-sensitive dye. Like multielectrode recordings, two-photon imaging paired with bolus loading provides a method for monitoring many neurons at once, but, in addition, it provides a means for determining the precise location of every neuron. Thus, it is an ideal method for studying the fine-scale functional architecture of the cortex and guiding the experimenter to individual neurons that can be targeted for further anatomical study. Two-photon calcium imaging enables study of the fine structure of functional maps in the visual cortex in cats and rodents. In mice, it can allow the characterization of specific cell types when paired with transgenic or retrograde labeling.

  6. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    PubMed Central

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  7. Two-photon patterning of a polymer containing Y-shaped azochromophores

    SciTech Connect

    Ambrosio, A.; Orabona, E.; Maddalena, P.; Camposeo, A.; Polo, M.; Neves, A. A. R.; Pisignano, D.; Carella, A.; Borbone, F.; Roviello, A.

    2009-01-05

    We report on the patterning of the free surface of azo-based polymer films by means of mass migration driven by one- or two-photon absorption. A symmetric donor-acceptor-donor structured Y-shaped azochromophore is specifically synthesized to enhance two-photon absorption in the polymer. The exposure of the polymer film to a focused laser beam results in light-driven mass migration for both one- and two-photon absorptions. Features with subdiffraction resolution (250 nm) are realized and the patterning dynamics is investigated as a function of the light dose. Furthermore, functional photonic structures, such as diffraction gratings with periods ranging between 0.5 and 2.0 {mu}m, have been realized.

  8. Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Silva, D. L.; De Boni, L.; Correa, D. S.; Costa, S. C. S.; Hidalgo, A. A.; Zilio, S. C.; Canuto, S.; Mendonca, C. R.

    2012-05-01

    Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects.

  9. Monte carlo analysis of two-photon fluorescence imaging through a scattering medium.

    PubMed

    Blanca, C M; Saloma, C

    1998-12-01

    The behavior of two-photon fluorescence imaging through a scattering medium is analyzed by use of the Monte Carlo technique. The axial and transverse distributions of the excitation photons in the focused Gaussian beam are derived for both isotropic and anisotropic scatterers at different numerical apertures and at various ratios of the scattering depth with the mean free path. The two-photon fluorescence profiles of the sample are determined from the square of the normalized excitation intensity distributions. For the same lens aperture and scattering medium, two-photon fluorescence imaging offers a sharper and less aberrated axial response than that of single-photon confocal fluorescence imaging. The contrast in the corresponding transverse fluorescence profile is also significantly higher. Also presented are results comparing the effects of isotropic and anisotropic scattering media in confocal reflection imaging. The convergence properties of the Monte Carlo simulation are also discussed.

  10. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively.

  11. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    SciTech Connect

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Anokhin, K. V.; Kilin, S. Ya.; Sakoda, K.; Zheltikov, A. M.

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  12. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    PubMed Central

    Moretti, Claudio; Antonini, Andrea; Bovetti, Serena; Liberale, Carlo; Fellin, Tommaso

    2016-01-01

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain. PMID:27867707

  13. Robust spatial-polarization hyperentanglement distribution of two-photon systems against collective noise

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-03-01

    Hyperentanglement is a significant resource for high-capacity quantum communication. Here we present a robust spatial-polarization hyperentanglement distribution scheme for two-photon systems. The error on the polarization states of two-photon systems transmitted from two paths can be corrected resorting to the robust time-bin entanglement which suffers little from the channel noise. The spatial bit-flip error takes place with a very small probability and the spatial phase-flip error can be precluded by adjusting the path-length of spatial modes. Using this scheme, the two parties in quantum communication can share a maximally hyperentangled state of two-photon systems in a deterministic way, which will improve the efficiency of quantum communication largely.

  14. Excited state two photon absorption of a charge transfer radical dimer in the near infrared.

    PubMed

    Schiccheri, Nicola; Meneghetti, Moreno

    2005-06-02

    Nonlinear transmission measurements of a solution of radical dimers of tetramethyl-tetrathiafulvalene, (TMTTF+)2, recorded with 9 ns laser pulses at 1064 nm are reported and interpreted on the basis of a multiphoton absorption process. One finds that the process can be interpreted with a sequence of three photon absorption, the first being a one photon absorption related to the intermolecular charge transfer process characteristic of the dimers and the second a two photon absorption from the excited state created with the first process. A model calculation allows one to obtain the value of the two photon absorption cross section which is found to be several orders of magnitude larger than those usually found for two photon absorbing systems excited from the ground state. These results show the importance of an excited-state population for obtaining large nonlinear optical responses.

  15. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm

    SciTech Connect

    Fisher, W.G.; Wachter, E.A.; Lytle, F.E.; Armas, M.; Seaton, C.

    1998-04-01

    Passively mode-locked titanium:sapphire (Ti:S) lasers are capable of generating a high-frequency train of transform-limited subpico-second pulses, producing peak powers near 10{sup 5}thinspW at moderate average powers. The low energy per pulse ({lt}20 nJ) permits low fluence levels to be maintained in tightly focused beams, reducing the possibility of saturating fluorescence transitions. These properties, combined with a wavelength tunability from approximately 700 nm to 1 {mu}m, provide excellent opportunities for studying simultaneous two-photon excitation (TPE). However, pulse formation is very sensitive to a variety of intracavity parameters, including group velocity dispersion compensation, which leads to wavelength-dependent pulse profiles as the wavelength is scanned. This wavelength dependence can seriously distort band shapes and apparent peak heights during collection of two-photon spectral data. Since two-photon excited fluorescence is proportional to the product of the peak and average powers, it is not possible to obtain source-independent spectra by using average power correction schemes alone. Continuous-wave, single-mode lasers can be used to generate source-independent two-photon data, but these sources are four to five orders of magnitude less efficient than the mode-locked Ti:S laser and are not practical for general two-photon measurements. Hence, a continuous-wave, single-mode Ti:S laser has been used to collect a source-independent excitation spectrum for the laser dye Coumarin 480. This spectrum may be used to correct data collected with multimode sources; this possibility is demonstrated by using a simple ratiometric method to collect accurate TPE spectra with the mode-locked Ti:S laser. An approximate value of the two-photon cross section for Coumarin 480 is also given. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  16. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    PubMed

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications.

  17. Frustrated FRET for high-contrast high-resolution two-photon imaging.

    PubMed

    Xu, Fang; Wei, Lu; Chen, Zhixing; Min, Wei

    2013-06-17

    Two-photon fluorescence microscopy has become increasingly popular in biomedical research as it allows high-resolution imaging of thick biological specimen with superior contrast and penetration than confocal microscopy. However, two-photon microscopy still faces two fundamental limitations: 1) image-contrast deterioration with imaging depth due to out-of-focus background and 2) diffraction-limited spatial resolution. Herein we propose to create and detect high-order (more than quadratic) nonlinear signals by harnessing the frustrated fluorescence resonance energy transfer (FRET) effect within a specially designed donor-acceptor probe pair. Two distinct techniques are described. In the first method, donor fluorescence generated by a two-photon laser at the focus is preferentially switched on and off by a modulated and focused one-photon laser beam that is able to block FRET via direct acceptor excitation. The resulting image, constructed from the enhanced donor fluorescence signal, turns out to be an overall three-photon process. In the second method, a two-photon laser at a proper wavelength is capable of simultaneously exciting both the donor and the acceptor. By sinusoidally modulating the two-photon excitation laser at a fundamental frequency ω, an overall four-photon signal can be isolated by demodulating the donor fluorescence at the third harmonic frequency 3ω. We show that both the image contrast and the spatial resolution of the standard two-photon fluorescence microscopy can be substantially improved by virtue of the high-order nonlinearity. This frustrated FRET approach represents a strategy that is based on extracting the inherent nonlinear photophysical response of the specially designed imaging probes.

  18. TWO-PHOTON TISSUE IMAGING: SEEING THE IMMUNE SYSTEM IN A FRESH LIGHT

    PubMed Central

    Cahalan, Michael D.; Parker, Ian; Wei, Sindy H.; Miller, Mark J.

    2009-01-01

    Many lymphocyte functions, such as antigen recognition, take place deep in densely populated lymphoid organs. Because direct in vivo observation was not possible, the dynamics of immune-cell interactions have been inferred or extrapolated from in vitro studies. Two-photon fluorescence excitation uses extremely brief (<1 picosecond) and intense pulses of light to ‘see’ directly into living tissues, to a greater depth and with less phototoxicity than conventional imaging methods. Two-photon microscopy, in combination with newly developed indicator molecules, promises to extend single-cell approaches to the in vivo setting and to reveal in detail the cellular collaborations that underlie the immune response. PMID:12415310

  19. Global analysis of proton elastic form factor data with two-photon exchange corrections

    SciTech Connect

    J. Arrington; W. Melnitchouk; J. A. Tjon

    2007-09-01

    We use the world's data on elastic electron-proton scattering and calculations of two-photon exchange effects to extract corrected values of the proton's electric and magnetic form factors over the full Q^2 range of the existing data. Our analysis combines the corrected Rosenbluth cross section and polarization transfer data, and is the first extraction of G_Ep and G_Mp including explicit two-photon exchange corrections and their associated uncertainties. In addition, we examine the angular dependence of the corrected cross sections, and discuss the possible nonlinearities of the cross section as a function of epsilon.

  20. Non-degenerate two photon absorption enhancement for laser dyes by precise lock-in detection

    SciTech Connect

    Xue, B.; Katan, C.; Bjorgaard, J. A.; Kobayashi, T.

    2015-12-15

    This study demonstrates a measurement system for a non-degenerate two-photon absorption (NDTPA) spectrum. The NDTPA light sources are a white light super continuum beam (WLSC, 500 ∼ 720 nm) and a fundamental beam (798 nm) from a Ti:Sapphire laser. A reliable broadband NDTPA spectrum is acquired in a single-shot detection procedure using a 128-channel lock-in amplifier. The NDTPA spectra for several common laser dyes are measured. Two photon absorption cross section enhancements are found in the experiment and validated by theoretical calculation for all of the chromophores.

  1. Two-photon exchange correction to 2 S -2 P splitting in muonic 3He ions

    NASA Astrophysics Data System (ADS)

    Carlson, Carl E.; Gorchtein, Mikhail; Vanderhaeghen, Marc

    2017-01-01

    We calculate the two-photon exchange correction to the Lamb shift in muonic 3He ions within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron-3He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2 S state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

  2. Two-photon photoemission from metals induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.; Smith, W. L.; Bloembergen, N.

    1977-01-01

    We have measured the two-photon photoemission current density from tungsten, tantalum, and molybdenum when irradiated by 532-nm wavelength radiation. This wavelength was produced by the second-harmonic radiation of single picosecond laser pulses from a mode-locked neodymium-doped yttrium-aluminum-garnet laser. The results are interpreted in terms of both a simple temperature-independent two-photon photoemission effect and a generalization of the Fowler-DuBridge theory of photoemission. The laser polarization dependence of the emitted current is also reported.

  3. Measurement of Electron Beam Polarization from Unstrained Bulk GaAs via Two Photon Photoemission

    SciTech Connect

    J L McCarter, T J Gay, J Hansknecht, M Poelker, M L Stutzman

    2011-06-01

    This paper describes measurements of the beam polarization and quantum efficiency for photoemission using two-photon excitation from unstrained bulk GaAs illuminated with pulsed, high intensity 1560nm laser light. Quantum efficiency is linearly proportional to 1560nm peak laser intensity, which was varied in three independent ways, indicating that the emitted electrons are promoted from the valence to the conduction band via two-photon absorption. Beam polarization was measured using a microMott polarimeter, with a value of 16.8(4)% polarization at 1560nm, which is roughly half the measured value of 33.4(8)% using 778 nm light.

  4. New insight in boron chemistry: Application in two-photon absorption

    NASA Astrophysics Data System (ADS)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  5. Understanding the Two-Photon Absorption Spectrum of PE2 Platinum Acetylide Complex

    DTIC Science & Technology

    2014-07-09

    AFRL-RX-WP-JA-2014-0188 UNDERSTANDING THE TWO-PHOTON ABSORPTION SPECTRUM OF PE2 PLATINUM ACETYLIDE COMPLEX (POSTPRINT) Thomas M...UNDERSTANDING THE TWO-PHOTON ABSORPTION SPECTRUM OF PE2 PLATINUM ACETYLIDE COMPLEX (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER...on the two-absorption crosssection spectrum of trans-Pt(PBu3)2 (C≡C−C6H4−C≡C−C6H5)2 (PE2) platinum acetylide complex employing the femtosecond

  6. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  7. Photolysis of a peptide with N-peptidyl-7-nitroindoline units using two-photon absorption

    PubMed Central

    Hatch, Kevin A.; Ornelas, Alfredo; Williams, Kaitlyn N.; Boland, Thomas; Michael, Katja; Li, Chunqiang

    2016-01-01

    N-acyl-7-nitroindolines have been used as caged compounds to photorelease active molecules by a one- or two-photon excitation mechanism in biological systems. Here, we report the photolysis of a polypeptide that contains 7-nitroindoline units as linker moieties in its peptide backbone for potential materials engineering applications. Upon two-photon excitation with femtosecond laser light at 710 nm the photoreactive amide bond in N-peptidyl-7-nitroindolines is cleaved rendering short peptide fragments. Thus, this photochemical process changes the molecular composition at the laser focal volume. Gel modifications of this peptide can potentially be used for three-dimensional microstructure fabrication. PMID:27896004

  8. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization

    NASA Astrophysics Data System (ADS)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine

    2015-04-01

    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  9. Full two-photon down-conversion of a single photon

    NASA Astrophysics Data System (ADS)

    Sánchez-Burillo, E.; Martín-Moreno, L.; García-Ripoll, J. J.; Zueco, D.

    2016-11-01

    We demonstrate, both numerically and analytically, that it is possible to deterministically generate two photons from one and only one photon. We characterize the output two-photon field and make our calculations close to reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly coupled to a one-dimensional waveguide. We show that almost perfect down-conversion, with efficiency over 99 % , is reachable using state-of-the-art waveguide QED architectures such as photonic crystals or superconducting circuits. In particular, we sketch an implementation in circuit QED, where the three-level atom is a transmon.

  10. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    PubMed

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  11. Axial range of conjugate adaptive optics in two-photon microscopy.

    PubMed

    Paudel, Hari P; Taranto, John; Mertz, Jerome; Bifano, Thomas

    2015-08-10

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  12. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy

    PubMed Central

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-01-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo. PMID:27446677

  13. Theory of coherent two-photon NMR: Standard-basis operators and coherent averaging

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez

    1980-05-01

    Theory of the two-photon coherent transitions for the multilevel spin system is developed by using the coherent averaging of the time-evolution operator and the spin description by the standard-basis operators. The employed formalism provides a clear picture of the interactions which cause the multi-quantum transitions and make possible to evaluate not only the two-photon but also the multiphoton transitions. The theory has been applied to the quadrupole perturbed spin-systems with s = 1 and s = {3}/{2} where the effective double-quantum rf field has been evaluated.

  14. Measurement of the two-photon absorption cross section by means of femtosecond thermal lensing.

    PubMed

    Rodriguez, Luis; Chiesa, Matteo

    2011-07-01

    We present a variation of the single-beam thermal lensing experiment to determine the two-photon absorption cross sections of classical fluorophores. The approach is based on comparison of two thermal lensing signals simultaneously induced by a one- and two-photon absorption process from a high-repetition-rate femtosecond laser system. As a consequence of this comparison, a simplified expression independent of the several experimental parameters is obtained. Additionally, because of the low incident power levels required, undesirable optical effects such as Kerr or Raman scattering are avoided. Our experimental results agree well with those recently published for luminescent methods, validating the approach.

  15. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  16. Two-photon confocal microscopy in the study of the volume characteristics of semiconductors

    NASA Astrophysics Data System (ADS)

    Kalinushkin, V. P.; Uvarov, O. V.

    2016-12-01

    Zn-Se crystals are used to analyze prospects for application of two-photon confocal microscopy in the study of plane and volume interband and impurity luminescence in semiconductors. Such maps can be formed with a depth step and planar spatial resolution of several micrometers at distances of up to 1 mm from the surface. The method is used to detect luminescence-active inhomogeneities in crystals and study their structure and luminescence characteristics. Prospects for the application of the two-photon confocal microscopy in the study of direct-band-semiconductors and materials of the fourth group are discussed.

  17. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue

    PubMed Central

    Ingaramo, Maria; York, Andrew G.; Wawrzusin, Peter; Milberg, Oleg; Hong, Amy; Weigert, Roberto; Shroff, Hari; Patterson, George H.

    2014-01-01

    Multifocal structured illumination microscopy (MSIM) provides a twofold resolution enhancement beyond the diffraction limit at sample depths up to 50 µm, but scattered and out-of-focus light in thick samples degrades MSIM performance. Here we implement MSIM with a microlens array to enable efficient two-photon excitation. Two-photon MSIM gives resolution-doubled images with better sectioning and contrast in thick scattering samples such as Caenorhabditis elegans embryos, Drosophila melanogaster larval salivary glands, and mouse liver tissue. PMID:24706872

  18. Saturated two-photon excitation fluorescence microscopy with core-ring illumination.

    PubMed

    Oketani, Ryosuke; Doi, Atsushi; Smith, Nicholas I; Nawa, Yasunori; Kawata, Satoshi; Fujita, Katsumasa

    2017-02-01

    We demonstrated resolution improvement in two-photon excitation microscopy by combining saturated excitation (SAX) of fluorescence and pupil manipulation. We theoretically estimated the resolution improvement and the sidelobe effect in the point spread function with various pupil designs and found that the combination of SAX and core-ring illumination can effectively enhance the spatial resolution in 3D and suppress sidelobe artifacts. The experimental demonstration shows that the proposed technique is effective for observation with a depth of 100 μm in a tissue phantom and can be applied to 3D observations of tissue samples with higher spatial resolution than conventional two-photon excitation microscopy.

  19. Full band structure calculation of two-photon indirect absorption in bulk silicon

    SciTech Connect

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-03-28

    Degenerate two-photon indirect absorption in silicon is an important limiting effect on the use of silicon structures for all-optical information processing at telecommunication wavelengths. We perform a full band structure calculation to investigate two-photon indirect absorption in bulk silicon, using a pseudopotential description of the energy bands and an adiabatic bond charge model to describe phonon dispersion and polarization. Our results agree well with some recent experimental results. The transverse acoustic/optical phonon-assisted processes dominate.

  20. Polarization phenomena in multiphoton ionization of atoms.

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photo-electron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  1. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  2. High-fidelity hydrophilic probe for two-photon fluorescence lysosomal imaging.

    PubMed

    Wang, Xuhua; Nguyen, Dao M; Yanez, Ciceron O; Rodriguez, Luis; Ahn, Hyo-Yang; Bondar, Mykhailo V; Belfield, Kevin D

    2010-09-08

    The synthesis and characterization of a novel two-photon-absorbing fluorene derivative, LT1, selective for the lysosomes of HCT 116 cancer cells, is reported. Linear and nonlinear photophysical and photochemical properties of the probe were investigated to evaluate the potential of the probe for two-photon fluorescence microscopy (2PFM) lysosomal imaging. The cytotoxicity of the probe was investigated to evaluate the potential of using this probe for live two-photon fluorescence biological imaging applications. Colocalization studies of the probe with commercial Lysotracker Red in HCT 116 cells demonstrated the specific localization of the probe in the lysosomes with an extremely high colocalization coefficient (0.96). A figure of merit was introduced to allow comparison between probes. LT1 has a number of properties that far exceed those of commercial lysotracker probes, including higher two-photon absorption cross sections, good fluorescence quantum yield, and, importantly, high photostability, all resulting in a superior figure of merit. 2PFM was used to demonstrate lysosomal tracking with LT1.

  3. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  4. Mitigating thermal mechanical damage potential during two-photon dermal imaging.

    PubMed

    Masters, Barry R; So, Peter T C; Buehler, Christof; Barry, Nicholas; Sutin, Jason D; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Two-photon excitation fluorescence microscopy allows in vivo high-resolution imaging of human skin structure and biochemistry with a penetration depth over 100 microm. The major damage mechanism during two-photon skin imaging is associated with the formation of cavitation at the epidermal-dermal junction, which results in thermal mechanical damage of the tissue. In this report, we verify that this damage mechanism is of thermal origin and is associated with one-photon absorption of infrared excitation light by melanin granules present in the epidermal-dermal junction. The thermal mechanical damage threshold for selected Caucasian skin specimens from a skin bank as a function of laser pulse energy and repetition rate has been determined. The experimentally established thermal mechanical damage threshold is consistent with a simple heat diffusion model for skin under femtosecond pulse laser illumination. Minimizing thermal mechanical damage is vital for the potential use of two-photon imaging in noninvasive optical biopsy of human skin in vivo. We describe a technique to mitigate specimen thermal mechanical damage based on the use of a laser pulse picker that reduces the laser repetition rate by selecting a fraction of pulses from a laser pulse train. Since the laser pulse picker decreases laser average power while maintaining laser pulse peak power, thermal mechanical damage can be minimized while two-photon fluorescence excitation efficiency is maximized.

  5. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  6. Is the σ(600) a glueball? Two photon reactions can tell us

    NASA Astrophysics Data System (ADS)

    Pennington, M. R.

    2001-08-01

    Minkowski and Ochs have recently argued that the small two photon coupling of a conjectured σ(600) is so small that it is likely to be a glueball. We ask whether this can be so or whether it is simply gauge invariance that produces the observed low mass suppression?

  7. Two-photon imaging and spectroscopy of fresh human colon biopsies

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sturiale, A.; Nesi, G.; Tonelli, F.; Pavone, F. S.

    2012-03-01

    Two-photon fluorescence (TPEF) microscopy is a powerful tool to image human tissues up to 200 microns depth without any exogenously added probe. TPEF can take advantage of the autofluorescence of molecules intrinsically contained in a biological tissue, as such NADH, elastin, collagen, and flavins. Two-photon microscopy has been already successfully used to image several types of tissues, including skin, muscles, tendons, bladder. Nevertheless, its usefulness in imaging colon tissue has not been deeply investigated yet. In this work we have used combined two-photon excited fluorescence (TPEF), second harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two-photon emission detection (MTPE) to investigate different kinds of human ex-vivo fresh biopsies of colon. Morphological and spectroscopic analyses allowed to characterize both healthy mucosa, polyp, and colon samples in a good agreement with common routine histology. Even if further analysis, as well as a more significant statistics on a large number of samples would be helpful to discriminate between low, mild, and high grade cancer, our method is a promising tool to be used as diagnostic confirmation of histological results, as well as a diagnostic tool in a multiphoton endoscope or colonoscope to be used in in-vivo imaging applications.

  8. Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes.

    PubMed

    Huang, Huaiyi; Yang, Liang; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Diao, JiaJie; Liu, Jiankang; Ji, Liangnian; Long, Jiangang; Chao, Hui

    2016-03-01

    Mitochondrial fission and fusion control the shape, size, number, and function of mitochondria in the cells of organisms from yeast to mammals. The disruption of mitochondrial fission and fusion is involved in severe human diseases such as Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Agents that can real-time track the mitochondrial dynamics are of great importance. However, the short excitation wavelengths and rapidly photo-bleaching properties of commercial mitochondrial dyes render them unsuitable for tracking mitochondrial dynamics. Thus, mitochondrial targeting agents that exhibit superior photo-stability under continual light irradiation, deep tissue penetration and at intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds employ low-energy near-infrared light and have emerged as a non-invasive tool for real-time cell imaging. Here, cyclometalated Ir(III) complexes (Ir1-Ir5) are demonstrated as one- and two-photon phosphorescent probes for the real-time imaging and tracking of mitochondrial fission and fusion. The results indicate that Ir2 is well suited for two-photon phosphorescent tracking of mitochondrial fission and fusion in living cells and in Caenorhabditis elegans (C. elegans). This study provides a practical use for mitochondrial targeting two-photon phosphorescent Ir(III) complexes.

  9. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  10. Carbon quantum dot-NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors.

    PubMed

    Fowley, Colin; McHale, Anthony P; McCaughan, Bridgeen; Fraix, Aurore; Sortino, Salvatore; Callan, John F

    2015-01-04

    We report a conjugate between carbon quantum dots and a NO photoreleaser able to photogenerate the anticancer NO radical via an energy transfer mechanism. This nanohybrid proved toxic to cancer cells in vitro and significantly reduced tumor volume in mice bearing human xenograft BxPC-3 pancreatic tumors upon two-photon excitation with the highly biocompatible 800 nm light.

  11. Inclusive D*-meson production in two-photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    Sokolov, A. A.

    2002-06-01

    The inclusive production of D*+ is measured by DELPHI in photon-photon collisions at LEP-II energies. The measured cross sections are compatible with the QCD calculations having the contributions from the resolved processes sensitive to the gluon density in photon. The total cross section of the charm quark production in two-photon collisions at LEP-II energies is estimated.

  12. Specific features of two-photon optical nutation in a system of biexcitons in semiconductors

    SciTech Connect

    Khadzhi, P. I. Vasil'ev, V. V.

    2007-05-15

    Specific features of two-photon nutation in a system of coherent biexcitons in CuCl-type semiconductors are studied. It is shown that, depending on the parameters of the system, nutation represents a process of periodic conversion of photon pairs into biexcitons and vice versa. The possibility of phase control of optical nutation is predicted.

  13. Degenerate two-photon absorption in all-trans retinal: nonlinear spectrum and theoretical calculations.

    PubMed

    Vivas, M G; Silva, D L; Misoguti, L; Zaleśny, R; Bartkowiak, W; Mendonca, C R

    2010-03-18

    In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal in ethanol employing the Z-scan technique with femtosecond pulses. The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and a peak at 790 nm. We attribute the 2PA band to the mixing of states (1)B(u)(+)-like and |S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to |S(1)>, |S(2)> ("(1)B(u)(+)"), |S(3)>, and |S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.

  14. Imaging marine virus CroV and its host Cafeteria roenbergensis with two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Chakraborty, Sayan; Sun, Wenqing; Aghvami, Seyedmohammadali; Fischer, Matthias G.; Qian, Wei; Xiao, Chuan; Li, Chunqiang

    2014-02-01

    We use two-photon microscopy to monitor the infection process of marine zooplankton, Cafeteria roenbergensis (C.roenbergensis), by Cafeteria roenbergensis virus (CroV), a giant DNA virus named after its host. Here, we image C.roenbergensis in culture by two-photon excited NADH autofluorescence at video-rate (30 frame/s), and the movement of C.roenbergensis is recorded in live videos. Moreover, CroV is stained with DNA dye SYBR gold and recorded simultaneously with this two-photon microscope. We observed the initial infection moment with this method. The result demonstrates the potential use of two-photon microscopy to investigate the fast dynamic interaction between C.roenbergensis with virus CroV. After catching this initial moment, we will freeze the sample in liquid nitrogen for cryo-electron microscopy (EM) study to resolve the virus-host interaction at molecular level. The long-term goal is to study similar fast moving pathogen-host interaction process which could lead to important medical applications.

  15. Theory of two-photon interactions with broadband down-converted light and entangled photons

    NASA Astrophysics Data System (ADS)

    Dayan, Barak

    2007-10-01

    When two-photon interactions are induced by down-converted light with a bandwidth that exceeds the pump bandwidth, they can obtain a behavior that is pulselike temporally, yet spectrally narrow. At low photon fluxes this behavior reflects the time and energy entanglement between the down-converted photons. However, two-photon interactions such as two-photon absorption (TPA) and sum-frequency generation (SFG) can exhibit such a behavior even at high power levels, as long as the final state (i.e., the atomic level in TPA, or the generated light in SFG) is narrow-band enough. This behavior does not depend on the squeezing properties of the light, is insensitive to linear losses, and has potential applications. In this paper we describe analytically this behavior for traveling-wave down conversion with continuous or pulsed pumping, both for high- and low-power regimes. For this we derive a quantum-mechanical expression for the down-converted amplitude generated by an arbitrary pump, and formulate operators that represent various two-photon interactions induced by broadband light. This model is in excellent agreement with experimental results of TPA and SFG with high-power down-converted light and with entangled photons [Dayan , Phys. Rev. Lett. 93, 023005 (2004); 94, 043602 (2005); Pe’er , ibid. 94, 073601 (2005)].

  16. Two-photon upconversion affected by intermolecule correlations near metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We investigate an efficient two-photon upconversion process in more than one molecule coupled to an optical antenna. In the previous paper [Y. Osaka et al., Phys. Rev. Lett. 112, 133601 (2014), 10.1103/PhysRevLett.112.133601], we considered the two-photon upconversion process in a single molecule within one-dimensional input-output theory and revealed that controlling the antenna-molecule coupling enables the efficient upconversion with radiative loss in the antenna suppressed. In this paper, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the upconversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the intermolecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon upconversion.

  17. Simultaneous two-photon activation of type-I photodynamic therapy agents.

    PubMed

    Fisher, W G; Partridge, W P; Dees, C; Wachter, E A

    1997-08-01

    The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote nonresonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4'-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamaging near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage.

  18. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  19. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones

    PubMed Central

    Sharma, Robin; Schwarz, Christina; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not well understood in primates. Methods We developed a two-photon fluorescence adaptive optics scanning light ophthalmoscope dedicated to in vivo imaging in anesthetized macaques. Using pulsed light at 730 nm, two-photon fluorescence was captured from rods and cones during light and dark adaptation through the eye's pupil. Results The fluorescence from rods and cones increased with light exposure but at different rates. During dark adaptation, autofluorescence declined, with cone autofluorescence decreasing approximately 4 times faster than from rods. Rates of autofluorescence decrease in rods and cones were approximately 4 times faster than their respective rates of photopigment regeneration. Also, subsets of sparsely distributed cones were less fluorescent than their neighbors immediately following bleach at 565 nm and they were comparable with the S cone mosaic in density and distribution. Conclusions Although other molecules could be contributing, we posit that these fluorescence changes are mediated by products of the retinoid cycle. In vivo two-photon ophthalmoscopy provides a way to monitor noninvasively stages of the retinoid cycle that were previously inaccessible in the living primate eye. This can be used to assess objectively photoreceptor function in normal and diseased retinas. PMID:26903225

  20. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].

    PubMed

    Zhao, Feng-Ying; Wu, Hong-Xin; Chen, Die-Yan; Ma, Wan-Yun

    2014-07-01

    As an optical microscope with high resolution, two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples. Compared with confocal laser scanning microscope, TPE fluorescence microscope provides a deeper detecting depth. In spite of that, the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed. Mouse oocytes with a large diameter, which play an important role in clinical and biological fields, have obvious absorption and scattering effects. In the present paper, we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes. Using volume as a parameter, the attenuation degree of these chromosomes was also studied. The result of our data suggested that there exists a severe axial intensity loss in two-photon microscopic images of mouse oocytes due to the absorption and scattering effects. It is necessary to make compensation for these images of mouse oocyte chromosomes obtained from two-photon microscopic system. It will be specially needed in studying the quantitative three-dimensional information of mouse oocytes.

  1. Two-photon-state generation via four-wave mixing in optical fibers

    SciTech Connect

    Chen Jun; Li Xiaoying; Kumar, Prem

    2005-09-15

    A quantum theory of two-photon-state generation via four-wave mixing in optical fibers is studied, with emphasis on the case where the pump is a classical, narrow (picosecond-duration) pulse. One of the experiments performed in our lab is discussed and analyzed. Numerical predictions from the theory are shown to be in good agreement with the experimental results.

  2. A cysteamine-selective two-photon fluorescent probe for ratiometric bioimaging.

    PubMed

    Sarkar, Avik R; Heo, Cheol Ho; Kim, Eunjin; Lee, Hyo Won; Singh, Hardev; Kim, Jeong Jin; Kang, Hyuk; Kang, Chulhun; Kim, Hwan Myung

    2015-02-11

    We report a two-photon fluorescent probe for ratiometric imaging of cysteamine in situ. This probe can detect the levels of endogenous cysteamine with statistical significance in live cells and brain hippocampal tissues, revealing that cysteamine is localized mainly in the perikaria of the pyramidal neurons and the granule cells.

  3. Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy

    PubMed Central

    Barnard, Edward S.; Hoke, Eric T.; Connor, Stephen T.; Groves, James R.; Kuykendall, Tevye; Yan, Zewu; Samulon, Eric C.; Bourret-Courchesne, Edith D.; Aloni, Shaul; Schuck, P. James; Peters, Craig H.; Hardin, Brian E.

    2013-01-01

    Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10× and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation. PMID:23807197

  4. Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy.

    PubMed

    Barnard, Edward S; Hoke, Eric T; Connor, Stephen T; Groves, James R; Kuykendall, Tevye; Yan, Zewu; Samulon, Eric C; Bourret-Courchesne, Edith D; Aloni, Shaul; Schuck, P James; Peters, Craig H; Hardin, Brian E

    2013-01-01

    Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10× and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation.

  5. Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-02-01

    In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.

  6. Stepwise Two-Photon-Induced Fast Photoswitching via Electron Transfer in Higher Excited States of Photochromic Imidazole Dimer.

    PubMed

    Kobayashi, Yoichi; Katayama, Tetsuro; Yamane, Takuya; Setoura, Kenji; Ito, Syoji; Miyasaka, Hiroshi; Abe, Jiro

    2016-05-11

    Stepwise two-photon excitations have been attracting much interest because of their much lower power thresholds compared with simultaneous two-photon processes and because some stepwise two-photon processes can be initiated by a weak incoherent excitation light source. Here we apply stepwise two-photon optical processes to the photochromic bridged imidazole dimer, whose solution instantly changes color upon UV irradiation and quickly reverts to the initial color thermally at room temperature. We synthesized a zinc tetraphenylporphyrin (ZnTPP)-substituted bridged imidazole dimer, and wide ranges of time-resolved spectroscopic studies revealed that a ZnTPP-linked bridged imidazole dimer shows efficient visible stepwise two-photon-induced photochromic reactions upon excitation at the porphyrin moiety. The fast photoswitching property combined with stepwise two-photon processes is important not only for the potential for novel photochromic materials that are sensitive to the incident light intensity but also for fundamental photochemistry using higher excited states.

  7. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  8. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye

    PubMed Central

    Sharma, Robin; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. Methods Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. Results All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. Conclusions This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes. PMID:26903224

  9. Two-photon photoacoustics ultrasound measurement by a loss modulation technique

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Hung; Chang, Chieh-Feng; Cheng, Yu-Hsiang; Sun, Chi-Kuang

    2013-03-01

    In this work, we investigated the principle of the two-photon absorption (TPA) detection with a loss modulation technique, and first demonstrated the existence of two-photon photoacoustics ultrasound excited by a femtosecond high repetition rate laser. By using the AO modulation with different modulation frequencies, we successfully create the beating of the light signal when the two arms of the beams are both spatial and temporal overlapping. The pulse train of the femtosecond laser causes the narrow band excitation, providing the frequency selectivity and sensitivity. Moreover, the pulse energy is no more than 15nJ/pulse, which is at least 3 orders of magnitude smaller than that of the nanosecond laser, and therefore prevents the thermal damage of the sample. With the help of lock-in detection and a low noise amplifier, we can separate the signal of two-photon absorption from one-photon absorption. We used an ultrasonic transducer to detect the response of the sample, and verified the existence of the two-photon photoacoustics ultrasound generating by the femtosecond laser. Several contrast agents, such as the black carbon solution, the fluorescence dye and the nano-particles, were used in the experiment. In the end, we demonstrated the application, two photo-acoustic imaging, which provides the high spatial resolution (<10μm) and large penetration depth (~1mm), to the simulated biological tissue. This is a milestone to develop the two-photon photoacoustics microscopy, which, in principle, has the great potential to achieve the in vitro and in vivo high resolution deep tissue imaging.

  10. Two-photon photodetector in a multiquantum well GaAs laser structure at 1.55 microm.

    PubMed

    Duchesne, D; Razzari, L; Halloran, L; Morandotti, R; SpringThorpe, A J; Christodoulides, D N; Moss, D J

    2009-03-30

    We report two-photon photocurrent in a GaAs/AlGaAs multiple quantum well laser at 1.55 microm. Using 1ps pulses, a purely quadratic photocurrent is observed. We measure the device efficiency, sensitivity, as well as the two-photon absorption coefficient. The results show that the device has potential for signal processing, autocorrelation and possibly two-photon source applications at sub-Watt power levels.

  11. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  12. [Two-photon excitation fluorescence spectrum of the light-harvesting complex LH2 from Chromatium minutissimum within 650-745 nm range is determined by two-photon absorption of bacteriochlorophyll rather than of carotenoids].

    PubMed

    Krikunova, M A; Leupold, D; Rini, M; Voigt, B; Moskalenko, A A; Toropygina, O A; Razzhivin, A P

    2002-01-01

    Two-photon fluorescence excitation spectra of the peripheral light-harvesting complex LH2 from the purple photosynthetic bacterium Chromatium minutissimum were examined within the expected spectral range of the optically forbidden S1 singlet state of carotenoids. LH2 preparations isolated from wild-type and carotenoid-depleted cells were used. 100-fs laser pulses in the range of 1300-1490 nm with an energy of 7-9 mW (corresponding to one-photon absorption between 650 and 745 nm) were used for two-photon fluorescence excitation. It was shown that two-photon fluorescence excitation spectra of LH2 complex from wild and carotenoid-depleted cells are very similar to each other and to the two-photon fluorescence excitation spectrum of bacteriochlorophyll a in acetone. It was concluded that direct two-photon excitation of bacteriochlorophyll a determines the fluorescence of both samples within the 650-745 nm spectral range.

  13. Efficient multi-site two-photon functional imaging of neuronal circuits

    PubMed Central

    Castanares, Michael Lawrence; Gautam, Vini; Drury, Jack; Bachor, Hans; Daria, Vincent R.

    2016-01-01

    Two-photon imaging using high-speed multi-channel detectors is a promising approach for optical recording of cellular membrane dynamics at multiple sites. A main bottleneck of this technique is the limited number of photons captured within a short exposure time (~1ms). Here, we implement temporal gating to improve the two-photon fluorescence yield from holographically projected multiple foci whilst maintaining a biologically safe incident average power. We observed up to 6x improvement in the signal-to-noise ratio (SNR) in Fluorescein and cultured hippocampal neurons showing evoked calcium transients. With improved SNR, we could pave the way to achieving multi-site optical recording of fluorogenic probes with response times in the order of ~1ms. PMID:28018745

  14. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing

    PubMed Central

    Rueckel, Markus; Mack-Bucher, Julia A.; Denk, Winfried

    2006-01-01

    The image quality of a two-photon microscope is often degraded by wavefront aberrations induced by the specimen. We demonstrate here that resolution and signal size in two-photon microcopy can be substantially improved, even in living biological specimens, by adaptive wavefront correction based on sensing the wavefront of coherence-gated backscattered light (coherence-gated wavefront sensing, CGWS) and wavefront control by a deformable mirror. A nearly diffraction-limited focus can be restored even for strong aberrations. CGWS-based wavefront correction should be applicable to samples with a wide range of scattering properties and it should be possible to perform real-time pixel-by-pixel correction even at fast scan speeds. PMID:17088565

  15. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    NASA Astrophysics Data System (ADS)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  16. Two-photon triggered drug delivery system: a new way to prevent posterior capsule opacification

    NASA Astrophysics Data System (ADS)

    Kim, H.-C.; Härtner, S.; Hampp, N.

    2006-02-01

    One of the major complications of cataract surgery is posterior capsule opacification caused by proliferation and migration of residual lens epithelial cells into the visual axis. In this study we present a novel approach to treat posterior capsule opacification in a non-invasive manner. A polymer-drug conjugate has been developed which is suitable for manufacturing functional intraocular lenses equipped with a drug delivery system. The therapeutic molecules, 5-fluorouracil, were attached through a photolabile linkage to the acrylic polymer backbone of the intraocular lens material. The controlled release of 5-fluorouracil is accomplished by two-photon induced cleavage of the linkage which is stable in ordinary conditions. The properties of the therapeutic system are characterized and the function is demonstrated in in vitro tests. The utilization of two-photon-absorption processes in drug delivery may provide a powerful tool to prevent posterior capsule opacification.

  17. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor); Perry, Joseph W (Inventor)

    2007-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  18. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  19. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  20. Measurement of electron beam polarization from unstrained GaAs via two-photon photoemission

    SciTech Connect

    McCarter, James L.; Afanasev, A.; Gay, T. J.; Hansknecht, John C.; Kechiantz, A.; Poelker, B. Matthew

    2014-02-01

    Two-photon absorption of 1560 nm light was used to generate polarized electron beams from unstrained GaAs photocathodes of varying thickness: 625 {mu}m, 0.32 {mu}m, and 0.18 {mu}m. For each photocathode, the degree of spin polarization of the photoemitted beam was less than 50%, contradicting earlier predictions based on simple quantum mechanical selection rules for spherically-symmetric systems but consistent with the more sophisticated model of Bhat et al. (Phys. Rev. B 71 (2005) 035209). Polarization via two-photon absorption was the highest from the thinnest photocathode sample and comparable to that obtained via one-photon absorption (using 778 nm light), with values 40.3 +- 1.0% and 42.6 +- 1.0%, respectively.

  1. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping

    2016-08-01

    We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.

  2. Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor

    PubMed Central

    Boitier, F.; Godard, A.; Dubreuil, N.; Delaye, P.; Fabre, C.; Rosencher, E.

    2011-01-01

    For many years twin beams originating from parametric down-converted light beams have aroused great interest and attention in the photonics community. One particular aspect of the twin beams is their peculiar intensity correlation functions, which are related to the coincidence rate of photon pairs. Here we take advantage of the huge bandwidth offered by two-photon absorption in a semiconductor to quantitatively determine correlation functions of twin beams generated by spontaneous parametric down-conversion. Compared with classical incoherent sources, photon extrabunching is unambiguously and precisely measured, originating from exact coincidence between down-converted pairs of photons, travelling in unison. These results strongly establish that two-photon counting in semiconductors is a powerful tool for the absolute measurement of light beam photon correlations at ultrashort timescales. PMID:21829187

  3. Non-resonant below-bandgap two-photon absorption in quantum dot solar cells

    SciTech Connect

    Li, Tian; Dagenais, Mario

    2015-04-27

    We study the optically nonlinear sub-bandgap photocurrent generation facilitated by an extended tailing distribution of states in an InAs/GaAs quantum dots (QDs) solar cell. The tailing states function as both the energy states for low energy photon absorption and the photocarriers extraction pathway. One of the biggest advantages of our method is that it can clearly differentiate the photocurrent due to one-photon absorption (1PA) process and two-photon absorption (2PA) process. Both 1PA and 2PA photocurrent generation efficiency in an InAs/GaAs QD device operated at 1550 nm have been quantitatively evaluated. A two-photon absorption coefficient β = 5.7 cm/GW is extracted.

  4. Relativistic two-photon decay rates of 2s12 hydrogenic ions

    NASA Astrophysics Data System (ADS)

    Goldman, S. P.; Drake, G. W. F.

    1981-07-01

    Rates are calculated for the decay of metastable 2s12 ions to the ground state by the simultaneous emission of two photons. The calculation includes all relativistic and retardation effects, and all combinations of photon multipoles which make significant contributions up to Z=100. Summations over intermediate states are performed by constructing a finite-basis-set representation of the Dirac Green's function. The estimated accuracy of the results is +/- 10 ppm for all Z up to 100. The decay rates are about 20 (αZ)2% larger than an earlier calculation by Johnson owing to the inclusion of higher-order retardation effects. The general question of gauge invariance in two-photon transitions is discussed.

  5. Two-photon physics and the coming generation of heavy ion colliders

    SciTech Connect

    Rhoades-Brown, M.J.

    1992-01-01

    The possibilities for two-photon physics at the coming generation of heavy ion colliders is discussed. Particular attention is given to both e{sup +}, e{sup {minus}} production and resonance production of the Higgs particle. For e{sup +},e{sup {minus}} production the inadequacy of traditional perturbation theory is outlined, and through of the introduction of approximations valid for heavy ions it is shown how to sum a class of non-perturbative diagrams. The role of the nuclear form factor in suppressing the cross section for the heaviest resonances is also discussed. It is shown how this latter point affects the two-photon cross sections for W{sup +},W{sup {minus}} and Higgs production at RHIC, LHC and SSC energies.

  6. Two-photon physics and the coming generation of heavy ion colliders

    SciTech Connect

    Rhoades-Brown, M.J.

    1992-07-01

    The possibilities for two-photon physics at the coming generation of heavy ion colliders is discussed. Particular attention is given to both e{sup +}, e{sup {minus}} production and resonance production of the Higgs particle. For e{sup +},e{sup {minus}} production the inadequacy of traditional perturbation theory is outlined, and through of the introduction of approximations valid for heavy ions it is shown how to sum a class of non-perturbative diagrams. The role of the nuclear form factor in suppressing the cross section for the heaviest resonances is also discussed. It is shown how this latter point affects the two-photon cross sections for W{sup +},W{sup {minus}} and Higgs production at RHIC, LHC and SSC energies.

  7. Neutrophil Extravasation Cascade: What Can We Learn from Two-photon Intravital Imaging?

    PubMed Central

    Park, Sang A

    2016-01-01

    Immune cells (leukocytes or white blood cells) move actively and sensitively based on body conditions. Despite their important role as protectors inside the body, it is difficult to directly observe the spatiotemporal momentum of leukocytes. With advances in imaging technology, the introduction of two-photon microscopy has enabled researchers to look deeper inside tissues in a three-dimensional manner. In observations of immune cell movement along the blood vessel, vascular permeability and innate immune cell movements remain unclear. Here, we describe the neutrophil extravasation cascade, which were observed using a two-photon intravital imaging technique. We also provide evidence for novel mechanisms such as neutrophil body extension and microparticle formation as well as their biological roles during migration. PMID:28035206

  8. Spectral, energy, and time parameters of two-photon fluorescence of 2,5-diphenyloxazole polycrystals

    SciTech Connect

    Agal`tsov, A.M.; Gorelik, V.S.; Rakhmatullaev, I.A.

    1995-12-01

    Two-photon fluorescence (TPF) spectra of 2,5-diphenyloxazole polycrystals (known in the literature as PPO) were obtained and studied as a function of the pump power and time delay. The fluorescence spectrum shape observed upon two-photon excitation is shown to be distinctly different from that observed upon electron-beam excitation. It is shown that high pump powers result in stimulated fluorescence. PPO exhibits a high TPF quantum yield, the integrated conversion efficiency of exciting radiation to TPF being 40%. The TPF decay time is measured to be 20 ns. The spectral data obtained for PPO polycrystals can be used in the development of new TPF light sources tunable in the UV region. 10 refs., 4 figs., 1 tab.

  9. Lifetimes of two-photon-emitting states in heliumlike and hydrogenlike nickel

    SciTech Connect

    Dunford, R. W.; Hass, M.; Bakke, E.; Berry, H. G.; Liu, C. J.; Raphaelian, M. L. A.; Curtis, L. J.

    1989-06-12

    We report measurements of the lifetimes of the 2/sup 1/S/sub 0/ state of heliumlike Ni/sup 26 +/ and the 2/sup 2/S/sub 1/2/ state of hydrogenlike Ni/sup 27 +/, both of which decay predominantly by two-photon emission. Our method differs from previous measurements of the lifetimes of similar states in that we require a coincidence between the two photons. Our lifetime of 217.1(1.8) ps for the hydrogenlike decay is in agreement with the theoretical value of 215.45 ps. The heliumlike decay lifetime of 156.1(1.6) ps is in fair agreement with the theoretical value of 154.3(0.5) ps.

  10. Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy.

    PubMed

    Tao, Wen; Soonpaa, Mark H; Field, Loren J; Chen, Peng-Sheng; Firulli, Anthony B; Shou, Weinian; Rubart, Michael

    2012-08-01

    Although the adult mammalian myocardium exhibits a limited ability to undergo regenerative growth, its intrinsic renewal rate is insufficient to compensate for myocyte loss during cardiac disease. Transplantation of donor cardiomyocytes or cardiomyogenic stem cells is considered a promising strategy for reconstitution of cardiac mass, provided the engrafted cells functionally integrate with host myocardium and actively contribute to its contractile force. The authors previously developed a two-photon fluorescence microscopy-based assay that allows in situ screening of donor cell function after intracardiac delivery of the cells. This report reviews the techniques of two-photon fluorescence microscopy and summarizes its application for quantifying the extent to which a variety of donor cell types stably and functionally couple with the recipient myocardium.

  11. Continuous wave two-photon scanning near-field optical microscopy.

    PubMed Central

    Kirsch, A K; Subramaniam, V; Striker, G; Schnetter, C; Arndt-Jovin, D J; Jovin, T M

    1998-01-01

    We have implemented continuous-wave two-photon excitation of near-UV absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 647-nm emission of an Ar-Kr mixed gas laser was used to excite the UV-absorbing DNA dyes DAPI, the bisbenzimidazole Hoechst 33342, and ethidium bromide in a shared aperture SNOM with uncoated fiber tips. Polytene chromosomes of Drosophila melanogaster and the nuclei of 3T3 Balb/c cells labeled with these dyes were readily imaged. The fluorescence intensity showed the expected nonlinear (second order) dependence on the excitation power in the range of 8-180 mW. We measured the fluorescence intensity as a function of the tip-sample displacement in the direction normal to the sample surface in the single- and two-photon excitation modes (SPE, TPE). The fluorescence intensity decayed faster in TPE than in SPE. PMID:9726953

  12. Light-Sheet Confined Super-Resolution Using Two-Photon Photoactivation

    PubMed Central

    Cella Zanacchi, Francesca; Lavagnino, Zeno; Faretta, Mario; Furia, Laura; Diaspro, Alberto

    2013-01-01

    Light-sheet microscopy is a useful tool for performing biological investigations of thick samples and it has recently been demonstrated that it can also act as a suitable architecture for super-resolution imaging of thick biological samples by means of individual molecule localization. However, imaging in depth is still limited since it suffers from a reduction in image quality caused by scattering effects. This paper sets out to investigate the advantages of non-linear photoactivation implemented in a selective plane illumination configuration when imaging scattering samples. In particular, two-photon excitation is proven to improve imaging capabilities in terms of imaging depth and is expected to reduce light-sample interactions and sample photo-damage. Here, two-photon photoactivation is coupled to individual molecule localization methods based on light-sheet illumination (IML-SPIM), allowing super-resolution imaging of nuclear pH2AX in NB4 cells. PMID:23844052

  13. Two-photon exchange contribution to elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2015-04-01

    Two experimental techniques, Rosenbluth separation and recoil polarization transfer, used to extract proton's electromagnetic form factors ratio GE/GM yield markedly different results. Modern theoretical calculations suggest that two-photon exchange might be responsible for the observed discrepancy and that it is epsilon dependent. Jefferson Lab Experiment E05-017 was designed to measure the two-photon exchange contribution over a wide range of ɛ and Q2. In contrast with the conventional Rosenbluth method, E05-017 detected the elastically scattered proton rather than the electron. This approach returns a much more precise extraction of the form factor ratios. After a brief description of the experimental goals and techniques, the current status of the analysis will be presented.

  14. Mathematical modeling of two-photon thermal fields in laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Oane, Mihai; Apostol, Dan

    2004-04-01

    In this paper, we have developed an analytical model to study the temperature distributions in IR optical materials heated by laser pulses. Our model takes into account the two-photon absorption (TPA). The calculations are based on a three-dimensional model of heat diffusion in solids using the integral transform method. We find out the rigorous analytical expression of the thermal field when one considers both one- and two-photon absorption. The model is valid for any laser-solid system whose interaction can be described by the generalized Beer-Lambert law. Specific results are presented for an application of the model to ZnSe sample. We find out that TPA can produce detectable temperature variation.

  15. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms.

    PubMed

    Vizsnyiczai, Gaszton; Kelemen, Lóránd; Ormos, Pál

    2014-10-06

    Two-photon polymerization enables the fabrication of micron sized structures with submicron resolution. Spatial light modulators (SLM) have already been used to create multiple polymerizing foci in the photoresist by holographic beam shaping, thus enabling the parallel fabrication of multiple microstructures. Here we demonstrate the parallel two-photon polymerization of single 3D microstructures by multiple holographically translated foci. Multiple foci were created by phase holograms, which were calculated real-time on an NVIDIA CUDA GPU, and displayed on an electronically addressed SLM. A 3D demonstrational structure was designed that is built up from a nested set of dodecahedron frames of decreasing size. Each individual microstructure was fabricated with the parallel and coordinated motion of 5 holographic foci. The reproducibility and the high uniformity of features of the microstructures were verified by scanning electron microscopy.

  16. Adaptive optics for in vivo two-photon calcium imaging of neuronal networks

    NASA Astrophysics Data System (ADS)

    Meimon, Serge; Conan, Jean-Marc; Mugnier, Laurent M.; Michau, Vincent; Cossart, Rosa; Malvache, Arnaud

    2014-03-01

    The landscape of biomedical research in neuroscience has changed dramatically in recent years as a result of spectacular progress in dynamic microscopy. However, the optical accessibility of deep brain structures or deeper regions of the surgically exposed hippocampus (a few 100 microns typically) remains limited, due to volumic aberrations created by the sample inhomogeneities. Adaptive optics can correct for these aberrations. Our goal is to realize a novel adaptive optics module dedicated to in vivo two-photon calcium imaging of the hippocampus. The key issue in adaptive optics is the ability to perform an accurate and reliable wavefront sensing. In two- photon microscopy indirect methods are required. Two families of approaches have been proposed so far, the modal sensorless technique and a method based on pupil segmentation. We present here a formal comparison of these approaches, in particular as a function of the amount of aberrations.

  17. Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption.

    PubMed

    Dubinina, Galyna G; Price, Randi S; Abboud, Khalil A; Wicks, Geoffrey; Wnuk, Pawel; Stepanenko, Yuriy; Drobizhev, Mikhail; Rebane, Aleksander; Schanze, Kirk S

    2012-11-28

    The linear and nonlinear optical properties of a series of linear and cross-conjugated platinum(II) acetylide complexes that contain extended p-(phenylene vinylene) chromophores are reported. The complexes exhibit very high femtosecond two-photon absorption (2PA) cross section values (σ(2) up to 10,000 GM), as measured by nonlinear transmission (NLT) and two-photon excited fluorescence (2PEF) methods. The large 2PA cross sections span a broad range of wavelengths, 570-810 nm, and they overlap with the triplet excited state absorption. Spectral coincidence of high cross section 2PA and triplet absorption is a key feature giving rise to efficient dual-mode optical power limiting (OPL).

  18. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  19. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  20. Temperature effect on the two-photon absorption spectrum of all-trans-β-carotene.

    PubMed

    Vivas, M G; Mendonca, C R

    2012-07-05

    In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-β-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans→cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.

  1. Two-photon excited fluorescence microendoscopic imaging using a GRIN lens

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Peng, Xiao; Lin, Danying; Wang, Qi; Gao, Jian; Zhou, Jie; Ye, Tong; Qu, Junle; Niu, Hanben

    2015-03-01

    With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in traditional fluorescence microscopes have limited the imaging applications mostly to superficial tissues. To overcome this disadvantage, researchers have developed the graded-index (GRIN) probes with small diameters for imaging internal organs of small animals in a minimally invasive fashion. Here, we present the development of a fluorescence endoscopic imaging system based on a GRIN lens using two-photon excitation. Experimental results showed that this system could perform dynamic fluorescence microendoscopic imaging and monitor the blood flow in anesthetized living mice using two-photon excitation.

  2. Two-photon gateway in one-atom cavity quantum electrodynamics.

    PubMed

    Kubanek, A; Ourjoumtsev, A; Schuster, I; Koch, M; Pinkse, P W H; Murr, K; Rempe, G

    2008-11-14

    Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.

  3. Cluster-surface interaction studied by time-resolved two-photon photoemission

    NASA Astrophysics Data System (ADS)

    Busolt, U.; Cottancin, E.; Röhr, H.; Socaciu, L.; Leisner, T.; Wöste, L.

    We use time-resolved two-photon photoemission to study the stability of size selected Agn+ clusters (n=2-9)deposited onto highly oriented pyrolytic graphite (HOPG) substrates at liquid nitrogen temperatures. The deposition was carried out with variable kinetic energies of the clusters. Clusters deposited with high kinetic energy (up to 60 eV/cluster) become fragmented upon impact. For low deposition energies (1-4 eV/cluster) the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the soft deposited clusters retain their size and identity on the sample. The phase of the odd/even effect suggests that transient negatively charged cluster ions serve as an intermediate step in the two-photon photoemission process. The lifetime of the anions rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters.

  4. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    NASA Astrophysics Data System (ADS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s2 1S0↔ 6s7s 1S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s1S0 state via the intercombination 6s6p3P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  5. In vivo two-photon microscopy of the hippocampus using glass plugs

    PubMed Central

    Velasco, Mary Grace M.; Levene, Michael J.

    2014-01-01

    Two-photon microscopy has been used in conjunction with micro-optics, such as GRIN lenses, to access subcortical structures in the intact mouse brain. In this study, we demonstrate the use of thick glass windows, or plugs, for high-resolution, large field-of-view two-photon imaging of the hippocampus in a live mouse. These plugs are less expensive, yield larger fields-of-view and are simpler to use than GRIN lenses while requiring less tissue removal compared to previous methods based on cortical ablation. To demonstrate the capabilities of our system, we show fluorescence images of dendritic spines in the CA1 region of the hippocampus in THY1-YFP transgenic mice. PMID:24940533

  6. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hauser, Daniel; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S.; Geistlinger, Katharina; Kumar, Sunil S.; Wester, Roland

    2016-03-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just a few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J =1 ←0 and J =2 ←1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598 596.08(19) MHz for J =1 ←0 and 1 196 791.57(27) MHz for J =2 ←1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  7. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2003-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  8. Pyrrolo[3,2-b]pyrroles – from unprecedented solvatofluorochromism to two-photon absorption

    PubMed Central

    Friese, Daniel H.; Mikhaylov, Alexander; Krzeszewski, Maciej; Poronik, Yevgen M.

    2015-01-01

    A combined experimental and theoretical study of the two-photon absorption properties of a series of quadrupolar molecules possessing a highly electron-rich heterocyclic core, pyrrolo[3,2-b]pyrrole is presented. In agreement with quantum-chemical calculations, we observe large two-photon absorption (2PA) cross-section values, σ2PA ~ 102–103 GM (1GM = 1050 cm4 s photon−1) at wavelengths 650–700 nm, corresponding to the 2-photon allowed but 1-photon forbidden transitions. The calculations also predict that increased planarity of this molecule via removal of two N-substituents leads to further increase in the σ2PA values. Surprisingly, the most quadrupolar pyrrolo[3,2-b]pyrrole derivative bearing two 4-nitrophenyl substituents at positions 2 and 5 demonstrates very strong solvatofluorochromic effect, with the fluorescence quantum yield as high as 0.96 in cyclohexane, while the fluorescence vanishes in DMSO. PMID:26511232

  9. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  10. [Frontiers in Live Bone Imaging Researches. Two-Photon Excitation Microscopy, principles and technologies].

    PubMed

    Oikawa, Yoshiro

    2015-06-01

    The "two photon absorption" phenomenon had been predicted by the American Physicist, Maria Ghöppert-Mayer in 1931. Denk and Webb group had proved it in 1990 and the first product had been launched in the market in 1996. But ever since the product became available, the number of users are not increased. Moreover, the system had been too difficult to use and the system sometimes stay not working in labs. But recently, the new easier-to-use products are released and the ultra short pulse IR laser became stable. And its applications are extending from neuro-science to oncology or immunology fields. Due to these reasons, the shipment of multi-photon microscope in Japan in 2013 is approximately 40 units which is 3 times bigger than in 2010. In this paper, I would like to discuss the principles of two-photon microscopy and some of the new technologies for the higher signal capture efficiency.

  11. Two-photon excitation properties of a class of novel organic dye chloride

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Xu, Xinguang; Zhao, Xian; Hu, Dawei; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2006-04-01

    We present the two-photon excited (TPE) upconverted fluorescence and lasing efficiencies of a class of new pyridinium chloride having donor-π-acceptor (D-π-A) structure. Based on the excitation upon 40 ps laser pulses at 1064 nm, the experimental results showed that: the red-shift of TPE fluorescence emission peaks and the TPE fluorescence lifetime were gradually increased with the enhancement of electron-donating capability of the donor. To a certain extent, the enhanced donor would increase the two-photon pumped (TPP) upconversion lasing efficiencies, but the overlong alkyl chains would result in decreased lasing efficiencies. We could obtain TPE fluorescence lifetime of 754 ps, TPP upconversion lasing efficiency of ∼8.4%, and TPA cross-section of 6.14 × 10-49cm4s/photon in these compounds.

  12. Fluorescence Instrument Response Standards in Two-Photon Time-Resolved Spectroscopy

    PubMed Central

    LUCHOWSKI, RAFAL; SZABELSKI, MARIUSZ; SARKAR, PABAK; APICELLA, ELISA; MIDDE, KRISHNA; RAUT, SANGRAM; BOREJDO, JULIAN; GRYCZYNSKI, ZYGMUNT; GRYCZYNSKI, IGNACY

    2011-01-01

    We studied the fluorescence properties of several potential picosecond lifetime standards suitable for two-photon excitation from a Ti : sapphire femtosecond laser. The fluorescence emission of the selected fluorophores (rose bengal, pyridine 1, and LDS 798) covered the visible to near-infrared wavelength range from 550 to 850 nm. We suggest that these compounds can be used to measure the appropriate instrument response functions needed for accurate deconvolution of fluorescence lifetime data. Lifetime measurements with multiphoton excitation that use scatterers as a reference may fail to properly resolve fluorescence intensity decays. This is because of the different sensitivities of photodetectors in different spectral regions. Also, detectors often lose sensitivity in the near-infrared region. We demonstrate that the proposed references allow a proper reconvolution of measured lifetimes. We believe that picosecond lifetime standards for two-photon excitation will find broad applications in multiphoton spectroscopy and in fluorescence lifetime imaging microscopy (FLIM). PMID:20719056

  13. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells.

    PubMed

    Zhu, Jing; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Ding, Hong; Zhao, Lingling; Swihart, Mark T; He, Guang S; Cui, Yiping; Prasad, Paras N

    2010-07-16

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  14. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes.

    PubMed

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-11

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  15. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    PubMed Central

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells. PMID:26864567

  16. Programmable two-photon quantum interference in 103 channels in opaque scattering media

    NASA Astrophysics Data System (ADS)

    Wolterink, Tom A. W.; Uppu, Ravitej; Ctistis, Georgios; Vos, Willem L.; Boller, Klaus-J.; Pinkse, Pepijn W. H.

    2016-05-01

    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports a large number of transmission channels. By adaptive spatial phase modulation of the incident wave fronts, the photons are directed at targeted speckle spots or output channels. From 103 experimentally available coupled channels, we select two channels and enhance their transmission to realize the equivalent of a fully programmable 2 ×2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be nonunitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication.

  17. Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids

    SciTech Connect

    Walla, P.J.; Yom, J.; Krueger, B.P.; Fleming, G.R.

    2000-05-18

    The two-photon excitation (TPE) spectrum of light-harvesting complex II (LHC II) has been measured in the spectral region of 1,000--1,600 nm, corresponding to one-photon wavelengths of 500--800 nm. The authors observed a band with an origin at {approximately}2 x 660 nm (ca. 15,100 {+-} 300 cm{sup {minus}1}) and a maximum at {approximately}2 x 600 nm. The line shape and origin of this band strongly suggest that the observed signal is due to the two-photon-allowed S{sub 1} state of the energy-transferring carotenoids (Car ) in LHC II. The authors also report the time dependence of the upconverted chlorophyll (Chl) fluorescence after TPE at the maximum of the observed band. Surprisingly, a fast rise of 250 {+-} 50 fs followed by a multiexponential decay on the picosecond time scale was observed. This result provides strong indication that there is a fast energy transfer even from the dipole-forbidden Car S{sub 1} state to the Chl's. The sub picosecond energy transfer from the Car S{sub 1} state is likely a consequence of the large number of energy-accepting Chls in van der Waals contact with the central Car's in LHC II. They also present upconversion data of the Car S{sub 2}, Chl a, and Chl b fluorescence observed after one-photon excitation into the dipole-allowed Car S{sub 2} state. The lifetime of the Car S{sub 2} state is {approximately}120 {+-} 30 fs. With the observed time constants they are able to calculate quantum yields for the different possible pathways contributing to the overall Car to Chl energy transfer in LHC II.

  18. Determination of Two-Photon Absorption Cross-Section of Noble Gases for Calibration of Laser Spectroscopic Techniques

    SciTech Connect

    Rosa, M. I. de la; Perez, C.; Gruetzmacher, K.; Fuentes, L. M.

    2008-10-22

    The objective of our work is to apply two-photon polarization spectroscopy as a new calibration method for the determination of two-photon excitation cross-sections of noble gases, like Xe and Kr, which are commonly used for calibrations of MP-LIF techniques in other laboratories.

  19. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  20. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    SciTech Connect

    Yashunin, D. A. Korytin, A. I.; Stepanov, A. N.

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  1. Single-spin asymmetries from two-photon exchange in elastic electron proton scattering

    SciTech Connect

    A.V. Afanasev; N.P. Merenkov

    2005-02-01

    The parity-conserving single-spin beam asymmetry of elastic electron-proton scattering is induced by an absorptive part of the two-photon exchange amplitude. We demonstrate that this asymmetry has logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. An optical theorem is used to evaluate the asymmetry in terms of the total photoproduction cross section on the proton.

  2. Acute two-photon imaging of the neurovascular unit in the cortex of active mice

    PubMed Central

    Tran, Cam Ha T.; Gordon, Grant R.

    2015-01-01

    In vivo two-photon scanning fluorescence imaging is a powerful technique to observe physiological processes from the millimeter to the micron scale in the intact animal. In neuroscience research, a common approach is to install an acute cranial window and head bar to explore neocortical function under anesthesia before inflammation peaks from the surgery. However, there are few detailed acute protocols for head-restrained and fully awake animal imaging of the neurovascular unit during activity. This is because acutely performed awake experiments are typically untenable when the animal is naïve to the imaging apparatus. Here we detail a method that achieves acute, deep-tissue two-photon imaging of neocortical astrocytes and microvasculature in behaving mice. A week prior to experimentation, implantation of the head bar alone allows mice to train for head-immobilization on an easy-to-learn air-supported ball treadmill. Following just two brief familiarization sessions to the treadmill on separate days, an acute cranial window can subsequently be installed for immediate imaging. We demonstrate how running and whisking data can be captured simultaneously with two-photon fluorescence signals with acceptable movement artifacts during active motion. We also show possible applications of this technique by (1) monitoring dynamic changes to microvascular diameter and red blood cells in response to vibrissa sensory stimulation, (2) examining responses of the cerebral microcirculation to the systemic delivery of pharmacological agents using a tail artery cannula during awake imaging, and (3) measuring Ca2+ signals from synthetic and genetically encoded Ca2+ indicators in astrocytes. This method will facilitate acute two-photon fluorescence imaging in awake, active mice and help link cellular events within the neurovascular unit to behavior. PMID:25698926

  3. Localization matters: a nuclear targeting two-photon absorption iridium complex in photodynamic therapy.

    PubMed

    Tian, Xiaohe; Zhu, Yingzhong; Zhang, Mingzhu; Luo, Lei; Wu, Jieying; Zhou, Hongping; Guan, Lijuan; Battaglia, Giuseppe; Tian, Yupeng

    2017-03-16

    We present a two-photon (2P, 800 nm) PDT cyclometalated Iridium(iii) complex (Ir-Es) that targets the intracellular nucleus. The complex is capable of migrating sequentially from the nucleus to mitochondria and inducing dual-damage under light exposure. This study suggests that with minor modification of the terminal moieties of complexes, their final intracellular destinations and PDT efficiency can be significantly impacted.

  4. Functionalized 3D Architected Materials via Thiol-Michael Addition and Two-Photon Lithography.

    PubMed

    Yee, Daryl W; Schulz, Michael D; Grubbs, Robert H; Greer, Julia R

    2017-02-20

    Fabrication of functionalized 3D architected materials is achieved by a facile method using functionalized acrylates synthesized via thiol-Michael addition, which are then polymerized using two-photon lithography. A wide variety of functional groups can be attached, from Boc-protected amines to fluoroalkanes. Modification of surface wetting properties and conjugation with fluorescent tags are demonstrated to highlight the potential applications of this technique.

  5. Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli

    2016-08-01

    We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.

  6. Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.

    PubMed

    Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki

    2007-09-15

    We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.

  7. Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging.

    PubMed

    Wang, Dan; Qian, Jun; Qin, Wei; Qin, Anjun; Tang, Ben Zhong; He, Sailing

    2014-03-17

    Bioimaging systems with cytocompatibility, photostability, red fluorescence, and optical nonlinearity are in great demand. Herein we report such a bioimaging system. Integration of tetraphenylethene (T), triphenylamine (T), and fumaronitrile (F) units yielded adduct TTF with aggregation-induced emission (AIE). Nanodots of the AIE fluorogen with efficient red emission were fabricated by encapsulating TTF with phospholipid. The AIE dots enabled three-dimensional dynamic imaging with high resolution in blood vessels of mouse brain under two-photon excitation.

  8. Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence.

    PubMed

    Lu, Siyu; Sui, Laizhi; Liu, Junjun; Zhu, Shoujun; Chen, Anmin; Jin, Mingxing; Yang, Bai

    2017-02-13

    A facile, high-output strategy is developed for fabricating near-infrared-emissive polymer-carbon nanodots (PCNDs). The PCNDs emit at a wavelength of 710 nm with a QY of 26.28%, which is promising for deep biological imaging and luminescent devices. Moreover, the PCNDs possess two-photon fluorescence and. In vivo bioimaging and red light emitting diodes based on these PCNDs are demonstrated.

  9. Search for η in two-photon collisions at LEP II with the DELPHI detector

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2006-03-01

    The pseudoscalar meson η has been searched for in two-photon interactions at LEP II. The data sample corresponds to a total integrated luminosity of 617 pb-1 at centre-of-mass energies ranging from 161 to 209 GeV. Upper limits at a confidence level of 95% on the product Γ(η)×BR(η) are 190, 470 and 660 eV/c for the η decaying into 4, 6 and 8 charged particles, respectively.

  10. Development and design of advanced two-photon microscope used in neuroscience

    NASA Astrophysics Data System (ADS)

    Doronin, M. S.; Popov, A. V.

    2016-08-01

    This work represents the real steps to development and design advanced two-photon microscope by efforts of laboratory staff. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. We are presenting here module-based microscopy system which provides an opportunity to looking for new applications of this setup depending on laboratories needs using with galvo and resonant scanners.

  11. Biocompatible and Photostable AIE Dots with Red Emission for In Vivo Two-Photon Bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Qian, Jun; Qin, Wei; Qin, Anjun; Tang, Ben Zhong; He, Sailing

    2014-03-01

    Bioimaging systems with cytocompatibility, photostability, red fluorescence, and optical nonlinearity are in great demand. Herein we report such a bioimaging system. Integration of tetraphenylethene (T), triphenylamine (T), and fumaronitrile (F) units yielded adduct TTF with aggregation-induced emission (AIE). Nanodots of the AIE fluorogen with efficient red emission were fabricated by encapsulating TTF with phospholipid. The AIE dots enabled three-dimensional dynamic imaging with high resolution in blood vessels of mouse brain under two-photon excitation.

  12. A rapid two-photon fabrication of tube array using an annular Fresnel lens.

    PubMed

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Li, Guoqiang; Chu, Jiaru; Huang, Wenhao

    2014-02-24

    A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds.

  13. Endogenous Fluorophores Enable Two-Photon Imaging of the Primate Eye

    PubMed Central

    Palczewska, Grazyna; Golczak, Marcin; Williams, David R.; Hunter, Jennifer J.; Palczewski, Krzysztof

    2014-01-01

    Purpose. Noninvasive two-photon imaging of a living mammalian eye can reveal details of molecular processes in the retina and RPE. Retinyl esters and all-trans-retinal condensation products are two types of retinoid fluorophores present in these tissues. We measured the content of these two types of retinoids in monkey and human eyes to validate the potential of two-photon imaging for monitoring retinoid changes in human eyes. Methods. Two-photon microscopy (TPM) was used to visualize excised retina from monkey eyes. Retinoid composition and content in human and monkey eyes were quantified by HPLC and mass spectrometry (MS). Results. Clear images of inner and outer segments of rods and cones were obtained in primate eyes at different eccentricities. Fluorescence spectra from outer segments revealed a maximum emission at 480 nm indicative of retinols and their esters. In cynomolgus monkey and human retinal extracts, retinyl esters existed predominantly in the 11-cis configuration along with notable levels of 11-cis-retinol, a characteristic of cone-enriched retinas. Average amounts of di-retinoid-pyridinium-ethanolamine (A2E) in primate and human eyes were 160 and 225 pmol/eye, respectively. Conclusions. These data show that human retina contains sufficient amounts of retinoids for two-photon excitation imaging. Greater amounts of 11-cis-retinyl esters relative to rodent retinas contribute to the fluorescence signal from both monkey and human eyes. These observations indicate that TPM imaging found effective in mice could detect early age- and disease-related changes in human retina. PMID:24970255

  14. Tailored probes for atomic force microscopy fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias; Sharma, Swati; Korvink, Jan G.; Schimmel, Thomas; Koos, Christian; Hölscher, Hendrik

    2016-08-01

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  15. Generalized Dirac duality and CP violation in a two-photon theory

    NASA Astrophysics Data System (ADS)

    Arias, Paola; Das, Ashok K.; Gamboa, Jorge; Méndez, Fernando

    2017-02-01

    A kinetic mixing term, which generalizes the duality symmetry of Dirac, is studied in a theory with two photons (visible and hidden). This theory can be either CP conserving or CP violating depending on the transformation of fields in the hidden sector. However, if CP is violated, it necessarily occurs in the hidden sector. This opens up an interesting possibility of new sources of CP violation.

  16. Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans

    PubMed Central

    Schwarz, Christina; Sharma, Robin; Fischer, William S.; Chung, Mina; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.; Hunter, Jennifer J.

    2016-01-01

    Two-photon ophthalmoscopy has potential for in vivo assessment of function of normal and diseased retina. However, light safety of the sub-100 fs laser typically used is a major concern and safety standards are not well established. To test the feasibility of safe in vivo two-photon excitation fluorescence (TPEF) imaging of photoreceptors in humans, we examined the effects of ultrashort pulsed light and the required light levels with a variety of clinical and high resolution imaging methods in macaques. The only measure that revealed a significant effect due to exposure to pulsed light within existing safety standards was infrared autofluorescence (IRAF) intensity. No other structural or functional alterations were detected by other imaging techniques for any of the exposures. Photoreceptors and retinal pigment epithelium appeared normal in adaptive optics images. No effect of repeated exposures on TPEF time course was detected, suggesting that visual cycle function was maintained. If IRAF reduction is hazardous, it is the only hurdle to applying two-photon retinal imaging in humans. To date, no harmful effects of IRAF reduction have been detected. PMID:28018732

  17. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  18. Cell flow analysis with a two-photon fluorescence fiber probe

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Baker, James R., Jr.; Norris, Theodore B.

    2010-11-01

    We report the use of a sensitive double-clad fiber (DCF) probe for in situ cell flow velocity measurements and cell analysis by means of two-photon excited fluorescence correlation spectroscopy (FCS). We have demonstrated the feasibility to use this fiber probe for in vivo two-photon flow cytometry previously. However, because of the viscosity of blood and the non-uniform flow nature in vivo, it is problematic to use the detected cell numbers to estimate the sampled blood volume. To precisely calibrate the sampled blood volume, it is necessary to conduct real time flow velocity measurement. We propose to use FCS technique to measure the flow velocity. The ability to measure the flow velocities of labeled cells in whole blood has been demonstrated. Our two-photon fluorescence fiber probe has the ability to monitor multiple fluorescent biomarkers simultaneously. We demonstrate that we can distinguish differently labeled cells by their distinct features on the correlation curves. The ability to conduct in situ cell flow analysis using the fiber probe may be useful in disease diagnosis or further comprehension of the circulation system.

  19. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).

    PubMed

    Song, Alexander; Charles, Adam S; Koay, Sue Ann; Gauthier, Jeff L; Thiberge, Stephan Y; Pillow, Jonathan W; Tank, David W

    2017-04-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large-scale recording of neural activity in vivo. Here, we introduce volumetric two-photon imaging of neurons using stereoscopy (vTwINS), a volumetric calcium imaging method that uses an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced 'image pairs' in the resulting 2D image, and the separation distance between projections is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a modified orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrated vTwINS by imaging neural population activity in the mouse primary visual cortex and hippocampus. Our results demonstrated that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame rate.

  20. Two-photon absorption of the spatially confined LiH molecule.

    PubMed

    Kozłowska, Justyna; Chołuj, Marta; Zaleśny, Robert; Bartkowiak, Wojciech

    2017-03-15

    In the present contribution we study the influence of spatial restriction on the two-photon dipole transitions between the X(1)Σ(+) and A(1)Σ(+) states of lithium hydride. The bond-length dependence of the two-photon absorption strength is also analyzed for the first time in the literature. The highly accurate multiconfiguration self-consistent field (MCSCF) method and response theory are used to characterize the electronic structure of the studied molecule. In order to render the effect of orbital compression we apply a two-dimensional harmonic oscillator potential, mimicking the topology of cylindrical confining environments (e.g. carbon nanotubes, quantum wires). Among others, the obtained results provide evidence that at large internuclear distances the TPA response of lithium hydride may be significantly enhanced and this effect is much more pronounced upon embedding of the LiH molecule in an external confining potential. To understand the origin of the observed variation in the two-photon absorption response a two-level approximation is employed.

  1. Applications of the two-photon doppler-free method: Hyperfine interactions and isotope shift measurements

    NASA Astrophysics Data System (ADS)

    Cagnac, B.

    1985-08-01

    The hyperfine structures are generally of the same order of magnitude as the Doppler broadening of optical transitions and so are the isotopic shifts in the case of heavy elements. When these structures are too small, one must use Doppler-free methods. Among these methods, the two-photon spectroscopy has obtained good results in highly excited levels. In our laboratory in Paris, we did measurements on neon and helium by two-photon excitation from metastable levels. The precision of the measurements is of the order of one MHz, which permits a precise comparison with theory. We compare the measurements on neon with the theory by Liberman and we obtain a good fit in the first approximation, but must introduce mixing of wave functions for an exact explanation. In the case of helium, we obtain a good fit with the theoretical values obtained from the wave functions by Accad, Pekeris and Schiff. We also give an example where another technique by polarization measurements permits us to obtain experimentally a hyperfine structure smaller than the natural width. We also present a short review of the measurements done by the two-photon method in other laboratories on other elements, Pb, Tl, In and alkaline earths Ca, Sr. Ba.

  2. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel.

    PubMed

    Guo, Xudong; Zhang, Xin; Wang, Shuangqing; Li, Shayu; Hu, Rui; Li, Yi; Yang, Guoqiang

    2015-04-15

    A novel "turn-on" two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic(®) F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min(-1), and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.

  3. Two-photon microscopy for imaging germinal centers and T follicular helper cells.

    PubMed

    Clatworthy, Menna R

    2015-01-01

    One of the principle features of immune cells is their dynamic nature. Lymphocytes circulate in the blood between secondary lymphoid organs and tissues in an effort to maximize the likelihood of a rapid and appropriate immune response to invading pathogens and tissue damage. Conventional experimental techniques such as histology and flow cytometry have greatly increased our understanding of immune cells, but in the last decade, two-photon microscopy has revolutionized our ability to interrogate the dynamic behavior of immune cells, a facet so critical to their function. Two-photon microscopy relies on the excitation of fluorophores by simultaneous application of two photons of longer wavelength light. This allows a greater depth of imaging with minimal photodamage. Thus, living tissues can be imaged, including immune cells in lymph nodes. This technique has been used to interrogate the events occurring in a germinal center response and the interactions between cells in the germinal center, including T follicular helper cells (Tfh), germinal center B cells, and follicular dendritic cells (FDC). Herein, a method is described by which the interactions between Tfh and B cells within a germinal center in a popliteal lymph node can be imaged in a live mouse.

  4. Compact two-photon laser-scanning microscope made from minimally modified commercial components

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Hoogland, Tycho; Losavio, Bradley E.; McQuiston, A. R.; Saggau, Peter

    2002-06-01

    A compact two-photon laser-scanning microscope (TPLSM) was constructed using a diode-pumped, mode-locked Nd:YLF laser (Biolight 1000, Coherent Laser Group) and a small confocal laser scan-head (PCM2000, Nikon Bioscience). The laser emits at 1047nm and is fiber-coupled to a compact compressor unit producing a pulse-width of ~175fsec. Both the pulse compressor and confocal scan head were interfaced on a small optical breadboard that was directly attached to an upright research microscope (Eclipse E600FN, Nikon Bioscience). Two-photon fluorescence emitted from the specimen was collected into a multimode fiber and transmitted directly to an external PMT supplied with the Nikon confocal system. The modifications to the scanhead were minimal (a single mirror replacement) and did not interfere with its confocal function. The resulting system offers several advantages: compact size, turnkey operation, and the ability to translate the microscope rather than an often delicate specimen. In addition, it is possible to switch between confocal and two-photon operation, allowing for straightforward comparison. Using this compact TPLSM, we obtained structural and functional images from hippocampal neurons in living brain slices using commonly available fluorophores.

  5. Research of the new optical diffractive super-resolution element of the two-photon microfabrication

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Zhu, Yu; Duan, Guanghong

    2006-11-01

    The new optical diffractive superresolution element (DSE) is being applied to improve the microfabrication radial superresolution in the two-photon three-dimension (3D) microfabrication system, which appeared only a few years ago and can provide the ability to confine photochemical and physical reactions to the order of laser wavelength in three dimensions. The design method of the DSE is that minimizing M if the lowest limit S l of the S and the highest limit G u of the G is set, where Liu [1] explained the definition of the S, M and G. Simulation test result proved that the microfabrication radial superresolution can be improved by the new optical DSE. The phenomenon can only be interpreted as the intensity of high-order and side of the zero-order diffraction peaks have been clapped under the twophoton absorption (TPA) polymerization threshold. In a word the polymerized volume can be chosen because the S l and the G u is correspondingly adjustable, even if the laser wavelength, objective lens and the photosensitive resin is fixed for a given two-photon microfabrication system. That means the radial superresolution of the two-photon microfabrication can be chosen.

  6. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  7. Photolysis of caged calcium in femtoliter volumes using two-photon excitation.

    PubMed Central

    Brown, E B; Shear, J B; Adams, S R; Tsien, R Y; Webb, W W

    1999-01-01

    A new technique for the determination of the two-photon uncaging action cross section (deltau) of photolyzable calcium cages is described. This technique is potentially applicable to other caged species that can be chelated by a fluorescent indicator dye, as well as caged fluorescent compounds. The two-photon action cross sections of three calcium cages, DM-nitrophen, NP-EGTA, and azid-1, are studied in the range of excitation wavelengths between 700 and 800 nm. Azid-1 has a maximum deltau of approximately 1.4 GM at 700 nm, DM-nitrophen has a maximum deltau of approximately 0.013 GM at 730 nm, and NP-EGTA has no measurable uncaging yield. The equations necessary to predict the amount of cage photolyzed and the temporal behavior of the liberated calcium distribution under a variety of conditions are derived. These equations predict that by using 700-nm light from a Ti:sapphire laser focused with a 1.3-NA objective, essentially all of the azid-1 within the two-photon focal volume would be photolyzed with a 10-micros pulse train of approximately 7 mW average power. The initially localized distributions of free calcium will dissipate rapidly because of diffusion of free calcium and uptake by buffers. In buffer-free cytoplasm, the elevation of the calcium concentration at the center of the focal volume is expected to last for approximately 165 micros. PMID:9876162

  8. Development of a versatile two-photon endoscope for biological imaging

    PubMed Central

    Zhao, Youbo; Nakamura, Hiroshi; Gordon, Robert J.

    2010-01-01

    We describe a versatile, catheter-type two-photon probe, designed for in vivo and ex vivo imaging of the aqueous outflow pathway in the eye. The device consists of a silica double cladding fiber used for laser delivery and fluorescence collection, a spiral fiber scanner driven by a miniature piezoelectric tube, and an assembly of three micro-size doublet achromatic lenses used for focusing the laser and collecting the two-photon excitation signal. All the components have a maximum diameter of 2 mm and are enclosed in a length of 12-gauge stainless steel hypodermic tubing having an outer diameter of 2.8 mm. The lateral and axial resolutions of the probe are measured to be 1.5 μm and 9.2 μm, respectively. Different lens configurations and fibers are evaluated by comparing their spatial resolutions and fluorescence signal collection efficiencies. Doublet achromatic lenses and a double cladding fiber with a high inner cladding numerical aperture are found to produce a high signal collection efficiency, which is essential for imaging live tissues. Simple methods for reducing image distortions are demonstrated. Images of human trabecular meshwork tissue are successfully obtained with this miniature two-photon microscope. PMID:21258538

  9. New developments in two-photon analysis of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Riemann, I.; Schwarz, M.; Stracke, F.; Ehlers, A.; Dimitrow, E.; Kaatz, M.; König, K.; Le Harzic, R.

    2009-02-01

    Two-photon imaging of human skin using ultra short laser pulses can be used to obtain information about the state of cells and tissues by means of their natural autofluorescence. Using this method, it is possible to determine whether the normal cell pattern is disturbed or the autofluorescence is influenced by internal or external stimuli. Two-photon fluorescence lifetime imaging (FLIM) can further enhance this providing information about physiological processes, fluorophores (like NAD(P)H, collagen, keratin, elastin, flavins, melanin,...) and external applied probes inside cells and tissue parts. For example the part of the cells metabolism and energy level can be determined by analyzing the NADH regarding its free / bound state and its oxidized / reduced state. The combination of two-photon imaging with FLIM may lead to a better understanding and diagnosis of skin reactions and disorders. We also present some results of in vivo simultaneous collagen and elastin measurements in skin dermis. Changes of dermal collagen and elastin content are characteristic for skin aging as well as for pathological skin conditions.

  10. A Series of Imidazole Derivatives: Synthesis, Two-Photon Absorption, and Application for Bioimaging

    PubMed Central

    Zhu, Yingzhong; Xiao, Lufei; Zhao, Meng; Zhou, Jiazheng; Zhang, Qiong; Wang, Hui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-01-01

    A new series of D-π-A type imidazole derivatives have been synthesized and characterized. Two corresponding imidazolium salts (iodine and hexafluorophosphate) were prepared from the imidazole compound. Their electron-withdrawing ability can be largely tunable by salt formation reaction or ion exchange. UV-vis absorption and single-photon fluorescence spectra have been systematically investigated in different solvents. The two-photon cross sections (δ2PA) of the imidazole derivatives are measured by two-photon excited fluorescence (2PEF) method. Compared with those of T-1 (107 GM) and T-3 (96 GM), T-2 (imidazolium iodine salt) has a large two-photon absorption (2PA) cross section value of 276 GM. Furthermore, the cytotoxicity and applications in bioimaging for the imidazole derivatives were carried out. The results showed that T-1 can be used as a lysosomal tracker with high stability and water solubility within pHs of 4–6, while T-2 and T-3 can be used as probes for cell cytoplasm. PMID:26579544

  11. Hyperentanglement purification for two-photon six-qubit quantum systems

    NASA Astrophysics Data System (ADS)

    Wang, Guan-Yu; Liu, Qian; Deng, Fu-Guo

    2016-09-01

    Recently, two-photon six-qubit hyperentangled states were produced in experiment and they can improve the channel capacity of quantum communication largely. Here we present a scheme for the hyperentanglement purification of nonlocal two-photon systems in three degrees of freedom (DOFs), including the polarization, the first-longitudinal-momentum, and the second-longitudinal-momentum DOFs. Our hyperentanglement purification protocol (hyper-EPP) is constructed with two steps resorting to parity-check quantum nondemolition measurement on the three DOFs and swap gates, respectively. With these two steps, the bit-flip errors in the three DOFs can be corrected efficiently. Also, we show that using swap gates is a universal method for hyper-EPP in the polarization DOF and multiple-longitudinal-momentum DOFs. The implementation of our hyper-EPP is assisted by nitrogen-vacancy centers in optical microcavities, which could be achieved with current techniques. It is useful for long-distance high-capacity quantum communication with two-photon six-qubit hyperentanglement.

  12. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  13. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xuanze; Zong, Weijian; Li, Rongqin; Zeng, Zhiping; Zhao, Jia; Xi, Peng; Chen, Liangyi; Sun, Yujie

    2016-05-01

    Advances in light-sheet microscopy have enabled the fast three-dimensional (3D) imaging of live cells and bulk specimens with low photodamage and phototoxicity. Combining light-sheet illumination with super-resolution imaging is expected to resolve subcellular structures. Actually, such kind of super-resolution light-sheet microscopy was recently demonstrated using a single-molecule localization algorithm. However, the imaging depth and temporal resolution of this method are limited owing to the requirements of precise single molecule localization and reconstruction. In this work, we present two-photon super-resolution light-sheet imaging via stochastic optical fluctuation imaging (2PLS-SOFI), which acquires high spatiotemporal resolution and excellent optical sectioning ability. 2PLS-SOFI is based on non-linear excitation of fluctuation/blinking probes using our recently developed fast two-photon three-axis digital scanned light-sheet microscope (2P3A-DSLM), which enables both deep penetration and thin sheet of light. Overall, 2PLS-SOFI demonstrates up to 3-fold spatial resolution enhancement compared with conventional two-photon light-sheet (2PLS) microscopy and about 40-fold temporal resolution enhancement compared with individual molecule localization-selective plane illumination microscopy (IML-SPIM). Therefore, 2PLS-SOFI is promising for 3D long-term, deep-tissue imaging with high spatiotemporal resolution.

  14. High-throughput spatial light modulation two-photon microscopy for fast functional imaging

    PubMed Central

    Pozzi, Paolo; Gandolfi, Daniela; Tognolina, Marialuisa; Chirico, Giuseppe; Mapelli, Jonathan; D’Angelo, Egidio

    2015-01-01

    Abstract. The optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of holographic patterns illuminating the points of interest. We present a simpler and fully digital setup (SLM-2PM) which collects three-dimensional two-photon images by only exploiting the SLM. This configuration leads to an accurate placement of laser beamlets over small focal volumes, eliminating mechanically moving parts and making the system stable over long acquisition times. Fluorescence signals are diffraction limited and are acquired through a pixelated detector, setting the actual limit to the acquisition rate. High-resolution structural images were acquired by raster-scanning the sample with a regular grid of excitation focal volumes. These images allowed the selection of the structures to be further investigated through an interactive operator-guided selection process. Functional signals were collected by illuminating all the preselected points with a single hologram. This process is exemplified for high-speed (up to 1 kHz) two-photon calcium imaging on acute cerebellar slices. PMID:26157984

  15. New method of two-photon multi-layer optical disc storage

    NASA Astrophysics Data System (ADS)

    Jiang, Bing; Shen, Zhaolong; Cai, Jianwen; Tang, Huohong; Xing, Hui; Huang, Wenhao

    2006-02-01

    Multi-layer data storage based on nonlinear effect caused by two-photon absorption is an attractive approach in the field of mass data storage. A two-photon multi-layer optical disc storage system with disc rotation structure has been proposed. The multi-layer fluorescent disc used in this system consists of three layers. A transparent substrate (under layer) and a thin reflective layer (middle layer) are bonded together forming a kind of structure similar to DVD disc, which is necessary to servo the vertical and radial deviation. Two-photon bits are recorded in top layer. The storage system has two modules: servo module and confocal module. The former keeps following the vertical and radial deviations by means of focusing and tracking servo technologies used in current two-dimensional optical storage devices, so the system can be compatible with CD/DVD. According to the driving signal of actuators in servo pick-up, the confocal module can also follow the disc deviation in both recording and reading processes. The servo module has been finished and the result of preliminary experiment is presented. Using the actuator and the objective lens (NA 0.6) in SANYO pick-up, we successfully recorded and read three data layers in photobleaching material with a homemade femtosecond laser. The layer separation was 15μm and the transverse bit separation was 4 μm.

  16. Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm.

    PubMed

    Clay, G Omar; Schaffer, Chris B; Kleinfeld, David

    2007-01-14

    Porphyrin molecules have a highly conjugated cyclic structure and are theorized to have unusually large two-photon absorptivities (sigmaTPA), i.e., sigmaTPA approximately 10(2) GM. The authors tested this claim. Ultrafast two-photon absorption (TPA) spectroscopy was performed on solutions of hemoglobin, which contains a naturally occurring metaloporphyrin. They used a pump-probe technique to directly detect the change in transmission induced by TPA over the wavelength range of lambda0=780-880 nm. As controls, they measured the TPA of the dyes rhodamine 6G and B; their measurements both verify and extend previously reported values. In new results, hemoglobin was found to have a peak two-photon absorptivity of sigmaTPA approximately 150 GM at lambda0=825 nm, near a resonance of the Soret band. This value supports theoretical expectations. They also found a significant difference in the TPA of carboxyhemoglobin versus oxyhemoglobin, e.g., sigmaTPA=61 GM versus sigmaTPA=18 GM, respectively, at lambda0=850 nm, which shows that the ligand affects the electronic states involved in TPA.

  17. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e.

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4- [4-(N-methyl)styrene] -benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.

  18. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  19. Transverse target spin asymmetry in inclusive DIS with two-photon exchange

    SciTech Connect

    Andrei Afanasev; Mark Strikman; Christian Weiss

    2007-09-06

    We study the transverse target spin dependence of the cross section for the inclusive electron-nucleon scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation (Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-photon and absorptive two-photon exchange amplitudes as well as from real photon emission (bremsstrahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin dependence should be governed by a "parton-like" mechanism in which the two-photon exchange couples mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the dominant contribution arises from quark helicity flip due to interactions with non-perturbative vacuum fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon. Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, mu^2_chiral>>Lambda^2_QCD. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be of the order 10^-4, with different sign for proton and neutron. We also comment on the spin dependence in the limit of soft high-energy scattering.

  20. 3D localized photoactivation of pa-GFP in living cells using two-photon interactions.

    PubMed

    Diaspro, Alberto; Testa, Ilaria; Faretta, Mario; Magrassi, Raffaella; Barozzi, Sara; Parazzoli, Dario; Vicidomini, Giuseppe

    2006-01-01

    We report about two-photon activation of a photoactivatable derivative of the Aequorea Victoria green fluorescent protein (paGFP). This special form of the molecule increases its fluorescence intensity when excited by 488 nm after irradiation with high intensity light at 413 nm. The aim in this work was to evaluate the use of two-photon interactions for confining the molecular switching of pa-GFP in the bright state. Therefore experiments were performed using fixed and living cells which were expressing the paGFP fluorophore and microspheres whose surface was modified by specific adsorption of the chromophores. The molecular switches were activated in a range of wavelength from 720 nm to 840 nm. The optimal wavelength for activation was then chosen for cell imaging. A comparison between the conventional activation and two-photon mode demonstrates clearly the better three- dimensional (3D) confinement and the possibility of selection of cell volumes of interest. This enables molecular trafficking studies at high signal to noise ratio.